WorldWideScience

Sample records for effective transvascular delivery

  1. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  2. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Directory of Open Access Journals (Sweden)

    Glen Daniel

    2009-05-01

    Full Text Available Abstract Background The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas. Methods Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA, a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1st bolus of Gd-DTPA over the first hour, and then re-imaged with a 2nd bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods. Results The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine

  3. Increased transvascular lipoprotein transport in diabetes

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Borch-Johnsen, Knut

    2005-01-01

    CONTEXT: Diabetes is associated with a highly increased risk of atherosclerosis, especially if hypertension or albuminuria is present. OBJECTIVE: We hypothesized that the increased transvascular lipoprotein transport in diabetes may be further accelerated if hypertension or albuminuria is present...... of transvascular transport. RESULTS: Transvascular LDL transport was 1.8 (1.6-2.0), 2.3 (2.0-2.6), and 2.6 (1.3-4.0)%/[h x (liter/m2)] in healthy controls, diabetic controls, and diabetes patients with systolic hypertension or albuminuria, respectively (P = 0.013; F = 4.5; df =2; ANOVA). These differences most...... likely were not caused by altered hepatic LDL receptor expression, glycosylation of LDL, small LDL size, or medicine use. CONCLUSIONS: Transvascular LDL transport is increased in patients with diabetes mellitus, especially if systolic hypertension or albuminuria is present. Accordingly, lipoprotein flux...

  4. Transvascular lipoprotein transport in patients with chronic renal disease

    DEFF Research Database (Denmark)

    Jensen, Trine Krogsgaard; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2004-01-01

    BACKGROUND: While increased plasma cholesterol is a well-established cardiovascular risk factor in the general population, this is not so among patients with chronic renal disease. We hypothesized that the transvascular lipoprotein transport, in addition to the lipoprotein concentration in plasma......, determines the degree of atherosclerosis among patients with chronic renal disease. METHODS: We used an in vivo method for measurement of transvascular transport of low-density lipoprotein (LDL) in 21 patients with chronic renal disease and in 42 healthy control patients. Autologous 131-iodinated LDL...... was reinjected intravenously, and the 1-hour fractional escape rate was taken as index of transvascular transport. RESULTS: Transvascular LDL transport tended to be lower in patients with chronic renal disease than in healthy control patients [3.3 (95% CI 2.4-4.2) vs. 4.2 (3.7-4.2)%/hour; NS]. However...

  5. Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2)

    DEFF Research Database (Denmark)

    Kornerup, Karen; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2002-01-01

    accumulation and, thus, atherosclerosis. METHODS AND RESULTS: We developed an in vivo method for measurement of transvascular transport of low density lipoprotein (LDL) and applied it in 16 patients with maturity-onset diabetes (type 2) and 29 healthy control subjects. Autologous 131I-labeled LDL...... plasma insulin levels in diabetic patients. CONCLUSIONS: Transvascular LDL transport may be increased in patients with type 2 diabetes. This suggests that lipoprotein flux into the arterial wall is increased in people with diabetes, possibly explaining the accelerated development of atherosclerosis....... in patients with diabetes and control subjects, respectively (P2.5%/h and 5.3+/-1.6%/h (P

  6. Heart rate and blood pressure variations after transvascular patent ductus arteriosus occlusion in dogs.

    Science.gov (United States)

    De Monte, Valentina; Staffieri, Francesco; Caivano, Domenico; Nannarone, Sara; Birettoni, Francesco; Porciello, Francesco; Di Meo, Antonio; Bufalari, Antonello

    2017-08-01

    The objective of the study was to retrospectively analyse the cardiovascular effects that occurs following the transvascular occlusion of patent ductus arteriosus in dogs. Sixteen anaesthesia records were included. Variables were recorded at the time of placing the arterial introducer, occlusion of the ductus, and from 5 to 60min thereafter, including, among the other, heart rate, systolic, diastolic and mean arterial blood pressure. The maximal percentage variation of the aforementioned physiological parameters within 60min of occlusion, compared with the values recorded at the introducer placing, was calculated. The time at which maximal variation occurred was also computed. Correlations between maximal percentage variation of physiological parameters and the diameter of the ductus and systolic and diastolic flow velocity through it were evaluated with linear regression analysis. Heart rate decreased after occlusion of the ductus with a mean maximal percentage variation of 41.0±14.8% after 21.2±13.7min. Mean and diastolic arterial blood pressure increased after occlusion with a mean maximal percentage variation of 30.6±18.1 and 55.4±27.1% after 19.6±12.1 and 15.7±10.8min, respectively. Mean arterial blood pressure variation had a significant and moderate inverse correlation with diastolic and systolic flow velocity through the ductus. Transvascular patent ductus arteriosus occlusion in anaesthetised dogs causes a significant reduction in heart rate and an increase in diastolic and mean blood arterial pressure within 20min of closure of the ductus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pulmonary Circulation Transvascular Fluid Fluxes Do Not Change during General Anesthesia in Dogs

    Directory of Open Access Journals (Sweden)

    Olga Frlic

    2018-02-01

    Full Text Available General anesthesia (GA can cause abnormal lung fluid redistribution. Pulmonary circulation transvascular fluid fluxes (JVA are attributed to changes in hydrostatic forces and erythrocyte volume (EV regulation. Despite the very low hydraulic conductance of pulmonary microvasculature it is possible that GA may affect hydrostatic forces through changes in pulmonary vascular resistance (PVR, and EV through alteration of erythrocyte transmembrane ion fluxes (ionJVA. Furosemide (Fur was also used because of its potential to affect pulmonary hydrostatic forces and ionJVA. A hypothesis was tested that JVA, with or without furosemide treatment, will not change with time during GA. Twenty dogs that underwent castration/ovariectomy were randomly assigned to Fur (n = 10 (4 mg/kg IV or placebo treated group (Con, n = 10. Baseline arterial (BL and mixed venous blood were sampled during GA just before treatment with Fur or placebo and then at 15, 30 and 45 min post-treatment. Cardiac output (Q and pulmonary artery pressure (PAP were measured. JVA and ionJVA were calculated from changes in plasma protein, hemoglobin, hematocrit, plasma and whole blood ions, and Q. Variables were analyzed using random intercept mixed model (P < 0.05. Data are expressed as means ± SE. Furosemide caused a significant volume depletion as evident from changes in plasma protein and hematocrit (P < 0.001. However; Q, PAP, and JVA were not affected by time or Fur, whereas erythrocyte fluid flux was affected by Fur (P = 0.03. Furosemide also affected erythrocyte transmembrane K+ and Cl−, and transvascular Cl− metabolism (P ≤ 0.05. No other erythrocyte transmembrane or transvascular ion fluxes were affected by time of GA or Fur. Our hypothesis was verified as JVA was not affected by GA or ion metabolism changes due to Fur treatment. Furosemide and 45 min of GA did not cause significant hydrostatic changes based on Q and PAP. Inhibition of Na+/K+/2Cl− cotransport caused by Fur

  8. Microalbuminuria reflects a generalized transvascular albumin leakiness in clinically healthy subjects

    DEFF Research Database (Denmark)

    Jensen, J S; Borch-Johnsen, K; Jensen, G

    1995-01-01

    1. In epidemiological studies microalbuminuria, i.e. slightly elevated urinary albumin excretion rate, predicts increased atherosclerotic vascular morbidity and mortality. This study aimed to test the hypothesis that microalbuminuria in clinically healthy subjects is associated with a systemic...... transvascular albumin leakiness. In animal experiments the outflux of albumin and lipids to the arterial wall are highly correlated, and both are elevated in atherosclerosis. 2. All participants were recruited at random from a population-based epidemiological study, where the upper decile of urinary albumin...... excretion rate was 6.6 micrograms/min. Twenty-seven patients with persistent microalbuminuria (urinary albumin excretion rate 6.6-150 micrograms/min), and 56 age- and sex-matched control subjects with persistent normoalbuminuria (UAER

  9. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors

    International Nuclear Information System (INIS)

    Ozturk, Deniz; Yonucu, Sirin; Yilmaz, Defne; Unlu, Mehmet Burcin

    2015-01-01

    Elevated interstitial fluid pressure is one of the barriers of drug delivery in solid tumors. Recent studies have shown that normalization of tumor vasculature by anti-angiogenic factors may improve the delivery of conventional cytotoxic drugs, possibly by increasing blood flow, decreasing interstitial fluid pressure, and enhancing the convective transvascular transport of drug molecules. Delivery of large therapeutic agents such as nanoparticles and liposomes might also benefit from normalization therapy since their transport depends primarily on convection. In this study, a mathematical model is presented to provide supporting evidence that normalization therapy may improve the delivery of 100 nm liposomes into solid tumors, by both increasing the total drug extravasation and providing a more homogeneous drug distribution within the tumor. However these beneficial effects largely depend on tumor size and are stronger for tumors within a certain size range. It is shown that this size effect may persist under different microenvironmental conditions and for tumors with irregular margins or heterogeneous blood supply. (paper)

  10. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  11. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  12. Increased transvascular escape rate of albumin during experimental portal and hepatic venous hypertension in the pig. Relation to findings in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Parving, H H; Christiansen, L

    1981-01-01

    Transvascular escape rate of albumin [TERalb, i.e. the fraction of the intravascular mass of albumin (IVMalb) passing to the extravascular space per unit time] was determined from the disappearance of i.v. injected radioiodinated serum albumin in anaesthetized pigs during control conditions...

  13. Increased transvascular escape rate and lymph drainage of albumin in pigs during intravenous diuretic medication. Relations to treatment in man and transport mechanisms

    DEFF Research Database (Denmark)

    Henriksen, J H; Parving, H H; Lassen, N A

    1982-01-01

    .05). Pressures in artery, right atrium, hepatic and portal veins did not change significantly from control to diuretic period. TERalb equals the lymphatic return rate of albumin provided the transport mechanisms are filtrative-convective (i.e. no local back transport). Additional measurements in five pigs...... with proteins of different molecular size confirmed a dominating filtrative-convective transport. The increased TERalb during diuretic medication is best explained by an increased lymph drainage, which may decrease interstitial fluid pressure and thereby increase the transmural capillary pressure difference...... being essential for a filtrative-convective transvascular albumin transport. Increased lymph drainage may contribute to the therapeutic effect of diuretic treatment in oedema and ascites....

  14. Cilengitide-induced temporal variations in transvascular transfer parameters of tumor vasculature in a rat glioma model: identifying potential MRI biomarkers of acute effects.

    Directory of Open Access Journals (Sweden)

    Tavarekere N Nagaraja

    Full Text Available Increased efficacy of radiotherapy (RT 4-8 h after Cilengitide treatment has been reported. We hypothesized that the effects of Cilengitide on tumor transvascular transfer parameters might underlie, and thus predict, this potentiation. Athymic rats with orthotopic U251 glioma were studied at ~21 days after implantation using dynamic contrast-enhanced (DCE-MRI. Vascular parameters, viz: plasma volume fraction (v(p, forward volume transfer constant (K(trans and interstitial volume fraction (v(e of a contrast agent, were determined in tumor vasculature once before, and again in cohorts 2, 4, 8, 12 and 24 h after Cilengitide administration (4 mg/kg; N = 31; 6-7 per cohort. Perfusion-fixed brain sections were stained for von Willebrand factor to visualize vascular segments. A comparison of pre- and post-treatment parameters showed that the differences between MR indices before and after Cilengitide treatment pivoted around the 8 h time point, with 2 and 4 h groups showing increases, 12 and 24 h groups showing decreases, and values at the 8 h time point close to the baseline. The vascular parameter differences between group of 2 and 4 h and group of 12 and 24 h were significant for K(trans (p = 0.0001 and v(e (p = 0,0271. Vascular staining showed little variation with time after Cilengitide. The vascular normalization occurring 8 h after Cilengitide treatment coincided with similar previous reports of increased treatment efficacy when RT followed Cilengitide by 8 h. Pharmacological normalization of vasculature has the potential to increase sensitivity to RT. Evaluating acute temporal responses of tumor vasculature to putative anti-angiogenic drugs may help in optimizing their combination with other treatment modalities.

  15. The Effects of Portulaca oleracea on Hypoxia-Induced Pulmonary Edema in Mice.

    Science.gov (United States)

    Yue, Tan; Xiaosa, Wen; Ruirui, Qi; Wencai, Shi; Hailiang, Xin; Min, Li

    2015-03-01

    Portulaca oleracea L. (PO) is known as "a vegetable for long life" due to its antioxidant, anti-inflammatory, and other pharmacological activities. However, the protective activity of the ethanol extract of PO (EEPO) against hypoxia-induced pulmonary edema has not been fully investigated. In this study, we exposed mice to a simulated altitude of 7000 meters for 0, 3, 6, 9, and 12 h to observe changes in the water content and transvascular leakage of the mouse lung. It was found that transvascular leakage increased to the maximum in the mouse lung after 6 h exposure to hypobaric hypoxia. Prophylactic administration of EEPO before hypoxic exposure markedly reduced the transvascular leakage and oxidative stress, and inhibited the upregulation of NF-kB in the mouse lung, as compared with the control group. In addition, EEPO significantly reduced the levels of proinflammatory cytokines and cell adhesion molecules in the lungs of mice, as compared with the hypoxia group. Our results show that EEPO can reduce initial transvascular leakage and pulmonary edema under hypobaric hypoxia conditions.

  16. Pulsation-induced dilation of subendocardial and subepicardial arterioles: effect on vasodilator sensitivity

    NARCIS (Netherlands)

    Sorop, Oana; Spaan, Jos A. E.; VanBavel, Ed

    2002-01-01

    Coronary vessels are squeezed by the surrounding myocardium during systole, impeding blood flow specifically in the subendocardium. To study the myocardial compression effect, we applied pulsatile transvascular pressure to isolated, cannulated subendocardial (Endo) and subepicardial (Epi) resistance

  17. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  18. The effect of ascitic fluid hydrostatic pressure on albumin extravasation rate in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Henriksen, J H; Parving, H H; Christiansen, Lasse

    1981-01-01

    Overall transvascular escape rate of albumin [TERalb, i.e. the fraction of intravascular mass of albumin (IVMalb) passing to the extravascular space per unit time] was determined from the disappearance of i.v. injected radioiodinated serum albumin. Patients with tense ascites due to liver cirrhosis...... and pigs with posthepatic portal hypertension and intraperitoneally instilled fluid were studied before and after abdominal paracentesis in order to evaluate the effect of ascitic fluid hydrostatic pressure on the transvascular escape rate of albumin. TERalb of the ascitic patients (n = 6) were on average......, TERalb rose significantly to an average of 24.3% IVMalb.h-1. The increased albumin extravasation rate after removal of ascites is best explained by an increased sinusoidal-tissue pressure difference caused by a decreased hydrostatic fluid pressure in the liver interstitium (portal and subcapsular spaces...

  19. The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ruben J. Boado

    2011-01-01

    Full Text Available The application of blood-borne gene therapy protocols to the brain is limited by the presence of the blood-brain barrier (BBB. Viruses have been extensively used as gene delivery systems. However, their efficacy in brain is limited by the lack of transport across the BBB following intravenous (IV administration. Recent progress in the “Trojan Horse Liposome” (THL technology applied to transvascular non-viral gene therapy of the brain presents a promising solution to the trans-vascular brain gene delivery problem. THLs are comprised of immunoliposomes carrying nonviral gene expression plasmids. The tissue target specificity of the THL is provided by peptidomimetic monoclonal antibody (MAb component of the THL, which binds to specific endogenous receptors located on both the BBB and on brain cellular membranes, for example, insulin receptor and transferrin receptor. These MAbs mediate (a receptor-mediated transcytosis of the THL complex through the BBB, (b endocytosis into brain cells and (c transport to the brain cell nuclear compartment. The expression of the transgene in brain may be restricted using tissue/cell specific gene promoters. This manuscript presents an overview on the THL transport technology applied to brain disorders, including lysosomal storage disorders and Parkinson's disease.

  20. Effect of induction-delivery and uterine-delivery on apgar scoring of the newborn.

    Directory of Open Access Journals (Sweden)

    Kamat S

    1991-07-01

    Full Text Available Very short or prolonged induction-delivery interval (i.e. less than 5 minutes or more than 15 minutes and uterine-delivery interval of more than 90 seconds has a definite effect on the apgar scoring of a newborn especially when general anaesthesia is administered as compared to regional anaesthesia for caesarean section.

  1. Comparing Effectiveness of Undergraduate Course Delivery: A Student Perspective

    Science.gov (United States)

    Koenig, Robert J.

    2009-01-01

    Higher education students can and do take courses delivered in a variety of ways. But, to date, little research has been done on the effectiveness of different delivery modes. This study sought to fill that void by comparing the effectiveness of three undergraduate course delivery modes: classroom, online, and video conference at a technical…

  2. Effect of delivery care user fee exemption policy on institutional ...

    African Journals Online (AJOL)

    Background: To improve access to skilled attendance at delivery and thereby reduce maternal mortality, the Government of Ghana introduced a policy exempting all women attending health facilities from paying delivery care fees. Objective: To examine the effect of the exemption policy on delivery-related maternal mortality.

  3. Prenatal care and socioeconomic status: effect on cesarean delivery.

    Science.gov (United States)

    Milcent, Carine; Zbiri, Saad

    2018-03-10

    Cesarean deliveries are widely used in many high- and middle-income countries. This overuse both increases costs and lowers quality of care and is thus a major concern in the healthcare industry. The study first examines the impact of prenatal care utilization on cesarean delivery rates. It then determines whether socioeconomic status affects the use of prenatal care and thereby influences the cesarean delivery decision. Using exclusive French delivery data over the 2008-2014 period, with multilevel logit models, and controlling for relevant patient and hospital characteristics, we show that women who do not participate in prenatal education have an increased probability of a cesarean delivery compared to those who do. The study further indicates that attendance at prenatal education varies according to socioeconomic status. Low socioeconomic women are more likely to have cesarean deliveries and less likely to participate in prenatal education. This result emphasizes the importance of focusing on pregnancy health education, particularly for low-income women, as a potential way to limit unnecessary cesarean deliveries. Future studies would ideally investigate the effect of interventions promoting such as care participation on cesarean delivery rates.

  4. Effective and efficient implementation of alternative project delivery : research summary.

    Science.gov (United States)

    2017-05-01

    Alternative project delivery (APD) methods such as Design Build (DB) and Construction Manager at Risk (CMAR), are used by state departments of transportation to improve the efficiency and effectiveness of project delivery. The Maryland Department of ...

  5. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  6. Engineering Design Education: Effect of Mode of Delivery

    OpenAIRE

    Kinda Khalaf; Shadi Balawi; George W. Hitt; Mohammad A.M. Siddiqi

    2013-01-01

    This work reports on the gradual transformation from traditional teaching to student-centered, pure problem-based-learning (PBL) in engineering design education. Three different PBL-based modes of delivery with various degrees of modulation or freedom were used in conjunction with the prescriptive design cycle. The aim is to study the effect of the mode of delivery (PBL at various degrees of integration) on engineering design education and design thinking skills, specifically on the developme...

  7. Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour

    International Nuclear Information System (INIS)

    Zhan, Wenbo; Xu, Xiao Yun; Gedroyc, Wladyslaw

    2014-01-01

    Most of the computational models of drug transport in vascular tumours assume a uniform distribution of blood vessels through which anti-cancer drugs are delivered. However, it is well known that solid tumours are characterized by dilated microvasculature with non-uniform diameters and irregular branching patterns. In this study, the effect of heterogeneous vasculature on drug transport and uptake is investigated by means of mathematical modelling of the key physical and biochemical processes in drug delivery. An anatomically realistic tumour model accounting for heterogeneous distribution of blood vessels is reconstructed based on magnetic resonance images of a liver tumour. Numerical simulations are performed for different drug delivery modes, including direct continuous infusion and thermosensitive liposome-mediated delivery, and the anti-cancer effectiveness is evaluated through changes in tumour cell density based on predicted intracellular concentrations. Comparisons are made between regions of different vascular density, and between the two drug delivery modes. Our numerical results show that both extra- and intra-cellular concentrations in the liver tumour are non-uniform owing to the heterogeneous distribution of tumour vasculature. Drugs accumulate faster in well-vascularized regions, where they are also cleared out more quickly, resulting in less effective tumour cell killing in these regions. Compared with direct continuous infusion, the influence of heterogeneous vasculature on anti-cancer effectiveness is more pronounced for thermosensitive liposome-mediated delivery. (paper)

  8. Towards effective extension delivery approach and strategies for ...

    African Journals Online (AJOL)

    Towards effective extension delivery approach and strategies for food security poverty ... Journal Home > Vol 6, No 1 (2010) > ... groups, promotion of best practices and environment friendly initiatives among others were recommended.

  9. In Vitro and In Vivo Effective Gene Delivery with Novel Liposomal Bubbles

    Science.gov (United States)

    Nishiie, Norihito; Suzuki, Ryo; Oda, Yusuke; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Negishi, Yoichi; Maruyama, Kazuo

    2010-03-01

    Microbubbles, which were ultrasound contrast agents, could improve the transfection efficiency by cavitation with ultrasound exposure. However, conventional microbubbles had some problems regarding size and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages as drug, antigen and gene delivery carriers. Because they can easily be controlled their size and added a targeting function. And we succeeded to prepare novel liposomal bubbles (Bubble liposomes) entrapping perfluoropropane which was utilized for contrast enhancement in ultrasonography. In this study, we assessed the feasibility of Bubble liposomes as gene delivery tools utilized cavitation by ultrasound exposure. In vitro gene delivery, Bubble liposomes could deliver plasmid DNA to many cell types such as tumor cells, T cell line and endothelial cells without cytotoxicity. In vivo gene delivery, Bubble liposomes could effectively deliver plasmid DNA into mouse femoral artery. This method was more effectively than conventional lipofection. We conclude that Bubble liposomes are unique and efficient gene delivery tools in vitro and in vivo.

  10. [Beneficial effect of maternity leave on delivery].

    Science.gov (United States)

    Xu, Qian; Séguin, Louise; Goulet, Lise

    2002-01-01

    To identify the contribution of the duration of the prenatal maternity leave on term delivery. Characteristics of the prenatal maternity leave and delivery among 363 working women who had delivered a full-term infant at 1 of 4 hospitals in Montreal during 1996 were studied. The presence of an intervention or complication during delivery was observed in 68.9% of the participants. The average duration of the prenatal maternity leave was about 8 weeks (SD = 7). The adjusted risk of a difficult delivery decreased significantly with the duration of the prenatal maternity leave (OR = 0.96; 95% CI: 0.93-0.99). The duration of the maternity leave before delivery is associated with an easier term delivery for working women.

  11. The effect of ascitic fluid hydrostatic pressure on albumin extravasation rate in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Parving, H H; Lassen, N A

    1981-01-01

    and pigs with posthepatic portal hypertension and intraperitoneally instilled fluid were studied before and after abdominal paracentesis in order to evaluate the effect of ascitic fluid hydrostatic pressure on the transvascular escape rate of albumin. TERalb of the ascitic patients (n = 6) were on average......, TERalb rose significantly to an average of 24.3% IVMalb.h-1. The increased albumin extravasation rate after removal of ascites is best explained by an increased sinusoidal-tissue pressure difference caused by a decreased hydrostatic fluid pressure in the liver interstitium (portal and subcapsular spaces......) due to the hydrostatic effect of the removed ascitic fluid....

  12. The immediate effect of vaginal and caesarean delivery on anal sphincter measurements.

    Science.gov (United States)

    Karcaaltincaba, Deniz; Erkaya, Salim; Isik, Hatice; Haberal, Ali

    2016-08-01

    This study evaluated the effects of vaginal and caesarean delivery on internal and external anal sphincter muscle thickness using translabial ultrasonography (TL-US). This prospective cohort study enrolled nulliparous women who either had vaginal or caesarean deliveries. The thickness of the hypoechoic internal anal sphincter (IAS) and hyperechoic external anal sphincter (EAS) at the 12, 3, 6, and 9 o'clock positions at the distal level were measured before delivery and within 24-48 h after delivery. A total 105 consecutive women were enrolled in the study: 60 in the vaginal delivery group and 45 in the caesarean delivery group. The IAS muscle thickness at the 12 o'clock position in the vaginal delivery group was significantly thicker before compared with after delivery (mean ± SD: 2.31 ± 0.74 mm versus 1.81 ± 0.64 mm, respectively). The EAS muscle thickness at the 12 o'clock position in the vaginal delivery group was significantly thicker before compared with after delivery (mean ± SD: 2.42 ± 0.64 mm versus 1.97 ± 0.85, respectively). There was significant muscle thinning of both the IAS and EAS at the 12 o'clock position after vaginal delivery, but not after caesarean delivery. © The Author(s) 2016.

  13. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect

    Directory of Open Access Journals (Sweden)

    Yokoda R

    2017-11-01

    Full Text Available Raquel Yokoda,1 Bolni M Nagalo,1 Brent Vernon,2 Rahmi Oklu,3 Hassan Albadawi,3 Thomas T DeLeon,1 Yumei Zhou,1 Jan B Egan,1 Dan G Duda,4 Mitesh J Borad1 1Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale, 2Department of Biomedical Engineering, Arizona State University, Tempe, 3Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ, 4Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA Abstract: With the advancement of a growing number of oncolytic viruses (OVs to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects. Keywords: oncolytic viruses, oncolytic virotherapy, drug delivery systems, tumor

  14. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  15. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  16. The Effect of Mode of Delivery on Postpartum Sexual Functioning in Primiparous Women

    Directory of Open Access Journals (Sweden)

    Fatemeh Dabiri

    2014-07-01

    Full Text Available Objective: To evaluate the effect of mode of delivery on postpartum sexual functioning in primiparous women. Methods: In this cross-sectional descriptive study, 150 primiparous women in postpartum period, who attended the family planning or vaccination clinics, were enrolled for the study. Eighty-one had vaginal delivery with episiotomy and 69 had experienced cesarean section. Sexual function was evaluated by the Female Sexual Function Index within 3 and 6 months postpartum. Results: About 29% in vaginal delivery group and 37% in cesarean delivery group had resumed their sexual intercourses four weeks after delivery (p=0.280.There were no significant differences between mode of delivery and sexual functioning, including desire, arousal, lubrication, orgasm, satisfaction and pain. Conclusion: The present study showed that postpartum sexual functioning was not associated with the type of delivery.

  17. The effects of tumor motion on planning and delivery of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    The purpose of this study is to investigate the effects of object motion on the planning and delivery of IMRT. Two phantoms containing objects were imaged using CT under a variety of motion conditions. The effects of object motion on axial CT acquisition with and without gating were assessed qualitatively and quantitatively. Measurements of effective slice width and position for the CT scans were made. Mutual information image fusion was adapted for use as a quantitative measure of object deformation in CT images. IMRT plans were generated on the CT scans of the moving and gated object images. These plans were delivered with motion, with and without gating, and the delivery error between the moving deliveries and a nonmoving delivery was assessed using a scalable vector-based index. Motion during CT acquisition produces motion artifact, object deformation, and object mispositioning, which can be substantially reduced with gating. Objects that vary in cross section in the direction of motion exhibit the most deformation in CT images. Mutual information provides a useful quantitative estimate of object deformation. The delivery of IMRT in the presence of target motion significantly alters the delivered dose distribution in relation to the planned distribution. The utilization of gating for IMRT treatment, including imaging, planning, and delivery, significantly reduces the errors introduced by object motion

  18. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness

    Directory of Open Access Journals (Sweden)

    Rossella Farra

    2018-03-01

    Full Text Available Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD and particularly small interfering RNAs (siRNAs, are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC, a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.

  19. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  20. Effect of bond administration on construction project delivery

    Directory of Open Access Journals (Sweden)

    Oke Ayodeji Emmanuel

    2016-12-01

    Full Text Available Construction bond administration involves management of bond issues from inception of obtaining bond from guarantor to the point of release of contractor by the client. This process has posted a lot of challenges to construction stakeholders; it is therefore, necessary to examine the relationship between bond administration and project success. Archival data of completed bonded building projects were gathered through a pro forma developed for this purpose. Using Pearson product moment of correlation, it was revealed that the cost of securing a construction bond has a positive and significant effect on the initial and final costs of the project, while the number of days needed to secure a construction bond has no significant effect on the initial and final durations of the construction project. In order to establish the relationship between project delivery indices of cost and time and the construction bond administration variables, iteration of linear regression was adopted to arrive at the best-fit equation. Factors affecting the cost of securing construction bonds from guarantors should be identified and given adequate attention by construction stakeholders in order to minimize the effect of construction bond administration on project delivery.

  1. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  2. The effects of the mode of delivery on oxidative-antioxidative balance.

