WorldWideScience

Sample records for efficiency led lamp

  1. Design of multisegmented freeform lens for LED fishing/working lamp with high efficiency.

    Science.gov (United States)

    Lai, Min-Feng; Anh, Nguyen Doan Quoc; Gao, Jia-Zhi; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2015-10-01

    A novel LED fishing/working light is proposed to enhance the lighting efficiency of a fishing boat. The study is focused on the freeform secondary lens design so as to create a lamp that attracts fish and sheds light on the deck for the crew's work. The experimental results show that the proposed multisegmented freeform lens can deliver the proposed aim, giving 3 times as much illuminating power as the traditional high-intensity discharge fishing lamp does with the same input of electrical power.

  2. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  3. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  4. Design of LED lamps | Ashryatov | Journal of Fundamental and ...

    African Journals Online (AJOL)

    Design of LED lamps. ... In this paper, we study the effect of LED high brightness on the brightness of a luminaire. The nomenclature of diffusers used in the production of ... The variant of the lighting system energy efficiency increase with luminaires and linear fluorescent lamps is considered. In the proposed variant, the ...

  5. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  6. Laboratory Evaluation of LED T8 Replacement Lamp Products

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  7. Luminous flux and colour maintenance investigation of integrated LED lamps

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Thorseth, Anders; Dam-Hansen, Carsten

    2014-01-01

    This article will present an investigation of the luminous flux and colour maintenance of white LED based retrofit lamps. The study includes 23 different types of integrated LED lamps, covering 18 directional and 5 non-directional. Luminous flux and colour data for operation up to 20000 h has been...

  8. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps

    Directory of Open Access Journals (Sweden)

    Gunnar Brehm

    2017-04-01

    Full Text Available Most nocturnal Lepidoptera can be attracted to artificial light sources, particularly to those that emit a high proportion of ultraviolet radiation. Here, I describe a newly developed LED lamp set for the use in the field that is lightweight, handy, robust, and energy efficient. The emitted electromagnetic spectrum corresponds to the peak sensitivity in most Lepidoptera eye receptors (ultraviolet, blue and green. Power LEDs with peaks at 368 nm (ultraviolet, 450 nm (blue, 530 nm (green, and 550 nm (cool white are used. I compared the irradiance (Ee of many commonly used light-trapping lamps at a distance of 50 cm. Between wavelengths of 300 and 1000 nm, irradiance from the new lamp was 1.43 W m-2. The new lamp proved to be the most energy efficient, and it emitted more radiation in the range between 300 and 400 nm than any other lamp tested. Cold cathodes are the second most energy-efficient lamps. Irradiation from fluorescent actinic tubes is higher than from fluorescent blacklight-blue tubes. High-wattage incandescent lamps and self-ballasted mercury vapour lamps have highest irradiance, but they mainly emit in the long wave spectrum. The use of gauze and sheets decreases the proportion of UV radiation and increases the share of blue light, probably due to optical brighteners. Compared with sunlight, UV irradiance is low at a distance of 50 cm from the lamp, but (safety glasses as well as keeping sufficient distance from the lamp are recommended. In field tests, the new LED lamp attracted large numbers of Lepidoptera in both the Italian Alps and in the Peruvian Andes.

  9. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  10. Application Summary Report 22: LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.

    2014-07-23

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens

  11. Anti-glare LED lamps with adjustable illumination light field.

    Science.gov (United States)

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  12. Development and commercialisation of rechargeable wooden LED lamps

    Directory of Open Access Journals (Sweden)

    Bradley Schultz

    2013-02-01

    Full Text Available The focus of this project was to work with local staff at Kathmandu Alternative Power and Energy Group to commercialise a product which would generate recurring income for the organisation, to enable staff to learn the process of commercialisation and to provide employment and skills in the local community. Rechargeable Light Emitting Diode (LED lamps were deemed suitable for these aims, as they are a simple product, yet one that is urgently required in Nepal due to the prevalence of ‘load-shedding’ – scheduled electrical blackouts. After reviewing the market, it was found that it would be impossible to compete with the price of cheap imported Chinese rechargeable LED lamps, so an alternative approach was taken. This involved sourcing wooden off-cuts from a local furniture factory and transforming them into attractive desk lamps, with the target market being affluent Nepalis, ex-pats living in Nepal and tourists. Successful initial sales were achieved through a Kathmandu-based ex-pat email group, hotel-markets and souvenir stores. KAPEG staff have continued the project, producing variations on the initial design including Himalayan rock salt lamps, employing local people to manufacture lamps and selling them at markets in Kathmandu. Staffing and marketing challenges remain to ensure the lamp manufacture and sales continue.

  13. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps

    OpenAIRE

    Brehm, Gunnar

    2017-01-01

    Most nocturnal Lepidoptera can be attracted to artificial light sources, particularly to those that emit a high proportion of ultraviolet radiation. Here, I describe a newly developed LED lamp set for the use in the field that is lightweight, handy, robust, and energy efficient. The emitted electromagnetic spectrum corresponds to the peak sensitivity in most Lepidoptera eye receptors (ultraviolet, blue and green). Power LEDs with peaks at 368 nm (ultraviolet), 450 nm (blue), 530 nm (green), a...

  14. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Charles C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  15. Harmonics Study of Common Low Wattage LED Lamps

    Directory of Open Access Journals (Sweden)

    Ioan Dragoş Deaconu

    2017-11-01

    Full Text Available This article presents experimental data on Light Emitting Diode (LED lamps of low wattage that are commonly found both in commercial and residential applications. A comparison with the existing regulations is performed. The measurements are performed using power and energy quality analyzer intended also for avionic and military systems.

  16. Implementation and Test of a LED-Based Lamp for a Lighthouse

    Directory of Open Access Journals (Sweden)

    Luca Mercatelli

    2014-01-01

    Full Text Available A novel sustainable source was developed for an existing Italian lighthouse, exploiting the light emitting diode (LED technology and the norms evolution. The research work started with the optical design of the device, while this work concerns the realization, installation, and test of the new LED lamp. The lamp recombines multiple separated LEDs, realizing a quasipunctual localized source. After installation in the lighthouse, specific photometric tests verified that the proposed power-saving source satisfied the illumination requirements of the marine signaling norms. The advantages of the LED-based lamp are reduced energy consumption, enhanced efficiency, longer life, decreased faults, slower aging, and lower maintenance costs. The obtained LED signalling device is more durable and reliable. In the future the application of these power-saving long-life sources could be extended to other maritime signaling devices or to other traffic signs.

  17. Photometric characterization of LED's for optimal design of interior lamps

    International Nuclear Information System (INIS)

    Hernandez, O.; Guerra, H.; Leon, V.; Torres, A. W.; Castannon, H.; Camas, J.

    2012-01-01

    The Tuxtla Gutierrez Technology Institute, and the Innovaluz of Mexico S A of C V company have joined forces to develop LED lighting technology in Chiapas, Mexico. We performed a comprehensive study of power savings for a household using this luminary. The main results of the Lighting are presented exclusively for the ILIGPL153BF24W model, as well as the design features of a functional lamp. (Author)

  18. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    Science.gov (United States)

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  19. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  20. Investigation of structure in the modular light pipe component for LED automotive lamp

    Science.gov (United States)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  1. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting

    Science.gov (United States)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  2. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  3. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    OpenAIRE

    H?lz, K.; Lietard, J.; Somoza, M. M.

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition...

  4. Design of Elliptic Reflective LED Surgical Shadowless Lamps Using Mathematical Optical Tracing Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Tang Pan

    2014-01-01

    Full Text Available Traditional surgical shadowless halogen lamps are generally designed as projection type with many light bulbs, which can produce not only mercury pollution but also heat radiation that are serious problems to patient. The study utilized Runge-Kutta methods and mathematical algorithms to design and optimize the freeform lens. The LED (light-emitting diode was adopted to replace the traditional halogen lamp. A uniform lens was designed and fabricated based on the energy conservation. At first, the light field of LED is concentrated through the freeform lens to improve the optical efficiency. Second, the three-shell elliptic curves are applied to the reflective surgical shadowless lamps, where only few LED chips are needed. Light rays emitting from different directions to the target plane can achieve the goal of shadowless. In this study, the LED’s luminance flux is 1,895 lm. The shadow dilution on the target plane is 54%. Ec (central illuminance is 114,900 lux, and the d50/d10 is 57% which is higher than the regulation by 7%, whereas the power consumption is only 20 W. The energy of reflective surgical shadowless lamps can save more than 50%, compared with the traditional projective one.

  5. The Lifetime Prediction of LED Drivers and Lamps

    NARCIS (Netherlands)

    Sun, B.

    2017-01-01

    Light-Emitting Diodes (LEDs) have become a very promising alternative lighting source with the main advantages of a longer lifetime and a higher efficiency than traditional ones. However, the LED lamp’s lifetime is compromised by its driver’s reliability. Although extensive studies have been made on

  6. CALiPER Report 21.2. Linear (T8) LED Lamp Performance in Five Types of Recessed Troffers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    Although lensed troffers are numerous, there are many other types of optical systems as well. This report looks at the performance of three linear (T8) LED lamps—chosen primarily based on their luminous intensity distributions (narrow, medium, and wide beam angles)—as well as a benchmark fluorescent lamp in five different troffer types. Also included are the results of a subjective evaluation. Results show that linear (T8) LED lamps can improve luminaire efficiency in K12-lensed and parabolic-louvered troffers, effect little change in volumetric and high-performance diffuse-lensed type luminaires, but reduce efficiency in recessed indirect troffers. These changes can be accompanied by visual appearance and visual comfort consequences, especially when LED lamps with clear lenses and narrow distributions are installed. Linear (T8) LED lamps with diffuse apertures exhibited wider beam angles, performed more similarly to fluorescent lamps, and received better ratings from observers. Guidance is provided on which luminaires are the best candidates for retrofitting with linear (T8) LED lamps.

  7. Analysis of compact and portable goniospectrometer system for test of LED lamps

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Amdemeskel, Mekbib Wubishet; Thorseth, Anders

    2015-01-01

    measurements in a near-field goniophotometer. A collection of six different types of directional and non-directional integrated LED lamps with three samples of each were used as test devices. It is shown that the main uncertainty comes from the inadequate thermal stabilisation of the LED lamps. With pre...

  8. The evolving price of household LED lamps: Recent trends and historical comparisons for the US market

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F.; Ngo, Allison T.; Alstone, Andrea L.; Fisseha, Kibret S.

    2014-10-14

    In recent years, household LED light bulbs (LED A lamps) have undergone a dramatic price decline. Since late 2011, we have been collecting data, on a weekly basis, for retail offerings of LED A lamps on the Internet. The resulting data set allows us to track the recent price decline in detail. LED A lamp prices declined roughly exponentially with time in 2011-2014, with decline rates of 28percent to 44percent per year depending on lumen output, and with higher-lumen lamps exhibiting more rapid price declines. By combining the Internet price data with publicly available lamp shipments indices for the US market, it is also possible to correlate LED A lamp prices against cumulative production, yielding an experience curve for LED A lamps. In 2012-2013, LED A lamp prices declined by 20-25percent for each doubling in cumulative shipments. Similar analysis of historical data for other lighting technologies reveals that LED prices have fallen significantly more rapidly with cumulative production than did their technological predecessors, which exhibited a historical decline of 14-15percent per doubling of production.

  9. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  10. Comparative performance analysis of shunt and series passive filter for LED lamp

    Science.gov (United States)

    Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo

    2018-03-01

    Light Emitting Diode lamp or LED lamp nowadays is widely used by consumers as a new innovation in the lighting technologies due to its energy saving for low power consumption lamps for brighter light intensity. How ever, the LED lamp produce an electric pollutant known as harmonics. The harmonics is generated by rectifier as part of LED lamp circuit. The present of harmonics in current or voltage has made the source waveform from the grid is distorted. This distortion may cause inacurrate measurement, mall function, and excessive heating for any element at the grid. This paper present an analysis work of shunt and series filters to suppress the harmonics generated by the LED lamp circuit. The work was initiated by conducting several tests to investigate the harmonic content of voltage and currents. The measurements in this work were carried out by using HIOKI Power Quality Analyzer 3197. The measurement results showed that the harmonics current of tested LED lamps were above the limit of IEEE standard 519-2014. Based on the measurement results shunt and series filters were constructed as low pass filters. The bode analysis were appled during construction and prediction of the filters performance. Based on experimental results, the application of shunt filter at input side of LED lamp has reduced THD current up to 88%. On the other hand, the series filter has significantly reduced THD current up to 92%.

  11. The design of optical module of LED street lamp with non-axial symmetrical reflector

    Science.gov (United States)

    Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.

  12. Lumen and Chromaticity Maintenance of LED PAR38 Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The lumen depreciation and color shift of 38 different lamps (32 LED, 2 CFL, 1 ceramic metal halide [CMH], 3 halogen) were monitored in a specially developed automated long-term test apparatus (ALTA2) for nearly 14,000 hours. Five samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at a target ambient temperature between 44°C and 45°C.

  13. THE YIELD OF LETTUCE BREEDING LINE UNDER LED LAMPS IN WINTER GREENHOUSE IN THE NORTH

    Directory of Open Access Journals (Sweden)

    I. V. Dalke

    2017-01-01

    Full Text Available The lettuce (Lactuca sativa L. is widely known and favorite vegetable crop among people. In Europe the main production of lettuce is performed on protected ground with application of  artificial  light  sources. The artificially-lighted  culture  of salad became very actually acquired in the north. Previously, on the basis of multi-year studies on yield registration and experiments with different regimes of lighting we have defined the appropriate parameters of supplementary lighting for lettuce with sodium high-pressure lamps that provided the production in different seasons per year. The aim was to study the accumulation of biomass and yield quality in lettuce ‘Aphytsion’ being grown in winter rotation under light-emitting diodes lamps. The accumulation of biomass and yield quality was studied in ‘Aphytsion’,  grown in winter rotation under lightemitting diodes lamps ECOLED-BIO-112-185WD120 UniversaLED (ООО ‘GK’  ‘CET’, Perm, in  industrial greenhouse OOO ‘Prigorodniy’  at Syktyvkar city. The commodity  output  was obtained  for  two  cycle  of  cultivation, November-December  and  December-January.  Yield  of foliage biomass was 2.4 kg/m2 with flow density PAR (Photosynthetically active radiation about 90 μmole quantum/m2  s. at 20 W/m2 with total light energy 54 MJ/m2  supplied to plants from LED lamps. The plants produced about 0.5 g. of dry weight calculated on one mole of spent light energy. Energy efficiency of PAR was 3% that corresponded with data observed earlier with sodium high-pressure lamps. The conclusion was made about the suitableness of this type of light-emitting diode lamps for lettuce cultivation in winter rotation in first photic zone. It was recommended to increase duration of supplemental lighting up to 22-24 hours in December and up to 20-22 hours in January to improve the productivity and biological value of plant output. It enables to raise RAP income in plants by 35 %, on

  14. Design of a Multi-Color Lamp Using High Brightness RGB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Song, S.B.; Kang, S.H.; Yeo, I.S. [Chonnam National University, Kwangju (Korea)

    2003-02-01

    This paper proposes the design of a multi-color lamp using high brightness RGB LEDs for color variation. Appropriate number of RGB LEDs is so chosen according to the color mixing theory that the overall LEDs represent a color temperature of 6500K. Also, the chosen RGB LEDs are suitably arranged by using an optical design program. The lamp has an internal controller circuit, so it can be directly connected to the existing incandescent lamp socket. It's main body is comprised of two PCB layers. The upper layer contains 44 LEDs and the lower one has a simple microcontroller-based PWM control circuit. The lamp has functions of both ON/OFF control and PWM control, and enables color variation of over 100,000 colors and of more than 10 patterns. (author). 7 refs., 11 figs., 3 tabs.

  15. CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  16. CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.

    2014-05-27

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  17. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps.

    Science.gov (United States)

    Nisa Khan, M

    2017-09-20

    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  18. Design and Manufacture of a Novel LED Table Lamp with Flower Decoration

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2014-08-01

    Full Text Available This work involved the design and manufacture of a novel LED table lamp that provides for flower decoration. It is a combination of a normal LED table lamp and attachments holding flower arrangement frogs. In this application the frogs, as used for traditional flower arrangements, became heat sinks for the LED units. They are made of an aluminum alloy to give good heat transfer and dissipation. In any case since they are fixed to the unit they do not need to be very heavy. The design features of this novel flower-arrangement LED table lamp are: (1 the use of a light aluminum alloy flower decoration frog as a heat sink which gives both high heat dissipation and allows decorative flower arrangement; (2 the installation of LED lamps at three points of the same plate above a cylinder covered with a glass lampshade to achieve a beautiful effect; (3 to provide three different lighting modes for reading, use as a night light and for flower decoration. This novel LED table lamp meets all the energy-saving and environmental protection requirements. It has commercial potential in the market for LED lamps.

  19. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Poplawski, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Charles C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    Three samples of 40 of the Series 20 PAR38 lamps underwent multi-stress testing, whereby samples were subjected to increasing levels of simultaneous thermal, humidity, electrical, and vibrational stress. The results do not explicitly predict expected lifetime or reliability, but they can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs. On average, the 32 LED lamp models tested were substantially more robust than the conventional benchmark lamps. As with other performance attributes, however, there was great variability in the robustness and design maturity of the LED lamps. Several LED lamp samples failed within the first one or two levels of the ten-level stress plan, while all three samples of some lamp models completed all ten levels. One potential area of improvement is design maturity, given that more than 25% of the lamp models demonstrated a difference in failure level for the three samples that was greater than or equal to the maximum for the benchmarks. At the same time, the fact that nearly 75% of the lamp models exhibited better design maturity than the benchmarks is noteworthy, given the relative stage of development for the technology.

  20. CALiPER Application Summary Report 20. LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-11-01

    This report analyzes the independently tested photometric performance of 38 LED PAR38 lamps. The test results indicate substantial improvement versus earlier CALiPER testing of similar products, and performance comparable to recent data from LED Lighting Facts and ENERGY STAR. Additional testing that focuses on performance attributes beyond those covered by LM-79-08 is planned for this group of lamps, and will be presented in subsequent reports.

  1. CALiPER Application Summary Report 21. Linear (T8) LED Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    This report focuses on the bare lamp performance of 31 linear LED lamps intended as an alternative to T8 fluorescent lamps. Data obtained in accordance with IES LM-79-08 indicated that the mean efficacy is similar to that of fluorescent lamps, but that lumen output is often much lower. This presents a situation where something must change in order for energy savings and equivalent illumination levels to be achieved simultaneously. In this case, the luminous intensity distribution of all the tested lamps was directional or semi-directional, rather than omnidirectional. Also discussed in this report are several issues related to the electrical configuration of the lamps, such as the required socket types and power feed location. While no configuration is necessarily better, the multitude of options can make specifying and installing linear LED lamps more difficult, with the potential for safety issues. Similarly, the variety of color and power quality attributes adds a layer of complexity to the specification process. Many products offered good or excellent quality attributes, but some did not and thus could be perceived as inferior to fluorescent lamps in some installations.

  2. Improved power quality based high brightness LED lamp driver

    African Journals Online (AJOL)

    user

    consists of a PFC Cuk DC-DC converter which operates in continuous conduction mode (CCM) to improve the ... In proposed LED driver as shown in Figure 1, a Cuk buck boost AC-DC converter ... Design and Analysis of Proposed LED Driver.

  3. DOE CALiPER Program, Report 21.2: Linear (T8) LED Lamp Performance in Five Types of Recessed Troffers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.; Wilkerson, Andrea M.; Beeson, Tracy A.

    2014-05-20

    Although lensed troffers are numerous, there are many other types of optical systems as well. This report looked at the performance of three linear (T8) LED lamps chosen primarily based on their luminous intensity distributions (narrow, medium, and wide beam angles) as well as a benchmark fluorescent lamp in five different troffer types. Also included are the results of a subjective evaluation. Results show that linear (T8) LED lamps can improve luminaire efficiency in K12-lensed and parabolic-louvered troffers, effect little change in volumetric and high-performance diffuse-lensed type luminaires, but reduce efficiency in recessed indirect troffers. These changes can be accompanied by visual appearance and visual comfort consequences, especially when LED lamps with clear lenses and narrow distributions are installed. Linear (T8) LED lamps with diffuse apertures exhibited wider beam angles, performed more similarly to fluorescent lamps, and received better ratings from observers. Guidance is provided on which luminaires are the best candidates for retrofitting with linear (T8) LED lamps.

  4. CALiPER Report 22.1: Photoelectric Performance of LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Charles C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Merzouk, Massine B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This report is a follow-up to CALiPER Application Summary Report 22, which investigated the photometric performance of LED MR16 lamps. The initial report found that many of the LED MR16 lamps did not perform as required by ENERGY STAR based on their equivalency claims, although they generally did provide substantial efficacy advantages compared to halogen MR16 lamps. All testing was completed using laboratory power supplies, with all but one product tested at 12 V AC. In contrast, this report examined the photoelectric performance of the same set of lamps, using commercially available transformers and dimmers as well as laboratory power supplies providing both AC and DC power.

  5. Procedure to evaluate the ionizing radiation influence over LED and magnetic induction lamps

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Otavio Luis de; Menzel, Silvio Carlos, E-mail: otavioluis@ipen.br, E-mail: scmenzel@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CEN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Ribas, Jacinto Oliveira, E-mail: jacinto@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Gerencia de Eletrica e Instrumentacao

    2015-07-01

    The goal of this paper is to present a methodology to evaluate the ionizing radiation influence over Lighting Emitting Diode (LED) and Magnetic Induction (MI) lamps as they use a lot of electronic in their power supply. Considering they have a huge lifetime it is interesting to apply this technology into environments under ionizing radiation, such as a nuclear facility. Thus, it is possible to increase the period between two consecutive maintenance, reduce the repair and global maintenance costs and reduce the operational personnel exposure to ionizing radiation. In this context it is going to be presented a scheme to select different LED and MI lamps available in the Brazilian market, a methodology to irradiate several lamp samples according various radiation levels that can be found in the facilities and the electrical and photometric evaluation to be performed. Considering this methodology it will be possible to analyze the lamps capacity to withstand ionizing radiation, under regular operating conditions of the facilities and its effects in the performance and lifetime of the selected lamps. Thus, the procedures suggested in this work can be used as a guide to perform experiments and analysis to find specific lamps that can reduce the global maintenance costs and the personnel exposure. Hereafter, several lamps are going to be acquired and the tests performed, according the procedures here described. (author)

  6. Procedure to evaluate the ionizing radiation influence over LED and magnetic induction lamps

    International Nuclear Information System (INIS)

    Oliveira, Otavio Luis de; Menzel, Silvio Carlos; Ribas, Jacinto Oliveira

    2015-01-01

    The goal of this paper is to present a methodology to evaluate the ionizing radiation influence over Lighting Emitting Diode (LED) and Magnetic Induction (MI) lamps as they use a lot of electronic in their power supply. Considering they have a huge lifetime it is interesting to apply this technology into environments under ionizing radiation, such as a nuclear facility. Thus, it is possible to increase the period between two consecutive maintenance, reduce the repair and global maintenance costs and reduce the operational personnel exposure to ionizing radiation. In this context it is going to be presented a scheme to select different LED and MI lamps available in the Brazilian market, a methodology to irradiate several lamp samples according various radiation levels that can be found in the facilities and the electrical and photometric evaluation to be performed. Considering this methodology it will be possible to analyze the lamps capacity to withstand ionizing radiation, under regular operating conditions of the facilities and its effects in the performance and lifetime of the selected lamps. Thus, the procedures suggested in this work can be used as a guide to perform experiments and analysis to find specific lamps that can reduce the global maintenance costs and the personnel exposure. Hereafter, several lamps are going to be acquired and the tests performed, according the procedures here described. (author)

  7. Design and Manufacture of a Novel LED Table Lamp with Flower Decoration

    OpenAIRE

    Tzer-Ming Jeng; Sheng-Chung Tzeng; Wei-Ting Hsu; Chia-Hung Chang; Yu-Xiang Huang

    2014-01-01

    This work involved the design and manufacture of a novel LED table lamp that provides for flower decoration. It is a combination of a normal LED table lamp and attachments holding flower arrangement frogs. In this application the frogs, as used for traditional flower arrangements, became heat sinks for the LED units. They are made of an aluminum alloy to give good heat transfer and dissipation. In any case since they are fixed to the unit they do not need to be very heavy. The design features...

  8. CALiPER Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of LED A Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines lumen depreciation and color shift of 17 different A lamps in steady-state conditions (15 LED, 1 CFL, 1 halogen). The goal of this investigation was to examine the long-term performance of complete LED lamps relative to benchmark halogen and CFL lamps—in this case, A lamps emitting approximately 800 lumens operated continuously at a relatively high ambient temperature of 45°C.

  9. Performance of barcode scanner using peak detection with interference from LED lamps

    NARCIS (Netherlands)

    Deng, X.; Zijlstra, P.; Zhang, J.; Wu, Y.; Zhou, G.; Linnartz, J.-P.

    2015-01-01

    This paper presents a new model for barcode scanners that suffer from the interference of LED lamps, to quantify the system performance in terms of Timing Signal-to-Interference Ratio (TSIR), particularly as a function of modulation depth and frequency of the flicker in the LED lighting. Physical

  10. Multiple Primary LED Lamp Colour Controller with Inherent Brightness Limitation

    NARCIS (Netherlands)

    Barcena, R.; Ackermann, B.

    2007-01-01

    There is a strong interest in using LEDs for general illumination due to the potential they offer for energy saving, environmental friendliness, new opportunities in lighting design, and control of the intensity, colour, and spatial distribution of light. General illumination requires primarily

  11. Demonstration of LED Retrofit Lamps at the Jordan Schnitzer Museum of Art

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J.

    2011-09-01

    The Jordan Schnitzer Museum of Art in Eugene, Oregon, houses a remarkable permanent collection of Asian art and antiquities, modern art, and sculpture, and also hosts traveling exhibitions. In the winter and spring of 2011, a series of digital photographs by artist Chris Jordan, titled "Running the Numbers," was exhibited in the Coeta and Donald Barker Special Exhibitions Gallery. These works graphically illustrate waste (energy, money, health, consumer objects, etc.) in contemporary culture. The Bonneville Power Administration and the Eugene Water and Electricity Board provided a set of Cree 12W light-emitting diode (LED) PAR38 replacement lamps (Cree LRP38) for the museum to test for accent lighting in lieu of their standard Sylvania 90W PAR38 130V Narrow Flood lamps (which draw 78.9W at 120V). At the same time, the museum tested LED replacement lamps from three other manufacturers, and chose the Cree lamp as the most versatile and most appropriate color product for this exhibit. The lamps were installed for the opening of the show in January 2011. This report describes the process for the demonstration, the energy and economic results, and results of a survey of the museum staff and gallery visitors on four similar clusters of art lighted separately by four PAR38 lamps.

  12. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  13. Phototaxis of Propsilocerus akamusi (Diptera: Chironomidae) From a Shallow Eutrophic Lake in Response to Led Lamps.

    Science.gov (United States)

    Hirabayashi, Kimio; Nagai, Yoshinari; Mushya, Tetsuya; Higashino, Makoto; Taniguchi, Yoshio

    2017-06-01

    A study on the attraction of adult Propsilocerus akamusi midges to different-colored light traps was carried out from October 21 to November 15, 2013. The 6 colored lights used in light-emitting diode (LED) lamps were white, green, red, blue, amber, and ultraviolet (UV). The UV lamp attracted the most P. akamusi, followed by green, white, blue, amber, and red. A white pulsed LED light attracted only half the number of midges as did a continuous-emission white LED light. The result indicated that manipulation of light color, considering that the red LED light and/or pulsed LED light are not as attractive as the other colors, may be appropriate for the development of an overall integrated strategy to control nuisance P. akamusi in the Lake Suwa area.

  14. An accelerated test method of luminous flux depreciation for LED luminaires and lamps

    International Nuclear Information System (INIS)

    Qian, C.; Fan, X.J.; Fan, J.J.; Yuan, C.A.; Zhang, G.Q.

    2016-01-01

    Light Emitting Diode (LED) luminaires and lamps are energy-saving and environmental friendly alternatives to traditional lighting products. However, current luminous flux depreciation test at luminaire and lamp level requires a minimum of 6000 h testing, which is even longer than the product development cycle time. This paper develops an accelerated test method for luminous flux depreciation to reduce the test time within 2000 h at an elevated temperature. The method is based on lumen maintenance boundary curve, obtained from a collection of LED source lumen depreciation data, known as LM-80 data. The exponential decay model and Arrhenius acceleration relationship are used to determine the new threshold of lumen maintenance and acceleration factor. The proposed method has been verified by a number of simulation studies and experimental data for a wide range of LED luminaire and lamp types from both internal and external experiments. The qualification results obtained by the accelerated test method agree well with traditional 6000 h tests. - Highlights: • We develop an accelerated test method for LED luminaires and lamps. • The method is proposed based on a “Boundary Curve” concept. • The parameters of the boundary curve are extracted from LM-80 test reports. • Qualification results from the proposed method agree with ES requirements.

  15. CALiPER Application Summary Report 22: LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-09-01

    An initial sample of 27 LED MR16 lamps and 8 halogen benchmarks underwent photometric testing according to IES LM-79-08. CALiPER Application Summary Report 22 focuses on the initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to the benchmarks and ENERGY STAR qualification thresholds.

  16. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    Science.gov (United States)

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  17. UV-LED Curing Efficiency of Wood Coatings

    OpenAIRE

    Véronic Landry; Pierre Blanchet; Gabrielle Boivin; Jean-François Bouffard; Mirela Vlad

    2015-01-01

    Ultraviolet light emitting diodes (UV-LEDs) have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerf...

  18. Thermal Characterization and Lifetime Prediction of LED Boards for SSL Lamp

    Directory of Open Access Journals (Sweden)

    J. Formanek

    2013-04-01

    Full Text Available This work presents a detailed 3-D thermo-mechanical modelling of two LED board technologies to compare their performance. LED board are considered to be used in high power 800 lumen retrofit SSL (Solid State Lighting lamp. Thermal, mechanical and life time properties are evaluated by numerical modelling. Experimental results measured on fabricated LED board samples are compared to calculated data. Main role of LED board in SSL lamp is to transport heat from LED die to a heat sink and keep the thermal stresses in all layers as low as possible. The work focuses on improving of new LED board thermal management. Moreover, reliability and lifetime of LED board has been inspected by numerical calculation and validated by experiment. Thermally induced stress has been studied for wide temperature range that can affect the LED boards (-40 to +125°C. Numerical modelling of thermal performance, thermal stress distribution and lifetime has been carried out with ANSYS structural analysis where temperature dependent stress-strain material properties have been taken into account. The objective of this study is to improve not only the thermal performance of new LED board, but also identification of potential problems from mechanical fatigue point of view. Accelerated lifetime testing (e.g., mechanical is carried out in order to study the failure behaviour of current and newly developed LED board.

  19. Experimentation in the teaching of Modern Physics: Photoelectric Effect with neon lamp and LEDs

    Directory of Open Access Journals (Sweden)

    Dario Eberhardt

    2017-12-01

    Full Text Available The article presents an experiment aimed at the teaching of Physics in High School, specifically the Photoelectric Effect, and it aims to support the teacher or serve as an inspiration for the proposition of other didactic activities. The experimentation consists on the exposure of a neon lamp to the lights of different wavelengths emitted by varied LEDs. The photoelectric current is measured on electrodes of the neon lamp, verifying that it has definite direction; the effect occurs when the wavelength of the applied light is less than a certain limit, and; the intensity of the photoelectric current depends on the intensity of the light applied, in agreement with the current scientific model of the phenomenon. This text also includes many decisive moments of the history of the Photoelectric Effect, characteristics of similar experiments using ultraviolet light, the electron work function of the metals of the electrodes and the ionization energy of the gases inside the lamp.

  20. DC Pollution of AC Mains due to modern compact fluorescent light lamps and LED lamps

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Timens, R.B.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2013-01-01

    Modern so-called energy efficient equipment often draw current only during a very short period of the period of a power supply mains. This is causing unwanted non-sinusoidal and harmonic currents. In some cases even a single diode is used for rectification causing direct current (DC) in the mains

  1. CALiPER Retail Lamps Study RRL3.2 Lumen and Chromaticity Maintenance of LED A lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCullough, Jeffrey J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Joseph C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The lumen depreciation and color shift of 17 different A lamps (15 LED, 1 CFL, 1 halogen) was monitored in the automated long-term test apparatus (ALTA) for more than 7,500 hours. Ten samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at an ambient temperature of 45°C (-1°C). Importantly, the steady-state test conditions were not optimized for inducing catastrophic failure for any of the lamp technologies—to which thermal cycling is a strong contributor— and are not typical of normal use patterns—which usually include off periods where the lamp cools down. Further, the test conditions differ from those used in standardized long-term test methods (i.e., IES LM-80, IES LM-84), so the results should not be directly compared. On the other hand, the test conditions are similar to those used by ENERGY STAR (when elevated temperature testing is called for). Likewise, the conditions and assumptions used by manufacturers to generated lifetime claims may vary; the CALiPER long-term data is informative, but cannot necessarily be used to discredit manufacturer claims. The test method used for this investigation should be interpreted as one more focused on the long-term effects of elevated temperature operation, at an ambient temperature that is not uncommon in luminaires. On average, the lumen maintenance of the LED lamps monitored in the ALTA was better than benchmark lamps, but there was considerable variation from lamp model to lamp model. While three lamp models had average lumen maintenance above 99% at the end of the study period, two products had average lumen maintenance below 65%, constituting a parametric failure. These two products, along with a third, also exhibited substantial color shift, another form of parametric failure. While none of the LED lamps exhibited catastrophic failure—and all of the benchmarks did—the early degradation of performance is concerning, especially with a

  2. Accelerated Stress Testing of Multi-Source LED Products: Horticulture Lamps and Tunable-White Modules

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Davis, Kelley Rountree, Karmann Mills

    2018-03-30

    This report discusses the use of accelerated stress testing (AST) to provide insights into the long-term behavior of commercial products utilizing different types of mid-power LEDs (MP-LEDs) integrated into the same LED module. Test results are presented from two commercial lamps intended for use in horticulture applications and one tunable-white LED module intended for use in educational and office lighting applications. Each of these products is designed to provide a custom spectrum for their targeted applications and each achieves this goal in different ways. Consequently, a comparison of the long-term stability of these devices will provide insights regarding approaches that could be used to possibly lengthen the lifetime of SSL products.

