WorldWideScience

Sample records for efficiency leaf area

  1. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    Science.gov (United States)

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  2. Geostatistics for Mapping Leaf Area Index over a Cropland Landscape: Efficiency Sampling Assessment

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Haro

    2010-11-01

    Full Text Available This paper evaluates the performance of spatial methods to estimate leaf area index (LAI fields from ground-based measurements at high-spatial resolution over a cropland landscape. Three geostatistical model variants of the kriging technique, the ordinary kriging (OK, the collocated cokriging (CKC and kriging with an external drift (KED are used. The study focused on the influence of the spatial sampling protocol, auxiliary information, and spatial resolution in the estimates. The main advantage of these models lies in the possibility of considering the spatial dependence of the data and, in the case of the KED and CKC, the auxiliary information for each location used for prediction purposes. A high-resolution NDVI image computed from SPOT TOA reflectance data is used as an auxiliary variable in LAI predictions. The CKC and KED predictions have proven the relevance of the auxiliary information to reproduce the spatial pattern at local scales, proving the KED model to be the best estimator when a non-stationary trend is observed. Advantages and limitations of the methods in LAI field predictions for two systematic and two stratified spatial samplings are discussed for high (20 m, medium (300 m and coarse (1 km spatial scales. The KED has exhibited the best observed local accuracy for all the spatial samplings. Meanwhile, the OK model provides comparable results when a well stratified sampling scheme is considered by land cover.

  3. Leaf area prediction models for Tsuga canadensis in Maine

    Science.gov (United States)

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  4. Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. under different soil moisture levels near Nairobi, Kenya

    NARCIS (Netherlands)

    Muniafu, M.M.; Macharia, J.N.M.; Stigter, C.J.; Coulson, G.L.

    1999-01-01

    Leaf area development, dry weight accumulation and solar energy conversion efficiencies of Phaseolus vulgaris L. cv GLP-2 under two soil moisture levels in two contrasting seasons near Nairobi, Kenya were investigated. The experiment confirms that dry weights and yields of Phaseolus vulgaris are

  5. Efficient retrieval of vegetation leaf area index and canopy clumping factor from satellite data to support pollutant deposition assessments

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl

    2006-01-01

    Canopy leaf area index (LAI) is an important structural parameter of the vegetation controlling pollutant uptake by terrestrial ecosystems. This paper presents a computationally efficient algorithm for retrieval of vegetation LAI and canopy clumping factor from satellite data using observed Simple Ratios (SR) of near-infrared to red reflectance. The method employs numerical inversion of a physics-based analytical canopy radiative transfer model that simulates the bi-directional reflectance distribution function (BRDF). The algorithm is independent of ecosystem type. The method is applied to 1-km resolution AVHRR satellite images to retrieve a geo-referenced data set of monthly LAI values for the conterminous USA. Satellite-based LAI estimates are compared against independent ground LAI measurements over a range of ecosystem types. Verification results suggest that the new algorithm represents a viable approach to LAI retrieval at continental scale, and can facilitate spatially explicit studies of regional pollutant deposition and trace gas exchange. - The paper presents a physics-based algorithm for retrieval of vegetation LAI and canopy-clumping factor from satellite data to assist research of pollutant deposition and trace-gas exchange. The method is employed to derive a monthly LAI dataset for the conterminous USA and verified at a continental scale

  6. Efficient retrieval of vegetation leaf area index and canopy clumping factor from satellite data to support pollutant deposition assessments

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, Ned [Natural Resource Research Center, 2150 Centre Avenue, Building A, Room 368, Fort Collins, CO 80526 (United States)]. E-mail: nnikolov@fs.fed.us; Zeller, Karl [USDA FS Rocky Mountain Research Station, 240 W. Prospect Road, Fort Collins, CO 80526 (United States)]. E-mail: kzeller@fs.fed.us

    2006-06-15

    Canopy leaf area index (LAI) is an important structural parameter of the vegetation controlling pollutant uptake by terrestrial ecosystems. This paper presents a computationally efficient algorithm for retrieval of vegetation LAI and canopy clumping factor from satellite data using observed Simple Ratios (SR) of near-infrared to red reflectance. The method employs numerical inversion of a physics-based analytical canopy radiative transfer model that simulates the bi-directional reflectance distribution function (BRDF). The algorithm is independent of ecosystem type. The method is applied to 1-km resolution AVHRR satellite images to retrieve a geo-referenced data set of monthly LAI values for the conterminous USA. Satellite-based LAI estimates are compared against independent ground LAI measurements over a range of ecosystem types. Verification results suggest that the new algorithm represents a viable approach to LAI retrieval at continental scale, and can facilitate spatially explicit studies of regional pollutant deposition and trace gas exchange. - The paper presents a physics-based algorithm for retrieval of vegetation LAI and canopy-clumping factor from satellite data to assist research of pollutant deposition and trace-gas exchange. The method is employed to derive a monthly LAI dataset for the conterminous USA and verified at a continental scale.

  7. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  8. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    Science.gov (United States)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  9. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf

  10. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  11. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  12. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  13. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effect of water stress on carbon isotope discrimination and its relationship with transpiration efficiency and specific leaf area in Cenchrus species.

    Science.gov (United States)

    Dubey, Archana; Chandra, Amaresh

    2008-05-01

    Carbon isotope discrimination (CID) has been proposed in estimating transpiration efficiency (TE) in plants indirectly To identify variations for TE and specific leaf area (SLA) and their association with CID, a glasshouse experiment was conducted using six prominent species of Cenchrus. A significant increase in TE (3.50 to 3.87 g kg(-1)) and decrease in SLA (219.50 to 207.99 cm2 g(-1)) and CID (13.72 to 13.23% per hundred) was observed from well watered to stress condition. Results indicated a direct relationship of SLA with CID (r = 0.511* and 0.544*) and inverse relationship between TE and CID (r = -0.229 and -0.270) However the relationship of TE with CID was insignificant. A positive and significant relationship was visualized between TE and dry matter production in both control (r = 0.917**) and stress (0.718**) treatments. Relationships of total dry matter with SLA and CID were monitored insignificant and negative in control and positive in stress treatment indicated difference in dry matter production under two treatments. It seems that, in Cenchrus species, CID was influenced more by the photosynthetic capacity than by stomatal conductance, as indicated by its positive relationship with SLAin both control (r = 0.511) and stress (r = 0.544) conditions and negative relationship with root dry matter production under control (r = -0.921**) and stress (r = -0.919***) condition. Results showed good correspondence between CID and SLA, indicating that lines having high TE and biomass production can be exploited for their genetic improvement for drought.

  15. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  16. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  17. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  18. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  19. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  20. Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less

    Directory of Open Access Journals (Sweden)

    MC. Souza

    Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.

  1. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  2. Effect of weed control treatments on total leaf area of plantation black walnut (Juglans nigra)

    Science.gov (United States)

    Jason Cook; Michael R. Saunders

    2013-01-01

    Determining total tree leaf area is necessary for describing tree carbon balance, growth efficiency, and other measures used in tree-level and stand-level physiological growth models. We examined the effects of vegetation control methods on the total leaf area of sapling-size plantation black walnut trees using allometric approaches. We found significant differences in...

  3. Sapwood area - leaf area relationships for coast redwood

    OpenAIRE

    Stancioiu, P T; O'Hara, K L

    2005-01-01

    Coast redwood (Sequoia sempervirens (D. Don) Endl.) trees in different canopy strata and crown positions were sampled to develop relationships between sapwood cross-sectional area and projected leaf area. Sampling occurred during the summers of 2000 and 2001 and covered tree heights ranging from 7.7 to 45.2 m and diameters at breast height ranging from 9.4 to 92.7 cm. Foliage morphology varied greatly and was stratified into five types based on needle type (sun or shade) and twig color. A str...

  4. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Science.gov (United States)

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  5. Leaf transpiration efficiency of some drought-resistant maize lines

    Science.gov (United States)

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  6. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  7. Simple models for predicting leaf area of mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Maryam Ghoreishi

    2012-01-01

    Full Text Available Mango (Mangifera indica L., one of the most popular tropical fruits, is cultivated in a considerable part of southern Iran. Leaf area is a valuable parameter in mango research, especially plant physiological and nutrition field. Most of available methods for estimating plant leaf area are difficult to apply, expensive and destructive which could in turn destroy the canopy and consequently make it difficult to perform further tests on the same plant. Therefore, a non-destructive method which is simple, inexpensive, and could yield an accurate estimation of leaf area will be a great benefit to researchers. A regression analysis was performed in order to determine the relationship between the leaf area and leaf width, leaf length, dry and fresh weight. For this purpose 50 mango seedlings of local selections were randomly took from a nursery in the Hormozgan province, and different parts of plants were separated in laboratory. Leaf area was measured by different method included leaf area meter, planimeter, ruler (length and width and the fresh and dry weight of leaves were also measured. The best regression models were statistically selected using Determination Coefficient, Maximum Error, Model Efficiency, Root Mean Square Error and Coefficient of Residual Mass. Overall, based on regression equation, a satisfactory estimation of leaf area was obtained by measuring the non-destructive parameters, i.e. number of leaf per seedling, length of the longest and width of widest leaf (R2 = 0.88 and also destructive parameters, i.e. dry weight (R2 = 0.94 and fresh weight (R2= 0.94 of leaves.

  8. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non

  9. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  10. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  11. Optimal allocation of leaf epidermal area for gas exchange

    OpenAIRE

    de Boer, Hugo J.; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2016-01-01

    Summary A long?standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of ...

  12. CO2 and temperature effects on leaf area production in two annual plant species

    International Nuclear Information System (INIS)

    Ackerly, D.D.; Coleman, J.S.; Morse, S.R.; Bazzaz, F.A.

    1992-01-01

    The authors studied leaf area production in two annual plant species, Abutilon theophrasti and Amaranthus retroflexus, under three day/night temperature regimes and two concentrations of carbon dioxide. The production of whole-plant leaf area during the first 30 d of growth was analyzed in terms of the leaf initiation rate, leaf expansion, individual leaf area, and, in Amaranthus, production of branch leaves. Temperature and CO 2 influenced leaf area production through effects on the rate of development, determined by the production of nodes on the main stem, and through shifts in the relationship between whole-plant leaf area and the number of main stem nodes. In Abutilon, leaf initiation rate was highest at 38 degree, but area of individual leaves was greatest at 28 degree. Total leaf area was greatly reduced at 18 degree due to slow leaf initiation rates. Elevated CO 2 concentration increased leaf initiation rate at 28 degree, resulting in an increase in whole-part leaf area. In Amaranthus, leaf initiation rate increased with temperature, and was increased by elevated CO 2 at 28 degree. Individual leaf area was greatest at 28 degree, and was increased by elevated CO 2 at 28 degree but decreased at 38 degree. Branch leaf area displayed a similar response to CO 2 , butt was greater at 38 degree. Overall, wholeplant leaf area was slightly increased at 38 degree relative to 28 degree, and elevated CO 2 levels resulted in increased leaf area at 28 degree but decreased leaf area at 38 degree

  13. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees

    International Nuclear Information System (INIS)

    Räsänen, Janne V.; Holopainen, Toini; Joutsensaari, Jorma; Ndam, Collins; Pasanen, Pertti; Rinnan, Åsmund; Kivimäenpää, Minna

    2013-01-01

    Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris. -- Highlights: • Coniferous Scots pine was the most efficient particle collector. • Decreasing single leaf size increases particle deposition of the total leaf area. • Hairiness of the leaf increases particle deposition. -- Trees can improve air quality by removing PM 2.5 pollutants carried on the wind at a velocity of 3 m s −1 , the efficiency of which depends on species leaf characteristics and physical factors

  14. Leaf area estimation of cassava from linear dimensions

    Directory of Open Access Journals (Sweden)

    SAMARA ZANETTI

    2017-08-01

    Full Text Available ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70.

  15. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  16. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    Science.gov (United States)

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  17. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  18. The Design and Implementation of the Leaf Area Index Sensor

    Directory of Open Access Journals (Sweden)

    Xiuhong Li

    2015-03-01

    Full Text Available The quick and accurate acquisition of crop growth parameters on a large scale is important for agricultural management and food security. The combination of photographic and wireless sensor network (WSN techniques can be used to collect agricultural information, such as leaf area index (LAI, over long distances and in real time. Such acquisition not only provides farmers with photographs of crops and suggestions for farmland management, but also the collected quantitative parameters, such as LAI, can be used to support large scale research in ecology, hydrology, remote sensing, etc. The present research developed a Leaf Area Index Sensor (LAIS to continuously monitor the growth of crops in several sampling points, and applied 3G/WIFI communication technology to remotely collect (and remotely setup and upgrade crop photos in real-time. Then the crop photos are automatically processed and LAI is estimated based on the improved leaf area index of Lang and Xiang (LAILX algorithm in LAIS. The research also constructed a database of images and other information relating to crop management. The leaf length and width method (LAILLW can accurately measure LAI through direct field harvest. The LAIS has been tested in several exemplary applications, and validation with LAI from LAILLW. The LAI acquired by LAIS had been proved reliable.

  19. Non-destructive equations to estimate the leaf area of Styrax pohlii and Styrax ferrugineus

    Directory of Open Access Journals (Sweden)

    MC Souza

    Full Text Available We developed linear equations to predict the leaf area (LA of the species Styrax pohlii and Styrax ferrugineus using the width (W and length (L leaf dimensions. For both species the linear regression (Y=α+bX using LA as a dependent variable vs. W × L as an independent variable was more efficient than linear regressions using L, W, L2 and W2 as independent variables. Therefore, the LA of S. pohlii can be estimated with the equation LA=0.582+0.683WL, while the LA of S. ferrugineus follows the equation LA=−0.666+0.704WL.

  20. Models for leaf area estimation in dwarf pigeon pea by leaf dimensions

    Directory of Open Access Journals (Sweden)

    Rafael Vieira Pezzini

    2018-03-01

    Full Text Available ABSTRACT This study aims to determine the most suitable model to estimate the leaf area of dwarf pigeon pea in function of the leaf central leaflet dimension. Six samplings of 200 leaves were performed in the first experiment, at 36, 42, 50, 56, 64, and 72 days after emergence (DAE. In the second experiment, seven samplings of 200 leaves were performed at 29, 36, 43, 49, 57, 65, and 70 DAE, totaling 2600 leaves. The length (L and width (W of the central leaflet were measured in all leaves composed by left, central, and right leaflets, the product of length times width (LW was calculated, and the leaf area (Y – sum of left, central, and right leaflet areas was determined by digital images. Linear, power, quadratic, and cubic models of Y as function of L, W, and LW were built using data from the second experiment. Leaves from the first experiment were used to validate the models. In dwarf pigeon pea, the linear (Ŷ = – 0.4088 + 1.6669x, R2 = 0.9790 is preferable, but power (Ŷ = 1.6097x1.0065, R2 = 0.9766, quadratic (Ŷ = – 0.3625 + 1.663x + 0.00007x2, R2 = 0.9790, and cubic (Ŷ = 0.7216 + 1.522x + 0.005x2 – 5E–05x3, R2 = 0.9791 models in function of LW are also suitable to estimate the leaf area obtained by digital images. The power model (Ŷ = 5.2508x1.7868, R2 = 0.95 based on the central leaflet width is less laborious because requires only one variable, but it presents accuracy reduction.

  1. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  2. Climate influences the leaf area/sapwood area ratio in Scots pine.

    Science.gov (United States)

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  3. Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?

    Directory of Open Access Journals (Sweden)

    Shuyan Lin

    2018-05-01

    Full Text Available The principle of similarity (Thompson, 1917 states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A, density (ρ, length (L, thickness (T, and weight (W. Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.

  4. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  5. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Science.gov (United States)

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  6. DETERMINATION OF LEAF AREA AND PLANT COVER BY USING DIGITAL IMAGE PROCESSING

    OpenAIRE

    LŐKE, ZS.; SOÓS, G.

    2002-01-01

    The development of different crop models, and crop simulation models in particular, pointed out the importance of quantifying the exact value of the leaf area. To measure the leaf size of plants of pinnatifid form, automatic, portable leaf area meters are necessary. In most places these instruments are not available to measure the assimilatory surface size of crops with special leaf shapes. Any cheap and effective method, that could replace the application of expensive portable area meters co...

  7. Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2016-01-01

    Leaf dry matter content (LDMC) and specific leaf area (SLA) are two important traits in measuring biodiversity. To use remote sensing for the estimation of these traits, it is essential to understand the underlying factors that influence their relationships with canopy reflectance. The effect of

  8. Antibacterial, Antibiofilm Effect of Burdock (Arctium lappa L.) Leaf Fraction and Its Efficiency in Meat Preservation.

    Science.gov (United States)

    Lou, Zaixiang; Li, Cheng; Kou, Xingran; Yu, Fuhao; Wang, Hongxin; Smith, Gary M; Zhu, Song

    2016-08-01

    First, the antibacterial, antibiofilm effect and chemical composition of burdock (Arctium lappa L.) leaf fractions were studied. Then, the efficiency of burdock leaf fractions in pork preservation was evaluated. The results showed that burdock leaf fraction significantly inhibited the growth and biofilm development of Escherichia coli and Salmonella Typhimurium. MICs of burdock leaf fractions on E. coli and Salmonella Typhimurium were both 2 mg/ml. At a concentration of 2.0 mg/ml, the inhibition rates of the fraction on growth and development of E. coli and Salmonella Typhimurium biofilms were 78.7 and 69.9%, respectively. During storage, the log CFU per gram of meat samples treated with burdock leaf fractions decreased 2.15, compared with the samples without treatment. The shelf life of pork treated with burdock leaf fractions was extended 6 days compared with the pork without treatment, and the sensory property was obviously improved. Compared with the control group, burdock leaf fraction treatment significantly decreased the total volatile basic nitrogen value and pH of the meat samples. Chemical composition analysis showed that the burdock leaf fraction consisted of chlorogenic acid, caffeic acid, p-coumaric acid, rutin, cynarin, crocin, luteolin, arctiin, and quercetin. As a vegetable with an abundant source, burdock leaf is safe, affordable, and efficient in meat preservation, indicating that burdock leaf fraction is a promising natural preservative for pork.

  9. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    Science.gov (United States)

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  10. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  11. Estimating the total leaf area of the green dwarf coconut tree (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Sousa Elias Fernandes de

    2005-01-01

    Full Text Available Leaf area has significant effect on tree transpiration, and its measurement is important to many study areas. This work aimed at developing a non-destructive, practical, and empirical method to estimate the total leaf area of green dwarf coconut palms (Cocos nucifera L. in plantations located at the northern region of Rio de Janeiro state, Brazil. A mathematical model was developed to estimate total leaf area values (TLA as function of the average lengths of the last three leaf raquis (LR3, and of the number of leaves in the canopy (NL. The model has satisfactory degree of accuracy for agricultural engineering purposes.

  12. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  13. Measurement and comparison of remotely derived leaf area index predictors

    Science.gov (United States)

    Jensen, Ryan Russell

    Environmental change occurs in response to both natural and anthropogenic causes. As the world's human population continues to increase, anthropogenic change will also increase. These changes affect the health and vigor of forests throughout the world, including those in north central Florida. Leaf Area Index (LAI), the amount of leaf area per unit ground area, is an important biophysical variable that is directly related to rates of atmospheric gas exchange, biomass partitioning, and productivity. While global and local models that map biophysical parameters are prevalent in the literature, landscape to regional scale models are less common. Therefore, the ability to map and monitor LAI over landscape to regional scale areas is essential for understanding medium scale biophysical properties and how these properties affect biogeochemical cycling, biomass accumulation, and primary productivity. This study develops and verifies several new models to estimate LAI using in situ field measurements throughout north central Florida, Landsat Thematic Mapper remotely sensed imagery, remotely derived vegetation indices, simple and multiple regression, and artificial neural networks (ANNs). This study concludes that while multiple band regression and regression with individual vegetation indices (Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index, Simple Ratio, and Greenness Vegetation Index) can estimate LAI, the most accurate way to estimate regional scale LAI is to train an ANN using in situ LAI data and remote sensing brightness values measured from six different portions of the electromagnetic spectrum. The new ANN method of estimating LAI is then applied to two forest ecology studies. The first study analyzes LAI in longleaf pine/turkey oak sandhills as a function of time since last burn. It concludes that in the absence of fire, sandhill LAI increases, and this may be useful for identifying where prescribed burns need to be done. The second study

  14. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Evaluation of four methods for estimating leaf area of isolated trees

    Science.gov (United States)

    P.J. Peper; E.G. McPherson

    2003-01-01

    The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...

  16. Measurements methods and variability assesment of the Norway spruce total leaf area. Implications for remote sensing

    Czech Academy of Sciences Publication Activity Database

    Homolová, L.; Lukeš, Petr; Malenovský, Z.; Lhotáková, Z.; Kaplan, Věroslav; Hanuš, Jan

    2013-01-01

    Roč. 27, č. 1 (2013), s. 111-121 ISSN 0931-1890 R&D Projects: GA ČR GA205/09/ 1989 Institutional support: RVO:67179843 Keywords : chlorophyll content * conversion factor * Picea abies * projected leaf area * remote sensing * total leaf area Subject RIV: EH - Ecology, Behaviour Impact factor: 1.869, year: 2013

  17. Mapping of QTLs for leaf area and the association with winter ...

    African Journals Online (AJOL)

    Variations in plant architecture are often associated with the ability of plants to survive cold stress during winter. In studies of winter hardiness in lentil, it appeared that small leaf area was associated with improved winter survival. Based on this observation, the inheritance of leaf area and the relationship with winter ...

  18. Worldwide Historical Estimates of Leaf Area Index, 1932-2000

    Science.gov (United States)

    Scurlock, J. M. O.; Asner, G. P.; Gower, S. T.

    2001-01-01

    Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 and other vegetation parameters. The LA1 data are linked to a bibliography of over 300 originalsource references.This report documents the development of this data set, its contents, and its availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which were collected using a wide range of methodologies and assumptions that may not allow comparisons among sites.

  19. Leaf storage conditions and genomic DNA isolation efficiency in ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Full Length Research Paper. Leaf storage ... 2006; Chen and Yang, 2004; Nan et al., 2003; Ipek and. Madison, 2001 ... the same function of pure DNA isolation. These are .... eppendorf tube and then dropped in liquid nitrogen for 2 min. The weighed ..... the solubility of polysaccharides in ethanol, effectively.

  20. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  1. BIOMONITORING OF URBAN AREA BY ANATOMICAL LEAF CHANGES

    Directory of Open Access Journals (Sweden)

    Elena IRIZA

    2012-01-01

    Full Text Available Plants play a vital role as indicators of pollution. The automobile emissions are high particularly at the traffic intersections. Plants growing under the stress of air pollution show differences in leaf surface characteristics. Light microscopic studies of leaf surface revealed an increase in the number of stomata and trichomes of polluted populations in comparison to control populations of Plantago major and Plantago lanceolata. These changes can be considered as indicators of environmental stress.

  2. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... properties. Leaf WUE and its variability and dependencies were assessed using leafgas-exchange measurements obtained during two growing seasons, 1999 and 2000, at the Soroe beech forest study site on Zealand in Denmark. It was found that the VPD-normalized leaf WUE, WUEnormleaf, although dependent...

  3. Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency

    International Nuclear Information System (INIS)

    Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang

    2011-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle 3 planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle 3 planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan quality

  4. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe

    NARCIS (Netherlands)

    Petit, Giai; Arx, von Georg; Kiorapostolou, Natasa; Lechthaler, Silvia; Prendin, Angela Luisa; Anfodillo, Tommaso; Caldeira, Maria C.; Cochard, Hervé; Copini, Paul; Crivellaro, Alan; Delzon, Sylvain; Gebauer, Roman; Gričar, Jožica; Grönholm, Leila; Hölttä, Teemu; Jyske, Tuula; Lavrič, Martina; Lintunen, Anna; Lobo-do-Vale, Raquel; Peltoniemi, Mikko; Peters, Richard L.; Robert, Elisabeth M.R.; Roig Juan, Sílvia; Senfeldr, Martin; Steppe, Kathy; Urban, Josef; Camp, Van Janne; Sterck, Frank

    2018-01-01

    Trees scale leaf (AL) and xylem (AX) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL: AX balance in response to climate conditions, but whether trees of different species acclimate in AL: AX in similar ways over their entire

  5. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    Science.gov (United States)

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  6. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests

    Science.gov (United States)

    Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...

  7. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Science.gov (United States)

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  8. Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales

    DEFF Research Database (Denmark)

    Wu, Xiaocui; Ju, Weimin; Zhou, Yanlian

    2015-01-01

    The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear...... two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL...

  9. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.

    Directory of Open Access Journals (Sweden)

    Lijun Su

    Full Text Available Simulation models of leaf area index (LAI and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm. In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.

  10. Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species

    NARCIS (Netherlands)

    Fan, Ze Xin; Sterck, Frank; Zhang, Shi Bao; Fu, Pei Li; Hao, Guang You

    2017-01-01

    Leaf-stem allometry is an important spectrum that linked to biomass allocation and life history strategy in plants, although the determinants and evolutionary significance of leaf-stem allometry remain poorly understood. Leaf and stem architectures - including stem area/mass, petiole area/mass,

  11. Worldwide Historical Estimates of Leaf Area Index, 1932-2000

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, JMO

    2002-02-06

    Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 and other vegetation parameters. The LA1 data are linked to a bibliography of over 300 original source references. These historic LA1 data are mostly from natural and seminatural (managed) ecosystems, although some agricultural estimates are also included. Although methodologies for determining LA1 have changed over the decades, it is useful to represent the inconsistencies (e.g., in maximum value reported for a particular biome) that are actually found in the scientific literature. Needleleaf (coniferous) forests are by far the most commonly measured biome/land cover types in this compilation, with 22% of the measurements from temperate evergreen needleleaf forests, and boreal evergreen needleleaf forests and crops the next most common (about 9% each). About 40% of the records in the data set were published in the past 10 years (1991-2000), with a further 20% collected between 1981 and 1990. Mean LAI ({+-} standard deviation), distributed between 15 biome/land cover classes, ranged from 1.31 {+-} 0.85 for deserts to 8.72 {+-} 4.32 for tree plantations, with evergreen forests (needleleaf and broadleaf) displaying the highest LA1 among the natural terrestrial vegetation classes. We have identified statistical outliers in this data set, both globally and according to the different biome/land cover classes, but despite some decreases in mean LA1 values reported

  12. Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L.

    NARCIS (Netherlands)

    Swart, de E.A.M.; Groenwold, R.; Kanne, H.J.; Stam, P.; Marcelis, L.F.M.; Voorrips, R.E.

    2004-01-01

    Accurate measurements of leaf area are important for agronomic and physiological studies. To be able to perform repeated measurements of leaf area on single (genetically unique) plants, a method was developed to estimate leaf area from non-destructive measurements in Capsicum annuum L. independent

  13. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    Science.gov (United States)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  14. Variability in leaf surface features and water efficiency utilisation in ...

    African Journals Online (AJOL)

    The C4 form was found to be more efficient with respect to water utilization efficiency. Keywords: alloteropsis semialata; botany; characteristics; distribution; grasses; leaves; photosynthetic rate; plant physiology; south africa; stomatal resistance; transpiration rate; transvaal highveld; water use efficiency; water utilization ...

  15. Leaf Area Prediction Using Three Alternative Sampling Methods for Seven Sierra Nevada Conifer Species

    Directory of Open Access Journals (Sweden)

    Dryw A. Jones

    2015-07-01

    Full Text Available Prediction of projected tree leaf area using allometric relationships with sapwood cross-sectional area is common in tree- and stand-level production studies. Measuring sapwood is difficult and often requires destructive sampling. This study tested multiple leaf area prediction models across seven diverse conifer species in the Sierra Nevada of California. The best-fit whole tree leaf area prediction model for overall simplicity, accuracy, and utility for all seven species was a nonlinear model with basal area as the primary covariate. A new non-destructive procedure was introduced to extend the branch summation approach to leaf area data collection on trees that cannot be destructively sampled. There were no significant differences between fixed effects assigned to sampling procedures, indicating that data from the tested sampling procedures can be combined for whole tree leaf area modeling purposes. These results indicate that, for the species sampled, accurate leaf area estimates can be obtained through partially-destructive sampling and using common forest inventory data.

  16. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Science.gov (United States)

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  17. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?

    Science.gov (United States)

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.

  18. Effects of spring prescribed fire on short-term, leaf-level photosynthesis and water use efficiency in longleaf pine

    Science.gov (United States)

    John K. Jackson; Dylan N. Dillaway; Michael C. Tyree; Mary Anne Sword Sayer

    2015-01-01

    Fire is a natural and important environmental disturbance influencing the structure, function, and composition of longleaf pine (Pinus palustris Mill.) ecosystems. However, recovery of young pines to leaf scorch may involve changes in leaf physiology, which could influence leaf water-use efficiency (WUE). This work is part of a larger seasonal...

  19. LBA-ECO CD-04 Leaf Area Index, km 83 Tower Site, Tapajos National Forest, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Leaf area index was estimated in an 18 ha plot at the logged forest tower site, km 83, Tapajos National Forest, Para, Brazil. The plot was adjacent to the...

  20. LBA-ECO CD-04 Leaf Area Index, km 83 Tower Site, Tapajos National Forest, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — Leaf area index was estimated in an 18 ha plot at the logged forest tower site, km 83, Tapajos National Forest, Para, Brazil. The plot was adjacent to the eddy flux...

  1. SAFARI 2000 Leaf Area Measurements at the Mongu Tower Site, Zambia, 2000-2002

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Data from the LAI-2000 instrument were processed to determine the leaf area index (LAI) at the EOS Validation Core Site in Kataba Local Forest,...

  2. BigFoot Leaf Area Index Surfaces for North and South American Sites, 2000-2003

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The BigFoot project gathered leaf area index (LAI) data for nine EOS Land Validation Sites located from Alaska to Brazil from 2000 to 2003. Each site is...

  3. ISLSCP II Leaf Area Index (LAI) from Field Measurements, 1932-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Leaf Area Index (LAI) data from the scientific literature, covering the period from 1932-2000, have been compiled at the Oak Ridge National Laboratory...

  4. AfSIS MODIS Collection: Leaf Area Index - FPAR, 2012 Release

    Data.gov (United States)

    Center for International Earth Science Information Network, Columbia University — The Africa Soil Information Service (AfSIS) Moderate Resolution Imaging Spectroradiometer (MODIS) Collection Leaf Area Index (LAI) and Photosynthetically Active...

  5. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species.

    Science.gov (United States)

    Calvo-Alvarado, J C; McDowell, N G; Waring, R H

    2008-11-01

    We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.

  6. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    Science.gov (United States)

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  7. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  8. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  9. The relationship between tree height and leaf area: sapwood area ratio.

    Science.gov (United States)

    McDowell, N; Barnard, H; Bond, B; Hinckley, T; Hubbard, R; Ishii, H; Köstner, B; Magnani, F; Marshall, J; Meinzer, F; Phillips, N; Ryan, M; Whitehead, D

    2002-06-01

    The leaf area to sapwood area ratio (A l :A s ) of trees has been hypothesized to decrease as trees become older and taller. Theory suggests that A l :A s must decrease to maintain leaf-specific hydraulic sufficiency as path length, gravity, and tortuosity constrain whole-plant hydraulic conductance. We tested the hypothesis that A l :A s declines with tree height. Whole-tree A l :A s was measured on 15 individuals of Douglas-fir (Pseudotsuga menziesii var. menziesii) ranging in height from 13 to 62 m (aged 20-450 years). A l :A s declined substantially as height increased (P=0.02). Our test of the hypothesis that A l :A s declines with tree height was extended using a combination of original and published data on nine species across a range of maximum heights and climates. Meta-analysis of 13 whole-tree studies revealed a consistent and significant reduction in A l :A s with increasing height (P<0.05). However, two species (Picea abies and Abies balsamea) exhibited an increase in A l :A s with height, although the reason for this is not clear. The slope of the relationship between A l :A s and tree height (ΔA l :A s /Δh) was unrelated to mean annual precipitation. Maximum potential height was positively correlated with ΔA l :A s /Δh. The decrease in A l :A s with increasing tree size that we observed in the majority of species may be a homeostatic mechanism that partially compensates for decreased hydraulic conductance as trees grow in height.

  10. Area-based management and fishing efficiency

    NARCIS (Netherlands)

    Marchal, P.; Ulrich, C.; Pastoors, M.

    2002-01-01

    The scope of this study is to investigate the extent to which area-based management may have influenced the fishing efficiency of the Danish and Dutch demersal fleets harvesting cod, plaice and sole in the North Sea. Special consideration is given to the `plaice box', a restricted area where fishing

  11. Leaf transpiration efficiency in corn varieties grown at elevated carbon dioxide

    Science.gov (United States)

    Higher leaf transpiration efficiency (TE) without lower photosynthesis has been identified in some varieties of corn in field tests, and could be a useful trait to improve yield under dry conditions without sacrificing yield under favorable conditions. However, because the carbon dioxide concentrat...

  12. Leaf transpiration efficiency of sweet corn varieties from three eras of breeding

    Science.gov (United States)

    When measured under midday field conditions, modern varieties of corn often have sub-stomatal concentrations of carbon dioxide in excess of those required to saturate photosynthesis. This results in lower leaf transpiration efficiency, the ratio of photosynthesis to transpiration, than potentially ...

  13. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    Science.gov (United States)

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  14. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship.

    Science.gov (United States)

    Pincebourde, Sylvain; Frak, Ela; Sinoquet, Hervé; Regnard, Jean Luc; Casas, Jérôme

    2006-12-01

    Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.

  15. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    KAUST Repository

    Houborg, Rasmus

    2015-01-19

    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in central Nebraska for the period 2001-2005, demonstrate Chll retrieval with a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD=8.42μgcm-2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 =0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy

  16. Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana

    Science.gov (United States)

    Cassandra L. Kollenberg; Kevin L. O' Hara

    1999-01-01

    Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...

  17. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  18. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    Energy Technology Data Exchange (ETDEWEB)

    Wuytack, Tatiana, E-mail: tatiana.wuytack@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Wuyts, Karen, E-mail: karen.wuyts@ugent.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Van Dongen, Stefan, E-mail: stefan.vandongen@ua.ac.be [Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Baeten, Lander, E-mail: lander.baeten@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Kardel, Fatemeh, E-mail: fatemeh.kardel@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode, Melle (Belgium); Samson, Roeland, E-mail: roeland.samson@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-10-15

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO{sub x} and O{sub 3} concentrations had only a marginal influence. The influence of SO{sub 2} concentration was negligible. Although our data analysis suggests a relationship between SLA and NO{sub x}/O{sub 3} concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: > Leaf characteristics of white willow as possible bio-indicators for air quality. > Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. > Shadow increases specific leaf area. > NO{sub x} and O{sub 3} change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO{sub x} and decreasing O{sub 3} concentration, while leaf asymmetry did not respond to air pollution

  19. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    International Nuclear Information System (INIS)

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-01-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO x and O 3 concentrations had only a marginal influence. The influence of SO 2 concentration was negligible. Although our data analysis suggests a relationship between SLA and NO x /O 3 concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: → Leaf characteristics of white willow as possible bio-indicators for air quality. → Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. → Shadow increases specific leaf area. → NO x and O 3 change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO x and decreasing O 3 concentration, while leaf asymmetry did not respond to air pollution

  20. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    Science.gov (United States)

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Area-based management and fishing efficiency

    DEFF Research Database (Denmark)

    Marchal, P.; Ulrich, Clara; Pastoors, M.