    Science.gov (United States)

    Mutlu, Birgul; Aksoy, Nurten; Cakir, Hale; Celik, Hakim; Erel, Ozcan

    2011-11-01

    The purpose of this study was to investigate the effects of the mode of delivery on the oxidant and antioxidant systems in mothers and infants and to demonstrate which mode leads more oxidative stress. The participants were divided into two groups according to the mode of their labour and delivery: group 1 (n = 33) women with normal labour and delivery and group 2 (n = 33) with scheduled caesarean section (C/S) and delivery. The maternal, cord, and infant blood samples in both groups were collected. The serum total antioxidant capacity (TAC) and the total oxidant status (TOS) were evaluated by using an automated colorimetric measurement method. The parameters indicating oxidative stress (TOS, oxidative stress index, and lipid hydroperoxide) in maternal, cord, and newborn blood samples were higher in patients delivering with C/S than those normal spontaneous vaginal deliveries (NSVD) patient group, while it was vice versa for TAC. It may be concluded that both the mothers and neonates in C/S group are exposed to higher oxidative stress as compared with those in NSVD group and the antioxidant mechanisms are insufficient to cope with this stress during C/S. This result indicates that the normal delivery through the physiological route is healthier for the bodies of mothers and infants.

  3. Effects of Bifidobacterium Breve Feeding Strategy and Delivery Modes on Experimental Allergic Rhinitis Mice.

    Directory of Open Access Journals (Sweden)

    Jian-jun Ren

    Full Text Available Different delivery modes may affect the susceptibility to allergic diseases. It is still unknown whether early intervention with probiotics would counteract this effect.The effect of different delivery modes on immune status and nasal symptoms was investigated on established allergic rhinitis (AR mouse model. In addition, the immunoregulatory effects and mechanisms of different feeding manners with Bifidobacterium breve(B. breve were examined.Live lyophilized B. breve was orally administered to BALB/c mice born via vaginal delivery(VD or cesarean delivery (CD for 8 consecutive weeks, after which they were sensitized by ovalbumin(OVA to establish experimental AR. Nasal symptoms, serum immunoglobulins, cytokines, splenic percentages of CD4(+CD25(+Foxp3(+ regulatory T(Treg cells and nasal eosinophil infiltration were evaluated.Compared with VD mice, mice delivered via CD demonstrated more serious nasal symptoms, higher concentrations of OVA-specific immunoglobulin (Ig E, more nasal eosinophils and lower percentages of splenic CD4(+CD25(+Foxp3(+Treg cells after establishing experimental AR. These parameters were reversed by administering B. breves hortly after birth. However, the effect of B. breve did not differ between different delivery modes.CD aggravates the nasal symptoms of AR mice compared to VD. This is the first report that oral administration of B. breve shortly after birth can significantly alleviate the symptoms of AR mice born via both deliveries, probably via activation of the regulatory capacity of CD4(+CD25(+Foxp3(+Treg cells.

  4. Effects of Bifidobacterium Breve Feeding Strategy and Delivery Modes on Experimental Allergic Rhinitis Mice.

    Science.gov (United States)

    Ren, Jian-jun; Yu, Zhao; Yang, Feng-Ling; Lv, Dan; Hung, Shi; Zhang, Jie; Lin, Ping; Liu, Shi-Xi; Zhang, Nan; Bachert, Claus

    2015-01-01

    Different delivery modes may affect the susceptibility to allergic diseases. It is still unknown whether early intervention with probiotics would counteract this effect. The effect of different delivery modes on immune status and nasal symptoms was investigated on established allergic rhinitis (AR) mouse model. In addition, the immunoregulatory effects and mechanisms of different feeding manners with Bifidobacterium breve(B. breve) were examined. Live lyophilized B. breve was orally administered to BALB/c mice born via vaginal delivery(VD) or cesarean delivery (CD) for 8 consecutive weeks, after which they were sensitized by ovalbumin(OVA) to establish experimental AR. Nasal symptoms, serum immunoglobulins, cytokines, splenic percentages of CD4(+)CD25(+)Foxp3(+) regulatory T(Treg) cells and nasal eosinophil infiltration were evaluated. Compared with VD mice, mice delivered via CD demonstrated more serious nasal symptoms, higher concentrations of OVA-specific immunoglobulin (Ig) E, more nasal eosinophils and lower percentages of splenic CD4(+)CD25(+)Foxp3(+)Treg cells after establishing experimental AR. These parameters were reversed by administering B. breves hortly after birth. However, the effect of B. breve did not differ between different delivery modes. CD aggravates the nasal symptoms of AR mice compared to VD. This is the first report that oral administration of B. breve shortly after birth can significantly alleviate the symptoms of AR mice born via both deliveries, probably via activation of the regulatory capacity of CD4(+)CD25(+)Foxp3(+)Treg cells.

  5. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Jokivarsi, Kimmo; Goitein, Michael; Kung, Jong; Jiang, Steve B.

    2002-01-01

    There has been some concern that organ motion, especially intra-fraction organ motion due to breathing, can negate the potential merit of intensity-modulated radiotherapy (IMRT). We wanted to find out whether this concern is justified. Specifically, we wanted to investigate whether IMRT delivery techniques with moving parts, e.g., with a multileaf collimator (MLC), are particularly sensitive to organ motion due to the interplay between organ motion and leaf motion. We also wanted to know if, and by how much, fractionation of the treatment can reduce the effects. We performed a statistical analysis and calculated the expected dose values and dose variances for volume elements of organs that move during the delivery of the IMRT. We looked at the overall influence of organ motion during the course of a fractionated treatment. A linear-quadratic model was used to consider fractionation effects. Furthermore, we developed software to simulate motion effects for IMRT delivery with an MLC, with compensators, and with a scanning beam. For the simulation we assumed a sinusoidal motion in an isocentric plane. We found that the expected dose value is independent of the treatment technique. It is just a weighted average over the path of motion of the dose distribution without motion. If the treatment is delivered in several fractions, the distribution of the dose around the expected value is close to a Gaussian. For a typical treatment with 30 fractions, the standard deviation is generally within 1% of the expected value for MLC delivery if one assumes a typical motion amplitude of 5 mm (1 cm peak to peak). The standard deviation is generally even smaller for the compensator but bigger for scanning beam delivery. For the latter it can be reduced through multiple deliveries ('paintings') of the same field. In conclusion, the main effect of organ motion in IMRT is an averaging of the dose distribution without motion over the path of the motion. This is the same as for treatments

  6. Effects of Cesarean Delivery on Breastfeeding Practices and Duration: A Prospective Cohort Study.

    Science.gov (United States)

    Chen, Cheng; Yan, Yan; Gao, Xiao; Xiang, Shiting; He, Qiong; Zeng, Guangyu; Liu, Shiping; Sha, Tingting; Li, Ling

    2018-01-01

    Mothers are encouraged to exclusively breastfeed for the first 6 months. However, cesarean delivery rates have increased worldwide, which may affect breastfeeding. Research aim: This study aimed to determine the potential effects of cesarean delivery on breastfeeding practices and breastfeeding duration. This was a 6-month cohort study extracted from a 24-month prospective cohort study of mother-infant pairs in three communities in Hunan, China. Data about participants' characteristics, delivery methods, breastfeeding initiation, use of formula in the hospital, exclusive breastfeeding, and any breastfeeding were collected at 1, 3, and 6 months following each infant's birth. The chi-square test, logistic regression model, and Cox proportional hazard regression model were used to examine the relationship between breastfeeding practices and cesarean delivery. The number of women who had a cesarean delivery was 387 (40.6%), and 567 (59.4%) women had a vaginal delivery. The exclusive breastfeeding rates at 1, 3, and 6 months were 80.2%, 67.4%, and 21.5%, respectively. Women who had a cesarean delivery showed a lower rate of exclusive breastfeeding and any breastfeeding than those who had a vaginal delivery ( p cesarean delivery was related with using formula in the hospital and delayed breastfeeding initiation. Cesarean delivery also shortened the breastfeeding duration (hazard ratio = 1.40, 95% confidence interval [1.06, 1.84]). Healthcare professionals should provide more breastfeeding skills to women who have a cesarean delivery and warn mothers about the dangers of elective cesarean section for breastfeeding practices.

  7. Computational model to simulate the interplay effect in dynamic IMRT delivery

    International Nuclear Information System (INIS)

    Yoganathan, S A; Maria Das, K J; Kumar, Shaleen

    2014-01-01

    The purpose of this study was to develop and experimentally verify a patient specific model for simulating the interplay effect in a DMLC based IMRT delivery. A computational model was developed using MATLAB program to incorporate the interplay effect in a 2D beams eye view fluence of dynamic IMRT fields. To simulate interplay effect, the model requires two inputs: IMRT field (DMLC file with dose rate and MU) and the patient specific respiratory motion. The interplay between the DMLC leaf motion and target was simulated for three lung patients. The target trajectory data was acquired using RPM system during the treatment simulation. The model was verified experimentally for the same patients using Imatrix 2D array device placed over QUASAR motion platform in CL2100 linac. The simulated fluences and measured fluences were compared with the TPS generated static fluence (no motion) using an in-house developed gamma evaluation program (2%/2mm). The simulated results were well within agreement with the measured. Comparison of the simulated and measured fluences with the TPS static fluence resulted 55.3% and 58.5% pixels passed the gamma criteria. A patient specific model was developed and validated for simulating the interplay effect in the dynamic IMRT delivery. This model can be clinically used to quantify the dosimetric uncertainty due to the interplay effect prior to the treatment delivery.

  8. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  9. The effect of health facility delivery on neonatal mortality: systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Tura Gurmesa

    2013-01-01

    Full Text Available Abstract Background Though promising progress has been made towards achieving the Millennium Development Goal four through substantial reduction in under-five mortality, the decline in neonatal mortality remains stagnant, mainly in the middle and low-income countries. As an option, health facility delivery is assumed to reduce this problem significantly. However, the existing evidences show contradicting conclusions about this fact, particularly in areas where enabling environments are constraint. Thus, this review was conducted with the aim of determining the pooled effect of health facility delivery on neonatal mortality. Methods The reviewed studies were accessed through electronic web-based search strategy from PUBMED, Cochrane Library and Advanced Google Scholar by using combination key terms. The analysis was done by using STATA-11. I2 test statistic was used to assess heterogeneity. Funnel plot, Begg’s test and Egger’s test were used to check for publication bias. Pooled effect size was determined in the form of relative risk in the random-effects model using DerSimonian and Laird's estimator. Results A total of 2,216 studies conducted on the review topic were identified. During screening, 37 studies found to be relevant for data abstraction. From these, only 19 studies fulfilled the preset criteria and included in the analysis. In 10 of the 19 studies included in the analysis, facility delivery had significant association with neonatal mortality; while in 9 studies the association was not significant. Based on the random effects model, the final pooled effect size in the form of relative risk was 0.71 (95% CI: 0.54, 0.87 for health facility delivery as compared to home delivery. Conclusion Health facility delivery is found to reduce the risk of neonatal mortality by 29% in low and middle income countries. Expansion of health facilities, fulfilling the enabling environments and promoting their utilization during childbirth are

  10. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    Science.gov (United States)

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015

  11. Emerging Frontiers in Drug Delivery.

    Science.gov (United States)

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact.

  12. Synergistic effect of amino acids modified on dendrimer surface in gene delivery.

    Science.gov (United States)

    Wang, Fei; Wang, Yitong; Wang, Hui; Shao, Naimin; Chen, Yuanyuan; Cheng, Yiyun

    2014-11-01

    Design of an efficient gene vector based on dendrimer remains a great challenge due to the presence of multiple barriers in gene delivery. Single-functionalization on dendrimer cannot overcome all the barriers. In this study, we synthesized a list of single-, dual- and triple-functionalized dendrimers with arginine, phenylalanine and histidine for gene delivery using a one-pot approach. The three amino acids play different roles in gene delivery: arginine is essential in formation of stable complexes, phenylalanine improves cellular uptake efficacy, and histidine increases pH-buffering capacity and minimizes cytotoxicity of the cationic dendrimer. A combination of these amino acids on dendrimer generates a synergistic effect in gene delivery. The dual- and triple-functionalized dendrimers show minimal cytotoxicity on the transfected NIH 3T3 cells. Using this combination strategy, we can obtain triple-functionalized dendrimers with comparable transfection efficacy to several commercial transfection reagents. Such a combination strategy should be applicable to the design of efficient and biocompatible gene vectors for gene delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery.

    Science.gov (United States)

    Lau, Shinying; Fei, Jie; Liu, Haoran; Chen, Weixing; Liu, Ran

    2017-11-10

    Dissolving microneedles have been employed as a safe and convenient transdermal delivery system for drugs and vaccines. To improve effective drug delivery, a multilayered pyramidal dissolving microneedle patch, composed of silk fibroin tips with the ability of robust mechanical strength, rapid dissolution and drug release supported on a flexible polyvinyl alcohol (PVA) pedestal is reported. To show the utility of this approach the ability of the fabricated microneedles to deliver insulin is demonstrated. The dissolving microneedles have sufficient mechanical strength to be inserted into abdomen skin of mice to a depth of approximately 150μm, and release their encapsulated insulin into the skin to cause a hypoglycemic effect. The fabrication of microneedles avoids high temperature which benefits storage stability at room temperature for 20d. This result indicates >99.4% of insulin remained in the microneedles. In comparison to traditional needle-based administration, the proposed multilayered pyramidal dissolving microneedle patches enable self-administration, miniaturization, pain-free administration, drug delivery and drug stability, all being important features in needle free drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Investigation of the mediating effects of IT governance-value delivery on service quality and ERP performance

    Science.gov (United States)

    Tsai, Wen-Hsien; Chou, Yu-Wei; Leu, Jun-Der; Chao Chen, Der; Tsaur, Tsen-Shu

    2015-02-01

    This study aimed to explore the mediating effects of IT governance (ITG)-value delivery in the relationships among the quality of vendor service, the quality of consultant services, ITG-value delivery and enterprise resource planning (ERP) performance. The sampling of this research was acquired from a questionnaire survey concerning ERP implementations in Taiwan. In this survey, 4366 questionnaires were sent to manufacturing and service companies listed in the TOP 5000: The Largest Corporations in Taiwan 2009. The results showed that an ERP system will exhibit a decreased error rate and improved performance if ERP system vendors and consultants provide good service quality. The results also demonstrated that significant relationships exist among the quality of vendor service, the quality of consultant services and value delivery. The contribution of this article is twofold. First, it found that value delivery provides an effective measure of ERP performance under an ITG framework. Second, it provides evidence of the partial mediating effects of value delivery between service quality and ERP performance. In other words, if enterprises want to improve ERP performance, they need to consider factors such as value delivery and the quality of a vendor/consultant's service.

  15. Faculty Satisfaction with Distance Education: A Comparative Analysis on Effectiveness of Undergraduate Course Delivery Modes

    Science.gov (United States)

    Koenig, Robert J.

    2010-01-01

    Higher education faculty can and do teach courses delivered in a variety of ways. But, to date, little research has been done on the effectiveness of different delivery modes. This study sought to fill that void by comparing the effectiveness of three undergraduate course delivery modes: classroom, online, and video conference at a technical…

  16. Effective Practices for Online Delivery of Quantitative Business Courses

    Science.gov (United States)

    Lam, Helen; Khare, Anshuman

    2010-01-01

    Online delivery of university-level courses has grown exponentially in the last decade and is increasingly being recognised as a viable and effective alternative to face-to-face classroom teaching. Many scholars have already written about the benefits and best practices of online teaching in general. However, not many studies have paid specific…

  17. EFFECTIVENESS OF CAPITAL MARKET DERIVATIVES IN HOUSING DELIVERY OF NIGERIA EMERGING MARKET

    Directory of Open Access Journals (Sweden)

    Bernard Adjekophori

    2016-07-01

    Full Text Available The capital market is unarguably the most robust institution in any economy notable for mobilizing the necessary fund for financing long-term productive project. It controls relatively large amounts of capital and represent the largest institutional providing long-term credits for capital project like real estate that requires huge capital outlay. This study therefore, attempts an investigation into the effectiveness of capital market derivatives in housing delivery in Lagos. An empirical survey research was conducted in Lagos, using a random sampling technique with a structured questionnaire to collect data from 147 respondents comprising 89 stockbrokers and 58 real estate developers in Lagos mega-city. Data collected were analyzed with SPSS using descriptive and inferential statistics. The result revealed that 56.7% of the observed variations in housing delivery (R2= 0.567; p< 0.05 is explained by capital market derivatives, which suggests that, proper utilization of capital market derivatives will enhance and improve housing delivery in Nigeria. However, this is not been adequately used by developers of real estate projects in the study. Thus, the study recommends amongst other remedial steps that a synergetic effort should be created between the capital market and real estate developers which will enhance effective housing delivery, the development of people and the Nation.

  18. Opening the Black Box: Exploring the Effect of Transformation on Online Service Delivery in Local Governments

    Science.gov (United States)

    van Veenstra, Anne Fleur; Zuurmond, Arre

    To enhance the quality of their online service delivery, many government organizations seek to transform their organization beyond merely setting up a front office. This transformation includes elements such as the formation of service delivery chains, the adoption of a management strategy supporting process orientation and the implementation of enterprise architecture. This paper explores whether undertaking this transformation has a positive effect on the quality of online service delivery, using data gathered from seventy local governments. We found that having an externally oriented management strategy in place, adopting enterprise architecture, aligning information systems to business and sharing activities between processes and departments are positively related to the quality of online service delivery. We recommend that further research should be carried out to find out whether dimensions of organizational development too have an effect on online service delivery in the long term.

  19. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  20. Lycopene in Beverage Emulsions: Optimizing Formulation Design and Processing Effects for Enhanced Delivery

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available Lycopene is a desired ingredient in food formulations, yet its beneficial effects on human health remain largely underexploited due to its poor chemical stability and bioavailability. Oil-in-water emulsions may offer multiple advantages for the incorporation and delivery of this carotenoid species. Engineering and processing aspects for the development of emulsion-based delivery systems are of paramount importance for maintaining the structural integrity of lycopene. The selection of emulsifiers, pH, temperature, oil phase, particle size, homogenization conditions and presence of other antioxidants are major determinants for enhancing lycopene stability and delivery from a food emulsion. Process and formulation optimization of the delivery system is product-specific and should be tailored accordingly. Further research is required to better understand the underlying mechanisms of lycopene absorption by the human digestive system.

  1. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies

    Directory of Open Access Journals (Sweden)

    Nathan W Kopper

    2008-10-01

    Full Text Available Nathan W Kopper, Jennifer Gudeman, Daniel J ThompsonKV Pharmaceutical, St. Louis, MO, USAAbstract: Vasomotor symptoms (VMS associated with menopause can cause significant discomfort and decrease the quality of life for women in the peri-menopausal and post-menopausal stages of life. Hormone therapy (HT is the mainstay of treatment for menopausal symptoms and is currently the only therapy proven effective for VMS. Numerous HT options are available to treat VMS, including estrogen-only and estrogen-progestogen combination products to meet the needs of both hysterectomized and nonhysterectomized women. In addition to selecting an appropriate estrogen or estrogen-progestogen combination, consideration should be given to the route of administration to best suit the needs of the patient. Delivery systems for hormone therapy include oral tablets, transdermal patches, transdermal topical (nonpatch products, and intravaginal preparations. Oral is currently the most commonly utilized route of administration in the United States. However, evidence suggests that oral delivery may lead to some undesirable physiologic effects caused by significant gut and hepatic metabolism. Transdermal drug delivery may mitigate some of these effects by avoiding gut and hepatic first-pass metabolism. Advantages of transdermal delivery include the ability to administer unmetabolized estradiol directly to the blood stream, administration of lower doses compared to oral products, and minimal stimulation of hepatic protein production. Several estradiol transdermal delivery technologies are available, including various types of patches, topical gels, and a transdermal spray.Keywords: estradiol, hormone therapy, menopause, transdermal drug delivery, vasomotor symptoms

  2. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  3. The Effect of Kangaroo Mother Care Immediately after Delivery on Mother-infant Attachment 3 Months after Delivery

    Directory of Open Access Journals (Sweden)

    Fatemeh Zahra Karimi

    2016-09-01

    Full Text Available Background  The aim of this study was determine the effect of kangaroo mother care (KMC immediately after delivery on mother-infant attachment 3-month after delivery. Materials and Methods: In this RCT study, 72 mother-infant pairs were randomly divided in to kangaroo mother care and routine care groups.The intervention group received kangaroo mother care (KMC in the first two hours post birth. The control group just received routine hospital care. Mothers in the intervention group were encouraged to keep the baby in KMC as much as possible during the day and night throughout the neonatal period. Participants were followed up for three months after birth. The Main outcome measure was mother-infant attachment at 3 months postpartum and maternal anxiety about the baby at the same time. The data was collected by questionnaire (demographic information of parents and neonates and maternal attachment scale. Analysis was performed using SPSS software (version 14. Results: There was no significant difference between two groups regarding their baseline data. Mean maternal attachment score in the KMC group and in the routine care group at three months after delivery was 52.40±3.30 and 49.86±4.18 respectively, which was significantly higher in the KMC group (P

  4. Effect of beverage glucose and sodium content on fluid delivery

    Directory of Open Access Journals (Sweden)

    Cole Johnny

    2009-02-01

    Full Text Available Abstract Background Rapid fluid delivery from ingested beverages is the goal of oral rehydration solutions (ORS and sports drinks. Objective The aim of the present study was to investigate the effects of increasing carbohydrate and sodium content upon fluid delivery using a deuterium oxide (D2O tracer. Design Twenty healthy male subjects were divided into two groups of 10, the first group was a carbohydrate group (CHO and the second a sodium group (Na. The CHO group ingested four different drinks with a stepped increase of 3% glucose from 0% to 9% while sodium concentration was 20 mmol/L. The Na group ingested four drinks with a stepped increase of 20 mmol/L from 0 mmol/L to 60 mmol/l while glucose concentration was 6%. All beverages contained 3 g of D2O. Subjects remained seated for two hours after ingestion of the experimental beverage, with blood taken every 5 min in the first hour and every 10 min in the second hour. Results Including 3% glucose in the beverage led to a significantly greater AUC 60 min (19640 ± 1252 δ‰ vs. VSMOW.60 min than all trials. No carbohydrate (18381 ± 1198 δ‰ vs. VSMOW.60 min had a greater AUC 60 min than a 6% (16088 ± 1359 δ‰ vs. VSMOW.60 min and 9% beverage (13134 ± 1115 δ‰ vs. VSMOW.60 min; the 6% beverage had a significantly greater AUC 60 min than the 9% beverage. There was no difference in fluid delivery between the different sodium beverages. Conclusion In conclusion the present study showed that when carbohydrate concentration in an ingested beverage was increased above 6% fluid delivery was compromised. However, increasing the amount of sodium (0–60 mmol/L in a 6% glucose beverage did not lead to increases in fluid delivery.

  5. Supporting effective delivery: CSIR research on and advocacy of infrastructure management

    CSIR Research Space (South Africa)

    Wall, K

    2006-02-01

    Full Text Available sets out issues of concern that arise when infrastructure management policies and practices do not meet acceptable standards, and it describes the research results. Finally, it summarises the plan and programme necessary to support effective delivery...

  6. Effect of psychoprophylaxis (Lamaze preparation) on labor and delivery in primiparas.

    Science.gov (United States)

    Scott, J R; Rose, N B

    1976-05-27

    To investigate whether "prepared-childbirth" courses offer measurable physical advantages, we compared the labor and delivery characteristics of 129 primiparas who had completed ante-partum Lamaze-training psychoprophylaxis classes with an equal number of matched controls who had not. The former were given narcotics less frequently during labor (P less than 0.001), received conduction anesthesia less often (P less than 0.001), and had a higher frequency of spontaneous vaginal deliveries (P less than 0.001) than the control patients. However, these differences had no apparent effects on the length of labor, number or type of maternal complications, frequency of fetal distress, mean Apgar scored, or neonatal problems.

  7. Effect of remote cesarean delivery on complications during hysterectomy: a cohort study.

    Science.gov (United States)

    Hesselman, Susanne; Högberg, Ulf; Jonsson, Maria

    2017-11-01

    Cesarean delivery is performed frequently worldwide, and follow-up studies that report complications at subsequent surgery are warranted. The aim of the study was to investigate the association between a previous abdominal delivery and complications during a subsequent hysterectomy and to estimate the fraction of complications that are driven by the presence of adhesions. This was a longitudinal population-based register study of 25354 women who underwent a benign hysterectomy at 46 hospital units in Sweden 2000-2014. Adhesions were found in 45% of the women with a history of cesarean delivery. Organ injury affected 2.2% of the women. The risk of organ injury (adjusted odds ratio, 1.74; 95% confidence interval, 1.41-2.15) and postoperative infection (adjusted odds ratio, 1.26; 95% confidence interval, 1.15-1.39) was increased with previous cesarean delivery, irrespective of whether adhesions were present or not. The direct effect on organ injury by a personal history of cesarean delivery was estimated to 73%, and only 27% was mediated by the presence of adhesions. Previous cesarean delivery was a predictor of bladder injury (adjusted odds ratio, 1.86; 95% confidence interval, 1.40-2.47) and bowel injury (adjusted odds ratio, 1.83; 95% confidence interval, 1.10-3.03), but not ureter injury. A personal history of other abdominal surgeries was associated with bowel injury (adjusted odds ratio, 2.27; 95% confidence interval, 1.37-3.78), and the presence of endometriosis increased the risk of ureter injury (adjusted odds ratio, 2.15; 95% confidence interval, 1.34-3.44). Previous cesarean delivery is associated with an increased risk of complications during a subsequent hysterectomy, but the risk is only partly attributable to the presence of adhesions. Previous cesarean delivery and presence of endometriosis were major predisposing factors of organ injury at the time of the hysterectomy, whereas background and perioperative characteristics were of minor importance

  8. The effect of healthcare delivery privatisation on avoidable mortality: longitudinal cross-regional results from Italy, 1993-2003.

    Science.gov (United States)

    Quercioli, Cecilia; Messina, Gabriele; Basu, Sanjay; McKee, Martin; Nante, Nicola; Stuckler, David

    2013-02-01

    During the 1990s, Italy privatised a significant portion of its healthcare delivery. The authors compared the effectiveness of private and public sector healthcare delivery in reducing avoidable mortality (deaths that should not occur in the presence of effective medical care). The authors calculated the average rate of change in age-standardised avoidable mortality rates in 19 of Italy's regions from 1993 to 2003. Multivariate regression models were used to analyse the relationship between rates of change in avoidable mortality and levels of spending on public versus private healthcare delivery, controlling for potential demographic and economic confounders. Greater spending on public delivery of health services corresponded to faster reductions in avoidable mortality rates. Each €100 additional public spending per capita on NHS delivery was independently associated with a 1.47% reduction in the rate of avoidable mortality (p=0.003). In contrast, spending on private sector services had no statistically significant effect on avoidable mortality rates (p=0.557). A higher percentage of spending on private sector delivery was associated with higher rates of avoidable mortality (p=0.002). The authors found that neither public nor private sector delivery spending was significantly associated with non-avoidable mortality rates, plausibly because non-avoidable mortality is insensitive to healthcare services. Public spending was significantly associated with reductions in avoidable mortality rates over time, while greater private sector spending was not at the regional level in Italy.

  9. Levodopa delivery systems: advancements in delivery of the gold standard.

    Science.gov (United States)

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the

  10. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    International Nuclear Information System (INIS)

    Cui, L L; Hou, X M; Li, G D; Jiang, J; Liang, Y Y; Xin, X

    2008-01-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  11. Pelvic floor dysfunction, and effects of pregnancy and mode of delivery on pelvic floor

    Directory of Open Access Journals (Sweden)

    Murat Bozkurt

    2014-12-01

    Full Text Available Pelvic floor dysfunction (PFD, although seems to be simple, is a complex process that develops secondary to multifactorial factors. The incidence of PFD is increasing with increasing life expectancy. PFD is a term that refers to a broad range of clinical scenarios, including lower urinary tract excretory and defecation disorders, such as urinary and anal incontinence, overactive bladder, and pelvic organ prolapse, as well as sexual disorders. It is a financial burden on the health care system and disrupts women's quality of life. Strategies applied to decrease PFD are focused on the course of pregnancy, mode and management of delivery, and pelvic exercise methods. Many studies in the literature define traumatic birth, usage of forceps, length of the second stage of delivery, and sphincter damage as modifiable risk factors for PFD. Maternal age, fetal position, and fetal head circumference are nonmodifiable risk factors. Although numerous studies show that vaginal delivery affects pelvic floor structures and their functions in a negative way, there is not enough scientific evidence to recommend elective cesarean delivery in order to prevent development of PFD. PFD is a heterogeneous pathological condition, and the effects of pregnancy, vaginal delivery, cesarean delivery, and possible risk factors of PFD may be different from each other. Observational studies have identified certain obstetrical exposures as risk factors for pelvic floor disorders. These factors often coexist; therefore, the isolated effects of these variables on the pelvic floor are difficult to study. The routine use of episiotomy for many years in order to prevent PFD is not recommended anymore; episiotomy should be used in selected cases, and the mediolateral procedures should be used if needed.