  3. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  4. Comparative analysis of high pressure sodium vapor lamps and mercury vapor lamp with the solid state (LED) in the public lighting systems; Analise comparativa das lampadas de vapor de sodio a alta pressao e de vapor de mercurio com a lampada a estado solido (LED) em sistemas de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    Damato, J.C.; Bueno, J.E.; Astorga, O.A.M. [Universidade Estadual Paulista (LESIP/UNESP), Guaratingueta, SP (Brazil). Lab. de Eficiencia Energetica em Sistemas de Iluminacao Publica; Ricciulli, D.L.S. [Universidade Estadual Paulista (DEE/UNESP), Guaratingueta, SP (Brazil). Dept. de Engenharia Eletrica

    2009-07-01

    The necessity of energy conservation in Brazilian electric sector, with the intention to diminish the resources of generation investments, has going to use of electric energy conservation programs, being most important PROCEL - a national program of electric conservation energy by ELETROBRAS, and inside this, a national program for public illumination and efficient traffic signaling - named 'Reluz'. This program looks for a more efficient implantation of public lighting systems, that requires the use of lamp technologies that present a greater value in a relation between lumen/watt relation and then beyond providing economy, due to low consumption of electric energy. Besides technologies that are appearing, the inclusion of LED lamps, which offers a great application potential, comes blunting as improvement alternative, being that the next public illumination parks will be able count on these lamps associates to the high-pressure sodium lamps and other types currently used. (author)

  5. Study on residential appliances energy efficiency standards Refrigerators, air-conditioners, incandescent lamps, fluorescent lamps, color TVs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Cho, S.K.; Choi, S.H.; Jung, B.M.; Han, S.B.; Kim, K.D. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The energy efficiency standards and rating act, as amended by the rational energy utilization act, provides energy efficiency standards and ratings for 6 types of consumer products(refrigerators, air-conditioners, fluorescent lamps, incandescent lamps, ballasts and cars) authorizes the Ministry of Trade, Industry and Energy(MOTIE) to prescribe amended or new energy efficiency standards and rating standards. This study was initiated by the KIER in 1992. KIER`s assessment of the standards is designed to evaluate their statistical and engineering analysis according to Korean(Industrial) Standards(KS). And to make distinction between the poor efficiency and good efficiency models, 5 grades are classified depending on their tested energy efficiency. This year, based on our analysis, MOTIE mandated updated standards for refrigerators, air-conditioners, incandescent lamps, and fluorescent lamps. Also the objective of this study is to set the energy efficiency standards and to grade for color TV sets. (author). 37 refs., 89 figs., 85 tabs.

  6. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    Science.gov (United States)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  7. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    International Nuclear Information System (INIS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-01-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs. (invited article)

  8. Electrical efficiency and droop in MQW LEDs

    Science.gov (United States)

    Malyutenko, V. K.

    2014-02-01

    It is believed that low power conversion efficiency in commercial MQW LEDs occurs as a result of efficiency droop, current-induced dynamic degradation of the internal quantum efficiency, injection efficiency, and extraction efficiency. Broadly speaking, all these "quenching" mechanisms could be referred to as the optical losses. The vast advances of high-power InGaN and AlGaInP MQW LEDs have been achieved by addressing these losses. In contrast to these studies, in this paper we consider an alternative approach to make high-power LEDs more efficient. We identify current-induced electrical efficiency degradation (EED) as a strong limiting factor of power conversion efficiency. We found that EED is caused by current crowding followed by an increase in current-induced series resistance of a device. By decreasing the current spreading length, EED also causes the optical efficiency to degrade and stands for an important aspect of LED performance. This paper gives scientists the opportunity to look for different attributes of EED.

  9. UV-LEDs Efficiently Inactivate DNA and RNA Coliphages

    Directory of Open Access Journals (Sweden)

    Alyaa M. Zyara

    2017-01-01

    Full Text Available UV-LEDs are a new method of disinfecting drinking water. Some viruses are very resistant to UV and the efficiency of UV-LEDs to disinfect them needs to be studied. Drinking water was disinfected with UV-LEDs after spiking the water with MS2 and four UV- and/or Cl-resistant coliphages belonging to RNA or DNA coliphages isolated from municipal wastewater. UV-LEDs operating at a wavelength of 270 nm for 2 min with 120 mW of irradiation caused 0.93–2.73 Log10-reductions of coliphages tested in a reactor of a 5.2 L volume. Irradiation time of 10 min in the same system increased the Log10-reductions to 4.30–5.16. Traditional mercury UV (Hg-UV lamp at a 254 nm wavelength caused 0.67–4.08 Log10-reductions in 2 min and 4.56–7.21 Log10-reductions in 10 min in 10 mL of water. All coliphages tested except MS2 achieved 4 Log10-reductions with UV-LEDs at a dose that corresponded to 70 mWs/cm2 using Hg-UV. Thus, UV-LEDs are a promising method of disinfecting UV- and/or Cl-resistant viruses.

  10. Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Hsing-Yu; Liu, Yen-Liang; Hsu, Dar-Zu

    2016-01-01

    In this investigation, a 71.3 to 148.4 Mbit s −1 white phosphor-LED visible light communication (VLC) system is proposed and demonstrated under the practical transmission length of 140 to 210 cm. Here, a commercial white-light LED lamp with five cascaded phosphor-LED chips is utilized for illumination and communication simultaneously. In the measurement, we utilize the optical orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with bit-loading algorithm and propose an optimal bias-tee circuit design to improve the modulation bandwidth from 1 MHz to 27 MHz. Moreover, a blue optical filter is not used on the client side. Finally, to realize and demonstrate the real-time transmission performance in the proposed LED VLC system, a commercial OFDM-based digital signal processor (DSP) chip is utilized on the LED lighting side and client side, respectively. Hence, the proposed real-time half-duplex VLC transmission could achieve the 70 Mbit s −1 downstream and upstream data throughputs, under a practical transmission length of 200 cm. (paper)

  11. CALiPER Report 20.2: Dimming, Flicker, and Power Quality Characteristics of LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-31

    This report focuses on the flicker and power quality performance of the Series 20 lamps at full output and various dimmed levels. All of the Series 20 PAR38 lamps that manufacturers claimed to be dimmable (including all halogen lamps) were evaluated individually (one lamp at a time) both on a switch and under the control of a phase-cut dimmer designed for use with "all classes of bulbs." Measurements of luminous flux, flicker, and power quality were taken at 10 target dimmed settings and compared with operation on a switch. Because only a single unit of each product was evaluated on a single dimmer that may or may not have been recommended by its manufacturer, this report focuses on the performance of the products relative to each other, rather than the best-case performance of each lamp or variation in performance delivered from each lamp. Despite these limitations, the results suggest that LED performance is improving, and performance trends are beginning to emerge, perhaps due in part to the identification of preferred LED driver strategies for lamp products.

  12. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  13. Environmental friendly high efficient light source plasma lamp - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Courret, G.; Calame, L. [Haute Ecole d' ingenierie et de gestion du canton de Vaud, Institut de micro et nano techniques, Yverdon-les-Bains (Switzerland); Meyer, A. [Solaronix SA, Aubonne (Switzerland)

    2007-07-01

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at work done on the development of a sulphur-based plasma lamp. In 2007, the capability of a new modulator has been explored. The most important results are discussed. With the production of a 1.2 cm{sup 3} bulb, the way towards the production of a 100 W lamp has been opened. The authors comment that modulation by impulses increases the luminous efficiency in comparison to modulation using a continuous sinusoidal wave. The report deals with the history of the project, the development of the new modulator, the use of rotational effects and the optimisation of the amount of active substances - tellurium and selenium - in the bulb. The electromagnetic coupling system used is described and discussed.

  14. UV-LED Curing Efficiency of Wood Coatings

    Directory of Open Access Journals (Sweden)

    Véronic Landry

    2015-12-01

    Full Text Available Ultraviolet light emitting diodes (UV-LEDs have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerful enough to cure UV high solids acrylate coatings while satisfactory results can be obtained for UV water-based formulations. In fact, conversion percentages were found to be low for the high solids coatings, leaving the coatings tacky. Higher conversion percentages were obtained for the UV water-based formulations. As a result, mass loss, hardness, and scratch resistance found for the samples cured by UV-LED were closed to the ones found for the samples cured using the UV microwave lamp.

  15. Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb

    Science.gov (United States)

    Tanushevsk, Atanas; Rendevski, Stojan

    2016-01-01

    For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…

  16. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Radecsky, Kristen

    2009-03-21

    Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for a given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.

  17. Comparative study of energy-efficiency and conservation systems for ceramic metal-halide discharge lamps

    International Nuclear Information System (INIS)

    Hermoso Orzáez, Manuel Jesús; Andrés Díaz, José Ramón de

    2013-01-01

    Interest in energy savings in urban lighting is gaining traction and has become a priority for municipal administrations. LED (light-emitting diode) technology appears to be the clear future lighting choice. However, this technology is still rapidly developing and has not been sufficiently tested. As an intermediate step, alternative proposals for energy-saving equipment for traditional discharge lamps are desirable so that the current technologies can coexist with the new LED counterparts for the short and medium term. This article provides a comparative study between two efficiency and energy-saving systems for discharge lamps with metal-halide and ceramic technologies, i.e., a lighting flow dimmer-stabilizer and a double-level electronic ballast. - Highlights: ► It has been demonstrated the possibility of regulating ceramic metal-halide lamps with lighting flow dimmer-stabilizer. ► Electronic ballasts can save approximately double quantity of energy than lighting flow dimmer-stabilizers. ► The use of lighting flow dimmer-stabilizer is more profitable than electronic ballasts due to costs and reliability

  18. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery.

    Science.gov (United States)

    Lee, Alex C H; Elson, Daniel S; Neil, Mark A; Kumar, Sunil; Ling, Bingo W; Bello, Fernando; Hanna, George B

    2009-03-01

    Current arc-lamp illumination systems have a number of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid-state lighting devices which are small, durable and inexpensive. Their use as an alternative to arc-lamp light sources in minimal access surgery has not been explored. This study aims to develop an LED-based endo-illuminator and to determine its lighting characteristics for use in minimal access surgery. We developed an LED endo-illuminator using a white LED mounted at the tip of a steel rod. Offline image analysis was carried out to compare the illuminated field using the LED endo-illuminator or an arc-lamp based endoscope in terms of uniformity, shadow sharpness and overall image intensity. Direct radiometric power measurements in light intensity and stability were obtained. Visual perception of fine details at the peripheral endoscopic field was assessed by 13 subjects using the different illumination systems. Illumination from the LED endo-illuminator was more uniform compared to illumination from an arc-lamp source, especially at the closer distance of 4 cm (0.0006 versus 0.0028 arbitrary units--lower value indicates more uniform illumination). The shadows were also sharper (edge widths of 16 versus 44 pixels for the first edge and 15 versus 61 pixels for the second edge). The overall mean image intensity was higher (127 versus 100 arbitrary units) when using the autoshutter mode despite the lower direct radiometric power, about one tenth of the arc-lamp endoscopic system. The illumination was also more stable with less flickering (0.02% versus 5% of total power in non-DC components). Higher median scores on visual perception was also obtained (237 versus 157, p arc-lamp-based system currently used.

  19. CALiPER Report 22.1: Photoelectric Performance of LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-08-31

    This report looks at the photoelectric performance of the same set of lamps assessed in Report 22, using commercially available transformers and dimmers as well as laboratory power supplies providing either AC or DC. The investigation explores several issues related to the testing and use of MR16 lamps in lighting systems and examines the range of performance that is possible for a given lamp model, based on the system to which it is connected.

  20. Color stable phosphors for LED lamps and methods for preparing them

    Science.gov (United States)

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  1. Enhancement of Color Rendering Index for White Light LED Lamps by Red Y2O3:EU3+ Phosphor

    Directory of Open Access Journals (Sweden)

    Tran Hoang Quang Minh

    2016-01-01

    Full Text Available We present an application of the red Y2O3:Eu3+ dopant phosphor compound for reaching the color rendering index as high as 86. The Multi-Chip White LED lamps (MCW-LEDs with high Correlated Color Temperatures (CCTs including 7000 K and 8500 K are employed in this study. Besides, the impacts of the Y2O3:Eu3+ phosphor on the attenuation of light through phosphor layers of the various packages is also demonstrated based on the Beer-Lambert law. Simulation results provide important conclusion for selecting and developing the phosphor materials in MCW-LEDs manufacturing.

  2. A Single-Stage LED Tube Lamp Driver with Power-Factor Corrections and Soft Switching for Energy-Saving Indoor Lighting Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-01-01

    Full Text Available This paper presents a single-stage alternating current (AC/direct current (DC light-emitting diode (LED tube lamp driver for energy-saving indoor lighting applications; this driver features power-factor corrections and soft switching, and also integrates a dual buck-boost converter with coupled inductors and a half-bridge series resonant converter cascaded with a bridge rectifier into a single-stage power-conversion topology. The features of the presented driver are high efficiency (>91%, satisfying power factor (PF > 0.96, low input-current total-harmonic distortion (THD < 10%, low output voltage ripple factor (<7.5%, low output current ripple factor (<8%, and zero-voltage switching (ZVS obtained on both power switches. Operational principles are described in detail, and experimental results obtained from an 18 W-rated LED tube lamp for T8/T10 fluorescent lamp replacements with input utility-line voltages ranging from 100 V to 120 V have demonstrated the functionality of the presented driver suitable for indoor lighting applications.

  3. Development of Efficient UV-LED Phosphor Coatings for Energy Saving Solid State Lighting

    International Nuclear Information System (INIS)

    Uwe Happek

    2006-01-01

    The University of Georgia, in collaboration with GE Global Research, has investigated the relevant quenching mechanism of phosphor coatings used in white light devices based on UV LEDs. The final goal of the project was the design and fabrication of a high-efficacy white light UV-LED device through improved geometry and optimized phosphor coatings. At the end of the research period, which was extended to seamlessly carry over the research to a follow-up program, we have demonstrated a two-fold improvement in the conversion efficiency of a white light LED device, where the increase efficacy is due to both improved phosphor quantum efficiency and lamp geometry. Working prototypes have been displayed at DOE sponsored meetings and during the final presentation at the DOE Headquarters in Washington, DC. During the first phase of the project, a fundamental understanding of quenching processes in UV-LEDs was obtained, and the relationships that describe the performance of the phosphor as a function of photon flux, temperature, and phosphor composition were established. In the second phase of the project, these findings were then implemented to design the improved UV-LED lamp. In addition, our research provides a road map for the design of efficient white light LEDs, which will be an important asset during a follow-up project led by GE

  4. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Agod, A; Maros, I; Juhasz, R; Nemeth, Zs; Jakab, L; Richter, P

    2006-01-01

    A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W -1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally

  5. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-30

    A small sample of each of the CALiPER Application Summary Report 20 PAR38 lamp types underwent stress testing that included substantial temperature and humidity changes, electrical variation, and vibration. The results do not directly address expected lifetime, but can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs.

  6. CALiPER Report 20.4: Lumen and Chromaticity Maintenance of LED PAR38 Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-30

    This CALiPER report focuses on lumen maintenance, chromaticity maintenance, and catastrophic failure in 32 of the Series 20 LED PAR38 lamps and 8 benchmark lamps, which were monitored for nearly 14,000 hours at ambient temperatures between 44°C and 45°C.

  7. Comparison of effect of TDS and Fe in uranium measurement in LED and Xe lamp based fluorimeter

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Mohapatra, S.; Lenka, P.; Dubey, J.S.; Patra, A.C.; Thakur, V.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    In the present study, the effect of TDS and Fe on uranium fluorescence in water samples is studied by fluorometric techniques based on LED and xenon lamp systems. Fluorimeters are calibrated with uranium standards to establish the relationship between concentration and fluorescence response. Known concentration of uranium standard solution is measured in both LED and Xe lamp based fluorimeter after spiking with a series of concentration of Fe and TDS solution. Most often high levels of TDS are caused by the presence of K, CI, Na, etc. Thus here the effect of TDS is studied with NaCI solution but the effect may differ with the presence other elements. Details of the optimization procedure and measurement of uranium concentration in fluorometric technique are given elsewhere. In LED based system, sodium pyrophosphate with phosphoric acid is used as the complexing agent while sodium polysilicate is used in Xe lamp based system. Fe standard solution of 0.1 to 10 ppm was spiked with known uranium standard and analysed in both the fluorimeters. The fluorescence response gradually decreased upto 50% with 10 ppm of Fe in the solution in the LED based system whereas there was a gradual decrease of fluorescence response with increase in Fe concentration and it was 60% with 10 ppm of Fe. Thus both the instruments show nearly equal response with the increasing concentration of Fe in sample solution. Therefore, in case of high TDS and Fe content in the sample, precautions should be taken during measurement of uranium in water samples directly by fluorimetric techniques

  8. Which lamp will be optimum to eye? Incandescent, fluorescent or LED etc

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2014-02-01

    Full Text Available Low frequency flicker, high frequency flicker, strong light, strong blue light, infrared, ultraviolet, electromagnetic radiation, ripple flicker and dimming flicker produced by different lamps have negative impact on vision, eyes and health. Negative impact on eyes resulting in myopia or cataract etc:the solution is to remove all the negative factors by applying upright lighting technology and that is optimum to vision, eyes and health.

  9. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina

    2013-01-01

    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  10. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    Science.gov (United States)

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  11. Dopantless Diodes for Efficient Mid/deep UV LEDs and Lasers - Topic 4.2 Optoelectronics

    Science.gov (United States)

    2017-09-12

    UVB/UVC solid state emitters is a rapidly growing market – UV curing of adhesives – Water disinfection – Chemical Agent detection • Replacement of...recombination • Electron leakage • Junction heating ~3.5× EL in TJ LEDS ~2× EL @ 180 A/cm2 DC measurements; 0.1mm×0.1mm 29 Increased wall plug efficiency 0...market – UV curing of adhesives – Water disinfection – Chemical Agent detection • Replacement of bulky, toxic Hg arc lamps • Applications require high

  12. Design of High Efficiency Illumination for LED Lighting

    OpenAIRE

    Chang, Yong-Nong; Cheng, Hung-Liang; Kuo, Chih-Ming

    2013-01-01

    A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against de...

  13. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anand

    2012-10-31

    New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very reliable having an operating life of over 50,000 hours. This technology will enable growth of LED light sources in the use. This will also help in energy saving and reducing total life cycle cost of LED units. Two topologies selected for next generation of LED drivers: 1) Value engineered single stage Flyback topology. This is suitable for low powered LED drivers up to 50W power. 2) Two stage boost power factor correction (PFC) plus LLC half bridge platform for higher powers. This topology is suitable for 40W to 300W LED drivers. Three new product platforms were developed to cover a wide range of LED drivers: 1) 120V 40W LED driver, 2) Intellivolt 75W LED driver, & 3) Intellivolt 150W LED driver. These are standalone LED drivers for rugged outdoor lighting applications. Based on these platforms number of products are developed and successfully introduced in the market place meeting key performance, size and cost goals.

  14. Design of High Efficiency Illumination for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against device difference. Finally, a prototype circuit for driving 112 W LEDs in total was built and tested to verify the theoretical analysis.

  15. An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems

    Science.gov (United States)

    Imanaka, Takeo

    In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.

  16. University of Maryland Wall Washer Retrofit - LED Modules Replace Halogen Lamps in a Performing Arts Center

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abell, Thomas C. [Univ. of Maryland, College Park, MD (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-03

    The University of Maryland (UMD) began retrofitting halogen wall washers in the Clarice Smith Performing Arts Center (CSPAC) in April 2014. The U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY program documented this process through the final installation in March 2015, summarized in this report. The wall washers illuminate hallways lining the atrium, providing task illuminance for transitioning between spaces and visual interest to the atrium boundaries. The main goals of the retrofit were to maintain the visual appearance of the space while reducing maintenance costs – energy savings was considered an additional benefit by UMD Facilities Management. UMD Facilities Management is pleased with the results of this retrofit, and continues to initiate LED retrofit projects across the UMD campus.

  17. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Analysis of the performance of domestic lighting lamps

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.

    2013-01-01

    The power crisis problem is getting worse in the developing countries. Measures are being taken to overcome the power shortage problem by efficiently utilizing the available power. Replacement of high-power consumption lamps with energy efficient lamps is also among these steps. This paper presents a detailed comparative analysis between domestic lighting lamps (DLLs) use for producing artificial light. DLLs include incandescent lamp (IL), fluorescent lamp (FL) and compact fluorescent lamp (CFL). Light emitting diodes (LED) based lamp technology is relatively new in comparison with conventional incandescent and discharge lamps. However, the present study will also cover the LED lamps. Power quality based experiments have been conducted on DLLs in Power System Laboratory and power consumption based calculations are carried out using the lighting design software DIALux. The result shows that with the current technology, the use of FL and LED lamp is beneficial for utility as well as for consumer. However, with the current pace in the development of LED technology, it is possible LED lamps will lead the lighting market in the near future. The paper has also presented the uncertainties that exist in lighting market and proposed the guidelines that will help in making future energy policy. - Highlights: ► Performances of domestic lighting lamps are compared. ► Power quality and power consumption based case study results are presented. ► For future energy policies, recommendations are also given.

  19. Demonstration of LED Retrofit Lamps at an Exhibit of 19th Century Photography at the Getty Museum

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J.; Druzik, Jim

    2012-03-02

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program may have been prescreened for performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products. This report reviews the installation and use of LED PAR38 lamps to light a collection of toned albument photographic prints at the J. Paul Getty Museum in Malibu, California. Research results provided by the Getty Conservation Institute are incorporated and discussed.

  20. Energy efficient LED layout optimization for near-uniform illumination

    Science.gov (United States)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  1. On the application of CaF2:Eu and SrF2:Eu phosphors in LED based phototherapy lamp

    Science.gov (United States)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2013-06-01

    In the last few years the interest of scientific community has been increased towards solid state lighting based on LEDs because of their superior advantages over the conventional fluorescent lamps. As the GaN based LEDs are easily available efforts of the researchers are now on making the new phosphors which are excitable in the near UV region (360-400nm) for solid state lighting. This paper reports the photoluminescence characteristics of CaF2:Eu and SrF2:Eu phosphor prepared by wet chemical method. The violet emission of these phosphors with near UV excitation can be useful in making a phototherapy lamp based on LEDs for treating various skin diseases like acne vulgaris and hyperbilirubinemia.

  2. Phosphors for LED lamps

    Science.gov (United States)

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  3. Stability of Loop-Mediated Isothermal Amplification (LAMP) Reagents and its Amplification Efficiency on Crude Trypanosome DNA Templates

    OpenAIRE

    Thekisoe, Oriel M. M; Bazie, Raoul S. B; Coronel-Servian, Andrea M; Sugimoto, Chihiro; Kawazu, Shin-ichiro; Inoue, Noboru

    2009-01-01

    This study evaluated the stability of LAMP reagents when stored at 25C and 37C, and also assessed its detection efficiency on different DNA template preparations. Accordingly, LAMP using reagents stored at 25C and 37C amplified DNA of in vitro cultured T. b. brucei (GUTat 3.1) from day 1 to day 15 of reagent storage. There were no significant differences (P>0.05) in detection sensitivity of LAMP among the reagents stored at 25C, 37C and –20C (recommended storage temperature). LAMP usin...

  4. Efficient, full-spectrum, long-lived, non-toxic microwave lamp for plant growth

    Energy Technology Data Exchange (ETDEWEB)

    MacLennan, D.A.; Turner, B.P.; Dolan, J.T.; Ury, M.G.; Gustafson, P. [Fusion Systems Corp., Rockville, MD (United States)

    1994-12-31

    Fusion Systems Corporation has developed a mercury-free, low infra-red, efficient microwave lamp using a benign sulfur based fill optimized for visible light. Our literature search and discussions with researchers directed us to enhance the bulbs red output. We have demonstrated a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over 1.3 micro-moles per joule at the power main. Recent work has shown we can make additional increases in overall system efficiency. During the next two years, we expect to demonstrate a system capable of producing more than 1.5 micro-moles/joule measured at the power main with significantly less IR than alternative lamp systems.

  5. CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-11-07

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank-ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members' ranking of color quality did not always match the rank according to the color rendering index (CRI).

  6. DOE CALiPER Program, Report 20.1 Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Poplawski, Michael E.; Miller, Naomi J.

    2013-10-01

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members ranking of color quality did not always match the rank according to the color rendering index (CRI).

  7. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  8. Colorimetry and efficiency of white LEDs: Spectral width dependence

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Elaine; Edwards, Paul R.; Martin, Robert W. [Department of Physics, SUPA, Strathclyde University, Glasgow (United Kingdom)

    2012-03-15

    The potential colour rendering capability and efficiency of white LEDs constructed by a combination of individual red, green and blue (RGB) LEDs are analysed. The conventional measurement of colour rendering quality, the colour rendering index (CRI), is used as well as a recently proposed colour quality scale (CQS), designed to overcome some of the limitations of CRI when narrow-band emitters are being studied. The colour rendering performance is maximised by variation of the peak emission wavelength and relative intensity of the component LEDs, with the constraint that the spectral widths follow those measured in actual devices. The highest CRI achieved is 89.5, corresponding to a CQS value of 79, colour temperature of 3800 K and a luminous efficacy of radiation (LER) of 365 lm/W. By allowing the spectral width of the green LED to vary the CRI can be raised to 90.9, giving values of 82.5 and 370 lm/W for the CQS and LER, respectively. The significance of these values are discussed in terms of optimising the possible performance of RGB LEDs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis.

    Science.gov (United States)

    Mao, Ruixin; Guo, Shuangsheng

    2018-06-01

    The effect of mixed light quality with red, blue, and green LED lamps on the growth of Arthrospira platensis was studied, so as to lay the theoretical and technical basis for establishing a photo-bioreactor lighting system for application in space. Meanwhile, indexes, like morphology, growth rate, photosynthetic pigment compositions, energy efficiency, and main nutritional components, were measured respectively. The results showed that the blue light combined with red light could decrease the tightness of filament, and the effect of green light was opposite. The combination of blue light or green light with red light induced the filaments to get shorter in length. The 8R2B treatment could promote the growth of Arthrospira platensis significantly, and its dry weight reached 1.36 g L -1 , which was 25.93% higher than the control. What's more, 8R2B treatment had the highest contents of carbohydrate and lipid, while 8R2G was rich in protein. 8R0.5G1.5B had the highest efficiency of biomass production, which was 161.53 mg L -1  kW -1  h -1 . Therefore, the combination of red and blue light is more conducive to the growth of Arthrospira platensis, and a higher biomass production and energy utilization efficiency can be achieved simultaneously under the mixed light quality with the ratio of 8R0.5G1.5B.

  10. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  11. Disseminating energy-efficient technologies: a case study of compact fluorescent lamps (CFLs) in India

    International Nuclear Information System (INIS)

    Kumar, Arun; Jain, Sudhir K.; Bansal, N.K.

    2003-01-01

    Disseminating energy-efficient technologies, even when they may appear to be technically perfect, is always a tough task, more so in economies with low purchasing power and educational levels. The compact fluorescent lamp (CFL) is one such well-known product that consumes only 20% electricity for the same light output as given out by the ubiquitous incandescent lamp and which, if adopted in a big way, has the potential of reducing peak electric power loads very significantly. However, in India, the CFL sales are still not growing in the expected manner. The current study was accordingly undertaken to investigate the underlying reasons and to determine the most effective ways in which an efficient technology like this could be popularized. The task involved the designing and administering of questionnaires to some 900 respondents from 100 locations representing various socio-economic, educational and professional backgrounds in and around Delhi, and analysing the results in terms of an importance index. Based on this feedback, the authors recommend an aggressive implementation of the formula standing for EDucation, POlicy support, STAandards, Demonstrations and INdustry involvement (EDPOSTADIN) at least for popularizing CFLs

  12. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    Science.gov (United States)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  13. Stability of Loop-Mediated Isothermal Amplification (LAMP) reagents and its amplification efficiency on crude trypanosome DNA templates.

    Science.gov (United States)

    Thekisoe, Oriel M M; Bazie, Raoul S B; Coronel-Servian, Andrea M; Sugimoto, Chihiro; Kawazu, Shin-Ichiro; Inoue, Noboru

    2009-04-01

    This study evaluated the stability of LAMP reagents when stored at 25 degrees C and 37 degrees C, and also assessed its detection efficiency on different DNA template preparations. Accordingly, LAMP using reagents stored at 25 degrees C and 37 degrees C amplified DNA of in vitro cultured T. b. brucei (GUTat 3.1) from day 1 to day 15 of reagent storage. There were no significant differences (P>0.05) in detection sensitivity of LAMP among the reagents stored at 25 degrees C, 37 degrees C and -20 degrees C (recommended storage temperature). LAMP using the reagents stored at above-mentioned temperatures amplified serially diluted DNAs (genomic DNA extracted by phenol-chloroform method, FTA card and hemolysed blood) of T. b. gambiense (IL2343) with high sensitivity. Reactions were conducted on the reagents stored from 1 day to 30 days. LAMP detection sensitivity was poor when fresh blood as DNA template was added directly into reactive solution. Results of this study demonstrated that LAMP has the potential to be used in field conditions for diagnosis of trypanosome infections without being affected by ambient temperatures of tropical and sub-tropical countries where trypanosomosis is endemic.

  14. CooLED - efficient LED bulbs with custrom optics - final report

    DEFF Research Database (Denmark)

    Wolff, Jesper; Corell, Dennis Dan; Dam-Hansen, Carsten

    Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet EUDP 64012-0226, CooLED – en ny generation LED Lyskilde for det tidsløse high-end marked....

  15. Effects of Green - Emitting Phosphor (La,Ce,TbPO_4:Ce:Tb on Luminous Flux and Color Quality of White LED Lamps

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuong Thao

    2017-01-01

    Full Text Available In this paper, we present and analyze the influence of (La,Ce,TbPO_4:Ce:Tb green phosphor (LaTb toward the performance of the multi-chip white LED (MCW-LEDs lamps including color uniformity, lumen output, Color Rendering Index (CRI, and Color Quality Scale (CQS. By mixing the LaTb green phosphor and the YAG:Ce yellow phosphor compounding under condition of 7000 K MCW-LEDs, this new approach can produce a huge meaningful change in lumen output and the angular color distribution of MCW-LEDs. We also study the interaction between the concentration and size of the LaTb particles with output flux, color uniformity, CRI, and CQS. The obtained results demonstrate that the higher lumen output, the higher color uniformity enhancement could be attained by adding the LaTb particles with a size range around 6-8 µm and the concentration around 1.5% in phosphor layer. Meanwhile, the decrease of the color rendering value (CRI and the Color Quality Scale (CQS tend to be stable and insignificant. In other words, the obtained results provide a prospective method which plays an important role in the development of MCW-LED manufacturing technology.

  16. CALiPER Report 21.1. Linear (T8) Lamps in a 2x4 K12-Lensed Troffer

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-01

    This report focuses on the performance of the same 31 linear LED lamps operated in a typical troffer with a K12 prismatic lens. In general, luminaire efficacy is strongly dictated by lamp efficacy, but the optical system of the luminaire substantially reduces the differences between the luminous intensity distributions of the lamps. While the distributions in the luminaire are similar, the differences remain large enough that workplane illuminance uniformity may be reduced if linear LED lamps with a narrow distribution are used. At the same time, linear LED lamps with a narrower distribution result in slightly higher luminaire efficiency.

  17. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    International Nuclear Information System (INIS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-01-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry

  18. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  19. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  20. High efficiency nitride based phosphores for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2008-01-01

    In this overview paper, novel rare-earth doped silicon nitride based phosphors for white LEDs applications have been demonstrated. The luminescence properties of orange-red-emitting phosphors (M2Si5N8:Eu2+) and green-to-yellow emitting phosphors (MSi2N2O2:Eu2+, M = Ca, Sr, Ba) are discussed in

  1. Energy Efficient LED Spectrally Matched Smart Lighting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research and the University of Houston Clear Lake have teamed to develop a widely extensible, affordable, energy efficient, smart lighting...

  2. LED arrays as cost effective and efficient light sources for widefield microscopy.

    Directory of Open Access Journals (Sweden)

    Dinu F Albeanu

    Full Text Available New developments in fluorophores as well as in detection methods have fueled the rapid growth of optical imaging in the life sciences. Commercial widefield microscopes generally use arc lamps, excitation/emission filters and shutters for fluorescence imaging. These components can be expensive, difficult to maintain and preclude stable illumination. Here, we describe methods to construct inexpensive and easy-to-use light sources for optical microscopy using light-emitting diodes (LEDs. We also provide examples of its applicability to biological fluorescence imaging.

  3. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Energy Technology Data Exchange (ETDEWEB)

    Avtaeva, S. V., E-mail: s_avtaeva@mail.ru [Kyrgyz-Russian Slavic University (Kyrgyzstan); Sosnin, E. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Saghi, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria); Panarin, V. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Rahmani, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)

    2013-09-15

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules

  4. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    International Nuclear Information System (INIS)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-01-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl 2 mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl 2 concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl 2 concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe* 2 (172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe* 2 molecule rapidly decreases with increasing Cl 2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl 2 mixtures is studied numerically. It is shown that an increase in the Cl 2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl 2 molecules and ionization of Xe atoms and Cl 2 molecules. The total energy deposited in the discharge

  5. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Science.gov (United States)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-09-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl2 mixtures at pressures of 240-250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl2 concentrations in the range of 0.01-1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl2 concentrations in the range of 0.1-5%. It is found that the radiation intensities of the emission bands of Xe*2(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01-0.1%. In this case, in the mixture, the radiation intensity of the Xe*2 molecule rapidly decreases with increasing Cl2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4-0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl2 mixtures is studied numerically. It is shown that an increase in the Cl2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl2 molecules and ionization of Xe atoms and Cl2 molecules. The total energy deposited in the discharge rises with increasing

  6. CALiPER Report 20.5: Chromaticity Shift Modes of LED PAR38 Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. Lynn [RTI International, Research Triangle Park, NC (United States); Young, Joseph [RTI International, Research Triangle Park, NC (United States); Royer, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-26

    This report builds on CALiPER Report 20.4, focusing on the same 32 PAR38 lamps but investigating causes of color shift and parametric failures. It provides a tear-down analysis of the lamp models and performs additional analyses on the spectroradiometric data obtained using a specially developed automated long-term test apparatus.