    2002-01-01

    The scope of this study is to investigate the extent to which area-based management may have influenced the fishing efficiency of the Danish and Dutch demersal fleets harvesting cod, plaice and sole in the North Sea. Special consideration is given to the 'plaice box', a restricted area where...... fishing is prohibited to towed-gear fleets of horsepower exceeding 300 hp. An index of fishing power is calculated as the log-ratio between the catch per unit effort (CPUE) of any vessel and some survey abundance index. Annual trends in fishing are calculated as the year-effect derived from a general...... linear model (GLM) analysis of the index of fishing power. The fishing efficiency of Danish gill-netters and, to some extent, Danish seiners, has overall increased inside the 'plaice box', whilst remaining relatively stable outside. However, the fishing efficiency of the other exemption fleets has...

  2. Switchgrass leaf area index and light extinction coefficients

    Science.gov (United States)

    Biomass production simulation modeling for plant species is often dependent upon accurate simulation or measurement of canopy light interception and radiation use efficiency. With the recent interest in converting large tracts of land to biofuel species cropping, modeling vegetative yield with grea...

  3. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Science.gov (United States)

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  4. Rapid regulation of leaf photosynthesis, carbohydrate status and leaf area expansion to maintain growth in irregular light environments

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    to maintain carbohydrate status and growth in unpredictable light environments. Our recent results show rapid regulation of photosynthesis and leaf carbohydrate status to maintain growth and light interception in dynamic light environments when campanula, rose and chrysanthemum were grown in a cost......-efficient light control system. Plant dry matter production was in all cases linear related to DLI, despite changes in daily light duration and light intensity of supplemental light suggesting that DLI is the main limiting factor for the prediction of production time in optimal temperature conditions. The results......Protected plant productions in northern latitudes rely heavily on supplemental light use to extend the number of light hours during the day. To conserve electricity and lower costs, a low-energy input system use supplemental lights preferable during less expensive off-peak hours and turn lighting...

  5. Leaf movement, photosynthesis and resource use efficiency responses to multiple environmental stress in Glycine max (soybean)

    International Nuclear Information System (INIS)

    Rosa, L.M.G.

    1993-01-01

    Increases in the concentration of greenhouse gases in the atmosphere, may cause a significant increase in temperature, with implications for general wind patterns and precipitation. Reductions in stratospheric ozone will result in increased levels of UV-B reaching earth's surface. During their lifetime plants must deal with a variety of co-occurring environmental stresses. Accordingly, studies into plant responses to multiple environmental factors is important to our understanding of limits to their growth, productivity, and distribution. Heliotropic leaf movements are a generalized plant response to environmental stresses, and the pattern of these movements can be altered by resource availability (e.g., water, and nitrogen). Previous greenhouse and field studies have demonstrated damaging effects of UV-B radiation in crop species, including soybean. Documented in this paper are Leaf movement and gas exchange responses of four soybean cultivars with different sensitivity to UV-B radiation to enhanced levels of UV-B, and modifications of these responses caused by water stress and nitrogen fertilization. UV-B radiation had no effect on the patterns of leaf orientation in soybean; however, a ranking of the cultivars based on midday leaf angles was the same as the ranking of these cultivars based on their sensitivity to UV-B radiation. Water and nitrogen altered the leaf movement patterns of soybeans. Gas exchange parameters in all four cultivars responded in a similar fashion to changes in leaf water potential. Reductions in water availability resulted in lower discrimination. Nitrogen fertilization in cv Forrest, also resulted in lower discrimination, especially under low water regimes, indicating a higher water use efficiency for fertilized plants. UV-B radiation resulted in lower discrimination in the UV-B sensitive CNS cultivar, indicating a stronger stomatal limitation to photosynthesis under increased UV-B levels

  6. Morphological analysis of plant density effects on early leaf area growth in maize

    NARCIS (Netherlands)

    Bos, H.J.; Vos, J.; Struik, P.C.

    2000-01-01

    The mechanisms of density-related reduced leaf area per plant in non-tillering maize (Zea mays) were investigated. Maize cv. Luna crops with a wide range of plant densities were grown in the field at Wageningen for two years. Half of the plots were shaded (50% transmittance). Detailed measurements

  7. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Science.gov (United States)

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  8. Predictive equations for dimensions and leaf area of coastal Southern California street trees

    Science.gov (United States)

    P.J. Peper; E.G. McPherson; S.M. Mori

    2001-01-01

    Tree height, crown height, crown width, diameter at breast height (dbh), and leaf area were measured for 16 species of commonly planted street trees in the coastal southern California city of Santa Monica, USA. The randomly sampled trees were planted from 1 to 44 years ago. Using number of years after planting or dbh as explanatory variables, mean values of dbh, tree...

  9. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees

    Science.gov (United States)

    P.J. Peper; E.G. McPherson; S.M. Mori

    2001-01-01

    Although the modeling of energy-use reduction, air pollution uptake, rainfall interception, and microclimate modification associated with urban trees depends on data relating diameter at breast height (dbh) , crown height, crown diameter, and leaf area to tree age or dbh, scant information is available for common municipal tree species . I n this study , tree height ,...

  10. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model

    DEFF Research Database (Denmark)

    Andersen, J.; Dybkjær, G.; Jensen, Karsten Høgh

    2002-01-01

    Remotely sensed precipitation from METEOSAT data and leaf area index (LAI) from NOAA AVHRR data is used as input data to the distributed hydrological modelling of three sub catchments (82.000 km(2)) in the Senegal River Basin. Further, root depths of annual vegetation are related to the temporal...

  11. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Science.gov (United States)

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  12. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  13. Leaf area index uncertainty estimates for model-data fusion applications

    Science.gov (United States)

    Andrew D. Richardson; D. Bryan Dail; D.Y. Hollinger

    2011-01-01

    Estimates of data uncertainties are required to integrate different observational data streams as model constraints using model-data fusion. We describe an approach with which random and systematic uncertainties in optical measurements of leaf area index [LAI] can be quantified. We use data from a measurement campaign at the spruce-dominated Howland Forest AmeriFlux...

  14. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b...

  15. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy

    NARCIS (Netherlands)

    Homolova, L.; Malenovsky, Z.; Hanus, J.; Tomaskova, I.; Dvoráková, M.; Pokorny, R.

    2007-01-01

    The leaf area index (LAI) of three monocultures of Norway spruce (Picea abies (L.) Karst), different in age and structure, was measured by means of two indirect optical techniques of LAI field mapping: 1/ plant canopy analyser LAI-2000, and 2/ digital hemispherical photographs (DHP). The supportive

  16. Measurement methods and variability assessment of the Norway spruce total leaf area: Implications for remote sensing

    NARCIS (Netherlands)

    Homolova, L.; Lukes, P.; Malenovsky, Z.; Lhotakova, Z.; Kaplan, V.; Hanus, J.

    2013-01-01

    Estimation of total leaf area (LAT) is important to express biochemical properties in plant ecology and remote sensing studies. A measurement of LAT is easy in broadleaf species, but it remains challenging in coniferous canopies. We proposed a new geometrical model to estimate Norway spruce LAT and

  17. Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models

    NARCIS (Netherlands)

    Ali, Abebe Mohammed; Darvishzadeh, R.; Skidmore, Andrew K.

    2017-01-01

    One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and

  18. Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny

    International Nuclear Information System (INIS)

    Hall, A.J.; Connor, D.J.; Sadras, V.O.

    1995-01-01

    Loss of nitrogen from the leaves and a reduction in specific leaf nitrogen (SLN, g N m −2 ) is associated with grain filling in sunflower (Helianthus annuus L.). To explore the relationship between crop radiation-use efficiency (RUE, g MJ −1 ) and SLN, crop biomass accumulation and radiation interception were measured between the bud-visible and physiological-maturity stages in crops growing under combinations of two levels of applied nitrogen (0 and 5 g N m −2 ) and two population densities (2.4 and 4.8 plants m −2 ). Both nitrogen fertilization and density had significant (P = 0.05) effects on crop biomass yield, nitrogen uptake, leaf area index and SLN, but the nitrogen effects were more pronounced for these and other crop variables. Linear regressions of accumulated biomass (OCdwt, corrected for the energy costs of oil synthesis in the grain) on accumulated intercepted short-wave radiation between bud visible and early grain filling provided appropriate and significantly (P = 0.05) different estimates of RUE for the pooled 0 g N m −2 (1.01 g OCdwt MJ −1 ) and 5 g N m −2 (1.18 g OCdwt MJ −1 ) treatments. When calculated for each inter-harvest interval, crop RUE varied in a curvilinear fashion during the season, with a broad optimum from 40 to 70 days after emergence of the crops, and with lower values earlier and later in the season. The reduction in RUE toward physiological maturity was particularly marked. A plot of RUE against SLN revealed a reduction in RUE at small SLN values, but the relationship may be confounded by ontogenetic changes in other factors. A published model (Sinclair and Horie (1989), Crop Sci., 29: 90–98) was used to explore the RUE/SLN relationship. The model was unable to reproduce the decline in RUE during the second half of the grain-filling period. It is suggested that an important cause of this failure may be the partition, in the model, of a fixed, rather than a variable, fraction of crop gross photosynthesis to

  19. An Efficient Vital Area Identification Method

    International Nuclear Information System (INIS)

    Jung, Woo Sik

    2017-01-01

    A new Vital Area Identification (VAI) method was developed in this study for minimizing the burden of VAI procedure. It was accomplished by performing simplification of sabotage event trees or Probabilistic Safety Assessment (PSA) event trees at the very first stage of VAI procedure. Target sets and prevention sets are calculated from the sabotage fault tree. The rooms in the shortest (most economical) prevention set are selected and protected as vital areas. All physical protection is emphasized to protect these vital areas. All rooms in the protected area, the sabotage of which could lead to core damage, should be incorporated into sabotage fault tree. So, sabotage fault tree development is a very difficult task that requires high engineering costs. IAEA published INFCIRC/225/Rev.5 in 2011 which includes principal international guidelines for the physical protection of nuclear material and nuclear installations. A new efficient VAI method was developed and demonstrated in this study. Since this method drastically reduces VAI problem size, it provides very quick and economical VAI procedure. A consistent and integrated VAI procedure had been developed by taking advantage of PSA results, and more efficient VAI method was further developed in this study by inserting PSA event tree simplification at the initial stage of VAI procedure.

  20. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    Directory of Open Access Journals (Sweden)

    Charles A Price

    Full Text Available Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  1. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe.

    Science.gov (United States)

    Petit, Giai; von Arx, Georg; Kiorapostolou, Natasa; Lechthaler, Silvia; Prendin, Angela Luisa; Anfodillo, Tommaso; Caldeira, Maria C; Cochard, Hervé; Copini, Paul; Crivellaro, Alan; Delzon, Sylvain; Gebauer, Roman; Gričar, Jožica; Grönholm, Leila; Hölttä, Teemu; Jyske, Tuula; Lavrič, Martina; Lintunen, Anna; Lobo-do-Vale, Raquel; Peltoniemi, Mikko; Peters, Richard L; Robert, Elisabeth M R; Roig Juan, Sílvia; Senfeldr, Martin; Steppe, Kathy; Urban, Josef; Van Camp, Janne; Sterck, Frank

    2018-06-01

    Trees scale leaf (A L ) and xylem (A X ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in A L  : A X balance in response to climate conditions, but whether trees of different species acclimate in A L  : A X in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of A L vs A X in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, A L and A X change in equal proportion (isometric scaling: b ˜ 1) as for trees. Branches of similar length converged in the scaling of A L vs A X with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Science.gov (United States)

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  3. Two Inexpensive and Non-destructive Techniques to Correct for Smaller-Than-Gasket Leaf Area in Gas Exchange Measurements

    Directory of Open Access Journals (Sweden)

    Andreas M. Savvides

    2018-04-01

    Full Text Available The development of technology, like the widely-used off-the-shelf portable photosynthesis systems, for the quantification of leaf gas exchange rates and chlorophyll fluorescence offered photosynthesis research a massive boost. Gas exchange parameters in such photosynthesis systems are calculated as gas exchange rates per unit leaf area. In small chambers (<10 cm2, the leaf area used by the system for these calculations is actually the internal gasket area (AG, provided that the leaf covers the entire AG. In this study, we present two inexpensive and non-destructive techniques that can be used to easily quantify the enclosed leaf area (AL of plant species with leaves of surface area much smaller than the AG, such as that of cereal crops. The AL of the cereal crop species studied has been measured using a standard image-based approach (iAL and estimated using a leaf width-based approach (wAL. iAL and wAL did not show any significant differences between them in maize, barley, hard and soft wheat. Similar results were obtained when the wAL was tested in comparison with iAL in different positions along the leaf in all species studied. The quantification of AL and the subsequent correction of leaf gas exchange parameters for AL provided a precise quantification of net photosynthesis and stomatal conductance especially with decreasing AL. This study provides two practical, inexpensive and non-destructive solutions to researchers dealing with photosynthesis measurements on small-leaf plant species. The image-based technique can be widely used for quantifying AL in many plant species despite their leaf shape. The leaf width-based technique can be securely used for quantifying AL in cereal crop species such as maize, wheat and barley along the leaf. Both techniques can be used for a wide range of gasket shapes and sizes with minor technique-specific adjustments.

  4. Estimativa da área foliar de Crambe abyssinica por discos foliares e por fotos digitais Estimate leaf area of Crambe abyssinica for leaf discs and digital photos

    Directory of Open Access Journals (Sweden)

    Marcos Toebe

    2010-02-01

    Full Text Available A área foliar é importante na determinação do crescimento e desenvolvimento das culturas agrícolas. Assim, os objetivos do trabalho foram comparar os métodos de discos foliares e de fotos digitais na estimativa da área foliar de Crambe abyssinica e modelar a área foliar em função do comprimento (C, da largura (L e ou do produto comprimento vezes largura (CxL de diferentes tamanhos de folhas. Para isso, em 308 folhas, foram determinados a área foliar, o comprimento, a largura e o produto comprimento vezes largura por meio dos métodos de discos foliares e de fotos digitais. Em seguida, foram comparados os métodos por meio do coeficiente de correlação linear entre a área foliar. A seguir, em cada método, modelou-se a área foliar (Y em função do C, da L e do CxL, por meio dos modelos: linear, linear simples, quadrático, geométrico e exponencial. Os coeficientes de correlação linear de Pearson e de Spearman entre a área foliar dos métodos de discos foliares e de fotos digitais foram de 0,9917 e 0,9889, respectivamente, o que revela métodos concordantes. Em ambos os métodos, os modelos quadráticos e geométricos apresentaram os melhores coeficientes de determinação da área foliar em função do comprimento e da largura das folhas. A largura da folha é a variável que melhor estima a área foliar. O método de fotos digitais pode ser utilizado para estimar a área foliar de crambe.Leaf area is important in determining the growth and development of agricultural crops. The aim of this study was to compare the methods of leaf discs and digital photos in estimating leaf area of Crambe abyssinica, and model leaf area according to length (C, width (L and/ or the product of length width (CxL for different sizes of leaves. For this, in 308 leaves it was determined the leaf area, length, width and the product of length width using the methods of leaf discs and digital photos. Then the methods were compared using the linear

  5. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea

    Directory of Open Access Journals (Sweden)

    Boram Kwon

    2016-09-01

    Full Text Available This study investigated the effects of interspecific and temporal variation of specific leaf area (SLA, cm2·g−1 on leaf area index (LAI estimation for three deciduous broadleaved forests (Gwangneung (GN, Taehwa (TH, and Gariwang (GRW in Korea with varying ages and composition of tree species. In fall of 2014, fallen leaves were periodically collected using litter traps and classified by species. LAI was estimated by obtaining SLAs using four calculation methods (A: including both interspecific and temporal variation in SLA; B: species specific mean SLA; C: period-specific mean SLA; and D: overall mean, then multiplying the SLAs by the amount of leaves. SLA varied across different species in all plots, and SLAs of upper canopy species were less than those of lower canopy species. The LAIs calculated using method A, the reference method, were GN 6.09, TH 5.42, and GRW 4.33. LAIs calculated using method B showed a difference of up to 3% from the LAI of method A, but LAIs calculated using methods C and D were overestimated. Therefore, species specific SLA must be considered for precise LAI estimation for broadleaved forests that include multiple species.

  6. Effect of brushwood transposition on the leaf litter arthropod fauna in a cerrado area

    Directory of Open Access Journals (Sweden)

    Paula Cristina Benetton Vergílio

    2013-10-01

    Full Text Available The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

  7. Investigating the Alometric Relationships between Leaf Area and Some of Vegetative Characteristics in SC704 Corn Hybrid

    Directory of Open Access Journals (Sweden)

    E Zeinali

    2016-10-01

    Full Text Available Introduction Since the leaves are the main source of production of photosynthetic substances in plants, dry matter production and crop yield potential is largely dependent on the leaf surface, and many environmental changes affect growth and yield through changes in leaf area. Hence, green leaf area per plant and leaf area index is measured in almost all studies of crop physiology to understand the mechanism of yield alteration. However, measurement of leaf area compared with the other traits such as plant height and total plant dry weight is very difficult, need to precision instruments and spend more time and cost. Therefore, according to the allometric relationships in plants, extensive studies were done to find the relationship between leaf area and the other plant traits that their measurement is easier, faster and cheaper, and does not require expensive equipment. Using these relationships will be used to estimate plant leaf area with acceptable accuracy without measuring. Plant traits that have high correlation with leaf area and usually use to estimate the plant leaf area are the number of leaves or nodes per main stem, plant height, leaf dry weight and dry weight of vegetative parts of the plant. Allometric equations was used successfully to calculate leaf area for various crops such as cotton, wheat, chickpea, faba bean, peanuts, soybean and sweet sorghum. This study was conducted to obtain the allometric relationships between green leaf area (cm2 per plant with number of leaves or nodes per main stem, plant height, green leaf dry weight and dry weight of vegetative parts of the plant (gram per plant, and investigating the effect of plant density and planting date on these relationships in SC704 corn (Zea mays L. hybrid. Materials and Methods This study was conducted at Gorgan University of Agricultural Sciences and Natural Resources farm located at latitude 36 o 51’ N, longitude 54 o27’ E and altitude of 13 meters above sea level

  8. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  9. Comparison of Regenerative Braking Efficiencies of MY2012 and MY2013 Nissan Leaf

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2016-07-01

    Full Text Available The use of kinetic energy recovery systems (KERS is the best solution presently available to dramatically improve the energy economy of passenger cars. The paper presents an experimental analysis of the energy flow to and from the battery of a MY 2012 and a MY 2013 Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS. The two vehicles differ for the integration of the electric drivetrain component, plus a different use of the electric motor and the regenerative brakes, in addition to a different weight. It is shown that while the efficiency propulsive power to vehicle / power from battery are basically unchanged, at about 87-89 %, the efficiency power to the battery / braking power to vehicle are significantly improved from values of about 70-80 % to values of 72-87 %. The analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles.

  10. Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data

    Science.gov (United States)

    Groenendijk, M.; Dolman, A. J.; Ammann, C.; Arneth, A.; Cescatti, A.; Dragoni, D.; Gash, J. H. C.; Gianelle, D.; Gioli, B.; Kiely, G.; Knohl, A.; Law, B. E.; Lund, M.; Marcolla, B.; van der Molen, M. K.; Montagnani, L.; Moors, E.; Richardson, A. D.; Roupsard, O.; Verbeeck, H.; Wohlfahrt, G.

    2011-12-01

    Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (Vcm), and quantum yield (α) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a seasonally varying leaf area index (LAI) explains the parameter variation within and between PFTs. Using Fluxnet data, we simulate a seasonally variable LAIF for a large range of sites, comparable to the LAIM derived from MODIS. There are discrepancies when LAIF reach zero levels and LAIM still provides a small positive value. We find that temperature is the most common constraint for LAIF in 55% of the simulations, while global radiation and vapor pressure deficit are the key constraints for 18% and 27% of the simulations, respectively, while large differences in this forcing still exist when looking at specific PFTs. Despite these differences, the annual photosynthesis simulations are comparable when using LAIF or LAIM (r2 = 0.89). We investigated further the seasonal variation of ecosystem-scale parameters derived with LAIF. Vcm has the largest seasonal variation. This holds for all vegetation types and climates. The parameter α is less variable. By including ecosystem-scale parameter seasonality we can explain a considerable part of the ecosystem-scale parameter variation between PFTs. The remaining unexplained leaf-scale PFT variation still needs further work, including elucidating the precise role of leaf and soil level nitrogen.

  11. Estimation of Leaf Area Index and its Sunlit Portion from DSCOVR EPIC data

    Science.gov (United States)

    Knyazikhin, Y.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Yan, L.; Chen, C.; Yan, K.; Park, T.; Myneni, R. B.; Song, W.

    2016-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth at 16 km resolution (in equatorial zone) every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168o and 176o at ten UV to Near-IR narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (1.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (1.7) nm, 687.8 (0.6) nm, 764.0 (1.7) nm and 779.5 (2.0) nm. This poster presents the theoretical basis of the algorithm designed for the generation of leaf area index (LAI) and diurnal course of sunlit leaf area index (SLAI) from EPIC Bidirectional Reflectance Factor of vegetated land. LAI and SLAI are defined as the total hemi-surface and sunlit leaf semi-surface per unit ground area. Whereas LAI is a standard product of many satellite the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. Leaf area and its sunlit portion are key state parameters in most ecosystem productivity and carbon/nitrogen cycle. Status of the EPIC LAI/SLAI product and its validation strategy are also discussed in this poster.

  12. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy

    OpenAIRE

    Homolova, L.; Malenovsky, Z.; Hanus, J.; Tomaskova, I.; Dvoráková, M.; Pokorny, R.

    2007-01-01

    The leaf area index (LAI) of three monocultures of Norway spruce (Picea abies (L.) Karst), different in age and structure, was measured by means of two indirect optical techniques of LAI field mapping: 1/ plant canopy analyser LAI-2000, and 2/ digital hemispherical photographs (DHP). The supportive measurements with the TRAC instrument were conducted to produce mainly the element clumping index. The aim of the study was to compare the performances of LAI-2000 and DHP and to evaluate effect of...

  13. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    Science.gov (United States)

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  14. Leaf area index estimation of Eucalyptus grandis W.Hill. in plantations

    Directory of Open Access Journals (Sweden)

    Dubal Papamija-Muñoz

    2012-12-01

    Full Text Available We estimated leaf area index (LAI in Eucalyptus grandis W.Hill. plantations in four farms in the Smurfit Kappa Carton de Colombia (SKCC with three farms located in the city of Popayan (Cauca and one located in the municipality of Restrepo (Valle del Cauca. Each farm had three fertilized and three unfertilized plots with 64 individuals in each. We used three methods, Plant Canopy Analyzer 2000 (PCA 2000, flat photograph PIPEcv software and a destructive method, which was generated using a mathematical model. The first two methods were measured bimonthly for a year and the final method required trees being cut to measure their diameter. Estimation of leaf area index was 2.01 for PCA 2000, 3.12 for PIPEcv and 2.83 for the mathematical model. These values correspond to the average and range of leaf area indices obtained for each method on all farms. Statistically the three methodologies developed in this study were not closely related.

  15. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    Science.gov (United States)

    AbstractLeaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  16. Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration

    Science.gov (United States)

    Ganguly, Sangram; Nemani, Ramakrishna R.; Zhang, Gong; Hashimoto, Hirofumi; Milesi, Cristina; Michaelis, Andrew; Wang, Weile; Votava, Petr; Samanta, Arindam; Melton, Forrest; hide

    2012-01-01

    This paper summarizes the implementation of a physically based algorithm for the retrieval of vegetation green Leaf Area Index (LAI) from Landsat surface reflectance data. The algorithm is based on the canopy spectral invariants theory and provides a computationally efficient way of parameterizing the Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and wavelength. LAI retrievals from the application of this algorithm to aggregated Landsat surface reflectances are consistent with those of MODIS for homogeneous sites represented by different herbaceous and forest cover types. Example results illustrating the physics and performance of the algorithm suggest three key factors that influence the LAI retrieval process: 1) the atmospheric correction procedures to estimate surface reflectances; 2) the proximity of Landsatobserved surface reflectance and corresponding reflectances as characterized by the model simulation; and 3) the quality of the input land cover type in accurately delineating pure vegetated components as opposed to mixed pixels. Accounting for these factors, a pilot implementation of the LAI retrieval algorithm was demonstrated for the state of California utilizing the Global Land Survey (GLS) 2005 Landsat data archive. In a separate exercise, the performance of the LAI algorithm over California was evaluated by using the short-wave infrared band in addition to the red and near-infrared bands. Results show that the algorithm, while ingesting the short-wave infrared band, has the ability to delineate open canopies with understory effects and may provide useful information compared to a more traditional two-band retrieval. Future research will involve implementation of this algorithm at continental scales and a validation exercise will be performed in evaluating the accuracy of the 30-m LAI products at several field sites. ©

  17. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Science.gov (United States)

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  18. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots

    Science.gov (United States)

    W. K. Smith; A. W. Schoettle; M. Cui

    1991-01-01

    Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x...

  19. Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency.

    Science.gov (United States)

    Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo

    2013-11-01

    Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.

  20. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    Science.gov (United States)

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  1. Estimation of leaf area index in the sunflower as a function of thermal time1

    Directory of Open Access Journals (Sweden)

    Dioneia Daiane Pitol Lucas

    Full Text Available The aim of this study was to obtain a mathematical model for estimating the leaf area index (LAI of a sunflower crop as a function of accumulated thermal time. Generating the models and testing their coefficients was carried out using data obtained from experiments carried out for different sowing dates in the crop years of 2007/08, 2008/09, 2009/10 and 2010/11 with two sunflower hybrids, Aguará 03 and Hélio 358. Linear leaf dimensions were used for the non-destructive measurement of the leaf area, and thermal time was used to quantify the biological time. With the data for accumulated thermal time (TTa and LAI known for any one day after emergence, mathematical models were generated for estimating the LAI. The following models were obtained, as they presented the best fit (lowest rootmean- square error, RMSE: gaussian peak, cubic polynomial, sigmoidal and an adjusted compound model, the modified sigmoidal. The modified sigmoidal model had the best fit to the generation data and the highest value for the coefficient of determination (R2. In testing the models, the lowest values for root-mean-square error, and the highest R2 between the observed and estimated values were obtained with the modified sigmoidal model.

  2. Estimation of leaf area in coffee leaves (Coffea arabica L. of the Castillo® variety

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Unigarro-Muñoz

    2015-01-01

    Full Text Available Allometric models based on measurements of single leaf dimensions or a combination there are useful tools for determining individual leaf area (LA because they are non-destructive, precise, simple and economical methods. The present study was carried out at the Central Station Naranjal of Cenicafé, located in the Department of Caldas (Colombia, four models were defined using the variables length (L and/or width (W to estimate LA in coffee leaves of the Castillo® variety (Coffea arabica L.. Estimation of regression coefficients was performed using information recorded from 6,441 leaves (group 1, and their validation was performed using records from another 992 leaves (group 2. Leaves were collected from all strata of the canopy and ranged from 0.76 to 140 cm2 in LA. In addition to exhibiting coefficients of variation differing from zero based on t-tests at 1%, the evaluated models possess coefficients of determination between 0.93 and 0.99. Four expressions have developed and adjusted to estimate leaf area in individual leaves, based on the measurement of simple variables and non-destructive.

  3. Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data

    Science.gov (United States)

    Varvia, Petri; Rautiainen, Miina; Seppänen, Aku

    2018-03-01

    In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.

  4. Testing high spatial resolution WorldView-2 imagery for retrieving the leaf area index

    Science.gov (United States)

    Tarantino, Eufemia; Novelli, Antonio; Laterza, Maurizio; Gioia, Andrea

    2015-06-01

    This work analyzes the potentiality of WorldView-2 satellite data for retrieving the Leaf Area Index (LAI) area located in Apulia, the most Eastern region of Italy, overlooking the Adriatic and Ionian seas. Lacking contemporary in-situ measurements, the semi-empiric method of Clevers (1989) (CLAIR model) was chosen as a feasible image-based LAI retrieval method, which is based on an inverse exponential relationship between the LAI and the WDVI (Weighted Difference Vegetation Index) with relation to different land covers. Results were examined in homogeneous land cover classes and compared with values obtained in recent literature.

  5. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data – potential of unmanned aerial vehicle imagery

    NARCIS (Netherlands)

    Roosjen, Peter P.J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G.P.W.

    2018-01-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index

  6. NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from the NOAA Climate Data...

  7. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations obtained from...

  8. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations...

  9. Efficient Method for Calculating the Composite Stiffness of Parabolic Leaf Springs with Variable Stiffness for Vehicle Rear Suspension

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi

    2016-01-01

    Full Text Available The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf springs with variable stiffness is built, and a composite stiffness calculation method for the model is derived using displacement superposition and material deformation continuity. The proposed method can be applied on triple-leaf and multileaf springs. The accuracy of the calculation method is verified by the rig test and FEA analysis. Finally, several parameters that should be considered during the design process of springs are discussed. The rig test and FEA analytical results indicate that the calculated results are acceptable. The proposed method can provide guidance for the design and production of parabolic leaf springs with variable stiffness. The composite stiffness of the leaf spring can be calculated quickly and accurately when the basic parameters of the leaf spring are known.

  10. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China.

    Science.gov (United States)

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-09-01

    In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please

  11. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    Science.gov (United States)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere

  12. Use of middle infrared radiation to estimate the leaf area index of a boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.S. [Kingston Univ., Surrey (United Kingdom). Centre for Earth and Environmental Science Research, School of Geography; Wicks, T. E.; Curran, P.J. [Southampton Univ., Southampton, Hampshire (United Kingdom). Dept. of Geography

    2000-06-01

    Reflected radiation recorded by satellite sensors is a common procedure to estimate the leaf area index (LAI) of boreal forest. The normalized difference vegetation index (NDVI), derived from measurements of visible and near infrared radiation were commonly used to estimate LAI. But research in tropical forest has shown that LAI is more closely related to radiation of middle infrared wavelengths than that of visible wavelengths. This research calculated a vegetation index (VI3) using radiation from vegetation recorded at near and middle infrared wavelengths. In the case of boreal forest, VI3 and LAI displayed a closer relationship than NDVI and LAI. Also, the use of VI3 explained approximately 76 per cent of the variation in field estimates of LAI, versus approximately 46 per cent for NDVI. The authors concluded that consideration should be given to information provided by middle infrared radiation to estimate the leaf area index of boreal forest. The research area was located in the Southern Study Area (SSA) of the BOReal Ecosystem-Atmospher Study (BOREAS), situated on the southern edge of the Canadian boreal forest, 40 km north of Prince Albert, Saskatchewan. 1 tab., 4 figs., 46 refs.

  13. Analysis, improvement and application of the MODIS leaf area index products

    Science.gov (United States)

    Yang, Wenze

    Green leaf area governs the exchanges of energy, mass and momentum between the Earth's surface and the atmosphere. Therefore, leaf area index (LAI) and fraction of incident photosynthetically active radiation (0.4-0.7 mum) absorbed by the vegetation canopy (FPAR) are widely used in vegetation monitoring and modeling. The launch of Terra and Aqua satellites with the moderate resolution imaging spectroradiometer (MODIS) instrument onboard provided the first global products of LAI and FPAR, derived mainly from an algorithm based on radiative transfer. The objective of this research is to comprehensively evaluate the Terra and Aqua MODIS LAI/FPAR products. Large volumes of these products have been analyzed with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus back-up), snow (snow-free versus snow on the ground) and cloud (cloud-free versus cloudy) conditions. Field validation efforts identified several key factors that influence the accuracy of algorithm retrievals. The strategy of validation efforts guiding algorithm refinements has led to progressively more accurate LAI/FPAR products. The combination of products derived from the Terra and Aqua MODIS sensors increases the success rate of the main radiative transfer algorithm by 10-20 percent over woody vegetation. The Terra Collection 4 LAI data reveal seasonal swings in green leaf area of about 25 percent in a majority of the Amazon rainforests caused by variability in cloud cover and light. The timing and the influence of this seasonal cycle are critical to understanding tropical plant adaptation patterns and ecological processes. The results presented in this dissertation suggest how the product quality has gradually improved largely through the efforts of validation activities. The Amazon case study highlights the utility of these data sets for monitoring global vegetation dynamics. Thus, these results can be seen as a benchmark for evaluation of

  14. Leaf Area Index (LAI Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos

    Directory of Open Access Journals (Sweden)

    Pauline Stenberg

    2009-12-01

    Full Text Available A new simple airborne method based on wide optics camera is developed for leaf area index (LAI estimation in coniferous forests. The measurements are carried out in winter, when the forest floor is completely snow covered and thus acts as a light background for the hemispherical analysis of the images. The photos are taken automatically and stored on a laptop during the flights. The R2 value of the linear regression of the airborne and ground based LAI measurements was 0.89.

  15. Estimation of leaf area index in cereal crops using red–green images

    DEFF Research Database (Denmark)

    Nielsen, Kristian Kirk; Andersen, Hans Jørgen; Thomsen, Anton

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red–green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b....... Conclusions Acknowledgements Appendix. Modelling the correlation between greenness and brightness References   Fig. 1. Simulated image of a vegetation canopy (left), with distribution of pixel greenness and brightness (right). View Within Article...

  16. Indirect Field Measurement of Wine-Grape Vineyard Canopy Leaf Area Index

    Science.gov (United States)

    Johnson, Lee F.; Pierce, Lars L.; Skiles, J. W. (Technical Monitor)

    2002-01-01

    Leaf area index (LAI) indirect measurements were made at 12 study plots in California's Napa Valley commercial wine-grape vineyards with a LI-COR LI-2000 Plant Canopy Analyzer (PCA). The plots encompassed different trellis systems, biological varieties, and planting densities. LAI ranged from 0.5 - 2.25 sq m leaf area/ sq m ground area according to direct (defoliation) measurements. Indirect LAI reported by the PCA was significantly related to direct LAI (r(exp 2) = 0.78, p less than 001). However, the PCA tended to underestimate direct LAI by about a factor of two. Narrowing the instrument's conical field of view from 148 deg to 56 deg served to increase readings by approximately 30%. The PCA offers a convenient way to discern relative differences in vineyard canopy density. Calibration by direct measurement (defoliation) is recommended in cases where absolute LAI is desired. Calibration equations provided herein may be inverted to retrieve actual vineyard LAI from PCA readings.