  12. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  13. The effect of content delivery style on student performance in anatomy.

    Science.gov (United States)

    White, Lloyd J; McGowan, Heath W; McDonald, Aaron C

    2018-04-12

    The development of new technologies and ensuing pedagogical research has led many tertiary institutions to integrate and adopt online learning strategies. The authors of this study have incorporated online learning strategies into existing educational practices of a second year anatomy course, resulting in half of the course content delivered via face-to-face lectures, and half delivered online via tailored video vignettes, with accompanying worksheets and activities. The effect of the content delivery mode on student learning was analyzed by tailoring questions to content presented either face-to-face or online. Four practical tests were conducted across the semester with each consisting of four questions. Within each test, two questions were based on content delivered face-to-face, and two questions were based on content delivered online. Examination multiple choice questions were similarly divided and assessed. Findings indicate that student learning is consistent regardless of the mode of content delivery. However, student viewing habits had a significant impact on learning, with students who viewed videos multiple times achieving higher marks than those less engaged with the online content. Student comments also indicated that content delivery mode was not an influence on learning. Therefore student engagement, rather than the mode of content delivery, is a determinant of student learning and performance in human anatomy. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  14. Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors.

    Science.gov (United States)

    Tsai, J C; Guy, R H; Thornfeldt, C R; Gao, W N; Feingold, K R; Elias, P M

    1996-06-01

    The intercellular domains of the stratum corneum, which contain a mixture of cholesterol, free fatty acids, and ceramides, mediate both the epidermal permeability barrier and the transdermal delivery of both lipophilic and hydrophilic molecules. Prior studies have shown that each of the three key lipid classes is required for normal barrier function. For example, selective inhibition of either cholesterol, fatty acid, or ceramide synthesis in the epidermis delays barrier recovery rates after barrier perturbation of hairless mouse skin in vivo. In this study, we investigated the potential of certain inhibitors of lipid synthesis to enhance the transdermal delivery of lidocaine or caffeine as a result of their capacity to perturb barrier homeostasis. After acetone disruption of the barrier, the extent of lidocaine delivery and the degree of altered barrier function paralleled each other. Moreover, the further alteration in barrier function produced by either the fatty acid synthesis inhibitor 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), the cholesterol synthesis inhibitor fluvastatin (FLU), or cholesterol sulfate (CS) resulted in a further increase in lidocaine absorption. Furthermore, coapplications of TOFA and CS together caused an additive increase in lidocaine uptake. Finally, a comparable increase in drug delivery occurred when the barrier was disrupted initially with DMSO instead of acetone; coapplications of TOFA and FLU together again delayed barrier recovery and increased drug delivery by about 8-fold vs delivery from a standard enhancing vehicle. Whereas these metabolic inhibitors also variably increased the octanol/water partitioning of the drugs studied (perhaps via complexion or pH alterations), physicochemical effects of the inhibitors alone did not alter drug uptake in intact skin; i.e., passive mechanisms alone cannot account for the net increase in drug delivery. Our results show that modulations of epidermal lipid biosynthesis, following

  15. Supplier Cooperation in Drone Delivery

    OpenAIRE

    Sawadsitang, Suttinee; Niyato, Dusit; Siew, Tan Puay; Wang, Ping

    2018-01-01

    Recently, unmanned aerial vehicles (UAVs), also known as drones, has emerged as an efficient and cost-effective solution for package delivery. Especially, drones are expected to incur lower cost, and achieve fast and environment friendly delivery. While most of existing drone research concentrates on surveillance applications, few works studied the drone package delivery planning problem. Even so, the previous works only focus on the drone delivery planning of a single supplier. In this paper...

  16. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  17. Cost effectiveness and efficiency in assistive technology service delivery.

    Science.gov (United States)

    Warren, C G

    1993-01-01

    In order to develop and maintain a viable service delivery program, the realities of cost effectiveness and cost efficiency in providing assistive technology must be addressed. Cost effectiveness relates to value of the outcome compared to the expenditures. Cost efficiency analyzes how a provider uses available resources to supply goods and services. This paper describes how basic business principles of benefit/cost analysis can be used to determine cost effectiveness. In addition, basic accounting principles are used to illustrate methods of evaluating a program's cost efficiency. Service providers are encouraged to measure their own program's effectiveness and efficiency (and potential viability) in light of current trends. This paper is meant to serve as a catalyst for continued dialogue on this topic.

  18. Effects of cord compression on fetal blood flow distribution and O2 delivery

    International Nuclear Information System (INIS)

    Itskovitz, J.; LaGamma, E.F.; Rudolph, A.M.

    1987-01-01

    The authors used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O 2 delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O 2 delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O 2 delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced and the proportion of O 2 delivery to upper body organs derived from the ductus venosus increased. Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale and constituted the major fraction of the arterial blood supply to the upper body organs. Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O 2 delivery

  19. Efficiency and economics of hydrogen delivery

    International Nuclear Information System (INIS)

    Liu, Y.; Bharadwaj, R.; Balan, C.; Garces, L.; Smith, D.

    2003-01-01

    The viability and penetration of fuel cell based electricity production will be mainly determined by the efficient, cost effective production and delivery of hydrogen. This study focuses on the transportation efficiency and cost of hydrogen delivery for both centrally produced hydrogen as well as electricity scenarios. The efficiency and economics of energy delivery depend on the quantity of energy to be transported and transportation distance. Energy delivery models were developed for Hydrogen delivery as compressed gas or cryogenic liquid using truck or pipeline. For comparison, models were also developed for high voltage AC electricity transmission. Major parameters that influence the performance of the energy transmission systems under normal operating conditions were modeled. The models use energy transported and delivery distance as independent variables. The results were validated against similar reports, government surveys and other publications. Energy delivery efficiency and costs were used to compare and evaluate the different delivery options. Effect of uncertainty and sensitivity of parameters on modeling results were also studied. The systems were compared on an equivalent basis. The analysis also identifies the trade-offs for electricity transmission and electrolysis application at the point of use for Hydrogen delivery. These results provide a consistent framework for evaluation of delivery options on energy efficiency basis. (author)

  20. Resistive-wall Wake Effect in the Beam Delivery System

    International Nuclear Information System (INIS)

    Delayen, J.R.; Jefferson Lab; Wu, Juhao; Raubenheimer, T.O.; SLAC; Wang, Jiunn-Ming; BNL, NSLS

    2005-01-01

    General formulae for resistive-wall induced beam dilution are presented and then applied to the final beam delivery system of linear colliders. Criteria for the design of final beam delivery systems are discussed

  1. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes.

    Directory of Open Access Journals (Sweden)

    Marzia Massignani

    Full Text Available BACKGROUND: Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. PRINCIPAL FINDINGS: We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. SIGNIFICANCE: We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation.

  2. Influences of Teacher Delivery, Student Engagement, and Observation Focus on Preservice Teachers' Perceptions of Teaching Effectiveness

    Science.gov (United States)

    Napoles, Jessica; MacLeod, Rebecca B.

    2016-01-01

    The purpose of this study was to examine how teacher delivery, student engagement, and observation focus influenced preservice teachers' ratings of teaching effectiveness. Participants (N = 84 preservice teachers) viewed short teaching excerpts of orchestral and choral rehearsals wherein the teacher displayed either high or low teacher delivery,…

  3. Measuring voluntary quadriceps activation: Effect of visual feedback and stimulus delivery.

    Science.gov (United States)

    Luc, Brittney A; Harkey, Matthew H; Arguelles, Gabrielle D; Blackburn, J Troy; Ryan, Eric D; Pietrosimone, Brian

    2016-02-01

    Quadriceps voluntary activation, assessed via the superimposed burst technique, has been extensively studied in a variety of populations as a measure of quadriceps function. However, a variety of stimulus delivery techniques have been employed, which may influence the level of voluntary activation as calculated via the central activation ratio (CAR). The purpose was to determine the effect of visual feedback, stimulus delivery, and perceived discomfort on maximal voluntary isometric contraction (MVIC) peak torque and the CAR. Quadriceps CAR was assessed in 14 individuals on two days using three stimulus delivery methods; (1) manual without visual feedback, (2) manual with visual feedback, and (3) automated with visual feedback. MVIC peak torque and the CAR were not different between the automated with visual feedback (MVIC=3.25, SE=0.14Nm/kg; CAR=88.63, SE=1.75%) and manual with visual feedback (MVIC=3.26, SE=0.13Nm/kg, P=0.859; CAR=89.06, SE=1.70%, P=0.39) stimulus delivery methods. MVIC (2.99, SE=0.12Nm/kg) and CAR (85.32, SE=2.10%) were significantly lower using manual without visual feedback compared to manual with visual feedback and automated with visual feedback (CAR P<0.001; MVIC P<0.001). Perceived discomfort was lower in the second session (P<0.05). Utilizing visual feedback ensures participant MVIC, and may provide a more accurate assessment of quadriceps voluntary activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of prolonging radiation delivery time on retention of gammaH2AX

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Banáth, Judit P; Duzenli, Cheryl; Olive, Peggy L

    2008-01-01

    Compared to conventional external beam radiotherapy, IMRT requires significantly more time to deliver the dose. Prolonging dose delivery potentially increases DNA repair which would reduce the biological effect. We questioned whether retention of γH2AX, a measure of lack of repair of DNA damage, would decrease when dose delivery was protracted. Exponentially growing SiHa cervical carinoma cells were irradiated with 6 MV photons in a water tank using a VarianEX linear accelerator. Cells held at 37°C received 2 Gy in 0.5 min and 4 Gy in 1 min. To evaluate effect of dose delivery prolongation, 2 and 4 Gy were delivered in 30 and 60 min. After 24 h recovery, cells were analyzed for clonogenic survival and for residual γH2AX as measured using flow cytometry. Increasing the dose delivery time from 0.5 or 1 min to 30 or 60 min produced a signficant increase in cell survival from 0.45 to 0.48 after 2 Gy, and from 0.17 to 0.20 after 4 Gy. Expression of residual γH2AX decreased from 1.27 to 1.22 relative to background after 2 Gy and 1.46 to 1.39 relative to background after 4 Gy, but differences were not statistically significant. The relative differences in the slopes of residual γH2AX versus dose for acute versus prolonged irradiation bordered on significant (p = 0.055), and the magnitude of the change was consistent with the observed increase in surviving fraction. These results support the concept that DNA repair underlies the increase in survival observed when dose delivery is prolonged. They also help to establish the limits of sensitivity of residual γH2AX, as measured using flow cytometry, for detecting differences in response to irradiation

  5. Interplay Wellbeing Framework: Community Perspectives on Working Together for Effective Service Delivery in Remote Aboriginal Communities

    Directory of Open Access Journals (Sweden)

    Eva McRae-Williams

    2018-02-01

    Full Text Available Access to effective services and programs is necessary to improve wellbeing for Aboriginal and Torres Strait Islander people living in remote Australia. Without genuine participation of Aboriginal community members in the design, governance, and delivery of services, desired service delivery outcomes are rarely achieved. Using a "shared space" model, Aboriginal communities, governments, and scientists came together to design and develop the Interplay Wellbeing Framework. This Framework brings together stories and numbers (or qualitative and quantitative data to represent community values for the purpose of informing program and policy agendas. This article unpacks what community members saw as making a service work well and why. The domains of empowerment and community functioning are discussed and their relationship to effective service delivery demonstrated.

  6. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    Zeta potential is a scientific term for electrokinetic potential in colloidal systems which has a major effect on the various properties of nano-drug delivery systems. Presently, colloidal nano-carriers are growing at a remarkable rate owing to their strong potential for overcoming old challenges such as poor drug solubility and ...

  7. Effect of administration method, animal weight and age on the intranasal delivery of drugs to the brain.

    Science.gov (United States)

    Krishnan, Jishnu K S; Arun, Peethambaran; Chembukave, Bhadra; Appu, Abhilash P; Vijayakumar, Nivetha; Moffett, John R; Puthillathu, Narayanan; Namboodiri, Aryan M A

    2017-07-15

    The intranasal route of administration has proven to be an effective method for bypassing the blood brain barrier and avoiding first pass hepatic metabolism when targeting drugs to the brain. Most small molecules gain rapid access to CNS parenchyma when administered intranasally. However, bioavailability is affected by various factors ranging from the molecular weight of the drug to the mode of intranasal delivery. We examined the effects of animal posture, intranasal application method and animal weight and age on the delivery of radiolabeled pralidoxime ( 3 H-2-PAM) to the brain of rats. We found that using upright vs. supine posture did not significantly affect 3 H-2-PAM concentrations in different brain regions. Older animals with higher weights required increased doses to achieve the same drug concentration throughout the brain when compared to young animals with lower body weights. The use of an intranasal aerosol propelled delivery device mainly increased bioavailability in the olfactory bulbs, but did not reliably increase delivery of the drug to various other brain regions, and in some regions of the brain delivered less of the drug than simple pipette administration. In view of the emerging interest in the use of intranasal delivery of drugs to combat cognitive decline in old age, we tested effectiveness in very old rats and found the method to be as effective in the older rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  9. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda

    Directory of Open Access Journals (Sweden)

    Strachan Daniel

    2010-04-01

    Full Text Available Abstract Background In Uganda, long-lasting insecticidal nets (LLIN have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Methods Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY. These effects were calculated for the total number of LLINs delivered and for those retained and used. Results After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja and 99% (ANC Adjumani were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja. Economic cost for ANC distribution were considerably higher (USD 2.27 compared to campaign costs (USD 1.23 in Adjumani. Conclusions Targeted campaigns and routine ANC

  10. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda.

    Science.gov (United States)

    Kolaczinski, Jan H; Kolaczinski, Kate; Kyabayinze, Daniel; Strachan, Daniel; Temperley, Matilda; Wijayanandana, Nayantara; Kilian, Albert

    2010-04-20

    In Uganda, long-lasting insecticidal nets (LLIN) have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC) services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY). These effects were calculated for the total number of LLINs delivered and for those retained and used. After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja) and 99% (ANC Adjumani) were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja). Economic cost for ANC distribution were considerably higher (USD 2.27) compared to campaign costs (USD 1.23) in Adjumani. Targeted campaigns and routine ANC services can both achieve high LLIN retention and use among

  11. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  12. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    The zeta potential (ZP) of colloidal systems and nano-medicines, as well as their particle size exert a major effect on the various properties of nano-drug delivery systems. Not only the stability of dosage forms and their release rate are affected but also their circulation in the blood stream and absorption into body membranes ...

  13. Noninvasive ocular drug delivery: potential transcorneal and other alternative delivery routes for therapeutic molecules in glaucoma.

    Science.gov (United States)

    Foldvari, Marianna

    2014-01-01

    Drug delivery to the eye is made difficult by multiple barriers (such as the tear film, cornea, and vitreous) between the surface of the eye and the treatment site. These barriers are difficult to surmount for the purposes of drug delivery without causing toxicity. Using nanotechnology tools to control, manipulate, and study delivery systems, new approaches to delivering drugs, genes, and antigens that are effective and safe can be developed. Topical administration to the ocular surface would be the safest method for delivery, as it is noninvasive and painless compared with other delivery methods. However, there is only limited success using topical delivery methods, especially for gene therapy. Current thinking on treatments of the future enabled by nanodelivery systems and the identification of target specificity parameters that require deeper understanding to develop successful topical delivery systems for glaucoma is highlighted.

  14. Histological Chorioamnionitis: Effects on Premature Delivery and Neonatal Prognosis

    Directory of Open Access Journals (Sweden)

    Gulin Erdemir

    2013-08-01

    Conclusion: Chorioamnionitis not only causes premature deliveries, but is also associated with neonatal complications and increased mortality. Clinical findings and infectious markers in mother or infant do not predict the diagnosis of histological chorioamnionitis. Therefore, placental histopathology may have a role in predicting neonatal outcome in premature deliveries, especially those below 30 weeks.

  15. An Effective Delivery System of Sitagliptin Using Optimized Mucoadhesive Nanoparticles

    Directory of Open Access Journals (Sweden)

    Afzal Haq Asif

    2018-05-01

    Full Text Available Sitagliptin (MK-0431, is a potent oral hypoglycemic drug that is used for treating type 2 diabetes mellitus. However, the short half-life of sitagliptin requires patients to take a high dose of 50 mg twice per day, and the fraction of sitagliptin reversibly bound to plasma proteins is as low as 38%. In addition, it was reported that approximately 79% of sitagliptin is excreted unchanged in the urine for elimination without metabolism. Thus, a better delivery system is needed to improve the benefits of sitagliptin in patients. The drug content and percentage yield were found to be 73 ± 2% and 92 ± 2%, respectively. The optimized sitagliptin nanoparticle sizes were between 350–950 nm, and the surfaces were smooth and nearly spherical in shape. In addition, the optimized sitagliptin nanoparticles have an indicated excellent bioadhesion property of (6.1 ± 0.5 h. The swelling of the nanoparticles is 168 ± 15%. The pattern of sitagliptin release from the mucoadhesive nanoparticles follows the Korsmeyer-Peppas model. More importantly, the extended sitagliptin retention time, of up to 12 h in the gastrointestinal tract, suggests that the optimized mucoadhesive nanoparticle formulation is more efficient, and has a greater potential to be used for oral delivery compared to the conventional sitagliptin administration in the drug solution. This is the first developed delivery system using the optimized mucoadhesive nanoparticles to enhance the effectiveness of sitagliptin.

  16. Transarterial ablation of hepatocellular carcinoma. Status and developments

    International Nuclear Information System (INIS)

    Radeleff, B.A.; Stampfl, U.; Sommer, C.M.; Bellemann, N.; Kauczor, H.U.; Hoffmann, K.; Ganten, T.; Ehehalt, R.

    2012-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and represents the main cause of death among European patients with liver cirrhosis. Only 30-40% of patients diagnosed with HCC are candidates for curative treatment options (e.g. surgical resection, liver transplantation or ablation). The remaining majority of patients must undergo local regional and palliative therapies. Transvascular ablation of HCC takes advantage of the fact that the hypervascularized HCC receives most of its blood supply from the hepatic artery. In this context transvascular ablation describes different therapy regimens which can be assigned to four groups: cTACE (conventional transarterial chemoembolization), bland embolization (transarterial embolization TAE), DEB-TACE (TACE with drug-eluting beads, DEB) and SIRT (selective internal radiation therapy, radioembolization). Conventional TACE is the most common type of transvascular ablation and represents a combination of intra-arterial chemotherapy and embolization with occlusion of the arterial blood supply. However, there is no standardized regimen with respect to the chemotherapeutic drug, the embolic agent, the usage of lipiodol and the interval between the TACE procedures. Even the exact course of a cTACE procedure (order of chemotherapy or embolization) is not standardized. It remains unclear whether or not intra-arterial chemotherapy is definitely required as bland embolization using very small, tightly calibrated spherical particles (without intra-arterial administration of a chemotherapeutic drug) shows tumor necrosis comparable to cTACE. For DEB-TACE microparticles loaded with a chemotherapeutic drug combine the advantages of cTACE and bland embolization. Thereby, a continuing chemotherapeutic effect within the tumor might cause a further increase in intratumoral cytotoxicity and at the same time a decrease in systemic toxicity. (orig.) [de

  17. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies

    DEFF Research Database (Denmark)

    Mayhew, T M; Sørensen, Flemming Brandt; Klebe, J G

    1993-01-01

    Placentae from control and diabetic subjects were analysed using stereological techniques in order to assess the effects of mode of delivery (vaginal versus caesarean) and sex of neonate on parenchymal morphology. Effects were assessed using indices of peripheral villous and fetal capillary growth......, villous maturity, extent of maternal intervillous space and thickness of intervascular tissue layers. Placentae were from pregnancies (37-42 wk) which were either uncomplicated (control group) or complicated by diabetes mellitus (diabetic group, White class D) which was reasonably well controlled in terms......, diabetic placentae were 17% heavier and showed shorter fetal plasma distances (30%) and larger fetal capillaries (volume 45%, surface 39% and length 30% greater). Mode of delivery had significant main and interaction effects on stromal diffusion distance (25% greater in vaginal deliveries...

  18. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    Science.gov (United States)

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  19. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    Science.gov (United States)

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. Copyright © 2012 Wiley Periodicals, Inc.

  20. The effect of vaginal and cesarean delivery on lower urinary tract symptoms: what makes the difference?

    Science.gov (United States)

    van Brummen, Henriette Jorien; Bruinse, Hein W; van de Pol, Geerte; Heintz, A Peter M; van der Vaart, C Huub

    2007-02-01

    A prospective cohort study was undertaken to evaluate the effect of pregnancy and childbirth in nulliparous pregnant women. The focus of this paper is on the difference in the prevalences and risk factors for lower urinary tract symptoms (LUTS) between woman who delivered vaginally or by cesarean and secondly the effect of LUTS on the quality of life between these two groups was analyzed. Included were 344 nulliparous pregnant women who completed four questionnaires with the Urogenital Distress Inventory and the Incontinence Impact Questionnaire (IIQ). Two groups were formed: vaginal delivery group (VD), which included spontaneous vaginal delivery and an instrumental vaginal delivery and cesarean delivery group (CD). No statistical significant differences were found in the prevalences of LUTS during pregnancy between the two groups. Three months after childbirth, urgency and urge urinary incontinence (UUI) are less prevalent in the CD group, but no statistical difference was found 1 year postpartum. Stress incontinence was significantly more prevalent in the VD group at 3 and 12 months postpartum. The presence of stress urinary incontinence (SUI) in early pregnancy is predictive for SUI both in the VD as in CD group. A woman who underwent a CD and had SUI in early pregnancy had an 18 times higher risk of having SUI in year postpartum. Women were more embarrassed by urinary frequency after a VD. After a CD, 9% experienced urge urinary incontinence. Urge incontinence affected the emotional functioning more after a cesarean, but the domain scores on the IIQ were low, indicating a minor restriction in lifestyle. In conclusion, after childbirth, SUI was significantly more prevalent in the group who delivered vaginally. Besides a vaginal delivery, we found both in the VD and in the CD group that the presence of SUI in early pregnancy increased the risk for SUI 1 year after childbirth. Further research is necessary to evaluate the effect of SUI in early pregnancy on SUI

  1. Effects of demand-side incentives in improving the utilisation of delivery services in Oyam District in northern Uganda: a quasi-experimental study.

    Science.gov (United States)

    Massavon, William; Wilunda, Calistus; Nannini, Maria; Majwala, Robert Kaos; Agaro, Caroline; De Vivo, Emanuela; Lochoro, Peter; Putoto, Giovanni; Criel, Bart

    2017-12-19

    We evaluated the effects and financial costs of two interventions with respect to utilisation of institutional deliveries and other maternal health services in Oyam District in Uganda. We conducted a quasi-experimental study involving intervention and comparable/control sub-counties in Oyam District for 12 months (January-December 2014). Participants were women receiving antenatal care, delivery and postnatal care services. We evaluated two interventions: the provision of (1) transport vouchers to women receiving antenatal care and delivering at two health centres (level II) in Acaba sub-county, and (2) baby kits to women who delivered at Ngai Health Centre (level III) in Ngai sub-county. The study outcomes included service coverage of institutional deliveries, four antenatal care visits, postnatal care, and the percentage of women 'bypassing' maternal health services inside their resident sub-counties. We calculated the effect of each intervention on study outcomes using the difference in differences analysis. We calculated the cost per institutional delivery and the cost per unit increment in institutional deliveries for each intervention. Overall, transport vouchers had greater effects on all four outcomes, whereas baby kits mainly influenced institutional deliveries. The absolute increase in institutional deliveries attributable to vouchers was 42.9%; the equivalent for baby kits was 30.0%. Additionally, transport vouchers increased the coverage of four antenatal care visits and postnatal care service coverage by 60.0% and 49.2%, respectively. 'Bypassing' was mainly related to transport vouchers and ranged from 7.2% for postnatal care to 11.9% for deliveries. The financial cost of institutional delivery was US$9.4 per transport voucher provided, and US$10.5 per baby kit. The incremental cost per unit increment in institutional deliveries in the transport-voucher system was US$15.9; the equivalent for the baby kit was US$30.6. The transport voucher scheme

  2. Effective teaching strategies and methods of delivery for patient education: a systematic review and practice guideline recommendations.

    Science.gov (United States)

    Friedman, Audrey Jusko; Cosby, Roxanne; Boyko, Susan; Hatton-Bauer, Jane; Turnbull, Gale

    2011-03-01

    The objective of this study was to determine effective teaching strategies and methods of delivery for patient education (PE). A systematic review was conducted and reviews with or without meta-analyses, which examined teaching strategies and methods of delivery for PE, were included. Teaching strategies identified are traditional lectures, discussions, simulated games, computer technology, written material, audiovisual sources, verbal recall, demonstration, and role playing. Methods of delivery focused on how to deliver the teaching strategies. Teaching strategies that increased knowledge, decreased anxiety, and increased satisfaction included computer technology, audio and videotapes, written materials, and demonstrations. Various teaching strategies used in combination were similarly successful. Moreover, structured-, culturally appropriate- and patient-specific teachings were found to be better than ad hoc teaching or generalized teaching. Findings provide guidance for establishing provincial standards for the delivery of PE. Recommendations concerning the efficacy of the teaching strategies and delivery methods are provided.

  3. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  4. Bioresponsive matrices in drug delivery

    Directory of Open Access Journals (Sweden)

    Ye George JC

    2010-11-01

    Full Text Available Abstract For years, the field of drug delivery has focused on (1 controlling the release of a therapeutic and (2 targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.

  5. Effect of early amniotomy on dystocia risk and cesarean delivery in nulliparous women: a randomized clinical trial.

    Science.gov (United States)

    Ghafarzadeh, Masoomeh; Moeininasab, Samira; Namdari, Mehrdad

    2015-08-01

    Artificial rupture of amniotic membranes (amniotomy) which induces or accelerates labor is the most common obstetrical procedure. There is controversy about the effect of early amniotomy on dystocia and cesarean delivery. The study aim was to determine the effect of early amniotomy on the risk of dystocia and cesarean delivery in nulliparous women. This randomized controlled clinical trial was conducted on 300 nulliparous women. They were randomly assigned into the experimental (early amniotomy; artificial amniotomy at cervical dilation ≤ 4 cm) and control (routine management) groups (each 150 women). Length of labor, dystocia, cesarean delivery, placental abruption, and umbilical cord prolapse were compared between the groups. Early amniotomy shortened labor duration significantly in experimental group (7.5 ± 0.7 h) compared to control group (9.9 ± 1.0 h) (P Dystocia (6.7 vs. 25.3 %, P dystocia 80.6 % (95 % CI 58.6-90.1 %) and the odds of cesarean section 81.7 % (95 % CI 66.2-90.1 %). Early amniotomy was associated with lower rate of dystocia and cesarean delivery as well as shorter duration of labor.

  6. Root Effect Haemoglobins in Fish May Greatly Enhance General Oxygen Delivery Relative to Other Vertebrates.

    Directory of Open Access Journals (Sweden)

    Jodie L Rummer

    Full Text Available The teleost fishes represent over half of all extant vertebrates; they occupy nearly every body of water and in doing so, occupy a diverse array of environmental conditions. We propose that their success is related to a unique oxygen (O2 transport system involving their extremely pH-sensitive haemoglobin (Hb. A reduction in pH reduces both Hb-O2 affinity (Bohr effect and carrying capacity (Root effect. This, combined with a large arterial-venous pH change (ΔpHa-v relative to other vertebrates, may greatly enhance tissue oxygen delivery in teleosts (e.g., rainbow trout during stress, beyond that in mammals (e.g., human. We generated oxygen equilibrium curves (OECs at five different CO2 tensions for rainbow trout and determined that, when Hb-O2 saturation is 50% or greater, the change in oxygen partial pressure (ΔPO2 associated with ΔpHa-v can exceed that of the mammalian Bohr effect by at least 3-fold, but as much as 21-fold. Using known ΔpHa-v and assuming a constant arterial-venous PO2 difference (Pa-vO2, Root effect Hbs can enhance O2 release to the tissues by 73.5% in trout; whereas, the Bohr effect alone is responsible for enhancing O2 release by only 1.3% in humans. Disequilibrium states are likely operational in teleosts in vivo, and therefore the ΔpHa-v, and thus enhancement of O2 delivery, could be even larger. Modeling with known Pa-vO2 in fish during exercise and hypoxia indicates that O2 release from the Hb and therefore potentially tissue O2 delivery may double during exercise and triple during some levels of hypoxia. These characteristics may be central to performance of athletic fish species such as salmonids, but may indicate that general tissue oxygen delivery may have been the incipient function of Root effect Hbs in fish, a trait strongly associated with the adaptive radiation of teleosts.