  7. CALiPER Retail Lamps Study 3

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beeson, Tracy A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    uses, such as in enclosed luminaires, may require more development. At the same price point, lamps purchased in 2013 tended to have higher output and slightly higher efficacy than in 2011 or 2010. Over 30% of the products purchased in 2013 exceeded the maximum efficacy measured in 2011 (71 lm/W), with the most efficacious product measured at 105 lm/W. There appears to be increasing consistency in color quality, with a vast majority of products having a CCT of 2700 K or 3000 K and a CRI between 80 and 85. There were also fewer poor performing products tested and more high-performing products available in 2013 than in previous years. The accuracy of equivalency and performance claims was better than in 2011, but remains a concern, with 43% of tested products failing to completely meet their equivalency claim and 20% of products failing to match the manufacturer’s performance data. Although progress has been substantial, on average LED lamps remain more expensive than other energy efficiency lighting technologies -- although some aspects can be superior. Although not universal to all product lines or all product types, the issue of insufficient lumen output from LED lamps is waning. Thus, manufacturers can focus on other issues, such as reducing cost, improving electrical/dimmer compatibility, eliminating flicker, or improving color quality. While these issues are not inherent to all products, they remain a concern for the broader market.

  8. The health risks associated with energy efficient fluorescent, LEDs, and artificial lighting

    Science.gov (United States)

    Panahi, Allen

    2014-09-01

    With the phasing out of incandescent lamps in many countries, the introduction of new LED based light sources and luminaries sometimes raise the question of whether the spectral characteristics of the LED and other energy savings Fluorescent lights including the popular CFLs are suitable to replace the traditional incandescent lamps. These concerns are sometimes raised particularly for radiation emissions in the UV and Blue parts of the spectrum. This paper aims to address such concerns for the common `white light' sources typically used in household and other general lighting used in the work place. Recent studies have shown that women working the night shift have an increased probability of developing breast cancer. We like to report on the findings of many studies done by medical professionals, in particular the recent announcement of AMA in the US and many studies conducted in the UK, as well as the European community to increase public awareness on the long term health risks of the optical and opto-biological effects on the human health caused by artificial lighting.

  9. Discharge lamp technologies

    Science.gov (United States)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  10. Inductive tuners for microwave driven discharge lamps

    Science.gov (United States)

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  11. Impact of the EISA 2007 Energy Efficiency Standard on General Service Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Kantner, Colleen L.S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alstone, Andrea L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, Brian F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hosbach, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    The Energy Policy and Conservation Act of 1975, as amended by the Energy Independence and Security Act of 2007 (EISA 2007), requires that, effective beginning January 1, 2020, the Secretary of Energy shall prohibit the sale of any general service lamp (GSL) that does not meet a minimum efficacy standard of 45 lumens per watt. This is referred to as the EISA 2007 backstop. The U.S. Department of Energy recently revised the definition of the term GSL to include certain lamps that were either previously excluded or not explicitly mentioned in the EISA 2007 definition. For this subset of GSLs, we assess the impacts of the EISA 2007 backstop on national energy consumption, carbon dioxide emissions, and consumer expenditures. To estimate these impacts, we projected the energy use, purchase price, and operating cost of representative lamps purchased during a 30-year analysis period, 2020-2049, for cases in which the EISA 2007 backstop does and does not take effect; the impacts of the backstop are then given by the difference between the two cases. In developing the projection model, we also performed the most comprehensive assessment to date of usage patterns and lifetime distributions for the analyzed lamp types in the United States. There is substantial uncertainty in the estimated impacts, which arises from uncertainty in the speed and extent of the market conversion to solid state lighting technology that would occur in the absence of the EISA 2007 backstop. In our central estimate we find that the EISA 2007 backstop results in significant energy savings of 27 quads and consumer net present value of $120 billion (at a seven percent discount rate) for lamps shipped between 2020 and 2049, and carbon dioxide emissions reduction of 540 million metric tons by 2030 for those GSLs not explicitly included in the EISA 2007 definition of a GSL.

  12. Impacts of the EISA 2007 Energy Efficiency Standard on General Service Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Kantner, Colleen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alstone, Andrea L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, Brian F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hosbach, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-20

    The Energy Policy and Conservation Act of 1975, as amended by the Energy Independence and Security Act of 2007 (EISA 2007), requires that, effective beginning January 1, 2020, the Secretary of Energy shall prohibit the sale of any general service lamp (GSL) that does not meet a minimum efficacy standard of 45 lumens per watt. This is referred to as the EISA 2007 backstop. The U.S. Department of Energy recently revised the definition of the term GSL to include certain lamps that were either previously excluded or not explicitly mentioned in the EISA 2007 definition. For this subset of GSLs, we assess the impacts of the EISA 2007 backstop on national energy consumption, carbon dioxide emissions, and consumer expenditures. To estimate these impacts, we projected the energy use, purchase price, and operating cost of representative lamps purchased during a 30-year analysis period, 2020-2049, for cases in which the EISA 2007 backstop does and does not take effect; the impacts of the backstop are then given by the difference between the two cases. In developing the projection model, we also performed the most comprehensive assessment to date of usage patterns and lifetime distributions for the analyzed lamp types in the United States. There is substantial uncertainty in the estimated impacts, which arises from uncertainty in the speed and extent of the market conversion to solid state lighting technology that would occur in the absence of the EISA 2007 backstop. In our central estimate we find that the EISA 2007 backstop results in significant energy savings of 27 quads and consumer net present value of $120 billion (at a seven percent discount rate) for lamps shipped between 2020 and 2049, and carbon dioxide emissions reduction of 540 million metric tons by 2030 for those GSLs not explicitly included in the EISA 2007 definition of a GSL.

  13. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    International Nuclear Information System (INIS)

    Techato, Kua-anan; Watts, Daniel J.; Chaiprapat, Sumate

    2009-01-01

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste

  14. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  15. Spectroscopy on metal-halide lamps under varying gravity conditions

    NARCIS (Netherlands)

    Flikweert, A.J.

    2008-01-01

    Worldwide, 20% of all electricity is used for lighting. For this reason, efficient lamps are economically and ecologically important. High intensity discharge (HID) lamps are efficient lamps. The most common HID lamp these days is the metal-halide (MH) lamp. MH lamps have a good colour rendering

  16. Fluorescent lamp and ballast disposal-efficiency and the environment: Panel discussion

    Energy Technology Data Exchange (ETDEWEB)

    Bleasby, P.

    1996-01-01

    This panel discussion looked at the present state of problems related to the disposal of fluorescent lamps and ballasts. EPA has not issued a ruling defining what is to be done, and as a result different areas of the country, and different users are treating the products differently. The authors review the history of the problem, where the environmental concerns are, possible alternatives for disposal, be it landfill, recycling, incineration, or treatment as hazardous wastes, and policy concerns with regard to this issue.

  17. Smart LED allocation scheme for efficient multiuser visible light communication networks.

    Science.gov (United States)

    Sewaiwar, Atul; Tiwari, Samrat Vikramaditya; Chung, Yeon Ho

    2015-05-18

    In a multiuser bidirectional visible light communication (VLC), a large number of LEDs or an LED array needs to be allocated in an efficient manner to ensure sustainable data rate and link quality. Moreover, in order to support an increasing or decreasing number of users in the network, the LED allocation is required to be performed dynamically. In this paper, a novel smart LED allocation scheme for efficient multiuser VLC networks is presented. The proposed scheme allocates RGB LEDs to multiple users in a dynamic and efficient fashion, while satisfying illumination requirements in an indoor environment. The smart LED array comprised of RGB LEDs is divided into sectors according to the location of the users. The allocated sectors then provide optical power concentration toward the users for efficient and reliable data transmission. An algorithm for the dynamic allocation of the LEDs is also presented. To verify its effective resource allocation feature of the proposed scheme, simulations were performed. It is found that the proposed smart LED allocation scheme provides the effect of optical beamforming toward individual users, thereby increasing the collective power concentration of the optical signals on the desirable users and resulting in significantly increased data rate, while ensuring sufficient illumination in a multiuser VLC environment.

  18. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth.

    Science.gov (United States)

    Asnaashari, Mohammad; Mojahedi, Seyed Masoud; Asadi, Zahra; Azari-Marhabi, Saranaz; Maleki, Alireza

    2016-03-01

    Failure of endodontic treatment is usually due to an inadequate disinfection of the root canal system. Enterococcus faecalis has been widely used as a valuable microbiological marker for in-vitro studies because of its ability to colonize in a biofilm like style in root canals, invading dentinal tubules and resistance to some endodontic treatments. The aim of this study was to investigate the antibacterial effects of two methods of photodynamic therapy using a light emitting diode lamp (LED lamp, 630 nm) and a diode laser (810 nm) on E. faecalis biofilms in anterior extracted human teeth. Fifty six single-rooted extracted teeth were used in this study. After routine root canal cleansing, shaping and sterilization, the teeth were incubated with E. faecalis for a period of two weeks. Teeth were then divided into two experimental groups (nu=23) and two control groups (nu=5). Teeth in one experimental group were exposed to a diode laser (810 nm), and in the other group samples were exposed to a LED lamp (630 nm). Intracanal bacterial sampling was done, and bacterial survival rate was then evaluated for each group. The Colony Forming Unit (CFU) in LED group (log10 CFUs=4.88±0.82) was significantly lower than the laser group (log CFUs=5.49±0.71) (p value=0.021). CFUs in positive control group (Log10 CFUs=10.96±0.44) were significantly higher than the treatment group (p˂0.001). No bacterial colony was found in negative control group. The results of this research show that photodynamic therapy could be an effective supplement in root canal disinfection. PDT using LED lamp was more effective than diode laser 810 nm in reducing CFUs of E. faecalis in human teeth. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Processes and Technologies for the Recycling of Spent Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Kujawski Wojciech

    2014-09-01

    Full Text Available The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

  20. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL)

    International Nuclear Information System (INIS)

    Jung, Jae-Chul; Lee, Ju Kwang; Seo, In Woo; Oh, Byung Joo; Whang, Ki-Woong

    2009-01-01

    A highly efficient mercury-free flat fluorescent lamp (MFFL) with dielectric barrier Xe gas discharge was developed for a LCD-TV backlight source. The unit cell of the lamp has a simple structure with two main electrodes running parallel to each other and an auxiliary electrode. The adoption of the auxiliary electrode resulted in a wide, stable operating voltage margin, high luminance and efficiency. The 4 inch diagonal size lamp showed a luminous efficacy of 44 lm W -1 at a luminance of 3400 cd m -2 with Ne-Xe(18%) gas mixture. We demonstrated that the 4 inch unit cell can be used to construct a 5 x 8 multi-structured lamp of 32 inch diagonal size for application in a large-sized LCD backlight source by a simple repeat of the unit cell. Despite the increase in size, the 32 inch lamp showed the same discharge voltage and margin of the 4 inch unit cell. Using the proposed MFFL with the auxiliary electrode as the data electrode and the subfield method, we developed a driving scheme for 2-bit areal selective dimming control of an M x N multi-cell lamp which can be operated using only one inverter.

  1. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  2. Capacitive discharge exciplex lamps

    Energy Technology Data Exchange (ETDEWEB)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F [High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2005-09-07

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications.

  3. Capacitive discharge exciplex lamps

    International Nuclear Information System (INIS)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F

    2005-01-01

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications

  4. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mesa-height Dependent Quantum Efficiency Characteristics of InGaN Micro-LEDs

    KAUST Repository

    Shen, Chao; Kang, Chun Hong; Ng, Tien Khee; Ooi, Boon S.

    2013-01-01

    The mechanisms of mesa-height dependent efficiency and efficiency droop of blue InGaN/GaN micro-LED is presented. Device with a large etch-depth (> 1.3 µm) shows significant strain relief with aggravated current crowding.

  6. Investigation of illumination efficiency on the LED therapy with different array types

    Science.gov (United States)

    Chen, Hsi-Chao; Liou, Cheng-Jyun

    2009-08-01

    Light-emitting diodes (LEDs) are a major discovery in twenty-one century for its advantages including small size, long lifetime, low voltage, high response and good mechanical properties. It is an environment-friendly product and maybe becomes a lighting source in future. In the other way LED lighting also is used for the lighting source of cosmetology. LED phototherapy provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths that are biologically optimal for pain treatment and holistic healing. The illumination efficiency is one of the key indexes for the LED phototherapy. LEDs were arranged on a disk of diameter of 100mm with different array types: a radial, a rhombus, an octagon, and a square. Then the LEDs with view angle of 120 degree were used for the lighting sources. Trace-Pro software was used for the optical simulation. The array types of radial and square were better than those of rhombus and octagon for illumination efficiency. In the mixture efficiency of a radial array was observed by different distances from 1mm to 100mm. However lighting could reach the well mixture after the treatment distance of 30mm by optical simulation. The view angle could reach +/-60 degree at the treatment distance of 50 mm for the LED phototherapy mockup.

  7. The High-efficiency LED Driver for Visible Light Communication Applications.

    Science.gov (United States)

    Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen

    2016-08-08

    This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system's efficiency of 80.8% can be achieved at 1-Mb/s data rate.

  8. Estimation on separation efficiency of aluminum from base-cap of spent fluorescent lamp in hammer crusher unit.

    Science.gov (United States)

    Rhee, Seung-Whee

    2017-09-01

    In order to separate aluminum from the base-cap of spent fluorescent lamp (SFL), the separation efficiency of hammer crusher unit is estimated by introducing a binary separation theory. The base-cap of SFL is composed by glass fragment, binder, ferrous metal, copper and aluminum. The hammer crusher unit to recover aluminum from the base-cap consists of 3stages of hammer crusher, magnetic separator and vibrating screen. The optimal conditions of rotating speed and operating time in the hammer crusher unit are decided at each stage. At the optimal conditions, the aluminum yield and the separation efficiency of hammer crusher unit are estimated by applying a sequential binary separation theory at each stage. And the separation efficiency between hammer crusher unit and roll crush system is compared to show the performance of aluminum recovery from the base-cap of SFL. Since the separation efficiency can be increased to 99% at stage 3, from the experimental results, it is found that aluminum from the base-cap can be sufficiently recovered by the hammer crusher unit. Copyright © 2017. Published by Elsevier Ltd.

  9. Efficient conceptual design for LED-based pixel light vehicle headlamps

    Science.gov (United States)

    Held, Marcel Philipp; Lachmayer, Roland

    2017-12-01

    High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.

  10. Use of efficient lamps in Brazil and the energetic and environmental gains; Emprego de lampadas eficientes no Brasil e os ganhos energeticos e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Jamil; Nogueira, Luiz Augusto Horta; Cardoso, Rafael Balbino; Souza, Edson Palhares de [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica], emails: jamil@unifei.edu.br, horta@unifei.edu.br, cardosorb@unifei.edu.br, palharess@unifei.edu.br

    2010-07-01

    This study esteem the energy, environmental and economical impacts the use of compact fluorescent lamps - CFL's in the Brazilian residential sector, considering data of the illumination systems ownership and use habits research in the sector, accomplished by PROCEL. According to evaluation the introduction of more efficient lamps in the sector resulted in 12.2 thousand GWh of energy saving (14.5% of the sector consumption) and in 4.4 GW of reduction in the pick demand (7% annual maximum demand registered) in 2005. The study also indicates positive impacts of the environmental and economical view point. (author)

  11. Ti/TaN Bilayer for Efficient Injection and Reliable AlGaN Nanowires LEDs

    KAUST Repository

    Priante, Davide

    2018-05-07

    Reliable operation of UV AlGaN-based nanowires-LED at high injection current was realized by incorporating a Ti-pre-orienting/TaN-diffusion-barrier bilayer, thus enhancing external quantum efficiency, and resolving the existing device degradation issue in group-III-nanowires-on-silicon devices.

  12. Ti/TaN Bilayer for Efficient Injection and Reliable AlGaN Nanowires LEDs

    KAUST Repository

    Priante, Davide; Janjua, Bilal; Prabaswara, Aditya; Subedi, Ram Chandra; Elafandy, Rami T.; Lopatin, Sergei; Anjum, Dalaver H.; Zhao, Chao; Ng, Tien Khee; Ooi, Boon S.

    2018-01-01

    Reliable operation of UV AlGaN-based nanowires-LED at high injection current was realized by incorporating a Ti-pre-orienting/TaN-diffusion-barrier bilayer, thus enhancing external quantum efficiency, and resolving the existing device degradation

  13. Double-Grating Displacement Structure for Improving the Light Extraction Efficiency of LEDs

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2012-01-01

    Full Text Available To improve the light extraction efficiency of light-emitting diodes (LEDs, grating patterns were etched on GaN and silver film surfaces. The grating-patterned surface etching enabled the establishment of an LED model with a double-grating displacement structure that is based on the surface plasmon resonance principle. A numerical simulation was conducted using the finite difference time domain method. The influence of different grating periods for GaN surface and silver film thickness on light extraction efficiency was analyzed. The light extraction efficiency of LEDs was highest when the grating period satisfied grating coupling conditions. The wavelength of the highest value was also close to the light wavelength of the medium. The plasmon resonance frequencies on both sides of the silver film were affected by silver film thickness. With increasing film thickness, plasmon resonance frequency tended toward the same value and light extraction efficiency reached its maximum. When the grating period for the GaN surface was 365 nm and the silver film thickness was 390 nm, light extraction efficiency reached a maximum of 55%.

  14. A new bismuth-based coordination polymer as an efficient visible light responding photocatalyst under white LED irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengyueqing@nbu.edu.cn; Wang, Jin-Jian; Zhou, Lin-Xia

    2017-02-15

    A new bismuth-based polymer, [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O (H{sub 2}pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi{sub 2}O{sub 3} shows [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O and commercial Bi{sub 2}O{sub 3} respectively. Additionally, the five cycle reproducibility results of [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O implies that it can be used as a stable photocatalyst. - Graphical abstract: We report a new 1D coordination polymer [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O by a facile hydrothermal method. The Bi-CP shows good photoelectric property and photocatalytic activity for RhB degradation under visible white LED lamp irradiation. And the stability of the visible-light-responsive bismuth-based coordination polymer has also been examined. - Highlights: • A new Bi(III) coordination polymer is hydrothermally synthesized. • The Bi-CP shows good photoelectric and photocatalytic properties. • Bi-CP shows higher activity than the commercial Bi{sub 2}O{sub 3} for RhB degradation.

  15. Environmental friendly high efficient light source. Plasma lamp. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Courret, G.

    2006-07-01

    This annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of a high-efficiency source of light based on the light emission of a plasma. The report presents a review of work done in 2006, including thermodynamics and assessment of the efficiency of the magnetron, tests with small bulbs, study of the standing wave ratio (microwave fluxes) and the development of a new coupling system to allow ignition in very small bulbs. Also, knowledge on the fillings of the bulb and induced effects of the modulator were gained. The development of a second generation of modulator to obtain higher efficiency at lower power is noted.

  16. Max Tech and Beyond: Fluorescent Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  17. High Output LED-Based Profile Lighting Fixture

    DEFF Research Database (Denmark)

    Török, Lajos; Beczkowski, Szymon; Munk-Nielsen, Stig

    2011-01-01

    Recent developments in power light emitting diode (LED) industry have made LEDs suitable for being efficiently used in high intensity lighting fixtures instead of the commonly used high intensity discharge (HID) lamps. A high output LEDbased profile-light fixture is presented in this paper...

  18. Enabling factors for the improvement of nitride-based LED efficiency

    International Nuclear Information System (INIS)

    Laubsch, Ansgar; Bergbauer, Werner; Sabathil, Matthias; Peter, Matthias; Meyer, Tobias; Bruederl, Georg; Linder, Norbert; Streubel, Klaus; Oberschmid, Raimund; Hahn, Berthold; Wagner, Joachim

    2008-01-01

    Recent progress in the epitaxial growth of LEDs with InGaN/GaN quantum-well heterostructures has led to a significant enhancement of output power. In this talk, we will discuss the mechanisms limiting the devices' internal efficiency and identify enabling factors for further improvements. We compare samples with different Indium content as well as different design of the active layer. Although heteroepitaxial growth of GaN on sapphire generates high defect densities, non-radiative defect-related Shockley-Read-Hall recombination does not seem to substantially limit the efficiency of standard InGaN/GaN LED structures. We rather discuss a supplemental Auger-like non-radiative path for carrier recombination that becomes dominant at quantum-well carrier densities typical for LED operation. Additionally, the piezo-field induced reduced overlap of electron and hole wavefunction in standard c-plane grown InGaN quantum wells reduces the radiative recombination rate

  19. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    KAUST Repository

    Lin, Ronghui; Galan, Sergio Valdes; Sun, Haiding; Hu, Yangrui; Alias, Mohd Sharizal; Janjua, Bilal; Ng, Tien Khee; Ooi, Boon S.; Li, Xiaohang

    2018-01-01

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

  20. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    KAUST Repository

    Lin, Ronghui

    2018-04-21

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

  1. A new approach to correlate transport processes and optical efficiency in GaN-based LEDs

    International Nuclear Information System (INIS)

    Pavesi, M; Manfredi, M; Rossi, F; Salviati, G; Meneghini, M; Zanoni, E

    2009-01-01

    Carrier injection and non-radiative processes are determinants of the optical efficiency of InGaN/GaN LEDs. Among transport mechanisms, tunnelling is crucial for device functioning, but other contributions can be decisive on a varying bias. It is not easy to identify the weights and roles of these terms by a simple current-voltage characterization, so it needs a careful investigation by means of complementary experimental techniques. The correlation between luminescence and microscopic transport processes in InGaN/GaN LEDs has been investigated by means of a set of techniques: electroluminescence, cathodoluminescence, current-voltage dc measurements and thermal admittance spectroscopy. Green and blue LEDs, designed with a multi-quantum-well injector layer and an optically active single-quantum-well, have been tested. They showed distinctive current and temperature dependences of the optical efficiency, with a better performance at room temperature observed for green devices. This was discussed in terms of the carrier injection efficiency controlled by electrically active traps. The comparative analysis of the optical and electrical experimental data comes in handy as a methodological approach to correlate the emission properties with the carrier injection mechanisms and to improve the functionality in a large number of quantum well heterostructures for lighting applications.

  2. Marker lamps

    International Nuclear Information System (INIS)

    Watkins, D.V.

    1980-01-01

    A marker lamp is described which consists of a block of transparent plastics material encapsulated in which is a radioactive light source. These lights comprise a small sealed glass capsule, the hollow inside surface of which is coated with phosphor and which contains tritium or similar radioactive gas. The use of such lamps for identification marking of routes, for example roads, and for identification of underwater oil pipelines is envisaged. (U.K.)

  3. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    Science.gov (United States)

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  4. Discharge lamp technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, J. [GE Lighting, Cleveland, OH (United States)

    1994-12-31

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).

  5. Photodynamic therapy efficient using high power LED's to eliminate breast cancer cells

    International Nuclear Information System (INIS)

    Castillo Millan, J.; Gardunno Medina, J. A.; Ramon Gallegos, E.; De la Rosa, J.; Moreno Garcia, E.

    2009-01-01

    The photodynamic therapy (PDT) is a therapeutic modality that requires light, a photo sensitizer and oxygen. In poor countries, a problem for his application is the laser cost for irradiate, due to this, a light source was constructed with LED's that emit to 625 nm and his efficiency to eliminate breast cancer cells was measured. Two lines of breast cancer (MDA-MB-231 and MCF-7) and not cancerous cells (HaCat) were exposed to 40 and 80 μg/mL of ALA concentrations during 24h to induce the photo sensitizer PpIX, and were radiated to 120 and 240 J/cm 2 , 24 h later on the cellular death was measured by Alamar blue method. The PDT elimination efficiency, when were used the doses of light of 120 and 240 J/cm 2 , was 61 and 71 % for MDA, 46 and 49.2 % for MCF-7 and 87.2 and 94.1 % for HaCaT respectively. The constructed light source showed to be efficient in the elimination of the cancerous cells. (Author)

  6. Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED

    KAUST Repository

    Mishra, Pawan; Ng, Tien Khee; Janjua, Bilal; Shen, Chao; Eid, Jessica; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    We report a significant improvement in the electrical characteristic of compositionally graded InGaN/GaN multiple-quantum-well (MQWs) micro-LED. The efficiency droop in this device occurred at ∼20 times higher injection levels (∼275 A/cm2) compared to a conventional step-MQWs microLED (∼14 A/cm2).

  7. Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED

    KAUST Repository

    Mishra, Pawan

    2014-12-01

    We report a significant improvement in the electrical characteristic of compositionally graded InGaN/GaN multiple-quantum-well (MQWs) micro-LED. The efficiency droop in this device occurred at ∼20 times higher injection levels (∼275 A/cm2) compared to a conventional step-MQWs microLED (∼14 A/cm2).

  8. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    OpenAIRE

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on ...

  9. Phase out of incandescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Since early 2007 almost all OECD and many non-OECD governments have announced policies aimed at phasing-out incandescent lighting within their jurisdictions. This study considers the implications of these policy developments in terms of demand for regulatory compliant lamps and the capacity and motivation of the lamp industry to produce efficient lighting products in sufficient volume to meet future demand. To assess these issues, it reviews the historic international screw-based lamp market, describes the status of international phase-out policies and presents projections of anticipated market responses to regulatory requirements to determine future demand for CFLs.

  10. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Colorimetric characterization of LED luminaires

    International Nuclear Information System (INIS)

    Costa, C L M; Vieira, R R; Pereira, R C; Silva, P V M; Oliveira, I A A; Sardinha, A S; Viana, D D; Barbosa, A H; Souza, L P; Alvarenga, A D

    2015-01-01

    The Optical Metrology Division of Inmetro – National Institute of Metrology, Quality and Technology has recently started the colorimetric characterization of lamps by implementing Correlated Color Temperature (CCT) and Color Rendering Index (CRI) measurements of incandescent lamps, followed by the CFL, and LED lamps and luminaires. Here we present the results for the verification of the color characterization of samples of SSL luminaires for public as well as indoor illumination that are sold in Brazil

  12. Energy efficiency effect on the public street lighting by using LED light replacement and kwh-meter installation at DKI Jakarta Province, Indonesia

    Science.gov (United States)

    Sudarmono, Panggih; Deendarlianto; Widyaparaga, Adhika

    2018-05-01

    Public street lighting consumes large energy for the public interest, but many street lights still do not use energy-saving technologies. In 2014, Provincial Government of DKI Jakarta operated 179,305 units of street lights. Of the number of installed armature, 92 % of them or 166,441 units are HPS (High-Pressure Sodium) armatures which are inefficient. In 2016, the Provincial Government of DKI Jakarta cut down the energy used for street lighting, by implementing the programs of kWh-meter installation in every street lighting panel and use energy-saving lamps equipped with the smart system. The Provincial Government of DKI Jakarta is registered with 6,399 customer IDs in PLN (State Owned Electric Company), and gradually carried out the kWh Meter installation and changes to the contract. The program to use energy-saving lights done by replacing the HPS armature that is not energy efficient to LED armature which is known to be energy efficient. Until the end of 2016, the number of armatures that has been replaced was 89,417 units. The research results on 25 samples of PLN customer IDs and the replacement of 2,162 units armature, showed that the energy efficiency through kWh meter installation and armature replacement reduce the power consumption from 330,414 kWh to 71,278 kWh or by 78.43%. Generally, there was a decrease in the value of electricity bill compared to the before the replacement. The program of kWh-meter installations and replacement of the armature has a payback period of 2.66 years.

  13. A comparative study of fluorescent and LED lighting in industrial facilities

    Science.gov (United States)

    Perdahci PhD, C.; Akin BSc, H. C.; Cekic Msc, O.

    2018-05-01

    Industrial facilities have always been in search for reducing outgoings and minimizing energy consumption. Rapid developments in lighting technology require more energy efficient solutions not only for industries but also for many sectors and for households. Addition of solid-state technology has brought LED lamps into play and with LED lamp usage, efficacy level has reached its current values. Lighting systems which uses fluorescent and LED lamps have become the prior choice for many industrial facilities. This paper presents a comparative study about fluorescent and LED based indoor lighting systems for a warehouse building in an industrial facility in terms of lighting distribution values, colour rendering, power consumption, energy efficiency and visual comfort. Both scenarios have been modelled and simulated by using Relux and photometric data for the luminaires have been gathered by conducting tests and measurements in an accredited laboratory.

  14. Luminescence and efficiency optimization of InGaN/GaN core-shell nanowire LEDs by numerical modelling

    Science.gov (United States)

    Römer, Friedhard; Deppner, Marcus; Andreev, Zhelio; Kölper, Christopher; Sabathil, Matthias; Strassburg, Martin; Ledig, Johannes; Li, Shunfeng; Waag, Andreas; Witzigmann, Bernd

    2012-02-01

    We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k . p Schrödinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.

  15. EVALUATION OF ADOPTION OF LED LIGHTING TECHNOLOGY IN MALAYSIA

    OpenAIRE

    Khorasanizadeh, Hasti

    2017-01-01

    Electrical energy consumption in Malaysia is rapidly increasing with illumination being the second largest contributor to this increment. Light Emitting Diode (LED) could be a viable option to reduce the illumination based energy consumption. LEDs are energy efficient and easier to recycle compared to traditional lighting sources such as incandescent and fluorescent lamps. They also have longer life time and lower failure rate. In this thesis, the feasibility of replacing...

  16. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  17. Efficient light extraction from GaN LEDs using gold-coated ZnO nanoparticles

    KAUST Repository

    Alhadidi, A.

    2015-11-01

    We experimentally demonstrate the effect of depositing gold-coated ZnO nanoparticles on the surface of GaN multi-quantum well LED structures. We show that this method can significantly increase the amount of extracted light.

  18. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Science.gov (United States)

    2010-01-01

    ... high intensity discharge fixture, the efficiency of a lamp and ballast combination, expressed as a... lamps. Metal halide lamp means a high intensity discharge lamp in which the major portion of the light... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and...

  19. LEDs light up the world

    Energy Technology Data Exchange (ETDEWEB)

    Mather, N.

    2004-06-30

    A lighting system using light-emitting diodes, and privately financed by a Canadian engineering professor at the University of Calgary, has been set up in a village in Nepal in 2000. Since then, through the efforts of the 'Light Up The World' Foundation, established by Dr. Irvine-Halliday, projects have lit up thousands of homes in the Philippines, India, Afghanistan, the Galapagos Islands, Mexico, Sri Lanka, and Angola. Although the goal of the project is primarily to provide lighting for reading and writing for school-children, the project has been the source of many other advantages; creation of enterprise, increased employment, enhanced income, gender equality, and improvements in health and safety among them. Since LED lamps in most cases replace kerosene lamps, the system also has significant environmental benefits. The system as originally envisioned creates electricity by pedal-powered generator, or by solar panels connected to a battery, depending on what is available at each home. Each home is connected to the power supply and supplied with low-energy diode lamps. The lights are extremely efficient and many homes can be equipped with them using less energy than it takes to power a single 100-watt light bulb. 5 photos.

  20. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  1. Interior LED Lighting Technology. Navy Energy Technology Validation (Techval) Program

    Science.gov (United States)

    2015-09-01

    usually on most of the time. • Consider replacing existing CFL, high-intensity discharge (HID), or halogen lamp light fixtures/ lamps with LED fixtures... lamps . What is the Technology? An LED is a semiconductor-diode that emits light when power is applied. A driver is used, much as a ballast, to...available in integrated luminaires that can be used to replace existing luminaires. LEDs are also available as direct replacement lamps for many

  2. Development of efficient, radiation-insensitive GaAs:Zn LEDs

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-01-01

    Although amphoterically Si doped GaAs LEDs are commercially popular because of their high light output, they are extremely sensitive to irradiation. Therefore, it would be desirable to have a viable alternative available for radiation environment applications. In this work it is shown that by increasing the hole concentration in the active region of nonamphoterically doped GaAs LEDs, one can simultaneously achieve high light output and low radiation sensitivity. Experimental results indicate that the minority carrier lifetime is smaller in more heavily doped devices so that the lifetime-damage constant, tau/sub o/K, is also smaller. Hence, the heavily doped devices should have greater radiation hardness. Neutron-induced light output degradation data as a function of hole concentration confirm this conclusion. The results also show that the pre-irradiation light output is greatest in the heavily doped LEDs. The accompanying decrease of tau/sub o/ in the heavily doped devices indicates that the total minority carrier lifetime is at least partially controlled by the radiative lifetime; a requirement for simultaneously achieving radiation hardness and high initial light output. Finally, an experimental comparison with amphoterically Si doped LEDs shows that the heavily doped devices are superior for neutron fluences greater than 2 x 10 12 n/cm 2

  3. LED; Zum Thema LED

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This collection of articles on the subject of light emitting diodes (LED) provides technical information on LED technology, examines latest developments and provides examples of LED use in practice. An 'ABC' of LED technology is presented and fifteen common LED mistakes are noted. The chances and risks of LED use are discussed as is the retrofitting of lighting installations with LEDs. The use of LEDs in street lighting is examined. The journal also includes interviews with architects and a lighting designer. Practical examples of the use of LEDs include the refurbished parliamentary library in Berne, their use in the bird sanctuary headquarters in Sempach, Switzerland, as well as LED use in sales outlets. Also, the use of LED lighting in a spa gazebo in Lucerne is examined.

  4. Modern features of complementary feeding and their efficiency in baby-led feeding

    Directory of Open Access Journals (Sweden)

    K.D. Duka

    2017-11-01

    Full Text Available Background. Baby-led feeding exists in the practice of pediatrics since 2002. But there are still no clear results on the effectiveness of its implementation and the impact on the health of young children. Particular attention is required to study the effectiveness of introducing complementary feeding. Materials and methods. We analyzed 245 questionnaires of infants with baby-led-feeding. In the questionnaires for mothers, questions were raised about the initiation of the introduction of complementary feeding, its types, the child’s reaction, with the assessment of physical development and the previous diseases. Results. Children with baby-led-feeding have a tendency to late introduction of complementary feeding (from 6 months. It turned out that until this age, the child receives only breast milk, which can’t satisfy the need for important constituent ingredients. They are necessary for the child at this age, and it leads to various metabolic disorders in the form of allergic di­seases, metabolic syndrome, anemia, osteoporosis and others. Particular concern was caused by the fact that children start receiving meat products too late, which naturally leads to the development of iron deficiency anemia. In addition, contrary to the current norms and regulations, we noticed frequent facts of self-consumption of the whole milk itself and fermented milk products made from it (kephir, yoghurt. Conclusions. Based on the study of this question, it was proved that the existing provisions on the introduction of complementary foods with baby-led-feeding require supervision and correction in accordance with the state of children’s health and the existing provisions of the World Health Organization.