  17. Continual observation on crop leaf area index using wireless sensors network

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    Crop structural parameter, i.e. leaf area index(LAI), is the main factor that can effect the solar energy re-assignment in the canopy. An automatic measuring system which is designed on the basis of wireless sensors network(WSN) is present in this paper. The system is comprised of two types of node. One is the measurement nodes which measured solar irradiance and were deployed beneath and above the canopy respectively, and another is a sink node which was used to collect data from the other measurement nodes. The measurement nodes also have ability to repeater data from one node to another and finally transfer signal to the sink node. Then the collected data of sink node are transferred to the data center through GPRS network. Using the field data collected by WSN, canopy structural parameters can be calculated using the direct transmittance which is the ratio of sun radiation captured by the measurement node beneath and above the canopy on different sun altitude angles. The proposed WSN measurement systems which is consisted of about 45 measurement node was deployed in the Heihe watershed to continually observe the crop canopy structural parameters from 25 June to 24 August 2012. To validate the performance of the WSN measured crop structural parameters, the LAI values were also measured by LAI2000. The field preliminary validation results show that the designed system can capture the varies of solar direct canopy transmittance on different time in a day, which is the basis to calculate the target canopy structural parameters. The validation results reveal that the measured LAI values derived from our propose measurement system have acceptable correlation coefficient(R2 from 0.27 to 0.96 and averaged value 0.42) with those derived from LAI2000. So it is a promising way in the agriculture application to utilize the proposed system and thus will be an efficient way to measure the crop structural parameters in the large spatial region and on the long time series

  18. Validation of Leaf Area Index measurements based on the Wireless Sensor Network platform

    Science.gov (United States)

    Song, Q.; Li, X.; Liu, Q.

    2017-12-01

    The leaf area index (LAI) is one of the important parameters for estimating plant canopy function, which has significance for agricultural analysis such as crop yield estimation and disease evaluation. The quick and accurate access to acquire crop LAI is particularly vital. In the study, LAI measurement of corn crops is mainly through three kinds of methods: the leaf length and width method (LAILLW), the instruments indirect measurement method (LAII) and the leaf area index sensor method(LAIS). Among them, LAI value obtained from LAILLW can be regarded as approximate true value. LAI-2200,the current widespread LAI canopy analyzer,is used in LAII. LAIS based on wireless sensor network can realize the automatic acquisition of crop images,simplifying the data collection work,while the other two methods need person to carry out field measurements.Through the comparison of LAIS and other two methods, the validity and reliability of LAIS observation system is verified. It is found that LAI trend changes are similar in three methods, and the rate of change of LAI has an increase with time in the first two months of corn growth when LAIS costs less manpower, energy and time. LAI derived from LAIS is more accurate than LAII in the early growth stage,due to the small blade especially under the strong light. Besides, LAI processed from a false color image with near infrared information is much closer to the true value than true color picture after the corn growth period up to one and half months.

  19. Solar radiation measurements and Leaf Area Index (LAI) from vegetal covers

    International Nuclear Information System (INIS)

    Wandelli, E.V.; Marques Filho, A. de O.

    1999-01-01

    A method by which a physical model of the solar radiation transfer in a vegetal medium is inverted to estimate the leaf area index (LAI) for different types of vegetation is presented here, as an alternative to the destructive experiments, which are a hard task to implement on the vegetation covers. Radiation data were obtained during the dry season — 1996, at the Embrapa Experimental Station, (BR 174 - km 54, 2° 31' S, 60° 01' W), Manaus, Brazil. The method yielded convergent values for the LAI between different adopted radiation classes with more stable estimates at time when there is a predominant diffuse radiation. The application of the inversion algorithm yields the following values for the leaf area index and respective annual foliage increments: 3.5 (0.35 yr. -1 ) for the intact secondary forest; 2.0 (0.5 yr -1 ) for the palm agroforestry system; and 1.6 (0.4 yr -1 ) for the multi-layer ones [pt

  20. Detection of Chlorophyll and Leaf Area Index Dynamics from Sub-weekly Hyperspectral Imagery

    Science.gov (United States)

    Houborg, Rasmus; McCabe, Matthew F.; Angel, Yoseline; Middleton, Elizabeth M.

    2016-01-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense time series of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  1. Monitoring crop leaf area index time variation from higher resolution remotely sensed data

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    The leaf area index (LAI) is significant for research on global climate change and ecological environment. China HJ-1 satellite has a revisit cycle of four days, providing CCD data (HJ-1 CCD) with a resolution of 30 m. However, the HJ-1 CCD is incapable of obtaining observations at multiple angles. This is problematic because single angle observations provide insufficient data for determining the LAI. This article proposes a new method for determining LAI using HJ-1 CCD data. The proposed method uses background knowledge of dynamic land surface processes that are extracted from MODerate resolution Imaging Spectroradiometer (MODIS) LAI 1-km resolution data. To process the uncertainties that arise from using two data sources with different spatial resolutions, the proposed method is implemented in a dynamitic Bayesian network scheme by integrating a LAI dynamic process model and a canopy reflectance model with remotely sensed data. Validation results showed that the determination coefficient between estimated and measured LAI was 0.791, and the RMSE was 0.61. This method can enhance the accuracy of the retrieval results while retaining the time series variation characteristics of the vegetation LAI. The results suggest that this algorithm can be widely applied to determining high-resolution leaf area indices using data from China HJ-1 satellite even if information from single angle observations are insufficient for quantitative application

  2. Detection of chlorophyll and leaf area index dynamics from sub-weekly hyperspectral imagery

    KAUST Repository

    Houborg, Rasmus

    2016-10-25

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  3. Detection of chlorophyll and leaf area index dynamics from sub-weekly hyperspectral imagery

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew; Angel, Yoseline; Middleton, Elizabeth M.

    2016-01-01

    Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.

  4. Sapwood Area Related to Tree Size, Tree Age, and Leaf Area Index in Cedrus libani

    OpenAIRE

    Güney, Aylin

    2018-01-01

    Sapwoodincludes the water conducting part of the stem which transports water andminerals from roots to leaves. Studies using sap flow gauges have to determinethe area of the sapwood in order to scale measured sap flow densities to thetree or stand level. The aim of this study was to investigate the relationshipbetween sapwood area at breast height and other tree parameters which are easyto measure of the montane Mediterranean conifer Cedrus libani, including a total number of 92 study trees o...

  5. Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales

    Directory of Open Access Journals (Sweden)

    Xiaocui Wu

    2015-02-01

    Full Text Available The reliable simulation of gross primary productivity (GPP at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn, a linear two-leaf model (TL-LUE, and a big-leaf light use efficiency model (MOD17 to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001 than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.

  6. Effect of different transplanting leaf age on rice yield, nitrogen utilization efficiency and fate of 15N-fertilizer

    International Nuclear Information System (INIS)

    Fan Hongzhu; Lu Shihua; Zeng Xiangzhong

    2010-01-01

    Field experiments were conducted to study rice yield, N uptake and fate by using 15 N-urea at transplanting leaf age of 2-, 4-and 6-leaf, respectively. The results showed that rice yield significantly decreased with delay of transplanting leaf age, and 15 N-fertilizer uptake by grain and straw of rice, nitrogen utilization and residue also decreased, but loss of 15 N-fertilizer increased. Under different transplanting leaf age, N absorption by rice mainly came from the soil. Almost 1/3 of total N was supplied by fertilizer, and 2/3 came from soil. The efficiency of fertilizer was 20.8% ∼ 25.7%, 15 N-fertilizer residue ratio was 17.9% ∼ 32.2%, and 15 N-fertilizer loss was 42.1% ∼ 61.3%. 15 N-fertilizer residue mainly distributed in 0 ∼ 20 cm top soil under different treatments. The results indicated that transplanting young leaf age could increase rice yield and nitrogen utilization efficiency, and decrease loss of nitrogen fertilizer and pollution level on environment. (authors)

  7. Stomatal conductance, mesophyll conductance, and trans piration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought

    NARCIS (Netherlands)

    Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang

    2017-01-01

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were

  8. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    Science.gov (United States)

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of

  9. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    Science.gov (United States)

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area

  10. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.

    Science.gov (United States)

    Simonin, K; Kolb, T E; Montes-Helu, M; Koch, G W

    2006-04-01

    Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to

  11. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency.

    Science.gov (United States)

    Mashilo, Jacob; Odindo, Alfred O; Shimelis, Hussein A; Musenge, Pearl; Tesfay, Samson Z; Magwaza, Lembe S

    2017-11-01

    Successful cultivation of bottle gourd in arid and semi-arid areas of sub-Saharan Africa and globally requires the identification of drought tolerant parents for developing superior genotypes with increased drought resistance. The objective of this study was to determine the level of drought tolerance among genetically diverse South African bottle gourd landraces based on leaf gas exchange and photosynthetic efficiency and identify promising genotypes for breeding. The responses of 12 bottle gourd landraces grown in glasshouse under non-stressed (NS) and drought-stressed (DS) conditions were studied. A significant genotype x water regime interaction was observed for gs, T, A, A/C i , IWUE, WUE ins , F m ', F v '/F m ', Ф PSII , qP, qN, ETR, ETR/A and AES indicating variability in response among the studied bottle gourd landraces under NS and DS conditions. Principal component analysis identified three principal components (PC's) under drought stress condition contributing to 82.9% of total variation among leaf gas exchange and chlorophyll fluorescence parameters measured. PC1 explained 36% of total variation contributed by gs, T, F 0 ', F m ', F v '/F m ' and qN, while PC2 explained 28% of the variation and highly correlated with A, A/C i , IWUE, WUE ins ETR/A and AES. PC3 explained 14% of total variation contributed by Ф PSII , qP and ETR. Principal biplot analysis allowed the identification of drought tolerant genotypes such as BG-27, BG-48, BG-58, BG-79, BG-70 and BG-78 which were grouped based on high gs, A, F m 'F v '/F m ', qN, ETR/A and AES under DS condition. The study suggests that the identified physiological traits could be useful indicators in the selection of bottle gourd genotypes for increased drought tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Litterfall and Leaf Area Index in the CONECOFOR Permanent Monitoring Plots

    Directory of Open Access Journals (Sweden)

    Andrea CUTINI

    2002-09-01

    Full Text Available Forest canopies are more sensitive and react more promptly to abiotic and biotic disturbances than other stand structural components. Monitoring crown and canopy characteristics is therefore a crucial issue for intensive and continuous monitoring programs of forest ecosystem status. These observations formed the basis for the measurement of annual litter production and leaf area index (LAI in the Italian permanent monitoring plots (CONECOFOR program established within the EC-UN/ECE program "Intensive Monitoring (Level II of Forest Ecosystems". Preliminary results after three years of observation are presented. The low value of within plot mean relative standard deviation (20.8 ± 1.9% of litter production, which in any case never exceeded 30%, accounted for the good sampling error and accuracy of the chosen method, which seems to be accurate enough to detect changes in litter production through the years. The higher inconsistency of the amount of woody and fruits fractions over the years demonstrated the greater reliability of leaf fraction or, on the other hand, of LAI compared to total litter. Mean values of annual leaf-litter and total litter production and LAI were rather high in comparison with data reported in literature for similar stands, and reflected both a medium-high productivity and a juvenile phase in the development of the selected stands on average. Focusing on changes in litter production through the years, statistical analysis on a sub-sample of plots showed the existence of significant differences both in leaf litter and total litter production. These findings seem to attribute to the "year" factor a driving role in determining changes in litter production and LAI. Temporal intermittence in data collection, together with the shortness of the monitoring period, make it difficult to speculate or arrive at definitive conclusions on changes in litter production due to time-dependent factors. The importance of having a complete

  13. A Comparison of Leaf Area Index Maps Derived from Multi-Sensor Optical Data Acquired over Agricultural Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Satalino

    2010-06-01

    Full Text Available The objective of this study is to retrieve and compare Leaf Area Index (LAI maps from temporal series of SPOT, IKONOS and MERIS images acquired, from 2006 to 2008, over an agricultural site in Southern Italy. Results show that the root mean square error (RMSE of LAI derived from MERIS data is approximately 1 m2 m-2, slightly larger than the one obtained by using SPOT and IKONOS data. In addition, LAI retrieved from MERIS data tends to underestimate LAI retrieved from SPOT and IKONOS data, particularly at low LAI values. Nevertheless, the paper gives examples highlighting the strength of MERIS with respect to SPOT and IKONOS data in providing long and dense temporal series of LAI maps suitable to feature the temporal evolution of vegetation growth at regional scale.

  14. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.

    Science.gov (United States)

    Zheng, Guang; Moskal, L Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.

  15. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  16. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    Science.gov (United States)

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in

  17. Moisture availability constraints on the leaf area to sapwood area ratio: analysis of measurements on Australian evergreen angiosperm trees

    Science.gov (United States)

    Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2014-05-01

    The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2

  18. Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees.

    Science.gov (United States)

    Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2015-03-01

    The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology.

  19. Monitoring and mapping leaf area index of rubber and oil palm in small watershed area

    International Nuclear Information System (INIS)

    Rusli, N; Majid, M R

    2014-01-01

    Existing conventional methods to determine LAI are tedious and time consuming for implementation in small or large areas. Thus, raster LAI data which are available free were downloaded for 4697.60 km 2 of Sungai Muar watershed area in Johor. The aim of this study is to monitor and map LAI changes of rubber and oil palm throughout the years from 2002 to 2008. Raster datasets of LAI value were obtained from the National Aeronautics and Space Administration (NASA) website of available years from 2002 to year 2008. These data, were mosaicked and subset utilizing ERDAS Imagine 9.2. Next, the LAI raster dataset was multiplied by a scale factor of 0.1 to derive the final LAI value. Afterwards, to determine LAI values of rubber and oil palms, the boundaries of each crop from land cover data of the years 2002, 2006 and 2008 were exploited to overlay with LAI raster dataset. A total of 5000 sample points were generated utilizing the Hawths Tool (extension in ARcGIS 9.2) within these boundaries area and utilized for extracting LAI value of oil palm and rubber. In integration, a wide range of literature review was conducted as a guideline to derive LAI value of oil palm and rubber which range from 0 to 6. The results show, an overall mean LAI value from year 2002 to 2008 as decremented from 4.12 to 2.5 due to land cover transition within these years. In 2002, the mean LAI value of rubber and oil palm is 2.65 and 2.53 respectively. Meanwhile in 2006, the mean LAI value for rubber and oil palm is 2.54 and 2.82 respectively. In 2008, the mean LAI value for both crops is 0.85 for rubber and 1.04 for oil palm. In conclusion, apart from the original function of LAI which is related to the growth and metabolism of vegetation, the changes of LAI values from year 2002 to 2008 also capable to explain the process of land cover changes in a watershed area

  20. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Science.gov (United States)

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  1. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  2. Simulation of leaf area index on site scale based on model data fusion

    Science.gov (United States)

    Yang, Y.; Wang, J. B.

    2017-12-01

    The world's grassland area is about 24 × 108hm2, accounting for about one-fifth of the global land area. It is one of the most widely distributed terrestrial ecosystems on Earth. And currently, it is the most affected area of human activity. A considerable portion of the global CO2 emissions are fixed by grassland, and the grassland carbon cycle plays an important role in the global carbon cycle (Li Bo, Yongshen Peng, Li Yao, China's Prairie, 1990). In recent years, the carbon cycle and its influencing factors of grassland ecosystems have become one of the hotspots in ecology, geology, botany and agronomy under the background of global change ( Mu Shaojie, 2014) . And the model is now as a popular and effective method of research. However, there are still some uncertainties in this approach. CEVSA ( Carbon Exchange between Vegetation, Soil and Atmosphere) is a biogeochemical cycle model based on physiological and ecological processes to simulate plant-soil-atmosphere system energy exchange and water-carbon-nitrogen coupling cycles (Cao at al., 1998a; 1998b; Woodward et al., 1995). In this paper, the remote sensing observation data of leaf area index are integrated into the model, and the CEVSA model of site version is optimized by Markov chain-Monte Carlo method to achieve the purpose of increasing the accuracy of model results.

  3. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  4. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.

    Science.gov (United States)

    Wei, Xiangqin; Gu, Xingfa; Meng, Qingyan; Yu, Tao; Zhou, Xiang; Wei, Zheng; Jia, Kun; Wang, Chunmei

    2017-07-08

    Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.

  5. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    Science.gov (United States)

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (pproduction simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO² flux in artic ecosystems?

    NARCIS (Netherlands)

    Street, L.E.; Shaver, G.R.; Williams, M.; Wijk, van M.T.

    2007-01-01

    1 The arctic environment is highly heterogeneous in terms of plant distribution and productivity. If we are to make regional scale predictions of carbon exchange it is necessary to find robust relationships that can simplify this variability. One such potential relationship is that of leaf area to

  7. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations

    NARCIS (Netherlands)

    Maire, Le G.; Marsden, C.; Verhoef, W.; Ponzoni, F.J.; Seen, Lo D.; Bégué, A.; Stape, J.L.; Nouvellon, Y.

    2011-01-01

    The leaf area index (LAI) of fast-growing Eucalyptus plantations is highly dynamic both seasonally and inter-annually, and is spatially variable depending on pedo-climatic conditions. LAI is very important in determining the carbon and water balance of a stand, but is difficult to measure during a

  8. Sugarcane leaf area estimate obtained from the corrected Normalized Difference Vegetation Index (NDVI

    Directory of Open Access Journals (Sweden)

    Rodrigo Moura Pereira

    2016-06-01

    Full Text Available Large farmland areas and the knowledge on the interaction between solar radiation and vegetation canopies have increased the use of data from orbital remote sensors in sugarcane monitoring. However, the constituents of the atmosphere affect the reflectance values obtained by imaging sensors. This study aimed at improving a sugarcane Leaf Area Index (LAI estimation model, concerning the Normalized Difference Vegetation Index (NDVI subjected to atmospheric correction. The model generated by the NDVI with atmospheric correction showed the best results (R2 = 0.84; d = 0.95; MAE = 0.44; RMSE = 0.55, in relation to the other models compared. LAI estimation with this model, during the sugarcane plant cycle, reached a maximum of 4.8 at the vegetative growth phase and 2.3 at the end of the maturation phase. Thus, the use of atmospheric correction to estimate the sugarcane LAI is recommended, since this procedure increases the correlations between the LAI estimated by image and by plant parameters.

  9. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe Bronge, Laine [SwedPower AB, Stockholm (Sweden)

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given.

  10. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    International Nuclear Information System (INIS)

    Boresjoe Bronge, Laine

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given

  11. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    International Nuclear Information System (INIS)

    Benalcázar, M; Padín, J; Brun, M; Pastore, J; Ballarin, V; Peirone, L; Pereyra, G

    2011-01-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  12. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    Science.gov (United States)

    Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.

    2011-12-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  13. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    Science.gov (United States)

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  15. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  16. Preliminary survey on electric energy efficiency in Ethiopia:- Areas of ...

    African Journals Online (AJOL)

    In this paper the significance of electric energy efficiency improvement and major areas of loss in Ethiopia's electric power system are highlighted for further rigorous study. Major electric energy loss areas in the utility transmission and distribution systems and consumer premises are indicated. In the consumer area the loss ...

  17. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China

    Science.gov (United States)

    Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-01

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458

  18. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China.

    Science.gov (United States)

    Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-10

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.

  19. Response of maize varieties to nitrogen application for leaf area profile, crop growth, yield and yield components

    International Nuclear Information System (INIS)

    Akmal, M.; Hameed-urRehman; Farhatullah; Asim, M.; Akbar, H.

    2010-01-01

    An experiment was conducted at NWFP Agricultural University, Peshawar, to study maize varieties and Nitrogen (N) rates for growth, yield and yield components. Three varieties (Azam, Jalal and Sarhad white) and three N rates (90, 120, 150, kg N ha/sup -1/) were compared. Experiment was conducted in a Randomized Complete Block design; split plot arrangement with 4 replications. Uniform and recommended cultural practices were applied during the crop growth. The results revealed that maize variety 'Jalal' performed relatively better crop growth rate (CGR) and leaf area profile (LAP) at nodal position one to six as compared to the other two varieties (Sarhad white and Azam). This resulted higher radiation use efficiency by the crop canopy at vegetative stage of development and hence contributed higher assimilates towards biomass production. Heavier grains in number and weight were due to higher LAP and taller plants of Jalal which yielded higher in the climate. Nitrogen applications have shown that maize seed yield increase in quadratic fashion with increased N to a plateau level. Considering soil fertility status and cropping system, the 150 kg ha/sup -1/ N application to maize variety Jalal in Peshawar is required for maximum biological and seed production. (author)

  20. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  1. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  2. Influences of radiation and leaf area vertical distribution on the growth of Chinese fir young plantation with different densities

    International Nuclear Information System (INIS)

    Wang Lili

    1990-01-01

    A study on the radiation and leaf area vertical distribution in relation to the growth of 8-year-old Chinese fir plantations of 5 densities was conducted. The leaf area vertical distribution and LAI were closely related to stem density. The crown form varies from conic to cylindric with the increase of stem density. The LAI rises at first and then declines with the increase of density. The extinction of radiation sharpened when the crown density increased. The extinction leveled at the depth of 3/4 forest heights from the tops of forest canopies. Calculating the extinction coefficients by means of accumulated leaf area index separately for each crown layer can minimize the errors caused by the irregularity of leaf distribution. Four indices, i.e., absorption of radiation, LAI,biomass of individual tree and averaged annual increment of biomass were used to have a comprehensive evaluation on the growth of Chinese fir of 5 densities. The results showed that the plantation with a stem density of 2m × 1 m was the best one among the 5 young plantations

  3. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides x nigra.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Montpied, Pierre; Le Thiec, Didier

    2013-01-01

    (13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented. © 2012 Blackwell Publishing Ltd.

  4. Relationship between fruit weight and the fruit-to-leaf area ratio, at the spur and whole-tree level, for three sweet cherry varieties

    NARCIS (Netherlands)

    Cittadini, E.D.; Ridder, de N.; Peri, P.L.; Keulen, van H.

    2008-01-01

    Fruit weight is the main quality parameter of sweet cherries and leaf area/fruit is the most important characteristic influencing fruit weight. The objective of this study was to determine the relationship between Mean Fruit Weight (MFW) and the Fruit Number to Leaf Area Ratio (FNLAR) for `Bing¿,

  5. Area Green Efficiency (AGE) of Two Tier Heterogeneous Cellular Networks

    KAUST Repository

    Tabassum, Hina; Alouini, Mohamed-Slim; Shakir, Muhammad Zeeshan

    2012-01-01

    CO2 emissions, operational and capital expenditures (OPEX and CAPEX) whilst enhancing the area spectral efficiency (ASE) of the network. In this context, we define a performance metric which characterize the aggregate energy savings per unit macrocell

  6. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    Science.gov (United States)

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  7. Estimating the Fractional Vegetation Cover from GLASS Leaf Area Index Product

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available The fractional vegetation cover (FCover is an essential biophysical variable and plays a critical role in the carbon cycle studies. Existing FCover products from satellite observations are spatially incomplete and temporally discontinuous, and also inaccurate for some vegetation types to meet the requirements of various applications. In this study, an operational method is proposed to calculate high-quality, accurate FCover from the Global LAnd Surface Satellite (GLASS leaf area index (LAI product to ensure physical consistency between LAI and FCover retrievals. As a result, a global FCover product (denoted by TRAGL were generated from the GLASS LAI product from 2000 to present. With no missing values, the TRAGL FCover product is spatially complete. A comparison of the TRAGL FCover product with the Geoland2/BioPar version 1 (GEOV1 FCover product indicates that these FCover products exhibit similar spatial distribution pattern. However, there were relatively large discrepancies between these FCover products over equatorial rainforests, broadleaf crops in East-central United States, and needleleaf forests in Europe and Siberia. Temporal consistency analysis indicates that TRAGL FCover product has continuous trajectories. Direct validation with ground-based FCover estimates demonstrated that TRAGL FCover values were more accurate (RMSE = 0.0865, and R2 = 0.8848 than GEOV1 (RMSE = 0.1541, and R2 = 0.7621.

  8. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    Science.gov (United States)

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  9. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    Science.gov (United States)

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  10. An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland

    Science.gov (United States)

    Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe

    2013-04-01

    A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.

  11. Modifying Geometric-Optical Bidirectional Reflectance Model for Direct Inversion of Forest Canopy Leaf Area Index

    Directory of Open Access Journals (Sweden)

    Congrong Li

    2015-08-01

    Full Text Available Forest canopy leaf area index (LAI inversion based on remote sensing data is an important method to obtain LAI. Currently, the most widely-used model to achieve forest canopy structure parameters is the Li-Strahler geometric-optical bidirectional reflectance model, by considering the effect of crown shape and mutual shadowing, which is referred to as the GOMS model. However, it is difficult to retrieve LAI through the GOMS model directly because LAI is not a fundamental parameter of the model. In this study, a gap probability model was used to obtain the relationship between the canopy structure parameter nR2 and LAI. Thus, LAI was introduced into the GOMS model as an independent variable by replacing nR2 The modified GOMS (MGOMS model was validated by application to Dayekou in the Heihe River Basin of China. The LAI retrieved using the MGOMS model with optical multi-angle remote sensing data, high spatial resolution images and field-measured data was in good agreement with the field-measured LAI, with an R-square (R2 of 0.64, and an RMSE of 0.67. The results demonstrate that the MGOMS model obtained by replacing the canopy structure parameter nR2 of the GOMS model with LAI can be used to invert LAI directly and precisely.

  12. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  13. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    OpenAIRE

    Zulfikar, Z

    2012-01-01

    A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared....

  14. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by this study considers these effects. Evaluation

  15. Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar

    Science.gov (United States)

    Mahoney, C.; Hopkinson, C.; Held, A. A.

    2015-12-01

    Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.

  16. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Directory of Open Access Journals (Sweden)

    Lu Hao

    2016-12-01

    Full Text Available Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past three decades in the Upper Heihe River Basin (UHRB, a complex multiple use watershed in arid northwestern China. We apply empirical orthogonal function (EOF and singular value decomposition (SVD analysis to isolate and identify the spatial patterns of satellite-derived leaf area index (LAI and their close relationship with the variability of an aridity index (AI = Precipitation/Potential Evapotranspiration. Results show that UHRB has become increasingly warm and wet during the past three decades. In general, the rise of air temperature and precipitation had a positive impact on mean LAI at the annual scale. At the monthly scale, LAI variations had a lagged response to climate. Two major coupled spatial change patterns explained 29% and 41% of the LAI dynamics during 1983–2000 and 2001–2010, respectively. The strongest connections between climate and LAI were found in the southwest part of the basin prior to 2000, but they shifted towards the north central area afterwards, suggesting that the sensitivity of LAI to climate varied over time, and that human disturbances might play an important role in altering LAI patterns. At the basin level, the positive effects of regional climate warming and precipitation increase as well as local ecological restoration efforts overwhelmed the negative effects of overgrazing. The study results offer insights about the coupled effects of climatic variability and grazing on ecosystem structure and functions at a watershed scale. Findings from this study are useful for land managers and policy makers to make better decisions in response to climate

  17. Effective leaf area index retrieving from terrestrial point cloud data: coupling computational geometry application and Gaussian mixture model clustering

    Science.gov (United States)

    Jin, S.; Tamura, M.; Susaki, J.

    2014-09-01

    Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.

  18. Structure of forest ecosystems and leaf area index of wood plants -results of monitoring over the years 1991-1994

    International Nuclear Information System (INIS)

    Oszlanyi, J.

    1995-01-01

    Monitored characteristics and their dynamics over the last four vegetation seasons reveal the following conclusions: 1) Changes of monitored parameters (e.g. the structure of tree and shrub layer, the leaf area index) are slow, drab and insignificant at the permanent monitoring representing a major part of forest ecosystems of the area affected by the Hydroelectric power structures Gabcikovo. Despite the absence of floods, the ground water level is at a sufficient height to contact rhisosphere of wood plants and the recorded changes are in accord with growth regularities. 2) An increase of the ground water level in the upper part of the monitored territory and a partial renaturation of hydropedological conditions led to an improvement of production-ecological parameters of the area. Changes of its structure are of positive tendency, the leaf area index is stabilised at high values and somewhere even increased (in 1994 being by 70-80% higher than in 1991). 3) Localities with a permanent decrease of the ground water level (band along the old river-bed of the Danube, a dry triangle among the old river-bed of the Danube, the inlet canal and the river arm supplied by the intake structure at Dobrohost and other places) were afflicted by negative changes, locally indicating destruction of tree and shrub layers, with the leaf area index significantly reduced by 20-30%. (author). 1 tab., 5 refs [sk

  19. Measured efficiency of a luminescent solar concentrator PV module called Leaf Roof

    NARCIS (Netherlands)

    Reinders, Angèle H.M.E; Debije, Michael G.; Rosemann, Alexander

    2017-01-01

    A functional prototype of a luminescent solar concentrator photovoltaic (LSC PV) module, called Leaf Roof, aims at demonstrating the design features of LSC PV technologies such as coloring, transparency, and flexibility in physical shape. In this paper, the prototype is presented and the first

  20. A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry

    NARCIS (Netherlands)

    Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T.

    2017-01-01

    The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired

  1. Design process of an area-efficient photobioreactor

    NARCIS (Netherlands)

    Zijffers, J.F.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.

    2008-01-01

    This article describes the design process of the Green Solar Collector (GSC), an area-efficient photobioreactor for the outdoor cultivation of microalgae. The overall goal has been to design a system in which all incident sunlight on the area covered by the reactor is delivered to the algae at such

  2. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    Directory of Open Access Journals (Sweden)

    . Zulfikar

    2012-10-01

    Full Text Available A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared. The VHDL code which limits range of integer values is occupies less area than the one which is not. This VHDL coding method is suitable for multi stage circuits.

  3. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    Directory of Open Access Journals (Sweden)

    Zulfikar .

    2015-05-01

    Full Text Available A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared. The VHDL code which limits range of integer values is occupies less area than the one which is not. This VHDL coding method is suitable for multi stage circuits.

  4. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  5. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2015-12-01

    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  6. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2015-01-01

    A new simple framework was proposed to quantify the efficiency of converting incoming solar radiation into phytoenergy in annual crops. It emphasizes the need to account for (i) efficiency gain when scaling up from the leaf level to the canopy level, and (ii) efficiency loss due to incomplete canopy

  7. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Large-scale Estimates of Leaf Area Index from Active Remote Sensing Laser Altimetry

    Science.gov (United States)

    Hopkinson, C.; Mahoney, C.

    2016-12-01

    Leaf area index (LAI) is a key parameter that describes the spatial distribution of foliage within forest canopies which in turn control numerous relationships between the ground, canopy, and atmosphere. The retrieval of LAI has demonstrated success by in-situ (digital) hemispherical photography (DHP) and airborne laser scanning (ALS) data; however, field and ALS acquisitions are often spatially limited (100's km2) and costly. Large-scale (>1000's km2) retrievals have been demonstrated by optical sensors, however, accuracies remain uncertain due to the sensor's inability to penetrate the canopy. The spaceborne Geoscience Laser Altimeter System (GLAS) provides a possible solution in retrieving large-scale derivations whilst simultaneously penetrating the canopy. LAI retrieved by multiple DHP from 6 Australian sites, representing a cross-section of Australian ecosystems, were employed to model ALS LAI, which in turn were used to infer LAI from GLAS data at 5 other sites. An optimally filtered GLAS dataset was then employed in conjunction with a host of supplementary data to build a Random Forest (RF) model to infer predictions (and uncertainties) of LAI at a 250 m resolution across the forested regions of Australia. Predictions were validated against ALS-based LAI from 20 sites (R2=0.64, RMSE=1.1 m2m-2); MODIS-based LAI were also assessed against these sites (R2=0.30, RMSE=1.78 m2m-2) to demonstrate the strength of GLAS-based predictions. The large-scale nature of current predictions was also leveraged to demonstrate large-scale relationships of LAI with other environmental characteristics, such as: canopy height, elevation, and slope. The need for such wide-scale quantification of LAI is key in the assessment and modification of forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network, in fulfilling their government issued mandates.

  9. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    Science.gov (United States)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher

  10. Drought adaptation strategies of four grapevine cultivars (Vitis vinifera L.: modification of the properties of the leaf area

    Directory of Open Access Journals (Sweden)

    María Gómez-del-Campo

    2003-09-01

    Full Text Available This essay studies the morphological and anatomical properties of the leaves of Garnacha tinta, Tempranillo, Chardonnay and Airén grapevines in order to discover the drought adaptation strategies present in Vitis vinifera L. The grapevines were grown under two water availability conditions: water limitation and non-water limitation. There was a significantly lower development of leaf area under conditions of water limitation compared to non-water limitation due to a reduction in the size of main and lateral shoot leaves, and a smaller number of leaves on lateral shoots. The development of the leaf area under water limitation conditions occurred on earlier dates than under non-water limitation conditions. Significantly lower stomatal density was observed under water limitation conditions rather than non-water limitation conditions exclusively in the Airén cultivar.

  11. Prediction of the competitive effects of weeds on crop yields based on the relative leaf area of weeds

    DEFF Research Database (Denmark)

    Lotz, L. A. P.; Christensen, Svend; Cloutier, D.

    1996-01-01

    . alba whereas the density model did not. A parameter that allows the maximum yield loss to be smaller than 100% was mostly not needed to describe the effects of weed competition. The parameter that denotes the competitiveness of the weed species with respect to the crop decreased the later the relative......For implementation of simple yield loss models into threshold-based weed management systems, a thorough validation is needed over a great diversity of sites. Yield losses by competition wsth Sinapis alba L. (white mustard) as a model weed, were studied in 12 experiments in sugar beet (Beta vulgaris...... L.) and in 11 experiments in spring wheat (Triticum aestivum L.). Most data sets were heller described by a model based on the relative leaf area of the weed than by a hyperbolic model based on weed density. This leaf area model accounted for (part of) the effect of different emerging times of the S...

  12. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

    Science.gov (United States)

    Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar

    2007-01-01

    Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO...

  13. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    Directory of Open Access Journals (Sweden)

    Ignacio del-Moral-Martínez

    2016-01-01

    Full Text Available The leaf area index (LAI is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging. However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers.

  14. Digital Cover Photography for Estimating Leaf Area Index (LAI in Apple Trees Using a Variable Light Extinction Coefficient

    Directory of Open Access Journals (Sweden)

    Carlos Poblete-Echeverría

    2015-01-01

    Full Text Available Leaf area index (LAI is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io and transmitted radiation (I through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID, which was compared with LAI estimated by the proposed digital photography method (LAIM. Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68. However, when k was estimated using an exponential function based on the fraction of foliage cover (ff derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.

  15. Digital cover photography for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient.

    Science.gov (United States)

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-28

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAI(D)), which was compared with LAI estimated by the proposed digital photography method (LAI(M)). Results showed that the LAI(M) was able to estimate LAI(D) with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (f(f)) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.

  16. Digital Cover Photography for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient

    Science.gov (United States)

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-01

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed digital photography method (LAIM). Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (ff) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions. PMID:25635411

  17. Using Leaf Chlorophyll to Parameterize Light-Use-Efficiency Within a Thermal-Based Carbon, Water and Energy Exchange Model

    Science.gov (United States)

    Houlborg, Rasmus; Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.; Rodell, Matthew

    2010-01-01

    Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C(sub ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C(sub ab) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from a nominal (species-dependent) value (LUE(sub n)) in response to short term variations in environmental conditions, However LUE(sub n) may need adjustment on a daily timescale to accommodate changes in plant phenology, physiological condition and nutrient status. Day to day variations in LUE(sub n) were assessed for a heterogeneous corn crop field in Maryland, U,S.A. through model calibration with eddy covariance CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. The time continuous maps of daily C(sub ab) over the study field were generated by focusing in-situ measurements with retrievals generated with an integrated radiative transfer modeling tool (accurate to within +/-10%) using at-sensor radiances in green, red and near-infrared wavelengths acquired with an aircraft imaging system. The resultant daily changes in C(sub ab) within the tower flux source area generally correlated well with corresponding changes in daily calibrated LUE(sub n) derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio

  18. The effect of water deficit stress and nitrogen fertilizer levels on morphology traits, yield and leaf area index in maize

    International Nuclear Information System (INIS)

    Moosavi, S.G.