  7. Cross-Border Electronic Commerce : Distance Effects and Express Delivery in European Union Markets

    NARCIS (Netherlands)

    T.Y. Kim (Thai Young); R. Dekker (Rommert); C. Heij (Christiaan)

    2017-01-01

    textabstractThis empirical study examines distance effects on cross-border electronic commerce and in particular the importance of express delivery in reducing the time dimension of distance. E-commerce provides suppliers with a range of opportunities to reduce distance as perceived by online

  8. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research January 2018; 17 (1): 1-10 ... Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) ..... Intramuscular delivery of DNA ... copolymeric system for gene delivery in complete.

  9. In vitro and in vivo effects of PDGF-BB delivery strategies on tendon healing: a review

    Directory of Open Access Journals (Sweden)

    O Evrova

    2017-07-01

    Full Text Available To promote and support tendon healing, one viable strategy is the use or administration of growth factors at the wound/rupture site. Platelet derived growth factor-BB (PDGF-BB, together with other growth factors, is secreted by platelets after injury. PDGF-BB promotes mitogenesis and angiogenesis, which could accelerate tendon healing. Therefore, in vitro studies with PDGF-BB have been performed to determine its effect on tenocytes and tenoblasts. Moreover, accurate and sophisticated drug delivery devices, aiming for a sustained release of PDGF-BB, have been developed, either by using heparin-binding and fibrin-based matrices or different electrospinning techniques. In this review, the structure and composition, as well as the healing process of tendons, are described. Part A deals with in vitro studies. They focus on the multiple effects evoked by PDGF-BB on the cellular level. Moreover, they address strategies for the sustained delivery of PDGF-BB. Part B focuses on animal models used to test different delivery strategies for PDGF-BB, in the context of tendon reconstruction. These studies showed that dosage and timing of PDGF-BB application are the most important factors for deciding which delivery device should be applied for a specific tendon laceration.

  10. Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria.

    Science.gov (United States)

    Alam, Shadab; Panda, Jiban Jyoti; Mukherjee, Tapan Kumar; Chauhan, Virander Singh

    2016-04-05

    Curcumin (Ccm) has shown immense potential as an antimalarial agent; however its low solubility and less bioavailability attenuate the in vivo efficacy of this potent compound. In order to increase Ccm's bioavailability, a number of organic/inorganic polymer based nanoparticles have been investigated. However, most of the present day nano based delivery systems pose a conundrum with respect to their complex synthesis procedures, poor in vivo stability and toxicity issues. Peptides due to their high biocompatibility could act as excellent materials for the synthesis of nanoparticulate drug delivery systems. Here, we have investigated dehydrophenylalanine (ΔPhe) di-peptide based self-assembled nanoparticles for the efficient delivery of Ccm as an antimalarial agent. The self-assembly and curcumin loading capacity of different ΔPhe dipeptides, phenylalanine-α,β-dehydrophenylalanine (FΔF), arginine-α,β-dehydrophenylalanine (RΔF), valine-α,β-dehydrophenylalanine (VΔF) and methonine-α,β-dehydrophenylalanine (MΔF) were investigated for achieving enhanced and effective delivery of the compound for potential anti-malarial therapy. FΔF, RΔF, VΔF and MΔF peptides formed different types of nanoparticles like nanotubes and nanovesicles under similar assembling conditions. Out of these, F∆F nanotubes showed maximum curcumin loading capacity of almost 68 % W/W. Ccm loaded F∆F nanotubes (Ccm-F∆F) showed comparatively higher (IC50, 3.0 µM) inhibition of Plasmodium falciparum (Indo strain) as compared to free Ccm (IC50, 13 µM). Ccm-F∆F nano formulation further demonstrated higher inhibition of parasite growth in malaria infected mice as compared to free Ccm. The dipeptide nanoparticles were highly biocompatible and didn't show any toxic effect on mammalian cell lines and normal blood cells. This work provides a proof of principle of using highly biocompatible short peptide based nanoparticles for entrapment and in vivo delivery of Ccm leading to an

  11. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  12. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2013-01-01

    Full Text Available Electrospinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nanotechnology that sparked worldwide research interest in nanomaterials for their preparation and application in biomedicine and drug delivery. Electrospinning is a simple, adaptable, cost-effective, and versatile technique for producing nanofibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nanofibers. The nanofiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nanofiber fabrication by electrospinning has broadened the horizons for widespread application of nanofibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electrospun nanofibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of postsurgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electrospun nanofibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nanofibers when applied to drug delivery.

  13. Assessment Of The Effectiveness Of Telecommunication Delivery Among Operators Of GSM In Ekiti State.

    Directory of Open Access Journals (Sweden)

    Olumuyiwa Oludare Fagbohun

    2017-11-01

    Full Text Available Data survey on the service delivery of the three principal Global System for Mobile Communications GSM Operators in Ekiti State Nigeria was conducted with a questionnaire administered among its citizens. Three locations Ado Ekiti 7o381 5o131 Ikere Ekiti 7o301 5o141 and Aramoko Ekiti 7o431 5o31were selected. Based on the responses from various subscribers using the networks the performance analyses of the operators were assessed using the descriptive statistical method. The assessment was based on the coverage area interconnectivity call quality number of subscribers growth and other supplementary services to assist the various GSM operators know the area of weakness and improve on the quality of the service delivery. It was discovered that the users have more complaints to offer with the performance generally rated below average and a need for fast and better network optimization for needed improvements for an effective telecommunication delivery.

  14. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  15. Evaluating Student Perceptions of Course Delivery Platforms

    Science.gov (United States)

    Bramorski, Tom; Madan, Manu S.

    2016-01-01

    In this paper we evaluate effectiveness of course delivery mode on three dimensions: values, networking opportunities and learning. While students and their future employers are two important customers for the business program, we focus on the perception of students regarding the effectiveness of course delivery mode on program performance. The…

  16. Vehicle Routing Problems for Drone Delivery

    OpenAIRE

    Dorling, Kevin; Heinrichs, Jordan; Messier, Geoffrey G.; Magierowski, Sebastian

    2016-01-01

    Unmanned aerial vehicles, or drones, have the potential to significantly reduce the cost and time of making last-mile deliveries and responding to emergencies. Despite this potential, little work has gone into developing vehicle routing problems (VRPs) specifically for drone delivery scenarios. Existing VRPs are insufficient for planning drone deliveries: either multiple trips to the depot are not permitted, leading to solutions with excess drones, or the effect of battery and payload weight ...

  17. Effect of severity of illness on cesarean delivery rates in Washington State.

    Science.gov (United States)

    Hitti, Jane; Walker, Suzan; Benedetti, Thomas J

    2017-10-01

    Hospitals and providers are increasingly held accountable for their cesarean delivery rates. In the perinatal quality improvement arena, there is vigorous debate about whether all hospitals can be held to the same benchmark for an acceptable cesarean rate regardless of patient acuity. However, the causes of variation in hospital cesarean delivery rates are not well understood. We sought to evaluate the association and temporal trends between severity of illness at admission and the primary term singleton vertex cesarean delivery rate among hospitals in Washington State. We hypothesized that hospitals with higher patient acuity would have higher cesarean delivery rates and that this pattern would persist over time. In this cross-sectional analysis, we analyzed aggregate hospital-level data for all nonmilitary hospitals in Washington State with ≥100 deliveries/y during federal fiscal years 2010 through 2014 (287,031 deliveries). Data were obtained from the Washington State Comprehensive Hospital Abstract Reporting System, which includes inpatient demographic, diagnosis, procedure, and discharge information derived from hospital billing systems. Age, admission diagnoses and procedure codes were converted to patient-level admission severity-of-illness scores using the All Patient Refined Diagnosis Related Groups classification system. This system is widely used throughout the United States to adjust hospital data for severity of illness. Mean admission hospital-level severity-of-illness scores were calculated for each fiscal year among the term singleton vertex population with no history of cesarean delivery. We used linear regression to evaluate the association between hospital admission severity of illness and the primary term singleton vertex cesarean delivery rate, calculated Pearson correlation coefficients, and compared regression line slopes and 95% confidence intervals for each fiscal year. Hospitals were diverse with respect to delivery volume, level of care

  18. Efficient and gentle siRNA delivery by magnetofection

    Science.gov (United States)

    Ensenauer, R; Hartl, D; Vockley, J; Roscher, AA; Fuchs, U

    2015-01-01

    Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level. PMID:20297946

  19. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    Science.gov (United States)

    Sarin, Hemant

    2010-08-11

    Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof

  20. Enhancing effect of negative polypropylene electret on in vitro transdermal delivery of cyclosporine A solution and its synergistic effect with ethyl oleate

    International Nuclear Information System (INIS)

    Cui, L L; Liu, H Y; Ma, L; Liang, Y Y; Guo, X; Jiang, J

    2013-01-01

    In this study, the corona charged electrets at voltages of −500 V, −1000 V and −2000 V were made from polypropylene (PP) film. The cyclosporine A (CsA) and 10% ethyl oleate were chosen as the model drug and chemical enhancer, respectively. The charge storage stability of the electrets and the in vitro transdermal behaviour of the model drug in solution under different conditions were studied. The results indicate that the external electrostatic field of the negative PP electrets could penetrate through the rat skin and enhance the transdermal delivery of cyclosporine A. A synergistic effect on enhancing the transdermal delivery of cyclosporine A was observed by combining different surface potential negative PP electrets with 10% ethyl oleate, and the amount of transdermal delivery of CsA was greatly increased comparing with only application of electrets. Therefore, the combination application of electret and chemical enhancer could be a feasible strategy in enhancing transdermal delivery of small peptide drugs or some large molecular drugs.

  1. Effect of Hurricane Katrina on Low Birth Weight and Preterm Deliveries in African American Women in Louisiana, Mississippi, and Alabama

    Directory of Open Access Journals (Sweden)

    Chau-Kuang Chen

    2012-04-01

    Full Text Available Using three modeling techniques (GLR, GEP, and GM, the effect of Hurricane Katrina on low birth weight and preterm delivery babies for African American women is examined in Louisiana, Mississippi and Alabama. The study results indicate that risk factors associated with low birth weight and preterm delivery for American African women include unemployment and percent of mothers between the ages of 15-19. Among White women, ages 15-19, risk factors included poverty rate, median household income, and total birth rate. The GMs performed accurate predictions with increasing low birth weight and preterm delivery trends for African American women in the Gulf Coast states and other U.S. states, and decreasing low birth weight and preterm delivery trends for their White counterparts in the same state locations. Data presented between 2007-2010 show low birth weight and preterm delivery for White women as a decreasing tendency while adverse birth outcomes for African American women exhibited a monotonically increasing trend. The empirical findings suggest that health disparities will continue to exist in the foreseeable future, if no effective intervention is taken. The models identify risk factors that contribute to adverse birth outcomes and offer some insight into strategies and programs to address and ameliorate these effects.

  2. MicroRNA Delivery for Regenerative Medicine

    OpenAIRE

    Peng, Bo; Chen, Yongming; Leong, Kam W.

    2015-01-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages an...

  3. Nanoscale drug delivery for targeted chemotherapy.

    Science.gov (United States)

    Xin, Yong; Huang, Qian; Tang, Jian-Qin; Hou, Xiao-Yang; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan

    2016-08-28

    Despite significant improvements in diagnostic methods and innovations in therapies for specific cancers, effective treatments for neoplastic diseases still represent major challenges. Nanotechnology as an emerging technology has been widely used in many fields and also provides a new opportunity for the targeted delivery of cancer drugs. Nanoscale delivery of chemotherapy drugs to the tumor site is highly desirable. Recent studies have shown that nanoscale drug delivery systems not only have the ability to destroy cancer cells but may also be carriers for chemotherapy drugs. Some studies have demonstrated that delivery of chemotherapy via nanoscale carriers has greater therapeutic benefit than either treatment modality alone. In this review, novel approaches to nanoscale delivery of chemotherapy are described and recent progress in this field is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  5. Training Nonnursing Staff to Assist with Nutritional Care Delivery in Nursing Homes: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Simmons, Sandra F; Hollingsworth, Emily K; Long, Emily A; Liu, Xulei; Shotwell, Matthew S; Keeler, Emmett; An, Ruopeng; Silver, Heidi J

    2017-02-01

    To determine the effect and cost-effectiveness of training nonnursing staff to provide feeding assistance for nutritionally at-risk nursing home (NH) residents. Randomized, controlled trial. Five community NHs. Long-stay NH residents with an order for caloric supplementation (N = 122). Research staff provided an 8-hour training curriculum to nonnursing staff. Trained staff were assigned to between-meal supplement or snack delivery for the intervention group; the control group received usual care. Research staff used standardized observations and weighed-intake methods to measure frequency of between-meal delivery, staff assistance time, and resident caloric intake. Fifty staff (mean 10 per site) completed training. The intervention had a significant effect on between-meal caloric intake (F = 56.29, P staff time to provide assistance. It is cost effective to train nonnursing staff to provide caloric supplementation, and this practice has a positive effect on residents' between-meal intake. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  6. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rutian Li

    Full Text Available AIMS: The matrix metalloproteinase (MMP 2/9, also known as collagenases IV and gelatinases A/B, play a key role in cancer invasion and metastasis. However, the clinical trials of the MMP inhibitors (MMPIs ended up with disappointing results. In this paper, we synthesized a gelatinase-responsive copolymer (mPEG-PCL by inserting a gelatinase cleavable peptide (PVGLIG between mPEG and PCL blocks of mPEG-PCL for anticancer drug delivery to make use of MMP2/9 as an intelligent target for drug delivery. MATERIALS AND METHODS: mPEG-pep-PCL copolymer was synthesized via ring-opening copolymerization and double-amidation. To evaluate whether Nanoparticles (NPs prepared from this copolymer are superior to NPs prepared from mPEG-PCL, NPs prepared from mPEG-PCL copolymer were used as positive control. Docetaxel-loading NPs using mPEG-pep-PCL and mPEG-PCL were prepared by nano-precipitation method, mentioned as Gel-NPs and Con-NPs, respectively. The morphologic changes of the NPs after treatment with gelatinases were observed macroscopically by spectrophotometer and microscopically by transmission electron microscopy (TEM and atomic force microscopy (AFM. The cellular uptake amount and cytotoxicity of Gel-NPs and Con-NPs, respectively, in cell lines with different levels of gelatinase expression were studied. Moreover, the cytotoxicity study on the primary cancer cells isolated from pericardial fluids from a patient with late-stage lung cancer was conducted. RESULTS: The Gel-NPs aggregated in response to gelatinases, which was confirmed macroscopically and microscopically. The cellular uptake amount of Gel-NPs was correlated with the level of gelatinases. The in vitro antitumor effect of Gel-NPs was also correlated with the level of gelatinases and was superior to Taxotere (commercially available docetaxel as well as the Con-NPs. The cytotoxicity study on the primary lung cancer cells also confirmed the effectiveness of Gel-NPs. CONCLUSION: The results in

  7. Characterization and anti-tumor effects of chondroitin sulfate-chitosan nanoparticles delivery system

    Science.gov (United States)

    Hu, Chieh-Shen; Tang, Sung-Ling; Chiang, Chiao-Hsi; Hosseinkhani, Hossein; Hong, Po-Da; Yeh, Ming-Kung

    2014-11-01

    We prepared chondroitin sulfate (ChS)-chitosan (CS) nanoparticles (NPs) as a delivery carrier, and doxorubicin (Dox) was used as a model drug. The physicochemical properties and biological activities of the Dox-ChS-CS NPs including the release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated. The ChS-CS NPs and Dox-ChS-CS NPs had a mean size of 262.0 ± 15.0 and 369.4 ± 77.4 nm, and a zeta potential of 30.2 ± 0.9 and 20.6 ± 3.1 mV, respectively. In vitro release tests showed that the 50 % release time for the Dox-ChS-CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox-ChS-CS NPs. A significant difference was observed between doxorubicin solution and the Dox-ChS-CS NPs in the cellular uptake within 60 min ( p < 0.01). For the in vivo human xenograft-nude mouse model, the Dox-ChS-CS NPs were more effective with less body weight loss and anti-tumor growth suppression in comparison with the Dox solution. The prepared Dox-ChS-CS NPs offer a new effective targeting nanoparticle delivery system platform for anti-tumor therapy.

  8. Delivery presentations

    Science.gov (United States)

    Pregnancy - delivery presentation; Labor - delivery presentation; Occiput posterior; Occiput anterior; Brow presentation ... The mother can walk, rock, and try different delivery positions during labor to help encourage the baby ...

  9. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    Science.gov (United States)

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  10. Combined spinal-epidural analgesia in labour: its effects on delivery outcome

    Directory of Open Access Journals (Sweden)

    Suneet Kaur Sra Charanjit Singh

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND AND OBJECTIVES: Combined spinal-epidural (CSE has become an increasingly popular alternative to traditional labour epidural due to its rapid onset and reliable analgesia provided. This was a prospective, convenient sampling study to determine the effects of CSE analgesia on labour outcome. METHODS: One hundred and ten healthy primigravida parturients with a singleton pregnancy of ≥37 weeks gestation and in the active phase of labour were studied. They were enrolled to the CSE (n = 55 or Non-CSE (n = 55 group based on whether they consented to CSE analgesia. Non-CSE parturients were offered other methods of labour analgesia. The duration of the first and second stage of labour, rate of instrumental vaginal delivery and emergency cesarean section, and Apgar scores were compared. RESULTS: The mean duration of the first and second stage of labour was not significantly different between both groups. Instrumental delivery rates between the groups were not significantly different (CSE group, 11% versus Non-CSE group, 16%. The slightly higher incidence of cesarean section in the CSE group (16% versus 15% in the Non-CSE group was not statistically significant. Neonatal outcome in terms of Apgar score of less than 7 at 1 and 5 min was similar in both groups. CONCLUSION: There were no significant differences in the duration of labour, rate of instrumental vaginal delivery and emergency cesarean section, and neonatal outcome in parturients who received compared to those who did not receive CSE for labour analgesia.

  11. Microfabrication for Drug Delivery

    Science.gov (United States)

    Koch, Brendan; Rubino, Ilaria; Quan, Fu-Shi; Yoo, Bongyoung; Choi, Hyo-Jick

    2016-01-01

    This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems. PMID:28773770

  12. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  13. At what price? A cost-effectiveness analysis comparing trial of labour after previous Caesarean versus elective repeat Caesarean delivery.

    LENUS (Irish Health Repository)

    Fawsitt, Christopher G

    2013-01-01

    Elective repeat caesarean delivery (ERCD) rates have been increasing worldwide, thus prompting obstetric discourse on the risks and benefits for the mother and infant. Yet, these increasing rates also have major economic implications for the health care system. Given the dearth of information on the cost-effectiveness related to mode of delivery, the aim of this paper was to perform an economic evaluation on the costs and short-term maternal health consequences associated with a trial of labour after one previous caesarean delivery compared with ERCD for low risk women in Ireland.

  14. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  15. The Effects of Noncontingent Delivery of High- and Low-Preference Stimuli on Attention-Maintained Destructive Behavior.

    Science.gov (United States)

    Fisher, Wayne W.; O'Connor, Julia T.; Kurtz, Patricia F.; DeLeon, Iser G.; Gotjen, Deidre L.

    2000-01-01

    An adolescent with severe mental retardation and cerebral palsy who displayed attention-maintained destructive behavior was exposed to noncontingent reinforcer delivery (NCR) with a high-preference or a low-preference stimulus while reinforcement for destructive behavior with attention remained in effect. NCR without extinction was effective only…

  16. Using Observational Data to Estimate the Effect of Hand Washing and Clean Delivery Kit Use by Birth Attendants on Maternal Deaths after Home Deliveries in Rural Bangladesh, India and Nepal.

    Directory of Open Access Journals (Sweden)

    Nadine Seward

    Full Text Available Globally, puerperal sepsis accounts for an estimated 8-12% of maternal deaths, but evidence is lacking on the extent to which clean delivery practices could improve maternal survival. We used data from the control arms of four cluster-randomised controlled trials conducted in rural India, Bangladesh and Nepal, to examine associations between clean delivery kit use and hand washing by the birth attendant with maternal mortality among home deliveries.We tested associations between clean delivery practices and maternal deaths, using a pooled dataset for 40,602 home births across sites in the three countries. Cross-sectional data were analysed by fitting logistic regression models with and without multiple imputation, and confounders were selected a priori using causal directed acyclic graphs. The robustness of estimates was investigated through sensitivity analyses.Hand washing was associated with a 49% reduction in the odds of maternal mortality after adjusting for confounding factors (adjusted odds ratio (AOR 0.51, 95% CI 0.28-0.93. The sensitivity analysis testing the missing at random assumption for the multiple imputation, as well as the sensitivity analysis accounting for possible misclassification bias in the use of clean delivery practices, indicated that the association between hand washing and maternal death had been over estimated. Clean delivery kit use was not associated with a maternal death (AOR 1.26, 95% CI 0.62-2.56.Our evidence suggests that hand washing in delivery is critical for maternal survival among home deliveries in rural South Asia, although the exact magnitude of this effect is uncertain due to inherent biases associated with observational data from low resource settings. Our findings indicating kit use does not improve maternal survival, suggests that the soap is not being used in all instances that kit use is being reported.

  17. Corporate municipal governance for effective and efficient public service delivery in South Africa.

    Directory of Open Access Journals (Sweden)

    Paulin Mbecke

    2014-10-01

    Full Text Available This research acknowledges the current service delivery chaos manifested through numerous protests justifying the weakness of the “Batho Pele” good governance principles to facilitate, improve and sustain service delivery by local governments. The success of corporate governance in corporate companies and state owned enterprises is recognised prompting suggestions that local governments should too adopt corporate governance principles or King III to be effective. The research reviews the King III and literature to ascertain the lack of research on corporate governance in local governments in South Africa. Considering the particular set-up of local governments, the research doubts the successful application of King III in local governments. Through critical research theory, the current service delivery crisis in local governments in South Africa is described. The success of corporate governance systems in the United Kingdom and Australian local governments justify the need for a separate corporate municipal governance system as a solution to the crisis. A specific change of legislation and corporate governance guidelines is necessary to address the uniqueness of local governments. Hence, corporate municipal governance should be compulsory and based on ten standardised good governance principles via a code of corporate governance and a corporate governance framework responding to specific prerequisites for success

  18. Effect of a provincial system of stroke care delivery on stroke care and outcomes

    Science.gov (United States)

    Kapral, Moira K.; Fang, Jiming; Silver, Frank L.; Hall, Ruth; Stamplecoski, Melissa; O’Callaghan, Christina; Tu, Jack V.

    2013-01-01

    Background: Systems of stroke care delivery have been promoted as a means of improving the quality of stroke care, but little is known about their effectiveness. We assessed the effect of the Ontario Stroke System, a province-wide strategy of regionalized stroke care delivery, on stroke care and outcomes in Ontario, Canada. Methods: We used population-based provincial administrative databases to identify all emergency department visits and hospital admissions for acute stroke and transient ischemic attack from Jan. 1, 2001, to Dec. 31, 2010. Using piecewise regression analyses, we assessed the effect of the full implementation of the Ontario Stroke System in 2005 on the proportion of patients who received care at stroke centres, and on rates of discharge to long-term care facilities and 30-day mortality after stroke. Results: We included 243 287 visits by patients with acute stroke or transient ischemic attack. The full implementation of the Ontario Stroke System in 2005 was associated with an increase in rates of care at stroke centres (before implementation: 40.0%; after implementation: 46.5%), decreased rates of discharge to long-term care facilities (before implementation: 16.9%; after implementation: 14.8%) and decreased 30-day mortality for hemorrhagic (before implementation: 38.3%; after implementation: 34.4%) and ischemic stroke (before implementation: 16.3%; after implementation: 15.7%). The system’s implementation was also associated with marked increases in the proportion of patients who received neuroimaging, thrombolytic therapy, care in a stroke unit and antithrombotic therapy. Interpretation: The implementation of an organized system of stroke care delivery was associated with improved processes of care and outcomes after stroke. PMID:23713072

  19. Effect of maternal death reviews and training on maternal mortality among cesarean delivery: post-hoc analysis of a cluster-randomized controlled trial.

    Science.gov (United States)

    Zongo, Augustin; Dumont, Alexandre; Fournier, Pierre; Traore, Mamadou; Kouanda, Séni; Sondo, Blaise

    2015-02-01

    To explore the differential effect of a multifaceted intervention on hospital-based maternal mortality between patients with cesarean and vaginal delivery in low-resource settings. We reanalyzed the data from a major cluster-randomized controlled trial, QUARITE (Quality of care, Risk management and technology in obstetrics). These subgroup analyses were not pre-specified and were treated as exploratory. The intervention consisted of an initial interactive workshop and quarterly educational clinically oriented and evidence-based outreach visits focused on maternal death reviews (MDR) and best practices implementation. The trial originally recruited 191,167 patients who delivered in each of the 46 participating hospitals in Mali and Senegal, between 2007 and 2011. The primary endpoint was hospital-based maternal mortality. Subgroup-specific Odds Ratios (ORs) of maternal mortality were computed and tested for differential intervention effect using generalized linear mixed model between two subgroups (cesarean: 40,975; and vaginal delivery: 150,192). The test for homogeneity of intervention effects on hospital-based maternal mortality among the two delivery mode subgroups was statistically significant (p-value: 0.0201). Compared to the control, the adjusted OR of maternal mortality was 0.71 (95% CI: 0.58-0.82, p=0.0034) among women with cesarean delivery. The intervention had no significant effect among women with vaginal delivery (adjusted OR 0.87, 95% CI 0.69-1.11, p=0.6213). This differential effect was particularly marked for district hospitals. Maternal deaths reviews and on-site training on emergency obstetric care may be more effective in reducing maternal mortality among high-risk women who need a cesarean section than among low-risk women with vaginal delivery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Biology Education Delivery for Attaining Health-specific Millennium ...

    African Journals Online (AJOL)

    Biology Education Delivery for Attaining Health-specific Millennium ... PROMOTING ACCESS TO AFRICAN RESEARCH ... This study investigated the strategies for ensuring effective delivery of Biology Education at the secondary school level ...

  1. Vocal effectiveness of speech-language pathology students: Before and after voice use during service delivery

    OpenAIRE

    Couch, Stephanie; Zieba, Dominique; van der Linde, Jeannie; van der Merwe, Anita

    2015-01-01

    Background: As a professional voice user, it is imperative that a speech-language pathologist’s(SLP) vocal effectiveness remain consistent throughout the day. Many factors may contribute to reduced vocal effectiveness, including prolonged voice use, vocally abusive behaviours,poor vocal hygiene and environmental factors. Objectives: To determine the effect of service delivery on the perceptual and acoustic features of voice. Method: A quasi-experimental., pre-test–post-test research de...

  2. Effectiveness and short-term safety of modified sodium hyaluronic acid-carboxymethylcellulose at cesarean delivery: a randomized trial.