  5. High efficiency GaN-based LEDs using plasma selective treatment of p-GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Bae; Naoi, Yoshiki; Sakai, Shiro [Department of Electrical and Electronic Engineering, University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan); Takaki, Ryohei; Sato, Hisao [Nitride Semiconductor Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan)

    2003-11-01

    We have studied a new method of increasing the extraction efficiency of a GaN-based light-emitting diode (LED) using a plasma surface treatment. In this method, prior to the evaporation of a semitransparent p-metal, the surface of a p-GaN located beneath a p-pad is selectively exposed to a nitrogen plasma in a reactive ion etching (RIE) chamber. The electrical characteristics of the plasma treated p-GaN remarkably changes its resistivity into semi-insulator without any parasitic damage. Since the LEDs with a new method have no light absorption in a p-pad region, a higher optical power can be extracted compared to a conventional LEDs without plasma selective treatment on the p-GaN surface. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing

    Science.gov (United States)

    Vinattieri, A.; Batignani, F.; Bogani, F.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Zhu, D.; Humphreys, C. J.

    2014-02-01

    By means of time integrated (TI), time-resolved (TR) photoluminescence (PL) and PL excitation spectra, we investigate the role of an high temperature post-growth thermal annealing (TA) on a set of InGaN/GaN LED structures with different dislocation densities. We provide evidence of the nature of the radiative recombination from a wide distribution of non-interacting localised states and we show the beneficial effect of thermal annealing in reducing the contribution of non-radiative recombination in the well region.

  7. Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Vinattieri, A.; Batignani, F. [Dipartimento di Fisica e Astronomia, LENS, CNISM, Università di Firenze (Italy); Bogani, F. [Dipartimento di Ingegneria Industriale, Università di Firenze (Italy); Meneghini, M.; Meneghesso, G.; Zanoni, E. [Dipartimento di Ingegneria dell' Informazione, Università di Padova (Italy); Zhu, D.; Humphreys, C. J. [Department Materials Science, University of Cambridge, Cambridge, CB2 3QZ (United Kingdom)

    2014-02-21

    By means of time integrated (TI), time-resolved (TR) photoluminescence (PL) and PL excitation spectra, we investigate the role of an high temperature post-growth thermal annealing (TA) on a set of InGaN/GaN LED structures with different dislocation densities. We provide evidence of the nature of the radiative recombination from a wide distribution of non-interacting localised states and we show the beneficial effect of thermal annealing in reducing the contribution of non-radiative recombination in the well region.

  8. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    Science.gov (United States)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  9. Efficient and versatile light. LEDs save energy and open up manifold possibilities of design; Effizientes und vielseitiges Licht. LEDs sparen Energie und eroeffnen zahlreiche Designmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Michael [OSRAM Opto Semicondutors GmbH, Muenchen (Germany). Bereich Marketing und Business Development

    2010-07-01

    Light bulbs leave the European market step by step. These conventional light sources are too inefficient in the private and conventional sector. There are a lot of alternatives to light bulbs. But no technology will be able to save as much energy as light emitting diodes (LED) in the future. Today, these LEDs meet us in most different applications. Continuously new areas of application are opened up in order to reduce the power requirement clearly for the production of artificial light. Apart from energy conservation diodes also enable untold possibilities. In the future, light can be still more flexibly used owing to LED. LEDs are ideal light sources for planners and designers.

  10. SILAR-Based Application of Various Nanopillars on GaN-Based LED to Enhance Light-Extraction Efficiency

    Directory of Open Access Journals (Sweden)

    S. C. Shei

    2013-01-01

    Full Text Available We reported the various nanopillars on GaN-based LED to enhance light-extraction efficiency prepared by successive ionic layer adsorption and reaction method (SILAR. Indium tin oxide (ITO with thickness of 1 μm as transparent contact layer was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. SILAR-deposition ZnO nanoparticles on SiO2 were used as etching nanomasks. Multiple nanopillars were simultaneously formed on overall surfaces of ITO p- and n-GaN by ICP etching. The proposed GaN-based LEDs with nanopillars increase light output power by 7%–20.3% (at 20 mA over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in materials and shapes of nanopillars, resulting in a reduction in Fresnel reflection by the roughened surface of GaN-based LEDs.

  11. Modes of governance for municipal energy efficiency services - the case of LED street lighting in Germany

    NARCIS (Netherlands)

    Polzin, F.H.J.; von Flotow, Paschen; Nolden, Colin

    2016-01-01

    Energy efficiency retrofits are often impeded by high perceived investment risks, long payback periods and a lack of skills. At the municipal level these issues are particularly pronounced as procuring, implementing, and managing retrofits can exceed existing municipal governance capacities. The

  12. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alison; Evans, Meredydd

    2010-04-01

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  13. Efficiency droop in GaN LEDs at high injection levels: Role of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bochkareva, N. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sheremet, I. A. [Financial University under the Government of the Russian Federation (Russian Federation); Shreter, Yu. G., E-mail: y.shreter@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-10-15

    Point defects in GaN and, in particular, their manifestation in the photoluminescence, optical absorption, and recombination current in light-emitting diodes with InGaN/GaN quantum wells are analyzed. The results of this analysis demonstrate that the wide tail of defect states in the band gap of GaN facilitates the trap-assisted tunneling of thermally activated carriers into the quantum well, but simultaneously leads to a decrease in the nonradiative-recombination lifetime and to an efficiency droop as the quasi-Fermi levels intersect the defect states with increasing forward bias. The results reveal the dominant role of hydrogen in the recombination activity of defects with dangling bonds and in the efficiency of GaN-based devices.

  14. Highly efficient low color temperature organic LED using blend carrier modulation layer

    Science.gov (United States)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  15. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  16. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  17. Evaluating UV-C LED disinfection performance and ...

    Science.gov (United States)

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  18. 77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps

    Science.gov (United States)

    2012-04-09

    ... available most commonly in the market. If the LED lamp is not rated for 120 volts, DOE proposes that it..., are available in the market. If such lamps are available, DOE requests comment about whether such... lamp to determine the rated lifetime and the final method in Table III.1 test the LED source to...

  19. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design

    Science.gov (United States)

    Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O.

    2016-06-01

    New relationships between energy efficiency, illuminance uniformity, spacing and mounting height in public lighting installations were derived from the analysis of a large sample of outputs generated with a widely used software application for lighting design. These new relationships greatly facilitate the calculation of basic lighting installation parameters. The results obtained are also based on maximal energy efficiency and illuminance uniformity as a premise, which are not included in more conventional methods. However, these factors are crucial since they ensure the sustainability of the installations. This research formulated, applied and analysed these new equations. The results of this study highlight their usefulness in rapid planning and urban planning in developing countries or areas affected by natural disasters where engineering facilities and computer applications for this purpose are often unavailable.

  20. Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers

    Directory of Open Access Journals (Sweden)

    Alfonso Gago-Calderón

    2018-04-01

    Full Text Available Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.

  1. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    Science.gov (United States)

    2015-01-01

    overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED...distance up to 300 km, from a variety of lamp types, in- cluding common gas discharge lamps and several types of LED lamps . We conclude for both...MAR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Effects of Lamp Spectral Distribution on Sky Glow

  2. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  3. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum......, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based...... on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved...

  4. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol.

    Science.gov (United States)

    Sun, Bing; Shen, Feng; McCalla, Stephanie E; Kreutz, Jason E; Karymov, Mikhail A; Ismagilov, Rustem F

    2013-02-05

    Here we used a SlipChip microfluidic device to evaluate the performance of digital reverse transcription-loop-mediated isothermal amplification (dRT-LAMP) for quantification of HIV viral RNA. Tests are needed for monitoring HIV viral load to control the emergence of drug resistance and to diagnose acute HIV infections. In resource-limited settings, in vitro measurement of HIV viral load in a simple format is especially needed, and single-molecule counting using a digital format could provide a potential solution. We showed here that when one-step dRT-LAMP is used for quantification of HIV RNA, the digital count is lower than expected and is limited by the yield of desired cDNA. We were able to overcome the limitations by developing a microfluidic protocol to manipulate many single molecules in parallel through a two-step digital process. In the first step we compartmentalize the individual RNA molecules (based on Poisson statistics) and perform reverse transcription on each RNA molecule independently to produce DNA. In the second step, we perform the LAMP amplification on all individual DNA molecules in parallel. Using this new protocol, we increased the absolute efficiency (the ratio between the concentration calculated from the actual count and the expected concentration) of dRT-LAMP 10-fold, from ∼2% to ∼23%, by (i) using a more efficient reverse transcriptase, (ii) introducing RNase H to break up the DNA:RNA hybrid, and (iii) adding only the BIP primer during the RT step. We also used this two-step method to quantify HIV RNA purified from four patient samples and found that in some cases, the quantification results were highly sensitive to the sequence of the patient's HIV RNA. We learned the following three lessons from this work: (i) digital amplification technologies, including dLAMP and dPCR, may give adequate dilution curves and yet have low efficiency, thereby providing quantification values that underestimate the true concentration. Careful

  5. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  6. UHP lamp systems for projection applications

    International Nuclear Information System (INIS)

    Derra, Guenther; Moench, Holger; Fischer, Ernst; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Niemann, Ulrich; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd; Weichmann, Ulrich

    2005-01-01

    Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W -1 , the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed. (review article)

  7. Bivariate constant stress degradation model: LED lighting system reliability estimation with two-stage modelling

    NARCIS (Netherlands)

    Sari, J.K.; Newby, M.J.; Brombacher, A.C.; Tang, L.C.

    2009-01-01

    Light-emitting diode (LED) lamp has received great attention as a potential replacement for the more commercially available lighting technology, such as incandescence and fluorescence lamps. LED which is the main component of LED lamp has a very long lifetime. This means that no or very few failures

  8. Studies on Single-phase and Multi-phase Heat Pipe for LED Panel for Efficient Heat Dissipation

    Science.gov (United States)

    Vyshnave, K. C.; Rohit, G.; Maithreya, D. V. N. S.; Rakesh, S. G.

    2017-08-01

    The popularity of LED panel as a source of illumination has soared recently due to its high efficiency. However, the removal of heat that is produced in the chip is still a major challenge in its design since this has an adverse effect on its reliability. If high junction temperature develops, the colour of the emitted light may diminish over prolonged usage or even a colour shift may occur. In this paper, a solution has been developed to address this problem by using a combination of heat pipe and heat fin technology. A single-phase and a two-phase heat pipes have been designed theoretically and computational simulations carried out using ANSYS FLUENT. The results of the theoretical calculations and those obtained from the simulations are found to be in agreement with each other.

  9. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  10. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  11. Highly efficient degradation of thidiazuron with Ag/AgCl- activated carbon composites under LED light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yisi [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Zhang, Yan [Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Dong, Mingguang; Yan, Ting; Zhang, Maosheng [College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Zeng, Qingru, E-mail: 40083763@qq.com [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China)

    2017-08-05

    Highlights: • Photocatalytic degradation of thidiazuron was performed in a neutral water matrix. • This was carried out in the presence of Ag/AgCl-activated carbon composites and LED light. • The pH effect and the dominant active species were explored. • Degradation products and pathways in water were studied for the first time. - Abstract: Thidiazuron (TDZ; 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea) is one of the most widely used defoliant and easy to dissolve in surface water. Risk associated with the pesticide is not clearly defined, so it is important to remove/degrade TDZ with an efficient and environment friendly technology. Here, we investigated the use of Ag/AgCl-activated carbon (Ag/AgCl–AC) composites in photocatalytic degradation of TDZ under LED light. By the synergic effect of Ag/AgCl and AC, the optimum Ag/carbon weight ratio of 2:1 exhibited superior visible-light photocatalytic activity, the highest removal efficiency was close to 91% in pH 7 matrix. Different types of Ag/AgCl–AC composites were tested, all showed much faster photodegradation kinetics than bare Ag/AgCl in 210 min. The degradation products as identified by HPLC–MS revealed that the hydroxylation by hydroxyl radicals and that of oxidation by superoxide radicals as well as holes were the two main pathways for TDZ degradation. Results revealed that the adsorption concentrated TDZ molecules and the photocatalytically generated radicals rapidly degradated TDZ, the two contributions functioned together for removal of the pollutant from water.

  12. Highly efficient degradation of thidiazuron with Ag/AgCl- activated carbon composites under LED light irradiation

    International Nuclear Information System (INIS)

    Yang, Yisi; Zhang, Yan; Dong, Mingguang; Yan, Ting; Zhang, Maosheng; Zeng, Qingru

    2017-01-01

    Highlights: • Photocatalytic degradation of thidiazuron was performed in a neutral water matrix. • This was carried out in the presence of Ag/AgCl-activated carbon composites and LED light. • The pH effect and the dominant active species were explored. • Degradation products and pathways in water were studied for the first time. - Abstract: Thidiazuron (TDZ; 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea) is one of the most widely used defoliant and easy to dissolve in surface water. Risk associated with the pesticide is not clearly defined, so it is important to remove/degrade TDZ with an efficient and environment friendly technology. Here, we investigated the use of Ag/AgCl-activated carbon (Ag/AgCl–AC) composites in photocatalytic degradation of TDZ under LED light. By the synergic effect of Ag/AgCl and AC, the optimum Ag/carbon weight ratio of 2:1 exhibited superior visible-light photocatalytic activity, the highest removal efficiency was close to 91% in pH 7 matrix. Different types of Ag/AgCl–AC composites were tested, all showed much faster photodegradation kinetics than bare Ag/AgCl in 210 min. The degradation products as identified by HPLC–MS revealed that the hydroxylation by hydroxyl radicals and that of oxidation by superoxide radicals as well as holes were the two main pathways for TDZ degradation. Results revealed that the adsorption concentrated TDZ molecules and the photocatalytically generated radicals rapidly degradated TDZ, the two contributions functioned together for removal of the pollutant from water.

  13. Geometric Modelling of Octagonal Lamp Poles

    Science.gov (United States)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  14. Lamp for sunshine simulation

    DEFF Research Database (Denmark)

    2016-01-01

    A lamp system is provided, comprising a lamp with a lamp housing accommodating a plurality of light sources for emission of visible light, including blue light, a time keeping unit, a light sensor for sensing intensity of light incident upon it, and a light controller configured for controlling...... the plurality of light sources in response to the intensity of light sensed by the light sensor and the time provided by the time keeping unit, characterized in that the lamp emits blue light for a selected time period, wherein the blue light has a luminous flux ranging from 50 lux to 200 lux and, preferably......, an irradiance that is larger than 5 mW/nm/m2 in a selected wavelength range, such as in the wavelength range from 440 nm to 500 nm, as measured at a distance of 3 metres from the lamp....

  15. Fluorescent Lamp Replacement Study

    Science.gov (United States)

    2017-07-01

    not be cited for purposes of advertisement. DISPOSITION INSTRUCTIONS: Destroy this document when no longer needed. Do not return to the... recycling , and can be disposed safely in a landfill. (2) LEDs offer reduced maintenance costs and fewer bulb replacements, significantly reducing... recycling . Several fixtures, ballasts and energy efficient fluorescent bulbs that were determined to be in pristine condition were returned to ATC

  16. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Science.gov (United States)

    2010-10-01

    ... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog lamps. (a) Headlamps. Every bus, truck and truck tractor shall be equipped with headlamps as required by...

  17. Delphi4LED - From measurements to standardized multi-domain compact models of LED : A new European R&D project for predictive and efficient multi-domain modeling and simulation of LEDs at all integration levels along the SSL supply chain

    NARCIS (Netherlands)

    Bornoff, R.; Hildenbrand, V.; Lungten, S.; Martin, G.; Marty, C.; Poppe, A.; Rencz, M.; Schilders, W.H.A.; Yu, Joan

    2016-01-01

    There are a few bottlenecks hampering efficient design of products on different integration lepels of the ssL supply chain. one major issue is that data sheet information propided about packaged LEDs is usually insufficient and inconsistent among different LED pendors. Many data such as temperature

  18. Investigation of UV-LED Initiated Photopolymerisation of Bio-compatible HEMA

    OpenAIRE

    McDermott, Sharon

    2008-01-01

    Ultraviolet (UV) fluorescent lamps are widely used in photopolymerisation processes. However, there a number of disadvantages to these lamps, namely, their intensity varies over time and has to be constantly monitored. This thesis is concerned with the possibility of replacing these lamps with UV Light Emitting Diodes (UV-LEDs). A number of emission characteristics of both the fluorescent lamp and the UV-LEDs were measured and compared to ensure that the optical properties of the UV-LEDs were...

  19. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  20. Report on the investigational study on the technical trend of temperature control materials for high efficiency LED lighting use; Kokoritsu LED shomeiyo no ondo seigyo zairyo no gijutsu doko ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of the innovative conservation of lighting use energy, a project is being promoted with the aim of developing light emitted diode (LED) and commercializing lighting use light source substituting for fluorescent light. In this study, the following were conducted: literature survey on Peltier materials as temperature control materials for high efficiency LED lighting and the making of them as elements, extraction of technical subjects in the commercialization of LED cooling use Peltier element materials, market surveys/analyses were made of the fields of application including the LED cooling use field. As a result, for the commercialization of temperature control use Peltier elements of lighting use LED, the desirable performance index is 5x10{sup -5}/K or more. Bi{sub 2}Te{sub 3} elements which are now commercially available as Peltier elements are not good in performance and have the toxicity problem. As a candidate of temperature control use materials of lighting use LED, Mg{sub 2} (Sn, Si) or clathrate system are regarded, but the point, etc. were pointed out that it is necessary to improve thermoelectric characteristics. (NEDO)

  1. CALiPER Retail Lamps Study 3

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.

  2. VIRTIS-M flight lamps

    International Nuclear Information System (INIS)

    Melchiorri, R.; Piccioni, G.; Mazzoni, A.

    2003-01-01

    VIRTIS-M is a visible-infrared (VIS-IR) image spectrometer designed for the Rosetta mission; it intends to provide detailed informations on the physical, chemical, and mineralogical nature of comets and asteroids. The in-flight performances of VIRTIS-M are expected to be influenced by various disturbances, like the initial strong vibrations of the rocket, the long duration of the experiment (from 2003 to 2010), as well as other possible environmental changes; therefore, an in-flight recalibration procedure is mandatory. Quite often in such kinds of missions, a light emission diode (LED) is employed to calibrate the on-board spectrometers by taking advantage of the relative small dimensions, stability, and hardness of these sources. VIRTIS-M is the first image spectrometer that will use a new generation of lamps for internal calibrations. These new lamps are characterized by a wide spectral range with a blackbody-like emission with an effective temperature of about (2400-2600 K), thereby covering the whole VIRTIS-M's spectral range (0.2-5 μm); i.e., they offer the possibility of a wider spectral calibration in comparison with the quasimonochromatic LED emission. A precise spectral calibration is achieved by adding special filters for visible and infrared ranges in front of the window source, containing many narrow absorption lines. In the present article, we describe the calibration and tests of some flight prototypes of these lamps (VIS and IR), realized by the Officine Galileo and calibrated by the Consiglio Nazionale delle Ricerche-Istituto di Astrofisica Spaziale e Fisica Cosmica

  3. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    Science.gov (United States)

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  5. Uniform LED illuminator for miniature displays

    Science.gov (United States)

    Medvedev, Vladimir; Pelka, David G.; Parkyn, William A.

    1998-10-01

    The Total Internally Reflecting (TIR) lens is a faceted structure composed of prismatic elements that collect a source's light over a much larger angular range than a conventional Fresnel lens. It has been successfully applied to the efficient collimation of light from incandescent and fluorescent lamps, and from light-emitting diodes (LEDs). A novel LED-powered collimating backlight is presented here, for uniformly illuminating 0.25'-diagonal miniature liquid- crystal displays, which are a burgeoning market for pagers, cellular phones, digital cameras, camcorders, and virtual- reality displays. The backlight lens consists of a central dual-asphere refracting section and an outer TIR section, properly curved with a curved exit face.

  6. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  7. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  8. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    Science.gov (United States)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.

  9. Quality attributes of LED lighting. Current state-of-the-art , advantages, problem areas and potential for development - Final report; Qualitaetsmerkmale der LED-Beleuchtung. Aktueller Stand der Technik, Vorteile, Problempunkte und Entwicklungspotential - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, S.

    2009-09-15

    The present report describes the state-of-the-art of LED technology for room lighting in June 2009, based on internet research, expert interviews as well as a workshop with experts. Of the 20 attributes determined, three key quality characteristics crucial for the breakthrough of LED technology were identified: (i) Energy efficiency: with values of 50 - 70 lumen/watt when in usage, current LED lamps on the market are comparable to energy saving lamps. Experts expect the luminous efficiency to double within the next five years. Declaration is often poor: instead of efficiency in real-life usage many producers declare unrealistic lab measurement results; sometimes even fantasy values are declared. (ii) Light quality: Today's good LEDs reach colour rendering attributes which are comparable to those of halogen lamps and usually better than the CFL's (colour rendering index 80 to 90, with a continuous light spectrum). (iii) Lamp life: A lamp life of up to 50,000 hours can only be reached if the heat dissipation is secured and if the Control gears quality keeps up with the LED's life time. According to the experts, many of today's LED products on the market don't meet these two requirements. Strong uncertainty is caused by inconsistent declaration and partly missing standardisation. With the ANSI standard, the US is ahead of Europe in this matter. Today LED lighting is attractive and economic where its unique advantages can be applied: directional light, very long life-span, no heat in the luminous flux, UV-free light, colour modulation, dimming with little losses. Interesting applications today include: (i) Professional field: operating time > 3,000 hours per year, e.g. shop illumination or downlights in a hall (hotel, administration, etc.). Further spotlights in museums, working place table light fixtures, hybrid solutions (e.g. indirect fluorescent lamp, direct LED). (ii) Domestic field: working place and reading lamps (low luminance, no heat

  10. Investigation of efficiency enhancement in InGaN MQW LED with compositionally step graded GaN/InAlN/GaN multi-layer barrier

    Science.gov (United States)

    Prajoon, P.; Anuja Menokey, M.; Charles Pravin, J.; Ajayan, J.; Rajesh, S.; Nirmal, D.

    2018-04-01

    The advantage of InGaN multiple Quantum well (MQW) Light emitting diode (LED) on a SiC substrate with compositionally step graded GaN/InAlN/GaN multi-layer barrier (MLB) is studied. The Internal quantum efficiency, Optical power, current-voltage characteristics, spontaneous emission rate and carrier distribution profile in the active region are investigated using Sentaurus TCAD simulation. An analytical model is also developed to describe the QW carrier injection efficiency, by including carrier leakage mechanisms like carrier overflow, thermionic emission and tunnelling. The enhanced electron confinement, reduced carrier asymmetry, and suppressed carrier overflow in the active region of the MLB MQW LED leads to render a superior performance than the conventional GaN barrier MQW LED. The simulation result also elucidates the efficiency droop behaviour in the MLB MQW LED, it suggests that the efficiency droop effect is remarkably improved when the GaN barrier is replaced with GaN/InAlN/GaN MLB barrier. The analysis shows a dominating behaviour of carrier escape mechanism due to tunnelling. Moreover, the lower lattice mismatching of SiC substrate with GaN epitaxial layer is attributed with good crystal quality and reduced polarization effect, ultimately enhances the optical performance of the LEDs.

  11. Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lu, T.C.; Kuo, H.C.; Wang, S.C.; Hsu, T.C.; Hsieh, M.H.; Jou, M.J.; Lee, B.J.

    2007-01-01

    A chemical wet etching technique is presented to form a nano-roughened surface with triangle-like morphology on n-side-up AlGaInP-based LEDs fabricated by adopting adhesive layer bonding scheme. A simple and commonly used H 3 PO 4 -based solution was applied for chemical wet etching. The morphology of nano-roughened surfaces is analyzed by the atomic force microscope (AFM) and significantly related to the enhancement factor of the LED output power. The output power shows 80% increase after optimizing the nano-roughened morphology of n-side surface, as compared to the ordinary flat surface LED

  12. "Light-box" accelerated growth of poinsettias: LED-only illumination

    Science.gov (United States)

    Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius

    2018-01-01

    For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.

  13. Progress in extremely high brightness LED-based light sources

    Science.gov (United States)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  14. Optical radiation emissions from compact fluorescent lamps

    International Nuclear Information System (INIS)

    Khazova, M.; O'Hagan, J.B.

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects. (authors)

  15. EDITORIAL: LED light sources (light for the future) LED light sources (light for the future)

    Science.gov (United States)

    Grandjean, N.

    2010-09-01

    Generating white light from electricity with maximum efficacy has been a long quest since the first incandescent lamp was invented by Edison at the end of the 19th century. Nowadays, semiconductors are making reality the holy grail of converting electrons into photons with 100% efficiency and with colours that can be mixed for white light illumination. The revolution in solid-state lighting (SSL) dates to 1994 when Nakamura reported the first high-brightness blue LED based on GaN semiconductors. Then, white light was produced by simply combining a blue dye with a yellow phosphor. After more than a decade of intensive research the performance of white LEDs is quite impressive, beating by far the luminous efficacy of compact fluorescent lamps. We are likely close to replacing our current lighting devices by SSL lamps. However, there are still technological and fabrication cost issues that could delay large market penetration of white LEDs. Interestingly, SSL may create novel ways of using light that could potentially limit electricity saving. Whatever the impact of SSL, it will be significant on our daily life. The purpose of this special cluster issue is to produce a snapshot of the current situation of SSL from different viewing angles. In an introductory paper, Tsao and co-workers from Sandia National Laboratories, present an energy-economics perspective of SSL considering societal changes and SSL technology evolution. In a second article, Narukawa et al working at Nichia Corporation—the pioneer and still the leading company in SSL—describe the state of the art of current research products. They demonstrate record performance with white LEDs exhibiting luminous efficacy of 183 lm W-1 at high-current injection. Then, a series of topical papers discuss in detail various aspects of the physics and technology of white LEDs Carrier localization in InGaN quantum wells has been considered the key to white LEDs' success despite the huge density of defects. A

  16. Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengjun [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yuan, Shu; Liu, Yingce [Quantum Wafer Inc., Foshan 528251 (China); Guo, L. Jay [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Sheng, E-mail: victor_liu63@126.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Ding, Han [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TEM is used to characterize threading dislocation existing in GaN epitaxial layer. • Effect of threading dislocation on optical and electrical of LEDs is discussed. • Strip-shaped SiO{sub 2} DCBL is designed to improve current spreading performance of LEDs. - Abstract: We demonstrated that the improvement in optical and electrical performance of high power LEDs was achieved using cone-shaped patterned sapphire substrate (PSS) and strip-shaped SiO{sub 2} distributed current blocking layer (DCBL). We found through transmission electron microscopy (TEM) observation that densities of both the screw dislocation and edge dislocation existing in GaN epitaxial layer grown on PSS were much less than that of GaN epitaxial layer grown on flat sapphire substrate (FSS). Compared to LED grown on FSS, LED grown on PSS showed higher sub-threshold forward-bias voltage and lower reverse leakage current, resulting in an enhancement in device reliability. We also designed a strip-shaped SiO{sub 2} DCBL beneath a strip-shaped p-electrode, which prevents the current from being concentrated on regions immediately adjacent the strip-shaped p-electrode, thereby facilitating uniform current spreading into the active region. By implementing strip-shaped SiO{sub 2} DCBL, light output power of high power PSS-LED chip could be further increased by 13%.

  17. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.

    Science.gov (United States)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-Ichi

    2008-04-01

    -loop system of mercury recovery and reuse in which all stakeholders participate. Furthermore, it is important to share information and policies regarding fluorescent lamp recycling and related technologies with other countries, especially those in other countries, where fluorescent lamps are becoming more popular because of their high energy efficiency and long life. Also, it is important to develop mercury free and energy efficient lamps including LEDs (light emitting diodes).

  18. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan

    International Nuclear Information System (INIS)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-ichi

    2008-01-01

    -loop system of mercury recovery and reuse in which all stakeholders participate. Furthermore, it is important to share information and policies regarding fluorescent lamp recycling and related technologies with other countries, especially those in other countries, where fluorescent lamps are becoming more popular because of their high energy efficiency and long life. Also, it is important to develop mercury free and energy efficient lamps including LEDs (light emitting diodes)

  19. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    Yamachita, Roberto Akira; Gama, Paulo Henrique R. Pereira; Haddad, Jamil; Santos, Afonso H. Moreira; Guardia, Eduardo C.

    1999-01-01

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  20. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs.

    Science.gov (United States)

    Song, Young Hyun; Yoo, Jin Sun; Kang, Bong Kyun; Choi, Seung Hee; Ji, Eun Kyung; Jung, Hyun Suk; Yoon, Dae Ho

    2016-12-01

    We report highly efficient ethyl cellulose with CsPbBr 3 perovskite QD films for white light generation in LED application. Ethyl cellulose with CsPbBr 3 quantum dots is applied with Sr 2 Si 5 N 8  : Eu 2+ red phosphor on an InGaN blue chip, achieving a highly efficient luminous efficacy of 67.93 lm W -1 under 20 mA current.

  1. 240 nm UV LEDs for LISA test mass charge control

    Science.gov (United States)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  2. 240 nm UV LEDs for LISA test mass charge control

    International Nuclear Information System (INIS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-01-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s 2 /√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps. (paper)

  3. Fluorescent discharge lamp

    Science.gov (United States)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  4. Lamps and lighting

    CERN Document Server

    Cayless, MA; Marsden, A M

    2012-01-01

    This book is a comprehensive guide to the theory and practice of lighting. Covering the physics of light production, light sources, circuits and a wide variety of lighting applications, it is both suitable as a detailed textbook and as thoroughly practical guide for practising lighting engineers. This fourth edition of Lamps and Lighting has been completely updated with new chapters on the latest lamp technology and applications. The editors ahve called upon a wide range of expertise and as a result many sections have been broadened to include both European and US practice.The book begins with

  5. New design for a microwave discharge lamp.

    Science.gov (United States)

    Glangetas, A

    1980-03-01

    A simple discharge lamp with a microwave cavity fitting inside provides an intense source of VUV resonance radiation for photochemical work inside a vacuum chamber. Good coupling and minimum reabsorption result in better efficiency ( greater, similar1%) and more intense output power (up to 2.5x10(16) quanta s(-1)) than have been achieved previously.

  6. Effect of Led Lighting Colors for Laying Japanese Quails

    Directory of Open Access Journals (Sweden)

    KC Nunes

    Full Text Available ABSTRACT Time of exposure and light intensity rearing house may affect the performance and egg quality of laying quails. This research aimed at evaluating the live performance, egg quality, biometry of the reproductive system, and the gastrointestinal tract of Japanese quails (Coturnix coturnix japonica exposed to artificial light-emitting diodes (LED of different colors in comparison with fluorescent lamps. A total of 240 Japanese quails were distributed in completely randomized experimental design with four treatments (fluorescent lamp, and green, red, or blue LED lamps with six replicates of 10 birds each. Average egg weight and eggshell thickness were different (p0.05. The oviduct of 64-d-old hens exposed to green LED lighting was shorter (p<0.05 than those exposed to the fluorescent lamp. Red LED can be used to replace the fluorescent lamps, as they promote the same live performance, egg quality, and morphological development of the reproductive tract of laying Japanese quails.

  7. The improvement of photocatalytic processes: Design of a photoreactor using high-power LEDs

    Directory of Open Access Journals (Sweden)

    Marzieh Khademalrasool

    2016-09-01

    Full Text Available This paper is an attempt to survey the benefits of a well-designed photoreactor containing just 6 ultraviolet (UV high power light emitting diodes (HPLEDs; the power and wavelength of each UV HPLED are 1 W and 365 nm, respectively, the latter being an efficient source for photocatalytic studies. Although the experiment with the 365-nm LEDs is reported here, other LEDs were predicted for conducting similar experiments including green photocatalytic ones. We installed diodes with respect to the luminescence intensity distribution curves (LIDCs or intensity patterns. Then, in order to compare the efficiency of the UV-HPLEDs of the HP-LED photoreactor (HPLED-PhR with that of traditional UV lamps which are extensively used in photocatalytic processes, a set of UV HPLEDs was designed and made up. Next, the performance of HPLED-PhR was compared with that of a traditional fluorescent lamp photoreactor (FL-PhR. As a typical photocatalytic experiment, Zinc Oxide (ZnO nanoparticles were synthesized via co-precipitation method and used as photocatalyst for purification of water polluted with the reactive blue dye (RB, under UV irradiation in two photoreactors. The results showed that the rate of photocatalytic reaction under the UV-LEDs was two times greater than the rate under the traditional fluorescent UV lamps, while both electrical power consumption and manufacturing cost of the HPLED-PhR were less than a quarter of them for the FL-PhR.

  8. UV-LED-based charge control for LISA

    Science.gov (United States)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2014-03-01

    The test masses inside the LISA gravitational reference sensors (GRS) must maintain almost pure geodesic motion for gravitational waves to be successfully detected. The residual accelerations have to stay below 3fm/s2/rtHz at all frequencies between 0.1 and 3 mHz. One of the well known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electro-magnetic fields. The LISA pathfinder (LPF) will use Hg-discharge lamps emitting mostly around 253 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. UV-LEDs have a lower mass, a better power efficiency, and are smaller than their Hg counterparts. Furthermore, the latest generation produces light at 240 nm, with energy well above the work function of pure gold. I will describe a preliminary design for effective charge control through photoelectric effect by using these LEDs. The effectiveness of this method is verified by taking Quantum Efficiency (QE) measurements which relate the number of electrons emitted to the number of photons incident on the Au test mass surface. This presentation addresses our initial results and future plans which includes implementation and testing in the UF torsion pendulum and space-qualification in a small satellite mission which will launch in the summer of 2014, through a collaboration with Stanford, KACST, and NASA Ames Research Center.

  9. LED lighting increases the ecological impact of light pollution irrespective of color temperature.

    Science.gov (United States)

    Pawson, S M; Bader, M K-F

    Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.

  10. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    Science.gov (United States)

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  11. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.