    2012-01-01

    In order to study the effect of water deficit stress at different growth stages and N fertilizer levels on morphological traits, yield and yield components of maize cv. Single Cross 704, an experiment was conducted as a split-plot based on a Randomized Complete Block Design with three replications. The main plot included irrigation at four levels (irrigation stop at 10-leaf, tasselling and grain-filling stages and optimum irrigation) and the sub-plot was N fertilizer at three levels (75, 150 and 225 kg N/ha). The results of analysis of variance showed that water-deficit stress and N fertilizer level significantly affected leaf area index at silking stage, ear length, grain number per ear, 1000-grain weight and grain yield. Stem diameter, ear diameter and harvest index were only affected by irrigation treatments and the interaction between irrigation and N level did not significantly affect the studied traits. Means comparison indicated that ear diameter under optimum irrigation was higher than that under the treatments of irrigation stop at 8-leaf, tasselling and grain-filling stages by 29.9, 19.1 and 33.5%, respectively; and ear length was higher than them by 38.1, 28.9 and 25.2%, respectively. Moreover, the highest grain number per ear, 1000-grain weight and grain yield were obtained under optimum irrigation treatment, and irrigation stop at 10-leaf, tasselling and grain-filling stages decreased grain yield by 52.8, 66.4 and 44.9%, respectively; and it decreased grain number/ear by 45.9, 59.3 and 30.1%, respectively. In addition, optimum irrigation treatment with mean 1000-grain weight of 289.2 g was significantly superior over other irrigation stop treatments by 27.6-42.8% and produced the highest leaf area index at silking stage (4.1). Means comparison of traits at different N levels indicated that N level of 225 kg/ha produced the highest ear length (17.82 cm), grain number per ear (401.9), 1000-grain weight (258.8 g), leaf area index at silking stage (4

  19. Estimation of Leaf Area Index (LAI) Through the Acquisition of Ground Truth Data in Yosemite National Park

    Science.gov (United States)

    Basson, G.; Hawk, A.; Lue, E.; Ottman, D.; Schiffman, B.; Ghosh, M.; Melton, F.; Schmidt, C.; Skiles, J.

    2007-12-01

    Leaf area index (LAI) is an important indicator of ecosystem health. Remote sensing offers the only feasible method of estimating LAI at global and regional scales. Land managers can efficiently monitor changes in vegetation by using NASA data products such as the MODIS LAI 1km product. To increase confidence in use of the MODIS LAI product in Yosemite National Park, we investigated the accuracy of remotely sensed LAI data and created LAI maps using three optical in-situ instruments: the LAI-2000 instrument, digital hemispheric photography (DHP), and the Tracing Radiation and Architecture of Canopies (TRAC) instrument. We compared our in-situ data with three spectral vegetation indices derived from Landsat Thematic Mapper imagery: Reduced Simple Ratio (RSR), Simple Ratio (SR), and Normalized Difference Vegetation Index (NDVI) to produce models which created LAI maps at 30m and 1km resolution. The strongest correlations occurred between DHP LAI values and RSR. Pixel values from the 1km LAI map were then compared to pixel values from a MODIS LAI map. A strong correlation exists between our in-situ data and MODIS LAI values which confirms its accuracy for use by the National Park Service as a decision support tool in Yosemite. The MODIS LAI product is particularly useful because of its high temporal resolution of 1-2 days and can be used to monitor current and future vegetation changes. The model created using the in-situ data can also be applied to Landsat data to provide thirty years of historical LAI values.

  20. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    Science.gov (United States)

    Rajib, A.; Evenson, G. R.; Golden, H. E.; Lane, C.

    2017-12-01

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. Accordingly, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate realistic ground conditions, particularly those involved with complex land-atmosphere feedbacks, vegetation growth, and energy balances. Uncertainty persists despite using high resolution topography and/or detailed land use data. Thus, a good hydrologic model can produce right answers for wrong reasons. In this study, we develop an efficient approach for multi-variable assimilation of remotely sensed earth observations (EOs) into a hydrologic model and apply it in the 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. Our goal is to employ EOs, specifically Leaf Area Index (LAI) and Potential Evapotranspiration (PET), as surrogates for the aforementioned processes without overruling the model's built-in physical/semi-empirical process conceptualizations. To do this, we modified the source code of an already-improved version of the Soil and Water Assessment Tool (SWAT) for wetland hydrology (Evenson et al. 2016 HP 30(22):4168) to directly assimilate remotely-sensed LAI and PET (obtained from the 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products, respectively) into each model Hydrologic Response Unit (HRU). Two configurations of the model, one with and one without EO assimilation, are calibrated against streamflow observations at the watershed outlet. Spatio-temporal changes in the HRU-level water balance, based on calibrated outputs, are evaluated using MODIS Actual Evapotranspiration (AET) as a reference. It is expected that the model configuration having remotely sensed LAI and PET, will simulate more realistic land-atmosphere feedbacks, vegetation growth and energy balance. As a result, this will decrease simulated

  1. Linear relations between leaf mass per area (LMA) and seasonal climate discovered through Linear Manifold Clustering (LMC)

    Science.gov (United States)

    Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.

    2016-12-01

    Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations

  2. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  3. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  4. Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014).

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2014-10-01

    It has been recently proposed that leaf vein length per area (VLA) is the major determinant of leaf mass per area ( MA), and would thereby determine other traits of the leaf economic spectrum (LES), such as photosynthetic rate per mass (A(mass)), nitrogen concentration per mass (N(mass)) and leaf lifespan (LL). In a previous paper we argued that this 'vein origin' hypothesis was supported only by a mathematical model with predestined outcomes, and that we found no support for the 'vein origin' hypothesis in our analyses of compiled data. In contrast to the 'vein origin' hypothesis, empirical evidence indicated that VLA and LMA are independent mechanistically, and VLA (among other vein traits) contributes to a higher photosynthetic rate per area (A(area)), which scales up to driving a higher A(mass), all independently of LMA, N(mass) and LL. In their reply to our paper, Blonder et al. (2014) raised questions about our analysis of their model, but did not address our main point, that the data did not support their hypothesis. In this paper we provide further analysis of an extended data set, which again robustly demonstrates the mechanistic independence of LMA from VLA, and thus does not support the 'vein origin' hypothesis. We also address the four specific points raised by Blonder et al. (2014) regarding our analyses. We additionally show how this debate provides critical guidance for improved modelling of LES traits and other networks of phenotypic traits that determine plant performance under contrasting environments. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data

    NARCIS (Netherlands)

    Groenendijk, M.; Dolman, A.J.; Ammann, C.; Arneth, A.; Cescatti, A.; Molen, van der M.K.; Moors, E.J.

    2011-01-01

    Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (Vcm), and quantum yield (a) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a

  6. Modelling plant responses to elevated CO2: how important is leaf area index?

    NARCIS (Netherlands)

    Ewert, F.

    2004-01-01

    Background and Aims The problem of increasing CO2 concentration [CO2] and associated climate change has [CO2] on plants. While variation in growth and productivity is generated much interest in modelling effects of closely related to the amount of intercepted radiation, largely determined by leaf

  7. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    Science.gov (United States)

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  8. Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material.

    Directory of Open Access Journals (Sweden)

    John Hamblin

    Full Text Available Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.

  9. Relationship between incident radiation, leaf area and dry-matter yield in wheat

    International Nuclear Information System (INIS)

    Saini, A.D.; Nanda, R.

    1986-01-01

    Light-utilization efficiency was evaluated between 20 and 50 days of crop growth period in 'Kalyansona', 'Sonalika' (semi-dwarf), 'Hindi 62' (tall) varieties of bread-wheat (Triticum aestivum Linn. emend., Fiori and Paol.) and semi-dwarf 'HD 4502' variety of macaroni wheat (T. durum Desf.). In the first model, the relationship between absorbed photosynthetic radiation and crop growth rates showed above-ground dry matter of 2.9 g in 'Sonalika', 2.5 g each in 'Kalyansona' and 'HD 4502' and 1.8 g in 'Hindi 62' were produced for each megajoule of absorbed photosynthetic radiation corresponding to the growth efficiency of 5.1, 4.4 and 3.1% respectively. In the second model of partial regression analysis, the rate of change in dry matter due to mean green area index as well as photosynthetic radiation was low in 'Hindi 62'. However, the dry matter changes due to mean green area index were similar in 'Kalyansona', 'HD4502' and 'Sonalika', but was high due to photosynthetic radiation in 'Sonalika' only. Both models gave similar conclusion

  10. Impact of abiotic stress on photosynthetic efficiency and leaf temperature in sunflower

    Directory of Open Access Journals (Sweden)

    Antonela Markulj Kulundžić

    2016-11-01

    Full Text Available The aim of this research was to investigate the variability of photosynthetic performance index (PIABS and leaf temperature values measured in V6 development phase on 13 sunflower hybrids, grown in stressful conditions. The pot trial was made up of two treatments, one (T1 with 60% Field Water Capacity (FWC, and the other one (T2 with 80% FWC. Significant differences between T1 and T2 treatments were established for both of these parameters which prove their dependence on the water content in the soil, while the influence of hybrid was evident only in the case of PIABS. Although in T1, as opposed to T2, all sunflower hybrids reacted by increasing leaf temperature, reaction to stress conditions measured with PIABS parameter was not uniform. Some of the hybrids reacted by decreasing PIABS values, while others reacted by increasing their PIABS values. Therefore, it can be concluded that changes in parameters were independent of each other, which was confirmed by correlation analysis. Investigated parameters are suitable for determining the existence of undesirable environmental conditions that cause stress in plants and can be used in breeding of sunflower to withstand abiotic stress conditions, i.e. in selection of stress tolerant hybrids.

  11. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  12. IN SITU AND MODIS MOD15A2 LEAF AREA INDEX MEASUREMENTS OF A MID-ATLANTIC DECIDOUS FOREST SITE: PERSPECTIVES FROM FOUR-YEARS OF FIELD STUDIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency is interested in leaf area index as it pertains to biogenic emissions, atmospheric pollutant deposition, ecological indicators, vegetation phenology, and land cover mapping.

  13. Seasonal variation in specific leaf area, epicuticular wax and pigments in 15 woody species from northeastern mexico during summer and winter

    International Nuclear Information System (INIS)

    Rodriguez, H.G.; Maiti, R.; Kumari, A.

    2017-01-01

    The present study has been undertaken on the variability in specific leaf area, epicuticular wax and pigment content of 15 native woody species in northeastern Mexico. The species showed considerable variability in responses of these leaf traits. Majority of the species showed a decline in specific leaf area and epicuticular wax content. With respect to pigments, only few species showed a decrease, but some species showed an increase in pigments (chlorophyll a, b and total chlorophyll (a+b)) showing mechanism of adaptation to winter season.However, in few species there was a decline in pigment contents showing susceptibility to winter. (author)

  14. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  15. Characterization of leaf area of Agave fourcroydes Lem. plants obtained from asexual propagation

    Directory of Open Access Journals (Sweden)

    Maryla Sosa del Castillo

    2014-01-01

    Full Text Available The henequen (Agave fourcroydes Lem. is a crop of great economic importance. This study was aimed to characterize the leaf surface of henequen plants variety `Sac Ki' obtained by asexual propagation methods. In vitro plants, shoots of bulbils of in vitro plants, shoots of rhizomes of in vitro plants, shoots of bulbils of field plants and shoots of field rhizomes were used. At 7 and 15 months after planting in the nursery, the epidermis was characterized through the stomatal index and stomatal density. Moreover, the conductor vessels and fiber bundles in leaf mesophyll, were characterized. It was found that the leaf surface of henequen plants variety `Sac Ki' obtained by different methods of asexual propagation showed similar anatomical structures. However, it was observed that in vitro plants were different from the rest in terms of stomatal index and stomatal density in both time points. It was suggesting a accommodate response to environmental conditions. Key words: stomatic density, stomatic index, in vitro plants

  16. Complementarity and Area-Efficiency in the Prioritization of the Global Protected Area Network.

    Directory of Open Access Journals (Sweden)

    Peter Kullberg

    Full Text Available Complementarity and cost-efficiency are widely used principles for protected area network design. Despite the wide use and robust theoretical underpinnings, their effects on the performance and patterns of priority areas are rarely studied in detail. Here we compare two approaches for identifying the management priority areas inside the global protected area network: 1 a scoring-based approach, used in recently published analysis and 2 a spatial prioritization method, which accounts for complementarity and area-efficiency. Using the same IUCN species distribution data the complementarity method found an equal-area set of priority areas with double the mean species ranges covered compared to the scoring-based approach. The complementarity set also had 72% more species with full ranges covered, and lacked any coverage only for half of the species compared to the scoring approach. Protected areas in our complementarity-based solution were on average smaller and geographically more scattered. The large difference between the two solutions highlights the need for critical thinking about the selected prioritization method. According to our analysis, accounting for complementarity and area-efficiency can lead to considerable improvements when setting management priorities for the global protected area network.

  17. Complementarity and Area-Efficiency in the Prioritization of the Global Protected Area Network.

    Science.gov (United States)

    Kullberg, Peter; Toivonen, Tuuli; Montesino Pouzols, Federico; Lehtomäki, Joona; Di Minin, Enrico; Moilanen, Atte

    2015-01-01

    Complementarity and cost-efficiency are widely used principles for protected area network design. Despite the wide use and robust theoretical underpinnings, their effects on the performance and patterns of priority areas are rarely studied in detail. Here we compare two approaches for identifying the management priority areas inside the global protected area network: 1) a scoring-based approach, used in recently published analysis and 2) a spatial prioritization method, which accounts for complementarity and area-efficiency. Using the same IUCN species distribution data the complementarity method found an equal-area set of priority areas with double the mean species ranges covered compared to the scoring-based approach. The complementarity set also had 72% more species with full ranges covered, and lacked any coverage only for half of the species compared to the scoring approach. Protected areas in our complementarity-based solution were on average smaller and geographically more scattered. The large difference between the two solutions highlights the need for critical thinking about the selected prioritization method. According to our analysis, accounting for complementarity and area-efficiency can lead to considerable improvements when setting management priorities for the global protected area network.

  18. Control of Growth Efficiency in Young Plantation Loblolly Pine and Sweetgum through Irrigation and Fertigation Enhancement of Leaf Carbon Gain; FINAL

    International Nuclear Information System (INIS)

    L. Samuelson

    1999-01-01

    The overall objective of this study was to determine if growth efficiency of young plantation loblolly pine and sweetgum can be maintained by intensive forest management and whether increased carbon gain is the mechanism controlling growth efficiency response to resource augmentation. Key leaf physiological processes were examined over two growing seasons in response to irrigation, fertigation (irrigation with a fertilizer solution), and fertigation plus pest control (pine only). Although irrigation improved leaf net photosynthesis in pine and decreased stomatal sensitivity to vapor pressure deficit in sweetgum, no consistent physiological responses to fertigation were detected in either species. After 4 years of treatment, a 3-fold increase in woody net primary productivity was observed in both species in response to fertigation. Trees supplemented with fertigation and fertigation plus pest control exhibited the largest increases in growth and biomass. Furthermore, growth efficiency was maintained by fertigation and fertigation plus pest control, despite large increases in crown development and self-shading. Greater growth in response to intensive culture was facilitated by significant gains in leaf mass and whole tree carbon gain rather than detectable increases in leaf level processes. Growth efficiency was not maintained by significant increases in leaf level carbon gain but was possibly influenced by changes in carbon allocation to root versus shoot processes

  19. Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency.

    Science.gov (United States)

    Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I

    2006-10-01

    A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.

  20. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  1. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  2. Thematic mapper detection of changes in the leaf area of closed canopy pine plantations in central Massachusetts

    International Nuclear Information System (INIS)

    Herwitz, S.R.; Peterson, D.L.; Eastman, J.R.

    1989-01-01

    Remote sensing studies of conifer forests have previously reported that the Thematic Mapper Band 4/Band 3 ratio is positively correlated with regional differences in leaf area index (LAI). Our study was an attempt to determine whether Landsat Thematic Mapper data can be used to detect differences and changes in the LAI of closed canopy pine plantations on a local scale in central Massachusetts. Field measurements of LAI were obtained using locally-derived allometric relationships between leaf area and trunk diameter (DBH). A thinning treatment, which reduced the LAI of one of the larger plantations by more than 25%, resulted in a significant decrease (P < 0.001) in the 4/3 ratio from the prethinned value. No significant change in the 4/3 ratio was found in a nearby broadleaved hardwood forest which served as a radiometric control. However, a decrease in the 4/3 ratio similar to that observed in the thinned plantation was observed in nearby unthinned pine plantations. This change in the reflectance of the unthinned stands may be attributable to a moderate natural reduction in LAI. Such a reduction in LAI would demonstrate the limitations of allometric equations for evaluating LAI under conditions in which the relationship between leaf area and DBH may be changing from year to year. It also would explain why no significant relationship (P > 0.1) was found between the 4/3 ratio and the LAI of the different unthinned plantations which had LAI values ranging from 3.96 to 7.01. We conclude that the TM sensor may be a better guide to moderate changes and differences in the LAI of closed canopy pine plantations at local scales than field measurements involving allometric equations. (author)

  3. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient

    International Nuclear Information System (INIS)

    Burton, A.J.; Pregitzer, K.S.; Reed, D.D.

    1991-01-01

    The canopies of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) were examined at five locations spanning 800 km along an acid deposition and climatic gradient in the Great Lakes region. Leaf area index (LAI) calculated from litterfall ranged from 6.0 to 8.0 in 1988, from 4.9 to 7.9 in 1989, and from 5.3 to 7.8 in 1990. The data suggest that maximum LAI for the sites is between 7 and 8. Insect defoliation and the allocation of assimilates to reproductive parts in large seed years reduced LAI by up to 34%. Allometric equations for leaf area and foliar biomass were not significantly different among sites. They predicted higher LAI values than were estimated from litterfall and could not account for the influences of defoliation and seed production. Canopy transmittance was a viable alternative for estimating LAI. Extinction coefficients (K) of 0.49 to 0.65 were appropriate for solar elevations of 63 degree to 41 degree. Patterns of specific leaf area (SLA) were similar for the sites. Average sugar maple SLA increased from 147 cm 2 g -1 in the upper 5 m of the canopy to 389 cm 2 g -1 in the seeding layer. Litterfall SLA averaged 196 cm 2 g -1 for all species and 192 cm 2 g -1 for sugar maple. Similarity among the sites in allometric relationships, maximum LAI, canopy transmittance, and patterns of SLA suggests these characteristics were controlled primarily by the similar nutrient and moisture availability at the sites. A general increasing trend in litter production along the gradient could not be attributed to N deposition or length of growing season due to year to year variability resulting from insect defoliation and seed production

  4. Leaf N resorption efficiency and litter N mineralization rate have a genotypic tradeoff in a silver birch population.

    Science.gov (United States)

    Mikola, Juha; Silfver, Tarja; Paaso, Ulla; Possen, Boy J M H; Rousi, Matti

    2018-02-07

    Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H 2  = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH 4 + yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population. © 2018 by the Ecological Society of America.

  5. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery

    Science.gov (United States)

    Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.

    2018-04-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as

  6. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  7. Variation in light absorption properties of mentha aquatica L. as a function of leaf form: Implications for plant growth

    DEFF Research Database (Denmark)

    Enriquez, Susana; Jensen, Kaj Sand

    2008-01-01

    To understand the association between leaf form and leaf optical properties, we examined light absorption variations in the leaves of Mentha aquatica L., an amphibious freshwater macrophyte. Specific absorption of leaves of M. aquatica showed a 7.5-fold variation, decreasing as pigment per unit...... area increased. This relationship indicates that dispersive samples, such as leaves, although efficient light traps, can also be affected by the "package effect." Mentha aquatica leaves, by expanding their biomass (increased specific leaf area [SLA]), improve their light absorption efficiency per unit...... of both pigment and leaf biomass. Changes in leaf biomass expansion were mainly a result of changes in leaf density, and as a consequence, leaf density appears to be a better descriptor of light absorption efficiency in M. aquatica leaves than does leaf thickness. Light absorption efficiency per unit...

  8. Remote Sensing of Leaf Area Index from LiDAR Height Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Yonghua Qu

    2018-06-01

    Full Text Available Leaf area index (LAI is an important parameter to describe the capacity of forests to intercept light and thus affects the microclimate and photosynthetic capacity of canopies. In general, tropical forests have a higher leaf area index and it is a challenge to estimate LAI in a forest with a very dense canopy. In this study, it is assumed that the traditional Light Detection and Ranging (LiDAR-derived fractional vegetation cover (fCover has weak relationship with leaf area index in a dense forest. We propose a partial least squares (PLS regression model using the height percentile metrics derived from airborne LiDAR data to estimate the LAI of a dense forest. Ground inventory and airborne LiDAR data collected in a selectively logged tropical forest area in Eastern Amazonia are used to map LAI from the plot level to the landscape scale. The results indicate that the fCover, derived from the first return or the last return, has no significant correlations with the ground-based LAI. The PLS model evaluated by the leave-one-out validation shows that the estimated LAI is significantly correlated with the ground-based LAI with an R2 of 0.58 and a root mean square error (RMSE of 1.13. A data comparison indicates that the Moderate Resolution Imaging Spectrometer (MODIS LAI underestimates the landscape-level LAI by about 22%. The MODIS quality control data show that in the selected tile, the cloud state is not the primary factor affecting the MODIS LAI performance; rather, the LAI from the main radiative transfer (RT algorithm contributes much to the underestimation of the LAI in the tropical forest. In addition, the results show that the LiDAR-based LAI has a better response to the logging activities than the MODIS-based LAI, and that the leaf area reduction caused by logging is about 13%. In contrast, the MODIS-based LAI exhibits no apparent spatial correlation with the LiDAR-based LAI. It is suggested that the main algorithm of MODIS should be

  9. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].

    Science.gov (United States)

    Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui

    2016-01-01

    With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote

  10. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support

  11. Area Green Efficiency (AGE) of Two Tier Heterogeneous Cellular Networks

    KAUST Repository

    Tabassum, Hina

    2012-10-03

    Small cell networks are becoming standard part of the future heterogeneous networks. In this paper, we consider a two tier heterogeneous network which promises energy savings by integrating the femto and macro cellular networks and thereby reducing CO2 emissions, operational and capital expenditures (OPEX and CAPEX) whilst enhancing the area spectral efficiency (ASE) of the network. In this context, we define a performance metric which characterize the aggregate energy savings per unit macrocell area and is referred to as area green efficiency (AGE) of the two tier heterogeneous network where the femto base stations are arranged around the edge of the reference macrocell such that the configuration is referred to as femto-on-edge (FOE). The mobile users in macro and femto cellular networks are transmitting with the adaptive power while maintaining the desired link quality such that the energy aware FOE configuration mandates to (i) save energy, and (ii) reduce the co-channel interference. We present a mathematical analysis to incorporate the uplink power control mechanism adopted by the mobile users and calibrate the uplink ASE and AGE of the energy aware FOE configuration. Next, we derive analytical expressions to compute the bounds on the uplink ASE of energy aware FOE configuration and demonstrate that the derived bounds are useful in evaluating the ASE under worst and best case interference scenarios. Simulation results are produced to demonstrate the ASE and AGE improvements in comparison to macro-only and macro-femto configuration with uniformly distributed femtocells.

  12. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed

    Science.gov (United States)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita

    2017-01-01

    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  13. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  14. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    International Nuclear Information System (INIS)

    Dagg, J.; Lafleur, P.

    2010-01-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO 2 ) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO 2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO 2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO 2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO 2 exchange in heterogeneous Tundra vegetation is variable.

  15. Relationship of leaf oxygen and carbon isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria italica.

    Science.gov (United States)

    Ellsworth, Patrick Z; Ellsworth, Patrícia V; Cousins, Asaph B

    2017-06-15

    Leaf carbon and oxygen isotope ratios can potentially provide a time-integrated proxy for stomatal conductance (gs) and transpiration rate (E), and can be used to estimate transpiration efficiency (TE). In this study, we found significant relationships of bulk leaf carbon isotopic signature (δ13CBL) and bulk leaf oxygen enrichment above source water (Δ18OBL) with gas exchange and TE in the model C4 grasses Setaria viridis and S. italica. Leaf δ13C had strong relationships with E, gs, water use, biomass, and TE. Additionally, the consistent difference in δ13CBL between well-watered and water-limited plants suggests that δ13CBL is effective in separating C4 plants with different availability of water. Alternatively, the use of Δ18OBL as a proxy for E and TE in S. viridis and S. italica was problematic. First, the oxygen isotopic composition of source water, used to calculate leaf water enrichment (Δ18OLW), was variable with time and differed across water treatments. Second, water limitations changed leaf size and masked the relationship of Δ18OLW and Δ18OBL with E. Therefore, the data collected here suggest that δ13CBL but not Δ18OBL may be an effective proxy for TE in C4 grasses. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel eSchnaubelt

    2013-11-01

    Full Text Available Reduced glutathione (GSH is an abundant low molecular weight plant thiol. It fulfils multiple functions in plant biology, many of which remain poorly characterised. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2 and rax1 or the export of γ-glutamyl cysteine and GSH from the chloroplast (clt and in wild type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesise GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short term abiotic stress. However, the negative effects of long term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

  17. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Schnaubelt, Daniel; Schulz, Philipp; Hannah, Matthew A; Yocgo, Rosita E; Foyer, Christine H

    2013-01-01

    Reduced glutathione (GSH) is an abundant low molecular weight plant thiol. It fulfills multiple functions in plant biology, many of which remain poorly characterized. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2, and rax1) or the export of γ-glutamylcysteine and GSH from the chloroplast (clt) and in wild-type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress, and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesize GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short-term abiotic stress. However, the negative effects of long-term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

  18. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  19. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    KAUST Repository

    Schull, M. A.

    2015-03-11

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  20. Energy-efficiency instruments in the electricity area

    International Nuclear Information System (INIS)

    Hammer, S.; Oettli, B.; Schneider, Ch.; Iten, R.; Peherstorfer, N.

    2007-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) describes a mix of instruments that could increase the efficiency of electricity usage in Switzerland. The basis for the development of these instruments - the experience gained in Europe in this area - is discussed. Explicitly not discussed are energy and electricity steering taxes, which could also be part of a future instrument-mix. The measures suggested include the setting of compulsory long-term reduction targets that are to form the basis for strategies and measures to be taken in particular areas and the development of an appropriate instrument-mix for this purpose. These could include regulations and labels, a national fund and certificate trading. Suppliers of electricity could be committed to increasing the efficiency of electricity use and national programmes could also attempt to influence consumer habits. The instruments should, according to the authors, be based on the existing legal framework and use know-how and structures that are already available

  1. Effect of Cover Crops on Vertical Distribution of Leaf Area and Dry Matter of Soybean (Glycine max L. in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    seyyedeh samaneh hashemi

    2017-08-01

    Full Text Available Introduction Amount and vertical distribution of leaf area are essential for estimating interception and utilization of solar radiation of crop canopies and, consequently dry matter accumulation (Valentinuz & Tollenaar, 2006. Vertical distribution of leaf area is leaf areas per horizontal layers, based on height (Boedhram et al., 2001. Above-ground biomass is one of the central traits in functional plant ecology and growth analysis. It is a key parameter in many allometric relationships (Niklas & Enquist, 2002. The vertical biomass distribution is considered to be the main determinant of competitive strength in plant species. The presence of weeds intensifies competition for light, with the effect being determined by plant height, position of the branches, and location of the maximum leaf area. So, this experiment was conducted to study the vertical distribution of leaf area and dry matter of soybean canopy in competition with weeds and cover crops. Materials and methods This experiment was performed based on complete randomized block design with 3 replications in center of Agriculture of Joybar in 2013. Soybean was considered as main crop and soybean and Persian clover (Trifolium resupinatum L., fenugreek (Trigonella foenum–graecum L., chickling pea (Lathyrus sativus L. and winter vetch (Vicia sativa L. were the cover crops. Treatments were included cover crops (Persian clover, fenugreek, chickling pea and winter vetch and cover crop planting times (simultaneous planting of soybean with cover crops and planting cover crops three weeks after planting of soybeans and also monoculture of soybeans both in weedy and weed free conditions were considered as controls. Soybean planted in 50 cm row spacing with 5 cm between plants in the same row. Each plot was included 5 rows soybeans. Cover crop inter-seeded simultaneously in the main crop. Crops were planted on 19 May 2013 for simultaneous planting of soybean. The dominant weed species were green

  2. Remote sensing based mapping of leaf nitrogen and leaf area index in European landscapes using the REGularized canopy reFLECtance (REGFLEC) model

    DEFF Research Database (Denmark)

    Boegh, E.; Houborg, R.; Bienkowski, J.

    2011-01-01

    index (LAI) are important determinants of the maximum CO2 Methods/Approach uptake by plants and trees. In the EU project NitroEurope, high spatial resolution (10-20 m) remote sensing data from the HRG and HRVIR sensors onboard the SPOT satellites were acquired to derive maps of leaf N and LAI for 5...... European landscapes. The estimations of leaf N, Cab and LAI soil reflectance parameters and canopy parameters are discussed in relation to the prevailing soil types and vegetation characteristics of land cover classes across the 5 European landscapes....

  3. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Science.gov (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  4. Estimativa da área foliar de Sida cordifolia e Sida rhombifolia usando dimensões lineares do limbo foliar Estimate of Sida cordifolia and Sida rhombifolia leaf area using leaf blade linear dimensions

    Directory of Open Access Journals (Sweden)

    S. Bianco

    2008-01-01

    Full Text Available A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af e parâmetros dimensionais do limbo foliar, como o comprimento (C ao longo da nervura principal e a largura máxima (L perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L, com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L, com coeficiente de determinação de 0,9711.Leaf area estimate may contribute to understand the relationship of interference between weeds and crops. The objective of this research was to obtain a mathematical equation to estimate Sida cordifolia and Sida rhombifolia leaf area based on linear measures of leaf blade. Correlation studies were conducted between real leaf area (Af and dimensional leaf blade parameters such as leaf length (C and maximum leaf width (L. Around 200 leaf blades of each species were analyzed, collected from several agro-ecosystems at São Paulo State University, in Jaboticabal, SP, Brazil. The statistical

  5. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    Science.gov (United States)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more

  6. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area

    NARCIS (Netherlands)

    Meir, P.; Kruijt, B.; Broadmeadow, M.; Barbosa, E.; Kull, O.; Carswell, F.; Nobre, A.; Jarvis, P.G.

    2002-01-01

    The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil-vegetation-atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that

  7. Environmental parameters affecting the structure of leaf-litter frog (Amphibia: Anura communities in tropical forests: a case study from an Atlantic Rainforest area in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Carla C. Siqueira

    2014-04-01

    Full Text Available Despite a recent increase of information on leaf litter frog communities from Atlantic rainforests, few studies have analyzed the relationship between environmental parameters and community structure of these animals. We analyzed the effects of some environmental factors on a leaf litter frog community at an Atlantic Rainforest area in southeastern Brazil. Data collection lasted ten consecutive days in January 2010, at elevations ranging between 300 and 520 m above sea level. We established 50 quadrats of 5 x 5 m on the forest floor, totaling 1,250 m² of sampled area, and recorded the mean leaf-litter depth and the number of trees within the plot, as well as altitude. We found 307 individuals belonging to ten frog species within the plots. The overall density of leaf-litter frogs estimated from the plots was 24.6 ind/100m², with Euparkerella brasiliensis (Parker, 1926, Ischnocnema guentheri (Steindachner, 1864, Ischnocnema parva (Girard, 1853 and Haddadus binotatus (Spix, 1824 presenting the highest estimated densities. Among the environmental variables analyzed, only altitude influenced the parameters of anuran community. Our results indicate that the study area has a very high density of forest floor leaf litter frogs at altitudes of 300-500 m. Future estimates of litter frog density might benefit from taking the local altitudinal variation into consideration. Neglecting such variation might result in underestimated/overestimated values if they are extrapolated to the whole area.

  8. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    Science.gov (United States)

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  10. Aerial radiation survey techniques for efficient characterization of large areas

    International Nuclear Information System (INIS)

    Sydelko, T.; Riedhauser, S.

    2006-01-01

    Full text: Accidental or intentional releases of radioactive isotopes over potentially very large surface areas can pose serious health risks to humans and ecological receptors. Timely and appropriate responses to these releases depend upon rapid and accurate characterization of impacted areas. These characterization efforts can be adversely impacted by heavy vegetation, rugged terrain, urban environments, and the presence of unknown levels of radioactivity. Aerial survey techniques have proven highly successful in measuring gamma emissions from radiological contaminates of concern quickly, efficiently, and safely. Examples of accidental releases include the unintentional distribution of uranium mining ores during transportation, the loss of uranium processing and waste materials, unintentional nuclear power plant emissions into the atmosphere, and the distribution of isotopes during major flooding events such as the one recently occurring in New Orleans. Intentional releases have occurred during the use of deleted uranium ammunition test firing and war time use by military organizations. The threat of radiological dispersion device (dirty bomb) use by terrorists is currently a major concern of many major cities worldwide. The U.S. Department of Energy, in cooperation with its Remote Sensing Laboratory and Argonne National Laboratory, has developed a sophisticated aerial measurement system for identifying the locations, types, and quantities of gamma emitting radionuclides over extremely large areas. Helicopter mounted Nal detectors are flown at low altitude and constant speed along parallel paths measuring the full spectrum of gamma activity. Analytical procedures are capable of distinguishing between radiological contamination and changes in natural background emissions. Mapped and tabular results of these accurate, timely and cost effective aerial gamma radiation surveys can be used to assist with emergency response actions, if necessary, and to focus more

  11. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    Science.gov (United States)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  12. Clonal Propagation of Khaya senegalensis: The Effects of Stem Length, Leaf Area, Auxins, Smoke Solution, and Stockplant Age

    Directory of Open Access Journals (Sweden)

    Catherine Ky-Dembele

    2011-01-01

    Full Text Available Khaya senegalensis is a multipurpose African timber species. The development of clonal propagation could improve plantation establishment, which is currently impeded by mahogany shoot borer. To examine its potential for clonal propagation, the effects of cutting length, leaf area, stockplant maturation, auxin, and smoke solution treatments were investigated. Leafy cuttings rooted well (up to 80% compared to leafless cuttings (0%. Cuttings taken from seedlings rooted well (at least 95%, but cuttings obtained from older trees rooted poorly (5% maximum. The rooting ability of cuttings collected from older trees was improved (16% maximum by pollarding. Auxin application enhanced root length and the number of roots while smoke solution did not improve cuttings' rooting ability. These results indicate that juvenile K. senegalensis is amenable to clonal propagation, but further work is required to improve the rooting of cuttings from mature trees.

  13. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    Science.gov (United States)

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification

  14. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    Science.gov (United States)

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  15. Validation of an efficient visual method for estimating leaf area index ...

    African Journals Online (AJOL)

    This study aimed to evaluate the accuracy and applicability of a visual method for estimating LAI in clonal Eucalyptus grandis × E. urophylla plantations and to compare it with hemispherical photography, ceptometer and LAI-2000® estimates. Destructive sampling for direct determination of the actual LAI was performed in ...