    Science.gov (United States)

    Kiefer, Daniel G; Muscat, Jolene C; Santorelli, Jarrett; Chavez, Martin R; Ananth, Cande V; Smulian, John C; Vintzileos, Anthony M

    2016-03-01

    The rising cesarean birth rate has drawn attention to risks associated with repeat cesarean birth. Prevention of adhesions with adhesion barriers has been promoted as a way to decrease operative difficulty. However, robust data demonstrating effectiveness of such interventions are lacking. We report data from a multicenter trial designed to evaluate the short-term safety and effectiveness of a modified sodium hyaluronic acid (HA)-carboxymethylcellulose (CMC) absorbable adhesion barrier for reduction of adhesions following cesarean delivery. Patients who underwent primary or repeat cesarean delivery were included in this multicenter, single-blinded (patient), randomized controlled trial. Patients were randomized into either HA-CMC (N = 380) or no treatment (N = 373). No other modifications to their treatment were part of the protocol. Short-term safety data were collected following randomization. The location and density of adhesions (primary outcome) were assessed at their subsequent delivery using a validated tool, which can also be used to derive an adhesion score that ranges from 0-12. No differences in baseline characteristics, postoperative course, or incidence of complications between the groups following randomization were noted. Eighty patients from the HA-CMC group and 92 controls returned for subsequent deliveries. Adhesions in any location were reported in 75.6% of the HA-CMC group and 75.9% of the controls (P = .99). There was no significant difference in the median adhesion score; 2 (range 0-10) for the HA-CMC group vs 2 (range 0-8) for the control group (P = .65). One third of the HA-CMC patients met the definition for severe adhesions (adhesion score >4) compared to 15.5% in the control group (P = .052). There were no significant differences in the time from incision to delivery (P = .56). Uterine dehiscence in the next pregnancy was reported in 2 patients in HA-CMC group vs 1 in the control group (P = .60). Although we did not identify any short

  3. Colon-targeted delivery of piceatannol enhances anti-colitic effects of the natural product: potential molecular mechanisms for therapeutic enhancement

    Directory of Open Access Journals (Sweden)

    Yum S

    2015-08-01

    Full Text Available Soohwan Yum, Seongkeun Jeong, Sunyoung Lee, Joon Nam, Wooseong Kim, Jin-Wook Yoo, Min-Soo Kim, Bok Luel Lee, Yunjin Jung College of Pharmacy, Pusan National University, Busan, Republic of Korea Abstract: Piceatannol (PCT, an anti-colitic natural product, undergoes extensive Phase II hepatic metabolism, resulting in very low bioavailability. We investigated whether colon-targeted delivery of PCT could enhance anti-colitic effects and how therapeutic enhancement occurred at the molecular level. Molecular effects of PCT were examined in human colon carcinoma cells and inflamed colons. The anti-colitic effects of PCT in a colon-targeted capsule (colon-targeted PCT were compared with PCT in a gelatin capsule (conventional PCT in a trinitrobenzene sulfonic acid-induced rat colitis model. Colon-targeted PCT elicited greatly enhanced recovery of the colonic inflammation. In HCT116 cells, PCT inhibited nuclear factor kappaB while activating anti-colitic transcription factors, nuclear factor-erythroid 2 (NF-E2 p45-related factor 2, and hypoxia-inducible factor-1. Colon-targeted PCT, but not conventional PCT, modulated production of the target gene products of the transcription factors in the inflamed colonic tissues. Rectal administration of PCT, which simulates the therapeutic action of colon-targeted PCT, also ameliorated rat colitis and reproduced the molecular effects in the inflamed colonic tissues. Colon-targeted delivery increased therapeutic efficacy of PCT against colitis, likely resulting from multitargeted effects exerted by colon-targeted PCT. The drug delivery technique may be useful for therapeutic optimization of anti-colitic lead compounds including natural products. Keywords: piceatannol, colitis, colon-targeted delivery, multitarget, polypharmacology

  4. The relationship between pregnancy, preterm and premature delivery

    Directory of Open Access Journals (Sweden)

    Soleymani-e- Shayesteh Y

    2002-06-01

    Full Text Available During pregnancy, different froms of periodontal disease such as pregnancy gingivitis, pregnancy tumors, pregnancy stomatitis, may be encountered. But the most considerable point is the pregnant women's infection with periodontal disease and its effect on delivery and weight of newborn infants. Based on the latest researches and statistics, it is concluded that periodontal disease is an important risk factor, leading to preterm or premature delivery. On the other hand, poor hygiene, should be considered as another danger, resulting in premature delivery. Besides, the presence of a collection of oral fosobacteria in ammoniutic fluid in mothers with premature delivery, increases the probability of an oral- haematogenous connection. Moreover, prostaglandin E2, in cervicular fluid, has been considered as an index for periodontal disease activity and loss of weight at the time of birth. These findings suggest that effective steps, to prevent preterm delivery, can be taken, if women, genycologists and dentists have enough knowledge. This article focuses on the special supervision that is required to prevent the effects of hormonal changes on periodontal tissues and conversely to reduce systemic disorders resulting from periodontal disease, in pregnant woman.

  5. Changing the model of care delivery: nurses' perceptions of job satisfaction and care effectiveness.

    Science.gov (United States)

    Wells, Judith; Manuel, Madonna; Cunning, Glenda

    2011-09-01

    To examine nurses' perceptions of job satisfaction, empowerment, and care effectiveness following a change from team to a modified total patient care (TPC) delivery model. Empirical data related to TPC is limited and inconclusive. Similarly, evidence demonstrating nurses' experience with change and restructuring is limited. A mixed method, longitudinal, descriptive design was used. Registered nurses and licenced practical nurses in two acute-care nursing units completed quantitative and qualitative surveys. Lewin's change theory provided the framework for the study. No significant change in job satisfaction was observed; however, it was less than optimal at all three time-periods. Nurses were committed to their jobs but relatively dissatisfied with their input into the goals and processes of the organization. Client care was perceived to be more effective under TPC. Job satisfaction remained consistent following the transition to TPC. However, nurses perceived that client care within the modified TPC model was more effective than in the previous model. Nursing administration must work collaboratively with nurses to improve processes in nursing practice that could enhance nurses' job satisfaction and improve client care delivery. 2011 Blackwell Publishing Ltd.

  6. Assisted Vaginal Delivery

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Assisted Vaginal Delivery Home For Patients Search FAQs Assisted Vaginal ... Vaginal Delivery FAQ192, February 2016 PDF Format Assisted Vaginal Delivery Labor, Delivery, and Postpartum Care What is ...

  7. The effect of a structured neonatal resuscitation program on delivery room practices.

    LENUS (Irish Health Repository)

    Ryan, C A

    2012-02-03

    PURPOSE: This study evaluated the introduction of the Neonatal Resuscitation Program (NRP) of the American Academy of Pediatrics and the American Heart Association into the delivery room of an Irish maternity hospital. DESIGN: Prospective, controlled observational study of 51 deliveries before and 51 deliveries following the training of delivery room personnel in the NRP. SAMPLE: Participants were 33 nurse-midwives and 11 pediatric resident physicians. MAIN OUTCOME VARIABLE: Evaluation of postdelivery, newborn resuscitation practices. RESULTS: The introduction of the NRP was associated with significant improvements in delivery room preparation, in the evaluation and management of the newborn infant, and in thermal protection at birth. Although there was a trend to use more free-flow oxygen following the introduction of the NRP, this was not statistically significant. Bag and mask ventilation was also used more frequently following NRP training. However, there were no significant differences in the use of endotracheal intubation, chest compressions, and medications. Fifteen of the 51 infants became hypothermic prior to the introduction of the NRP; none of the infants developed hypothermia in the post-NRP part of the study.

  8. Resuscitation of newborn in high risk deliveries

    International Nuclear Information System (INIS)

    Yousaf, U.F.; Hayat, S.

    2015-01-01

    High risk deliveries are usually associated with increased neonatal mortality and morbidity. Neonatal resuscitation can appreciably affect the outcome in these types of deliveries. Presence of personnel trained in basic neonatal resuscitation at the time of delivery can play an important role in reducing perinatal complications in neonates at risk. The study was carried out to evaluate the effects of newborn resuscitation on neonatal outcome in high risk deliveries. Methods: This descriptive case series was carried out at the Department of Obstetrics and Gynecology, Jinnah Hospital, Lahore. Ninety consecutive high risk deliveries were included and attended by paediatricians trained in newborn resuscitation. Babies delivered by elective Caesarean section, normal spontaneous vaginal deliveries and still births were excluded. Neonatal resuscitation was performed in babies who failed to initiate breathing in the first minute after birth. Data was analyzed using SPSS-16.0. Results: A total of 90 high risk deliveries were included in the study. Emergency caesarean section was the mode of delivery in 94.4% (n=85) cases and spontaneous vaginal delivery in 5.6% (n=5). Preterm pregnancy was the major high risk factor. Newborn resuscitation was required in 37.8% (n=34) of all high risk deliveries (p=0.013). All the new-borns who required resuscitation survived. Conclusion: New-born resuscitation is required in high risk pregnancies and personnel trained in newborn resuscitation should be available at the time of delivery. (author)

  9. Congenital heart surgery: what we do to our patients

    African Journals Online (AJOL)

    congenital heart surgery does not end at discharge at the door of the ... of obstructed right ventricular outflow, for example in tetralogy of. Fallot, or ... Patent ductus arteriosus (PDA). PDAs are commonly closed by transvascular catheter ...

  10. Evaluating program effects on institutional delivery in Peru.

    Science.gov (United States)

    McQuestion, Michael J; Velasquez, Anibal

    2006-07-01

    We evaluate the joint effects of two targeted Peruvian health programs on a mother's choice of whether to deliver in a public emergency obstetric care (EmOC) facility. The national maternal and child health insurance, or SMI Program, provided delivery care coverage to Peru's poorest households beginning in 1998. During 1996-2002, Proyecto 2000 sought to improve the quality of EmOC and increase utilization of public EmOC facilities in the districts reporting the highest maternal and neonatal mortality levels. Our data come from the Proyecto 2000 endline evaluation, which sampled 5335 mothers living in the catchment areas of 29 treatment and 29 matched control EmOC facilities. Using propensity scoring and two quality of care indices, we find significantly higher quality of care in Proyecto 2000 treatment facilities. Using variance components logistic models, we find a mother enrolled in the SMI Program was more likely to have delivered her last child in a public EmOC, controlling for household constraints. Residence in a Proyecto 2000 treatment area did not significantly affect the choice. A cross-level interaction term was insignificant, indicating the two program effects were independent.

  11. Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.

    Science.gov (United States)

    Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René

    2018-06-01

    Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.

  12. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release.

    Science.gov (United States)

    Prudhviraj, G; Vaidya, Yogyata; Singh, Sachin Kumar; Yadav, Ankit Kumar; Kaur, Puneet; Gulati, Monica; Gowthamarajan, K

    2015-11-01

    Significant clinical success of colon targeted dosage forms has been limited by their inappropriate release profile at the target site. Their failure to release the drug completely in the colon may be attributed to changes in the colonic milieu because of pathological state, drug effect and psychological stress accompanying the diseased state or, a combination of these. Alteration in normal colonic pH and bacterial picture leads to incomplete release of drug from the designed delivery system. We report the effectiveness of a targeted delivery system wherein the constant replenishment of the colonic microbiota is achieved by concomitant administration of probiotics along with the polysaccharide based drug delivery system. Guar gum coated spheroids of sulfasalazine were prepared. In the dissolution studies, these spheroids showed markedly higher release in the simulated colonic fluid. In vivo experiments conducted in rats clearly demonstrated the therapeutic advantage of co-administration of probiotics with guar gum coated spheroids. Our results suggest that concomitant use of probiotics along with the polysaccharide based delivery systems can be a simple strategy to achieve satisfactory colon targeting of drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P.; Ding, H.; Wang, X.B. [Harvard University, Boston, MA (United States). Dept. of Environmental Health

    1995-11-01

    The acute effects of air pollution on preterm delivery were examined in a prospective cohort in Beijing, China. From early pregnancy until delivery in 1988, we followed all registered pregnant women who lived in four residential areas of Beijing. Information for both mothers and infants was collected. Daily air pollution and meteorological data were obtained independently. The sample for analysis included 25 370 resident women who gave first live births in 1988. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on gestational age and preterm delivery (i.e. {lt} 37 wk), with adjustment for outdoor temperature and humidity, day of the week, season, maternal age, gender of child, and residential area. Very high concentrations of ambient sulfur dioxide (mean = 102 {mu}g/m{sup 3}), (maximum = 630 {mu}g/m{sup 3}) and total suspended particulates (mean = 375 {mu}g/m{sup 3}), (maximum =1 003 {mu}g/m{sup 3}) were observed in these areas. There was a significant dose-dependent association between gestational age and sulfur dioxide and total suspended particulate concentrations. The estimated reduced duration of gestation was 0.075 wk (12.6 h) and 0.042 wk (7.1 h) for each 100 {mu}g/m{sup 3} increase in sulfur dioxide and total suspended particulates 7-d lagged moving average, respectively. We concluded that high levels of total suspended particulates and sulfur dioxide, or of a more complex pollution mixture associated with these pollutants, appear to contribute to excess risk of preterm delivery in this population. Further work needs to be carried out, with more detailed information on personal exposure and effect modifiers.

  14. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  15. 2011 Rita Schaffer lecture: nanoparticles for intracellular nucleic acid delivery.

    Science.gov (United States)

    Green, Jordan J

    2012-07-01

    Nanoparticles are a promising technology for delivery of new types of therapeutics. A polymer library approach has allowed engineering of polymeric particles that are particularly effective for the delivery of DNA and siRNA to human cells. Certain chemical structural motifs, degradable linkages, hydrophobicity, and biophysical properties are key for successful intracellular delivery. Small differences to biomaterial structure, and especially the type of degradable linkage in the polymers, can be critical for successful delivery of siRNA vs. DNA. Furthermore, subtle changes to biomaterial structure can facilitate cell-type gene delivery specificity between human brain cancer cells and healthy cells as well as between human retinal endothelial cells and epithelial cells. These polymeric nanoparticles are effective for nucleic acid delivery in a broad range of human cell types and have applications to regenerative medicine, ophthalmology, and cancer among many other biomedical research areas.

  16. Microneedles: quick and easy delivery methods of vaccines

    Science.gov (United States)

    2017-01-01

    Vaccination is the most efficient method for infectious disease prevention. Parenteral injections such as intramuscular, intradermal, and subcutaneous injections have several advantages in vaccine delivery, but there are many drawbacks. Thus, the development of a new vaccine delivery system has long been required. Recently, microneedles have been attracting attention as new vaccination tools. Microneedle is a highly effective transdermal vaccine delivery method due to its mechanism of action, painlessness, and ease of use. Here, we summarized the characteristics of microneedles and the possibilities as a new vaccine delivery route. PMID:28775980

  17. The in vivo study on the radiobiologic effect of prolonged delivery time to tumor control in C57BL mice implanted with Lewis lung cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Xiong, Xiao-Peng; Lu, Jiade; Zhu, Guo-Pei; He, Shao-Qin; Hu, Chao-Su; Ying, Hong-Mei

    2011-01-01

    High-precision radiation therapy techniques such as IMRT or sterotactic radiosurgery, delivers more complex treatment fields than conventional techniques. The increased complexity causes longer dose delivery times for each fraction. The purpose of this work is to explore the radiobiologic effect of prolonged fraction delivery time on tumor response and survival in vivo. 1-cm-diameter Lewis lung cancer tumors growing in the legs of C57BL mice were used. To evaluate effect of dose delivery prolongation, 18 Gy was divided into different subfractions. 48 mice were randomized into 6 groups: the normal control group, the single fraction with 18 Gy group, the two subfractions with 30 min interval group, the seven subfractions with 5 min interval group, the two subfractions with 60 min interval group and the seven subfractions with 10 min interval group. The tumor growth tendency, the tumor growth delay and the mice survival time were analyzed. The tumor growth delay of groups with prolonged delivery time was shorter than the group with single fraction of 18 Gy (P < 0.05). The tumor grow delay of groups with prolonged delivery time 30 min was longer than that of groups with prolonged delivery time 60 min P < 0.05). There was no significant difference between groups with same delivery time (P > 0.05). Compared to the group with single fraction of 18 Gy, the groups with prolonged delivery time shorten the mice survival time while there was no significant difference between the groups with prolonged delivery time 30 min and the groups with prolonged delivery time 60 min. The prolonged delivery time with same radiation dose shorten the tumor growth delay and survival time in the mice implanted with Lewis lung cancer. The anti-tumor effect decreased with elongation of the total interfractional time

  18. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  19. MicroRNA delivery for regenerative medicine.

    Science.gov (United States)

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    , impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  1. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Acute electronic cigarette use: nicotine delivery and subjective effects in regular users.

    Science.gov (United States)

    Dawkins, Lynne; Corcoran, Olivia

    2014-01-01

    Electronic cigarettes are becoming increasingly popular among smokers worldwide. Commonly reported reasons for use include the following: to quit smoking, to avoid relapse, to reduce urge to smoke, or as a perceived lower-risk alternative to smoking. Few studies, however, have explored whether electronic cigarettes (e-cigarettes) deliver measurable levels of nicotine to the blood. This study aims to explore in experienced users the effect of using an 18-mg/ml nicotine first-generation e-cigarette on blood nicotine, tobacco withdrawal symptoms, and urge to smoke. Fourteen regular e-cigarette users (three females), who are abstinent from smoking and e-cigarette use for 12 h, each completed a 2.5 h testing session. Blood was sampled, and questionnaires were completed (tobacco-related withdrawal symptoms, urge to smoke, positive and negative subjective effects) at four stages: baseline, 10 puffs, 60 min of ad lib use and a 60-min rest period. Complete sets of blood were obtained from seven participants. Plasma nicotine concentration rose significantly from a mean of 0.74 ng/ml at baseline to 6.77 ng/ml 10 min after 10 puffs, reaching a mean maximum of 13.91 ng/ml by the end of the ad lib puffing period. Tobacco-related withdrawal symptoms and urge to smoke were significantly reduced; direct positive effects were strongly endorsed, and there was very low reporting of adverse effects. These findings demonstrate reliable blood nicotine delivery after the acute use of this brand/model of e-cigarette in a sample of regular users. Future studies might usefully quantify nicotine delivery in relation to inhalation technique and the relationship with successful smoking cessation/harm reduction.

  3. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  4. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  5. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  6. Exposure to synthetic oxytocin during delivery and its effect on psychomotor development.

    Science.gov (United States)

    González-Valenzuela, María-José; López-Montiel, Dolores; González-Mesa, Ernesto Santiago

    2015-12-01

    The main objective is to examine the influence of oxytocin administration during delivery on psychomotor development at age five years. This was a retrospective cohort study involving two groups: children of mothers exposed vs. not exposed to oxytocin during labor. Of the 7,465 newborns registered in our maternity service during 2006 we randomly selected an initial sample of 400 children. Of these, 146 children were assessed using the motor scale of the Battelle Developmental Inventory. Other predictor variables that could potentially act as confounders and/or interact with the main relationship were also examined. The data were subjected to bivariate analysis, estimates of measures of strength of association, stratified analysis and multivariate binary logistic regression. The results indicate that exposure to synthetic oxytocin during delivery is an independent risk factor for a delay in gross and fine motor development. This was the case after controlling for the variables duration of labor and sex of the newborn, none of which modified the effect of oxytocin on gross and fine motor development. However, sex of the newborn were shown to be confounding gross motor development. In light of these results, and with the aim of preventing possible psychomotor alterations, further studies are now needed to analyze the effect that the oxytocin dose and the duration of perfusion may have on children's subsequent development. © 2015 Wiley Periodicals, Inc.

  7. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    Science.gov (United States)

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  8. Synergistic effects of pyrrolizidine alkaloids and lipopolysaccharide on preterm delivery and intrauterine fetal death in mice.

    Science.gov (United States)

    Guo, Yu; Ma, Zhenguo; Kou, Hao; Sun, Rongze; Yang, Hanxiao; Smith, Charles Vincent; Zheng, Jiang; Wang, Hui

    2013-08-29

    Preterm birth is the leading cause of death for newborn infants, and lipopolysaccharide (LPS) is commonly used to induce preterm delivery in experimental animals. Pyrrolizidine alkaloids (PAs) are widespread and occur in foods, herbs, and other plants. This study was to investigate the synergistic effects of LPS and two representative PAs, retrorsine (RTS) and monocrotaline (MCT), on preterm delivery and fetal death. Pregnant Kunming mice were divided into seven groups: control, RTS, MCT, LPS, RTS+LPS and two MCT+LPS groups. Animals in PAs and PAs+LPS groups were dosed intragastrically with RTS (10mg/kg) or MCT (20 mg/kg or 60 mg/kg) from gestational day (GD) 9 to GD16; mice given LPS were injected intraperitoneally with 150 μg/kg on GD15.5. Latencies to delivery, numbers of pups live and dead at birth were recorded, and livers of live neonates were collected. The incidence of LPS-induced preterm birth was enhanced in dams pretreated with MCT, and combination of PAs and LPS increased fetal mortality from PAs. The enhancement of LPS-induced preterm delivery and fetal demise in animals exposed chronically to PAs and other substances found in foods and beverages consumed widely by humans merits further focused investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  10. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular si

  11. Photoacoustic microscopy imaging for microneedle drug delivery

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  12. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  13. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  14. A Review of the Effect of Processing Variables on the Fabrication of Electro spun Nano fibers for Drug Delivery Applications

    International Nuclear Information System (INIS)

    Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, Ch.; Tomar, L.; Kumar, P.; Toit, L.C.D.; Ndesendo, V.M.K.

    2013-01-01

    Electro spinning is a fast emerging technique for producing ultrafine fibers by utilizing electrostatic repulsive forces. The technique has gathered much attention due to the emergence of nano technology that sparked worldwide research interest in nano materials for their preparation and application in biomedicine and drug delivery. Electro spinning is a simple, adaptable, cost-effective, and versatile technique for producing nano fibers. For effective and efficient use of the technique, several processing parameters need to be optimized for fabricating polymeric nano fibers. The nano fiber morphology, size, porosity, surface area, and topography can be refined by varying these parameters. Such flexibility and diversity in nano fiber fabrication by electro spinning has broadened the horizons for widespread application of nano fibers in the areas of drug and gene delivery, wound dressing, and tissue engineering. Drug-loaded electro spun nano fibers have been used in implants, transdermal systems, wound dressings, and as devices for aiding the prevention of post surgical abdominal adhesions and infection. They show great promise for use in drug delivery provided that one can confidently control the processing variables during fabrication. This paper provides a concise incursion into the application of electro spun nano fibers in drug delivery and cites pertinent processing parameters that may influence the performance of the nano fibers when applied to drug delivery.

  15. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  16. Drug Delivery Systems: A New Frontier in Nano-technology

    Directory of Open Access Journals (Sweden)

    Chamindri Witharana

    2017-09-01

    Full Text Available Nano-technology is a recent advancement in science, defined as “Science, engineering, and technology conducted at the Nano scale” (National nanotechnology initiatives in USA. Applications of Nano-technology cover a vast range from basic material science, personal care applications, agriculture, and medicine. Nano-technology is used in field of medicine for treatment, diagnostic, monitoring, genetic engineering, and drug delivery. There are two main types of Nano Particles (NPs used in drug delivery; organic NPs and inorganic NPs. In drug delivery, the drug-Nano- Particle (NP conjugate should be able to deliver drugs to the target site without degradation in gastrointestinal track and without reducing drug activity. Further, it should attack to target cells without causing any adverse effects. The ultimate goal of NP drug delivery is to improve proper treatment, effectiveness, less side effects with safety and patient adherence as well as reduction in the cost.

  17. Project management: a new service delivery paradigm

    Directory of Open Access Journals (Sweden)

    G. van der Walt

    2007-07-01

    Full Text Available In line with international trends in governance, the South African Government’s initial focus on the development of policy frameworks, structures and systems in order to give effect to the values and principles of the Constitution, shifted to the most critical issue, namely service delivery. The Government became increasingly aware that a significant expansion in the scope and quality of service provision was not possible with traditional delivery settings and approaches. There is growing evidence that there is a need for a significant departure from conventional approaches and that a leap into a new service delivery paradigm is necessary. Increasingly this new paradigm highlights the need to further develop the government’s project management skills and applications with a view to achieving improved delivery capability. In this article the focus will be placed on the changing service delivery paradigm – from an “old” traditional model through the transition to a “new” paradigm. This paradigm is shaped by international and national trends and events in government. The contribution and advantages of project management applications for effective governance are highlighted and the article concludes with an explanation of project management organisational arrangements necessary to support the new paradigm.

  18. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    Science.gov (United States)

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  19. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  20. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Advances in buccal drug delivery.

    Science.gov (United States)

    Birudaraj, Raj; Mahalingam, Ravichandran; Li, Xiaoling; Jasti, Bhaskara R

    2005-01-01

    The buccal route offers an attractive alternative for systemic drug delivery of drugs because of better patient compliance, ease of dosage form removal in emergencies, robustness, and good accessibility. Use of buccal mucosa for drug absorption was first attempted by Sobrero in 1847, and since then much research was done to deliver drugs through this route. Today, research is more focused on the development of suitable delivery devices, permeation enhancement, and buccal delivery of drugs that undergo a first-pass effect, such as cardiovascular drugs, analgesics, and peptides. In addition, studies have been conducted on the development of controlled or slow release delivery systems for systemic and local therapy of diseases in the oral cavity. In this review, the anatomy and physiology of buccal mucosa, followed by discussion of recent literature on the buccal permeation enhancement, and pathways of enhancement for various molecules are detailed. In addition, bioadhesion theories from historic perspective and current status are discussed. The various dosage forms on the market and in different stages of development are also reviewed.

  2. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies

    DEFF Research Database (Denmark)

    Mayhew, T M; Sørensen, Flemming Brandt; Klebe, J G

    1993-01-01

    Placentae from control and diabetic subjects were analysed using stereological techniques in order to assess the effects of mode of delivery (vaginal versus caesarean) and sex of neonate on parenchymal morphology. Effects were assessed using indices of peripheral villous and fetal capillary growt...

  3. The effect of colour and design in labour and delivery: A scientific approach

    Science.gov (United States)

    Duncan, Jane

    2011-03-01

    This study was part of a broader three year research project at London's Chelsea and Westminster Hospital, "A Study of the Effect of the Visual and Performing Arts in Healthcare", exploring whether visual and performing arts have any measurable effect on physiological, psychological and biological outcomes of clinical significance on patient recovery, and providing a potential cost saving benefit to the NHS. In this specific study of women in labour, two measurements were identified as having clinical significance for achieving optimal outcomes during labour and delivery: length of labour and frequency of requirement for analgesia. A screen was designed to hide emergency equipment with the joint aim of reducing women's anxieties and (through visual art) acting as a focal point of attention and distraction during labour, thus diminishing requirements for analgesia. Results demonstrated, in the presence of the screen, a statistically significant shortening of the duration of labour by 2.1h with frequency of requests for epidural analgesia 7% lower in the study group than in the control group. The significant clinical outcomes of this research provide the evidence of the value of integrating visual art into the environment of a labour and delivery room, improving the quality of the maternity service and potentially delivering real cost savings benefits to Hospitals.

  4. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  5. Vocal effectiveness of speech-language pathology students: Before and after voice use during service delivery

    Science.gov (United States)

    Couch, Stephanie; Zieba, Dominique; van der Merwe, Anita

    2015-01-01

    Background As a professional voice user, it is imperative that a speech-language pathologist's (SLP) vocal effectiveness remain consistent throughout the day. Many factors may contribute to reduced vocal effectiveness, including prolonged voice use, vocally abusive behaviours, poor vocal hygiene and environmental factors. Objectives To determine the effect of service delivery on the perceptual and acoustic features of voice. Method A quasi-experimental., pre-test–post-test research design was used. Participants included third- and final-year speech-language pathology students at the University of Pretoria (South Africa). Voice parameters were evaluated in a pre-test measurement, after which the participants provided two consecutive hours of therapy. A post-test measurement was then completed. Data analysis consisted of an instrumental analysis in which the multidimensional voice programme (MDVP) and the voice range profile (VRP) were used to measure vocal parameters and then calculate the dysphonia severity index (DSI). The GRBASI scale was used to conduct a perceptual analysis of voice quality. Data were processed using descriptive statistics to determine change in each measured parameter after service delivery. Results A change of clinical significance was observed in the acoustic and perceptual parameters of voice. Conclusion Guidelines for SLPs in order to maintain optimal vocal effectiveness were suggested. PMID:26304213

  6. Advanced drug delivery approaches against periodontitis.

    Science.gov (United States)

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.

  7. Joint effect of education and age at childbirth on the risk of caesarean delivery: findings from Germany 2008-2015.

    Science.gov (United States)

    Castiglioni, L; Schmiedeberg, C

    2018-02-01

    This article aims at assessing the joint effect of maternal age and education on the risk of having a caesarean delivery. As high maternal education is often associated with lower caesarean-birth rates, but high-educated women tend to postpone motherhood, these effects may offset each other in traditional analyses. Secondary analysis of the data from the German Family Panel pairfam. The interview-based data refer to 1020 births between 2008 and 2015. We analyse only reports from mothers and calculate logistic regression models. The caesarean delivery rate differs strongly between education levels, and low-educated women are at higher risk of having a caesarean delivery when controlling for parity and age. A positive age gradient is found, indicating a higher risk of caesarean section for older mothers. Without controlling for age, the association of education and caesarean section risk is weaker, i.e., effects of age and education partially level each other out. A model including an interaction term between age and education confirms this result. The risk of having a caesarean delivery does not differ between levels of education when maternal age is not taken into account. Lower maternal education and higher age are both positively associated with the risk of experiencing a caesarean section in Germany. However, as higher educated women tend to have their children later, effects of education and age weigh each other out. Preventive campaigns should target women with lower education and raise women's awareness on the risks associated with late motherhood. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    Science.gov (United States)

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.

  9. Cross-Border Electronic Commerce: Distance Effects and Express Delivery in European Union Markets

    OpenAIRE

    Kim, Thai Young; Dekker, Rommert; Heij, Christiaan

    2017-01-01

    textabstractThis empirical study examines distance effects on cross-border electronic commerce and in particular the importance of express delivery in reducing the time dimension of distance. E-commerce provides suppliers with a range of opportunities to reduce distance as perceived by online buyers. They can reduce psychological barriers to cross-border demand by designing websites that simplify the search for and comparison of products and suppliers across countries. They can reduce cost ba...

  10. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The effect of maneuvers for shoulder delivery on perineal trauma

    DEFF Research Database (Denmark)

    Aabakke, Anna J M; Willert, Hanne; Krebs, Lone

    2016-01-01

    -treated analysis. RESULTS: Between June 2013 and March 2015, 650 women were randomized, and 543 (posterior, n = 281; anterior, n = 262) were included in the final intention-to-treat analysis. Most group characteristics were similar. The frequency of any perineal trauma did not differ between the two groups......: This was a randomized single-blinded trial comparing primary delivery of either the anterior or posterior shoulder in women having their first vaginal delivery. Primary outcome was any perineal trauma. Results were analyzed according to the intention-to-treat principle and supplemented with a per-protocol and as...