    Science.gov (United States)

    Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi

    2018-01-15

    In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL -1 CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 under MDEL irradiation (MDEL-AO-H 2 O 2 ), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis < AO < AO-H 2 O 2 < MDEL-AO-H 2 O 2 < EF < MDEL-PEF. Effects of current density, pH, initial Fe 2+ concentration and initial CIP concentration on TOC removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F - , NH 4 + and NO 3 - ) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Efficient Disinfection of Tap and Surface Water with Single High Power 285 nm LED and Square Quartz Tube

    Directory of Open Access Journals (Sweden)

    Martin Hessling

    2016-01-01

    Full Text Available A small water disinfection system based on the combination of a strong single 25 mW LED with a wavelength of 285 nm and a short quartz tube with an outer rectangular cross section is presented. For the disinfection tests clear tap water and slightly turbid and yellow pond water are contaminated with high concentrations of Escherichia coli bacteria. These water samples are exposed to the germicidal 285 nm LED radiation while they flow through the quartz tube. The portion of surviving germs is determined by membrane filtration for different water qualities and flow rates. For clear tap water the bacteria concentration can be reduced by at least three orders of magnitude up to flow rates of about 20 L/h. In pond water the maximum flow rate for such a reduction is less than 3 L/h. These high disinfection capabilities and the small size of this system, allow its integration in medical systems for point of use disinfection or even its application in the Third World for decentralized water disinfection powered by small solar cells, because this disinfection capacity should be sufficient for small groups or families.

  13. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    Science.gov (United States)

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel

    2017-08-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enables the separation of the radiative and nonradiative recombination lifetimes and the extraction of the Shockley-Read-Hall (SRH) nonradiative ($A$), radiative ($B$), and Auger ($C$) recombination coefficients and their $n$-dependency considering the saturation of the SRH recombination rate and phase-space filling. The results indicate a three to four-fold higher $A$ and a nearly two-fold higher $B_0$ for this semipolar orientation compared to that of $c$-plane reported using a similar approach [A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)]. In addition, the carrier density in semipolar $(20\\bar 2\\bar 1)$ is found to be lower than the carrier density in $c$-plane for a given current density, which is important for suppressing efficiency droop. The semipolar LED also shows a two-fold lower $C_0$ compared to $c$-plane, which is consistent with the lower relative efficiency droop for the semipolar LED (57% vs. 69%). The lower carrier density, higher $B_0$ coefficient, and lower $C_0$ (Auger) coefficient are directly responsible for the high efficiency and low efficiency droop reported in semipolar $(20\\bar 2\\bar 1)$ LEDs.

  14. PENGEMBANGAN LAMPU LED DENGAN TEKNOLOGI PHOTOVOLTAIC (LED-PV SEBAGAI ALAT BANTU PENGUMPUL IKAN PADA PERIKANAN BAGAN

    Directory of Open Access Journals (Sweden)

    Mochamad Arief Sofijanto

    2015-03-01

    mengetahui perbedaan jumlah hasil tangkapan pada bagan tancap akibat perlakuan warna lampu LED yang berbeda. Metode penelitian yang digunakan adalah deskriptif dan experimental fishing dimana rancangan penelitiannya adalah Rancangan Acak Lengkap (RAL dengan perlakuan warna lampu LED sebanyak 5 jenis warna yaitu merah (A, kuning (B, hijau (C, biru (D, dan putih (E dengan 6 kali ulangan. Secara deskriptif hasil penelitian menunjukkan lampu LED dapat digunakan untuk menggantikan lampu petromaks dan lampu LHE. Diperoleh 17 jenis ikan laut yang tertarik pada cahaya lampu LED yang digunakan. Hasil analisis statistik menunjukkan terdapat perbedaan nyata terhadap hasil tangkapan bagan dengan perlakuan warna lampu LED. Berdasarkan Uji Nyata Terkecil dinyatakan bahwa bagan yang menggunakan warna lampu LED biru mendapatkan hasil tangkapan tertinggi kemudian diikuti oleh warna kuning, hijau, putih dan merah.  The set ‘bagan’ (liftnet fishing gear is a kind of fishing gears which using atificial light as fishes gathering. This fishing gear uses an electric generator to turn on the energy saving lamp which hang on under the set ‘bagan’. The price of gasoline more expensive due to the Indonesia government’s fuel subsidy reduced and this make fishing operation costs more expensive for fishermen. This research using the LED lamps that do not use gasoline as fuel because the LED lamps can use the photovoltaic technology (solar cell system. The purposes of this study were: 1 to find out whether the LED lamps can replace the kerosene lamps and saving energy lamps, 2 to know the different in cath using different colours of LED lamps. The reserach methods are descriptive and experimental fishing which used Completely Randomized Design with LED lamps colour treatments i.e: red (A, yellow (B, green (C, blue (D, and white (E, the number of replications are 6 times. LED lamps can be used to replace the kerosene and saving energy lamps. There were 17 species of

  15. Stress Testing of the Philips 60W Replacement Lamp L Prize Entry

    Energy Technology Data Exchange (ETDEWEB)

    Poplawski, Michael E.; Ledbetter, Marc R.; Smith, Mark

    2012-04-24

    The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stress cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions

  16. Operational efficiency of the lighting system of bus salons

    Directory of Open Access Journals (Sweden)

    Brytkovskyi V.M.

    2016-08-01

    Full Text Available In recent years the problem of safety of people is studied primarily in aspects of natural and man-made disasters, fire, health and safety in the workplace. A problem connected with the way of life of the people, in particular with the use of bus transport remains almost out of sight. In addition to the foregoing, there is another side to the issue: modern development of industry and transport is characterized by large-scale introduction of technical measures aimed at saving energy In the specified aspect theoretical dependences for evaluation of technological economic efficiency of light sources in indoor lighting system buses are grounded. This theoretical dependency will make analytical framework justification applying the respective sources of light, taking into account the hygiene requirements to illumination. The methodology of calculation of economic efficiency of lighting of bus salons is offered. Estimating parameter is justified relative objective function value costs per unit of time or distance. The greatest costs are typical for lamps with incandescent bulbs. The least is common to lamps with fluorescent lamps. Led bulbs have no significant advantage even over incandescent lamps. The reason for this is the relatively high color temperature radiation of LED lamps that requires more light levels and, consequently, the high cost of energy, as well as relatively large initial cost of these lamps.

  17. 3D dysprosium density in the metal-halide lamp measured by emission and laser absorption spectroscopy in a centrifuge at 1-10g

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Thubé, G.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2007-01-01

    The metal-halide lamp is a High Intensity Discharge (HID) lamp with a high efficiency. The salt additive (DyI3) acts as prime radiator. The present lamp suffers from non-uniform light output, caused by diffusion and convection processes. To gain a better understanding of the lamp, the convection is

  18. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    Directory of Open Access Journals (Sweden)

    Yufeng Li

    2017-11-01

    Full Text Available Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  19. Investigation of acoustic resonances in high-power lamps

    International Nuclear Information System (INIS)

    Kettlitz, M; Zalach, J; Rarbach, J

    2011-01-01

    High-power, medium-pressure, mercury-containing lamps are used as UV sources for many industrial applications. Lamps investigated in this paper are driven with an electronic ballast with a non-sinusoidal current waveform at a fixed frequency of 20 kHz and a maximum power output of 35 kW. Instabilities can occur if the input power is reduced below 50%. The reason is identified as acoustic resonances in the lamp. Comparison of calculated and measured resonance frequencies shows a good agreement and explains the observed lamp behaviour. This has led to the development of a new ballast prototype which is able to avoid instabilities by changing the driving frequency dependent on the applied power.

  20. InGaN/GaN LEDs optical output efficiency enhancement based on AFM surface morphology studies of the constituent layers

    Energy Technology Data Exchange (ETDEWEB)

    Florescu, D.I.; Ramer, J.C.; Merai, V.N.; Parekh, A.; Lu, D.; Lee, D.S.; Armour, E.A. [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States)

    2005-05-01

    For GaN-based light emitting diodes (LEDs), the growth mechanism and interface roughness of the n-contact, active region, and p-contact layers are of vital importance for achieving superior optical and electrical characteristics of such devices. Nanoscale range surface morphology is one of the key parameters actively employed to developing high optical efficiency applications. In this study, we illustrate the use of atomic force microscopy to investigate and optimise the surface morphology of (a) sapphire substrates and (b) metalorganic chemical vapour deposition (MOCVD) grown InGaN/GaN LED constituent layers (i.e., n-GaN, InGaN active region, and p-GaN). Several optimal cases are presented and discussed, where based on the surface morphology findings an improved selection of (a) substrates and (b) MOCVD growth parameters was achieved leading to an overall enhancement (over 2 times) of the optical output efficiency of these devices. Applying the principles and observations reported, a thermally robust 465 nm multiple quantum well LED with an unpackaged chip-level power output in the 4.0-5.0 mW range and forward voltage <3.2 V at 20 mA was consistently achieved. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs

    Science.gov (United States)

    Williams, Logan; Kioupakis, Emmanouil

    2017-11-01

    InGaN-based visible light-emitting diodes (LEDs) find commercial applications for solid-state lighting and displays, but lattice mismatch limits the thickness of InGaN quantum wells that can be grown on GaN with high crystalline quality. Since narrower wells operate at a higher carrier density for a given current density, they increase the fraction of carriers lost to Auger recombination and lower the efficiency. The incorporation of boron, a smaller group-III element, into InGaN alloys is a promising method to eliminate the lattice mismatch and realize high-power, high-efficiency visible LEDs with thick active regions. In this work, we apply predictive calculations based on hybrid density functional theory to investigate the thermodynamic, structural, and electronic properties of BInGaN alloys. Our results show that BInGaN alloys with a B:In ratio of 2:3 are better lattice matched to GaN compared to InGaN and, for indium fractions less than 0.2, nearly lattice matched. Deviations from Vegard's law appear as bowing of the in-plane lattice constant with respect to composition. Our thermodynamics calculations demonstrate that the solubility of boron is higher in InGaN than in pure GaN. Varying the Ga mole fraction while keeping the B:In ratio constant enables the adjustment of the (direct) gap in the 1.75-3.39 eV range, which covers the entire visible spectrum. Holes are strongly localized in non-bonded N 2p states caused by local bond planarization near boron atoms. Our results indicate that BInGaN alloys are promising for fabricating nitride heterostructures with thick active regions for high-power, high-efficiency LEDs.

  2. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-01

    This report presents a technical review of international minimum energy performance standards (MEPS), voluntary and mandatory energy efficiency labels and test procedures for five products being considered for new or revised MEPS in China: copy machines, external power supply, LED displays, residential gas cooktops and flat-screen televisions. For each product, an overview of the scope of existing international standards and labeling programs, energy values and energy performance metrics and description and detailed summary table of criteria and procedures in major test standards are presented.

  3. Fundamentals of solid-state lighting LEDs, OLEDs, and their applications in illumination and displays

    CERN Document Server

    Khanna, Vinod Kumar

    2014-01-01

    History and Basics of LightingChronological History of LightingLearning Objectives How Early Man Looked at the ""Sun"" The Need for Artificial Light Sources First Steps in the Evolution of Artificial Lighting The First Solid-State Lighting Device The First Practical Electrical Lighting Device The Incandescent Filament Lamp Mercury and Sodium Vapor Lamps The Fluorescent Lamp The Compact Fluorescent Lamp Revolution in the World of Lighting: Advent of Light-Emitting Diodes Birth of the First LED and the Initial Stages of LED Development The Father of the LED: Holonyak Jr. The Post-1962 Developmen

  4. Design methodologies for reliability of SSL LED boards

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Perpiñà, X.; Jorda, X.; Vellvehi, M.; Werkhoven, R.J.; Husák, M.; Kunen, J.M.G.; Bancken, P.; Bolt, P.J.; Gasse, A.

    2013-01-01

    This work presents a comparison of various LED board technologies from thermal, mechanical and reliability point of view provided by an accurate 3-D modelling. LED boards are proposed as a possible technology replacement of FR4 LED boards used in 400 lumen retrofit SSL lamps. Presented design

  5. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions

    OpenAIRE

    Mart?nez-Valladares, Mar?a; Rojo-V?zquez, Francisco Antonio

    2016-01-01

    Background Loop-mediated isothermal amplification (LAMP) is a very specific, efficient, and rapid gene amplification procedure in which the reaction can run at a constant temperature. In the current study we have developed a LAMP assay to improve the diagnosis of Fasciola spp. in the faeces of sheep. Findings After the optimisation of the LAMP assay we have shown similar results between this technique and the standard PCR using the outer primers of the LAMP reaction. In both cases the limit o...

  6. Color homogeneity in LED spotlights

    NARCIS (Netherlands)

    Prins, C.R.

    2013-01-01

    Color variation in the light output of white LEDs is a common problem in LED lighting. We aim to design LED spotlights with a uniform color output while keeping the cost of the system low and the energy efficiency high. Therefore we design a special optic to eliminate the color variation of the LED.

  7. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  8. Topology optimisation of passive coolers for light-emitting diode lamps

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2015-01-01

    This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps. The heat sinks are cooled by the natural convection currents arising from the temperature difference between the LED lamp and the surrounding air. A large scale parallel computational....... The optimisation results show interesting features that are currently being incorporated into industrial designs for enhanced passive cooling abilities....

  9. Design of passive coolers for light-emitting diode lamps using topology optimisation

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Sigmund, Ole; Meyer, Knud Erik

    2018-01-01

    Topology optimised designs for passive cooling of light-emitting diode (LED) lamps are investigated through extensive numerical parameter studies. The designs are optimised for either horizontal or vertical orientations and are compared to a lattice-fin design as well as a simple parameter......, while maintaining low sensitivity to orientation. Furthermore, they exhibit several defining features and provide insight and general guidelines for the design of passive coolers for LED lamps....

  10. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  11. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  12. Spectrally-resolved internal quantum efficiency and carrier dynamics of semipolar (10\\bar{1}1) core-shell triangular nanostripe GaN/InGaN LEDs

    Science.gov (United States)

    Okur, Serdal; Rishinaramangalam, Ashwin K.; Mishkat-Ul-Masabih, Saadat; Nami, Mohsen; Liu, Sheng; Brener, Igal; Brueck, Steven R. J.; Feezell, Daniel F.

    2018-06-01

    We investigate the spectrally resolved internal quantum efficiency (IQE) and carrier dynamics in semipolar (10\\bar{1}1) core–shell triangular nanostripe light-emitting diodes (TLEDs) using temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) at various excitation energy densities. Using electroluminescence, photoluminescence, and cathodoluminescence measurements, we verify the origins of the broad emission spectra from the nanostructures and confirm that localized regions of high-indium-content InGaN exist along the apex of the nanostructures. Spectrally resolved IQE measurements are then performed, with the spectra integrated from 400–450 nm and 450–500 nm to obtain the IQE of the QWs mainly near the sidewalls and apex of the TLEDs, respectively. TDPL and TRPL are used to decouple the radiative and non-radiative carrier lifetimes for different regions of the emission spectra. We observe that the IQE is higher for the spectral region between 450 nm and 500 nm compared to the IQE between 400 and 450 nm. This result is in contrast to the typical observation that the IQE of planar GaN-based LEDs is lower for longer wavelengths (i.e., higher indium contents). We also observe a longer non-radiative recombination lifetime for the longer wavelength portion of the spectrum. Several explanations are proposed for the improved IQE and longer non-radiative lifetime observed near the apex of the nanostructures. The results show that nanostructures may be leveraged to design more efficient green LEDs, potentially addressing a long-standing challenge in GaN-based materials.

  13. [Study on the safety of blue light leak of LED].

    Science.gov (United States)

    Shen, Chong-Yu; Xu, Zheng; Zhao, Su-Ling; Huang, Qing-Yu

    2014-02-01

    In this paper, the blue light properties of LED illumination devices have been investigated. Against the status quo of China's LED lighting, we measured the spectrum component of LED lamps and analyzed the photobiological safety under the current domestic and international standards GB/T 20145-2006/CIE S009/E: 2002 and IEC62471: 2006 standards as well as CTL-0744_2009-laser resolution, which provides the reference to the manufacture of LED lighting lamps as well as related safety standards and laws. If the radiance intensity of blue light in LED is lower than 100 W x m(-2) x Sr(-1), there is no harm to human eyes. LEDs will not cause harm to human eyes under normal use, but we should pay attention to the protection of special populations (children), and make sure that they avoid looking at a light source for a long time. The research has found that the blue-rich lamps can affect the human rule of work and rest, and therefore, the LED lamps with color temperature below 4 000 K and color rendering index of 80 are suitable for indoor use. At the same time, the lamps with different parameters should be selected according to the different distances.

  14. Direct-current converter for gas-discharge lamps

    Science.gov (United States)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  15. Investigation of uniformity field generated from freeform lens with UV LED exposure system

    Science.gov (United States)

    Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.

    2015-03-01

    In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.

  16. Analyzing Thermal Module Developments and Trends in High-Power LED

    Directory of Open Access Journals (Sweden)

    Jung-Chang Wang

    2014-01-01

    Full Text Available The solid-state light emitting diode (SSLED has been verified as consumer-electronic products and attracts attention to indoor and outdoor lighting lamp, which has a great benefit in saving energy and environmental protection. However, LED junction temperature will influence the luminous efficiency, spectral color, life cycle, and stability. This study utilizes thermal performance experiments with the illumination-analysis method and window program (vapour chamber thermal module, VCTM V1.0 to investigate and analyze the high-power LED (Hi-LED lighting thermal module, in order to achieve the best solution of the fin parameters under the natural convection. The computing core of the VCTM program employs the theoretical thermal resistance analytical approach with iterative convergence stated in this study to obtain a numerical solution. Results showed that the best geometry of thermal module is 4.4 mm fin thickness, 9.4 mm fin pitch, and 37 mm fin height with the LED junction temperature of 58.8°C. And the experimental thermal resistances are in good agreement with the theoretical thermal resistances; calculating error between measured data and simulation results is no more than ±7%. Thus, the Hi-LED illumination lamp has high life cycle and reliability.

  17. A light diet for a giant appetite: An assessment of China's fluorescent lamp standard

    International Nuclear Information System (INIS)

    Lin Jiang

    2005-01-01

    Lighting has been one of the fastest growing electric end uses in China over the last 20 years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting needs. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8-T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through energy efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's 2003 minimum efficiency standard for linear fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and greenhouse gas emissions

  18. Anu Lamp / [vestelnud Kalju Orro

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2007-01-01

    Lavakunstikooli sisseastumisest, õppimisest, õpetajatest ja õpetamisest. Anu Lamp õppis Lavakunstikoolis 10. lennus (1978-1982). Osalenud samas lavakõne õppejõuna 18.-23. lennu ja erialaõppejõuna 20. lennu töös

  19. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  20. Model of discharge lamps with magnetic ballast

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José; Bergas Jané, Joan Gabriel

    2013-01-01

    Magnetic ballast discharge lamp modeling has been extensively studied because these lamps can be an important source of harmonics. Discharge lamp models usually represent the arc voltage by a square waveform. However, this waveform can be far from actual arc voltages, which affects the accuracy of the lamp models. This paper investigates the actual arc voltage behavior of discharge lamps from laboratory measurements and proposes a novel characterization of these voltages to reformulate the co...

  1. How to treat Alzheimer’s with new LED light technology

    DEFF Research Database (Denmark)

    Nguyen, Ngoc Mai; Petersen, Paul Michael; Broeng, Jes

    We have developed a new therapeutic LED lamp that modulates with 40 Hz the neuron responses in different parts of the brain without affecting the human vision. The lamp may in the future be used to treat patients with Alzheimer’s disease.......We have developed a new therapeutic LED lamp that modulates with 40 Hz the neuron responses in different parts of the brain without affecting the human vision. The lamp may in the future be used to treat patients with Alzheimer’s disease....

  2. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    Science.gov (United States)

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-05

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Plant growth with Led lighting systems

    International Nuclear Information System (INIS)

    Campiotti, C.A.; Bernardini, A.; Di Carlo, F.; Scoccianti, M.; Alonzo, G.; Carlino, M.; Dondi, F.; Bibbiani, C.

    2009-01-01

    Leds lighting is highly relevant for the horticultural industry. Compared to other light sources used for plant production, leds have several properties which are potentially useful in relation to horticulture. However, although LEDs technology has raised strong interest in research for extraterrestrial agriculture, current LEDs panel costs are still too high for commercial adoption in greenhouse sector, and their electrical efficacies do not compete with those of high-pressure sodium lamps, but several manufactures are working to address these issues. When LEDs become practical, their ability to based light sources specifically suitable for photosynthesis and other horticulturally relevant plant properties (i.e. low radiated heat; lighting from within the canopy) will render the narrow band spectrum of LEDs of particular interest for providing light to greenhouse horticulture. A general description of LEDs application and their technical characteristics is briefly reported. [it

  4. Standardization of UV LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  5. Software for calculation the number of lamps, luminaries and its distribution in the environment aiming the efficient use of electric power; Software para o calculo do numero de lampadas, luminarias e da distribuicao no ambiente visando o uso eficiente da energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Teofilo Miguel de; Bianchi, Inacio [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Dept. de Engenharia Eletrica. Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br, e-mail: ibianchi@feg.unesp.br

    2004-07-01

    In Brazil artificial lighting contributes with expressive value to electric power consumption. Good performance of lighting system depends of criterion fixed on the electric design conception that takes into account the information about lamps, environment and type of work carried on the local. This paper presents an easy of use and low computational requirements software used to choice lamps, fixtures and its lay-out aiming a good and efficient illumination system design. Its textual format results are displayed at the video monitor, and stored in files, and can be printed and attached to the technical memorial report. So, a presentation of several design options can be furnished quickly through the software for an economic pre-analysis of illumination design. (author)

  6. Color homogeneity in LED spotlights

    NARCIS (Netherlands)

    Prins, C.R.; Tukker, T.W.; IJzerman, W.L.; Thije Boonkkamp, ten J.H.M.

    2014-01-01

    LED is a rising technology in the field of lighting. Halogen spotlights are nowadays replaced by LED spotlights because of their energy efficiency and long lifetime. However, color variation in the light output is a common problem. Poorly designed LED spotlights tend to have yellowish or bluish

  7. An economic perspective on the reliability of lighting systems in building with highly efficient energy: A case study

    International Nuclear Information System (INIS)

    Salata, F.; Lieto Vollaro, A. de; Ferraro, A.

    2014-01-01

    Highlights: • Proper design of efficient lighting systems. • The reliability and durability of the light sources. • Maintenance of lighting systems. • Quality standards of LED lamps. • Optimum economic choice of light sources. - Abstract: The performance of lighting system must be calculated in order to determine the energy requirements of the building. In the normative [EN 12464-1] are established lighting requirements which have effects on energy needs. The European standard [EN 15193] provides guidance on that evaluation. The easiest way to comply with reduction of energy requirements leads to the replacement of traditional lamps with LED ones, but if we calculate also the reliability parameters, the economic return is not guaranteed. Using bibliographic data, we have compared lighting’s results for a museum (LED lamps versus CFL and halogen lamps). The objective function of the study is to optimize the energy consumption of lighting systems, but at the same time to assess the reliability (MTTF of the lamps) of these systems. Without accurate information about this last parameters, the right choice of the lamps cannot be done successfully

  8. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  9. Spectral Design Flexibility of LED Brings Better life

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Ou, Yiyu

    2012-01-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make...

  10. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space.

    Science.gov (United States)

    Wagner, Ines; Steinweg, Christian; Posten, Clemens

    2016-08-01

    Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Projecting LED product life based on application

    Science.gov (United States)

    Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe

    2016-09-01

    LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and

  12. Low-watt lamps seen bad in many retrofits: said to burn out pre-1978 standard ballasts

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, L.

    1982-06-21

    The standard ballasts used in early energy-efficient fluorescent lamps are vulnerable to premature burnout. Retrofitting expensive new ballasts will eliminate any savings from the lamps. GTE/Sylvania, Norelco, and Westinghouse acknowledged the problem, while General Electric had no comment. Ballasts made in the last four years have been made compatible with energy-efficient lamps. The vendors claim it is the ballast manufacturers' responsibility to inform users that their product risks early burnout. (DCK)

  13. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  14. Color adjustable LED driver design based on PWM

    Science.gov (United States)

    Du, Yiying; Yu, Caideng; Que, Longcheng; Zhou, Yun; Lv, Jian

    2012-10-01

    Light-emitting diode (LED) is a liquid cold source light source that rapidly develops in recent years. The merits of high brightness efficiency, long duration, high credibility and no pollution make it satisfy our demands for consumption and natural life, and gradually replace the traditional lamp-house-incandescent light and fluorescent light. However, because of the high cost and unstable drive circuit, the application range is restricted. To popularize the applications of the LED, we focus on improving the LED driver circuit to change this phenomenon. Basing on the traditional LED drive circuit, we adopt pre-setup constant current model and introduce pulse width modulation (PWM) control method to realize adjustable 256 level-grays display. In this paper, basing on human visual characteristics and the traditional PWM control method, we propose a new PWM control timing clock to alter the duty cycle of PWM signal to realize the simple gamma correction. Consequently, the brightness can accord with our visual characteristics.

  15. Liquid cooling applications on automotive exterior LED lighting

    Science.gov (United States)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  16. Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates

    International Nuclear Information System (INIS)

    Lee, Y.J.; Hsu, T.C.; Kuo, H.C.; Wang, S.C.; Yang, Y.L.; Yen, S.N.; Chu, Y.T.; Shen, Y.J.; Hsieh, M.H.; Jou, M.J.; Lee, B.J.

    2005-01-01

    InGaN/GaN multi-quantum wells near ultraviolet light-emitting diodes (LEDs) were fabricated on a patterned sapphire substrate (PSS) with parallel stripe along the sapphire direction by using low-pressure metal-organic chemical vapor deposition (MOCVD). The forward- and reverse-bias electrical characteristics of the stripe PSS LEDs are, respectively, similar and better than those of conventional LEDs on sapphire substrate. The output power of the epoxy package of stripe PSS LED was 20% higher than that of the conventional LEDs. The enhancement of output power is due not only to the reduction of dislocation density but also to the release of the guided light in LEDs by the geometric shape of the stripe PSS, according to the ray-tracing analysis

  17. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  18. Application of 265-nm UVC LED Lighting to Sterilization of Typical Gram Negative and Positive Bacteria

    Science.gov (United States)

    Lee, Yong Wook; Yoon, Hyung Do; Park, Jae-Hyoun; Ryu, Uh-Chan

    2018-05-01

    UV LED lightings have been displacing conventional UV lamps due to their high efficiency, long lifetime, etc. A sterilizing lighting was prepared by assembling a UV LED module composed of 265-nm UVC LEDs and a silica lens array with a driver module comprised of a driver IC controlling pulse width modulation and constant current. The silica lens array was designed and fabricated to focus UV beam and simultaneously to give a uniform light distribution over specimens. Then pasteurizing effect of the lighting was analyzed for four kinds of bacteria and one yeast which are dangerous to people with low immunity. Sterilizing tests on these germs were carried out at the both exposure distances of 10 and 100 mm for various exposure durations up to 600 s.

  19. Influence of interconnection on the long-term reliability of UV LED packages

    Science.gov (United States)

    Nieland, S.; Mitrenga, D.; Karolewski, D.; Brodersen, O.; Ortlepp, T.

    2017-02-01

    High power LEDs have conquered the mass market in recent years. Besides the main development focus to achieve higher productivity in the field of visible semiconductor LED processing, the wavelength range is further enhanced by active research and development in the direction of UVA / UVB / UVC. UVB and UVC LEDs are new and promising due to their numerous advantages. UV LEDs emit in a near range of one single emission peak with a width (FWHM) below 15 nm compared to conventional mercury discharge lamps and xenon sources, which show broad spectrums with many emission peaks over a wide range of wavelengths. Furthermore, the UV LED size is in the range of a few hundred microns and offers a high potential of significant system miniaturization. Of course, LED efficiency, lifetime and output power have to be increased [1]. Lifetime limiting issues of UVB/UVC-LED are the very high thermal stress in the chip resulting from the higher forward voltages (6-10 V @ 350 mA), the lower external quantum efficiency, below 10 % (most of the power disappears as heat), and the thermal resistance Rth of conventional LED packages being not able to dissipate these large amounts of heat for spreading. Beside the circuit boards and submounts which should have maximum thermal conductivity, the dimension of contacts as well as the interconnection of UV LED to the submount/package determinates the resolvable amount of heat [2]. In the paper different innovative interconnection techniques for UVC-LED systems will be discussed focused on the optimization of thermal conductivity in consideration of the assembly costs. Results on thermal simulation for the optimal contact dimensions and interconnections will be given. In addition, these theoretical results will be compared with results on electrical characterization as well as IR investigations on real UV LED packages in order to give recommendations for optimal UV LED assembly.

  20. The physics of fluorescent lamps: Do we understand the atomic processes?

    International Nuclear Information System (INIS)

    Lister, Graeme G.

    2002-01-01

    Numerical models have provided insight into the operation of 'standard' fluorescent lamps for more than 40 years. Recent developments in the lighting industry have led to products with much higher power loadings, for which modeling has been less successful in reproducing the experimental results. One of the potential weaknesses of the models is the absence of fundamental data to describe important phenomena in these 'highly loaded lamps'. The current state of our knowledge of available data is reviewed, together with an overview of the recently completed ALITE 1 project to reexamine the fundamental properties of fluorescent lamp operation

  1. The Use of Ultra-Violet (UV) Light Emitting Diodes (LEDS) in an Advanced Oxidation Process (AOP) with Brilliant Blue FCF as an Indicator

    Science.gov (United States)

    2015-03-26

    LEDs have the potential to replace mercury lamps in many UV processes, as well as open the door to new applications of UV light based on their unique...al. 2007, Autin, Romelot, et al. 2013). UV LEDs in AOPs While most data on AOP experimentation are based on experiments that use mercury lamps ...metaldehyde in solution. Their experiments found that similar UV light exposure levels from UV LEDs and traditional mercury lamps produced similar

  2. Effect of photocuring lamp type in the polymerization of various resins

    International Nuclear Information System (INIS)

    Lafuente, David; Blanco, Rosa; Brenes, Andrea

    2005-01-01

    Four different curing lamps were evaluated, a halogen and three LED technology with that are photocured five different resins. These four lamps have evaluated the surface hardness of the resin samples as a way of measuring the degree of polymerization. Comparing the Knoop surface hardness of the resin samples was found that the halogen light produced a greater surface hardness in all evaluated resins. (author) [es

  3. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  4. AC ignition of HID lamps

    NARCIS (Netherlands)

    Sobota, A.; Kanters, J.H.M.; Manders, F.; Veldhuizen, van E.M.; Haverlag, M.

    2010-01-01

    Our aim was to examine the starting behaviour of mid-pressure argon discharges in pin-pin (point-to-point) geometry, typically used in HID lamps. We focused our work on AC ignition of 300 and 700 mbar Ar discharges in Philips 70W standard burners. Frequency was varied between 200 kHz and 1 MHz. In

  5. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  6. 30 CFR 57.17010 - Electric lamps.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  7. 49 CFR 234.221 - Lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...

  8. Materials for incandescent and fluorescent lamps

    DEFF Research Database (Denmark)

    Thorsen, Knud Aage

    1996-01-01

    The article gives an overview of the materials systems used for incandescent lamps as well as a brief introduction to the systems used for fluorescent lamps. The materials used for incandescent lamps are doped tungsten used for the filaments, metals and alloys used for terminal and support posts......, lead wires and internal reflectors and screens as well as glasses for the envelope. The physics of bulbs and changes in bulbs during use are elucidated. The cost and energy savings and environmental benefits by replacement of incandescent lamps by fluorescent lamps are presented....

  9. Clinical and Spectrophotometric Evaluation of LED and Laser Activated Teeth Bleaching.

    Science.gov (United States)

    Lo Giudice, R; Pantaleo, G; Lizio, A; Romeo, U; Castiello, G; Spagnuolo, G; Giudice, G Lo

    2016-01-01

    Auxiliary power sources (LED and laser) are used in in-office teeth bleaching techniques to accelerate the redox reaction of the whitening gel to increase ease of use, to improve comfort and safety, and to decrease the procedure time. The aim this study is to evaluate the efficiency of the teeth whitening procedures performed with hydrogen peroxide and carbamide peroxide, LED or Laser activated. 18 patients, affected by exogenous dyschromia, were treated with a bleaching agent composed by 35% hydrogen peroxide and 10% carbamide peroxide. They were divided into two groups: in the first group the bleaching agent was activated by a LED lamp; in the second group it was activated by a Laser diode lamp. Both groups were subjected to 3 bleaching cycle of 15' each. The chromatic evaluations were performed before and after one week from the treatment, using a chromatic scale and a spectrophotometer. The mean value of pre, post bleaching and follow-up were analyzed using a T-test, with results statistically significant for Pbleaching effectiveness. All patients treated with laser activation complained an increase in dental sensitivity. The use of laser-activating systems did not improve the efficacy of bleaching.

  10. Lifetime prediction of LED lighting systems considering thermal coupling between LED sources and drivers

    DEFF Research Database (Denmark)

    Alfarog, Azzarn Orner; Qu, Xiaohui; Wang, Huai

    2017-01-01

    and accelerate the failure. In this paper, a new thermal model concerning the thermal coupling is proposed with Finite Element Method (FEM) simulation for parameter acquirement. The proposed model has a better estimation of the thermal stresses of key components in the LED lamps and therefore an improved...... separately, and then the thermal design is also optimized independently. In practice, the LED source and driver are usually compacted in a single fixture. The heat dissipated from LED source and driver will be coupled together and affect the heat transfer performance, which may degrade the whole system...