  16. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport

    Science.gov (United States)

    D.R. Woodruff; F.C. Meinzer; B. Lachenbruch

    2008-01-01

    Growth and aboveground biomass accumulation follow a common pattern as tree size increases, with productivity peaking when leaf area reaches its maximum and then declining as tree age and size increase. Age- and size-related declines in forest productivity are major considerations in setting the rotational age of commercial forests, and relate to issues of carbon...

  17. An Area-Efficient Reconfigurable LDPC Decoder with Conflict Resolution

    Science.gov (United States)

    Zhou, Changsheng; Huang, Yuebin; Huang, Shuangqu; Chen, Yun; Zeng, Xiaoyang

    Based on Turbo-Decoding Message-Passing (TDMP) and Normalized Min-Sum (NMS) algorithm, an area efficient LDPC decoder that supports both structured and unstructured LDPC codes is proposed in this paper. We introduce a solution to solve the memory access conflict problem caused by TDMP algorithm. We also arrange the main timing schedule carefully to handle the operations of our solution while avoiding much additional hardware consumption. To reduce the memory bits needed, the extrinsic message storing strategy is also optimized. Besides the extrinsic message recover and the accumulate operation are merged together. To verify our architecture, a LDPC decoder that supports both China Multimedia Mobile Broadcasting (CMMB) and Digital Terrestrial/ Television Multimedia Broadcasting (DTMB) standards is developed using SMIC 0.13µm standard CMOS process. The core area is 4.75mm2 and the maximum operating clock frequency is 200MHz. The estimated power consumption is 48.4mW at 25MHz for CMMB and 130.9mW at 50MHz for DTMB with 5 iterations and 1.2V supply.

  18. Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions

    Science.gov (United States)

    Huang, Hailong; Xia, Hui; Xie, Wenke; Guo, Zhibo; Li, Hongjian

    2018-06-01

    A size-efficient tunable metamaterial absorber (MA) composed of metallic leaf-shaped cell, graphene layer, silicon substrate, and bottom metal film is investigated theoretically and numerically at near-infrared (NIR) regions. Simulation results reveal that the single-band high absorption of 91.9% is obtained at 1268.7 nm. Further results show that the single-band can be simply changed into dual-band high absorption by varying the geometric parameters of top metallic layer at same wavelength regions, yielding two high absorption coefficients of 96.6% and 95.3% at the wavelengths of 1158.7 nm and 1323.6 nm, respectively. And the effect of related geometric parameter on dual-band absorption intensities is also investigated to obtain the optimized one. The peak wavelength can be tuned via modifying the Fermi energy of the graphene layer through controlling the external gate voltage. The work shows that the proposed strategy can be applied to other design of the dual-band structure at infrared regions.

  19. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    Science.gov (United States)

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology.

    Science.gov (United States)

    Yin, Xinyou; Struik, Paul C

    2015-11-01

    A new simple framework was proposed to quantify the efficiency of converting incoming solar radiation into phytoenergy in annual crops. It emphasizes the need to account for (i) efficiency gain when scaling up from the leaf level to the canopy level, and (ii) efficiency loss due to incomplete canopy closure during early and late phases of the crop cycle. Equations are given to estimate losses due to the constraints in various biochemical or physiological steps. For a given amount of daily radiation, a longer daytime was shown to increase energy use efficiency, because of the convex shape of the photosynthetic light response. Due to the higher cyclic electron transport, C4 leaves were found to have a lower energy loss via non-photochemical quenching, compared with C3 leaves. This contributes to the more linear light response in C4 than in C3 photosynthesis. Because of this difference in the curvature of the light response, canopy-to-leaf photosynthesis ratio, benefit from the optimum acclimation of the leaf nitrogen profile in the canopy, and productivity gain from future improvements in leaf photosynthetic parameters and canopy architecture were all shown to be higher in C3 than in C4 species. The indicative efficiency of converting incoming solar radiation into phytoenergy is ~2.2 and 3.0% in present C3 and C4 crops, respectively, when grown under well-managed conditions. An achievable efficiency via future genetic improvement was estimated to be as high as 3.6 and 4.1% for C3 and C4 crops, respectively. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-12-01

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  2. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (Sweden)

    2006-12-15

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  3. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle.

  4. Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O3 concentration in urban area

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2018-03-01

    Full Text Available Ground-level ozone (O3 pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs, 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01 in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05 and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05, but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days. This study provides our understanding of the ecological processes regulating

  5. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer

    International Nuclear Information System (INIS)

    Hicks, S.K.; Lascano, R.J.

    1995-01-01

    Measurement of leaf area index (LAI) is useful for understanding cotton (Gossypium hirsutum L.) growth, water use, and canopy light interception. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor (Lincoln, NE) LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of cotton LAI on the southern High Plains of Texas. We evaluated shading as a way to allow PCA measurements in direct sunlight and the influence of solar direction when using this procedure. We also evaluated a test of canopy homogeneity (information required for setting PCA field of view), determined the number of below-canopy measurements required, examined the influence of leaf wilting on PCA LAI determinations, and tested an alternative method (masking the sensor's two outer rings) for calculating LAI from PCA measurements. The best agreement between PCA and destructively measured LAI values was obtained when PCA observations were made either during uniformly overcast conditions or around solar noon using the shading method. Heterogeneous canopies with large gaps between rows required both a restricted (45 degrees) azimuthal field of view and averaging the LAI values for two transects, made with the field of view parallel and then perpendicular to the row direction. This method agreed well (r2 = 0.84) with destructively measured LAI in the range of 0.5 to 3.5 and did not deviate from a 1:1 relationship. The PCA underestimated LAI by greater than or equal 20% when measurements were made on canopies wilted due to water stress. Masking the PCA sensor's outer rings did not improve the relationship between estimated and measured LAI in the range of LAI sampled

  6. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic

  7. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland)

    OpenAIRE

    Mateusz Wilk; Agnieszka Banach; Julia Pawłowska; Marta Wrzosek

    2014-01-01

    The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2). The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the E...

  8. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly

    NARCIS (Netherlands)

    Neyret, Margot; Bentley, Lisa Patrick; Oliveras Menor, Imma; Marimon, Beatriz S.; Marimon-Junior, Ben Hur; Almeida de Oliveira, Edmar; Barbosa Passos, Fábio; Castro Ccoscco, Rosa; Santos, dos Josias; Matias Reis, Simone; Morandi, Paulo S.; Rayme Paucar, Gloria; Robles Cáceres, Arturo; Valdez Tejeira, Yolvi; Yllanes Choque, Yovana; Salinas, Norma; Shenkin, Alexander; Asner, Gregory P.; Díaz, Sandra; Enquist, Brian J.; Malhi, Yadvinder

    2016-01-01

    Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter- and intraspecific variation in leaf mass per area (LMA) of

  9. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  10. Application of Hyperspectral Vegetation Indices to Detect Variations in High Leaf Area Index Temperate Shrub Thicket Canopies

    Science.gov (United States)

    2011-01-01

    litter was collected after leaf fall in November 2008. Litter was dried at 70 °C for 4–5 days, separated into leaf, woody and reproductive (i.e. fruits ...115 (2011) 514–523 Davis, C., Bowles, J., Leathers , R., Korwan, D., Downes, T. V., Snyder, W., et al. (2002). Ocean PHILLS hyperspectral imager

  11. Effects of Supplementation of Eucalyptus ( Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

    Directory of Open Access Journals (Sweden)

    N. T. Thao

    2015-07-01

    Full Text Available Four rumen fistulated swamp buffaloes were randomly assigned according to a 4×4 Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis leaf meal (ELM supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05 while the proportion of acetate was decreased (p<0.05. Methane production was linearly decreased (p<0.05 with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05 while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency.

  12. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    Science.gov (United States)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  13. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites

    DEFF Research Database (Denmark)

    Zhou, Yanlian; Wu, Xiaocui; Ju, Weimin

    2015-01-01

    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed...... to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using...... data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (epsilon(msh)) was 2.63 to 4.59 times that of sunlit leaves...

  14. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland

    Directory of Open Access Journals (Sweden)

    Mateusz Wilk

    2014-06-01

    Full Text Available The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2. The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the European Union. On the examined plant debris 73 taxa of fungi were recorded (3 basidiomycetes, 13 ascomycetes, 2 zygomycetes, 43 anamorphic ascomycetes, 12 unidentified. Two of them, Dicranidion sp. and Wentiomyces sp. are presented here as new to Poland. Among the plant species examined, the litter of Rhododendron tomentosum harbored the highest number of fungal taxa (16. The highest percents of substrate-specific microfungi (i.e. recorded only on one plant species was noted on R. tomentosum (81.3 %, and Pteridium aquilinum (75%. It is emphasized that the lake area should be protected not only because of rare plant community but also because of the uniqueness and diversity of mycobiota.

  15. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest.

    Science.gov (United States)

    He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin

    2018-02-03

    How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the

  16. Area Spectral Efficiency and Energy Efficiency Tradeoff in Ultradense Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Lanhua Xiang

    2017-01-01

    Full Text Available In order to meet the demand of explosive data traffic, ultradense base station (BS deployment in heterogeneous networks (HetNets as a key technique in 5G has been proposed. However, with the increment of BSs, the total energy consumption will also increase. So, the energy efficiency (EE has become a focal point in ultradense HetNets. In this paper, we take the area spectral efficiency (ASE into consideration and focus on the tradeoff between the ASE and EE in an ultradense HetNet. The distributions of BSs in the two-tier ultradense HetNet are modeled by two independent Poisson point processes (PPPs and the expressions of ASE and EE are derived by using the stochastic geometry tool. The tradeoff between the ASE and EE is formulated as a constrained optimization problem in which the EE is maximized under the ASE constraint, through optimizing the BS densities. It is difficult to solve the optimization problem analytically, because the closed-form expressions of ASE and EE are not easily obtained. Therefore, simulations are conducted to find optimal BS densities.

  17. Effects of different potting growing media for Petunia grandiflora and Nicotiana alata Link & Otto on photosynthetic capacity, leaf area, and flowering potential

    Directory of Open Access Journals (Sweden)

    Gheorghe Cristian Popescu

    2015-03-01

    Full Text Available Petunia grandiflora Juss. and Nicotiana alata Link & Otto are two of the most widely spread plants on the market for annual potted ornamental plants. In order to identify the most adequate substrate formula we analyzed the effects of different potting growing media used for P. hybrida grandiflora 'Bravo' and N. alata 'Dinamo' on their photosynthetic capacity, leaf area, and flowering potential. Optimization of growing media formula for petunia and ornamental tobacco was performed by preparing four growing media mixing fallow soil (FS, Biolan peat (BP, acid peat (AP, leaf compost (C, and perlite (P in different proportions. The physiological potential of petunia and ornamental tobacco was investigated by photosynthesis and respiration rate and chlorophyll pigments in leaves, while the vegetative and flowering phenological stages were evaluated by number of leaves per plant, leaf area, number of flowers per plant and leaf area/flowers ratio. These measurements were significantly influenced by the different potting growing media used in this study. In the flowering stage, the highest photosynthesis rates (8.612 μmol CO2 m-2 s-1 as well as leaf area (1.766 dm² of petunias were obtained on growing media with 60% biolan peat, 30% acid peat and 10% perlite (BP60-AP30-P10. Flowering responses to growing conditions vary greatly among plants and the biggest number of ornamental tobacco flowers (22 flowers plant-1 was registered as an effect of BP60-AP30-P10 media. Growing media with the BP60-AP30-P10 formula seem to be the most adequate growth substrate to develop profitable crops for petunias and ornamental tobacco with high decorative value.

  18. Leaf area index retrieval using Hyperion EO-1 data-based vegetation indices in Himalayan forest system

    Science.gov (United States)

    Singh, Dharmendra; Singh, Sarnam

    2016-04-01

    Present Study is being taken to retrieve Leaf Area Indexn(LAI) in Himalayan forest system using vegetation indices developed from Hyperion EO-1 hyperspectral data. Hemispherical photograph were captured in the month of March and April, 2012 at 40 locations, covering moist tropical Sal forest, subtropical Bauhinia and pine forest and temperate Oak forest and analysed using an open source GLA software. LAI in the study region was ranging in between 0.076 m2/m2 to 6.00 m2/m2. These LAI values were used to develop spectral models with the FLAASH corrected Hyperion measurements.Normalized difference vegetation index (NDVI) was used taking spectral reflectance values of all the possible combinations of 170 atmospherically corrected channels. The R2 was ranging from lowest 0.0 to highest 0.837 for the band combinations of spectral region 640 nm and 670 nm. The spectral model obtained was, spectral reflectance (y) = 0.02x LAI(x) - 0.0407.

  19. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    Science.gov (United States)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  20. Look-up-table approach for leaf area index retrieval from remotely sensed data based on scale information

    Science.gov (United States)

    Zhu, Xiaohua; Li, Chuanrong; Tang, Lingli

    2018-03-01

    Leaf area index (LAI) is a key structural characteristic of vegetation and plays a significant role in global change research. Several methods and remotely sensed data have been evaluated for LAI estimation. This study aimed to evaluate the suitability of the look-up-table (LUT) approach for crop LAI retrieval from Satellite Pour l'Observation de la Terre (SPOT)-5 data and establish an LUT approach for LAI inversion based on scale information. The LAI inversion result was validated by in situ LAI measurements, indicating that the LUT generated based on the PROSAIL (PROSPECT+SAIL: properties spectra + scattering by arbitrarily inclined leaves) model was suitable for crop LAI estimation, with a root mean square error (RMSE) of ˜0.31m2 / m2 and determination coefficient (R2) of 0.65. The scale effect of crop LAI was analyzed based on Taylor expansion theory, indicating that when the SPOT data aggregated by 200 × 200 pixel, the relative error is significant with 13.7%. Finally, an LUT method integrated with scale information was proposed in this article, improving the inversion accuracy with RMSE of 0.20 m2 / m2 and R2 of 0.83.

  1. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    Science.gov (United States)

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  2. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    International Nuclear Information System (INIS)

    Pontailler, J.-Y.; Hymus, G.J.; Drake, B.G.

    2003-01-01

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m 2 plots in February 2000 and two 4m 2 plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  3. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pontailler, J.-Y. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Orsay Cedex (France); Hymus, G.J.; Drake, B.G. [Smithsonian Environmental Research Center, Kennedy Space Center, Florida (United States)

    2003-06-01

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m{sup 2} plots in February 2000 and two 4m{sup 2} plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  4. Quantifying seasonal variation of leaf area index using near-infrared digital camera in a rice paddy

    Science.gov (United States)

    Hwang, Y.; Ryu, Y.; Kim, J.

    2017-12-01

    Digital camera has been widely used to quantify leaf area index (LAI). Numerous simple and automatic methods have been proposed to improve the digital camera based LAI estimates. However, most studies in rice paddy relied on arbitrary thresholds or complex radiative transfer models to make binary images. Moreover, only a few study reported continuous, automatic observation of LAI over the season in rice paddy. The objective of this study is to quantify seasonal variations of LAI using raw near-infrared (NIR) images coupled with a histogram shape-based algorithm in a rice paddy. As vegetation highly reflects the NIR light, we installed NIR digital camera 1.8 m above the ground surface and acquired unsaturated raw format images at one-hour intervals between 15 to 80 º solar zenith angles over the entire growing season in 2016 (from May to September). We applied a sub-pixel classification combined with light scattering correction method. Finally, to confirm the accuracy of the quantified LAI, we also conducted direct (destructive sampling) and indirect (LAI-2200) manual observations of LAI once per ten days on average. Preliminary results show that NIR derived LAI agreed well with in-situ observations but divergence tended to appear once rice canopy is fully developed. The continuous monitoring of LAI in rice paddy will help to understand carbon and water fluxes better and evaluate satellite based LAI products.

  5. Efficient phosphorus management practices in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm

  6. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  7. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    Science.gov (United States)

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  9. Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception

    Directory of Open Access Journals (Sweden)

    H. H. Bulcock

    2010-02-01

    Full Text Available The establishment of commercial forestry plantations in natural grassland vegetation, results in increased transpiration and interception which in turn, results in a streamflow reduction. Methods to quantify this impact typically require LAI as an input into the various equations and process models that are applied. The use of remote sensing technology as a tool to estimate leaf area index (LAI for use in estimating canopy interception is described in this paper. Remote sensing provides a potential solution to effectively monitor the spatial and temporal variability of LAI. This is illustrated using Hyperion hyperspectral imagery and three vegetation indices, namely the normalized difference vegetation index (NDVI, soil adjusted vegetation index (SAVI and Vogelmann index 1 to estimate LAI in a catchment afforested with Eucalyptus, Pinus and Acacia genera in the KwaZulu-Natal midlands of South Africa. Of the three vegetation indices used in this study, it was found that the Vogelmann index 1 was the most robust index with an R2 and root mean square error (RMSE values of 0.7 and 0.3 respectively. However, both NDVI and SAVI could be used to estimate the LAI of 12 year old Pinus patula accurately. If the interception component is to be quantified independently, estimates of maximum storage capacity and canopy interception are required. Thus, the spatial distribution of LAI in the catchment is used to estimate maximum canopy storage capacity in the study area.

  10. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 2; Implementation, Analysis and Validation

    Science.gov (United States)

    Ganguly, Sangram; Samanta, Arindam; Schull, Mitchell A.; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramajrushna R,; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December 2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically based algorithm is detailed in the first of the two part series. Here, the implementation, production and evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant correlations with key climate variables in areas where temperature and precipitation limit plant growth. The data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field measurements over homogeneous vegetation patches indicated a 7% underestimation when all major vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites. These validation exercises though limited by the amount of field data, and thus less than comprehensive, indicated satisfactory agreement between the LAI product and field measurements. Overall, the intercomparison with short-term LAI data sets, evaluation of long term trends with known variations in climate variables, and validation with field measurements together build confidence in the utility of this new 26 year LAI record for long term vegetation monitoring and modeling studies.

  11. Estimação da área foliar do algodoeiro por meio de dimensões e massa das folhas Cotton leaf area estimates based on leaf dimensions and dry mass methods

    Directory of Open Access Journals (Sweden)

    José Eduardo B. A. Monteiro

    2005-01-01

    Full Text Available O objetivo deste trabalho foi avaliar dois métodos de estimação da área foliar do algodoeiro, por meio de suas dimensões e massa seca das folhas. Foram utilizadas as cultivares IAC 23 e Coodetec 401. No método que utilizou dimensões, as folhas do algodoeiro foram agrupadas em novas, cordiformes e maduras. Para cada tipo de folha, de cada cultivar, foi determinado um fator de forma (FF por meio de análise de regressão entre o produto do comprimento (C pela largura (L e a área das folhas. Avaliou-se a correlação entre a área foliar estimada pelo fator FF e sua medida direta, utilizando-se dados independentes. Testou-se, ainda, um fator único para cada cultivar, independente do estádio da cultura e, também, um fator geral para as duas cultivares. No método que utilizou a massa seca, as folhas foram agrupadas em novas e maduras. Determinou-se o fator de massa seca (FM por meio da análise de regressão entre a massa seca de folhas e respectivas áreas foliares. Em seguida, avaliou-se a correlação entre dados estimados por FM e dados medidos de forma direta, em nova amostra. O método das dimensões é viável para a estimação de área foliar do algodoeiro, por apresentar boa precisão e exatidão, com r² entre 0,71 e 0,98 e com coeficiente angular da regressão entre 0,87 e 0,95. No entanto, pelo método da massa seca, observaram-se precisão e exatidão maiores, com r² entre 0,94 e 0,98, e coeficiente angular da regressão entre 0,97 e 1,00, com a vantagem de ser menos trabalhoso.The objective of this study was to evaluate two different methods to estimate cotton leaf area (LA, based on leaf dimensions (length - L and width - W and leaf dry mass (DM. Two cultivars, IAC 23 and Coodetec 401, were used. For leaf dimensions method, leaves were classified by age: young, heart-shape, and mature. For each age class, a leaf shape factor (LSF was obtained by simple linear regression between L*W and LA. For leaf dry mass method, leaves

  12. Effect of the use of molasses and efficient microorganisms, over the rate of decomposition of the sugar cane leaf (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Óscar Eduardo Sanclemente Reyes

    2011-10-01

    Full Text Available The rate of decomposition of sugar cane leaves mixed with an organic fertilizer compost type was evaluated, using a finite accelerator (molasses and an infinity accelerator (effective microorganisms. The trial was conducted in the greenhouse facilities of the National University of Colombia in Palmira. The results showed that molasses is a decomposition accelerator of the wastes of sugar cane leaf, since it shows a marked influence on the initial decomposition rate of the waste, but once the carbohydrates that constitute it are consumed, the rate of decomposition decreases significantly. Then the potential is evident on the waste of sugar cane leaf elements for the maintenance and/or biophysical capital improvement in the productive system of the sugar cane, as the result of their high photosynthetic efficiency.

  13. Model estimates of leaf area and reference canopy stomatal conductance suggest correlation between phenology and physiology in both trembling aspen and red pine

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Kruger, E. L.

    2006-12-01

    Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.

  14. Modelos para estimativa da área foliar de Curcuma alismatifolia e Vurcuma zedoaria Leaf area prediction models for Curcuma alismatifolia and Curcuma zedoaria

    Directory of Open Access Journals (Sweden)

    Ana Christina Rossini Pinto

    2008-01-01

    Full Text Available O presente estudo determina modelos para estimativa da área foliar de Curcuma alismatifolia e de Curcuma zedoaria. Para utilização destas espécies como ornamentais, é necessário o estabelecimento de técnicas de produção adequadas. Assim, a determinação da área foliar é importante, pois é usada para avaliar a resposta da planta a fatores ambientais e técnicas culturais. O uso de modelos para estimar a área foliar é um método simples, de boa precisão e não destrutivo. No estádio de floração foram coletadas cem folhas de C.alismatifolia ('Pink' e 'White' e de C.zedoaria. Determinaram-se o comprimento (C e a largura (L máximos e a área foliar real (AFR, com auxílio de integrador de área foliar (LI-3100. Estudaram-se as relações entre a AFR e o C, L e CL (produto do comprimento pela largura da folha, por meio de modelos de regressão linear. Os modelos AFR = 0,59048 CL (C.alismatifolia 'Pink', AFR = 6,08410 + 0,52162 CL (C.alismatifolia 'White' e AFR = 0,70233 CL (C.zedoaria são estatisticamente adequados para estimar a área foliar real.The present work establishes regression models to estimate leaf area of Curcuma alismatifolia and Curcuma zedoaria. To use these of species as ornamental plants is necessary to establish adequate cultivation techniques. Thus, the determination of leaf area is very important, once it is used to evaluate plant response to environmental factors and crop techniques. The use of prediction models to estimate leaf area is a simple, accurate and nondestructive method. At the stage of flowering, a hundred leaves of C.alismatifolia ('Pink' and 'White' and C.zedoaria were collected for each species and cultivar. Maximum length (L, maximum width (W and real leaf area (RLA were measured with a leaf area meter (LI-3100. The relation between RLA and the L, W and the product of length by width (LW, was studied through linear regression models. The models RLA = 0.59048 LW (C.alismatifolia 'Pink', RLA = 6

  15. Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage.

    Science.gov (United States)

    Freschi, Luciano; Takahashi, Cassia Ayumi; Cambui, Camila Aguetoni; Semprebom, Thais Ribeiro; Cruz, Aline Bertinatto; Mioto, Paulo Tamoso; de Melo Versieux, Leonardo; Calvente, Alice; Latansio-Aidar, Sabrina Ribeiro; Aidar, Marcos Pereira Marinho; Mercier, Helenice

    2010-05-01

    Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. Copyright 2009 Elsevier GmbH. All rights reserved.

  16. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device

  17. Quantifying the Accuracy of Digital Hemispherical Photography for Leaf Area Index Estimates on Broad-Leaved Tree Species.

    Science.gov (United States)

    Gilardelli, Carlo; Orlando, Francesca; Movedi, Ermes; Confalonieri, Roberto

    2018-03-29

    Digital hemispherical photography (DHP) has been widely used to estimate leaf area index (LAI) in forestry. Despite the advancement in the processing of hemispherical images with dedicated tools, several steps are still manual and thus easily affected by user's experience and sensibility. The purpose of this study was to quantify the impact of user's subjectivity on DHP LAI estimates for broad-leaved woody canopies using the software Can-Eye. Following the ISO 5725 protocol, we quantified the repeatability and reproducibility of the method, thus defining its precision for a wide range of broad-leaved canopies markedly differing for their structure. To get a complete evaluation of the method accuracy, we also quantified its trueness using artificial canopy images with known canopy cover. Moreover, the effect of the segmentation method was analysed. The best results for precision (restrained limits of repeatability and reproducibility) were obtained for high LAI values (>5) with limits corresponding to a variation of 22% in the estimated LAI values. Poorer results were obtained for medium and low LAI values, with a variation of the estimated LAI values that exceeded the 40%. Regardless of the LAI range explored, satisfactory results were achieved for trees in row-structured plantations (limits almost equal to the 30% of the estimated LAI). Satisfactory results were achieved for trueness, regardless of the canopy structure. The paired t -test revealed that the effect of the segmentation method on LAI estimates was significant. Despite a non-negligible user effect, the accuracy metrics for DHP are consistent with those determined for other indirect methods for LAI estimates, confirming the overall reliability of DHP in broad-leaved woody canopies.

  18. Retrieval of Leaf Area Index (LAI and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR from VIIRS Time-Series Data

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available Long-term high-quality global leaf area index (LAI and fraction of absorbed photosynthetically active radiation (FAPAR products are urgently needed for the study of global change, climate modeling, and many other problems. As the successor of the Moderate Resolution Imaging Spectroradiometer (MODIS sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS will continue to provide global environmental measurements. This paper aims to generate longer time series Global LAnd Surface Satellite (GLASS LAI and FAPAR products after the era of the MODIS sensor. To ensure spatial and temporal consistencies between GLASS LAI/FAPAR values retrieved from different satellite observations, the GLASS LAI/FAPAR retrieval algorithms were adapted in this study to retrieve LAI and FAPAR values from VIIRS surface reflectance time-series data. After reprocessing of the VIIRS surface reflectance to remove remaining effects of cloud contamination and other factors, a database generated from the GLASS LAI product and the reprocessed VIIRS surface reflectance for all Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP sites was used to train general regression neural networks (GRNNs. The reprocessed VIIRS surface reflectance data from an entire year were entered into the trained GRNNs to estimate the one-year LAI values, which were then used to calculate FAPAR values. A cross-comparison indicates that the LAI and FAPAR values retrieved from VIIRS surface reflectance were generally consistent with the GLASS, MODIS and Geoland2/BioPar version 1 (GEOV1 LAI/FAPAR values in their spatial patterns. The LAI/FAPAR values retrieved from VIIRS surface reflectance achieved good agreement with the GLASS LAI/FAPAR values (R2 = 0.8972 and RMSE = 0.3054; and R2 = 0.9067 and RMSE = 0.0529, respectively. However, validation of the LAI and FAPAR values derived from VIIRS reflectance data is now limited by the scarcity of LAI/FAPAR ground measurements.

  19. Photon Recollision Probability: a Useful Concept for Cross Scale Consistency Check between Leaf Area Index and Foliage Clumping Products

    Science.gov (United States)

    Pisek, J.

    2017-12-01

    Clumping index (CI) is the measure of foliage aggregation relative to a random distribution of leaves in space. CI is an important factor for the correct quantification of true leaf area index (LAI). Global and regional scale CI maps have been generated from various multi-angle sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index (Chen et al., 2005). Ryu et al. (2011) suggested that accurate calculation of radiative transfer in a canopy, important for controlling gross primary productivity (GPP) and evapotranspiration (ET) (Baldocchi and Harley, 1995), should be possible by integrating CI with incoming solar irradiance and LAI from MODIS land and atmosphere products. It should be noted that MODIS LAI/FPAR product uses internal non-empirical, stochastic equations for parameterization of foliage clumping. This raises a question if integration of the MODIS LAI product with empirically-based CI maps does not introduce any inconsistencies. Here, the consistency is examined independently through the `recollision probability theory' or `p-theory' (Knyazikhin et al., 1998) along with raw LAI-2000/2200 Plant Canopy Analyzer (PCA) data from > 30 sites, surveyed across a range of vegetation types. The theory predicts that the amount of radiation scattered by a canopy should depend only on the wavelength and the spectrally invariant canopy structural parameter p. The parameter p is linked to the foliage clumping (Stenberg et al., 2016). Results indicate that integration of the MODIS LAI product with empirically-based CI maps is feasible. Importantly, for the first time it is shown that it is possible to obtain p values for any location solely from Earth Observation data. This is very relevant for future applications of photon recollision probability concept for global and local monitoring of vegetation using Earth Observation data.

  20. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  1. Quantifying the Accuracy of Digital Hemispherical Photography for Leaf Area Index Estimates on Broad-Leaved Tree Species

    Directory of Open Access Journals (Sweden)

    Carlo Gilardelli

    2018-03-01

    Full Text Available Digital hemispherical photography (DHP has been widely used to estimate leaf area index (LAI in forestry. Despite the advancement in the processing of hemispherical images with dedicated tools, several steps are still manual and thus easily affected by user’s experience and sensibility. The purpose of this study was to quantify the impact of user’s subjectivity on DHP LAI estimates for broad-leaved woody canopies using the software Can-Eye. Following the ISO 5725 protocol, we quantified the repeatability and reproducibility of the method, thus defining its precision for a wide range of broad-leaved canopies markedly differing for their structure. To get a complete evaluation of the method accuracy, we also quantified its trueness using artificial canopy images with known canopy cover. Moreover, the effect of the segmentation method was analysed. The best results for precision (restrained limits of repeatability and reproducibility were obtained for high LAI values (>5 with limits corresponding to a variation of 22% in the estimated LAI values. Poorer results were obtained for medium and low LAI values, with a variation of the estimated LAI values that exceeded the 40%. Regardless of the LAI range explored, satisfactory results were achieved for trees in row-structured plantations (limits almost equal to the 30% of the estimated LAI. Satisfactory results were achieved for trueness, regardless of the canopy structure. The paired t-test revealed that the effect of the segmentation method on LAI estimates was significant. Despite a non-negligible user effect, the accuracy metrics for DHP are consistent with those determined for other indirect methods for LAI estimates, confirming the overall reliability of DHP in broad-leaved woody canopies.

  2. Investigation the Vertical Distribution of Leaf Area and Dry Matter of Sweet Basil (Ocimum basilicum L., Borage (Borago officinalis L. and Cover Crops in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    zeinab shirzadi margavi

    2017-10-01

    Full Text Available Introduction Distribution of leaf area and dry matter are the effective factors that influence on absorption the radiation, evaporation and transpiration of canopy and eventually dry matter accumulation and grain yield in plants. Plant canopy is the spatial arrangement of shoots in a plant population. In plant canopy, leaves are responsible for radiation absorption and gas exchange with the outside. Stem and branches arrange photosynthetic organs somehow, which gas exchange and light distribution best done. The effect of canopy structure on gas exchange and absorption of radiation in plant communities caused detailed study of the canopy structure to be more important. Materials and methods In order to investigate the vertical distribution of leaf area and dry matter of borage and sweet basil in competition with weeds by cover crops treatments, a field experiment was carried out in a randomized complete block design with 8 treatments and 3 replications in Agricultural Sciences and Natural Resources University of Sari in 2013. Treatments were cover crops mung bean (Vigna radiata L. and Persian clover (Trifolium resupinatum L. in the rows between the sweet basil (Ocimum basilicum L. and borage (Borago officinalis L.. Moreover, in order to evaluate the effectiveness of cover crops to control weeds, pure stand of sweet basil and borage in terms of weeding and no weed controls per replicates were used. Each plot was included 5 rows of medicinal plants. Cover crop inter-seeded simultaneously in the main crop. Estimation of leaf area and dry matter of each plant in different canopy layers (0-20, 20-40, 40-60, 80.100, 100-120 and 120-140 cm were done after 75 planting days, with 1 m × 1 m quadrate per plot. For this purpose a vertical card board frame marked in 20-cm increments was used in the field as a guide to cut standing plants (crops, cover crops and weeds into 20-cm strata increments (Mosier & Oliver, 1995. All samples were transferred to the

  3. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines

    Directory of Open Access Journals (Sweden)

    Andries B. Potgieter

    2017-09-01

    Full Text Available Genetic improvement in sorghum breeding programs requires the assessment of adaptation traits in small-plot breeding trials across multiple environments. Many of these phenotypic assessments are made by manual measurement or visual scoring, both of which are time consuming and expensive. This limits trial size and the potential for genetic gain. In addition, these methods are typically restricted to point estimates of particular traits, such as leaf senescence or flowering and do not capture the dynamic nature of crop growth. In water-limited environments in particular, information on leaf area development over time would provide valuable insight into water use and adaptation to water scarcity during specific phenological stages of crop development. Current methods to estimate plant leaf area index (LAI involve destructive sampling and are not practical in breeding. Unmanned aerial vehicles (UAV and proximal-sensing technologies open new opportunities to assess these traits multiple times in large small-plot trials. We analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes randomized within 3 blocks. Due to variable emergence we were able to assess the utility of these vegetation indices to estimate canopy cover and LAI over a large range of plant densities. We found good correlations between the Normalized Difference Vegetation Index (NDVI and the Enhanced Vegetation Index (EVI with plant number per plot, canopy cover and LAI both during the vegetative growth phase (pre-anthesis and at maximum canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data to assess the senescence pattern of sorghum genotypes known as fast (senescent or slow senescing (stay-green types. The Normalized Difference Red Edge (NDRE index which estimates leaf chlorophyll content was most useful in characterizing the leaf area

  4. Evaluation of Indirect Measurement Method of Seasonal Patterns of Leaf Area Index in a High-Density Short Rotation Coppice Culture of Poplar

    Czech Academy of Sciences Publication Activity Database

    Tripathi, Abishek; Fischer, Milan; Orság, Matěj; Marek, Michal V.; Žalud, Zdeněk; Trnka, Miroslav

    2016-01-01

    Roč. 64, č. 2 (2016), s. 549-556 ISSN 1211-8516 R&D Projects: GA MŠk(CZ) LD13030; GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : SunScan Plant Canopy Analyzer * litterfall * specific leaf area * poplar clone J-105 Subject RIV: GC - Agronomy

  5. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites: TL-LUE Parameterization and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yanlian [Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing China; Joint Center for Global Change Studies, Beijing China; Wu, Xiaocui [International Institute for Earth System Sciences, Nanjing University, Nanjing China; Joint Center for Global Change Studies, Beijing China; Ju, Weimin [International Institute for Earth System Sciences, Nanjing University, Nanjing China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing China; Chen, Jing M. [International Institute for Earth System Sciences, Nanjing University, Nanjing China; Joint Center for Global Change Studies, Beijing China; Wang, Shaoqiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing China; Wang, Huimin [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing China; Yuan, Wenping [State Key Laboratory of Earth Surface Processes and Resource Ecology, Future Earth Research Institute, Beijing Normal University, Beijing China; Andrew Black, T. [Faculty of Land and Food Systems, University of British Columbia, Vancouver British Columbia Canada; Jassal, Rachhpal [Faculty of Land and Food Systems, University of British Columbia, Vancouver British Columbia Canada; Ibrom, Andreas [Department of Environmental Engineering, Technical University of Denmark (DTU), Kgs. Lyngby Denmark; Han, Shijie [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang China; Yan, Junhua [South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China; Margolis, Hank [Centre for Forest Studies, Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City Quebec Canada; Roupsard, Olivier [CIRAD-Persyst, UMR Ecologie Fonctionnelle and Biogéochimie des Sols et Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier France; CATIE (Tropical Agricultural Centre for Research and Higher Education), Turrialba Costa Rica; Li, Yingnian [Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining China; Zhao, Fenghua [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing China; Kiely, Gerard [Environmental Research Institute, Civil and Environmental Engineering Department, University College Cork, Cork Ireland; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa Alabama USA; Pavelka, Marian [Laboratory of Plants Ecological Physiology, Institute of Systems Biology and Ecology AS CR, Prague Czech Republic; Montagnani, Leonardo [Forest Services, Autonomous Province of Bolzano, Bolzano Italy; Faculty of Sciences and Technology, Free University of Bolzano, Bolzano Italy; Wohlfahrt, Georg [Institute for Ecology, University of Innsbruck, Innsbruck Austria; European Academy of Bolzano, Bolzano Italy; D' Odorico, Petra [Grassland Sciences Group, Institute of Agricultural Sciences, ETH Zurich Switzerland; Cook, David [Atmospheric and Climate Research Program, Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA; Arain, M. Altaf [McMaster Centre for Climate Change and School of Geography and Earth Sciences, McMaster University, Hamilton Ontario Canada; Bonal, Damien [INRA Nancy, UMR EEF, Champenoux France; Beringer, Jason [School of Earth and Environment, The University of Western Australia, Crawley Australia; Blanken, Peter D. [Department of Geography, University of Colorado Boulder, Boulder Colorado USA; Loubet, Benjamin [UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon France; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Athens Georgia USA; Matteucci, Giorgio [Viea San Camillo Ed LellisViterbo, University of Tuscia, Viterbo Italy; Nagy, Zoltan [MTA-SZIE Plant Ecology Research Group, Szent Istvan University, Godollo Hungary; Olejnik, Janusz [Meteorology Department, Poznan University of Life Sciences, Poznan Poland; Department of Matter and Energy Fluxes, Global Change Research Center, Brno Czech Republic; Paw U, Kyaw Tha [Department of Land, Air and Water Resources, University of California, Davis California USA; Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge USA; Varlagin, Andrej [A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow Russia

    2016-04-06

    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at 6 FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8-day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems and it is more robust with regard to usual biases in input data than existing approaches which neglect the bi-modal within-canopy distribution of PAR.