  12. Efficient and effective implementation of alternative project delivery methods.

    Science.gov (United States)

    2017-05-01

    Over the past decade, the Maryland Department of Transportation State Highway : Administration (MDOT SHA) has implemented Alternative Project Delivery (APD) methods : in a number of transportation projects. While these innovative practices have produ...

  13. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe

    2015-12-01

    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  15. Exploring Different Strategies for Efficient Delivery of Colorectal Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Congcong Lin

    2015-11-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the fourth leading cause of cancer death in the world. Currently available chemotherapy of CRC usually delivers the drug to both normal as well as cancerous tissues, thus leading to numerous undesirable effects. Much emphasis is being laid on the development of effective drug delivery systems for achieving selective delivery of the active moiety at the anticipated site of action with minimized unwanted side effects. Researchers have employed various techniques (dependent on pH, time, pressure and/or bacteria for targeting drugs directly to the colonic region. On the other hand, systemic drug delivery strategies to specific molecular targets (such as FGFR, EGFR, CD44, EpCAM, CA IX, PPARγ and COX-2 overexpressed by cancerous cells have also been shown to be effective. This review aims to put forth an overview of drug delivery technologies that have been, and may be developed, for the treatment of CRC.

  16. Effects of Nebulizer Position, Gas Flow, and CPAP on Aerosol Bronchodilator Delivery: An In Vitro Study.

    Science.gov (United States)

    Ball, Lorenzo; Sutherasan, Yuda; Caratto, Valentina; Sanguineti, Elisa; Marsili, Maria; Raimondo, Pasquale; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2016-03-01

    The aim of this study was to investigate the effects of different delivery circuit configurations, nebulizer positions, CPAP levels, and gas flow on the amount of aerosol bronchodilator delivered during simulated spontaneous breathing in an in vitro model. A pneumatic lung simulator was connected to 5 different circuits for aerosol delivery, 2 delivering CPAP through a high-flow generator tested at 30, 60, and 90 L/min supplementary flow and 5, 10, and 15 cm H2O CPAP and 3 with no CPAP: a T-piece configuration with one extremity closed with a cap, a T-piece configuration without cap and nebulizer positioned proximally, and a T-piece configuration without cap and nebulizer positioned distally. Albuterol was collected with a filter, and the percentage amount delivered was measured by infrared spectrophotometry. Configurations with continuous high-flow CPAP delivered higher percentage amounts of albuterol compared with the configurations without CPAP (9.1 ± 6.0% vs 6.2 ± 2.8%, P = .03). Among configurations without CPAP, the best performance was obtained with a T-piece with one extremity closed with a cap. In CPAP configurations, the highest delivery (13.8 ± 4.4%) was obtained with the nebulizer placed proximal to the lung simulator, independent of flow. CPAP at 15 cm H2O resulted in the highest albuterol delivery (P = .02). Based on our in vitro study, without CPAP, a T-piece with a cap at one extremity maximizes albuterol delivery. During high-flow CPAP, the nebulizer should always be placed proximal to the patient, after the T-piece, using the highest CPAP clinically indicated. Copyright © 2016 by Daedalus Enterprises.

  17. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  18. Interdelivery weight gain and risk of cesarean delivery following a prior vaginal delivery.

    Science.gov (United States)

    Dude, Annie M; Lane-Cordova, Abbi D; Grobman, William A

    2017-09-01

    Approximately one third of all deliveries in the United States are via cesarean. Previous research indicates weight gain during pregnancy is associated with an increased risk of cesarean delivery. It remains unclear, however, whether and to what degree weight gain between deliveries (ie, interdelivery weight gain) is associated with cesarean delivery in a subsequent pregnancy following a vaginal delivery. The objective of the study was to determine whether interdelivery weight gain is associated with an increased risk of intrapartum cesarean delivery following a vaginal delivery. This was a case-control study of women who had 2 consecutive singleton births of at least 36 weeks' gestation between 2005 and 2016, with a vaginal delivery in the index pregnancy. Women were excluded if they had a contraindication to a trial of labor (eg, fetal malpresentation or placenta previa) in the subsequent pregnancy. Maternal characteristics and delivery outcomes for both pregnancies were abstracted from the medical record. Maternal weight gain between deliveries was measured as the change in body mass index at delivery. Women who underwent a subsequent cesarean delivery were compared with those who had a repeat vaginal delivery using χ 2 statistics for categorical variables and Student t tests or analysis of variance for continuous variables. Multivariable logistic regression was used to determine whether interdelivery weight gain remained independently associated with intrapartum cesarean delivery after adjusting for potential confounders. Of 10,396 women who met eligibility criteria and had complete data, 218 (2.1%) had a cesarean delivery in the subsequent pregnancy. Interdelivery weight gain was significantly associated with cesarean delivery and remained significant in multivariable analysis for women with a body mass index increase of at least 2 kg/m 2 (adjusted odds ratio, 1.53, 95% confidence interval, 1.03-2.27 for a body mass index increase of 2 kg/m 2 to gained 2 kg

  19. Can delivery systems use cost-effectiveness analysis to reduce healthcare costs and improve value?

    Science.gov (United States)

    Savitz, Lucy A; Savitz, Samuel T

    2016-01-01

    Understanding costs and ensuring that we demonstrate value in healthcare is a foundational presumption as we transform the way we deliver and pay for healthcare in the U.S. With a focus on population health and payment reforms underway, there is increased pressure to examine cost-effectiveness in healthcare delivery. Cost-effectiveness analysis (CEA) is a type of economic analysis comparing the costs and effects (i.e. health outcomes) of two or more treatment options. The result is expressed as a ratio where the denominator is the gain in health from a measure (e.g. years of life or quality-adjusted years of life) and the numerator is the incremental cost associated with that health gain. For higher cost interventions, the lower the ratio of costs to effects, the higher the value. While CEA is not new, the approach continues to be refined with enhanced statistical techniques and standardized methods. This article describes the CEA approach and also contrasts it to optional approaches, in order for readers to fully appreciate caveats and concerns. CEA as an economic evaluation tool can be easily misused owing to inappropriate assumptions, over reliance, and misapplication. Twelve issues to be considered in using CEA results to drive healthcare delivery decision-making are summarized. Appropriately recognizing both the strengths and the limitations of CEA is necessary for informed resource allocation in achieving the maximum value for healthcare services provided.

  20. Lipid phase control of DNA delivery

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; Tarahovsky, Yury; MacDonald, Robert C. (NWU)

    2010-01-18

    Cationic lipids form nanoscale complexes (lipoplexes) with polyanionic DNA and can be utilized to deliver DNA to cells for transfection. Here we report the correlation between delivery efficiency of these DNA carriers and the mesomorphic phases they form when interacting with anionic membrane lipids. Specifically, formulations that are particularly effective DNA carriers form phases of highest negative interfacial curvature when mixed with anionic lipids, whereas less effective formulations form phases of lower curvature. Structural evolution of the carrier lipid/DNA complexes upon interaction with cellular lipids is hence suggested as a controlling factor in lipid-mediated DNA delivery. A strategy for optimizing lipofection is deduced. The behavior of a highly effective lipoplex formulation, DOTAP/DOPE, is found to conform to this 'efficiency formula'.

  1. Contributing factors to poor service delivery by administrative ...

    African Journals Online (AJOL)

    This article reports on a study that was conducted among non-managerial administrative employees in the public sector in Gauteng. The researchers attempted to determine the effect of specified job factors on the wellbeing and service delivery of these employees. Poor service delivery in the country triggered the research.

  2. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  3. eDelivery

    Data.gov (United States)

    US Agency for International Development — eDelivery provides the electronic packaging and delivery of closed and complete OPM investigation files to government agencies, including USAID, in a secure manner....

  4. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  5. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  6. Studies on kinetics of albumin in uraemic patients on chronic haemodialysis: evidence of interstitial albumin wash-down

    DEFF Research Database (Denmark)

    Hildebrandt, P; Jensen, H A; Henriksen, Jens Henrik Sahl

    1983-01-01

    Albumin-kinetic studies were performed in nine uraemic patients without oedema on chronic haemodialysis and in seven normal controls in order to determine microvascular leakiness and thereby, during steady state, lymph drainage of albumin. Transvascular escape rate of albumin [TERalb i.......e. the fraction of intravascular mass (IVMalb) passing into, or returning from, the extravascular space per unit time] and the distribution ratio (DRalb) between IVMalb and total albumin mass were determined from intravenously injected radioiodinated serum albumin. Before haemodialysis, TERalb was significantly...... with respect to controls (mean 0 X 44, range 0 X 42-0 X 48, P less than 0 X 01), and the extravascular mass of albumin was significantly decreased (mean 27 X 9 mumol kg-1, range 14.1 - 41.2 v. mean 35.9, range 27.1 - 43.8, P less than 0.05). We interpret the results as to indicate increased transvascular...

  7. The in vivo study on the radiobiologic effect of prolonged delivery time to tumor control in C57BL mice implanted with Lewis lung cancer

    Directory of Open Access Journals (Sweden)

    Zhu Guo-Pei

    2011-01-01

    Full Text Available Abstract Background High-precision radiation therapy techniques such as IMRT or sterotactic radiosurgery, delivers more complex treatment fields than conventional techniques. The increased complexity causes longer dose delivery times for each fraction. The purpose of this work is to explore the radiobiologic effect of prolonged fraction delivery time on tumor response and survival in vivo. Methods 1-cm-diameter Lewis lung cancer tumors growing in the legs of C57BL mice were used. To evaluate effect of dose delivery prolongation, 18 Gy was divided into different subfractions. 48 mice were randomized into 6 groups: the normal control group, the single fraction with 18 Gy group, the two subfractions with 30 min interval group, the seven subfractions with 5 min interval group, the two subfractions with 60 min interval group and the seven subfractions with 10 min interval group. The tumor growth tendency, the tumor growth delay and the mice survival time were analyzed. Results The tumor growth delay of groups with prolonged delivery time was shorter than the group with single fraction of 18 Gy (P 0.05. Compared to the group with single fraction of 18 Gy, the groups with prolonged delivery time shorten the mice survival time while there was no significant difference between the groups with prolonged delivery time 30 min and the groups with prolonged delivery time 60 min. Conclusions The prolonged delivery time with same radiation dose shorten the tumor growth delay and survival time in the mice implanted with Lewis lung cancer. The anti-tumor effect decreased with elongation of the total interfractional time.

  8. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  9. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties...... of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  10. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  12. Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice.

    Directory of Open Access Journals (Sweden)

    Mei Zhao

    Full Text Available Increasing evidence demonstrates that maternal folic acid (FA supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study was to investigate the effects of FA on LPS-induced preterm delivery, fetal death and IUGR in mice. Some pregnant mice were orally administered with FA (0.6, 3 or 15 mg/kg 1 h before LPS injection. As expected, a high dose of LPS (300 μg/kg, i.p. on gestational day 15 (GD15 caused 100% of dams to deliver before GD18 and 89.3% of fetuses dead. A low dose of LPS (75 μg/kg, i.p. daily from GD15 to GD17 resulted in IUGR. Interestingly, pretreatment with FA prevented LPS-induced preterm delivery and fetal death. In addition, FA significantly attenuated LPS-induced IUGR. Further experiments showed that FA inhibited LPS-induced activation of nuclear factor kappa B (NF-κB in mouse placentas. Moreover, FA suppressed LPS-induced NF-κB activation in human trophoblast cell line JEG-3. Correspondingly, FA significantly attenuated LPS-induced upregulation of cyclooxygenase (COX-2 in mouse placentas. In addition, FA significantly reduced the levels of interleukin (IL-6 and keratinocyte-derived cytokine (KC in amniotic fluid of LPS-treated mice. Collectively, maternal FA supplementation during pregnancy protects against LPS-induced preterm delivery, fetal death and IUGR through its anti-inflammatory effects.

  13. Aerosol Drug Delivery During Noninvasive Positive Pressure Ventilation: Effects of Intersubject Variability and Excipient Enhanced Growth

    Science.gov (United States)

    Walenga, Ross L.; Kaviratna, Anubhav; Hindle, Michael

    2017-01-01

    Abstract Background: Nebulized aerosol drug delivery during the administration of noninvasive positive pressure ventilation (NPPV) is commonly implemented. While studies have shown improved patient outcomes for this therapeutic approach, aerosol delivery efficiency is reported to be low with high variability in lung-deposited dose. Excipient enhanced growth (EEG) aerosol delivery is a newly proposed technique that may improve drug delivery efficiency and reduce intersubject aerosol delivery variability when coupled with NPPV. Materials and Methods: A combined approach using in vitro experiments and computational fluid dynamics (CFD) was used to characterize aerosol delivery efficiency during NPPV in two new nasal cavity models that include face mask interfaces. Mesh nebulizer and in-line dry powder inhaler (DPI) sources of conventional and EEG aerosols were both considered. Results: Based on validated steady-state CFD predictions, EEG aerosol delivery improved lung penetration fraction (PF) values by factors ranging from 1.3 to 6.4 compared with conventional-sized aerosols. Furthermore, intersubject variability in lung PF was very high for conventional aerosol sizes (relative differences between subjects in the range of 54.5%–134.3%) and was reduced by an order of magnitude with the EEG approach (relative differences between subjects in the range of 5.5%–17.4%). Realistic in vitro experiments of cyclic NPPV demonstrated similar trends in lung delivery to those observed with the steady-state simulations, but with lower lung delivery efficiencies. Reaching the lung delivery efficiencies reported with the steady-state simulations of 80%–90% will require synchronization of aerosol administration during inspiration and reducing the size of the EEG aerosol delivery unit. Conclusions: The EEG approach enabled high-efficiency lung delivery of aerosols administered during NPPV and reduced intersubject aerosol delivery variability by an order of magnitude. Use of an in

  14. Aerosol Drug Delivery During Noninvasive Positive Pressure Ventilation: Effects of Intersubject Variability and Excipient Enhanced Growth.

    Science.gov (United States)

    Walenga, Ross L; Longest, P Worth; Kaviratna, Anubhav; Hindle, Michael

    2017-06-01

    Nebulized aerosol drug delivery during the administration of noninvasive positive pressure ventilation (NPPV) is commonly implemented. While studies have shown improved patient outcomes for this therapeutic approach, aerosol delivery efficiency is reported to be low with high variability in lung-deposited dose. Excipient enhanced growth (EEG) aerosol delivery is a newly proposed technique that may improve drug delivery efficiency and reduce intersubject aerosol delivery variability when coupled with NPPV. A combined approach using in vitro experiments and computational fluid dynamics (CFD) was used to characterize aerosol delivery efficiency during NPPV in two new nasal cavity models that include face mask interfaces. Mesh nebulizer and in-line dry powder inhaler (DPI) sources of conventional and EEG aerosols were both considered. Based on validated steady-state CFD predictions, EEG aerosol delivery improved lung penetration fraction (PF) values by factors ranging from 1.3 to 6.4 compared with conventional-sized aerosols. Furthermore, intersubject variability in lung PF was very high for conventional aerosol sizes (relative differences between subjects in the range of 54.5%-134.3%) and was reduced by an order of magnitude with the EEG approach (relative differences between subjects in the range of 5.5%-17.4%). Realistic in vitro experiments of cyclic NPPV demonstrated similar trends in lung delivery to those observed with the steady-state simulations, but with lower lung delivery efficiencies. Reaching the lung delivery efficiencies reported with the steady-state simulations of 80%-90% will require synchronization of aerosol administration during inspiration and reducing the size of the EEG aerosol delivery unit. The EEG approach enabled high-efficiency lung delivery of aerosols administered during NPPV and reduced intersubject aerosol delivery variability by an order of magnitude. Use of an in-line DPI device that connects to the NPPV mask appears to be a

  15. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  16. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  17. The effect of maternal fasting during Ramadan on preterm delivery: a prospective cohort study.

    Science.gov (United States)

    Awwad, J; Usta, I M; Succar, J; Musallam, K M; Ghazeeri, G; Nassar, A H

    2012-10-01

    To determine the effect of fasting during the month of Ramadan on the rate of preterm delivery (PTD). A prospective cohort study of women with singleton pregnancies who elected to fast and matched controls. Four medical centres in Beirut, Lebanon. Women presenting for prenatal care (20-34 weeks of gestation) during the month of Ramadan, September 2008. Data were collected prospectively. The frequency of PTD was evaluated in relation to the duration of fasting and the stage of gestation at the time of fasting. The primary endpoint was the percentage of pregnant women who had PTD, defined as delivery before 37 completed weeks of gestation. A total of 468 women were approached, of whom 402 were included in the study. There were no differences in smoking history and employment. There was no difference in the proportion of women who had PTD at Ramadan-fasted group and the controls, respectively. The PTD rate was also similar in those who fasted before or during the third trimester. The mean birthweight was lower (3094 ± 467 g versus 3202 ± 473 g, P = 0.024) and the rate of ketosis and ketonuria was higher in the Ramadan-fasted women. On multivariate stepwise logistic regression analysis, fasting was not associated with an increased risk of PTD (odds ratio 0.72; 95% confidence interval 0.34-1.54; P = 0.397). The only factor that had a significant effect on the PTD rate was body mass index (odds ratio 0.43; 95% confidence interval 0.20-0.93; P = 0.033). Fasting during the month of Ramadan does not seem to increase the baseline risk of preterm delivery in pregnant women regardless of the gestational age during which this practice is observed. © 2012 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG.

  18. Date fruit consumption at term: Effect on length of gestation, labour and delivery.

    Science.gov (United States)

    Razali, Nuguelis; Mohd Nahwari, Siti Hayati; Sulaiman, Sofiah; Hassan, Jamiyah

    2017-07-01

    Labour induction and augmentation with Prostaglandin and Oxytocin are well established as standard practice worldwide. They are safe when used judiciously, but may be associated with maternal and neonatal morbidities. Other safer alternatives have been studied including dates consumption during late pregnancy with various outcomes. The aim of this randomised controlled trial was to investigate the effect of date fruit consumption during late pregnancy on the onset of labour and need for induction or augmentation of labour. A total of 154 nulliparous women with an uncomplicated singleton pregnancy were randomly allocated to either dates-consumer (77) or control group (77). The women in the dates-consumer group had significantly less need for augmentation of labour and longer intervention to delivery interval. There was no significant difference in the onset of spontaneous labour. Dates consumption reduces the need for labour augmentation but does not expedite the onset of labour. Impact statement • Dates fruit consumption during late pregnancy has been shown to positively affect the outcome of labour and delivery. In this study, date consumption reduced the need for labour augmentation with oxytocin but did not expedite the onset of labour. Therefore, dates consumption in late pregnancy is a safe supplement to be considered as it reduced the need for labour intervention without any adverse effect on the mother and child. This further supports the finding of earlier studies.

  19. At what price? A cost-effectiveness analysis comparing trial of labour after previous caesarean versus elective repeat caesarean delivery.

    Directory of Open Access Journals (Sweden)

    Christopher G Fawsitt

    Full Text Available BACKGROUND: Elective repeat caesarean delivery (ERCD rates have been increasing worldwide, thus prompting obstetric discourse on the risks and benefits for the mother and infant. Yet, these increasing rates also have major economic implications for the health care system. Given the dearth of information on the cost-effectiveness related to mode of delivery, the aim of this paper was to perform an economic evaluation on the costs and short-term maternal health consequences associated with a trial of labour after one previous caesarean delivery compared with ERCD for low risk women in Ireland. METHODS: Using a decision analytic model, a cost-effectiveness analysis (CEA was performed where the measure of health gain was quality-adjusted life years (QALYs over a six-week time horizon. A review of international literature was conducted to derive representative estimates of adverse maternal health outcomes following a trial of labour after caesarean (TOLAC and ERCD. Delivery/procedure costs derived from primary data collection and combined both "bottom-up" and "top-down" costing estimations. RESULTS: Maternal morbidities emerged in twice as many cases in the TOLAC group than the ERCD group. However, a TOLAC was found to be the most-effective method of delivery because it was substantially less expensive than ERCD (€ 1,835.06 versus € 4,039.87 per women, respectively, and QALYs were modestly higher (0.84 versus 0.70. Our findings were supported by probabilistic sensitivity analysis. CONCLUSIONS: Clinicians need to be well informed of the benefits and risks of TOLAC among low risk women. Ideally, clinician-patient discourse would address differences in length of hospital stay and postpartum recovery time. While it is premature advocate a policy of TOLAC across maternity units, the results of the study prompt further analysis and repeat iterations, encouraging future studies to synthesis previous research and new and relevant evidence under a single

  20. Outcome of deliveries in healthy but obese women: obesity and delivery outcome

    Directory of Open Access Journals (Sweden)

    Kaplan-Sturk Rebecka

    2013-02-01

    Full Text Available Abstract Background Obesity among fertile women is a global problem. 25% of pregnant Swedish women are overweight at admission to the antenatal clinic and 12% of them are considered as obese. Previous studies have shown an increased risk of delivery complications with an elevated maternal BMI. The aim of this study was to evaluate delivery outcomes in relation to maternal BMI on admission to the antenatal clinic. A healthy group of 787 women with full-term pregnancies and spontaneous onset of labor were included in the study. Delivery outcome was assessed in relation to maternal BMI when attending the antenatal clinic. Results The results indicated that in deliveries where the maternal BMI was >30 a high frequency of abnormal CTG trace during the last 30 minutes of labor was shown. A blood sample for evaluation of risk of fetal hypoxia was performed in only eight percent of these deliveries. A spontaneous vaginal delivery without intervention was noted in 85.7%, and 12% of neonates were delivered with an adverse fetal outcome compared to 2.8% in the group with a maternal BMI Conclusion These results indicate an increased risk at delivery for healthy, but obese women in labor. Furthermore, the delivery management may not always be optimal in these deliveries.

  1. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  2. Timing of delivery after external cephalic version and the risk for cesarean delivery.

    Science.gov (United States)

    Kabiri, Doron; Elram, Tamar; Aboo-Dia, Mushira; Elami-Suzin, Matan; Elchalal, Uriel; Ezra, Yossef

    2011-08-01

    To estimate the association between time of delivery after external cephalic version at term and the risk for cesarean delivery. This retrospective cohort study included all successful external cephalic versions performed in a tertiary center between January 1997 and January 2010. Stepwise logistic regression was used to calculate the odds ratio (OR) for cesarean delivery. We included 483 external cephalic versions in this study, representing 53.1% of all external cephalic version attempts. The incidence of cesarean delivery for 139 women (29%) who gave birth less than 96 hours from external cephalic version was 16.5%; for 344 women (71%) who gave birth greater than 96 hours from external cephalic version, the incidence of cesarean delivery was 7.8% (P = .004). The adjusted OR for cesarean delivery was 2.541 (95% confidence interval 1.36-4.72). When stratified by parity, the risk for cesarean delivery when delivery occurred less than 96 hours after external cephalic version was 2.97 and 2.28 for nulliparous and multiparous women, respectively. Delivery at less than 96 hours after successful external cephalic version was associated with an increased risk for cesarean delivery. III.

  3. Determinants of antenatal care, institutional delivery and postnatal ...

    African Journals Online (AJOL)

    Conclusion: Improving utilization of these three MCH indicators will require targeting women in the rural areas and those with low level of education as well as creating demand for health facility delivery. Improving ANC use by making it available and accessible will have a multiplier effect of improving facility delivery which ...

  4. Bioengineered microparticles for controlled drug delivery to the lungs

    OpenAIRE

    Sivadas, Neeraj

    2010-01-01

    Traditional formulations for pulmonary drug delivery mainly focused on two approaches: (i) Dissolving or suspending the drug in a solvent or propellant to produce liquid aerosols or (ii) Blending drug particulates with dry carrier particles typically composed of sugars. Although effective for localised delivery of small drug molecules, these methods did not meet the complex formulation and delivery challenges posed by the newer biotechnology-derived medicines. One of the many avenues being ex...

  5. ASSESSMENT OF E-COMMERCE USAGE FOR EFFECTIVE SERVICE DELIVERY IN NIGERIA BANKING SECTOR

    OpenAIRE

    Soneye Gbolade Michael

    2017-01-01

    This study assessed the extent of e-commerce usage for effective service delivery in Nigeria banking sector. Four research questions and four null hypotheses guided the study. Descriptive survey research design was adopted for the study. The study covered 64 microfinance banks in Oyo State, South-West, Nigeria. The population was made up of 1275 staffs from the 64 microfinance banks. The sample size consisted of 28 microfinance banks of which 280 staffs were purposively selected. A 28-item st...

  6. Channel integration in governmental service delivery: the effects on citizen behavior and perceptions

    NARCIS (Netherlands)

    Pieterson, Willem Jan; Teerling, Marije; Wimmer, Maria A.; Scholl, Hans J.; Janssen, Marijn; Traunmüller, Roland

    2009-01-01

    Governmental agencies continuously work on the improvement of their service delivery through an array of channels. To improve service satisfaction and to reduce the cost of service delivery, channel integration gets more popular with governmental agencies. In a quasi experimental longitudinal field

  7. Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic mesalamine forms for colon delivery.

    Science.gov (United States)

    Mihaela Friciu, Maria; Canh Le, Tien; Ispas-Szabo, Pompilia; Mateescu, Mircea Alexandru

    2013-11-01

    For drugs expected to act locally in the colon, and for successful treatment, a delivery device is necessary, in order to limit the systemic absorption which decreases effectiveness and causes important side effects. Various delayed release systems are currently commercialized; most of them based on pH-dependent release which is sensitive to gastrointestinal pH variation. This study proposes a novel excipient for colon delivery. This new preparation consists in the complexation between carboxymethyl starch (CMS) and Lecithin (L). As opposed to existing excipients, the new complex is pH-independent, inexpensive, and easy to manufacture and allows a high drug loading. FTIR, X-ray, and SEM structural analysis all support the hypothesis of the formation of a complex. By minor variation of the excipient content within the tablet, it is possible to modulate the release time and delivery at specific sites of the gastrointestinal tract. This study opens the door to a new pH-independent delivery system for mesalamine targeted administration. Our novel formulation fits well with the posology of mesalamine, used in the treatment of Inflammatory Bowel Disease (IBD), which requires repeated administrations (1g orally four times a day) to maintain a good quality of life. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  9. Inhalation drug delivery devices: technology update

    Directory of Open Access Journals (Sweden)

    Ibrahim M

    2015-02-01

    Full Text Available Mariam Ibrahim, Rahul Verma, Lucila Garcia-ContrerasDepartment of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USAAbstract: The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided.Keywords: pulmonary delivery, asthma, nebulizers, metered dose inhaler, dry powder inhaler

  10. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  12. Microneedles for intradermal and transdermal delivery

    Science.gov (United States)

    Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F

    2014-01-01

    The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534

  13. Smart Polymers in Nasal Drug Delivery.

    Science.gov (United States)

    Chonkar, Ankita; Nayak, Usha; Udupa, N

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones.

  14. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    Science.gov (United States)

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  16. Microneedle-mediated delivery of viral vectored vaccines.

    Science.gov (United States)

    Zaric, Marija; Ibarzo Yus, Bárbara; Kalcheva, Petya Petrova; Klavinskis, Linda Sylvia

    2017-10-01

    Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.

  17. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  18. Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches.

    Science.gov (United States)

    Hu, Longsheng; Silva, Sérgio M C; Damaj, Bassam B; Martin, Richard; Michniak-Kohn, Bozena B

    2011-12-12

    We investigated the enhancement effect of chemical enhancers and iontophoresis on the in vitro transdermal and transbuccal delivery of lidocaine HCl (LHCl), nicotine hydrogen tartrate (NHT), and diltiazem HCl (DHCl) using porcine skin and buccal tissues. Dodecyl 2-(N,N-dimethylamino) propionate (DDAIP), dodecyl-2-(N,N-dimethylamino) propionate hydrochloride (DDAIP HCl), N-(4-bromobenzoyl)-S,S-dimethyliminosulfurane (Br-iminosulfurane), and azone (laurocapram) were used as chemical enhancers. The study results showed that the application of iontophoresis at either 0.1 mA or 0.3 mA significantly enhanced transdermal and transmucosal delivery of LHCl, NHT and DHCl. It was also demonstrated that iontophoresis had a more pronounced enhancement effect on transdermal delivery than on transbuccal delivery of LHCl, NHT and DHCl. In addition, DDAIP HCl was found to be the most effective enhancer for transbuccal delivery of LHCl and NHT. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Redefining continuing education delivery.