  11. Mercury risk from fluorescent lamps in China: current status and future perspective.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2012-09-01

    Energy-efficient lighting is one of the key measures for addressing electric power shortages and climate change mitigation, and fluorescent lamps are expected to dominate the lighting market in China over the next several years. This review presents an overview on the emissions and risk of mercury from fluorescent lamps during production and disposal, and discusses measures for reducing the mercury risk through solid waste management and source reduction. Fluorescent lamps produced in China used to contain relatively large amounts of mercury (up to 40 mg per lamp) due to the prevalence of liquid mercury dosing, which also released significant amounts of mercury to the environment. Upgrade of the mercury dosing technologies and manufacturing facilities had significantly reduced the mercury contents in fluorescent lamps, with most of them containing less than 10 or 5mg per lamp now. Occupational hygiene studies showed that mercury emissions occurred during fluorescent lamp production, particularly in the facilities using liquid mercury dosing, which polluted the environmental media at and surrounding the production sites and posed chronic health risk to the workers by causing neuropsychological and motor impairments. It is estimated that spent fluorescent lamps account for approximately 20% of mercury input in the MSW in China. Even though recycling of fluorescent lamps presents an important opportunity to capture the mercury they contain, it is difficult and not cost-effective at reducing the mercury risk under the broader context of mercury pollution control in China. In light of the significant mercury emissions associated with electricity generation in China, we propose that reduction of mercury emissions and risk associated with fluorescent lamps should be achieved primarily through lowering their mercury contents by the manufacturers while recycling programs should focus on elemental mercury-containing waste products instead of fluorescent lamps to recapture

  12. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude

    2015-03-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high intensity discharge lamps used today in the main energy consuming lighting sectors, industrial, commercial and outdoors, with more efficient and better light quality lamps. We show that both from the point of view of cost of ownership and carbon emissions reduction, the relevant metric is efficiency, more than the cost of lumens. Then, progress from present performance requires identification of the loss mechanisms in light emission from LEDs, and solutions competing with mainstream c-plane LEDS grown on sapphire need to be on par with these. Special attention is devoted to a discussion of the efficiency droop mechanisms, and of a recent direct measurement of Auger generated electrons which appear to be responsible for droop.

  13. The use of light-emitting diodes (LED in commercial layer production

    Directory of Open Access Journals (Sweden)

    R Borille

    2013-06-01

    Full Text Available Artificial lighting is one of the most powerful management tools available to commercial layer producers. Artificial light allows anticipating or delaying the beginning of lay, improving egg production, and optimizing feed efficiency. This study aimed at comparing the performance of commercial layers submitted to lighting using different LED colors or conventional incandescent lamps. The study was carried out in a layer house divided in isolated environments in order to prevent any influenced from the neighboring treatments. In total, 360 Isa Brown layers, with an initial age of 56 weeks, were used. The following light sources were used: blue LED, yellow LED, green LED, red LED, white LED, and 40W incandescent light. Birds in all treatment were submitted to a 17-h continuous lighting program, and were fed a corn and soybean meal-based diet. A completely randomized experimental design with subplots was applied, with 24 treatments (six light sources and four periods of three replicates. Egg production (% was significantly different (p0.05 by light source. It was concluded that the replacement of incandescent light bulbs by white and red LEDs does not cause any negative effect on the egg production of commercial layers.

  14. Effect of capacitor loss on discharging characteristics of xenon flash lamp

    International Nuclear Information System (INIS)

    Zhang Chu; Lin Dejiang; Xu Chunmei; Shen Hongbin; Chen Xiaohan

    2012-01-01

    The effect of storage capacitor's loss on the discharging characteristics of the xenon flash lamp was studied, and the xenon flash lamp discharging circuit was analyzed and improved. The capacitor can be equivalent to a series of an ideal capacitor and loss resistance. The improved formula of the xenon lamp discharging characteristics was given when actual capacitance loss is not zero, and the xenon lamp discharging current and discharging power are calculated and analyzed in detail with the increase of the capacitor loss. The results show that the increase of loss will lead to the decrease of xenon lamp discharging current and peak power and the xenon lamp flash time, and influence laser pumping efficiency. The loss will also lead to the capacitor inverse charging in LC discharging circuit; this will influence normal working of the capacitor and decrease the lift of the xenon lamp. The actual energy storage capacitor charging and discharging experiments show that the increase of capacitor loss will lead to the decrease of xenon lamp light-emitting waveform peak, shortening of the flash time and increase of the electrode sputter, thus verity, the reasonableness of theoretical analysis. In addition, the experiments show that environmental factors have very significant impact on the increase of the storage capacitor loss. (authors)

  15. Colour-rendition properties of solid-state lamps

    International Nuclear Information System (INIS)

    Zukauskas, A; Vaicekauskas, R; Shur, M S

    2010-01-01

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  16. Colour-rendition properties of solid-state lamps

    Energy Technology Data Exchange (ETDEWEB)

    Zukauskas, A [Institute of Applied Research, Vilnius University, Sauletekio al. 9, bldg. III, Vilnius, LT-10222 (Lithuania); Vaicekauskas, R [Department of Computer Science, Vilnius University, Naugarduko g. 24, Vilnius, LT-03225 (Lithuania); Shur, M S, E-mail: arturas.zukauskas@ff.vu.l [Department of Electrical, Computer, and System Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2010-09-08

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  17. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan

    2010-01-01

    Semitransparent flexible polymer solar cells were manufactured in a full roll-to-roll process under ambient conditions. After encapsulation a silver based circuit was printed onto the back side of the polymer solar cell module followed by sheeting and application of discrete components and vias...... two adjacent corners are joined via button contacts whereby the device can stand on a horizontal surface and the circuit is closed such that the battery discharges through the LEDs that illuminate the surface in front of the lamp. Several different lamps were prepared using the same solar cell...... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...

  18. Evaluation of a LED-based flatbed document scanner for radiochromic film dosimetry in transmission mode.

    Science.gov (United States)

    Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Treviño-Palacios, Carlos; Herrera-González, José Alfredo

    2018-03-01

    Flatbed scanners are the most frequently used reading instrument for radiochromic film dosimetry because its low cost, high spatial resolution, among other advantages. These scanners use a fluorescent lamp and a CCD array as light source and detector, respectively. Recently, manufacturers of flatbed scanners replaced the fluorescent lamp by light emission diodes (LED) as a light source. The goal of this work is to evaluate the performance of a commercial flatbed scanner with LED based source light for radiochromic film dosimetry. Film read out consistency, response uniformity, film-scanner sensitivity, long term stability and total dose uncertainty was evaluated. In overall, the performance of the LED flatbed scanner is comparable to that of a cold cathode fluorescent lamp (CCFL). There are important spectral differences between LED and CCFL lamps that results in a higher sensitivity of the LED scanner in the green channel. Total dose uncertainty, film response reproducibility and long-term stability of LED scanner are slightly better than those of the CCFL. However, the LED based scanner has a strong non-uniform response, up to 9%, that must be adequately corrected for radiotherapy dosimetry QA. The differences in light emission spectra between LED and CCFL lamps and its potential impact on film-scanner sensitivity suggest that the design of a dedicated flat-bed scanner with LEDs may improve sensitivity and dose uncertainty in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate.

    Science.gov (United States)

    Kim, Seong Hee; Lee, Sang Woo; Lee, Gye Min; Lee, Byung-Tae; Yun, Seong-Taek; Kim, Soon-Oh

    2016-01-01

    A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Collisional and radiative processes in fluorescent lamps

    International Nuclear Information System (INIS)

    Lister, Graeme G.

    2003-01-01

    Since electrode life is the major limiting factor in operating fluorescent lamps, many lighting companies have introduced 'electrodeless' fluorescent lamps, using inductively coupled discharges. These lamps often operate at much higher power loadings than standard lamps and numerical models have not been successful in reproducing experimental measurements in the parameter ranges of interest. A comprehensive research program was undertaken to study the fundamental physical processes of these discharges, co-funded by the Electric Power Research Institute (EPRI) and OSRAM SYLVANIA under the name of ALITE. The program included experiments and modeling of radiation transport, computations of electron-atom and atom-atom cross sections and the first comprehensive power balance studies of a highly loaded fluorescent lamp. Results from the program and their importance to the understanding of the physics of fluorescent lamps are discussed, with particular emphasis on the important collisional and radiative processes. Comparisons between results of experimental measurements and numerical models are presented

  1. Effectiveness of recycling light in ultra-bright short-arc discharge lamps.

    Science.gov (United States)

    Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M

    2007-10-17

    Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

  2. Evaluation of a loop-mediated isothermal amplification (LAMP) method for rapid on-site detection of horse meat

    NARCIS (Netherlands)

    Aartse, Aafke; Scholtens-Toma, Ingrid; A, van der Hans J.G.; Boersma-Greve, Monique M.; Prins, Theo W.; Ginkel, van Leen A.; Kok, Esther J.; Bovee, Toine F.H.

    2017-01-01

    Detection of horse DNA by loop-mediated isothermal amplification (LAMP) seems one of the most promising methods to meet the criteria of fast, robust, cost efficient, specific, and sensitive on-site detection. In the present study an assessment of the specificity and sensitivity of the LAMP horse

  3. ARGES: Radial segregation and helical instabilities in metal halide lamps studied under microgravity conditions in the international space station

    NARCIS (Netherlands)

    Kroesen, G.M.W.; Haverlag, M.; Dekkers, Erwin; Moerel, Jovita; Kluijver, de R.; Brinkgreve, P.; Groothuis, C.H.J.M.; Mullen, van der J.J.A.M.; Stoffels, W.W.; Keijser, R.; Bax, M.W.G.; van den Akker, D.; Schiffelers, G.C.S.; Kemps, P.C.M.; van den Hout, F.H.J.; Kuipers, A.

    2005-01-01

    HID lamps (High-Intensity Discharge) are gaining ground in the lighting industry because of their very high energy efficiency (up to 40%). In these lamps, which are operated in the arc regime and which are contained in a ceramic balloon, filled with argon or xenon, mercury, and salts of various rare

  4. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  5. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Science.gov (United States)

    2010-10-01

    ... listed in paragraph (c) of this section. If motor vehicle equipment (e.g., mirrors, snow plows, wrecker...: J586—Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width, March 2000; J2261 Stop Lamps and Front- and Rear-Turn Signal Lamps for Use on Motor Vehicles 2032 mm or More in Overall Width...

  6. DC Grids for Smart LED-Based Lighting: The EDISON Solution

    Directory of Open Access Journals (Sweden)

    Steffen Thielemans

    2017-09-01

    Full Text Available This paper highlights the benefits and possible drawbacks of a DC-based lighting infrastructure for powering Light Emitting Diode (LED-lamps. It also evaluates the efforts needed for integrating the so called smart lighting and other sensor/actuator based control systems, and compares existing and emerging solutions. It reviews and discusses published work in this field with special focus on the intelligent DC-based infrastructure named EDISON that is primarily dedicated to lighting, but is applicable to building automation in general. The EDISON “PowerLAN” consists of a DC-based infrastructure that offers telecommunication abilities and can be applied to lighting retrofitting scenarios for buildings. Its infrastructure allows simple and efficient powering of DC-oriented devices like LED lamps, sensors and microcontrollers, while offering a wired communication channel. This paper motivates the design choices for organizing DC lighting grids and their associated communication possibilities. It also shows how the EDISON based smart lighting solution is evolving today to include new communication technologies and to further integrate other parts of building management solutions through the OneM2M (Machine to Machine service bus.

  7. Control and Driving Methods for LED Based Intelligent Light Sources

    OpenAIRE

    Beczkowski, Szymon

    2012-01-01

    High power light-emitting diodes allow the creation of luminaires capable of generating saturated colour light at very high efficacies. Contrary to traditional light sources like incandescent and high-intensity discharge lamps, where colour is generated using filters, LEDs use additive light mixing, where the intensity of each primary colour diode has to be adjusted to the needed intensity to generate specified colour. The function of LED driver is to supply the diode with power needed to ach...

  8. Discharge lamp with reflective jacket

    Science.gov (United States)

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  9. Explanation of low efficiency droop in semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    OpenAIRE

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew A.; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel F.

    2017-01-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enab...

  10. Numerical study on xenon positive column discharges of mercury-free lamp

    International Nuclear Information System (INIS)

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  11. Changing lamp type and position to improve lighting quality

    Science.gov (United States)

    Anizar; Syahputri, K.; Sari, RM; Rizkya, I.; Hardianti, DA

    2018-03-01

    This study investigates the lighting quality on the production floor in a cigarette paper industry by measuring illumination level and luminance. Cigarette paper inspection is performed manually by operators, and the criteria of defects are the cigarette paper has a hole, is rough and dirty. Operators complain that the room is pretty dark, which makes them unable to see clearly the cigarette paper defect. The government of Indonesia Health Ministerial Decree No 1405 The Year 2002 states that illumination level for continuous manual labor is 200 lux. Illumination level is measured for four days at 08.00, 10.00, 12.30, and 14.00 o’clock with 4 in 1 environmental meter. From the measurement result, it is found that using 7 LED lamps of 60 Watts can produce average illumination level of 70 lux. Low illuminance is caused by illumination level that does not meet the need 0f 569.759 lumen. Alternatives that can be used to increase lumen number are changing lamp type and position. One of the possibilities is using 24 LED of 138 Watts set 5.7 meters apart from one another can meet this demand. Another is using 5 LED of 150 Watts installed above the field of work.

  12. Color Shift Modeling of Light-Emitting Diode Lamps in Step-Loaded Stress Testing

    NARCIS (Netherlands)

    Cai, Miao; Yang, Daoguo; Huang, J.; Zhang, Maofen; Chen, Xianping; Liang, Caihang; Koh, S.W.; Zhang, G.Q.

    2017-01-01

    The color coordinate shift of light-emitting diode (LED) lamps is investigated by running three stress-loaded testing methods, namely step-up stress accelerated degradation testing, step-down stress accelerated degradation testing, and constant stress accelerated degradation testing. A power

  13. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  14. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    International Nuclear Information System (INIS)

    De Vos, Marc; Torah, Russel; Tudor, John

    2016-01-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps. (paper)

  15. LED Uniform Illumination Using Double Linear Fresnel Lenses for Energy Saving

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-12-01

    Full Text Available We present a linear Fresnel lens design for light-emitting diode (LED uniform illumination applications. The LED source is an array of LEDs. An array of collimating lens is applied to collimate output from the LED array. Two linear Fresnel lenses are used to redistribute the collimated beam along two dimensions in the illumination area. Collimating lens and linear Fresnel lens surfaces are calculated by geometrical optics and nonimaging optics. The collimated beam output from the collimating lens array is divided into many fragments. Each fragment is refracted by a segment of Fresnel lens and distributed over the illumination area, so that the total beam can be distributed to the illumination target uniformly. The simulation results show that this design has a compact structure, high optical efficiency of 82% and good uniformity of 76.9%. Some consideration of the energy savings and optical performance are discussed by comparison with other typical light sources. The results show that our proposed LED lighting system can reduce energy consumption five-times in comparison to using a conventional fluorescent lamp. Our research is a strong candidate for low cost, energy savings for indoor and outdoor lighting applications.

  16. New illuminations approaches with single-use micro LEDs endoilluminators for the pars plana vitrectomy

    Science.gov (United States)

    Koelbl, Philipp Simon; Koch, Frank H. J.; Lingenfelder, Christian; Hessling, Martin

    2018-02-01

    The illumination of the intraocular space during pars plana vitrectomy always bears the risk of retina damage by irradiation. Conventional illumination systems consist of an external light source and an optical fiber to transfer the visible light (radiation) into the eye. Often xenon arc and halogen lamps are employed for this application with some disadvantageous properties like high phototoxicity and low efficiency. Therefore, we propose to generate the light directly within the eye by inserting a white micro LED with a diameter of 0.6 mm. The LED offers a luminous flux of 0.6 lm of white light with a blue peak @ 450 nm and a yellow peak @ 555 nm. The presented prototypes fit through a standard 23 G trocar and are the first intraocular light sources worldwide. Two different single-use approaches have already been developed: a handguided and a chandelier device. The hand-guided applicator enables a directly navigation and illumination up to a working distance of 6 mm. The chandelier device is much smaller and does not need an active navigation of the light cone. The brightness and homogeneity of the illumination of these LED devices have been successfully tested on porcine eyes. Presented measurements and calculations prove that even for high LED currents and small distances to the retina these intraocular micro LED devices expose the retina to less hazard than conventional illumination sources like fiber based xenon systems. Even under the worst circumstances application durations of 180 hours would be justifiable.

  17. Design for Manufacture and Assembly for Product Development (Case study : Emergency Lamp)

    Science.gov (United States)

    Ngatilah, Y.; Pulansari, F.; Ernawati, Dira; Pujiastuti, C.; Parwati, C. I.; Prasetyo, B.

    2018-01-01

    Community needs that are not primary but important in everyday life are lights for lighting. State electricity company (PLN) is experiencing limitations in supplying electricity for this puIDRose. Therefore emergency lights (emergency lights) are already marketed in the community, which limited function only illuminate a very limited space. Therefore we developed the design of energy saving lamps using “Light Emitting Diode” (LED) which can illuminate the whole house as well as functioning as mobile phone charger (HP). The method used is Design for Manufacture and Assembly (DFMA), with the result of design development The percentage increase in assembly efficiency (E) is 0.01071 - 0.00645 = 0.00426 or = 39.76%. The decrease in material costs is IDR 234,000 - IDR 214,000 = IDR 20,000 or = 8.54% .Development design is received because of more assembly efficiency than the initial design. Power usage on previous products with series and designs of the original product can last only 4-5 hours non-stop, while the development of the design can survive 9-10 hours 2x more energy efficient.

  18. Cooling analysis of a light emitting diode automotive fog lamp

    Directory of Open Access Journals (Sweden)

    Zadravec Matej

    2017-01-01

    Full Text Available Efficiency of cooling fins inside of a light emitting diode fog lamp is studied using computational fluid dynamics. Diffusion in heat sink, natural convection and radiation are the main principles of the simulated heat transfer. The Navier-Stokes equations were solved by the computational fluid dynamics code, including Monte Carlo radiation model and no additional turbulence model was needed. The numerical simulation is tested using the existing lamp geometry and temperature measurements. The agreement is excellent inside of few degrees at all measured points. The main objective of the article is to determine the cooling effect of various heat sink parts. Based on performed simulations, some heat sink parts are found to be very ineffective. The geometry and heat sink modifications are proposed. While radiation influence is significant, compressible effects are found to be minor.

  19. A new approach to the evaluation of the discharge parameters of the electrodeless fluorescent lamps

    International Nuclear Information System (INIS)

    Statnic, Eugen; Tanach, Valentin

    2004-01-01

    A new model was developed for the characterization and quantification of the 'inaccessible' discharge parameters in closed tube high power electrodeless fluorescent lamps. The results obtained applying the model are verifiable by means of a simple comparison of the primary equivalent resistance and reactance as a result of the measured V 1 , I 1 , ψ 1 with the equivalent primary resistance and reactance inferred from the proposed model. The results are in good agreement at all operating lamp power levels. What is unexpected is the capacitive behaviour of the inductive coupled plasma at lower powers. The investigation method is suitable for the optimization of high power electrodeless lamps with a long discharge path operated at low frequencies, in order to improve the efficiency and the system stability, especially if the lamp has to be dimmed

  20. Ultraviolet Radiation Emissions and Illuminance in Different Brands of Compact Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Shahram Safari

    2015-01-01

    Full Text Available Introduction. Replacing incandescent lamps with compact fluorescent lamps (CFLs, which are three to six times more efficient, is one of the easiest methods to achieve energy efficiency. The present study aimed to evaluate relationships between UV emissions radiated and illuminance CFLs. Material and Methods. This pilot study was conducted on 16 single envelope CFLs. The illuminance and UV irradiance of various types of CFLs are measured on a three-meter long optical bench, using a calibrated lux meter and UV meter, and measurement was done in 10, 25, 50, 100, 150, and 200 cm, in three angles, including 0°, 45°, and 90°, at the ages of 0, 100, and 2000 hours. Result. UVC irradiance was not observed at the distance of 10 cm in all of lamps. The lowest value of UVB irradiance was recorded in Pars Khazar lamp, while the highest value was recorded in Etehad lamps. UVR values measured at different times showed negligible differences; the highest asset value was detected in zero times. One way ANOVA indicated that relationships between UVA irradiance and illuminance were significant (P<0.05. Conclusion. UVB irradiance in most of the lamp in 10 and 25 cm was more than occupational exposure and UVA except for the fact that Pars Khazar 60 watts and Nama Noor 60 watts were less than occupational exposure.

  1. A novel greenish yellow-orange red Ba3Y4O9:Bi(3+),Eu(3+) phosphor with efficient energy transfer for UV-LEDs.

    Science.gov (United States)

    Li, Kai; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2015-12-21

    A series of novel color-tunable Ba3Y4O9:Bi(3+),Eu(3+) phosphors were prepared for the first time via the high-temperature solid-state reaction route. The effect of Bi(3+) concentration on the emission intensity of Ba3Y4O9:Bi(3+) was investigated. The emission spectra of the Ba3Y4O9:Bi(3+),Eu(3+) phosphors present both a greenish yellow band of Bi(3+) emission centered at 523 nm, and many characteristic emission lines of Eu(3+), derived from the allowed (3)P1-(1)S0 transition of the Bi(3+) ion and the (5)D0-(7)FJ transition of the Eu(3+) ion, respectively. The energy transfer phenomenon from Bi(3+) to Eu(3+) ions is observed under UV excitation in Bi(3+), Eu(3+) co-doped Ba3Y4O9 phosphors, and their transfer mechanism is demonstrated to be a resonant type via dipole-quadrupole interaction. The critical distance between Bi(3+) and Eu(3+) for the energy transfer effect was calculated via the concentration quenching and spectral overlap methods. Results show that color tuning from greenish yellow to orange red can be realized by adjusting the mole ratio of Bi(3+) and Eu(3+) concentrations based on the principle of energy transfer. Moreover, temperature-dependent PL properties, CIE chromaticity coordinates and quantum yields of Ba3Y4O9:Bi(3+),Eu(3+) phosphors were also supplied. It is illustrated that the as-prepared Ba3Y4O9:Bi(3+),Eu(3+) phosphors can be potential candidates for color-tunable phosphors applied in UV-pumped LEDs.

  2. Color Shift Modeling of Light-Emitting Diode Lamps in Step-Loaded Stress Testing

    OpenAIRE

    Cai, Miao; Yang, Daoguo; Huang, J.; Zhang, Maofen; Chen, Xianping; Liang, Caihang; Koh, S.W.; Zhang, G.Q.

    2017-01-01

    The color coordinate shift of light-emitting diode (LED) lamps is investigated by running three stress-loaded testing methods, namely step-up stress accelerated degradation testing, step-down stress accelerated degradation testing, and constant stress accelerated degradation testing. A power model is proposed as the statistical model of the color shift (CS) process of LED products. Consequently, a CS mechanism constant is obtained for detecting the consistency of CS mechanisms among various s...

  3. Development of Dy3+ activated K2MgP2O7 pyrophosphate phosphor for energy saving lamp

    International Nuclear Information System (INIS)

    Kohale, R.L.; Dhoble, S.J.

    2013-01-01

    Present work reports, synthesis of Dy 3+ activated K 2 MgP 2 O 7 pyrophosphate phosphor by using modified solid state diffusion that has been studied for its X-ray diffraction pattern (XRD). Furthermore, the chromaticity coordinate values were estimated from emission spectra of K 2 MgP 2 O 7 . The photoluminescence emission spectra of the phosphors having an excitation at around 351 nm (mercury free) showed two distinguishing bands centered at around 485 nm (blue) and 575 nm (yellow) corresponding to 4 F 9/2 → 6 H 15/2 and 4 F9 /2 → 6 H 13/2 transitions of Dy 3+ , respectively. These phosphors have strong absorption in the near UV region. K 2 MgP 2 O 7 pyrophosphate phosphor is suitable for color converter using UV light as the primary light source, which can be used as a blue/yellow phosphor excited by n-UV LED chip and mixed with other color emission phosphors to obtain white light. The 300–400 nm is Hg-free excitation (mercury excitation is 85% 254 nm wavelength of light and 15% other wavelengths), which is characteristic of solid-state lighting phosphors. Hence PL emission in trivalent dysprosium may be efficient photoluminescent materials for solid-state lighting phosphors. The intact study reveals that the present phosphor have promising applications in the lamp industry especially for solid state lighting (mercury-free excited lamp phosphor) and white light LED. -- Highlights: ► Dy 3+ activated pyrophosphate based phosphor prepared by modified solid state diffusion. ► PL emission spectrum of Dy 3+ ion under 351 nm excitation (Hg-free). ► PL emission at 485 nm (blue), 575 nm (yellow) emission. ► K 2 MgP 2 O 7 : Dy 3+ is expected to be a potential candidate for application in n-UV white LEDs and solid state lighting

  4. Background study on increasing recycling of end-of-life mercury-containing lamps from residential and commercial sources in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hilkene, C. [Hilkene International Policy, Toronto, ON (Canada); Friesen, K. [Pollution Probe, Toronto, ON (Canada)

    2005-10-31

    The state of recycling of mercury-containing lamps in Canada was studied. Developing an efficient recovery and recycling infrastructure for mercury-containing lamps offers several benefits such as environmental protection from releases of mercury; displacing virgin materials required for production of new lamps; and increasing the sustainability associated with the use of these energy efficient products. This study summarized international experience with respect to recovery and recycling of mercury-containing lamps. It also summarized the material composition of these lamps, and provided an inventory of Canadian fluorescent lamp recycling and recovery initiatives. It provided estimates of quantities of end-of-life bulbs and tubes being disposed of in Canada; quantities of metals and other materials recovered through lamp recycling; the tonnage of metals and other materials being lost to disposal systems and energy savings and associated greenhouse gas emission reductions from substitution of recycled fluorescent lamp materials for virgin materials in manufacturing operations. The report also identified other environmental benefits arising from current or potential recycling and recovery initiatives as well as recovery opportunities and barriers to fluorescent lamp recovery and recycling initiatives. Last, the report presented options for stimulating greater recovery and recycling of mercury-containing lamps and presented critical factors for a meaningful cost benefit analysis on enhanced recovery. 76 refs., 16 tabs., 2 figs., 6 appendices.

  5. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  6. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  7. Quality and economic feasibility of T5 lamp adapters; Qualitaet und Wirtschaftlichkeit von T5-Lampenadaptern - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blattner, P.; Lehmann, H.; Dudli, H.

    2008-02-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) deals with lamp adapters that can be used to modify existing lighting systems in order to allow the use of lamps with lower electrical consumption. In addition, the conventional ballast of such light fittings is replaced with an electronic ballast. This report summarises the results of a study on the quality of lamp adapters, mainly with respect to their photometrical parameters. The measurement equipment used and numerical simulations made are described and discussed. Based on the results of measurements made, various conclusions are drawn on the luminous flux and efficiency of the lamps and the influence of reflectors. Recommendations are made and the performance of two lamp adapter products is commented on. Recommendations for the manufacturers of such adapters are made.

  8. White LED motorcycle headlamp design

    Science.gov (United States)

    Sun, Wen-Shing

    2015-09-01

    The motorcycle headlamp is composed of a white LED module, an elliptical reflector, a parabolic reflector and a toric lens. We use non-sequential ray to improve the optical efficiency of the compound reflectors. Using the toric lens can meet ECE_113 regulation and obtain a good uniformity.

  9. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    International Nuclear Information System (INIS)

    Bogdanov, E A; Kudryavtsev, A A; Arslanbekov, R R; Kolobov, V I

    2004-01-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage

  10. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  11. Photosynthesis efficiency for different wavelengths; Fotosynthese-efficiency bij verschillende golflengten

    Energy Technology Data Exchange (ETDEWEB)

    Snel, J.F.H.; Meinen, E.; Bruins, M.A.; Van Ieperen, W.; Hogewoning, S.W.; Marcelis, L.F.M. [Wageningen UR Glastuinbouw, Wageningen (Netherlands)

    2012-04-15

    LED lighting has recently been introduced into Dutch horticulture. LED development so far indicates that in the near future LED's will be more energy efficient than high pressure sodium lamps. Crop light interception and photosynthesis efficiency are wavelength dependent. Therefore, LED colours for maximum crop photosynthesis, growth and development should be identified. Wageningen UR has investigated light interception and photosynthesis at different wavelengths for tomato, cucumber and rose. Measuring protocols and equipment were developed for leaf photosynthesis measurements in the laboratory and in greenhouses. A crop simulation model was used for up-scaling the leaf level results to crop level photosynthesis. For the vegetable crops the photosynthesis spectra are very similar to the generalised photosynthesis spectrum. Red light is most efficient for leaf photosynthesis. Light from red (ca. 645nm) LED's was maximally 13% more efficient than High Pressure Sodium light. For reddish leaves of the rose cultivar Prestige, red LED light was up to 35% more efficient. These figures apply to the momentary efficiency of leaf photosynthesis at 100 {mu}mol.m{sup -2}.s{sup -1} (PAR) and suggest that use of red light can lead to higher photosynthesis, especially for certain rose cultivars [Dutch] LED verlichting heeft zijn intrede gedaan in de Nederlandse glastuinbouw. De LED ontwikkeling laat zien dat in de nabije toekomst LED's efficiënter zijn dan SON-T verlichting. Lichtonderschepping en fotosynthese efficiëntie zijn afhankelijk van de kleur van het licht. Voor optimale fotosynthese, groei en ontwikkeling zouden de beste LED kleuren uitgezocht moeten worden. Wageningen UR heeft lichtonderschepping en fotosynthese bij verschillende lichtkleuren onderzocht bij tomaat, komkommer en roos. Protocollen en apparatuur werden ontwikkeld voor meting van bladfotosynthese en lichtonderschepping in het laboratorium en in de kas. Met een gewassimulatiemodel werd de

  12. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  13. Luminescence Studies on Lamp Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G

    1998-07-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl{sub 11}O{sub 17}(Eu,Tb) and calcium halophosphate Ca{sub 5}(PO{sub 4}){sub 3}(F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu{sup 2+} and Tb{sup 3+} dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu{sup 2+} dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10{sup 2} Gy and may be useful in the case of radiation accidents. (author)

  14. Luminescence Studies on Lamp Phosphors

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G.

    1998-01-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl 11 O 17 (Eu,Tb) and calcium halophosphate Ca 5 (PO 4 ) 3 (F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu 2+ and Tb 3+ dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu 2+ dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10 2 Gy and may be useful in the case of radiation accidents. (author)

  15. Novel rare-earth doped silicon-nitride based materials as promising conversion phosphors for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2006-01-01

    Lighting world will change drastically due to the replacement of the traditional TL, PL and incandescent lamps by white LEDs. Advantageous features of white LEDs are a longer lifetime, lower energy consumption and extended possibilities for integration and miniaturisation. A white LED can be

  16. LED-roulette : LED's vervangen balletje

    NARCIS (Netherlands)

    Goossens, P.

    2007-01-01

    Iedereen waagt wel eens een gokje, in een loterij of misschien ook in een casino. Wie droomt er immers niet van om op een gemakkelijke manier rijk te worden? Met de hier beschreven LED-roulette valt weliswaar weinig te winnen, maar het is wel een uitstekende manier om het roulettespel thuis te

  17. Design of a cylindrical LED substrate without radiator

    Science.gov (United States)

    Tang, Fan; Guo, Zhenning

    2017-12-01

    To reduce the weight and production costs of light-emitting diode (LED) lamps, we applied the principle of the chimney effect to design a cylindrical LED substrate without a radiator. We built a 3D model by using Solidworks software and applied the flow simulation plug-in to conduct model simulation, thereby optimizing the heat source distribution and substrate thickness. The results indicate that the design achieved optimal cooling with a substrate with an upper extension length of 35 mm, a lower extension length of 8 mm, and a thickness of 1 mm. For a substrate of those dimensions, the highest LED chip temperature was 64.78 °C, the weight of the substrate was 35.09 g, and R jb = 7.00 K/W. If the substrate is powered at 8, 10, and 12 W, its temperature meets LED safety requirements. In physical tests, the highest temperature for a physical 8 W cylindrical LED substrate was 66 °C, which differed by only 1.22 °C from the simulation results, verifying the validity of the simulation. The designed cylindrical LED substrate can be used in high-power LED lamps that do not require radiators. This design is not only excellent for heat dissipation, but also for its low weight, low cost, and simplicity of manufacture.

  18. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  19. Plant growth regulation by the light of LEDs; LED ko wo tsukatta shokubutsu saibai gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H. [Mitsubishi Chemical Co., Tokyo (Japan). Yokohama Research Center

    1996-03-01

    Light Emitting Diode (LED) has not only an excellent display function for the luminescent device but also a superior feature without other lamps as light source for plant growth. It was National Aeronautics and Space Administration (NASA) to find out such merit for this light source for plant growth and try at first to use for plant growth at the space. They began to examine the LED application to the light source for the plant growth at the space since a stage at high cost of the LED, to develop some researches centered at cultivation of lettuce, wheat, and others. Finding out future possibility of cost-down of the LEDs on the cost/performance and large merits of the LEDs for control of the plant growth and plant physiology, authors have conducted some cultivation experiments of the plants using the LEDs for light source some years ago. In this papers, characterizations, actual possibility, and future developments of the LEDs for the light sources of the plant growth, are introduced. 5 refs., 4 figs.

  20. Signal processing for LED lighting systems : illumination rendering and sensing

    NARCIS (Netherlands)

    Yang, H.

    2010-01-01

    Solid state lighting, employing high brightness light emitting diodes (LEDs), is becoming increasingly widely used. The advantages of LEDs include high radiative efficiency, long lifetime, limited heat generation and superior tolerance to humidity. Another important advantage of LED lighting systems

  1. Optimized positioning of autonomous surgical lamps

    Science.gov (United States)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  2. High-performance LED luminaire for sports hall

    Science.gov (United States)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  3. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  4. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    Science.gov (United States)

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  5. Energy savings by implementation of light quality LED lighting. Final report; Implementering af energibesparelser ved benyttelse af hoejkvalitets LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Thorseth, A.; Poulsen, Peter

    2010-03-15

    The project developed two new LED light sources and systems, emphasising the potential of LED technology for energy savings and lighting quality. A LED light source for display case lighting, replacing incandescent lamps, was successfully installed in the Treasury at Rosenborg Castle in Copenhagen, Denmark, and it was decided to extend the solution in 2010. Electricity savings of 74% were achieved. LED light sources replacing halogen bulbs in cooker hoods reduce electricity consumption by 69% and ensure even lighting of the entire working surface with about 500 lux at all cooking areas. Furthermore, a new LED optics system was patented. (ln)

  6. Assessing the use of Low Voltage UV-light Emitting Miniature LEDs for Marine Biofouling Control

    Science.gov (United States)

    2016-07-01

    of that required to drive traditional UV mercury lamps . Secondly, given their small size and relatively low cost, UV LEDs provide ease of maintenance...UNCLASSIFIED UNCLASSIFIED Assessing the use of Low Voltage UV -light Emitting Miniature LEDs for Marine Biofouling Control Richard...settling organisms. The introduction of miniature UV light emitting diodes ( LEDs ) as a light source enables them to be embedded into thin, flexible

  7. Dansk LED - Museumsbelysning

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Thorseth, Anders

    Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen.......Projektet har til formål at anvende dansk forskning inden for optik og lys til at realisere innovative energieffektive LED lyssystemer til museumsbranchen....