  6. Effects of canopy light distribution characteristics and leaf nitrogen content on efficiency of radiation use in dry matter accumulation of soybean [Glycine max] cultivars

    International Nuclear Information System (INIS)

    Shiraiwa, T.; Hashikawa, U.; Taka, S.; Sakai, A.

    1994-01-01

    The amount of dry matter produced per photosynthetically active radiation (PAR) intercepted by the canopy (EPAR) and factors which might affect EPAR were determined for various soybean cultivars, and their relationships were also analyzed in two field experiments. In 1989 and 1990, 11 cultivars and 27 cultivars respectively, were grown on an experimental field in shiga Prefectural Junior College. Changes of intercepted PAR, top dry matter weight, light extinction coefficient (KPAR), nitrogen content per leaf area (SLN) and nitrogen accumulation in the top (1990 only) were measured. EPAR averaged for all the cultivars was 2.48g MJ(-1) in both years and its coefficient of variance among cultivars was +- 9% in 1989 and +- 17% in 1990. In general, recent cultivars showed greater EPAR than older ones. The correlation coefficients between SLN and EPAR were 0.548 in 1989 and 0.651-- in 1990, while there was no correlation between KPAR and EPAR. Since SLN showed close correlation with SLW (r = 0.954 in 1989, r = 0.170-- in 1990), the difference in EPAR between old and new cultivars was considered to be attributable mainly to the improved leaf morphological trait and consequently greater leaf photosynthesis of newer cultivars. SLN further correlated with total top nitrogen content (r = 0.736-- in 1990) thus seemed to be limited by nitrogen accumulation

  7. Effects of temperature at constant air dew point on leaf carboxylation efficiency and CO2 compensation point of different leaf types.

    Science.gov (United States)

    Weber, J A; Tenhunen, J D; Lange, O L

    1985-09-01

    The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber, and one mesophytic species, Spinacia oleracea. Photosynthesis and transpiration were measured over a range of temperatures, 20-39° C. The external concentration of CO2 was varied from 340 μbar to near CO2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO2 concentration, the CO2 compensation point (Γ), and the extrapolated rate of CO2 released into CO2-free air (R i) were calculated. At an external CO2 concentration of 320-340 μbar CO2, photosynthesis decreased with temperature in all species. The effect of temperature on Γ was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber. The absolut value of R i increased with temperature in S. oleracea, while changing little or decreasing in the sclerophylls. Variations in Γ and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea.

  8. Modelos de determinação não-destrutiva da área foliar em girassol Models for estimating leaf area in sunflower

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Maldaner

    2009-08-01

    Full Text Available Os objetivos deste trabalho foram obter e testar modelos matemáticos de estimativa da área do limbo foliar em função das suas dimensões lineares para o girassol. Foram conduzidos dois experimentos na área experimental do departamento de Fitotecnia da Universidade Federal de Santa Maria. As plantas de girassol foram coletadas a partir dos 27 dias após emergência (DAE. A área foliar (AF foi determinada pelo método dos discos. Ajustaram-se modelos lineares, quadráticos, cúbicos e potenciais entre área foliar e comprimento ou largura e seus produtos (comprimento*largura, sendo eliminados os que apresentaram coeficiente de determinação menor do que 0,90. A estatística utilizada para avaliar o desempenho dos modelos foi a raiz do quadrado médio do erro (RQME. Os modelos que melhor se ajustaram aos dados foram: potência, quadrático e cúbico, considerando a largura como variável independente. A área foliar de girassol pode ser estimada com o modelo potência, por ser o mais preciso, e a largura da folha.The objective of this study was to obtain and to numerical models to estimate the leaf area in function leaves linear dimension in sunflower. Two experiments were conducted at the experimental area of the Plant Science Department of the Federal University of Santa Maria, Santa Maria, RS, Brazil. Plants of sunflower were collected starting 27 days after emergency (DAE. The disks method was used to determine the leaf area (LA. Leaves were dried in oven at 65°C until constant weight. Linear, quadratic, cubic and power models between leaf area and length or width, and the product (length * width, were fitted. Models that apresented coefficient of determination lower than 0.90 were not selected. The statistic used to evaluate the performance of the models was the root mean square error (RQME. Models that had the best fit were power, quadratic and cubic using blade width as the independent variable. Leaf area in sunflower can be

  9. Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

    Science.gov (United States)

    Ramesh Murthy; Greg Barron-Gafford; Philip M. Dougherty; Victor c. Engels; Katie Grieve; Linda Handley; Christie Klimas; Mark J. Postosnaks; Stanley J. Zarnoch; Jianwei Zhang

    2005-01-01

    We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed...

  10. Unobstructive Body Area Networks (BAN) for efficient movement monitoring.

    Science.gov (United States)

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.

  11. The leaf litter ant fauna of an Atlantic Forest area in the Cantareira State Park – São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Andre Soliva Ribeiro

    2005-11-01

    Full Text Available The present work surveys the leaf litter ant fauna of an Atlantic Forest area in Cantareira State Park – SP, Brazil as a complement to the project “Richness and diversity of Hymenoptera and Isoptera along a latitudinal gradient in the Atlantic Forest – the eastern Brazilian rain forest” that forms part of the BIOTA-FAPESP program. The general protocol of the project was to collect 50 leaf litter samples of 1 m2 which were then sifted and submitted to Winkler extractors for 48 hours. Sixty-two species of 25 genera in eight ant subfamilies were collected. Myrmicinae was the richest with 39 species, followed by Ponerinae (14, Ectatomminae, Heteroponerinae and Formicinae (two species each, Amblyoponinae, Proceratiinae and Dolichoderinae (one species each. The richest genera were Solenopsis and Hypoponera (12 morph-species each, and Pheidole (eight. Richness estimators indicated that the total number of species in the area should be between 68 and 85, in a confidence interval of 95%. In comparison, other locations of the evergreen Atlantic Forest have shown a significantly higher richness. Our hypothesis is that the proximity of regions of great urban concentration, allied to the factors that act on a local scale, modifies the structure of the local community of leaf litter ants.

  12. Undecomposed Twigs in the Leaf Litter as Nest-Building Resources for Ants (Hymenoptera: Formicidae in Areas of the Atlantic Forest in the Southeastern Region of Brazil

    Directory of Open Access Journals (Sweden)

    Tae Tanaami Fernandes

    2012-01-01

    Full Text Available In tropical forests, the leaf-litter stratum exhibits one of the greatest abundances of ant species. This diversity is associated with the variety of available locations for nest building. Ant nests can be found in various microhabitats, including tree trunks and fallen twigs in different stages of decomposition. In this study, we aimed to investigate undecomposed twigs as nest-building resources in the leaf litter of dense ombrophilous forest areas in the southeastern region of Brazil. Demographic data concerning the ant colonies, the physical characteristics of the nests, and the population and structural of the forest were observed. Collections were performed manually over four months in closed canopy locations that did not have trails or flooded areas. A total of 294 nests were collected, and 34 ant species were recorded. Pheidole, Camponotus, and Hypoponera were the richest genera observed; these genera were also among the most populous and exhibited the greatest abundance of nests. We found no association between population size and nest diameter. Only tree cover influenced the nest abundance and species richness. Our data indicate that undecomposed twigs may be part of the life cycle of many species and are important for maintaining ant diversity in the leaf litter.

  13. An Extended Fourier Approach to Improve the Retrieved Leaf Area Index (LAI in a Time Series from an Alpine Wetland

    Directory of Open Access Journals (Sweden)

    Xingwen Quan

    2014-01-01

    Full Text Available An extended Fourier approach was presented to improve the retrieved leaf area index (LAIr of herbaceous vegetation in a time series from an alpine wetland. The retrieval was performed from the Aqua MODIS 8-day composite surface reflectance product (MYD09Q1 from day of year (DOY 97 to 297 using a look-up table (LUT based inversion of a two-layer canopy reflectance model (ACRM. To reduce the uncertainty (the ACRM inversion is ill-posed, we used NDVI and NIR images to reduce the influence of the soil background and the priori information to constrain the range of sensitive ACRM parameters determined using the Sobol’s method. Even so the uncertainty caused the LAIr versus time curve to oscillate. To further reduce the uncertainty, a Fourier model was fitted using the periodically LAIr results, obtaining LAIF. We note that the level of precision of the LAIF potentially may increase through removing singular points or decrease if the LAIr data were too noisy. To further improve the precision level of the LAIr, the Fourier model was extended by considering the LAIr uncertainty. The LAIr, the LAI simulated using the Fourier model, and the LAI simulated using the extended Fourier approach (LAIeF were validated through comparisons with the field measured LAI. The R2 values were 0.68, 0.67 and 0.72, the residual sums of squares (RSS were 3.47, 3.42 and 3.15, and the root-mean-square errors (RMSE were 0.31, 0.30 and 0.29, respectively, on DOY 177 (early July 2011. In late August (DOY 233, the R2 values were 0.73, 0.77 and 0.79, the RSS values were 38.96, 29.25 and 27.48, and the RMSE values were 0.94, 0.81 and 0.78, respectively. The results demonstrate that the extended Fourier approach has the potential to increase the level of precision of estimates of the time varying LAI.

  14. Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions

    Directory of Open Access Journals (Sweden)

    Yelu Zeng

    2015-10-01

    Full Text Available The development of near-surface remote sensing requires the accurate extraction of leaf area index (LAI from networked digital cameras under all illumination conditions. The widely used directional gap fraction model is more suitable for overcast conditions due to the difficulty to discriminate the shaded foliage from the shadowed parts of images acquired on sunny days. In this study, a new LAI extraction method by the sunlit foliage component from downward-looking digital photography under clear-sky conditions is proposed. In this method, the sunlit foliage component was extracted by an automated image classification algorithm named LAB2, the clumping index was estimated by a path length distribution-based method, the LAD and G function were quantified by leveled digital images and, eventually, the LAI was obtained by introducing a geometric-optical (GO model which can quantify the sunlit foliage proportion. The proposed method was evaluated at the YJP site, Canada, by the 3D realistic structural scene constructed based on the field measurements. Results suggest that the LAB2 algorithm makes it possible for the automated image processing and the accurate sunlit foliage extraction with the minimum overall accuracy of 91.4%. The widely-used finite-length method tends to underestimate the clumping index, while the path length distribution-based method can reduce the relative error (RE from 7.8% to 6.6%. Using the directional gap fraction model under sunny conditions can lead to an underestimation of LAI by (1.61; 55.9%, which was significantly outside the accuracy requirement (0.5; 20% by the Global Climate Observation System (GCOS. The proposed LAI extraction method has an RMSE of 0.35 and an RE of 11.4% under sunny conditions, which can meet the accuracy requirement of the GCOS. This method relaxes the required diffuse illumination conditions for the digital photography, and can be applied to extract LAI from downward-looking webcam images

  15. Development of a New BRDF-Resistant Vegetation Index for Improving the Estimation of Leaf Area Index

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-11-01

    Full Text Available The leaf area index (LAI is one of the most important Earth surface parameters used in the modeling of ecosystems and their interaction with climate. Numerous vegetation indices have been developed to estimate the LAI. However, because of the effects of the bi-directional reflectance distribution function (BRDF, most of these vegetation indices are also sensitive to the effect of BRDF. In this study, we aim to present a new BRDF-resistant vegetation index (BRVI, which is sensitive to the LAI but insensitive to the effect of BRDF. Firstly, the BRDF effects of different bands were investigated using both simulated data and in-situ measurements of winter wheat made at different growth stages. We found bi-directional shape similarity in the solar principal plane between the green and the near-infrared (NIR bands and between the blue and red bands for farmland soil conditions and with medium chlorophyll content level. Secondly, the consistency of the shape of the BRDF across different bands was employed to develop a new BRDF-resistant vegetation index for estimating the LAI. The reflectance ratios of the NIR band to the green band and the blue band to the red band were reasonably assumed to be resistant to the BRDF effects. Nevertheless, the variation amplitude of the bi-directional reflectance in the solar principal plane was different for different bands. The divisors in the two reflectance ratios were improved by combining the reflectances at the red and green bands. The new BRVI was defined as a normalized combination of the two improved reflectance ratios. Finally, the potential of the proposed BRVI for estimation of the LAI was evaluated using both simulated data and in-situ measurements and also compared to other popular vegetation indices. The results showed that the influence of the BRDF on the BRVI was the weakest and that the BRVI retrieved LAI values well, with a coefficient of determination (R2 of 0.84 and an RMSE of 0.83 for the field

  16. Modelo para determinção da área foliar de Kalanchoe blossfeldiana Poelln Model for leaf area determination in Kalanchoe blossfeldiana Poelln

    Directory of Open Access Journals (Sweden)

    Marcia Xavier Peiter

    2006-12-01

    Full Text Available O presente trabalho teve por objetivo a verificação de um procedimento matemático que permita a descrição do crescimento foliar de Kalanchoe (Kalanchoe blossfeldiana Poelln. e possa prever a sua área foliar fotossinteticamente ativa a partir de medidas não destrutivas de folhas. As mudas de Kalanchoe Cv. "Gold Jewel" foram cultivadas para o procedimento experimental em vasos irrigados com doses recomendadas para a cultura. Semanalmente, foram retirados três vasos da estufa e as plantas tiveram suas folhas cortadas, identificadas e submetidas a tomadas de medidas de sua posição na planta, do máximo comprimento longitudinal e do máximo comprimento transversal. Foram realizadas um total de nove coletas semanalmente, desde 04/04/2003 até o início da floração. Em cada coleta, três plantas eram amostradas e a área foliar calculada com a utilização do método de Gauss (GARCIA & PIEDADE, 1944 implementado em Visual Basic especificamente para este objetivo. Foram amostradas um total de 979 folhas e a verificação da possibilidade de uso de um fator de correção médio (FCM para o cálculo da área de uma folha, independentemente de sua posição na planta ou fase do ciclo de crescimento, foi averiguada por análise de regressão entre os valores obtidos pelo método padrão (Gauss e os valores estimados pelo método do FCM. Os resultados experimentais indicam que o valor FCM=1,1134 pode ser utilizado para estimar a área foliar pela multiplicação pelos valores de comprimento e largura de folha em qualquer fase do cultivo e sem qualquer posição da folha na planta.This research was aimed at versifying a mathematical procedure that allows the description of leaf of Kalanchoe (Kalanchoe blossfeldiana Poelln. and the estimation of its photosynthetically active leaf area starting from a non destructive leaf determination. Seedlings of Kalanchoe cv Gold Jewel were cultivated in irrigated vases with recommended doses for the culture

  17. A novel method for efficient and abundant production of Phytophthora brassicae zoospores on Brussels sprout leaf discs

    Directory of Open Access Journals (Sweden)

    Govers Francine

    2009-08-01

    Full Text Available Abstract Background Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interactions. One attractive model system is the interaction between Arabidopsis and Phytophthora brassicae. Under laboratory conditions, Arabidopsis can be easily infected with mycelial plugs as inoculum. In the disease cycle, however, sporangia or zoospores are the infectious propagules. Since the current P. brassicae zoospore isolation methods are generally regarded as inefficient, we aimed at developing an alternative method for obtaining high concentrations of P. brassicae zoospores. Results P. brassicae isolates were tested for pathogenicity on Brussels sprout plants (Brassica oleracea var. gemmifera. Microscopic examination of leaves, stems and roots infected with a GFP-tagged transformant of P. brassicae clearly demonstrated the susceptibility of the various tissues. Leaf discs were cut from infected Brussels sprout leaves, transferred to microwell plates and submerged in small amounts of water. In the leaf discs the hyphae proliferated and abundant formation of zoosporangia was observed. Upon maturation the zoosporangia released zoospores in high amounts and zoospore production continued during a period of at least four weeks. The zoospores were shown to be infectious on Brussels sprouts and Arabidopsis. Conclusion The in vitro leaf disc method established from P. brassicae infected Brussels sprout leaves facilitates convenient and high-throughput production of infectious zoospores and is thus suitable to drive small and large scale inoculation experiments. The system has the advantage that zoospores are produced continuously over a period of at least one month.

  18. [Photosynthetic gas exchange and water utilization of flag leaf of spring wheat with bunch sowing and field plastic mulching below soil on semi-arid rain-fed area.

    Science.gov (United States)

    Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng

    2016-07-01

    Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently

  19. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  20. Efficient and Anonymous Authentication Scheme for Wireless Body Area Networks.

    Science.gov (United States)

    Wu, Libing; Zhang, Yubo; Li, Li; Shen, Jian

    2016-06-01

    As a significant part of the Internet of Things (IoT), Wireless Body Area Network (WBAN) has attract much attention in this years. In WBANs, sensors placed in or around the human body collect the sensitive data of the body and transmit it through an open wireless channel in which the messages may be intercepted, modified, etc. Recently, Wang et al. presented a new anonymous authentication scheme for WBANs and claimed that their scheme can solve the security problems in the previous schemes. Unfortunately, we demonstrate that their scheme cannot withstand impersonation attack. Either an adversary or a malicious legal client could impersonate another legal client to the application provider. In this paper, we give the detailed weakness analysis of Wang et al.'s scheme at first. Then we present a novel anonymous authentication scheme for WBANs and prove that it's secure under a random oracle model. At last, we demonstrate that our presented anonymous authentication scheme for WBANs is more suitable for practical application than Wang et al.'s scheme due to better security and performance. Compared with Wang et al.'s scheme, the computation cost of our scheme in WBANs has reduced by about 31.58%.

  1. Estimativa da área da folha da batateira utilizando medidas lineares Evaluation of the potato plant leaf area using linear measures

    Directory of Open Access Journals (Sweden)

    Marcelo CC Silva

    2008-03-01

    Full Text Available O objetivo deste experimento foi determinar o modelo mais apropriado para estimar a área da folha da batateira, utilizando-se medidas de comprimento e largura da folha. Foram coletadas 300 folhas de 300 plantas de batata, cultivar Monalisa, de forma aleatória, aos 21 e 56 dias após a emergência (DAE. Em laboratório, foram medidos o comprimento (C, a largura (L e a área de cada folha (AF. Os dados foram submetidos à análise de regressão com o valor da AF sendo considerado a variável dependente e os valores de comprimento e largura de folha as variáveis independentes. Foram testados três modelos estatísticos: linear, exponencial e logarítmico. A AF da batateira foi mais precisamente estimada (R² = 0,88, usando as medidas, L e C (AF = 0,2798**LC + 71,267. Para maior rapidez e praticidade, a AF da batateira, foi também apropriadamente estimada medindo-se apenas L ou C da folha e utilizando-se as equações AF = 0,0479**L + 10,777 (R² = 0,83 ou AF = 0,0659**C + 12,979 (R² = 0,82. A área foliar estimada 21 DAE, utilizando o modelo linear foi de 234,41 cm², sendo que o valor real medido, foi de 185,52 cm². Aos 56 DAE, a área foliar estimada pelo mesmo modelo foi de 175,60 cm², o valor real medido, foi de 176,01 cm². Com um dos modelos propostos, a área da folha pode ser estimada em tempo real, de forma rápida e sem a necessidade de coletar a folha.The objective of this experiment was to determine the most appropriate model to estimate potato leaf area through the leaf length and width. 300 leaves of 300 potato plants, cv. Monalisa were collected in an aleatory way, 21 and 56 days after the plant emergence (DAE. In laboratory, the length (C, width (L and area of each leaf (AF were measured. The data were submitted to the regression analysis with the AF value as a dependent variable and the leaf length and width values as the independent variables. Three statistical models were tested (linear, exponential and logarithmic. Potato

  2. Satellite Leaf Area Index: Global Scale Analysis of the Tendencies Per Vegetation Type Over the Last 17 Years

    Directory of Open Access Journals (Sweden)

    Simon Munier

    2018-03-01

    Full Text Available The main objective of this study is to detect and quantify changes in the vegetation dynamics of each vegetation type at the global scale over the last 17 years. With recent advances in remote sensing techniques, it is now possible to study the Leaf Area Index (LAI seasonal and interannual variability at the global scale and in a consistent way over the last decades. However, the coarse spatial resolution of these satellite-derived products does not permit distinguishing vegetation types within mixed pixels. Considering only the dominant type per pixel has two main drawbacks: the LAI of the dominant vegetation type is contaminated by spurious signal from other vegetation types and at the global scale, significant areas of individual vegetation types are neglected. In this study, we first developed a Kalman Filtering (KF approach to disaggregate the satellite-derived LAI from GEOV1 over nine main vegetation types, including grasslands and crops as well as evergreen, broadleaf and coniferous forests. The KF approach permits the separation of distinct LAI values for individual vegetation types that coexist within a pixel. The disaggregated LAI product, called LAI-MC (Multi-Cover, consists of world-wide LAI maps provided every 10 days for each vegetation type over the 1999–2015 period. A trend analysis of the original GEOV1 LAI product and of the disaggregated LAI time series was conducted using the Mann-Kendall test. Resulting trends of the GEOV1 LAI (which accounts for all vegetation types compare well with previous regional or global studies, showing a greening over a large part of the globe. When considering each vegetation type individually, the largest global trend from LAI-MC is found for coniferous forests (0.0419 m 2 m − 2 yr − 1 followed by summer crops (0.0394 m 2 m − 2 yr − 1 , while winter crops and grasslands show the smallest global trends (0.0261 m 2 m − 2 yr − 1 and 0.0279 m 2 m − 2 yr − 1 , respectively. The LAI

  3. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  4. Nota científica: métodos para estimativa da area foliar de plantas daninhas: 2: Wissadula subpeltata (Kuntze Fries Methods for estimation of leaf area of weeds: 2: Wissadula subpeltata (Kuntze Fries

    Directory of Open Access Journals (Sweden)

    S. Bianco

    1983-06-01

    Full Text Available Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permitisse estimar a área foliar de Wissadula subpeltata (Kuntze Fries, estudaram- se correlações entre a área foliar real e o comprimento da folha ao longo da nervura principal (C , largura máxi ma da folha (L , comprimento do espaço entre o ponto de inserção do pecíolo na folha até a primeira ramificação da nervura principal (CE, L + C, L x C e L x CE. Todas as equações, geométricas ou lineares simples, permitiram boas estimativas da área foliar . Do pont o de vista prático, sugere- se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Deste modo, a estimativa da área foliar de W. subpeltata pode ser feita pel a fórmula Y = 0, 85 49 (C x L, ou seja 85 ,49% do produto entre o comprimento da nervura principal e a largura máxima da folha.In order to final an equation that make poss ible to estimate the leaf area of Wissadula usbpeltata (Kuntze Fries , were studied correlations between truelea far ea (Y and the lea flenght in the mid rib direct ion (C, maximum leaf width (L , lenght of the segment between the petiole insert ion point in the leaf and the first rami fication of leaf mid rib (CE, L + C, L x C and L x CE. Al l equations, geometric and simple linear, permited good lea fare a estimatives. It is suggested to decid e for simple linear equations envolving the C x L, considering zero the linear coefficient. Thus , the leaf area of W. subpeltata can be estimated by the equation Y = 0.8549 (C x L, or else 85,49% of the multiplication between the leaf lenght in the mid rib direction and the maximum leaf width.

  5. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    International Nuclear Information System (INIS)

    Sadras, V.O.

    1996-01-01

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  6. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning

    KAUST Repository

    McCabe, Matthew

    2017-12-06

    With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory ‘predictor’ variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association

  7. Assimilation of Leaf Area Index and Soil Wetness Index into the ISBA-A-gs land surface model over France

    Science.gov (United States)

    Barbu, A. L.; Calvet, J.-C.; Lafont, S.

    2012-04-01

    The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December

  8. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning

    KAUST Repository

    McCabe, Matthew; McCabe, Matthew

    2017-01-01

    With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory ‘predictor’ variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association

  9. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning

    Science.gov (United States)

    Houborg, Rasmus; McCabe, Matthew F.

    2018-01-01

    With an increasing volume and dimensionality of Earth observation data, enhanced integration of machine-learning methodologies is needed to effectively analyze and utilize these information rich datasets. In machine-learning, a training dataset is required to establish explicit associations between a suite of explanatory 'predictor' variables and the target property. The specifics of this learning process can significantly influence model validity and portability, with a higher generalization level expected with an increasing number of observable conditions being reflected in the training dataset. Here we propose a hybrid training approach for leaf area index (LAI) estimation, which harnesses synergistic attributes of scattered in-situ measurements and systematically distributed physically based model inversion results to enhance the information content and spatial representativeness of the training data. To do this, a complimentary training dataset of independent LAI was derived from a regularized model inversion of RapidEye surface reflectances and subsequently used to guide the development of LAI regression models via Cubist and random forests (RF) decision tree methods. The application of the hybrid training approach to a broad set of Landsat 8 vegetation index (VI) predictor variables resulted in significantly improved LAI prediction accuracies and spatial consistencies, relative to results relying on in-situ measurements alone for model training. In comparing the prediction capacity and portability of the two machine-learning algorithms, a pair of relatively simple multi-variate regression models established by Cubist performed best, with an overall relative mean absolute deviation (rMAD) of ∼11%, determined based on a stringent scene-specific cross-validation approach. In comparison, the portability of RF regression models was less effective (i.e., an overall rMAD of ∼15%), which was attributed partly to model saturation at high LAI in association with

  10. Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits.

    Science.gov (United States)

    Edwards, Christine E; Ewers, Brent E; McClung, C Robertson; Lou, Ping; Weinig, Cynthia

    2012-05-01

    Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  11. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  12. Determination of Leaf Area Index, Total Foliar N, and Normalized Difference Vegetation Index for Arctic Ecosystems Dominated by Cassiope tetragona

    DEFF Research Database (Denmark)

    Campioli, M; Street, LE; Michelsen, Anders

    2009-01-01

    have not been accurately quantified. We address this knowledge gap by (i) direct measurements of LAI and TFN for C. tetragona, and (ii) determining TFN-LAI and LAI–normalized difference vegetation index (NDVI) relationships for typical C. tetragona tundras in the subarctic (Sweden) and High Arctic...... leaf N and biomass. The LAI-NDVI and TFN-LAI relationships showed high correlation and can be used to estimate indirectly LAI and TFN. The LAI-NDVI relationship for C. tetragona vegetation differed from a generic LAI-NDVI relationship for arctic tundra, whereas the TFN-LAI relationship did not. Overall...

  13. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    Science.gov (United States)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  14. A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data

    DEFF Research Database (Denmark)

    Xiao, Zhiqiang; Liang, Shunlin; Wang, Jindi

    2015-01-01

    -series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology...... model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy...... albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43...

  15. Contribution of Nitrogen Uptake and Retranslocation during Reproductive Growth to the Nitrogen Efficiency of Winter Oilseed-Rape Cultivars (Brassica napus L. Differing in Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Fabian Koeslin-Findeklee

    2016-01-01

    Full Text Available Genotypic variation in N efficiency defined as high grain yield under limited nitrogen (N supply of winter oilseed-rape line-cultivars has been predominantly attributed to N uptake efficiency (NUPT through maintained N uptake during reproductive growth related to functional stay-green. For investigating the role of stay-green, N retranslocation and N uptake during the reproductive phase for grain yield formation, two line cultivars differing in N starvation-induced leaf senescence were grown in a field experiment without mineral N (N0 and with 160 kg N·ha−1 (N160. Through frequent harvests from full flowering until maturity N uptake, N utilization and apparent N remobilization from vegetative plant parts to the pods could be calculated. NUPT proved being more important than N utilization efficiency (NUE for grain yield formation under N-limiting (N0 conditions. For cultivar differences in N efficiency, particularly N uptake during flowering (NUPT and biomass allocation efficiency (HI to the grains, were decisive. Both crop traits were related to delayed senescence of the older leaves. Remobilization of N particularly from stems and leaves was more important for pod N accumulation than N uptake after full flowering. Pod walls (high N concentrations and stems (high biomass mainly contributed to the crop-residue N at maturity. Decreasing the crop-inherent high N budget surplus of winter oilseed-rape requires increasing the low N remobilization efficiency particularly of pod-wall N to the grains. Addressing this conclusion, multi-year and -location field experiments with an extended range of cultivars including hybrids are desirable.

  16. The Approach to an Estimation of a Local Area Network Functioning Efficiency

    Directory of Open Access Journals (Sweden)

    M. M. Taraskin

    2010-09-01

    Full Text Available In the article authors call attention to a choice of system of metrics, which permits to take a qualitative assessment of local area network functioning efficiency in condition of computer attacks.

  17. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area.

    Science.gov (United States)

    Fan, Da-Yong; Jie, Sheng-Lin; Liu, Chang-Cheng; Zhang, Xiang-Ying; Xu, Xin-Wu; Zhang, Shou-Ren; Xie, Zong-Qiang

    2011-08-01

    Karst topography is a special landscape shaped by the dissolution of one or more layers of soluble bedrock, usually carbonate rock such as limestone or dolomite. Due to subterranean drainage, overland flow, extraction of water by plants and evapotranspiration, there may be very limited surface water. The hydraulic architecture that plants use to adapt to karst topography is very interesting, but few systematic reports exist. The karst area in southwestern China is unique when compared with other karst areas at similar latitudes, because of its abundant precipitation, with rainfall concentrated in the growing season. In theory, resistance to water-stress-induced cavitation via air seeding should be accompanied by decreased pore hydraulic conductivity and stem hydraulic conductivity. However, evidence for such trade-offs across species is ambiguous. We measured the hydraulic structure and foliar stable carbon isotope ratios of 31 karst woody plants at three locations in Guizhou Province, China, to evaluate the functional coordination between resistance to cavitation and specific conductivity. We also applied phylogenetically independent contrast (PIC) analysis in situations where the inter-species correlations of functional traits may be biased on the potential similarity of closely related species. The average xylem tension measurement, at which 50% of hydraulic conductivity of the plants was lost (Ψ(50)), was only -1.27 MPa. Stem Ψ(50) was positively associated with specific conductance (K(s)) (P sapwood area:leaf area ratio) was negatively correlated with K(s) in both the traditional cross-species correlation and the corresponding PIC correlations (P < 0.01). The characteristics of hydraulic architecture measured in this study showed that karst plants in China are not highly cavitation-resistant species. This study also supports the idea that there may not be an evolutionary trade-off between resistance to cavitation and specific conductivity in woody

  18. Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas

    International Nuclear Information System (INIS)

    Qin, Quande; Li, Xin; Li, Li; Zhen, Wei; Wei, Yi-Ming

    2017-01-01

    Highlights: • We investigate the static and dynamic energy efficiency in China’s coastal areas. • Both environmental pollutants and greenhouse gas are considered. • Global benchmark technology is incorporated into the related DEA models. • China’s coastal areas have great potential of air emissions reduction. • Technological progress is main driven factor to improve energy efficiency. - Abstract: Improving energy efficiency has been recognized as the most effective way to reduce the greenhouse effect and achieve sustainable development. From the perspective of air emissions, this paper adopts data envelopment analysis approach to evaluate the energy efficiency in China’s coastal areas over the period of 2000–2012. Carbon dioxide, sulfur dioxide and nitrogen oxide are treated as undesirable outputs of energy consumptions. The proposed global Epsilon-based measure is used to estimate the static energy efficiency with an annual cross-section of data. The weights of the three undesirable outputs are determined according to their treatment costs. A global Malmquist-Luenberger productivity index based on directional distance function is employed to dynamically evaluate the energy efficiency. The results indicate the following in China’s coastal areas: (1) the level of economic development is positively related to energy efficiency scores; (2) energy efficiency scores decrease when considering undesirable outputs except Beijing and Hainan; (3) the Circum-Bohai Sea Economic Region greatly improves energy efficiency and has great potential of air emission; (4) the annual growth rate of Malmquist-Luenberger productivity index change is overestimated; (5) energy efficiency improvement is mainly driven by technological improvement, and scale efficiency and management level are the main obstacles.

  19. Using the value of Lin's concordance correlation coefficient as a criterion for efficient estimation of areas of leaves of eelgrass from noisy digital images.