    Science.gov (United States)

    Carlton, K H

    1997-01-01

    Just as technology is transforming the delivery of education, the Internet and advanced telecommunication applications are changing the "face" of CE and the connotation of "lifelong learning." As late as the mid-1980s, a discussion of computer applications in nursing CE focused on the "timely" transition to microcomputers as tools for the enhancement of managerial tasks for increased productivity. Even as recently as 1990, there seemed to be "time" for those providers who were "slower to adopt innovation" to "catch up." Now, the CE provider who does not integrate the microcomputer and advanced telecommunications as an integral component of their delivery modalities may be outsourced rapidly by an educational or commercial competitive unit that is able to utilize the communication medium, mergers and partnerships, enterprise, and individual lifestyle and learning patterns that will epitomize the CE unit of the 21st century. As with the "re-engineering" of nursing education, the "re-engineered" delivery modalities of evolving CE entity might now best be conceptualized on a continuum from the traditional mode that time and place dependent to a mode of synchronous and asynchronous data and advanced telecommunication. Delivery methods will need to be selected according to the target populations, content, and situation. The health-care educational provider may discover, as in other industries, that a combination of distance and residential offerings will be the most successful medium for the delivery of CE to the progressively more "information and technologically savvy" lifelong learner of the 21st century. In addressing the dramatic effects of the information technology era on the refocused multimedia/interactive delivery method for student education, educators amply quoted Bob Dylan's phrase of the 1960s, "The times, they are a-changing." And so, we see that the times are also changing at an astronomical rate for the health-care educational provider as well as the

  20. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  1. Improved overall delivery documentation following implementation of a standardized shoulder dystocia delivery form

    Science.gov (United States)

    Moragianni, Vasiliki A.; Hacker, Michele R.; Craparo, Frank J.

    2013-01-01

    Objective Our objective was to evaluate whether using a standardized shoulder dystocia delivery form improved documentation. A standardized delivery form was added to our institution’s obstetrical record in August 2003. Methods A retrospective cohort study was conducted comparing 100 vaginal deliveries complicated by shoulder dystocia before, and 81 after implementation of the standardized delivery form. The two groups were compared in terms of obstetric characteristics, neonatal outcomes and documentation components. Results Charts that included the standardized delivery form were more likely to contain documentation of estimated fetal weight (82.7% vs. 39.0% without the form, Pdystocia, and second stage duration. Conclusions Inclusion of a standardized form in the delivery record improves the rate of documentation of both shoulder dystocia-specific and general delivery components. PMID:22017330

  2. Leadership training design, delivery, and implementation: A meta-analysis.

    Science.gov (United States)

    Lacerenza, Christina N; Reyes, Denise L; Marlow, Shannon L; Joseph, Dana L; Salas, Eduardo

    2017-12-01

    Recent estimates suggest that although a majority of funds in organizational training budgets tend to be allocated to leadership training (Ho, 2016; O'Leonard, 2014), only a small minority of organizations believe their leadership training programs are highly effective (Schwartz, Bersin, & Pelster, 2014), calling into question the effectiveness of current leadership development initiatives. To help address this issue, this meta-analysis estimates the extent to which leadership training is effective and identifies the conditions under which these programs are most effective. In doing so, we estimate the effectiveness of leadership training across four criteria (reactions, learning, transfer, and results; Kirkpatrick, 1959) using only employee data and we examine 15 moderators of training design and delivery to determine which elements are associated with the most effective leadership training interventions. Data from 335 independent samples suggest that leadership training is substantially more effective than previously thought, leading to improvements in reactions (δ = .63), learning (δ = .73), transfer (δ = .82), and results (δ = .72), the strength of these effects differs based on various design, delivery, and implementation characteristics. Moderator analyses support the use of needs analysis, feedback, multiple delivery methods (especially practice), spaced training sessions, a location that is on-site, and face-to-face delivery that is not self-administered. Results also suggest that the content of training, attendance policy, and duration influence the effectiveness of the training program. Practical implications for training development and theoretical implications for leadership and training literatures are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  4. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery.

    Science.gov (United States)

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-07-20

    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  5. Newborn Analgesia Mediated by Oxytocin during Delivery

    Science.gov (United States)

    Mazzuca, Michel; Minlebaev, Marat; Shakirzyanova, Anastasia; Tyzio, Roman; Taccola, Giuliano; Janackova, Sona; Gataullina, Svetlana; Ben-Ari, Yehezkel; Giniatullin, Rashid; Khazipov, Rustem

    2011-01-01

    The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth. PMID:21519396

  6. Traditional Birth Attendant reorientation and Motherpacks incentive's effect on health facility delivery uptake in Narok County, Kenya: An impact analysis.

    Science.gov (United States)

    Kitui, John Emmanuel; Dutton, Vaughan; Bester, Dirk; Ndirangu, Rachel; Wangai, Susan; Ngugi, Stephen

    2017-04-21

    A community health programme in Narok County in Kenya aimed to improve skilled birth assistance during childbirth through two demand side interventions. First, traditional birth attendants (TBAs) were co-opted into using their influence to promote use of skilled birth attendants (SBAs) at health facilities during delivery, and to accompany pregnant women to health facilities in return for a Ksh500 (Approximately USD5 as of August 2016) cash incentive for each pregnant mother they accompanied. Secondly, a free Motherpack consisting of a range of baby care items was given to each mother after delivering at a health facility. This paper estimates the impact of these two interventions on trends of facility deliveries over a 36-month period here. Dependency or inferred causality was estimated between reorientation of TBAs and provision of Motherpacks with changes in facility delivery numbers. The outcome variable consists of monthly facility delivery data from 28 health facilities starting from January 2013 to December 2015 obtained from the District Health Information Systems 2 (DHIS2). Data were collected on the 13th, 14th or 15th of each month, resulting in a total of 35 collections, over 35 months. The intervention data consisted of the starting month for each of the two interventions at each of the 28 facilities. A negative binomial generalized linear model framework is applied to model the relationship as all variables were measured as count data and were overdispersed. All analyses were conducted using R software. During the 35 months considered, a total of 9095 health facility deliveries took place, a total of 408 TBAs were reached, and 2181 Motherpacks were distributed. The reorientation of TBAs was significant (p = 0.009), as was the provision of Motherpacks (p = .0001). The number of months that passed since the start of the intervention was also found to be significant (p = 0.033). The introduction of Motherpacks had the greatest effect on the

  7. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  8. Neuraxial labor analgesia for vaginal delivery and its effects on childhood learning disabilities.

    Science.gov (United States)

    Flick, Randall P; Lee, Kunmoo; Hofer, Ryan E; Beinborn, Charles W; Hambel, Ellen M; Klein, Melissa K; Gunn, Paul W; Wilder, Robert T; Katusic, Slavica K; Schroeder, Darrell R; Warner, David O; Sprung, Juraj

    2011-06-01

    In prior work, children born to mothers who received neuraxial anesthesia for cesarean delivery had a lower incidence of subsequent learning disabilities compared with vaginal delivery. The authors speculated that neuraxial anesthesia may reduce stress responses to delivery, which could affect subsequent neurodevelopmental outcomes. To further explore this possibility, we examined the association between the use of neuraxial labor analgesia and development of childhood learning disabilities in a population-based birth cohort of children delivered vaginally. The educational and medical records of all children born to mothers residing in the area of 5 townships of Olmsted County, Minnesota from 1976 to 1982 and remaining in the community at age 5 years were reviewed to identify those with learning disabilities. Cox proportional hazards regression was used to compare the incidence of learning disabilities between children delivered vaginally with and without neuraxial labor analgesia, including analyses adjusted for factors of either potential clinical relevance or that differed between the 2 groups in univariate analysis. Of the study cohort, 4684 mothers delivered children vaginally, with 1495 receiving neuraxial labor analgesia. The presence of childhood learning disabilities in the cohort was not associated with use of labor neuraxial analgesia (adjusted hazard ratio, 1.05; 95%confidence interval, 0.85-1.31; P = 0.63). The use of neuraxial analgesia during labor and vaginal delivery was not independently associated with learning disabilities diagnosed before age 19 years. Future studies are needed to evaluate potential mechanisms of the previous finding indicating that the incidence of learning disabilities is lower in children born to mothers via cesarean delivery under neuraxial anesthesia compared with vaginal delivery.

  9. Effects of Chemical and Physical Enhancement Techniques on Transdermal Delivery of Cyanocobalamin (Vitamin B12 In Vitro

    Directory of Open Access Journals (Sweden)

    Ajay K. Banga

    2011-08-01

    Full Text Available Vitamin B12 deficiency, which may result in anemia and nerve damage if left untreated, is currently treated by administration of cyanocobalamin via oral or intramuscular routes. However, these routes are associated with absorption and compliance issues which have prompted us to investigate skin as an alternative site of administration. Delivery through skin, however, is restricted to small and moderately lipophilic molecules due to the outermost barrier, the stratum corneum (SC. In this study, we have investigated the effect of different enhancement techniques, chemical enhancers (ethanol, oleic acid, propylene glycol, iontophoresis (anodal iontophoresis and microneedles (soluble maltose microneedles, which may overcome this barrier and improve cyanocobalamin delivery. Studies with different chemical enhancer formulations indicated that ethanol and oleic acid decreased the lag time while propylene glycol based formulations increased the lag time. The formulation with ethanol (50%, oleic acid (10% and propylene glycol (40% showed the maximum improvement in delivery. Iontophoresis and microneedle treatments resulted in enhanced permeation levels compared to passive controls. These enhancement approaches can be explored further to develop alternative treatment regimens.

  10. Investigation of a thiolated polymer in gene delivery

    Science.gov (United States)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  11. Delivery routes for probiotics: Effects on broiler performance, intestinal morphology and gut microflora

    Directory of Open Access Journals (Sweden)

    Chen G. Olnood

    2015-09-01

    Full Text Available Four delivery routes, via, feed, water, litter and oral gavage, were examined for their efficacy in delivering a novel probiotic of poultry origin, Lactobacillus johnsonii, to broilers. Seven treatments of 6 replicates each were allocated using 336 one-day-old Cobb broiler chicks. The treatments consisted of a basal diet with the probiotic candidate, L. johnsonii, added to the feed, and three treatments with L. johnsonii added to the drinking water, sprayed on the litter, or gavaged orally. In addition, a positive control treatment received the basal diet supplemented with zinc-bacitracin (ZnB, 50 mg/kg. The probiotic strain of L. johnsonii was detected in the ileum of the chicks for all four delivery routes. However, the addition of L. johnsonii as a probiotic candidate did not improve body weight gain, feed intake and feed conversion ratio of broiler chickens raised on litter during the 5-week experimental period regardless of the route of administration. The probiotic treatments, regardless of the routes of delivery, affected (P < 0.05 the pH of the caecal digesta and tended (P = 0.06 to affect the pH of the ileal digesta on d 7, but the effect disappeared as the birds grew older. All probiotic treatments reduced the number of Enterobacteria in the caeca on d 21, and tended (P < 0.054 to reduce it in the ileum and caeca on d 7 and in the ileum on d 21 compared with the controls. The probiotic also tended to increase the number of lactic acid bacteria and lactobacilli in the ileum and caeca on d 7, but this trend was not evident on d 21. The trend appeared most pronounced when the probiotic was delivered orally or via litter. The probiotic also decreased (P < 0.05 the population of Clostridium perfringens rapidly from an early age to d 21 in the caeca, leading to a 3-fold decrease in the number of C. perfringens between d 7 and 21. It also showed that the probiotic treatment presented the lowest number of C. perfringens in the caeca. Delivery

  12. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  13. Effects of epidural analgesia on labor length, instrumental delivery, and neonatal short-term outcome.

    Science.gov (United States)

    Hasegawa, Junichi; Farina, Antonio; Turchi, Giovanni; Hasegawa, Yuko; Zanello, Margherita; Baroncini, Simonetta

    2013-02-01

    We aimed to clarify whether the short-term adverse neonatal outcomes associated with epidural analgesia are due to the epidural analgesia itself or to the instrumental delivery. A retrospective case-control study was conducted to evaluate the relationship between epidural analgesia, labor length, and perinatal outcomes. A total of 350 pregnant women at term who delivered under epidural analgesia (cases) were compared with 1400 patients without epidural analgesia (controls). Vacuum extraction (6.5 vs. 2.9 %) and cesarean section (19.9 vs. 11.1 %) were more frequently performed in the cases than controls (p neonatal variables stratified by mode of delivery were not different in cases and controls, except for a slightly lower umbilical arterial pH in spontaneous delivery for the cases group. However, the Apgar scores and umbilical arterial pH were significantly lower in the neonates delivered by vacuum extraction compared with those in the neonates delivered by spontaneous delivery or cesarean section, regardless of whether epidural analgesia was performed. A multivariable analysis showed that vacuum extraction much more consistently affected the arterial pH than the analgesia itself (the β coefficients were -0.036 for epidural analgesia vs. -0.050 for vacuum extraction). Epidural analgesia was associated with slowly progressing labor, thus resulting in an increased rate of instrumental delivery. This instrumental delivery appears to adversely affect the neonatal outcomes more strongly than the analgesia itself.

  14. Effectiveness of a Hybrid Classroom in the Delivery of Medical Terminology Course Content

    Science.gov (United States)

    Martin, Jeffrey S.; Kreiger, Joan E.; Apicerno, Amy L

    2015-01-01

    Hybrid courses are emerging as a viable option for content delivery across college campuses. In an attempt to maximize learning outcomes while leveraging resources, one institution used several sections of a Medical Terminology course as a pilot. Traditional and hybrid course delivery were compared utilizing a quantitative research method to…

  15. How can innovative project delivery systems improve the overall efficiency of GDOT in transportation project delivery?

    Science.gov (United States)

    2013-04-01

    The USDOT and Federal Highway Administration (FHWA) recommend the smart use of innovative project : delivery systems, such as design-build, to improve efficiency and effectiveness of developing transportation : projects. Although design-build provide...

  16. Mode of delivery after obstetric anal sphincter injury.

    Science.gov (United States)

    Karmarkar, Roopali; Bhide, Alka; Digesu, Alex; Khullar, Vik; Fernando, Ruwan

    2015-11-01

    To assess the effect of vaginal delivery and caesarean section on faecal symptoms and structure and function of anal sphincter in women who sustained obstetric anal sphincter injuries (OASIS) in their previous pregnancy and were advised about the mode of delivery based on faecal incontinence symptoms, anal manometry and endoanal ultrasound. It is a descriptive study on a cohort of women who had OASIS from 2006 to 2013. They were assessed after OASIS and during subsequent pregnancy with a questionnaire, endoanal ultrasound and anal manometry. Vaginal delivery was recommended to asymptomatic women with normal investigations. Elective caesarean section was recommended to women with faecal symptoms, anal sphincter defects of more than 30° or low resting or incremental anal pressures. All women were reassessed after subsequent delivery. Fifty women who had pregnancies after OASIS, were seen after OASIS, during subsequent pregnancy and after the second delivery. 15 women had faecal symptoms after OASIS. The external, internal and combined anal sphincter defects were seen in 13, 11 and 9 women respectively. Low resting and incremental pressure were seen in 15 and 11 women respectively. Caesarean section was done in 22 women and 28 women delivered vaginally. Worsening of faecal symptoms and reduction in anal pressures were not observed in planned vaginal delivery or elective caesarean section groups. Faecal symptoms were worse with reduced anal pressures in three women from the planned caesarean section group. One of the women had a vaginal delivery and two women had emergency caesarean section at 7cm and 10cm dilatation. There were no new sphincter defects or recurrent OASIS in any of the women in the study group. Decision about the mode of delivery of pregnancy after OASIS based on symptoms, anal manometry and endoanal ultrasound helps in preserving the anal sphincter function and avoiding unnecessary caesarean sections. Further follow-up of these patients is essential

  17. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  18. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines.

    Science.gov (United States)

    Démoulins, Thomas; Milona, Panagiota; Englezou, Pavlos C; Ebensen, Thomas; Schulze, Kai; Suter, Rolf; Pichon, Chantal; Midoux, Patrick; Guzmán, Carlos A; Ruggli, Nicolas; McCullough, Kenneth C

    2016-04-01

    Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Using DNA nanotechnology to produce a drug delivery system

    International Nuclear Information System (INIS)

    La, Thi Huyen; Nguyen, Thi Thu Thuy; Pham, Van Phuc; Nguyen, Thi Minh Huyen; Le, Quang Huan

    2013-01-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. (paper)

  20. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Science.gov (United States)

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  1. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Directory of Open Access Journals (Sweden)

    Qiu-Lan Zhou

    2014-01-01

    Full Text Available With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo, including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

  2. [Formulation aspects and ex-vivo examination of buccal drug delivery systems].

    Science.gov (United States)

    Szabó, Barnabás; Hetényi, Gergely; Majoros, Klaudia; Miszori, Veronika; Kállai, Nikolett; Zelkó, Romána

    2011-01-01

    Application of buccal dosage forms has several advantages. Buccal route can be used for systemic delivery because the mucosa has a rich blood supply and it is relatively permeable. This route of drug delivery is of special advantages, including the bypass of first pass effect and the avoidance of presystemic elimination within the GIT. Buccal delivery systems enable the systemic delivery of peptides and proteins. In our previous study the physiological background of this application and the excipients of the possible formulations were reviewed. In the present work the formulation and ex vivo examination aspects of buccal drug delivery systems are summarized.

  3. Graphene as multifunctional delivery platform in cancer therapy.

    Science.gov (United States)

    Nejabat, Mojgan; Charbgoo, Fahimeh; Ramezani, Mohammad

    2017-08-01

    The biomedical applications of graphene-based nanomaterials including drug and gene delivery have grown rapidly in the past few years. This is due to its high surface area that results in high cargo loading capacity. It is demonstrated that graphene can improve drug efficacy without increasing the dose of the chemotherapeutic agent in cancer treatment. Considering these valuable benefits of graphene, this review focused on the newest advancements in drug and gene delivery systems using graphene and unveiling advantages and disadvantages of different graphene-based materials in introducing an effective cargo delivery system for cancer therapy. Different approaches for reducing cytotoxic impacts of graphene oxide and production of biocompatible delivery platform were also reviewed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2355-2367, 2017. © 2017 Wiley Periodicals, Inc.

  4. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  5. A Poroelasticity Theory Approach to Study the Mechanisms Leading to Elevated Interstitial Fluid Pressure in Solid Tumours.

    Science.gov (United States)

    Burazin, Andrijana; Drapaca, Corina S; Tenti, Giuseppe; Sivaloganathan, Siv

    2018-05-01

    Although the mechanisms responsible for elevated interstitial fluid pressure (IFP) in tumours remain obscure, it seems clear that high IFP represents a barrier to drug delivery (since the resulting adverse pressure gradient implies a reduction in the driving force for transvascular exchange of both fluid and macromolecules). R. Jain and co-workers studied this problem, and although the conclusions drawn from their idealized mathematical models offered useful insights into the causes of elevated IFP, they by no means gave a definitive explanation for this phenomenon. In this paper, we use poroelasticity theory to also develop a macroscopic mathematical model to describe the time evolution of a solid tumour, but focus our attention on the mechanisms responsible for the rise of the IFP, from that for a healthy interstitium to that measured in malignant tumours. In particular, we discuss a number of possible time scales suggested by our mathematical model and propose a tumour-dependent time scale that leads to results in agreement with experimental observations. We apply our mathematical model to simulate the effect of "vascular normalization" (as proposed by Jain in Nat Med 7:987-989, 2001) on the IFP profile and discuss and contrast our conclusions with those of previous work in the literature.

  6. Role of Nanodiamonds in Drug Delivery and Stem Cell Therapy.

    Science.gov (United States)

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Jafri, Mohammad Alam; Rasool, Mahmood; Ahmad, Waseem; Kashif Zaidi, Syed

    2016-09-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

  7. An effective intracellular delivery system of monoclonal antibody for treatment of tumors: erythrocyte membrane-coated self-associated antibody nanoparticles

    Science.gov (United States)

    Gao, Lipeng; Han, Lin; Ding, Xiaoling; Xu, Jiaojiao; Wang, Jing; Zhu, Jianzhong; Lu, Weiyue; Sun, Jihong; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2017-08-01

    Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.

  8. Adhesion barriers at cesarean delivery: advertising compared with the evidence.

    Science.gov (United States)

    Albright, Catherine M; Rouse, Dwight J

    2011-07-01

    Cesarean delivery, the most common surgery performed in the United States, is complicated by adhesion formation in 24-73% of cases. Because adhesions have potential sequelae, different synthetic adhesion barriers are currently heavily marketed as a means of reducing adhesion formation resultant from cesarean delivery. However, their use for this purpose has been studied in only two small, nonblinded and nonrandomized trials, both of which were underpowered and subject to bias. Neither demonstrated improvement in meaningful clinical outcomes. In the only cost-effectiveness analysis of adhesion barriers to date, the use of synthetic adhesion barriers was cost-effective only when the subsequent rate of small bowel obstruction was at least 2.4%, a rate far higher than that associated with cesarean delivery. In fact, intra-abdominal adhesions from prior cesarean delivery rarely cause maternal harm and have not been demonstrated to adversely affect perinatal outcome. Based on our review of the available literature, we think the use of adhesion barriers at the time of cesarean delivery would be ill-advised at the present time.

  9. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment

    Directory of Open Access Journals (Sweden)

    Jason A. Ellis

    2015-01-01

    Full Text Available Effective treatment for glioblastoma (GBM will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed.

  10. Neonatal outcomes and operative vaginal delivery versus cesarean delivery.

    LENUS (Irish Health Repository)

    Contag, Stephen A

    2010-06-01

    We compared outcomes for neonates with forceps-assisted, vacuum-assisted, or cesarean delivery in the second stage of labor. This is a secondary analysis of a randomized trial in laboring, low-risk, nulliparous women at >or=36 weeks\\' gestation. Neonatal outcomes after use of forceps, vacuum, and cesarean were compared among women in the second stage of labor at station +1 or below (thirds scale) for failure of descent or nonreassuring fetal status. Nine hundred ninety women were included in this analysis: 549 (55%) with an indication for delivery of failure of descent and 441 (45%) for a nonreassuring fetal status. Umbilical cord gases were available for 87% of neonates. We found no differences in the base excess (P = 0.35 and 0.78 for failure of descent and nonreassuring fetal status) or frequencies of pH below 7.0 (P = 0.73 and 0.34 for failure of descent and nonreassuring fetal status) among the three delivery methods. Birth outcomes and umbilical cord blood gas values were similar for those neonates with a forceps-assisted, vacuum-assisted, or cesarean delivery in the second stage of labor. The occurrence of significant fetal acidemia was not different among the three delivery methods regardless of the indication.

  11. Quasi-Experimental Study of the Effectiveness of an Integrated Service Delivery Network for the Frail Elderly

    Science.gov (United States)

    Tourigny, Andre; Durand, Pierre J.; Bonin, Lucie; Hebert, Rejean; Rochette, Louis

    2004-01-01

    The aim of this study was to examine the effectiveness of a new, integrated service delivery (ISD) network of health and social services for frail elderly living in a semi-urban community. A quasi-experimental study was conducted from 1997 to 2000, with measures taken before implementation (T0) and every 12 months after implementation for a 3-year…

  12. Assisted delivery with forceps

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000509.htm Assisted delivery with forceps To use the sharing features on ... called vacuum assisted delivery . When is a Forceps Delivery Needed? Even after your cervix is fully dilated ( ...

  13. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  14. Ethical issues in cesarean delivery.

    Science.gov (United States)

    Chervenak, Frank A; McCullough, Laurence B

    2017-08-01

    Cesarean delivery is the most common and important surgical intervention in obstetric practice. Ethics provides essential guidance to obstetricians for offering, recommending, recommending against, and performing cesarean delivery. This chapter provides an ethical framework based on the professional responsibility model of obstetric ethics. This framework is then used to address two especially ethically challenging clinical topics in cesarean delivery: patient-choice cesarean delivery and trial of labor after cesarean delivery. This chapter emphasizes a preventive ethics approach, designed to prevent ethical conflict in clinical practice. To achieve this goal, a preventive ethics approach uses the informed consent process to offer cesarean delivery as a medically reasonable alternative to vaginal delivery, to recommend cesarean delivery, and to recommend against cesarean delivery. The limited role of shared decision making is also described. The professional responsibility model of obstetric ethics guides this multi-faceted preventive ethics approach. Copyright © 2017. Published by Elsevier Ltd.

  15. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  16. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  17. The U.S. Twin Delivery Volume and Association with Cesarean Delivery Rates: A Hospital-Level Analysis.

    Science.gov (United States)

    Easter, Sarah Rae; Robinson, Julian N; Carusi, Daniela; Little, Sarah E

    2018-03-01

     The objective of this study was to test whether hospitals experienced in twin delivery have lower rates of cesarean delivery for twins.  We divided obstetric hospitals in the 2011 National Inpatient Sample by quartile of annual twin deliveries and compared twin cesarean delivery rates between hospitals with weighted linear regression. We used Pearson's coefficients to correlate a hospital's twin cesarean delivery rate to its overall cesarean delivery and vaginal birth after cesarean (VBAC) rates.  Annual twin delivery volume ranged from 1 to 506 across the 547 analyzed hospitals with a median of 10 and mode of 3. Adjusted rates of cesarean delivery were independent of delivery volume with a rate of 75.5 versus 74.8% in the lowest and highest volume hospitals ( p  = 0.09 across quartiles). A hospital's cesarean delivery rate for twins moderately correlated with the overall cesarean rate ( r  = 0.52, p  < 0.01) and inversely correlated with VBAC rate ( r  =  - 0.42, p  < 0.01).  Most U.S. obstetrical units perform a low volume of twin deliveries with no decrease in cesarean delivery rates at higher volume hospitals. Twin cesarean delivery rates correlate with other obstetric parameters such as singleton cesarean delivery and VBAC rates suggesting twin cesarean delivery rate is more closely related to a hospital's general obstetric practice than its twin delivery volume. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Prevention of preterm delivery in twin gestations (PREDICT): a multicenter, randomized, placebo-controlled trial on the effect of vaginal micronized progesterone

    DEFF Research Database (Denmark)

    Rode, L; Klein, K; Nicolaides, K H

    2011-01-01

    Studies on high-risk singleton gestations have shown a preventive effect of progesterone treatment on preterm delivery. This study was conducted to investigate the preventive effect of vaginal micronized progesterone in a large population of twin gestations....

  19. Health care expenditure for hospital-based delivery care in Lao PDR

    Directory of Open Access Journals (Sweden)

    Douangvichit Daovieng

    2012-01-01

    Full Text Available Abstract Background Delivery by a skilled birth attendant (SBA in a hospital is advocated to improve maternal health; however, hospital expenses for delivery care services are a concern for women and their families, particularly for women who pay out-of-pocket. Although health insurance is now implemented in Lao PDR, it is not universal throughout the country. The objectives of this study are to estimate the total health care expenses for vaginal delivery and caesarean section, to determine the association between health insurance and family income with health care expenditure and assess the effect of health insurance from the perspectives of the women and the skilled birth attendants (SBAs in Lao PDR. Methods A cross-sectional study was carried out in two provincial hospitals in Lao PDR, from June to October 2010. Face to face interviews of 581 women who gave birth in hospital and 27 SBAs was carried out. Both medical and non-medical expenses were considered. A linear regression model was used to assess influencing factors on health care expenditure and trends of medical and non-medical expenditure by monthly family income stratified by mode of delivery were assessed. Results Of 581 women, 25% had health care insurance. Health care expenses for delivery care services were significantly higher for caesarean section (270 USD than for vaginal delivery (59 USD. After adjusting for the effect of hospital, family income was significantly associated with all types of expenditure in caesarean section, while it was associated with non-medical and total expenditures in vaginal delivery. Both delivering women and health providers thought that health insurance increased the utilisation of delivery care. Conclusions Substantially higher delivery care expenses were incurred for caesarean section compared to vaginal delivery. Three-fourths of the women who were not insured needed to be responsible for their own health care payment. Women who had higher family

  20. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.

    Science.gov (United States)

    Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C

    2014-07-16

    In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter

  1. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  2. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  3. Normal Range of Head-to-body Delivery Interval by Two-step Delivery

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2016-01-01

    Conclusions: The average time of head-to-body delivery interval was longer than 60 s by two-step delivery. Majority shoulders were delivered at the first contraction. Majority shoulders emerged from perineum rather from under pubic arch. The routine one-step method of shoulder delivery where the downward force applied is not necessary and is not the right direction. Baby's breath, making faces, sucking, bubble from noses and mouth, and the light blue color of the faces, all those signs during shoulder delivery indicated a normal live birth.