  8. Shining a light on LAMP assays--a comparison of LAMP visualization methods including the novel use of berberine.

    Science.gov (United States)

    Fischbach, Jens; Xander, Nina Carolin; Frohme, Marcus; Glökler, Jörn Felix

    2015-04-01

    The need for simple and effective assays for detecting nucleic acids by isothermal amplification reactions has led to a great variety of end point and real-time monitoring methods. Here we tested direct and indirect methods to visualize the amplification of potato spindle tuber viroid (PSTVd) by loop-mediated isothermal amplification (LAMP) and compared features important for one-pot in-field applications. We compared the performance of magnesium pyrophosphate, hydroxynaphthol blue (HNB), calcein, SYBR Green I, EvaGreen, and berberine. All assays could be used to distinguish between positive and negative samples in visible or UV light. Precipitation of magnesium-pyrophosphate resulted in a turbid reaction solution. The use of HNB resulted in a color change from violet to blue, whereas calcein induced a change from orange to yellow-green. We also investigated berberine as a nucleic acid-specific dye that emits a fluorescence signal under UV light after a positive LAMP reaction. It has a comparable sensitivity to SYBR Green I and EvaGreen. Based on our results, an optimal detection method can be chosen easily for isothermal real-time or end point screening applications.

  9. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions.

    Science.gov (United States)

    Martínez-Valladares, María; Rojo-Vázquez, Francisco Antonio

    2016-02-05

    Loop-mediated isothermal amplification (LAMP) is a very specific, efficient, and rapid gene amplification procedure in which the reaction can run at a constant temperature. In the current study we have developed a LAMP assay to improve the diagnosis of Fasciola spp. in the faeces of sheep. After the optimisation of the LAMP assay we have shown similar results between this technique and the standard PCR using the outer primers of the LAMP reaction. In both cases the limit of detection was 10 pg; also, the diagnosis of fasciolosis was confirmed during the first week post-infection in experimental infected sheep by both techniques. In eight naturally infected sheep, the infection with F. hepatica was confirmed in all animals before a treatment with triclabendazole and on day 30 post treatment in two sheep using the LAMP assay; however, when we carried out the standard PCR with the outer primers, the results before treatment were the same but on day 30 post-treatment the infection was only confirmed in one out of the two sheep. On the other hand, the standard PCR took around 3 h to obtain a result, comparing with 1 h and 10 min for the LAMP assay. The LAMP assay described here could be a good alternative to conventional diagnostic methods to detect F. hepatica in faeces since it solves the drawbacks of the standard PCR.

  10. Energy-Saving Automation and LED Lighting Systems in Industry, Transport, Building and Municipal Sector

    Directory of Open Access Journals (Sweden)

    V.P. Klimenko

    2013-09-01

    Full Text Available Protocol of diverse technological data unification providing the ability to scale with a minimal increase in auxiliary information volume that allows its usage, ranging from the simplest microcontrollers to integration of automation equipment in global systems was designed for industrial automation systems. Basic technical solutions implemented in development of LED lighting systems of salon subway cars, including a schematic diagram of the lamp, the main technical characteristics of the lamp power supply, the peculiarities of developed design of LED modules are described.

  11. Integrity Monitoring of Mercury Discharge Lamps

    Science.gov (United States)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  12. Excimer lamp pumped by a triggered discharge

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Bollanti, S.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Renieri, A.; Schina, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Clementi, G.; Muzzi, F.; Zheng, C.E. [EL.EN. (Electronic Engineering), Florence (Italy)

    1996-11-01

    Radiation characteristics and discharge performances of an excimer lamp are described. The discharge of the HCl/Xe gas mixture at an atmospheric pressure, occurring near the quartz tube wall, is initiated by a trigger wire. A maximum total UV energy of about 0.4 J in a (0.8-0.9) {mu}s pulse, radiated from a 10 cm discharge length, is obtained with a total discharge input energy of 8 J. Excimer lamps are the preferred choice for medical and material processing irradiations, when the monochromaticity or coherence of UV light is not required, due to their low cost, reliability and easy maintenance.

  13. Development of a LED based standard for luminous flux

    Science.gov (United States)

    Sardinha, André; Ázara, Ivo; Torres, Miguel; Menegotto, Thiago; Grieneisen, Hans Peter; Borghi, Giovanna; Couceiro, Iakyra; Zim, Alexandre; Muller, Filipe

    2018-03-01

    Incandescent lamps, simple artifacts with radiation spectrum very similar to a black-body emitter, are traditional standards in photometry. Nowadays LEDs are broadly used in lighting, with great variety of spectra, and it is convenient to use standards for photometry with spectral distribution similar to that of the measured artifact. Research and development of such standards occur in several National Metrology Institutes. In Brazil, Inmetro is working on a practical solution for providing a LED based standard to be used for luminous flux measurements in the field of general lighting. This paper shows the measurements made for the developing of a prototype, that in sequence will be characterized in photometric quantities.

  14. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light

    Science.gov (United States)

    Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.

    2017-10-01

    For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.

  15. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  16. Growth of GaN nanostructures with polar and semipolar orientations for the fabrication of UV LEDs

    Science.gov (United States)

    Brault, Julien; Damilano, Benjamin; Courville, Aimeric; Leroux, Mathieu; Kahouli, Abdelkarim; Korytov, Maxim; Vennéguès, Philippe; Randazzo, Gaetano; Chenot, Sébastien; Vinter, Borge; De Mierry, Philippe; Massies, Jean; Rosales, Daniel; Bretagnon, Thierry; Gil, Bernard

    2014-03-01

    (Al,Ga)N light emitting diodes (LEDs), emitting over a large spectral range from 360 nm (GaN) down to 210 nm (AlN), have been successfully fabricated over the last decade. Clear advantages compared to the traditional mercury lamp technology (e.g. compactness, low-power operation, lifetime) have been demonstrated. However, LED efficiencies still need to be improved. The main problems are related to the structural quality and the p-type doping efficiency of (Al,Ga)N. Among the current approaches, GaN nanostructures, which confine carriers along both the growth direction and the growth plane, are seen as a solution for improving the radiative recombination efficiency by strongly reducing the impact of surrounding defects. Our approach, based on a 2D - 3D growth mode transition in molecular beam epitaxy, can lead to the spontaneous formation of GaN nanostructures on (Al,Ga)N over a broad range of Al compositions. Furthermore, the versatility of the process makes it possible to fabricate nanostructures on both (0001) oriented "polar" and (11 2 2) oriented "semipolar" materials. We show that the change in the crystal orientation has a strong impact on the morphological and optical properties of the nanostructures. The influence of growth conditions are also investigated by combining microscopy (SEM, TEM) and photoluminescence techniques. Finally, their potential as UV emitters will be discussed and the performances of GaN / (Al,Ga)N nanostructure-based LED demonstrators are presented.

  17. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent lamp. (a) Identification. A Wood's fluorescent lamp is a device intended for medical purposes to detect...

  18. Circular, explosion-proof lamp provides uniform illumination

    Science.gov (United States)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  19. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane.

    Science.gov (United States)

    Chandra, Amaresh; Keizerweerd, Amber T; Que, Youxiong; Grisham, Michael P

    2015-08-01

    Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials (setts) are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of C. falcatum. C. falcatum genomic DNA was isolated from pure mycelium culture and infected tissues. Four sets of primers corresponding to a unique DNA sequence specific to C. falcatum were designed. Specificity of the LAMP test was checked with DNA of another fungal pathogen of sugarcane, Puccinia melanocephala, as well as two closely-related species, Colletotrichum fructivorum and Colletotrichum acutatum. No reaction was found with the three pathogens. When C. falcatum DNA from pure culture was used in a detection limit analysis, sensitivity of the LAMP method was observed to be ten times higher than that of conventional PCR; however, sensitivity was only 5 times higher when DNA from C. falcatum-infected tissues was used. Using the LAMP assay, C. falcatum DNA is amplified with high specificity, efficiency, and rapidity under isothermal conditions. Moreover, visual judgment of color change in <1 h without further post-amplification processing makes the LAMP method convenient, economical, and useful in diagnostic laboratories and the field.

  20. Light quality and efficiency of consumer grade solid state lighting products

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders

    2013-01-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality...... of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been...... on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light...

  1. Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food.

    Science.gov (United States)

    Sheu, Shyang-Chwen; Tsou, Po-Chuan; Lien, Yi-Yang; Lee, Meng-Shiou

    2018-08-15

    Peanut is a widely and common used in many cuisines around the world. However, peanut is also one of the most important food allergen for causing anaphylactic reaction. To prevent allergic reaction, the best way is to avoid the food allergen or food containing allergic ingredient such as peanut before food consuming. Thus, to efficient and precisely detect the allergic ingredient, peanut or related product, is essential and required for maintain consumer's health or their interest. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for the detection of allergic peanut using specifically designed primer sets. Two sets of the specific LAMP primers respectively targeted the internal transcribed sequence 1 (ITS1) of nuclear ribosomal DNA sequence regions and the ara h1 gene sequence of Arachia hypogeae (peanut) were used to address the application of LAMP for detecting peanut in processed food or diet. The results demonstrated that the identification of peanut using the newly designed primers for ITS 1 sequence is more sensitive rather than primers for sequence of Ara h1 gene when performing LAMP assay. Besides, the sensitivity of LAMP for detecting peanut is also higher than the traditional PCR method. These LAMP primers sets showed high specificity for the identification of the peanut and had no cross-reaction to other species of nut including walnut, hazelnut, almonds, cashew and macadamia nut. Moreover, when minimal 0.1% peanuts were mixed with other nuts ingredients at different ratios, no any cross-reactivity was evident during performing LAMP. Finally, genomic DNAs extracted from boiled and steamed peanut were used as templates; the detection of peanut by LAMP was not affected and reproducible. As to this established LAMP herein, not only can peanut ingredients be detected but commercial foods containing peanut can also be identified. This assay will be useful and potential for the rapid detection of peanut in practical food

  2. Use of germicidal lamps in the disinfection of sanitary wastewater

    Directory of Open Access Journals (Sweden)

    Patrícia Bilotta

    2012-04-01

    Full Text Available The objective of this study was to investigate the efficiency of germicidal lamps in the tertiary treatment of sewage to control pathogens. The performance of the photochemical reactor used in the tests was monitored by microbiological analyses to quantify E. coli (bacteria indicator, C. perfringens (protozoa indicator, coliphages (virus indicator. The experiments were performed with effluent from an UASB reactor installed at the WTP- USP São Carlos campus subjected to an aerated submerged biological filter and a photochemical reactor with radiation UV at 254 nm. The results showed that the indicators coliphages and E. coli showed the least resistance to UV radiation reaching removal from 1.70 to 3.90 log and 1.60 to 5.20 log, respectively. On the other hand, the indicator C. perfringens was more resistant to the effect of germicidal lamps reaching values between 0.0 (no inactivation and 1.30 log. For SST concentrations greater than 100.0 mg.L-1, the effect of the germicidal lamps became less pronounced. However, in practice it was possible to notice significant results in tests with TSS concentrations of 135.0 mg.L-1. The experimental approach proved the usefulness of the combined method for inactivating pathogens commonly found in domestic sewage. Besides meeting the standards established by the Brazilian regulation, the final effluent is in agreement with the guidelines defined by WHO. This allows the reuse of the final effluent for unrestricted irrigation, although complementary examination must be performed.

  3. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  4. Development of high-performance solar LED lighting system

    International Nuclear Information System (INIS)

    Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring.

  5. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  6. Scanning For Hotspots In Lamp Filaments

    Science.gov (United States)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  7. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  8. 100 years of Wood's lamp revised

    NARCIS (Netherlands)

    Klatte, J. L.; van der Beek, N.; Kemperman, P. M. J. H.

    2015-01-01

    The Wood's lamp is a diagnostic tool in dermatology. Unfortunately, this useful tool is often overlooked in the busy and hectic outdoor dermatology clinic. To emphasize its value in modern dermatology, we present an updated review of the principles and applications and shed new light on its proper

  9. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  10. Demixing in a metal halide lamp, results from modelling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.

    2006-01-01

    Convection and diffusion in the discharge region of a metal halide lamp is studied using a computer model built with the plasma modeling package Plasimo. A model lamp contg. mercury and sodium iodide is studied. The effects of the total lamp pressure on the degree of segregation of the light

  11. Influence of Voltage on Main Characteristics of Electric Lighting Lamps

    Directory of Open Access Journals (Sweden)

    V. B. Kozlovskaya

    2009-01-01

    Full Text Available An analysis and systemization of data on influence of voltage value on main lighting engineering, electric and economic characteristics of incandescent lamps, gaseous-discharge lamps of low and high pressure have been made in the paper.Analytical and graphical dependences have been obtained that ensure to evaluate quantitative changes of corresponding lamp characteristics at voltage deviation from nominal value.

  12. Electrodeless discharge lamp is easily started, has high stability

    Science.gov (United States)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  13. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  14. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  15. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type where they are exposed to...

  16. 30 CFR 75.1703 - Portable electric lamps.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  17. 47 CFR 17.54 - Rated lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rated lamp voltage. 17.54 Section 17.54... voltage. To insure the necessary lumen output by obstruction lights, the rated voltage of incandescent lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  18. SEM investigation of incandescent lamp mantle structure on durability

    International Nuclear Information System (INIS)

    Gerneke, D.; Lang, C.

    2002-01-01

    Full text: The incandescent mantle as used on pressure and non-pressure liquid fuel lamps has been in use for over 100 years. What remains unexplained is the way in which the resistance to mechanical shock and the decline in tensile strength with usage is experienced. It has been suggested that to improve durability it is necessary to continuously burn a new mantle for the first two to three hours. The known factors in mantle durability and mechanical strength are chemical composition and fabric weave. This study was undertaken to investigate the effects of burning time and temperature on thorium oxide mantles. The operating temperature of mantles on a range of kerosene pressure lamps was measured and found to be between 800 and 1100 deg C. Heat treatments of thorium based Coleman mantles were carried out in a laboratory furnace within these ranges of temperatures for periods ranging from 2 minutes to 2 hours. The mantles were then viewed in a LEO S440 analytical SEM. Results at 800 deg C show a distinct change in surface morphology with increasing exposure time. At the shorter times (2-5 minutes) the surface was relatively smooth. With increased time periods (15 - 120 minutes) the surface was observed to have a large lumpy structure. At 1100 deg C the difference in surface morphology was not apparent between the shortest and longest times. The surface appears much smoother and no lumpy structure was observed. This suggests that when a mantle is operated at the higher temperature of 1100 deg C the structure of the Thorium oxide is quickly transformed into the known stronger amorphous form. This is taken as the observed smooth structure seen in the SEM images of the 1100 deg C samples. Thus the mantle is expected to be more resistant to mechanical shock and have increased durability. Practical field test results confirm these observations. The mantle on a lamp that is operating efficiently, burns brightly, will far outlast a mantle on an inefficient lamp which bums

  19. [LED lights in dermatology].

    Science.gov (United States)

    Noé, C; Pelletier-Aouizerate, M; Cartier, H

    2017-04-01

    The use in dermatology of light-emitting diodes (LEDs) continues to be surrounded by controversy. This is due mainly to poor knowledge of the physicochemical phases of a wide range of devices that are difficult to compare to one another, and also to divergences between irrefutable published evidence either at the level of in vitro studies or at the cellular level, and discordant clinical results in a variety of different indications: rejuvenation, acne, wound healing, leg ulcers, and cutaneous inflammatory or autoimmune processes. Therapeutic LEDs can emit wavelengths ranging from the ultraviolet, through visible light, to the near infrared (247-1300 nm), but only certain bands have so far demonstrated any real value. We feel certain that if this article remains factual, then readers will have a different, or at least more nuanced, opinion concerning the use of such LED devices in dermatology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  1. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  2. The high pressure xenon lamp as a source of radiation

    International Nuclear Information System (INIS)

    Heerdt, J.A. ter.

    1979-01-01

    An account is given of an investigation into the radiation properties of a commercially available high pressure xenon lamp (type XBO 900 W) in the spectral range 0.3 to 3 μm. The purpose of the study was to find out whether such a lamp can serve as a (secondary) standard of radiation in spectroscopic and radiometric measurements. The main advantades of the xenon lamp over other secondary standards such as the tungsten strip lamp and the anode of a carbon arc lamp are the high temperature of its discharge and the resulting strong radiation over a broad spectral range. (Auth.)

  3. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  4. Innovations in LED lighting for reduced-ESM crop production in space

    Science.gov (United States)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission

  5. White LEDs with limit luminous efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V. M.; Stepanov, S. A., E-mail: stepanovsa@tpu.ru; Yangyang, Ju [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Lukash, V. S. [JSC Research Institute of Semiconductor Devices, 99a Krasnoarmeyskaja St., Tomsk, 634050 (Russian Federation)

    2016-01-15

    In most promising widespread gallium nitride based LEDs emission is generated in the blue spectral region with a maximum at about 450 nm which is converted to visible light with the desired spectrum by means of phosphor. The thermal energy in the conversion is determined by the difference in the energies of excitation and emission quanta and the phosphor quantum yield. Heat losses manifest themselves as decrease in the luminous efficacy. LED heating significantly reduces its efficiency and life. In addition, while heating, the emission generation output and the efficiency of the emission conversion decrease. Therefore, the reduction of the energy losses caused by heating is crucial for LED development. In this paper, heat losses in phosphor-converted LEDs (hereinafter chips) during spectrum conversion are estimated. The limit values of the luminous efficacy for white LEDs are evaluated.

  6. Lamp reliability studies for improved satellite rubidium frequency standard

    Science.gov (United States)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  7. Deep UV LEDs

    Science.gov (United States)

    Han, Jung; Amano, Hiroshi; Schowalter, Leo

    2014-06-01

    Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the

  8. LED system reliability

    NARCIS (Netherlands)

    Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.

    2011-01-01

    This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific

  9. BiliLED low cost neonatal phototherapy, from prototype to industry

    Energy Technology Data Exchange (ETDEWEB)

    Geido, Daniel; Failache, Horacio [Instituto de Fisica de la Facultad de Ingenieria - Universidad de la Republica, Montevideo (Uruguay); Simini, Franco [Nucleo de Ingenieria Biomedica de las Facultades de Medicina e Ingenieria (Uruguay); Hospital de ClInicas. Av Italia S/N. Piso 15 sala 2, 11600 Montevideo (Uruguay)

    2007-11-15

    BiliLED is a phototherapy instrument designed to reduce bilirrubin blood rates in new born babies with jaundice. The light source is centred at 470 nm with a bandwidth of 35 nm and includes a matrix of 196 (14x14) InGaN LEDs. The optical elements are designed to maximize the light intensity useful for treatment, with a small number of LEDs in a compact and low cost unit. The optic array is such that every LED illuminates all the treatment area, which ensures redundancy and, thus, a high reliability not to be found in single-lamp instruments. Thermal dissipation and cost of BiliLED are both an order-of-magnitude smaller than conventional therapy lamps. BiliLED adjusts coetaneous irradiation with a feedback loop to compensate the loss or aging of LEDs achieving a calibrated light source for over a decade of use. A clinical trial in 20 hyperbilirrubinaemia patients shows 16% bilirrubin degradation within 24 hours of treatment, higher than most lamp phototherapy instruments. The steps from prototype to commercial model are described.

  10. BiliLED low cost neonatal phototherapy, from prototype to industry

    Science.gov (United States)

    Geido, Daniel; Failache, Horacio; Simini, Franco

    2007-11-01

    BiliLED is a phototherapy instrument designed to reduce bilirrubin blood rates in new born babies with jaundice. The light source is centred at 470 nm with a bandwidth of 35 nm and includes a matrix of 196 (14×14) InGaN LEDs. The optical elements are designed to maximize the light intensity useful for treatment, with a small number of LEDs in a compact and low cost unit. The optic array is such that every LED illuminates all the treatment area, which ensures redundancy and, thus, a high reliability not to be found in single-lamp instruments. Thermal dissipation and cost of BiliLED are both an order-of-magnitude smaller than conventional therapy lamps. BiliLED adjusts coetaneous irradiation with a feedback loop to compensate the loss or aging of LEDs achieving a calibrated light source for over a decade of use. A clinical trial in 20 hyperbilirrubinaemia patients shows 16% bilirrubin degradation within 24 hours of treatment, higher than most lamp phototherapy instruments. The steps from prototype to commercial model are described.

  11. BiliLED low cost neonatal phototherapy, from prototype to industry

    International Nuclear Information System (INIS)

    Geido, Daniel; Failache, Horacio; Simini, Franco

    2007-01-01

    BiliLED is a phototherapy instrument designed to reduce bilirrubin blood rates in new born babies with jaundice. The light source is centred at 470 nm with a bandwidth of 35 nm and includes a matrix of 196 (14x14) InGaN LEDs. The optical elements are designed to maximize the light intensity useful for treatment, with a small number of LEDs in a compact and low cost unit. The optic array is such that every LED illuminates all the treatment area, which ensures redundancy and, thus, a high reliability not to be found in single-lamp instruments. Thermal dissipation and cost of BiliLED are both an order-of-magnitude smaller than conventional therapy lamps. BiliLED adjusts coetaneous irradiation with a feedback loop to compensate the loss or aging of LEDs achieving a calibrated light source for over a decade of use. A clinical trial in 20 hyperbilirrubinaemia patients shows 16% bilirrubin degradation within 24 hours of treatment, higher than most lamp phototherapy instruments. The steps from prototype to commercial model are described

  12. Optical CAD Utilization for the Design and Testing of a LED Streetlamp.

    Science.gov (United States)

    Jafrancesco, David; Mercatelli, Luca; Fontani, Daniela; Sansoni, Paola

    2017-08-24

    The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype). This work examines the various possibilities for using an optical CAD (Lambda Research TracePro ) to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.

  13. Optical CAD Utilization for the Design and Testing of a LED Streetlamp

    Directory of Open Access Journals (Sweden)

    David Jafrancesco

    2017-08-01

    Full Text Available The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype. This work examines the various possibilities for using an optical CAD (Lambda Research TracePro to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.

  14. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    Science.gov (United States)

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  15. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  16. UVR: sun, lamps, pigmentation and vitamin D

    DEFF Research Database (Denmark)

    Lerche, C M; Philipsen, P A; Wulf, H C

    2017-01-01

    Exposure to ultraviolet radiation (UVR) has important and significant consequences on human health. Recently, there has been renewed interest in the beneficial effects of UVR. This perspective gives an introduction to the solar spectrum, UV lamps, UV dosimetry, skin pigment and vitamin D....... The health benefits of UVR exposure through vitamin D production or non-vitamin D pathways will be discussed in this themed issue in the following articles....

  17. Investigation of Spectral Characteristics of Pulsed Xenon Lamps for Combined Photochemical Degradation of Organometallic Compounds in Liquid Radioactive Waste

    Directory of Open Access Journals (Sweden)

    M. A. Mishakov

    2017-01-01

    Full Text Available The paper considers the composition of liquid radioactive wastes from the nuclear plants. Using traditional ways to extract organometallic compounds formed, when using the deactivation solutions to clean the surfaces of nuclear plant rooms, are complicated. The paper studies the edge-cutting methods of solving this problem. Its proposal is to use a combined ultraviolet treatment for organometallic compounds degradation based on ethylenediaminetetraacetic acid (EDTA via pulsed xenon lamps. A potential use of the tubular and spherical geometry lamps is examined and advantages, disadvantages and features of these lamps are described. Instead of the pure EDTA the experiments used its disodium salt (Na2-EDTA. The hydrogen peroxide was used as an extra oxidizer. Absorption spectrums of solutions with various Na2-EDTA - hydrogen peroxide ratio were measured. It is found that the absorbance curve maximum is in the shortwave spectrum region (λ < 210 nm. The use of amalgam lamps of monochromatic radiation at wavelength λ = 254 nm will result only in formation of hydroxyl radicals but direct destruction processes of EDTA molecules due to radiation will be rare, and this decreases efficiency of their use.The spectral radiation characteristics of various continuum spectrum pulsed xenon lamps was measured. The experimental data expressed in relative units were compared with the emission spectrum of an absolutely black body. The paper shows that in spherical lamps high brightness temperature can be reached. Thus, in spherical lamps it is possible to obtain a spectrum, which is in maximum correlation with the absorption spectrum of the solutions under study, thereby making them a prospective radiation source for photo-degradation of EDTA compounds. For drawing a final conclusion it is necessary to conduct researches in order to compare Na2-EDTA degradation via tubular and spherical xenon lamps.

  18. Raman lidar characterization using a reference lamp

    Science.gov (United States)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  19. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  20. Design of Solar Street Lamp Control System Based on MPPT

    Science.gov (United States)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  1. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  2. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  3. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    Science.gov (United States)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large

  4. Intelligent control of dynamic LED lighting; Intelligent styring af dynamisk LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, A.; Corell, D.; Hansen, Soeren S.; Dam-Hansen, C.; Petersen, Paul Michael

    2013-01-15

    The project has resulted in a prototype of a new intelligent lighting control system. The control system enables the end user to control his or her own local lighting environment (lighting zone) according to individual preferences and needs. The report provides a description of how the developed intelligent lighting system is composed and functions. The system is designed as a work lamp that enables dynamic change of the light color scheme according to a number of light control algorithms. It is specifically designed in relation to user tests of the intelligent lighting system, which is carried out in the final part of the project. An intelligent and advanced control of LED lighting was developed, which enables optimization of the user's light conditions in a given situation. Based on a number of known parameters, the system can control lighting so that at any time optimal light conditions are created, using a minimum of electric power. (LN)

  5. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  6. Uniformity of LED light illumination in application to direct imaging lithography

    Science.gov (United States)

    Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi

    2016-09-01

    Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.

  7. Role of LAMP1 Binding and pH Sensing by the Spike Complex of Lassa Virus.

    Science.gov (United States)

    Cohen-Dvashi, Hadas; Israeli, Hadar; Shani, Orly; Katz, Aliza; Diskin, Ron

    2016-11-15

    To effectively infect cells, Lassa virus needs to switch in an endosomal compartment from its primary receptor, α-dystroglycan, to a protein termed LAMP1. A unique histidine triad on the surface of the receptor-binding domain from the glycoprotein spike complex of Lassa virus is important for LAMP1 binding. Here we investigate mutated spikes that have an impaired ability to interact with LAMP1 and show that although LAMP1 is important for efficient infectivity, it is not required for spike-mediated membrane fusion per se Our studies reveal important regulatory roles for histidines from the triad in sensing acidic pH and preventing premature spike triggering. We further show that LAMP1 requires a positively charged His230 residue to engage with the spike complex and that LAMP1 binding promotes membrane fusion. These results elucidate the molecular role of LAMP1 binding during Lassa virus cell entry and provide new insights into how pH is sensed by the spike. Lassa virus is a devastating disease-causing agent in West Africa, with a significant yearly death toll and severe long-term complications associated with its infection in survivors. In recent years, we learned that Lassa virus needs to switch receptors in a pH-dependent manner to efficiently infect cells, but neither the molecular mechanisms that allow switching nor the actual effects of switching were known. Here we investigate the activity of the viral spike complex after abrogation of its ability to switch receptors. These studies inform us about the role of switching receptors and provide new insights into how the spike senses acidic pH. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Rapid and sensitive detection of Bordetella bronchiseptica by loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

  9. ‘No Blue’ White LED

    DEFF Research Database (Denmark)

    Ou, Haiyan; Corell, Dennis Dan; Dam-Hansen, Carsten

    2010-01-01

    This paper explored the feasibility of making a white LED light source by color mixing method without using the blue color. This ‘no blue’ white LED has potential applications in photolithography room illumination, medical treatment and biophotonics research. A no-blue LED was designed......-2005. Even after 15 days of illumination, no effect was observed. So this LED-based solution was demonstrated to be a very promising light source for photolithography room illumination due to its better color rendering in addition to energy efficiency, long life time and design flexibility. Additionally......, and the prototype was fabricated. The spectral power distribution of both the LED bulb and the yellow fluorescent tube was measured. Based on that, colorimetric values were calculated and compared on terms of chromatic coordinates, correlated color temperature, color rendering index, and chromatic deviation...

  10. Spectral design flexibility of LED brings better life

    Science.gov (United States)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  11. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  12. Preliminary investigations of piezoelectric based LED luminary

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Andersen, Michael A. E.; Meyer, Kaspar Sinding

    2011-01-01

    , modulation schemes, LEDs and LED driving conditions are analyzed. A prototype radial mode PT optimized for ZVS (Zero Voltage Switching) is designed. FEM (Final Element Method) and measurements validates the PT design. A prototype PT based AC/DC converter operating from european mains is proposed......This paper presents a preliminary study of PT (Piezoelectric Transformer) based SMPS’s (Switch Mode Power Supplies) for LED luminary. The unique properties of PTs (efficiency, power density and EMI) make them highly suitable for this application. Power stage topologies, rectifiers circuits...

  13. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    Science.gov (United States)

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  14. Sa uurisid ekspressionismi 1960ndatel ja 70ndatel... / Ene Lamp

    Index Scriptorium Estoniae

    Lamp, Ene

    2005-01-01

    2004. a. ilmunud raamatu "Ekspressionism" eest Eesti Kultuurkapitali suure kunstipreemia (100000 kr.) saanud Ene Lamp ekspressionismi tähenduse muutumiset, ekspressionismi rollist eesti kunstis, oma tulevikuplaanidest

  15. Promoting Literacy and Protection with Solar Lamps in Yemen

    Directory of Open Access Journals (Sweden)

    Jerry Farrell

    2014-04-01

    Full Text Available By distributing solar lamps to vulnerable rural women in Yemen, we promoted enrollment in literacy programs, as well as reading among their children. We saw a number of secondary benefits as well: safer households where dangerous kerosene lamps were used less frequently in the evening; a number of livelihood activities - cooking, husbandry, handicrafts - continued safely into evening hours; children found it easier to work on their homework using the solar powered lamps; and children found it easier and safer to walk in dark, rural streets in the evening with the solar lamps slung around their necks.

  16. Pulsed operation of high-pressure-sodium discharge lamps

    International Nuclear Information System (INIS)

    Guenther, K.; Kloss, H.G.; Lehmann, T.; Radtke, R.; Serick, F.

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.)

  17. Pulsed operation of high-pressure-sodium discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Kloss, H G; Lehmann, T [Zentrum fuer Forschung und Technologie, Berlin (Germany, F.R.); Radtke, R; Serick, F [Zentralinstitut fuer Elektronenphysik, Berlin (Germany, F.R.)

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.).

  18. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  19. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  20. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

    2009-02-11

    The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

  1. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  2. Photoprotection and photoreception of intraocular lenses under xenon and white LED illumination.

    Science.gov (United States)

    Artigas, J M; Navea, A; García-Domene, M C; Artigas, C; Lanzagorta, A

    2016-05-01

    To analyze the photoprotection and phototransmission that various intraocular lenses (IOLs) provide under the illumination of a xenon (Xe) lamp and white LEDs (light emitting diode). The spectral transmission curves of six representative IOLs were measured using a Perkin-Elmer Lambda 35 UV/VIS spectrometer. Various filtering simulations were performed using a Xe lamp and white LEDs. The spectral emissions of these lamps were measured with an ILT-950 spectroradiometer. The IOLs analyzed primarily show transmission of nearly 100% in the visible spectrum. In the ultraviolet (UV) region, the filters incorporated in the various IOLs did not filter equally, and some of them let an appreciable amount of UV through. The Xe lamp presented a strong emission of ultraviolet A (UVA), and its emission under 300nm was not negligible. The white LED did not present an appreciable emission under 380nm. The cut-off wavelength of most filters is between 380 and 400nm (Physiol Hydriol60C(®), IOLTECH E4T(®), Alcon SA60AT(®), Alcon IQ SN60WF(®)), so that their UV protection is very effective. Nonetheless, the IOL OPHTEC Oculaid(®) contains a filter that, when a Xe lamp is used, lets through up to 20% for 350nm and up to 15% for 300nm, which at this point is ultraviolet B (UVB). The OPHTEC(®) Artisan IOL has a transmission peak below 300nm, which must be taken into account under Xe illumination. White LEDs do not emit energy below 380nm, so no special protection is required in the UV region. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Freeform lens design for LED collimating illumination.

    Science.gov (United States)

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  4. The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: Catalyst characterization and acetaminophen degradation and mineralization

    Science.gov (United States)

    Cheshme Khavar, Amir Hossein; Moussavi, Gholamreza; Mahjoub, Ali Reza

    2018-05-01

    The present work was focused on the preparation of TiO2@rGO nanocomposite using an innovative facile synthesis method and the investigation of its photocatalytic activity in a UVA/LED photoreactor. The XRD patterns indicated anatase structure for all samples. Presence of rGO in nanocomposites was confirmed by FT-IR and Raman spectra. Also, mono-dispersed TiO2 nanoparticles on rGO sheet were shown in the SEM and HRTEM images. The prepared TiO2@rGO nanocomposite was used as the photocatalyst for degradation of acetaminophen (ACT) in the photoreactor illuminated with UVA/LEDs having the intensity of 95 μW/cm2. The complete degradation of 50 mg/L ACT was attained within 50 min in the LED/TiO2@rGO process while P25/LED process only showed 17% ACT degradation under similar experimental conditions. The photocatalytic activity was strongly affected by the rGO to TiO2 ratio in the nanocomposites and the highest photocatalytic activity was observed at 3.0 wt.% of rGO. Reaction with free radOH was the main mechanism involved in the ACT photodegradation in the TiO2@rGO/LED process under the selected conditions. The performance of LED/TiO2@rGO process improved by four and three times in ACT degradation and mineralization, respectively, at the presence of H2O2. As made TiO2@rGO nanocompsite could preserve its catalytic activity during five consecutive recycles in the process. Accordingly, TiO2@rGO nanocomposite is an active and stable catalyst in the UVA/LED photoreactor for high rate degradation of pharmaceuticals in the contaminated water.

  5. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  6. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  7. Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence.