    Science.gov (United States)

    Echavarría-Heras, Héctor; Leal-Ramírez, Cecilia; Villa-Diharce, Enrique; Castillo, Oscar

    2014-01-01

    Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting plays an important role, and accurate measurements of the standing crop and productivity of transplants are important for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive, and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of leaves through proxies obtained from digital images. Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal

  20. High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature

    Directory of Open Access Journals (Sweden)

    Piedad M. Cristiano

    2014-02-01

    Full Text Available The canopy photosynthesis and carbon balance of the subtropical forests are not well studied compared to temperate and tropical forest ecosystems. The main objective of this study was to assess the seasonal dynamics of Normalized Difference Vegetation Index (NDVI and potential canopy photosynthesis in relation to seasonal changes in leaf area index (LAI, chlorophyll concentration, and air temperatures of NE Argentina subtropical forests throughout the year. We included in the analysis several tree plantations (Pinus, Eucalyptus and Araucaria species that are known to have high productivity. Field studies in native forests and tree plantations were conducted; stem growth rates, LAI and leaf chlorophyll concentration were measured. MODIS satellite-derived LAI (1 km SIN Grid and NDVI (250m SIN Grid from February 2000 to 2012 were used as a proxy of seasonal dynamics of potential photosynthetic activity at the stand level. The remote sensing LAI of the subtropical forests decreased every year from 6 to 5 during the cold season, similar to field LAI measurements, when temperatures were 10 °C lower than during the summer. The yearly maximum NDVI values were observed during a few months in autumn and spring (March through May and November, respectively because high and low air temperatures may have a small detrimental effect on photosynthetic activity during both the warm and the cold seasons. Leaf chlorophyll concentration was higher during the cold season than the warm season which may have a compensatory effect on the seasonal variation of the NDVI values. The NDVI of the subtropical forest stands remained high and fairly constant throughout the year (the intra-annual coefficient of variation was 1.9%, and were comparable to the values of high-yield tree plantations. These results suggest that the humid subtropical forests in NE Argentina potentially could maintain high canopy photosynthetic activity throughout the year and thus this ecosystem may

  1. Energy-efficient area coverage for intruder detection in sensor networks

    CERN Document Server

    He, Shibo; Li, Junkun

    2014-01-01

    This Springer Brief presents recent research results on area coverage for intruder detection from an energy-efficient perspective. These results cover a variety of topics, including environmental surveillance and security monitoring. The authors also provide the background and range of applications for area coverage and elaborate on system models such as the formal definition of area coverage and sensing models. Several chapters focus on energy-efficient intruder detection and intruder trapping under the well-known binary sensing model, along with intruder trapping under the probabilistic sens

  2. Combate sistemático de formigas-cortadeiras com iscas granuladas, em eucaliptais com cultivo mínimo Systematic control of leaf-cutting ants in areas with eucalyptus stands under minimum cultivation system

    Directory of Open Access Journals (Sweden)

    Ronald Zanetti

    2003-06-01

    Full Text Available Avaliou-se a eficiência do combate sistemático de formigas-cortadeiras em áreas de reforma de eucalipto com cultivo mínimo, na Celulose Nipo-Brasileira S.A., em Belo Oriente, Minas Gerais, de setembro a dezembro de 1996. Os tratamentos consistiram na aplicação de uma isca granulada com sulfluramida (0,3% de forma sistemática, a granel ou com microporta-iscas, na dosagem de 5 g a cada 6 m² e 10 g a cada 12 m², respectivamente. A mortalidade das colônias de formigas-cortadeiras foi avaliada 30 dias após a aplicação da isca. Foram encontradas até 396,3, 285,2, 59,3, 55,6, 29,6 e 14,8 colônias de Mycocepurus goeldii, Sericomyrmex sp., Acromyrmex subterraneus molestans, Atta spp., Acromyrmex balzani e Acromyrmex niger (Hymenoptera: Formicidae por hectare, respectivamente. A eficiência da isca granulada no combate sistemático variou com o método empregado e com a espécie de formiga-cortadeira. A maior eficiência foi obtida para A. subterraneus molestans, com 69,2% de suas colônias mortas com a isca aplicada a granel e 62,5% com microporta-iscas, o que indica que a distribuição entre dois pontos com isca nos plantios de eucalipto foi maior que a área de forrageamento das formigas-cortadeiras encontradas e, ou, que a dosagem aplicada por ponto foi insuficiente.The efficiency of a systematic application of baits against leaf-cutting ants was evaluated in a eucalypus plantation under a minimum cultivation system, in areas owned by Celulose Nipo-Brasileira S.A. (CENIBRA, in Belo Oriente, Minas Gerais, Brazil, from September to December 1996. Treatments consisted of applying a granulated bait with sulfluramide (0.3% in a systematic manner in bulk and plastic bags at a dose of five grams every 6 m² (T1 and 10 grams at each 12 m² (T2. Mortality of colonies of leaf-cutting ants was evaluated 30 days after bait application. A. maximum of 396.3; 285.2; 59.3; 55.6; 29.6 and 14.8 colonies of Mycocepurus goeldii, Sericomyrmex sp

  3. Assimilation of Remotely Sensed Leaf Area Index into the Community Land Model with Explicit Carbon and Nitrogen Components using Data Assimilation Research Testbed

    Science.gov (United States)

    Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.

    2017-12-01

    Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of

  4. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  5. Efficiency of a protected-area network in a Mediterranean region: a multispecies assessment with raptors.

    Science.gov (United States)

    Abellán, María D; Martínez, José E; Palazón, José A; Esteve, Miguel A; Calvo, José F

    2011-05-01

    Three different systems of designating protected areas in a Mediterranean region in southeastern Spain were studied, referring to their effectiveness and efficiency for protecting both the breeding territories and the suitable habitat of a set of ten raptor species. Taking into consideration the varying degrees of endangerment of these species, a map of multispecies conservation values was also drawn up and superimposed on the three protected-area systems studied. In order to compare the levels of protection afforded by the three systems, we considered two indices that measured their relative effectiveness and efficiency. The effectiveness estimated the proportion of territories or optimal habitat protected by the networks while efficiency implicitly considered the area of each system (percentage of breeding territories or optimal habitat protected per 1% of land protected). Overall, our results showed that the most efficient system was that formed by the set of regional parks and reserves (17 protected breeding territories per 100 km²), although, given its small total area, it was by far the least effective (only protecting the 21% of the breeding territories of all species and 17% of the area of high conservation value). The systems formed by the Special Protection Areas (designated under the EU "Birds Directive") and by the Special Conservation Areas (designated under the EU "Habitats Directive") notably increased the percentages of protected territories of all species (61%) and area of high conservation value (57%), but their efficiency was not as high as expected in most cases. The overall level of protection was high for all species except for the Lesser Kestrel (Falco naumanni), an endangered falcon that inhabits pseudo-steppe and traditional agricultural habitats, which are clearly underrepresented in the protected-area network of the study region.

  6. Efficiency of a Protected-Area Network in a Mediterranean Region: A Multispecies Assessment with Raptors

    Science.gov (United States)

    Abellán, María D.; Martínez, José E.; Palazón, José A.; Esteve, Miguel Á.; Calvo, José F.

    2011-05-01

    Three different systems of designating protected areas in a Mediterranean region in southeastern Spain were studied, referring to their effectiveness and efficiency for protecting both the breeding territories and the suitable habitat of a set of ten raptor species. Taking into consideration the varying degrees of endangerment of these species, a map of multispecies conservation values was also drawn up and superimposed on the three protected-area systems studied. In order to compare the levels of protection afforded by the three systems, we considered two indices that measured their relative effectiveness and efficiency. The effectiveness estimated the proportion of territories or optimal habitat protected by the networks while efficiency implicitly considered the area of each system (percentage of breeding territories or optimal habitat protected per 1% of land protected). Overall, our results showed that the most efficient system was that formed by the set of regional parks and reserves (17 protected breeding territories per 100 km2), although, given its small total area, it was by far the least effective (only protecting the 21% of the breeding territories of all species and 17% of the area of high conservation value). The systems formed by the Special Protection Areas (designated under the EU "Birds Directive") and by the Special Conservation Areas (designated under the EU "Habitats Directive") notably increased the percentages of protected territories of all species (61%) and area of high conservation value (57%), but their efficiency was not as high as expected in most cases. The overall level of protection was high for all species except for the Lesser Kestrel ( Falco naumanni), an endangered falcon that inhabits pseudo-steppe and traditional agricultural habitats, which are clearly underrepresented in the protected-area network of the study region.

  7. Área foliar de duas trepadeiras infestantes de cana-de-açúcar utilizando dimensões lineares de folhas Foliar area estimate of two sugarcane-infesting weeds using leaf blade linear dimensions

    Directory of Open Access Journals (Sweden)

    N.P. Cardozo

    2009-01-01

    Full Text Available Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C e a largura máxima (L perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L, e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L.The aim of this study was to obtain a mathematical equation to estimate the leaf area of Momordica charantia and Pyrostegia venusta using linear leaf blade measurements. Correlation studies were conducted involving real leaf area (Sf and leaf length (C, maximum leaf width (L and C x L. The linear and geometric equations involving parameter C provided good leaf area estimates. From a practical viewpoint, the simple linear equation of the regression model is suggested using the C x L parameter, i.e., considering the linear coefficient equal to zero. Thus, leaf area estimate of Momordica charantia can be obtained by using the equation Sf = 0.4963 x (C x L, and that of Pyrostegia venusta by using equation Sf = 0.6649 x (C x L.

  8. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  9. A data fusion Kalman filter algorithm to estimate leaf area index evolution by using Modis LAI and PROBA-V top of canopy synthesis data

    Science.gov (United States)

    Novelli, Antonio

    2016-08-01

    Leaf Area Index (LAI) is essential in ecosystem and agronomic studies, since it measures energy and gas exchanges between vegetation and atmosphere. In the last decades, LAI values have widely been estimated from passive remotely sensed data. Common approaches are based on semi-empirical/statistic techniques or on radiative transfer model inversion. Although the scientific community has been providing several LAI retrieval methods, the estimated results are often affected by noise and measurement uncertainties. The sequential data assimilation theory provides a theoretical framework to combine an imperfect model with incomplete observation data. In this document a data fusion Kalman filter algorithm is proposed in order to estimate the time evolution of LAI by combining MODIS LAI data and PROBA-V surface reflectance data. The reflectance data were linked to LAI by using the Reduced Simple Ratio index. The main working hypotheses were lacking input data necessary for climatic models and canopy reflectance models.

  10. Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species

    Science.gov (United States)

    Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer

    2012-01-01

    Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...

  11. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    Science.gov (United States)

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  12. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2011-07-01

    Full Text Available The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI product provided by an exponential filter together with Leaf Area Index (LAI is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007, at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.

  13. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  14. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay; Li, Jonathan

    2004-01-01

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  15. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2004-02-07

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  16. Quantum efficiency measurement system for large area CsI photodetectors

    CERN Document Server

    Cusanno, F; Colilli, S; Crateri, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Lucentini, M; Mostarda, A; Santavenere, F; Veneroni, P; Breuer, H; Iodice, M; Urciuoli, G M; De Cataldo, G; De Leo, R; Lagamba, L; Braem, André

    2003-01-01

    A proximity focusing freon/CsI RICH detector has been built for kaon physics at Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab), Hall A. The Cherenkov photons are detected by a UV photosensitive CsI film which has been obtained by vacuum evaporation. A dedicated evaporation facility for large area photocathodes has been built for this task. A measuring system has been built to allow the evaluation of the absolute quantum efficiency (QE) just after the evaporation. The evaporation facility is described here, as well as the quantum efficiency measurement device. Results of the QE on-line measurements, for the first time on large area photocathodes, are reported.

  17. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland.

    Science.gov (United States)

    Flanagan, Lawrence B; Farquhar, Graham D

    2014-02-01

    Measurements of the carbon (δ(13) Cm ) and oxygen (δ(18) Om ) isotope composition of C3 plant tissue provide important insights into controls on water-use efficiency. We investigated the causes of seasonal and inter-annual variability in water-use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf-scale) and eddy covariance measurements (ecosystem-scale). The positive relationship between δ(13) Cm and δ(18) Om values for samples collected during 1998-2001 indicated that variation in stomatal conductance and water stress-induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ(13) Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ(13) Cm and δ(18) Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water-use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci /ca during the drier conditions of 2000. Calculated values of leaf-scale water-use efficiency were 2-3 times higher than ecosystem-scale water-use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements. © 2013 John Wiley & Sons Ltd.

  18. Growth performance, nutrient utilization, and feed efficiency in broilers fed Tithonia diversifolia leaf meal as substitute of conventional feed ingredients in Mizoram.

    Science.gov (United States)

    Buragohain, Rajat

    2016-05-01

    The study was for assessment of growth performance, nutrient utilization, and feed efficiency in broilers fed rations with varying levels of Tithonia diversifolia leaf meal (TDLM) as a substitute of conventional feed ingredients in Mizoram. A total of 180, 1-day-old broiler chicks were randomly divided into six homogeneous groups and fed rations incorporated with TDLM (TDLM at 0% [TDLM-0], 2% [TDLM-2], 4% [TDLM-4], 6% [TDLM-6], 8% [TDLM-8], and 10% [TDLM-10] level as substitute of conventional feed ingredients) for 6 weeks. The chicks were reared in battery brooders for the first 2 weeks, and thereafter, in well-ventilated deep litter house following standard management protocols. Feed and drinking water were provided ad libitum to all the groups throughout the experiment. The daily feed intake and weekly body weight gain were recorded, and a metabolic trial for 3 days was conducted at the end of the 6(th) week. Feed consumption decreased for inclusion of TDLM but without any significant differences, except during the 3(rd) week where it reduced significantly (pbroilers reared under deep litter system of management in Mizoram.

  19. Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view

    Science.gov (United States)

    Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.

    2018-02-01

    The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.

  20. An area and power-efficient analog li-ion battery charger circuit.

    Science.gov (United States)

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  1. Energy and spectrum efficiency in rural areas based on cognitive radio technology

    CSIR Research Space (South Africa)

    Masonta, MT

    2009-09-01

    Full Text Available spectrum scarcity in the most energy efficient manner. In this paper, researchers present the proposed work to be carried out as part of a doctoral thesis to address the spectrum scarcity and transmission power in energy constrained rural areas....

  2. Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters

    DEFF Research Database (Denmark)

    Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold

    2016-01-01

    This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss...

  3. Search of Xylella fastidiosa in plants with symptoms of chlorosis and leaf scorch present in ornamental areas in the university district and nearness

    International Nuclear Information System (INIS)

    Pacheco Acevedo, Maria Jose

    2010-01-01

    The presence of Xylella fastidiosa is detected in plants considered as hosts of urban ornament with characteristic symptoms, present in gardens in the area of the university district and around in the area. Urban ornamental plants are identified with suggestive symptomatology of infection by X. fastidiosa in gardens of urban areas. Plants are classified according to the presence or absence of symptoms. In the study were gathered 97 samples, belonging to 29 vegetable species with symptoms of chlorosis on leaves, leaf scorch, delay in the development and loss of foliage. The identified plants are screened by techniques of ELISA, and immunofluorescence for the detection of X. fastidiosa. Xylella fastidiosa is isolated from urban ornamental plants. The isolates of Xylella obtained, are characterized phenotypic and molecularly. The performance of two standardized immunological techniques are compared for the serological detection of Xylella fastidiosa. The presence of X. fastidiosa is detected, using the DAS-ELISA technique on 48 of the 97 processed samples, corresponding to 46,1% of the samples. Parallely, the samples processed using the IFA technique, have detected the presence of X. fastidiosa in the same proportions [es

  4. An area-efficient network interface for a TDM-based Network-on-Chip

    DEFF Research Database (Denmark)

    Sparsø, Jens; Kasapaki, Evangelia; Schoeberl, Martin

    2013-01-01

    used by the routers and links in the NOC. The paper addresses the design of a NI for a NOC that uses time division multiplexing (TDM). By keeping the essence of TDM in mind, we have developed a new area-efficient NI micro-architecture. The new design completely eliminates the need for FIFO buffers...... and credit based flow control - resources which are reported to account for 50–85% of the area in existing NI designs. The paper discusses the design considerations, presents the new NI micro-architecture, and reports area figures for a range of implementations....

  5. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  6. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  7. How to Improve Water Usage Efficiency? Characterization of Family Farms in A Semi-Arid Area

    Directory of Open Access Journals (Sweden)

    Laura Piedra-Muñoz

    2017-10-01

    Full Text Available Water scarcity in Spain is partly due to poor management of this resource in the agricultural sector. The main aim of this study is to present the major factors related to water usage efficiency in farming. It focuses on the Almería coast, southeast Spain, which is one of the most arid areas of the country, and in particular, on family farms as the main direct managers of water use in this zone. Many of these farms are among the most water efficient in Spanish agriculture but this efficiency is not generalized throughout the sector. This work conducts a comprehensive assessment of water performance in this area, using on-farm water-use, structural, socio-economic, and environmental information. Two statistical techniques are used: descriptive analysis and cluster analysis. Thus, two groups are identified: farms that are less and farms that are more efficient regarding water usage. By analyzing both the common characteristics within each group and the differences between the groups with a one-way ANOVA analysis, several conclusions can be reached. The main differences between the two clusters center on the extent to which innovation and new technologies are used in irrigation. The most water efficient farms are characterized by more educated farmers, a greater degree of innovation, new irrigation technology, and an awareness of water issues and environmental sustainability. The findings of this study can be extended to farms in similar arid and semi-arid areas and contribute to fostering appropriate policies to improve the efficiency of water usage in the agricultural sector.

  8. Modelo matemático para estimativa da área foliar total de bananeira 'Prata-anã' Esteem method of total leaf area of 'Prata anã' banana tree

    Directory of Open Access Journals (Sweden)

    Moises Zucoloto

    2008-12-01

    Full Text Available O objetivo deste trabalho foi desenvolver um modelo para estimar a área foliar total de bananeira, cultivar Prata-Anã, utilizando dimensões lineares da terceira folha, como o comprimento, a largura e o número total de folhas na emissão da inflorescência. As regressões lineares foram determinadas considerando-se a área foliar total de cada planta (AFT como variável dependente e o comprimento (C e a largura (L da terceira folha, o produto de CxL, o número total de folhas por planta (N e o produto de CxLxN como variáveis independentes. O modelo linear que melhor estimou a área foliar total (AFTe da bananeira 'Prata-Anã', ao nível de 5% de significância com R² de 0,89, foi a equação AFTe = 0,5187(CxLxN + 9603,5.The objective of this work was to estimate the total leaf area of banana, cultivar Prata Anã, according to the linear dimensions of the third leaf, such as the length and the width and the total number of leves in the inflorescence emission. The linear regressions were determined considering total leaf area of each plant (AFT such as dependent variable and the length (C and the width (L of the third leaf, the product of CxL, the total number of leaf per plant (N and the product of CxLxN as independent variables. The best linear model that estimated the total leaf area (AFTe of banana 'Prata Anã' at the level of 5% of significance with R² of 0,89 was the equation AFTe = 0.5187 (CxLxN + 9603.5.

  9. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach.

    Science.gov (United States)

    Kovacs, J M; King, J M L; Flores de Santiago, F; Flores-Verdugo, F

    2009-10-01

    Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán-Agua Brava-Las Haciendas estuarine-mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R (2) = 0.63); LAI versus SR (R (2) = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km(2) of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition

  10. AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

    Directory of Open Access Journals (Sweden)

    Latha Sahukar

    2014-09-01

    Full Text Available The modern software defined radios (SDRs use complex signal processing algorithms to realize efficient wireless communication schemes. Several such algorithms require a specific symbol to sample ratio to be maintained. In this context the fractional rate converter (FRC becomes a crucial block in the receiver part of SDR. The paper presents an area optimized dynamic FRC block, for low power SDR applications. The limitations of conventional cascaded interpolator and decimator architecture for FRC are also presented. Extending the SINC function interpolation based architecture; towards high area optimization and providing run time configuration with time register are presented. The area and speed analysis are carried with Xilinx FPGA synthesis tools. Only 15% area occupancy with maximum clock speed of 133 MHz are reported on Spartan-6 Lx45 Field Programmable Gate Array (FPGA.

  11. Comments on `Area and power efficient DCT architecture for image compression' by Dhandapani and Ramachandran

    Science.gov (United States)

    Cintra, Renato J.; Bayer, Fábio M.

    2017-12-01

    In [Dhandapani and Ramachandran, "Area and power efficient DCT architecture for image compression", EURASIP Journal on Advances in Signal Processing 2014, 2014:180] the authors claim to have introduced an approximation for the discrete cosine transform capable of outperforming several well-known approximations in literature in terms of additive complexity. We could not verify the above results and we offer corrections for their work.

  12. An energy-efficient leader election mechanism for wireless body area networks

    OpenAIRE

    Zhang , Rongrong; Moungla , Hassine; Mehaoua , Ahmed

    2014-01-01

    International audience; In Wireless Body Area Networks (WBANs), the energy consumption determines the lifetime of the entire network. As a result, how to conserve the energy to prolong the network lifetime becomes a key problem in WBANs. In this paper, to address the energy conservation problem in WBANs, we develop an Energy-Efficient Leader Election mechanism, called EELE. In EELE, each node competes for the leader following the distributed leader election algorithm in which a utility functi...

  13. [Leaf nitrogen and phosphorus stoichiometry of shrubland plants in the rocky desertification area of Southwestern Hunan, China.

    Science.gov (United States)

    Jing, Yi Ran; Deng, Xiang Wen; Wei, Hui; Li, Yan Qiong; Deng, Dong Hua; Liu, Hao Jian; Xiang, Wen Hua

    2017-02-01

    In this paper, we took the leaves of shrubland plants in rocky desertification area in Southwestern Hunan as the research object to analyze the nitrogen (N) and phosphorus (P) stoichiometry characteristics for different functional groups and different grades of rocky desertification, i.e., light rocky desertification (LRD), moderate rocky desertification (MRD) and intense rocky desertification (IRD). The results showed that the average contents of N and P were 12.89 and 1.19 g·kg -1 , respectively, and N/P was 11.24 in common shrubland plants in the study area, which indicated that the growth of most plants were mainly limited by N. The content of N was declined in order of deciduous shrubs > evergreen shrubs > annual herbs > perennial herbs. The content of P and N/P were higher in deciduous shrubs than in perennial herbs. Significant differences were found among the main families of plants in terms of the contents of N, P and N/P in the study sites. The plants of Gramineae had the lowest contents of N and P, andtheir growth was mostly restricted by N, while Leguminosae had the highest content of N and N/P, and their productivity was majorly controlled by P. The contents of N and P in the leaves were significantly higher in dicotyledon plants and C3 plants than in monocotyledon plants and C4 plants, but the N/P was not significantly diffe-rent between these two plant categories. The nitrogen-fixing plants had higher content of N and N/P than the non-nitrogen-fixing plants, but the P content was not significantly different between these two plant groups. There were significant correlations between contents of N and P, N/P and N in all study plots. No significant correlation was found between N/P and P content in the examined rocky desertification sites, except for that in MRD. There were no significant differences of the contents of N, P and N/P under different grades of rocky desertification.

  14. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    Science.gov (United States)

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  15. Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area.

    Science.gov (United States)

    Saffell, Brandy J; Meinzer, Frederick C; Woodruff, David R; Shaw, David C; Voelker, Steven L; Lachenbruch, Barbara; Falk, Kristen

    2014-03-01

    Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized under natural conditions of low water stress and restricted carbon supply in relation to potential demands for growth. We analyzed the concentrations of starch, sucrose, glucose and fructose in foliage, twig wood and trunk sapwood of 15 co-occurring Douglas-fir trees expressing a gradient of Swiss needle cast symptom severity quantified as previous-year functional foliage mass. Growth (mean basal area increment, BAI) decreased by ∼80% and trunk NSC concentration decreased by 60% with decreasing functional foliage mass. The ratio of relative changes in NSC concentration and BAI, an index of the relative priority of storage versus growth, more than doubled with increasing disease severity. In contrast, twig and foliage NSC concentrations remained nearly constant with decreasing functional foliage mass. These results suggest that under disease-induced reductions in carbon supply, Douglas-fir trees retain NSCs (either actively or due to sequestration) at the expense of trunk radial growth. The crown retains the highest concentrations of NSC, presumably to maintain foliage growth and shoot extension in the spring, partially compensating for rapid foliage loss in the summer and fall.

  16. A Cost-Effective Transparency-Based Digital Imaging for Efficient and Accurate Wound Area Measurement

    Science.gov (United States)

    Li, Pei-Nan; Li, Hong; Wu, Mo-Li; Wang, Shou-Yu; Kong, Qing-You; Zhang, Zhen; Sun, Yuan; Liu, Jia; Lv, De-Cheng

    2012-01-01

    Wound measurement is an objective and direct way to trace the course of wound healing and to evaluate therapeutic efficacy. Nevertheless, the accuracy and efficiency of the current measurement methods need to be improved. Taking the advantages of reliability of transparency tracing and the accuracy of computer-aided digital imaging, a transparency-based digital imaging approach is established, by which data from 340 wound tracing were collected from 6 experimental groups (8 rats/group) at 8 experimental time points (Day 1, 3, 5, 7, 10, 12, 14 and 16) and orderly archived onto a transparency model sheet. This sheet was scanned and its image was saved in JPG form. Since a set of standard area units from 1 mm2 to 1 cm2 was integrated into the sheet, the tracing areas in JPG image were measured directly, using the “Magnetic lasso tool” in Adobe Photoshop program. The pixel values/PVs of individual outlined regions were obtained and recorded in an average speed of 27 second/region. All PV data were saved in an excel form and their corresponding areas were calculated simultaneously by the formula of Y (PV of the outlined region)/X (PV of standard area unit) × Z (area of standard unit). It took a researcher less than 3 hours to finish area calculation of 340 regions. In contrast, over 3 hours were expended by three skillful researchers to accomplish the above work with traditional transparency-based method. Moreover, unlike the results obtained traditionally, little variation was found among the data calculated by different persons and the standard area units in different sizes and shapes. Given its accurate, reproductive and efficient properties, this transparency-based digital imaging approach would be of significant values in basic wound healing research and clinical practice. PMID:22666449

  17. Relationship between spectral reflectance and leaf area index in needleleaf forest: The effect of three-dimensional forest structure and clumping

    International Nuclear Information System (INIS)

    Kobayashi, H.

    2008-01-01

    Toward the reliable estimation of leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR), the relationship between LAI/FAPAR and bidirectional reflectance factor (BRF) at the top of canopy should be accurately modeled by the radiation transfer models. These relationships vary with the forest landscape due to its horizontal heterogeneity and needles clumping within shoot. In this study, the effect of the forest heterogeneity on the relationships between BRF and LAI, and NDVI and LAI/FAPAR were examined through the three-dimensional radiative transfer simulation, and were compared with the results from one-dimensional radiative transfer simulation. In addition to the simulation, limitation of one-dimensional radiative transfer simulation was evaluated. The results showed that BRF at red and near infrared, and NDVI had large variations with different forest landscape under the same LAI conditions. However the relationship between NDVI and LAI, and NDVI and FAPAR derived from dense canopy condition were quite similar to the results from one-dimensional model. If we add the shoot clumping effect in one dimensional radiative transfer model as a universal parameter for three-dimensional effect of the forest, one dimensional radiative transfer model can work well for the BRF simulation in spatially heterogeneous landscape except higher LAI conditions

  18. Physiological aspects of stevia (Stevia rebaudiana Bertoni) in the Colombian Caribbean: I. Effects of attendant radiation on leaf area and biomass distribution

    International Nuclear Information System (INIS)

    Jarma, A.; Rengifo, T.; Araméndiz-Tatis, H.

    2005-01-01

    Stevia rebaudiana Bertoni is one of the Stevia genus' 154 members. The sweetening component of its leaves is due to dipterpene glycosides. The major steviol glycosides are: stevioside, rebaudioside A, rebaudioside C and dulcoside A. This research was carried out at Montería (Colombia); it evaluated the effect of four levels of attendant radiation in the climatic conditions found in the Sinú river valley on the physiological behaviour of S. rebaudiana. A completely random design was used, employing percentage of attendant radiation (19%, 24%, 56% and 100%) and Stevia genotypes ('Morita 1' and 'Morita 2') as factors. The results indicated that the leaf area of 'Morita 2' was always bigger than that of 'Morita 1' and radiation level did not influence this variable. The biggest accumulation of dry mass on leaves returned the highest levels of attendant radiation (100% and 56%). 'Morita 2' was better able to accumulate dry mass than 'Morita 1'. The fact that leaves accumulated more biomass than the stems during the first 60 d after being transplanted showed that plants were working to strengthen their photosynthetic ability during this period. This was followed by a greater migration of substances produced by photosynthesis towards the stems. The tendency stabilised toward both demands at the end of the period being studied [es

  19. Estimativa da área foliar de meloeiro em estádios fenológicos por fotos digitais Estimate of the leaf area of melon plant in growing stages for digital photos

    Directory of Open Access Journals (Sweden)

    Sidinei José Lopes

    2007-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a precisão do método de fotos digitais na estimativa da área foliar de meloeiro e encontrar modelos matemáticos de estimativa da área foliar em função de medidas lineares da folha para diferentes estádios fenológicos. Foram fotografadas todas as folhas ímpares de 8 plantas após transplante definitivo, através de câmera fotográfica digital, resultando, durante todo o ciclo da cultura, em 4.188 fotos, das quais mediu-se a área foliar, o comprimento e a largura da folha, por meio do software Sigma Scan Pro v. 5.0, Jandel Scientific. Para verificar a precisão do método de fotos digitais, retirou-se uma amostra de 40 folhas, de onde foram obtidas a área foliar através do método padrão de discos foliares e pelo método de fotos. Foi encontrada uma correlação de 0,99 entre o método padrão (discos e o de fotos. O método de fotos digitais pode ser utilizado para estimar a área foliar da cultura de meloeiro, e a estimativa da área foliar de meloeiro por estádio fenológico apresenta maior precisão, sendo a maior variabilidade na estimativa da área da folha observada no período reprodutivo. A largura máxima da folha de meloeiro é a medida linear que melhor estima a área foliar.This experiment was aimed at evaluating the precision of digital photos in estimating the leaf area of watermelon plants and to find mathematical models that estimates leaf area as a function of leaf linear measurements at different growth stages. All odd leaves of eight plants were photographed after being established on the field using a digital camera that resulted in 4,188 photos in which length and width were measured using a Sigma Scan Pro v. 5.0 Jandel Scientific software. In order to estimate the precision of the digital photos method, a sample consisting of 40 leaves was taken and leaf area measured using the standard leaf disks and the photo method. A 0.99 correlation coefficient was detected between

  20. Using the Normalized Differential Wetness Index to Scale Leaf Area Index, Create Three-Dimensional Classification Maps, and Scale Seasonal Evapotranspiration Depletions in Canopies Along the Middle Rio Grande Riparian CorridorCorridor

    Science.gov (United States)

    McDonnell, D. E.; Cleverly, J. R.; Dahm, C. N.; Coonrod, J. A.

    2005-12-01

    This research creates temporally and spatially explicit data layers of vegetation, leaf area index (LAI), three dimensional (3D) vegetation classification maps, and seasonal evapotranspiration (ET) depletions along the middle Rio Grande riparian corridor. The first part of this work produces two dimensional (2D) classification maps of native and non-native canopy vegetation using temporal patterns and the decision tree classifier in ENVI 4.0 (Research Systems Inc. Boulder, Colorado). The second part of this work correlates the normalized differential wetness index (NDWI) with field measurements of plant area index (PAI), stem area index (SAI), and leaf area index (LAI) using the LAI-2000 Plant Canopy Analyzer (PCA) (LICOR Inc., Lincoln, Nebraska). SAI is measured in winter to capture only branches and stems. PAI is measured during the growing season. Field measurements taken within 10 days of image capture dates provide adequate correlations though the closer the dates the better the correlation. LAI represents the surface area of active green leafy vegetation. NDWI correlates with both PAI and estimated LAI in both Tamarisk chinensis and Populus deltoides ssp. Wislizeni sites better than the more traditional normalized differential vegetation index (NDVI). This study also suggests that winter PCA measurements approximate SAI which should be subtracted from PAI in woody vegetation like T. chinensis and Salix exigua stands. The results show that correcting for leaf geometry by multiplying T. chinensis areas with cylindrical cladophylls by pi and the remaining flat leaf vegetation by two yields the best relationship between NDWI and total LAI. The 2Dclassification maps can be placed on top of relief maps of LAI to produce 3D classification maps. The final part of this research scales ET from four 3D eddy covariance towers located in two T. chinensis and two P. deltoides study sites. ET is regressed with LAI, percent daylight (PD), and average hourly incoming net

  1. An enhanced approach for the use of satellite-derived leaf area index values in dry deposition modeling in the Athabasca oil sands region.

    Science.gov (United States)

    Davies, Mervyn; Cho, Sunny; Spink, David; Pauls, Ron; Desilets, Michael; Shen, Yan; Bajwa, Kanwardeep; Person, Reid

    2016-12-15

    In the Athabasca oil sands region (AOSR) of Northern Alberta, the dry deposition of sulphur and nitrogen compounds represents a major fraction of total (wet plus dry) deposition due to oil sands emissions. The leaf area index (LAI) is a critical parameter that affects the dry deposition of these gaseous and particulate compounds to the surrounding boreal forest canopy. For this study, LAI values based on Moderate Resolution Imaging Spectroradiometer satellite imagery were obtained and compared to ground-based measurements, and two limitations with the satellite data were identified. The satellite LAI data firstly represents one-sided LAI values that do not account for the enhanced LAI associated with needle leaf geometry, and secondly, underestimates LAI in winter-time northern latitude regions. An approach for adjusting satellite LAI values for different boreal forest cover types, as a function of time of year, was developed to produce more representative LAI values that can be used by air quality sulphur and nitrogen deposition models. The application of the approach increases the AOSR average LAI for January from 0.19 to 1.40, which represents an increase of 637%. Based on the application of the CALMET/CALPUFF model system, this increases the predicted regional average dry deposition of sulphur and nitrogen compounds for January by factors of 1.40 to 1.30, respectively. The corresponding AOSR average LAI for July increased from 2.8 to 4.0, which represents an increase of 43%. This increases the predicted regional average dry deposition of sulphur and nitrogen compounds for July by factors of 1.28 to 1.22, respectively. These findings reinforce the importance of the LAI metric for predicting the dry deposition of sulphur and nitrogen compounds. While satellite data can provide enhanced spatial and temporal resolution, adjustments are identified to overcome associated limitations. This work is considered to have application for other deposition model studies where

  2. Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2018-01-01

    Full Text Available In recent years, China has developed and launched several satellites with high spatial resolutions, such as the resources satellite No. 3 (ZY-3 with a multi-spectral camera (MUX and 5.8 m spatial resolution, the satellite GaoFen No. 1 (GF-1 with a wide field of view (WFV camera and 16 m spatial resolution, and the environment satellite (HJ-1A/B with a charge-coupled device (CCD sensor and 30 m spatial resolution. First, to analyze the potential application of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD to extract the leaf area index (LAI at the regional scale, this study estimated LAI from the relationships between physical model-based spectral vegetation indices (SVIs and LAI values that were generated from look-up tables (LUTs, simulated from the combination of the PROSPECT-5B leaf model and the scattering by arbitrarily inclined leaves with the hot-spot effect (SAILH canopy reflectance model. Second, to assess the surface reflectance quality of these sensors after data preprocessing, the well-processed surface reflectance products of the Landsat-8 operational land imager (OLI sensor with a convincing data quality were used to compare the performances of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD sensors both in theory and reality. Apart from several reflectance fluctuations, the reflectance trends were coincident, and the reflectance values of the red and near-infrared (NIR bands were comparable among these sensors. Finally, to analyze the accuracy of the LAI estimated from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, the LAI estimations from these sensors were validated based on LAI field measurements in Huailai, Hebei Province, China. The results showed that the performance of the LAI that was inversed from ZY-3 MUX was better than that from GF-1 WFV, and HJ-1 CCD, both of which tended to be systematically underestimated. In addition, the value ranges and accuracies of the LAI inversions both decreased with decreasing spatial resolution.

  3. The sustainability and efficient use of renewable energy sources in rural areas

    Science.gov (United States)

    Adetunji, Kayode E.; Akinlabi, Akindeji O.; Joseph, Meera K.