    Science.gov (United States)

    Zhao, Mingming; Shi, Yuhua; Wu, Lan; Guo, Licheng; Liu, Wei; Xiong, Chao; Yan, Song; Sun, Wei; Chen, Shilin

    2016-05-05

    Saffron is one of the most expensive species of Chinese herbs and has been subjected to various types of adulteration because of its high price and limited production. The present study introduces a loop-mediated isothermal amplification (LAMP) technique for the differentiation of saffron from its adulterants. This novel technique is sensitive, efficient and simple. Six specific LAMP primers were designed on the basis of the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA of Crocus sativus. All LAMP amplifications were performed successfully, and visual detection occurred within 60 min at isothermal conditions of 65 °C. The results indicated that the LAMP primers are accurate and highly specific for the discrimination of saffron from its adulterants. In particular, 10 fg of genomic DNA was determined to be the limit for template accuracy of LAMP in saffron. Thus, the proposed novel, simple, and sensitive LAMP assay is well suited for immediate on-site discrimination of herbal materials. Based on the study, a practical standard operating procedure (SOP) for utilizing the LAMP protocol for herbal authentication is provided.

  8. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2016-01-01

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng....../L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED...... excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems....

  9. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays.

    Science.gov (United States)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Petersen, Paul Michael; Pedersen, Christian

    2016-09-19

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

  10. A rapid and specific detection of pathogenic serovar Salmonella typhimurium by loop-mediated isothermal amplification method (LAMP

    Directory of Open Access Journals (Sweden)

    Hadi Ravan

    2017-09-01

    Discussion and conclusion: As a result of a high sensitivity and specificity of the method as well as its low cost per assay, it could be concluded that the present LAMP assay is a powerful, accurate, and efficient method for detecting pathogenic serovar Salmonella typhimurium in food-processing industries and diagnostic laboratories.

  11. Non-crosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi

    International Nuclear Information System (INIS)

    Bozorgmehr, Ali; Yazdanparast, Razieh; Mollasalehi, Hamidreza

    2016-01-01

    In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.

  12. Non-crosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi

    Energy Technology Data Exchange (ETDEWEB)

    Bozorgmehr, Ali; Yazdanparast, Razieh, E-mail: ryazdan@ut.ac.ir [University of Tehran, Institute of Biochemistry and Biophysics (Iran, Islamic Republic of); Mollasalehi, Hamidreza [Shahid Beheshti University, Protein Research Center (Iran, Islamic Republic of)

    2016-12-15

    In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.

  13. Polychromatic solid-state lamps versus tungsten radiator: hue changes of Munsell samples

    International Nuclear Information System (INIS)

    Stanikunas, R; Vaitkevicius, H; Svegzda, A; Viliunas, V; Bliznikas, Z; Breive, K; Vaicekauskas, R; Novickovas, A; Kurilcik, G; Zukauskas, A; Gaska, R; Shur, M S

    2005-01-01

    Colour-perception differences under illumination by two quadrichromatic solid-state sources of light have been studied with respect to a tungsten radiator with the same correlated colour temperature (2600 K). A virtual RYgCB source (illuminant), which contains red, yellow-green, cyan and blue components with the line width typical of AlGaInP and AlInGaN light-emitting diodes (LEDs), was fully optimized for the highest value of the general colour-rendering index (CRI) (R a = 98.3). An implemented RAGB source (lamp) contained commercially available red, amber, green and blue LEDs (R a 79.4). Colorimetric calculations in the Commission Internationale de l'Eclairage 1976 (u',v') colour plane for 40 Munsell colour samples (value 6, chroma/6, hue increment 2.5) revealed the differences in hue discrimination and distortion for both sources in the yellow-green and blue-cyan ranges. These differences were not revealed by the standard analysis of the special CRIs and were lower for the RYgCB illuminant, which contained primary LEDs in the sensitive ranges. A psychophysical experiment on seven subjects was performed using the RAGB lamp stabilized against thermal and ageing drifts. Despite different colour-perception abilities of the subjects under investigation, the experiment confirmed the calculation results. Methods of obtaining composite white light with high subjective ratings are discussed, based on the obtained data

  14. Laser beam absorption study of a 238U(5L60) vapor obtained with a hollow cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Leblanc, B.; Mongeau, B.; Carleer, M.; Bertrand, L.

    1979-01-01

    The density of U atoms in the 5 L 0 6 ground state present in a vapor of this element from a hollow cathode lamp has been measured using laser absorption spectroscopy. The influence of the carrier gases (Ar, Kr, Xe) on the density, the absorption coefficient profiles, and on the ratio of U atoms to the dissipated electrical power has been investigated. It has been found that, in our range of operating conditions, the xenon gas is the most efficient. With xenon, a density of 2.2 x 10 12 cm -3 ground-state U atoms is obtained when the lamp dissipates 40 W of electrical power

  15. Demixing in a metal halide lamp, results from modeling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    Metal Halide (MH) lamps are high pressure discharge devices, containing a complex chemical mixture, to emit light on a broad spectrum while maintaining good efficacies. Lamps of this type were first exhibited by General Electric at the 1964 World Fair in New York [1]. They typically consist of an

  16. 49 CFR 393.11 - Lamps and reflective devices.

    Science.gov (United States)

    2010-10-01

    ... dolly obscures the turn signals at the rear of the towing vehicle. Footnote—6Pole trailers shall be... signals and the two rear signals to flash simultaneously as a vehicular traffic signal warning, required... vehicle, exclusive of the signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions...

  17. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  18. Production of poinsettia (Euphorbia Pulcherrima) with light emitting diodes compared with the traditional high pressure sodium lamp

    OpenAIRE

    Thapa, Sabir

    2017-01-01

    Use of chemical are commonly used as tools for the commercial pot plant producers to grow strong, dwarfed, and compact plants. Although, these growth regulators have adverse effects on human health and the environment. So, this issue has motivated researchers to search for alternative methods for growth regulation. The aim of this study was to test light emitting diodes (LEDs) with different light qualities alone or in combination with high pressure sodium lamps (HPSs), to investigate their e...

  19. Analysis and development of a lamp using light emitting diodes, in order to accelerate the process of photosynthesis in plants

    International Nuclear Information System (INIS)

    Salas Araya, Keyrent

    2012-01-01

    A prototype lamp has been created in order to promote accelerated development of the plant under artificial lighting. The lamp has been constructed using light-emitting diodes; its efficiency has been proven by comparing the performance with other existing commercial lamps. The study has considered mainly the emission spectrum analysis, power consumption, longevity and experimental development of each lamp. Tests are performed with different types of plantations in short periods, between one and two weeks of exposure to artificial lighting, compared to the development of a plantation illuminated with natural sunlight. The importance that meets the illumination and variation of the emitted wavelengths to a plant have been shown in the development and morphological change of the plant. None of the lamps used were able to approach the natural development that the plant should have, and although height growth has exceeded the reference plant has not obtained a proper plant growth. Researches and tests have been a basis for further studies on the changes experienced by plants exposed to artificial lighting. (author) [es

  20. Tanning lamps ultraviolet emissions and compliance with technical standards

    International Nuclear Information System (INIS)

    Bonino, A.; Facta, S.; Saudino, S.; Anglesio, L.; D'Amore, G.

    2009-01-01

    In this work the compliance of tanning lamps with technical standards EN 60335-2-27 'Household and similar electrical appliances-Safety. Part 2: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation' was analysed. Results of this analysis showed that none of the examined technical documentation produced by the lamps manufacturers is fully compliant with the standard technique. Furthermore data reported in the same manuals, such as effective radiant exposure or irradiance, would indicate that these sources may be the cause of undue exposure to ultraviolet (UV) radiation. For this reason a measurement campaign on UV lamps used in tanning salons was organised. The first results of these measurements seem to confirm the doubts raised from the analysis of the lamp manuals: the use of a tanning lamp can lead to UV radiation exposure levels higher than reference maximum values recommended by EN 60335-2-27. (authors)

  1. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  2. Phase-resolved response of a metal-halide lamp

    International Nuclear Information System (INIS)

    Flikweert, A J; Beks, M L; Nimalasuriya, T; Kroesen, G M W; Van der Mullen, J J A M; Stoffels, W W

    2009-01-01

    The metal-halide (MH) lamp sometimes shows unwanted colour segregation, caused by a combination of convection and diffusion. In the past we investigated the lamp, running on a switched dc ballast of 120 Hz, using a dc approximation for the distribution of the radiating species. Here we present phase-resolved intensity measurements to verify this approximation. The MH lamp contains Hg as buffer gas and DyI 3 as salt additive; we measure the light emitted by Dy and by Hg atoms. An intensity fluctuation of ∼25% close to the electrodes is found only. The observed fluctuations are explained by the cataphoresis effect and temperature fluctuations; the time scales are in the same order. Furthermore, measurements at higher gravity in a centrifuge (up to 10g) show that the effect becomes smaller at increasing gravity levels. From these results it is concluded that a dc approximation, which is generally assumed by lamp developers, is allowed for this MH lamp.

  3. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector.

    Science.gov (United States)

    Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek

    2010-11-01

    Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dimming LEDs with Phase-Cut Dimmers. The Specifier's Process for Maximizing Success

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, M. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-01

    DOE GATEWAY program report reviewing how phase-cut dimmers work, how LEDs differ from the incandescent lamps these dimmers were originally designed to control, and how those differences can lead to complications when attempting to dim LEDs. Providing both general guidance and step-by-step procedures for designing phase-controlled LED dimming on both new and existing projects—as well as real-world examples of how to use those procedures—the report aims to reduce the chance of experiencing compatibility-related problems and, if possible, ensure good dimming performance.

  5. A loop-mediated isothermal amplification (LAMP assay for early detection of Schistosoma mansoni in stool samples: a diagnostic approach in a murine model.

    Directory of Open Access Journals (Sweden)

    Pedro Fernández-Soto

    2014-09-01

    Full Text Available Human schistosomiasis, mainly due to Schistosoma mansoni species, is one of the most prevalent parasitic diseases worldwide. To overcome the drawbacks of classical parasitological and serological methods in detecting S. mansoni infections, especially in acute stage of the disease, development of cost-effective, simple and rapid molecular methods is still needed for the diagnosis of schistosomiasis. A promising approach is the loop-mediated isothermal amplification (LAMP technology. Compared to PCR-based assays, LAMP has the advantages of reaction simplicity, rapidity, specificity, cost-effectiveness and higher amplification efficiency. Additionally, as results can be inspected by the naked eye, the technique has great potential for use in low-income countries.A sequence corresponding to a mitochondrial S. mansoni minisatellite DNA region was selected as a target for designing a LAMP-based method to detect S. mansoni DNA in stool samples. We used a S. mansoni murine model to obtain well defined stool and sera samples from infected mice with S. mansoni cercariae. Samples were taken weekly from week 0 to 8 post-infection and the Kato-Katz and ELISA techniques were used for monitoring the infection. Primer set designed were tested using a commercial reaction mixture for LAMP assay and an in house mixture to compare results. Specificity of LAMP was tested using 16 DNA samples from different parasites, including several Schistosoma species, and no cross-reactions were found. The detection limit of our LAMP assay (SmMIT-LAMP was 1 fg of S. mansoni DNA. When testing stool samples from infected mice the SmMIT-LAMP detected S. mansoni DNA as soon as 1 week post-infection.We have developed, for the first time, a cost-effective, easy to perform, specific and sensitive LAMP assay for early detection of S. mansoni in stool samples. The method is potentially and readily adaptable for field diagnosis and disease surveillance in schistosomiasis-endemic areas.

  6. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    Science.gov (United States)

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  7. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Directory of Open Access Journals (Sweden)

    Chang-Lin Chiang

    2016-01-01

    Full Text Available The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO, aluminum oxide coated FTO (Al2O3/FTO and magnesium oxide coated FTO (MgO/FTO were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  8. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Zeng, Hui-Kai [Department of Electronic Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 320, Taiwan (China); Li, Jung-Yu, E-mail: JY-Lee@itri.org.tw; Chen, Shih-Pu; Lin, Yi-Ping [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Hsieh, Tai-Chiung; Juang, Jenh-Yih, E-mail: jyjuang@cc.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  9. High power blue LED development using different growth modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong S.; Florescu, Doru I.; Ramer, Jeff C.; Merai, Vinod; Parekh, Aniruddh; Begarney, Michael J.; Armour, Eric A. [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States); Lu Dong [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States); School of Engineering, Rutgers University, Piscataway, NJ 08854 (United States)

    2004-09-01

    Blue high brightness light emitting diodes (HB-LEDs) have been developed using different growth modes in the active layers. Piezoelectric field engineering improves the optical output power in multiple quantum well (MQW) LEDs by inserting an optimized transitional superlattice (TSL) before the active MQW layers. Within single quantum well (SQW) LEDs, quasi-Quantum Dot (QD) growth for Indium localization has been realized. The SQW LED output power exceeds the strain engineered MQW LEDs. The experimental data indicates that Indium localization enhances overall quantum efficiency and results in increased output power for HB-LEDs. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  11. LED Technology for Dental Applications

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Soerensen, L. H.

    LEDs have a large potential in many dental and oral applications. Areas such as photo polymerization, fluorescence imaging, photodynamic therapy, and photoactivated disinfection are important future candidates for LED based diagnostics and treatment in dentistry.......LEDs have a large potential in many dental and oral applications. Areas such as photo polymerization, fluorescence imaging, photodynamic therapy, and photoactivated disinfection are important future candidates for LED based diagnostics and treatment in dentistry....

  12. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  13. Aerial LED signage by use of crossed-mirror array

    Science.gov (United States)

    Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro

    2013-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.

  14. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  15. Microplasma light tiles: thin sheet lamps for general illumination

    Energy Technology Data Exchange (ETDEWEB)

    Eden, J G; Park, S-J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Herring, C M; Bulson, J M [Eden Park Illumination, 903 North Country Fair Drive, Champaign, IL 61821 (United States)

    2011-06-08

    Flat, thin and lightweight lamps providing spatially uniform and dimmable illumination from active areas as large as 400 cm{sup 2} are being developed for general illumination and specialty applications. Comprising an array of low-temperature, nonequilibrium microplasmas driven by a dielectric barrier structure and operating at pressures of typically 400-700 Torr, these lamps have a packaged thickness <4 mm and yet produce luminance values beyond 26 000 cd m{sup -2} with a luminous efficacy approaching 30 lm W{sup -1}. Third generation lamps, presently in limited production, offer a correlated colour temperature in the 3000-4100 K interval and a colour rendering index of 80. Current lamps employ Xe{sub 2} ({lambda} {approx} 172 nm) as the primary emitter photoexciting a mixture of phosphors, and the pressure dependence of the wavelength-integrated fluorescence from the electronically excited dimer has been investigated with a vacuum ultraviolet spectrometer. In contrast to other promising lighting technologies, the decline in luminous efficacy of microplasma lamps with increasing power delivered to the lamp is small. For a 6 x 6 inch{sup 2} ({approx}225 cm{sup 2}) lamp, efficacy falls <16% when the radiant output (luminance) is raised from 2000 cd m{sup -2} to > 10 000 cd m{sup -2}.

  16. Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers.

    Science.gov (United States)

    Nechayev, Sergey; Rotschild, Carmel

    2017-09-13

    Broadband light sources are a wide class of pumping schemes for lasers including LEDs, sunlight and flash lamps. Recently, efficient coupling of broadband light to high-quality micro-cavities has been demonstrated for on-chip applications and low-threshold solar-pumped lasers via cascade energy transfer. However, the conversion of incoherent to coherent light comes with an inherent price of reduced efficiency, which has yet to be assessed. In this paper, we derive the detailed balance limit of efficiency of broadband-pumped lasers and discuss how it is affected by the need to maintain a threshold population inversion and thermodynamically dictated minimal Stokes' shift. We show that lasers' slope efficiency is analogous to the nominal efficiency of solar cells, limited by thermalisation losses and additional unavoidable Stokes' shift. The lasers' power efficiency is analogous to the detailed balance limit of efficiency of solar cells, affected by the cavity mirrors and impedance matching factor, respectively. As an example we analyze the specific case of solar-pumped sensitized Nd 3+ :YAG-like lasers and define the conditions to reach their thermodynamic limit of efficiency. Our work establishes an upper theoretical limit for the efficiency of broadband-pumped lasers. Our general, yet flexible model also provides a way to incorporate other optical and thermodynamic losses and, hence, to estimate the efficiency of non-ideal broadband-pumped lasers.

  17. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon Hwa; Asadirad, Mojtaba; Kim, Seung Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon-Seop; Ryou, Jae-Hyun

    2018-01-01

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  18. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  19. An ion quencher operated lamp for multiplexed fluorescent bioassays.

    Science.gov (United States)

    Qing, Taiping; Sun, Huanhuan; He, Xiaoxiao; Huang, Xiaoqin; He, Dinggeng; Bu, Hongchang; Qiao, Zhenzhen; Wang, Kemin

    2018-02-01

    A novel and adjustable lamp based on competitive interaction among dsDNA-SYBR Green I (SGI), ion quencher, and analyte was designed for bioanalysis. The "filament" and switch of the lamp could be customized by employing different dsDNA and ion quencher. The poly(AT/TA) dsDNA was successfully screened as the most effective filament of the lamp. Two common ions, Hg 2+ and Fe 3+ , were selected as the model switch, and the corresponding ligand molecules cysteine (Cys) and pyrophosphate ions (PPi) were selected as the targets. When the fluorescence-quenched dsDNA/SGI-ion complex was introduced into a target-containing system, ions could be bound by competitive molecules and separate from the complex, thereby lighting the lamp. However, no light was observed if the biomolecule could not snatch the metal ions from the complex. Under the optimal conditions, sensitive and selective detection of Cys and PPi was achieved by the lamp, with practical applications in fetal bovine serum and human urine. This ion quencher regulated lamp for fluorescent bioassays is simple in design, fast in operation, and is more convenient than other methods. Significantly, as many molecules could form stable complexes with metal ions selectively, this ion quencher operated lamp has potential for the detection of a wide spectrum of analytes. Graphical abstract A novel and adjustable lamp on the basis of competitive interaction among dsDNA-SYBR Green I, ions quencher and analyte was designed for bioanalysis. The filament and switch of lamp could be customized by employing different dsDNA and ions quencher.

  20. Packaging technology of LEDs for LCD backlights

    International Nuclear Information System (INIS)

    Fan Manning; Liang Meng; Wang Guohong

    2009-01-01

    We design a package patterned with red and green emitting phosphors excited by a blue LED to emit tri-basic mixing color. For high backlight display quality, we compare several phosphors. According to our measurements, green phosphors 0752G, 0753G and red phosphor 0763R are preferred for producing a good backlight source. Compared to RGB-LED backlight units, this frame typically benefits the lighting uniformity, and can simplify the structures. It also provides higher color render and better CCT than the traditional package method of a yellow phosphor with a blue chip. However, its light efficiency needs to be further improved for the use of backlights for LCDs.

  1. Development of AlGaN-based deep-ultraviolet (DUV) LEDs focusing on the fluorine resin encapsulation and the prospect of the practical applications

    Science.gov (United States)

    Hirano, Akira; Nagasawa, Yosuke; Ippommatsu, Masamichi; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-09-01

    AlGaN-based LEDs are expected to be useful for sterilization, deodorization, photochemical applications such as UV curing and UV printing, medical applications such as phototherapy, and sensing. Today, it has become clear that efficient AlGaN-based LED dies are producible between 355 and 250 nm with an external quantum efficiency (EQE) of 3% on flat sapphire. These dies were realized on flat sapphire without using a special technique, i.e., reduction in threading dislocation density or light extraction enhancement techniques such as the use of a photonic crystal or a patterned sapphire substrate. Despite the limited light extraction efficiency of about 8% owing to light absorption at a thick p-GaN contact layer, high EQEs of approximately 6% has been reproducible between 300 and 280 nm without using special techniques. Moreover, an EQE of 3.9% has been shown at 271 nm, despite the smaller current injection efficiency (CIE). The high EQEs are thought to correspond to the high internal quantum efficiency (IQE), indicating a small room for improving IQE. Accordingly, resin encapsulation on a simple submount is strongly desired. Recently, we have succeeded in demonstrating fluorine resin encapsulation on a ceramic sheet (chip-on-board, COB) that is massproducible. Furthermore, the molecular structure of a resin with a durability of more than 10,000 h is explained in this paper from the photochemical viewpoint. Thus, the key technologies of AlGaN-based DUV-LEDs having an EQE of 10% within a reasonable production cost have been established. The achieved efficiency makes AlGaN-based DUVLEDs comparable to high-pressure mercury lamps.

  2. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    Science.gov (United States)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Characterising and testing deep UV LEDs for use in space applications

    International Nuclear Information System (INIS)

    Hollington, D; Baird, J T; Sumner, T J; Wass, P J

    2015-01-01

    Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output power measurements, spectral stability, pulsed performance and temperature dependence, as well as thermal vacuum, radiation and vibration survivability. (paper)

  4. Characterising and testing deep UV LEDs for use in space applications

    Science.gov (United States)

    Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.

    2015-12-01

    Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output power measurements, spectral stability, pulsed performance and temperature dependence, as well as thermal vacuum, radiation and vibration survivability.

  5. LED Lighting System Reliability Modeling and Inference via Random Effects Gamma Process and Copula Function

    Directory of Open Access Journals (Sweden)

    Huibing Hao

    2015-01-01

    Full Text Available Light emitting diode (LED lamp has attracted increasing interest in the field of lighting systems due to its low energy and long lifetime. For different functions (i.e., illumination and color, it may have two or more performance characteristics. When the multiple performance characteristics are dependent, it creates a challenging problem to accurately analyze the system reliability. In this paper, we assume that the system has two performance characteristics, and each performance characteristic is governed by a random effects Gamma process where the random effects can capture the unit to unit differences. The dependency of performance characteristics is described by a Frank copula function. Via the copula function, the reliability assessment model is proposed. Considering the model is so complicated and analytically intractable, the Markov chain Monte Carlo (MCMC method is used to estimate the unknown parameters. A numerical example about actual LED lamps data is given to demonstrate the usefulness and validity of the proposed model and method.

  6. An empirical approach for quantifying loop-mediated isothermal amplification (LAMP using Escherichia coli as a model system.

    Directory of Open Access Journals (Sweden)

    Sowmya Subramanian

    Full Text Available Loop mediated isothermal amplification (LAMP is a highly efficient, selective and rapid DNA amplification technique for genetic screening of pathogens. However, despite its popularity, there is yet no mathematical model to quantify the outcome and no well-defined metric for comparing results that are available. LAMP is intrinsically complex and involves multiple pathways for gene replication, making fundamental modelling nearly intractable. To circumvent this difficulty, an alternate, empirical model is introduced that will allow one to extract a set of parameters from the concentration versus time curves. A simple recipe to deduce the time to positive, Tp--a parameter analogous to the threshold cycling time in polymerase chain reaction (PCR, is also provided. These parameters can be regarded as objective and unambiguous indicators of LAMP amplification. The model is exemplified on Escherichia coli strains by using the two gene fragments responsible for vero-toxin (VT production and tested against VT-producing (O157 and O45 and non-VT producing (DH5 alpha strains. Selective amplification of appropriate target sequences was made using well established LAMP primers and protocols, and the concentrations of the amplicons were measured using a Qubit 2.0 fluorometer at specific intervals of time. The data is fitted to a generalized logistic function. Apart from providing precise screening indicators, representing the data with a small set of numbers offers significant advantages. It facilitates comparisons of LAMP reactions independently of the sampling technique. It also eliminates subjectivity in interpretation, simplifies data analysis, and allows easy data archival, retrieval and statistical analysis for large sample populations. To our knowledge this work represents a first attempt to quantitatively model LAMP and offer a standard method that could pave the way towards high throughput automated screening.

  7. Design and development of low-power driven hybrid electroluminescent lamp from carbon nanotube embedded phosphor material

    International Nuclear Information System (INIS)

    Yadav, Deepika; Mishra, Savvi; Shanker, Virendra; Haranath, D.

    2013-01-01

    Highlights: •We are first to report CNT embedded ZnS:Mn hybrid EL system. •Achieved efficient orange-red EL emission at low operating voltages ( AC ). •Facile technique to induce conductive paths inside the ZnS particle to trigger EL. •Detailed electrical characterization of EL lamp is presented. -- Abstract: We present a novel methodology to design a hybrid electroluminescent (EL) lamp by embedding carbon nanotubes (CNTs) inside the ZnS:Mn phosphor particles by conventional solid state diffusion technique. By doing so, the phosphor particles exhibited increase in EL brightness and efficiency at low operating voltages ( AC ). Interestingly, shorter the length of CNTs used, greater was the field enhancement effect and lower was the operating voltages to glow the EL lamps. The role of CNTs have been identified to form conductive paths inside the ZnS particle thereby triggering EL due to electron injection to luminescent centers (Mn 2+ ) at nominal voltages. In addition, a detailed electrical characterization of the novel EL lamp along with its spectral energy distribution studies are presented

  8. Industrial application of the decomposition of CO2 . NOx by large flow atmospheric microwave plasma LAMP employed in motorcar

    Science.gov (United States)

    Pandey, Anil; Niwa, Syunta; Morii, Yoshinari; Ikezawa, Shunjiro

    2012-10-01

    In order to decompose CO2 . NOx [1], we have developed the large flow atmospheric microwave plasma; LAMP [2]. It is very important to apply it for industrial innovation, so we have studied to apply the LAMP into motorcar. The characteristics of the developed LAMP are that the price is cheap and the decomposition efficiencies of CO2 . NOx are high. The mechanism was shown as the vertical configuration between the exhaust gas pipe and the waveguide was suitable [2]. The system was set up in the car body with a battery and an inverter. The battery is common between the engine and the inverter. In the application of motorcar, the flow is large, so the LAMP which has the merits of large flow, high efficient decomposition, and cheap apparatus will be superior.[4pt] [1] H. Barankova, L. Bardos, ISSP 2011, Kyoto.[0pt] [2] S. Ikezawa, S. Parajulee, S. Sharma, A. Pandey, ISSP 2011, Kyoto (2011) pp. 28-31; S. Ikezawa, S. Niwa, Y. Morii, JJAP meeting 2012, March 16, Waseda U. (2012).

  9. Decolorization of brilliant green dye using immersed lamp sonophotocatalytic reactor

    Science.gov (United States)

    Gole, Vitthal L.; Priya, Astha; Danao, Sanjay P.

    2017-12-01

    The textile and dye industries require an enormous amount of water for processing and produce a large volume of wastewater. Generated wastewater had potential hazards and a threat to the aquatic biota. The present work investigates the decolorization of brilliant green dye using a combination of two advanced oxidation techniques viz sonocatalysis and photocatalysis (immersed lamp) known as sonophotocatalysis (3 L capacity). The efficiency of decolorization is further improved in the presence of various additives viz. copper oxide, zinc oxide, and sodium chloride. The maximum decolorization of brilliant green (BG) (94.8% in 120 min) obtained in the presence of zinc oxide. The total organic carbon of the treated samples was measured to monitor complete mineralization of BG. The sonophotocatalytic process (in the presence of zinc oxide) shows maximum mineralization. Synergic combination of two oxidation processes increased the production of oxidizing radicals. Continuous cleaning of catalyst surface (due to sonolysis effect) improves the activity of the catalyst for photolysis operation. The present work is highly useful for the development of a sonophotocatalytic process.

  10. Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Directory of Open Access Journals (Sweden)

    Mike Collier

    2011-11-01

    Full Text Available A dielectric barrier discharge excited neutral argon (Ar I excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV emission at 126 nm and near infrared (NIR lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from de-excitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar.

  11. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    International Nuclear Information System (INIS)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-01-01

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I 2 /KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I 2 /KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe 4 BTBP showed good removal of mercury, with an

  12. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tunsu, Cristian, E-mail: tunsu@chalmers.se; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-15

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I{sub 2}/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I{sub 2}/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe{sub 4}BTBP showed good removal of mercury

  13. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... Due to disadvantages of known ... advantages, as compared to traditional diagnostic methods like ... Products of LAMP reaction are DNA fragments with stemloop ..... "Differentiation of Cryptococcus neoformans varieties and.

  14. Evaluation and improvement of LAMP assays for detection of ...

    African Journals Online (AJOL)

    ... principle of the reaction per- formed by a DNA polymerase with strand displacement ... target sequence in the later stage of the LAMP reaction. Under an isothermal ..... Mutation detec- tion and single-molecule counting using isothermal roll-.

  15. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Langhans, R.W. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. This report describes the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses. Growth Chambers are small (3m x 4/m and smaller) walk-in or reach-in enclosures with programmable, accurate temperature, relative humidity (RH) and irradiance control over wide ranges. The intent of growth chambers was to replicate sunlight conditions and transfer research results directly to the greenhouse or outside. It was realized that sunlight and outside conditions could not be mimicked. Growth chambers are also used to study irradiance and spectral fluxes. Growth Rooms are usually large rooms (larger than 3m x 4m) with only lamp irradiance, but providing relatively limited ranges of environmental control (i.e., 10 to 30 C temperature, 50 to 90% RH and ambient to 1000 ppm CO{sub 2}), and commonly independent of outside conditions. Irradiance requirements for growth rooms are similar to those of growth chambers. Growth rooms are also used for growing a large number of plants in a uniform standard environment condition and in commercial horticulture for tissue culture, seed germination (plugs) and seedling growth. Greenhouses are designed to allow maximum sunlight penetration through the structure. Initially greenhouses were used to extend the growing season. Then as heating systems, and cooling systems improved, they were used year round. Low light during the winter months reduced plant growth, but with the advent of efficient lamps (HID and fluorescent) it became possible to increase growth to rates close to that in summer months. Supplementary lighting is used during low light periods of the year and anytime to ensure consistent total daily irradiance for research plants.

  16. Xenon and/or leds and eadlamps

    Directory of Open Access Journals (Sweden)

    Csaba Blaga

    2011-12-01

    Full Text Available This paper presents the operation and specification of gaseous discharge lamps and light emitting diodes applied at the headlamps of road vehicles. On the end it is presented a comparison of different light sources.

  17. Development of a new water sterilization device with a 365 nm UV-LED.

    Science.gov (United States)

    Mori, Mirei; Hamamoto, Akiko; Takahashi, Akira; Nakano, Masayuki; Wakikawa, Noriko; Tachibana, Satoko; Ikehara, Toshitaka; Nakaya, Yutaka; Akutagawa, Masatake; Kinouchi, Yohsuke

    2007-12-01

    Ultraviolet (UV) irradiation is an effective disinfection method. In sterilization equipment, a low-pressure mercury lamp emitting an effective germicidal UVC (254 nm) is used as the light source. However, the lamp, which contains mercury, must be disposed of at the end of its lifetime or following damage due to physical shock or vibration. We investigated the suitability of an ultraviolet light-emitting diode at an output wavelength of 365 nm (UVA-LED) as a sterilization device, comparing with the other wavelength irradiation such as 254 nm (a low-pressure mercury lam) and 405 nm (LED). We used a commercially available UVA-LED that emitted light at the shortest wavelength and at the highest output energy. The new sterilization system using the UVA-LED was able to inactivate bacteria, such as Escherichia coli DH5 alpha, Enteropathogenic E. coli, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella enterica serovar Enteritidis. The inactivations of the bacteria were dependent on the accumulation of UVA irradiation. Taking advantage of the safety and compact size of LED devices, we expect that the UVA-LED sterilization device can be developed as a new type of water sterilization device.

  18. Assessment of LED Technology in Ornamental Post-Top Luminaires (Host Site: Sacramento, CA)

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.

    2011-12-01

    The DOE Municipal Solid-State Street Lighting Consortium has evaluated four different LED replacements for existing ornamental post-top street lights in Sacramento, California. The project team was composed of the City and its consultant, PNNL (representing the Consortium), and the Sacramento Municipal Utility District. Product selection was finalized in March 2011, yielding one complete luminaire replacement and three lamp-ballast retrofit kits. Computer simulations, field measurements, and laboratory testing were performed to compare the performance and cost-effectiveness of the LED products relative to the existing luminaire with 100 W high-pressure sodium lamp. After it was confirmed the LED products were not equivalent to HPS in terms of initial photopic illumination, the following parameters were scaled proportionally to enable equitable (albeit hypothetical) comparisons: light output, input wattage, and pricing. Four replacement scenarios were considered for each LED product, incorporating new IES guidance for mesopic multipliers and lumen maintenance extrapolation, but life cycle analysis indicated cost effectiveness was also unacceptable. Although LED efficacy and pricing continue to improve, this project serves as a timely and objective notice that LED technology may not be quite ready yet for such applications.

  19. Evaluation of an LED Retrofit Project at Princeton University’s Carl Icahn Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murphy, Arthur L. [Princeton Univ., NJ (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-25

    The LED lighting retrofit at the Carl Icahn Laboratory of the Lewis-Sigler Institute for Integrative Genomics was the first building-wide interior LED project at Princeton University, following the University’s experiences from several years of exterior and small-scale interior LED implementation projects. The project addressed three luminaire types – recessed 2x2 troffers, cove and other luminaires using linear T8 fluorescent lamps, and CFL downlights - which combined accounted for over 564,000 kWh of annual energy, over 90% of the lighting energy used in the facility. The Princeton Facilities Engineering staff used a thorough process of evaluating product alternatives before selecting an acceptable LED retrofit solution for each luminaire type. Overall, 815 2x2 luminaires, 550 linear fluorescent luminaires, and 240 downlights were converted to LED as part of this project. Based solely on the reductions in wattage in converting from the incumbent fluorescent lamps to LED retrofit kits, the annual energy savings from the project was over 190,000 kWh, a savings of 37%. An additional 125,000 kWh of energy savings is expected from the implementation of occupancy and task-tuning control solutions, which will bring the total savings for the project to 62%.

  20. Determination of line broadening constants in high pressure discharge lamps

    International Nuclear Information System (INIS)

    Weiss, M; Schubert, H; Meier, S; Born, M; Reiter, D; Stroesser, M

    2005-01-01

    A numerical model of the radiative transfer in high pressure metal halide discharge lamps is used to determine line broadening parameters for atomic scandium lines. The determined broadening constants are in qualitative agreement with theoretical estimates in many cases, but significant deviations exist. The data obtained from this paper can, therefore, be used to further improve modelling of radiative contributions to the energy balance in such types of discharge lamps