    2018-04-01

    The energy system in African countries is mostly dependent on coal, gas, and oil, which in turns leads to environmental challenges and an imbalance of energy usage in some area of the countries. Given that, a mostly rural area in Africa suffers from the unsustainable energy system, thus it necessary to integrate renewable energy into the rural area for social and economic development. A sustainable energy system built on a clean energy such as renewable energy based on the availability of the natural resource is the main focus of this paper. Renewable energy is a solution for service delivery and when deployed everyone would be able to access electricity power, particularly in the remote area (which can be a suburb or rural environment) where the absence of national power grids. Renewable energy opens new opportunities for an economic development and sustainable solution to employ for energy efficiency, energy delivery, and energy management by the people and upon that a platform to promote environmental friendliness. In this paper, we explored the reasons for switching to renewable energy, saving energy and the awareness of potential and use of renewable energy in the rural area. IBM's SPSS is used for the quantitative data analysis. The results showed that sustainability of the National utility grid to the rural area is low, with over 80 percent of participants agreeing to disruption of power supply. The Positivity of the rural peoples' awareness of renewable also brought about the conclusion and recommendations from this paper.

  4. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    Science.gov (United States)

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  5. Comparing the Dry Season In-Situ Leaf Area Index (LAI Derived from High-Resolution RapidEye Imagery with MODIS LAI in a Namibian Savanna

    Directory of Open Access Journals (Sweden)

    Manuel J. Mayr

    2015-04-01

    Full Text Available The Leaf Area Index (LAI is one of the most frequently applied measures to characterize vegetation and its dynamics and functions with remote sensing. Satellite missions, such as NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS operationally produce global datasets of LAI. Due to their role as an input to large-scale modeling activities, evaluation and verification of such datasets are of high importance. In this context, savannas appear to be underrepresented with regards to their heterogeneous appearance (e.g., tree/grass-ratio, seasonality. Here, we aim to examine the LAI in a heterogeneous savanna ecosystem located in Namibia’s Owamboland during the dry season. Ground measurements of LAI are used to derive a high-resolution LAI model with RapidEye satellite data. This model is related to the corresponding MODIS LAI/FPAR (Fraction of Absorbed Photosynthetically Active Radiation scene (MOD15A2 in order to evaluate its performance at the intended annual minimum during the dry season. Based on a field survey we first assessed vegetation patterns from species composition and elevation for 109 sites. Secondly, we measured in situ LAI to quantitatively estimate the available vegetation (mean = 0.28. Green LAI samples were then empirically modeled (LAImodel with high resolution RapidEye imagery derived Difference Vegetation Index (DVI using a linear regression (R2 = 0.71. As indicated by several measures of model performance, the comparison with MOD15A2 revealed moderate consistency mostly due to overestimation by the aggregated LAImodel. Model constraints aside, this study may point to important issues for MOD15A2 in savannas concerning the underlying MODIS Land Cover product (MCD12Q1 and a potential adjustment by means of the MODIS Burned Area product (MCD45A1.

  6. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  7. Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area

    International Nuclear Information System (INIS)

    Martinho, Vítor João Pereira Domingues

    2016-01-01

    Energy consumption is a global concern, namely due to the limited availability of energy sources and the consequences in terms of gas emissions, with its implications upon greenhouse gas emissions. In the agricultural sector this question bears an additional concern, considering that it is an economic activity which is sensitive to the dimension of the costs associated with production factors. In this way, the objective of the study presented here is to analyze, the efficiency of energy consumption, for the twelve former European Union countries, at farm level, in terms of farming output and utilized agricultural area, over the period 1989–2009 and for the years 2004–2012, with data available in the Farm Accountancy Data Network. On the other hand, the implications of energy consumption in farms' economic performance were analyzed, through econometric techniques (time series, panel data and generalized method of moments) and models based on the Kaldor developments. As a main conclusion, to stress the decrease in efficiency related with energy consumption by farms in the twelve former European Union countries. - Highlights: • It was analyzed the efficiency of energy consumption. • It was considered data for the twelve former European Union states at farm level. • They were evaluated the implications of energy consumption in farms performance. • The conclusions stress the decrease in efficiency of the farms energy consumption.

  8. Regional differences analysis of land use efficiency and obstacle degree in Xianning-Yueyang-Jiujiang area

    Directory of Open Access Journals (Sweden)

    Chengshun Song

    2017-03-01

    Full Text Available This paper established an evaluation index system for the land use efficiency from social, economic, ecological and environmental aspects, and adopted the variation coefficient TOPSIS method and obstacle degree model to analyze the regional differences of land use efficiency and obstacle degree in Xianning, Yueyang and Jiujiang. The results showed that: (1 During 2000-2010, the land use efficiency in these regions had an increasing tendency and the regional differences were small. In Yueyang and Jiujiang, there were four stages, that is low, moderate, good and excellent; while in Xianning, there were only three stages, that is low, moderate and good; (2 The economic level was the greatest obstacle factor affecting the land use efficiency in these regions, followed by the environmental quality, ecological status, social development, and the regional differences in these aspects were not so obvious; (3 Per area financial revenue, the output of comprehensive utilization of “three wastes” and per capita GDP were the top three obstacle factors and the regional differences in these aspects were not so obvious.

  9. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  10. Peach leaf responses to soil and cement dust pollution.

    Science.gov (United States)

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  11. Energy Efficient Four Level Cooperative Opportunistic Communication for Wireless Personal Area Networks (WPAN)

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Inamdar, Sandeep; Prasad, Neeli R.

    2013-01-01

    For wireless sensor networks (WSN),energy is a scarce resource. Due to limited battery resources, the energy consumption is the critical issue for the transmission as well as reception of the signals in the wireless communication. WSNs are infrastructure-less shared network demanding more energy...... consumption due to collaborative transmissions. This paper proposes a new cooperative opportunistic four level model for IEEE 802.15.4 Wireless Personal Area Network (WPAN).The average per node energy consumption is observed merely about 0.17mJ for the cooperative wireless communication which proves...... the proposed mechanism to be energy efficient. This paper further proposes four levels of cooperative data transmission from source to destination to improve network coverage with energy efficiency....

  12. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    Science.gov (United States)

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple

  13. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    International Nuclear Information System (INIS)

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions

  14. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  15. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir

    2013-11-26

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  16. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  17. Towards Efficient Wireless Body Area Network Using Two-Way Relay Cooperation

    Directory of Open Access Journals (Sweden)

    Maham Waheed

    2018-02-01

    Full Text Available The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs. Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor’s battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE and packet error rate (PER are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC coding the cooperative link.

  18. Towards Efficient Wireless Body Area Network Using Two-Way Relay Cooperation.

    Science.gov (United States)

    Waheed, Maham; Ahmad, Rizwan; Ahmed, Waqas; Drieberg, Micheal; Alam, Muhammad Mahtab

    2018-02-13

    The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs). Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor's battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE) and packet error rate (PER) are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC) coding the cooperative link.

  19. Area efficient radix 4/sup 2/ 64 point pipeline fft architecture using modified csd multiplier

    International Nuclear Information System (INIS)

    Siddiq, F.; Muhammad, T.; Iqbal, M.

    2014-01-01

    A modified Fast Fourier Transform (FFT) based radix 42 algorithm for Orthogonal Frequency Division Multiplexing (OFDM) systems is presented. When compared with similar schemes like Canonic signed digit (CSD) Constant Multiplier, the modified CSD multiplier can provide a improvement of more than 36% in terms of multiplicative complexity. In Comparison of area being occupied the amount of Full adders is reduced by 32% and amount of half adders is reduced by 42%. The modified CSD multiplier scheme is implemented on Xilinx ISE 10.1 using Spartan-III XC3S1000 FPGA as a target device. The synthesis results of modified CSD Multiplier on Xilinx show efficient Twiddle Factor ROM Design and effective area reduction in comparison to CSD constant multiplier. (author)

  20. Diversity and Efficiency of Rhizobia Communities from Iron Mining Areas Using Cowpea as a Trap Plant

    Directory of Open Access Journals (Sweden)

    Jordana Luísa de Castro

    2017-08-01

    Full Text Available ABSTRACT Mining is an important economic activity. However, its impact on environment must be accessed, mainly on relevant processes for their sustainability. The objective of this study was to evaluate the diversity and efficiency of symbiotic nitrogen fixing bacterial communities in soils under different types of vegetation in the Quadrilátero Ferrífero: ironstone outcrops, Atlantic Forest, neotropical savanna, and a rehabilitated area revegetated with grass. Suspensions of soil samples collected under each type of vegetation were made in a saline solution to capture rhizobia communities that were then inoculated on cowpea [Vigna unguiculata (L. Walp.], which was used as a trap plant. The symbiotic efficiency of the communities was evaluated in a greenhouse experiment and the data obtained were correlated to the chemical and physical properties of the soils under each type of vegetation. At the end of the experiment, the bacteria present in the nodules were isolated to evaluate their diversity. The highest numbers of nodules occurred in the treatment inoculated with soil samples from rehabilitated area revegetated with grass and neotropical savanna vegetation, and the lowest numbers were observed in the treatment inoculated with soil samples from ironstone outcrops and Atlantic Forest. In relation to root dry matter, the treatment inoculated with soil samples from Neotropical savanah was superior to those inoculated with soil samples from the other areas; already, in relation to the shoot dry matter, no significant difference among the treatments was observed. The soil properties with the greatest influence on the microbial communities were Al3+ content, considered as high in the Atlantic Forest and neotropical savanna vegetation, as intermediate in the iron outcrops, and as very low in the rehabilitated area revegetated with grass; organic matter, considered as very high in the ironstone outcrops and neotropical savanna, as high in the

  1. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their

  2. BREEAM Green Leaf Eco-rating Program

    International Nuclear Information System (INIS)

    2001-01-01

    The environmental performance of buildings is measured for several reasons, the main one being that it can help owners decide where to invest their retrofit dollars to maximize the energy performance of their building and reduce operating costs. The buildings constructed in the 1950s and 1960s in North America are reaching obsolescence and will require major retrofits to improve their energy efficiency, particularly in the area of mechanical equipment. In addition to reducing operating costs, better maintenance and environmental management of buildings can also address issues such as comfort, health, indoor air quality and productivity. In order to accurately measure the environmental performance of a building, it is necessary to develop a comprehensive measuring and benchmarking tool that would allow occupants to compare the buildings' performance with others. In this pilot study, 6 high-rise multi-residential buildings were assessed for environmental performance using the BREEAM Green Leaf assessment method. The methodology originated in Canada and was developed by ECD Energy, Environment Canada and Terra Choice. It combines the BREEAM set of environmental issues with the Green Leaf Eco-Rating technique. The method covers occupant health, energy efficiency, resource efficiency, environmental responsibility and affordability. Operation and management issues are also taken into consideration. The buildings used in this study were located in various locations, ranging from inner city housing to city/suburban areas. 2 tabs., 17 figs

  3. Exploring the Potential of WorldView-2 Red-Edge Band-Based Vegetation Indices for Estimation of Mangrove Leaf Area Index with Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Yuanhui Zhu

    2017-10-01

    Full Text Available To accurately estimate leaf area index (LAI in mangrove areas, the selection of appropriate models and predictor variables is critical. However, there is a major challenge in quantifying and mapping LAI using multi-spectral sensors due to the saturation effects of traditional vegetation indices (VIs for mangrove forests. WorldView-2 (WV2 imagery has proven to be effective to estimate LAI of grasslands and forests, but the sensitivity of its vegetation indices (VIs has been uncertain for mangrove forests. Furthermore, the single model may exhibit certain randomness and instability in model calibration and estimation accuracy. Therefore, this study aims to explore the sensitivity of WV2 VIs for estimating mangrove LAI by comparing artificial neural network regression (ANNR, support vector regression (SVR and random forest regression (RFR. The results suggest that the RFR algorithm yields the best results (RMSE = 0.45, 14.55% of the average LAI, followed by ANNR (RMSE = 0.49, 16.04% of the average LAI, and then SVR (RMSE = 0.51, 16.56% of the average LAI algorithms using 5-fold cross validation (CV using all VIs. Quantification of the variable importance shows that the VIs derived from the red-edge band consistently remain the most important contributor to LAI estimation. When the red-edge band-derived VIs are removed from the models, estimation accuracies measured in relative RMSE (RMSEr decrease by 3.79%, 2.70% and 4.47% for ANNR, SVR and RFR models respectively. VIs derived from red-edge band also yield better accuracy compared with other traditional bands of WV2, such as near-infrared-1 and near-infrared-2 band. Furthermore, the estimated LAI values vary significantly across different mangrove species. The study demonstrates the utility of VIs of WV2 imagery and the selected machine-learning algorithms in developing LAI models in mangrove forests. The results indicate that the red-edge band of WV2 imagery can help alleviate the saturation

  4. Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment (Germany

    Directory of Open Access Journals (Sweden)

    Muhammad Ali

    2015-03-01

    Full Text Available Leaf Area Index (LAI is an important variable for numerous processes in various disciplines of bio- and geosciences. In situ measurements are the most accurate source of LAI among the LAI measuring methods, but the in situ measurements have the limitation of being labor intensive and site specific. For spatial-explicit applications (from regional to continental scales, satellite remote sensing is a promising source for obtaining LAI with different spatial resolutions. However, satellite-derived LAI measurements using empirical models require calibration and validation with the in situ measurements. In this study, we attempted to validate a direct LAI retrieval method from remotely sensed images (RapidEye with in situ LAI (LAIdestr. Remote sensing LAI (LAIrapideye were derived using different vegetation indices, namely SAVI (Soil Adjusted Vegetation Index and NDVI (Normalized Difference Vegetation Index. Additionally, applicability of the newly available red-edge band (RE was also analyzed through Normalized Difference Red-Edge index (NDRE and Soil Adjusted Red-Edge index (SARE. The LAIrapideye obtained from vegetation indices with red-edge band showed better correlation with LAIdestr (r = 0.88 and Root Mean Square Devation, RMSD = 1.01 & 0.92. This study also investigated the need to apply radiometric/atmospheric correction methods to the time-series of RapidEye Level 3A data prior to LAI estimation. Analysis of the the RapidEye Level 3A data set showed that application of the radiometric/atmospheric correction did not improve correlation of the estimated LAI with in situ LAI.

  5. Investigation of a Novel Common Subexpression Elimination Method for Low Power and Area Efficient DCT Architecture

    Directory of Open Access Journals (Sweden)

    M. F. Siddiqui

    2014-01-01

    Full Text Available A wide interest has been observed to find a low power and area efficient hardware design of discrete cosine transform (DCT algorithm. This research work proposed a novel Common Subexpression Elimination (CSE based pipelined architecture for DCT, aimed at reproducing the cost metrics of power and area while maintaining high speed and accuracy in DCT applications. The proposed design combines the techniques of Canonical Signed Digit (CSD representation and CSE to implement the multiplier-less method for fixed constant multiplication of DCT coefficients. Furthermore, symmetry in the DCT coefficient matrix is used with CSE to further decrease the number of arithmetic operations. This architecture needs a single-port memory to feed the inputs instead of multiport memory, which leads to reduction of the hardware cost and area. From the analysis of experimental results and performance comparisons, it is observed that the proposed scheme uses minimum logic utilizing mere 340 slices and 22 adders. Moreover, this design meets the real time constraints of different video/image coders and peak-signal-to-noise-ratio (PSNR requirements. Furthermore, the proposed technique has significant advantages over recent well-known methods along with accuracy in terms of power reduction, silicon area usage, and maximum operating frequency by 41%, 15%, and 15%, respectively.

  6. Investigation of a novel common subexpression elimination method for low power and area efficient DCT architecture.

    Science.gov (United States)

    Siddiqui, M F; Reza, A W; Kanesan, J; Ramiah, H

    2014-01-01

    A wide interest has been observed to find a low power and area efficient hardware design of discrete cosine transform (DCT) algorithm. This research work proposed a novel Common Subexpression Elimination (CSE) based pipelined architecture for DCT, aimed at reproducing the cost metrics of power and area while maintaining high speed and accuracy in DCT applications. The proposed design combines the techniques of Canonical Signed Digit (CSD) representation and CSE to implement the multiplier-less method for fixed constant multiplication of DCT coefficients. Furthermore, symmetry in the DCT coefficient matrix is used with CSE to further decrease the number of arithmetic operations. This architecture needs a single-port memory to feed the inputs instead of multiport memory, which leads to reduction of the hardware cost and area. From the analysis of experimental results and performance comparisons, it is observed that the proposed scheme uses minimum logic utilizing mere 340 slices and 22 adders. Moreover, this design meets the real time constraints of different video/image coders and peak-signal-to-noise-ratio (PSNR) requirements. Furthermore, the proposed technique has significant advantages over recent well-known methods along with accuracy in terms of power reduction, silicon area usage, and maximum operating frequency by 41%, 15%, and 15%, respectively.

  7. Wavy channel thin film transistor architecture for area efficient, high performance and low power displays

    KAUST Repository

    Hanna, Amir

    2013-12-23

    We demonstrate a new thin film transistor (TFT) architecture that allows expansion of the device width using continuous fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.5× increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, ~100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers an interesting opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Wavy channel Thin Film Transistor for area efficient, high performance and low power applications

    KAUST Repository

    Hanna, Amir

    2014-06-01

    We report a new Thin Film Transistor (TFT) architecture that allows expansion of the device width using wavy (continuous without separation) fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.4x increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, similar to 100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers a pragmatic opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications without any limitation any TFT materials.

  9. Analytical bounds on the area spectral efficiency of uplink heterogeneous networks over generalized fading channels

    KAUST Repository

    Shakir, Muhammad

    2014-06-01

    Heterogeneous networks (HetNets) are envisioned to enable next-generation cellular networks by providing higher spectral and energy efficiency. A HetNet is typically composed of multiple radio access technologies where several low-power low-cost operators or user-deployed small-cell base stations (SBSs) complement the macrocell network. In this paper, we consider a two-tier HetNet where the SBSs are arranged around the edge of the reference macrocell such that the resultant configuration is referred to as cell-on-edge (COE). Each mobile user in a small cell is considered capable of adapting its uplink transmit power according to a location-based slow power control mechanism. The COE configuration is observed to increase the uplink area spectral efficiency (ASE) and energy efficiency while reducing the cochannel interference power. A moment-generating-function (MGF)-based approach has been exploited to derive the analytical bounds on the uplink ASE of the COE configuration. The derived expressions are generalized for any composite fading distribution, and closed-form expressions are presented for the generalized- K fading channels. Simulation results are included to support the analysis and to show the efficacy of the COE configuration. A comparative performance analysis is also provided to demonstrate the improvements in the performance of cell-edge users of the COE configuration compared with that of macro-only networks (MoNets) and other unplanned deployment strategies. © 2013 IEEE.

  10. Area efficient decimation filter based on merged delay transformation for wireless applications

    International Nuclear Information System (INIS)

    Rashid, U.; Siddiq, F.; Muhammad, T.; Jamal, H.

    2013-01-01

    Expected by 2014 is the 4G standard for cellular wireless communications, which will improve bandwidth, connectivity and roaming for mobile and stationary devices, 4G and other wireless systems are currently hot topics of research and development in the communication field. In wireless technologies like Global System for Mobile (GSM), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi, decimation filters are essential part of transceivers being used. This paper describes a decimation filter which is efficient in terms of both the power consumption and the area used. The architecture is based upon Merged Delay Transformation (MDT). The existing Merged Delay Transformed Infinite Impulse Response (IIR) architecture is power efficient but requires larger area. The proposed and existing filters were implemented on Field-Programmable Gate Array (FPGA). The computational cost of the proposed filter is reduced to (3N/2 + 1) and M-1 times reduction in the number of multipliers in comparison to the existing FIR filter is achieved. The power consumption and speed remain nearly the same. (author)

  11. Post occupancy evaluation of energy-efficient behavior in informal housing of high density area

    Science.gov (United States)

    Aulia, D. N.; Marpaung, B. O. Y.

    2018-02-01

    The concept of energy-efficient building emphasizes the critical of efficiency in the use of water, electrical energy, and building materials, beginning with design, construction, to the maintenance of the building in the future. This study was conducted to observe the behavior of Energy Saving of the residents in performing everyday activities in the building. The observed variables are the consumption of natural resources (energy, material, water, and land) and the emissions of air, water, and land related to the environment and health. This research is a descriptive qualitative research with the method of data collection is the distribution of questionnaires and observation. The method of analyzing data is posted occupancy evaluation undertaken to obtain patterns of community-based behavior in urban areas. The informal high-density housing area is a typology of population settlements that found in many big cities in Indonesia. This community represents various community groups regarding occupation, education, income, and race. The results of the study concluded that there are five components of energy-saving behavioral formers in housing namely: residential building components, environmental components in occupancy, external occupancy components, components of social activities and elements of business

  12. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    Science.gov (United States)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  13. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing.

    Science.gov (United States)

    Kang, Junmo; Hwang, Soonhwi; Kim, Jae Hwan; Kim, Min Hyeok; Ryu, Jaechul; Seo, Sang Jae; Hong, Byung Hee; Kim, Moon Ki; Choi, Jae-Boong

    2012-06-26

    Graphene films grown on metal substrates by chemical vapor deposition (CVD) method have to be safely transferred onto desired substrates for further applications. Recently, a roll-to-roll (R2R) method has been developed for large-area transfer, which is particularly efficient for flexible target substrates. However, in the case of rigid substrates such as glass or wafers, the roll-based method is found to induce considerable mechanical damages on graphene films during the transfer process, resulting in the degradation of electrical property. Here we introduce an improved dry transfer technique based on a hot-pressing method that can minimize damage on graphene by neutralizing mechanical stress. Thus, we enhanced the transfer efficiency of the large-area graphene films on a substrate with arbitrary thickness and rigidity, evidenced by scanning electron microscope (SEM) and atomic force microscope (AFM) images, Raman spectra, and various electrical characterizations. We also performed a theoretical multiscale simulation from continuum to atomic level to compare the mechanical stresses caused by the R2R and the hot-pressing methods, which also supports our conclusion. Consequently, we believe that the proposed hot-pressing method will be immediately useful for display and solar cell applications that currently require rigid and large substrates.

  14. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.

    Science.gov (United States)

    Martorell, Carlos; Ezcurra, Exequiel

    2007-04-01

    Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.

  15. Polymer and Concentrator Photovoltaic Technologies - Energy Return Factors and Area Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Birger; Gustaf Zettergren

    2006-12-20

    Market diffusion of flat plate crystalline silicon photovoltaic (PV) technology has been induced by economical support schemes and has lead to reduced cost per produced kWh electricity. For further market penetration of the PV technology, a continued reduction of production cost is required. Two alternative approaches to achieve this are using less expensive materials or changing the active materials. The technologies of concentrator PV (CPV) systems and polymer PV (PPV) devices represent these two strategies. The potential energy performance of these technologies is studied in terms of the process primary energy requirements for manufacturing, how many times this energy is paid back during its lifetime and as the required land area for electricity generation. The study is an energy analysis incorporating the inherent uncertainties in technology development. Uncertainties are identified in data acquisition, in design choices, as induced by development and improvement, in performance and by different application scenarios. The future technology alternatives are defined in different ways for CPV and PPV. CPV parameters are derived from existing products and ideas for improvements and PPV parameters from the directions of research. This study shows that the invested energy in future CPV and PPV is potentially paid back up to about 90 and 170 times, respectively, under Arizona (CPV) and average European (PPV) solar irradiation conditions. However the result is highly dependent on configuration, inventory data and device performance. Thus, for certain design alternatives, data and performance, PPV production energy is far from paid back during its lifetime. For CPV the energy return factor is decreased to about 13 in the least beneficial case. Area efficiency is studied as the land area requirements for producing a net output electricity of 1 MWh during 25 years. With device efficiencies from 1 to 5 per cent and lifetimes from 1 to 5 years a PPV device requires from 2

  16. Energy efficiency and reduction of CO2 emissions from campsites management in a protected area.

    Science.gov (United States)

    Del Moretto, Deny; Branca, Teresa Annunziata; Colla, Valentina

    2018-06-02

    Campsites can be a pollution source, mainly due to the energy consumption. In addition, the green areas, thanks to the direct CO 2 sequestration and the shading, indirectly prevent the CO 2 emissions related to energy consumption. The methodology presented in this paper allowed assessing the annual CO 2 emissions directly related to the campsite management and the consequent environmental impact in campsite clusters in Tuscany. The software i-Tree Canopy was exploited, enabling to evaluate in terms of "canopy" the tonnes of CO 2 sequestered by the vegetation within each campsite. Energy and water consumptions from 2012 to 2015 were assessed for each campsite. As far as the distribution of sequestered CO 2 is concerned, the campsites ranking was in accordance to their size. According to the indicator "T-Tree" or canopy cover, a larger area of the canopy cover allows using less outdoor areas covered by trees for the sequestration of the remaining amount of pollutants. The analysis shows that the considered campsites, that are located in a highly naturalistic Park, present significant positive aspects both in terms of CO 2 emission reductions and of energy efficiency. However, significant margins of improvement are also possible and they were analysed in the paper. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Area and energy efficient high-performance ZnO wavy channel thin-film transistor

    KAUST Repository

    Hanna, Amir

    2014-09-01

    Increased output current while maintaining low power consumption in thin-film transistors (TFTs) is essential for future generation large-area high-resolution displays. Here, we show wavy channel (WC) architecture in TFT that allows the expansion of the transistor width in the direction perpendicular to the substrate through integrating continuous fin features on the underlying substrate. This architecture enables expanding the TFT width without consuming any additional chip area, thus enabling increased performance while maintaining the real estate integrity. The experimental WCTFTs show a linear increase in output current as a function of number of fins per device resulting in (3.5×) increase in output current when compared with planar counterparts that consume the same chip area. The new architecture also allows tuning the threshold voltage as a function of the number of fin features included in the device, as threshold voltage linearly decreased from 6.8 V for planar device to 2.6 V for WC devices with 32 fins. This makes the new architecture more power efficient as lower operation voltages could be used for WC devices compared with planar counterparts. It was also found that field effect mobility linearly increases with the number of fins included in the device, showing almost \\\\(1.8×) enhancements in the field effect mobility than that of the planar counterparts. This can be attributed to higher electric field in the channel due to the fin architecture and threshold voltage shift. © 2014 IEEE.

  18. A methodology for more efficient tail area sampling with discrete probability distribution

    International Nuclear Information System (INIS)

    Park, Sang Ryeol; Lee, Byung Ho; Kim, Tae Woon

    1988-01-01

    Monte Carlo Method is commonly used to observe the overall distribution and to determine the lower or upper bound value in statistical approach when direct analytical calculation is unavailable. However, this method would not be efficient if the tail area of a distribution is concerned. A new method entitled 'Two Step Tail Area Sampling' is developed, which uses the assumption of discrete probability distribution and samples only the tail area without distorting the overall distribution. This method uses two step sampling procedure. First, sampling at points separated by large intervals is done and second, sampling at points separated by small intervals is done with some check points determined at first step sampling. Comparison with Monte Carlo Method shows that the results obtained from the new method converge to analytic value faster than Monte Carlo Method if the numbers of calculation of both methods are the same. This new method is applied to DNBR (Departure from Nucleate Boiling Ratio) prediction problem in design of the pressurized light water nuclear reactor

  19. THE IMPLEMENTATION OF SINGLE EURO PAYMENTS AREA IN ROMANIA AND THE EFFECTS ON EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Mihaita-Cosmin POPOVICI

    2015-04-01

    Full Text Available Adoption of the single currency, euro, on 1 January 2002, in 12 countries, then in other seven states, represents a step towards closer economic and monetary integration in the European Union. The banking market remains fragmented after euro adoption and cross-border transactions in the single currency involves high costs and long periods of settlement and clearing. European Union response to this problem came in the form of the Single Euro Payments Area. The objective of the papers is to analyze the degree of implementation of SEPA in Romania and to investigate the impact on banking efficiency. The results showed low degree of implementation, especially on direct debit, but Romania hasmore time until October 31, 2016 to make the necessary changes. The consumers will benefit from a quicker settlement and clearing and at lower costs.

  20. Difference in the crab fauna of mangrove areas at a southwest Florida and a northeast Australia location: Implications for leaf litter processing

    Science.gov (United States)

    McIvor, C.C.; Smith, T. J.

    1995-01-01

    Existing paradigms suggest that mangrove leaf litter is processed primarily via the detrital pathway in forests in the Caribbean biogeographic realm whereas herbivorous crabs are relatively more important litter processors in the Indo-West Pacific. To test this hypothesis, we used pitfall traps to collect intertidal crabs to characterize the crab fauna in a mangrove estuary in southwest Florida. We also tethered mangrove leaves to determine if herbivorous crabs are major leaf consumers there. We compared the results with previously published data collected in an analogous manner from forests in northeastern Australia. The crab fauna in Rookery Bay, Florida, is dominated by carnivorous xanthid and deposit-feeding ocypodid crabs whereas that of the Murray River in northeastern Australia is dominated by herbivorous grapsid crabs. No leaves tethered at five sites in the forests in Southwest Florida were taken by crabs. This contrasts greatly with reported values of leaf removal by crabs in Australian forests of 28-79% of the leaves reaching the forest floor. These differences in the faunal assemblages and in the fate of marked or tethered leaves provide preliminary support for the hypothesis that leaf litter is in fact processed in fundamentally different ways in the two biogeographic realms.

  1. 1-RAAP: An Efficient 1-Round Anonymous Authentication Protocol for Wireless Body Area Networks.

    Science.gov (United States)

    Liu, Jingwei; Zhang, Lihuan; Sun, Rong

    2016-05-19

    Thanks to the rapid technological convergence of wireless communications, medical sensors and cloud computing, Wireless Body Area Networks (WBANs) have emerged as a novel networking paradigm enabling ubiquitous Internet services, allowing people to receive medical care, monitor health status in real-time, analyze sports data and even enjoy online entertainment remotely. However, because of the mobility and openness of wireless communications, WBANs are inevitably exposed to a large set of potential attacks, significantly undermining their utility and impeding their widespread deployment. To prevent attackers from threatening legitimate WBAN users or abusing WBAN services, an efficient and secure authentication protocol termed 1-Round Anonymous Authentication Protocol (1-RAAP) is proposed in this paper. In particular, 1-RAAP preserves anonymity, mutual authentication, non-repudiation and some other desirable security properties, while only requiring users to perform several low cost computational operations. More importantly, 1-RAAP is provably secure thanks to its design basis, which is resistant to the anonymous in the random oracle model. To validate the computational efficiency of 1-RAAP, a set of comprehensive comparative studies between 1-RAAP and other authentication protocols is conducted, and the results clearly show that 1-RAAP achieves the best performance in terms of computational overhead.

  2. Efficient Anonymous Authenticated Key Agreement Scheme for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Tong Li

    2017-01-01

    Full Text Available Wireless body area networks (WBANs are widely used in telemedicine, which can be utilized for real-time patients monitoring and home health-care. The sensor nodes in WBANs collect the client’s physiological data and transmit it to the medical center. However, the clients’ personal information is sensitive and there are many security threats in the extra-body communication. Therefore, the security and privacy of client’s physiological data need to be ensured. Many authentication protocols for WBANs have been proposed in recent years. However, the existing protocols fail to consider the key update phase. In this paper, we propose an efficient authenticated key agreement scheme for WBANs and add the key update phase to enhance the security of the proposed scheme. In addition, session keys are generated during the registration phase and kept secretly, thus reducing computation cost in the authentication phase. The performance analysis demonstrates that our scheme is more efficient than the currently popular related schemes.

  3. 1-RAAP: An Efficient 1-Round Anonymous Authentication Protocol for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Jingwei Liu

    2016-05-01

    Full Text Available Thanks to the rapid technological convergence of wireless communications, medical sensors and cloud computing, Wireless Body Area Networks (WBANs have emerged as a novel networking paradigm enabling ubiquitous Internet services, allowing people to receive medical care, monitor health status in real-time, analyze sports data and even enjoy online entertainment remotely. However, because of the mobility and openness of wireless communications, WBANs are inevitably exposed to a large set of potential attacks, significantly undermining their utility and impeding their widespread deployment. To prevent attackers from threatening legitimate WBAN users or abusing WBAN services, an efficient and secure authentication protocol termed 1-Round Anonymous Authentication Protocol (1-RAAP is proposed in this paper. In particular, 1-RAAP preserves anonymity, mutual authentication, non-repudiation and some other desirable security properties, while only requiring users to perform several low cost computational operations. More importantly, 1-RAAP is provably secure thanks to its design basis, which is resistant to the anonymous in the random oracle model. To validate the computational efficiency of 1-RAAP, a set of comprehensive comparative studies between 1-RAAP and other authentication protocols is conducted, and the results clearly show that 1-RAAP achieves the best performance in terms of computational overhead.

  4. New Geospatial Approaches for Efficiently Mapping Forest Biomass Logistics at High Resolution over Large Areas

    Directory of Open Access Journals (Sweden)

    John Hogland

    2018-04-01

    Full Text Available Adequate biomass feedstock supply is an important factor in evaluating the financial feasibility of alternative site locations for bioenergy facilities and for maintaining profitability once a facility is built. We used newly developed spatial analysis and logistics software to model the variables influencing feedstock supply and to estimate and map two components of the supply chain for a bioenergy facility: (1 the total biomass stocks available within an economically efficient transportation distance; (2 the cost of logistics to move the required stocks from the forest to the facility. Both biomass stocks and flows have important spatiotemporal dynamics that affect procurement costs and project viability. Though seemingly straightforward, these two components can be difficult to quantify and map accurately in a useful and spatially explicit manner. For an 8 million hectare study area, we used raster-based methods and tools to quantify and visualize these supply metrics at 10 m2 spatial resolution. The methodology and software leverage a novel raster-based least-cost path modeling algorithm that quantifies off-road and on-road transportation and other logistics costs. The results of the case study highlight the efficiency, flexibility, fine resolution, and spatial complexity of model outputs developed for facility siting and procurement planning.

  5. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    Science.gov (United States)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  6. Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2014-01-01

    Full Text Available The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM and leaf area index (LAI. This study investigates the impact of joint assimilation of remotely sensed SSM derived from Advanced Scatterometer (ASCAT backscatter data and the Copernicus Global Land GEOV1 satellite-based LAI product into the the vegetation growth version of the Interactions between Soil Biosphere Atmosphere (ISBA-A-gs land surface model within the the externalised surface model (SURFEX modelling platform of Météo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function matching technique. A multivariate multi-scale land data assimilation system (LDAS based on the extended Kalman Filter (EKF is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the domain of France at a spatial resolution of 8 km. Each model grid box is divided into a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011. The EKF is able to extract useful information from the data signal at the grid scale and distribute the root-zone soil moisture and LAI increments throughout the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study of the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil

  7. [Monitoring temporal dynamics in leaf area index of the temperate broadleaved deciduous forest in Maoershan region, Northeast China with tower-based radiation measurements.

    Science.gov (United States)

    Liu, Fan; Wang, Chuan Kuan; Wang, Xing Chang

    2016-08-01

    Broadband vegetation indices (BVIs) derived from routine radiation measurements on eddy flux towers have the advantage of high temporal resolutions, and thus have the potential to obtain detailed information of dynamics in canopy leaf area index (LAI). Taking the temperate broadleaved deciduous forest around the Maoershan flux tower in Northeast China as a case, we investigated the controlling factors and smoothing method of four BVI time-series, i.e., broadband norma-lized difference vegetation index (NDVI B ), broadband enhanced vegetation index (EVI B ), the ratio of the near-infrared radiation reflectance to photosynthetically active radiati