  4. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Intradermal delivery of vaccines: potential benefits and current challenges

    Science.gov (United States)

    Hickling, JK; Jones, KR; Friede, M; Chen, D; Kristensen, D

    2011-01-01

    Abstract Delivery of vaccine antigens to the dermis and/or epidermis of human skin (i.e. intradermal delivery) might be more efficient than injection into the muscle or subcutaneous tissue, thereby reducing the volumes of antigen. This is known as dose-sparing and has been demonstrated in clinical trials with some, but not all, vaccines. Dose-sparing could be beneficial to immunization programmes by potentially reducing the costs of purchase, distribution and storage of vaccines; increasing vaccine availability and effectiveness. The data obtained with intradermal delivery of some vaccines are encouraging and warrant further study and development; however significant gaps in knowledge and operational challenges such as reformulation, optimizing vaccine presentation and development of novel devices to aid intradermal vaccine delivery need to be addressed. Modelling of the costs and potential savings resulting from intradermal delivery should be done to provide realistic expectations of the potential benefits and to support cases for investment. Implementation and uptake of intradermal vaccine delivery requires further research and development, which depends upon collaboration between multiple stakeholders in the field of vaccination. PMID:21379418

  6. Patient's Guide to Aerosol Drug Delivery

    Science.gov (United States)

    ... these 3 different bad effects (or symptoms ) will bet- ter prepare you to understand the 5 categories ... in many ways that impact aerosol drug delivery. Thinking ability (under- standing how and when to use ...

  7. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  8. Multi-Course Comparison of Traditional versus Web-Based Course Delivery Systems

    Science.gov (United States)

    Weber, J. Michael; Lennon, Ron

    2007-01-01

    The purpose of this paper is to measure and compare the effectiveness of a Web-based course delivery system to a traditional course delivery system. The results indicate that a web-based course is effective and equivalent to a traditional classroom environment. As with the implementation of all new technologies, there are some pros and cons that…

  9. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  10. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  11. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  12. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  13. The Effectiveness of Problem-Based Learning in the Web-Based Environment for the Delivery of an Undergraduate Physics Course

    Science.gov (United States)

    Atan, Hanafi; Sulaiman, Fauziah; Idrus, Rozhan M.

    2005-01-01

    This paper reports the investigation of the effectiveness of Problem-Based Learning (PBL) within a web-based environment in the delivery of an undergraduate Physics course. The effectiveness was evaluated by comparing the performances and the perceptions of the sample students (n=67) using the web-based PBL and comparing the outcomes with those of…

  14. Laser-assisted delivery of topical methotrexate - in vitro investigations

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth Hjardem

    2016-01-01

    of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus......Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge...... zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated...

  15. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  16. Using DNA nanotechnology to produce a drug delivery system

    Science.gov (United States)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  17. Risk factors for cesarean delivery and adverse neonatal outcome in twin pregnancies attempting vaginal delivery.

    Science.gov (United States)

    Schachter-Safrai, Natali; Karavani, Gilad; Haj-Yahya, Rani; Ofek Shlomai, Noa; Porat, Shay

    2018-02-24

    Twin vaginal delivery presents a unique clinical challenge for obstetricians. The Twin Birth Study demonstrated the safety of planned vaginal delivery regarding neonatal outcomes. However, that study lacked a description of the risk factors associated with and the outcome of unplanned cesarean section. The aim of this study is to identify potential risk factors for cesarean section and delivery related neonatal morbidity and mortality in women with twin pregnancy attempting vaginal delivery. A retrospective cohort study including 1070 women with twin pregnancy that underwent a trial of labor between 2003 and 2015. The study population was divided according to the mode of delivery: vaginal delivery, combined vaginal-cesarean and intrapartum cesarean delivery of both twins. Several risk factors and neonatal outcomes were examined by both univariate analysis and multinomial logistic regression analysis. The rate of vaginal delivery of both twins was 88.3%, whereas the rates of combined vaginal cesarean and unplanned cesarean delivery were 4.6% and 7.1%, respectively. Nulliparity and nonvertex presentation of twin B were found to be independently associated with cesarean delivery for both twins. Additionally, nonvertex presentation of twin B was independently associated with combined vaginal-cesarean delivery. The proportion of neonates with Apgar score cesarean group compared with those delivered by the vaginal route alone. Nulliparity and nonvertex presentation of twin B were found to be associated with intrapartum cesarean delivery in twin pregnancies. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  19. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Science.gov (United States)

    Dubald, Marion; Bourgeois, Sandrine; Andrieu, Véronique; Fessi, Hatem

    2018-01-01

    The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites. PMID:29342879

  20. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review

    Directory of Open Access Journals (Sweden)

    Marion Dubald

    2018-01-01

    Full Text Available The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.

  1. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view

    International Nuclear Information System (INIS)

    McQuaid, D; Webb, S

    2006-01-01

    A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically derived intensity-modulated beams (IMBs). Leaf trajectories calculated in the target-reference frame were iteratively synchronized assuming regular target motion. This allowed the leaves defined in the lab-reference frame to simultaneously follow the target motion and to deliver the required IMB without violation of the leaf maximum-velocity constraint. The leaves are synchronized until the gradient of the leaf position at every instant is less than a calculated maximum. The delivered fluence in the target-reference frame was calculated with a simple primary-fluence model. The new 2D tracking technique was compared with the delivered fluence produced by no-tracking deliveries and by 1D tracking deliveries for 33 clinical IMBs. For the clinical IMBs normalized to a maximum fluence of 200 MUs, the rms difference between the desired and the delivered IMB was 15.6 ± 3.3 MU for the case of a no-tracking delivery, 7.9 ± 1.6 MU for the case where only the primary component of motion was corrected and 5.1 ± 1.1 MU for the 2D tracking delivery. The residual error is due to interpolation and sampling effects. The 2D tracking delivery technique requires an increase in the delivery time evaluated as between 0 and 50% of the unsynchronized delivery time for each beam with a mean increase of 13% for the IMBs tested. The 2D tracking dMLC delivery technique allows an optimized IMB to be delivered to moving targets with increased accuracy and with acceptable increases in delivery time. When combined with real-time knowledge of the target motion at delivery time, this technique facilitates

  2. Application of three-dimensional printing for colon targeted drug delivery systems.

    Science.gov (United States)

    Charbe, Nitin B; McCarron, Paul A; Lane, Majella E; Tambuwala, Murtaza M

    2017-01-01

    Orally administered solid dosage forms currently dominate over all other dosage forms and routes of administrations. However, human gastrointestinal tract (GIT) poses a number of obstacles to delivery of the drugs to the site of interest and absorption in the GIT. Pharmaceutical scientists worldwide have been interested in colon drug delivery for several decades, not only for the delivery of the drugs for the treatment of colonic diseases such as ulcerative colitis and colon cancer but also for delivery of therapeutic proteins and peptides for systemic absorption. Despite extensive research in the area of colon targeted drug delivery, we have not been able to come up with an effective way of delivering drugs to the colon. The current tablets designed for colon drug release depend on either pH-dependent or time-delayed release formulations. During ulcerative colitis the gastric transit time and colon pH-levels is constantly changing depending on whether the patient is having a relapse or under remission. Hence, the current drug delivery system to the colon is based on one-size-fits-all. Fails to effectively deliver the drugs locally to the colon for colonic diseases and delivery of therapeutic proteins and peptides for systemic absorption from the colon. Hence, to overcome the current issues associated with colon drug delivery, we need to provide the patients with personalized tablets which are specifically designed to match the individual's gastric transit time depending on the disease state. Three-dimensional (3D) printing (3DP) technology is getting cheaper by the day and bespoke manufacturing of 3D-printed tablets could provide the solutions in the form of personalized colon drug delivery system. This review provides a bird's eye view of applications and current advances in pharmaceutical 3DP with emphasis on the development of colon targeted drug delivery systems.

  3. Buying results? Contracting for health service delivery in developing countries.

    Science.gov (United States)

    Loevinsohn, Benjamin; Harding, April

    To achieve the health-related Millennium Development Goals, the delivery of health services will need to improve. Contracting with non-state entities, including non-governmental organisations (NGOs), has been proposed as a means for improving health care delivery, and the global experience with such contracts is reviewed here. The ten investigated examples indicate that contracting for the delivery of primary care can be very effective and that improvements can be rapid. These results were achieved in various settings and services. Many of the anticipated difficulties with contracting were either not observed in practice or did not compromise contracting's effectiveness. Seven of the nine cases with sufficient experience (greater than 3 years' elapsed experience) have been sustained and expanded. Provision of a package of basic services by contractors costs between roughly US3 dollars and US6 dollars per head per year in low-income countries. Contracting for health service delivery should be expanded and future efforts must include rigorous evaluations.

  4. Application of polymeric nanoparticles and micelles in insulin oral delivery

    Directory of Open Access Journals (Sweden)

    Milind Sadashiv Alai

    2015-09-01

    Full Text Available Diabetes mellitus is an endocrine disease in which the pancreas does not produce sufficient insulin or the body cannot effectively use the insulin it produces. Insulin therapy has been the best choice for the clinical management of diabetes mellitus. The current insulin therapy is via subcutaneous injection, which often fails to mimic the glucose homeostasis that occurs in normal individuals. This provokes numerous attempts to develop a safe and effective noninvasive route for insulin delivery. Oral delivery is the most convenient administration route. However, insulin cannot be well absorbed orally because of its rapid enzymatic degradation in the gastrointestinal tract. Therefore, nanoparticulate carriers such as polymeric nanoparticles and micelles are employed for the oral delivery of insulin. These nanocarriers protect insulin from degradation and facilitate insulin uptake via a transcellular and/or paracellular pathway. This review article focuses on the application of nanoparticles and micelles in insulin oral delivery. The recent advances in this topic are also reviewed.

  5. Factors affecting home delivery in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Bolam, A; Manandhar, D S; Shrestha, P; Ellis, M; Malla, K; Costello, A M

    1998-06-01

    This nested case-control study compares the characteristics of mothers having home or institutional deliveries in Kathmandu, Nepal, and explores the reasons given by mothers for a home delivery. The delivery patterns of mothers were identified in a cross-sectional survey of two communities: an urban area of central Kathmandu (Kalimati) and a peri-urban area (Kirtipur and Panga) five kilometres from the city centre. 357 pregnant women were identified from a survey of 6130 households: 183 from 3663 households in Kirtipur and Panga, 174 from 2467 households in Kalimati. Methods involved a structured baseline household questionnaire and detailed follow-up of identified pregnant women with structured and semi-structured interviews in hospital and the community. The main outcome measures were social and economic household details of pregnant women; pregnancy and obstetric details; place of delivery; delivery attendant; and reasons given for home delivery. The delivery place of 334/357 (94%) of the pregnant women identified at the survey was determined. 272 (81%) had an institutional delivery and 62 (19%) delivered at home. In univariate analysis comparing home and institutional deliverers, maternal education, parity, and poverty indicators (income, size of house, ownership of house) were associated with place of delivery. After multivariate analysis, low maternal educational level (no education, OR 5.04 [95% CI 1.61-15.8], class 1-10, OR 3.36 [1.04-10.8] compared to those with higher education) and multiparity (OR 3.1 [1.63-5.74] compared to primiparity) were significant risk factors for a home delivery. Of home deliverers, only 24% used a traditional birth attendant, and over half were unplanned due to precipitate labour or lack of transport. We conclude that poor education and multiparity rather than poverty per se increase the risk of a home delivery in Kathmandu. Training TBAs in this setting would probably not be cost-effective. Community-based midwife-run delivery

  6. The effect of primary delivery of the anterior compared with the posterior shoulder on perineal trauma

    DEFF Research Database (Denmark)

    Willer, Hanne; Aabakke, Anna J M; Krebs, Lone

    2014-01-01

    is that primary delivery of the posterior shoulder reduces the rate and degree of perineal trauma. METHODS/DESIGN: This is a single-centre, randomized controlled trial, with computer-generated randomization in a 1:1 allocation ratio. Women planning their first vaginal delivery (n = 650) are randomized to primary....... Recruitment started in January 2013 and the trial is planned to proceed for 24 months. DISCUSSION: Most delivery assistance techniques are based on tradition and heritage and lack objective evidence. This trial provides an example of how vaginal delivery techniques can be evaluated in a randomized controlled...... trial. The results of this trial will clarify the role that delivery of the shoulders has on perineal trauma and thereby provide knowledge to recommendations on birthing technique. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01937546....

  7. MRI in ocular drug delivery

    OpenAIRE

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery de...

  8. The Effect of Product Quality and Delivery Service on Online-customer Satisfaction in Zalora Indonesia

    OpenAIRE

    Handoko, Laras Putri

    2016-01-01

    The number of online transaction in Indonesia has increased in recent years with fashion products currently dominate the e-commerce market as the most frequently purchased products. The aims of this study are to analyze the effects of product quality and delivery service on online-customer satisfaction withdrawing taking online fashion retailer Zalora Indonesia as its research object. This research is causal type of research which uses primary data obtained through questionnaires and uses Mul...

  9. Delivery practices of traditional birth attendants in Dhaka slums, Bangladesh.

    Science.gov (United States)

    Fronczak, N; Arifeen, S E; Moran, A C; Caulfield, L E; Baqui, A H

    2007-12-01

    This paper describes associations among delivery-location, training of birth attendants, birthing practices, and early postpartum morbidity in women in slum areas of Dhaka, Bangladesh. During November 1993-May 1995, data on delivery-location, training of birth attendants, birthing practices, delivery-related complications, and postpartum morbidity were collected through interviews with 1,506 women, 489 home-based birth attendants, and audits in 20 facilities where the women from this study gave birth. Associations among maternal characteristics, birth practices, delivery-location, and early postpartum morbidity were specifically explored. Self-reported postpartum morbidity was associated with maternal characteristics, delivery-related complications, and some birthing practices. Dais with more experience were more likely to use potentially-harmful birthing practices which increased the risk of postpartum morbidity among women with births at home. Postpartum morbidity did not differ by birth-location. Safe motherhood programmes must develop effective strategies to discourage potentially-harmful home-based delivery practices demonstrated to contribute to morbidity.

  10. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery

    DEFF Research Database (Denmark)

    Lykke, Jacob Alexander; Langhoff-Roos, Jens; Lockwood, Charles J

    2010-01-01

    The combined effects of preterm delivery, small-for-gestational-age offspring, hypertensive disorders of pregnancy, placental abruption and stillbirth on early maternal death from cardiovascular causes have not previously been described in a large cohort. We investigated the effects of pregnancy...... cardiovascular and non-cardiovascular causes following preterm delivery, small-for-gestational-age offspring and hypertensive disorders of pregnancy. We found that preterm delivery and small-for-gestational-age were both associated with subsequent death of mothers from cardiovascular and non......-cardiovascular causes. Severe pre-eclampsia was associated with death from cardiovascular causes only. There was a less than additive effect on cardiovascular mortality hazard ratios with increasing number of pregnancy complications: preterm delivery 1.90 [95% confidence intervals 1.49, 2.43]; preterm delivery...

  11. Liver cell-targeted delivery of therapeutic molecules.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  12. Targeted Delivery of Immunomodulators to Lymph Nodes

    Directory of Open Access Journals (Sweden)

    Jamil Azzi

    2016-05-01

    Full Text Available Active-targeted delivery to lymph nodes represents a major advance toward more effective treatment of immune-mediated disease. The MECA79 antibody recognizes peripheral node addressin molecules expressed by high endothelial venules of lymph nodes. By mimicking lymphocyte trafficking to the lymph nodes, we have engineered MECA79-coated microparticles containing an immunosuppressive medication, tacrolimus. Following intravenous administration, MECA79-bearing particles showed marked accumulation in the draining lymph nodes of transplanted animals. Using an allograft heart transplant model, we show that targeted lymph node delivery of microparticles containing tacrolimus can prolong heart allograft survival with negligible changes in tacrolimus serum level. Using MECA79 conjugation, we have demonstrated targeted delivery of tacrolimus to the lymph nodes following systemic administration, with the capacity for immune modulation in vivo.

  13. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  14. Microencapsulation: A promising technique for controlled drug delivery.

    Science.gov (United States)

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  15. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  16. The effect of health insurance and health facility-upgrades on hospital deliveries in rural Nigeria: a controlled interrupted time-series study.

    Science.gov (United States)

    Brals, Daniëlla; Aderibigbe, Sunday A; Wit, Ferdinand W; van Ophem, Johannes C M; van der List, Marijn; Osagbemi, Gordon K; Hendriks, Marleen E; Akande, Tanimola M; Boele van Hensbroek, Michael; Schultsz, Constance

    2017-09-01

    Access to quality obstetric care is considered essential to reducing maternal and new-born mortality. We evaluated the effect of the introduction of a multifaceted voluntary health insurance programme on hospital deliveries in rural Nigeria. We used an interrupted time-series design, including a control group. The intervention consisted of providing voluntary health insurance covering primary and secondary healthcare, including antenatal and obstetric care, combined with improving the quality of healthcare facilities. We compared changes in hospital deliveries from 1 May 2005 to 30 April 2013 between the programme area and control area in a difference-in-differences analysis with multiple time periods, adjusting for observed confounders. Data were collected through household surveys. Eligible households ( n = 1500) were selected from a stratified probability sample of enumeration areas. All deliveries during the 4-year baseline period ( n = 460) and 4-year follow-up period ( n = 380) were included. Insurance coverage increased from 0% before the insurance was introduced to 70.2% in April 2013 in the programme area. In the control area insurance coverage remained 0% between May 2005 and April 2013. Although hospital deliveries followed a common stable trend over the 4 pre-programme years ( P = 0.89), the increase in hospital deliveries during the 4-year follow-up period in the programme area was 29.3 percentage points (95% CI: 16.1 to 42.6; P health insurance but who could make use of the upgraded care delivered significantly more often in a hospital during the follow-up period than women living in the control area ( P = 0.04). Voluntary health insurance combined with quality healthcare services is highly effective in increasing hospital deliveries in rural Nigeria, by improving access to healthcare for insured and uninsured women in the programme area. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and

  17. Newborns from deliveries with epidural anaesthesia

    Directory of Open Access Journals (Sweden)

    Avramović Lidija

    2010-01-01

    Full Text Available Introduction. The use of epidural anaesthesia in delivery with the purpose to reduce pain and fear in a pregnant woman has the influence on the physiological status of the woman in childbirth and the course of delivery. From the epidural space of the pregnant woman, one part of free anaesthetic comes in the foetal circulation through the mother's circulation and placenta and connects with the foetal proteins. A lower value of albumins and serum proteins in the foetal circulation give bigger free fraction of anaesthetic which is accumulated in the foetal liver, brain and heart full of blood. Objective. The aim of the study was to examine the influence of epidural anaesthesia on the newborn. Methods. Retrospective study of 6,398 documents of newborns was performed in our Clinic of Gynaecology and Obstetrics 'Narodni front' during 2006. The first group was made of 455 newborns from deliveries with epidural anaesthesia and the second was the control group of 5,943 remaining newborns. In both groups we analysed the following: sex, week of gestation, weight, Apgar score, measure of care and resuscitation, perinatal morbidity and then the obtained results were compared. Results. Most of deliveries were vaginal without obstetric intervention (86.6%. The number of deliveries finished with vacuum extractor (4.6% was statistically significantly bigger in the group with epidural anaesthesia than in the control group. Most of the newborns in the first group were born on time (96.5% in 39.0±1.0 week of gestation and with foetal weight 3448±412 grammes. There was no statistical significance in Apgar score between both groups. Epidural anaesthesia does not increase the degree of the newborn's injury. Lower pH of blood was found in the newborns from deliveries with vacuum extractor or operated on (the Ceasarean section. Conclusion. Application of epidural anaesthesia decreases duration of delivery and has no adverse effects on the newborn and hypoxic

  18. Solid lipid nanoparticles for pulmonary delivery of insulin.

    Science.gov (United States)

    Liu, Jie; Gong, Tao; Fu, Hualin; Wang, Changguang; Wang, Xiuli; Chen, Qian; Zhang, Qin; He, Qin; Zhang, Zhirong

    2008-05-22

    Growing attention has been given to the potential of pulmonary route as an alternative for non-invasive systemic delivery of therapeutic agents. In this study, novel nebulizer-compatible solid lipid nanoparticles (SLNs) for pulmonary drug delivery of insulin were developed by reverse micelle-double emulsion method. The influences of the amount of sodium cholate (SC) and soybean phosphatidylcholine (SPC) on the deposition properties of the nanoparticles were investigated. Under optimal conditions, the entrapment delivery (ED), respirable fraction (RF) and nebulization efficiency (NE) of SLNs could reach 96.53, 82.11 and 63.28%, respectively, and Ins-SLNs remained stable during nebulization. Fasting plasma glucose level was reduced to 39.41% and insulin level was increased to approximately 170 microIU/ml 4h after pulmonary administration of 20 IU/kg Ins-SLNs. A pharmacological bioavailability of 24.33% and a relative bioavailability of 22.33% were obtained using subcutaneous injection as a reference. Incorporating fluorescent-labelled insulin into SLNs, we found that the SLNs were effectively and homogeneously distributed in the lung alveoli. These findings suggested that SLNs could be used as a potential carrier for pulmonary delivery of insulin by improving both in vitro and in vivo stability as well as prolonging hypoglycemic effect, which inevitably resulted in enhanced bioavailability.

  19. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  20. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  1. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  2. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    International Nuclear Information System (INIS)

    Brewer, E.; Coleman, J.; Lowman, A.

    2011-01-01

    Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few smart technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  4. The relationship between pregnancy, preterm and premature delivery

    OpenAIRE

    Soleymani-e- Shayesteh Y; Kamali-Nia Z

    2002-01-01

    During pregnancy, different froms of periodontal disease such as pregnancy gingivitis, pregnancy tumors, pregnancy stomatitis, may be encountered. But the most considerable point is the pregnant women's infection with periodontal disease and its effect on delivery and weight of newborn infants. Based on the latest researches and statistics, it is concluded that periodontal disease is an important risk factor, leading to preterm or premature delivery. On the other hand, poor hygiene, shou...

  5. Oral transmucosal delivery of naratriptan.

    Science.gov (United States)

    Sattar, Mohammed; Lane, Majella E

    2016-11-30

    Naratriptan (NAR) is currently used as the hydrochloride salt (NAR.HCl) for the treatment of migraine and is available in tablet dosage forms for oral administration. Buccal drug delivery offers a number of advantages compared with conventional oral delivery including rapid absorption, avoidance of first pass metabolism and improved patient compliance. We have previously prepared and characterised the base form of NAR and shown that it has more favourable properties for buccal delivery compared with NAR.HCl. This study describes the design and evaluation of a range of formulations for oral transmucosal delivery of NAR base. Permeation studies were conducted using excised porcine buccal tissue mounted in Franz cells. Of the neat solvents examined, Transcutol ® P (TC) showed the greatest enhancement effects and was the vehicle in which NAR was most soluble. The mechanisms by which TC might promote permeation were further probed using binary systems containing TC with either buffer or Miglyol 812 ® (MG). Mass balance studies were also conducted for these systems. The permeation of TC as well as NAR was also monitored for TC:MG formulations. Overall, TC appears to promote enhanced membrane permeation of NAR because of its rapid uptake into the buccal tissue. Synergistic enhancement of buccal permeation was observed when TC was combined with MG and this is attributed to the increased thermodynamic activity of NAR in these formulations. Significantly enhanced permeation of NAR was achieved for TC:MG and this was also associated with less TC remaining on the tissue or in the tissue at the end of the experiment. To our knowledge this is the first report where both enhancer and active have been monitored in buccal permeation studies. The findings underline the importance of understanding the fate of vehicle components for rational formulation design of buccal delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  7. Biomaterials for drug delivery patches.

    Science.gov (United States)

    Santos, Lúcia F; Correia, Ilídio J; Silva, A Sofia; Mano, João F

    2018-06-15

    The limited efficiency of conventional drugs has been instigated the development of new and more effective drug delivery systems (DDS). Transdermal DDS, are associated with numerous advantages such its painless application and less frequent replacement and greater flexibility of dosing, features that triggered the research and development of such devices. Such systems have been produced using either biopolymer; or synthetic polymers. Although the first ones are safer, biocompatible and present a controlled degradation by human enzymes or water, the second ones are the most currently available in the market due to their greater mechanical resistance and flexibility, and non-degradation over time. This review highlights the most recent advances (mainly in the last five years) of patches aimed for transdermal drug delivery, focusing on the different materials (natural, synthetic and blends) and latest designs for the development of such devices, emphasizing also their combination with drug carriers that enable enhanced drug solubility and a more controlled release of the drug over the time. The benefits and limitations of different patches formulations are considered with reference to their appliance to transdermal drug delivery. Furthermore, a record of the currently available patches on the market is given, featuring their most relevant characteristics. Finally, a list of most recent/ongoing clinical trials regarding the use of patches for skin disorders is detailed and critical insights on the current state of patches for transdermal drug delivery are also provided. Copyright © 2018. Published by Elsevier B.V.

  8. Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery

    Science.gov (United States)

    Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.

    1993-04-01

    Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.

  9. Albumin and its application in drug delivery.

    Science.gov (United States)

    Sleep, Darrell

    2015-05-01

    Rapid clearance of drugs from the body results in short therapeutic half-life and is an integral property of many protein and peptide-based drugs. To maintain the desired therapeutic effect patients are required to administer higher doses more frequently, which is inconvenient and risks undesirable side effects. Drug delivery technologies aim to minimise the number of administrations and dose-related toxicity while maximising therapeutic efficacy. This review describes albumin's inherent biochemical and biophysical properties, which make it an attractive drug delivery platform and the developmental status of drugs that are associated, conjugated or genetically fused with albumin. Albumin interacts with a number of cell surface receptors including gp18, gp30, gp60, FcRn, cubilin and megalin. The importance of albumin's interaction with the FcRn receptor, the basis for albumin's long circulatory half-life, is described, as are engineered albumins with improved pharmacokinetics. Albumin naturally accumulates at tumours and sites of inflammation, a characteristic which can be augmented by the addition of targeting ligands. The development of albumin drug conjugates which reply upon this property is described. Albumin's inherent biochemical and biophysical properties make it an ideal drug delivery platform. Recent advances in our understanding of albumin physiology and the improvement in albumin-based therapies strongly suggest that albumin-based therapies have a significant advantage over alternative technologies in terms of half-life, stability, versatility, safety and ease of manufacture. Given the importance of the albumin:FcRn interaction, the interpretation of the pharmacokinetic and pharmacodynamic profiles of albumin-based therapeutics with disturbed albumin:FcRn interaction may have to be reassessed. The FcRn receptor has additional functionality, especially in relation to immunology, antigen presentation and delivery of proteins across mucosal membranes

  10. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  11. Nonviral pulmonary delivery of siRNA.

    Science.gov (United States)

    Merkel, Olivia M; Kissel, Thomas

    2012-07-17

    target site. In addition, the ideal carrier would be biodegradable (to address difficulties with repeated administration for the treatment of chronic diseases) and would contain targeting moieties to enhance uptake by specific cell types. None of the currently available polymer- and lipid-based formulations meet every one of these requirements, but we introduce here several promising new approaches, including a biodegradable, nonimmunogenic polyester. We also discuss imaging techniques for following the biodistribution according to the administration route. This tracking is crucial for better understanding the translocation and clearance of nanoformulated siRNA subsequent to pulmonary delivery. In the literature, the success of pulmonary siRNA delivery is evaluated solely by relief from or prophylaxis against a disease; side effects are not studied in detail. It also remains unclear which cell types in the lung eventually take up siRNA. These are critical issues for the translational use of pulmonary siRNA formulations; accordingly, we present a flow cytometry technique that can be utilized to differentiate transfected cell populations in a mouse model that expresses transgenic enhanced green fluorescence protein (EGFP). This technique, in which different cell types are identified on the basis of their surface antigen expression, may eventually help in the development of safer carriers with minimized side effects in nontargeted tissues.

  12. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  13. Novel delivery systems with nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Cvijić Sandra

    2016-01-01

    Full Text Available Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs is associated with increased risk of serious gastrointestinal side effects. Therefore, recent trends in the development of NSAIDs aim to reduce the incidence of side effects, and improve patient compliance. One of the strategies to improve efficacy and safety of oral NSAIDs is the development of combination products that contain gastroprotective agents. Several products containing NSAID in combination with proton pump inhibitors (ketoprofen/omeprazole, naproxen/esomeprazole, H2-receptor antagonists (ibuprofen/famotidine, and prostaglandin analogues (diclofenac/misoprostol are currently available on the market. Another approach refer to the special formulation design to allow dose reduction while preserving drug therapeutic efficacy. An example is SoluMatrix® technology, a manufacturing process that produce submicron-sized drug particles with enhanced dissolution and absorption properties. Patented SoluMatrix® technology has been successfully employed to develop low-dose diclofenac, meloxicam, indomethacin and naproxen products. Topical NSAID formulations enable drug delivery to target tissues, while reducing systemic exposure and concomitant side effects associated with oral NSAIDs. Dermal/transdermal NSAID delivery systems are subject of intensive investigation. So far, several 'advanced' drug delivery systems with diclofenac, ibuprofen and ketoprofen have been designed.

  14. Preparation of magnetic nanoparticles and their application to magnetic targeting drug delivery

    International Nuclear Information System (INIS)

    Li Guiping; Wang Yongxian

    2006-01-01

    Magnetic nanoparticles barrier is a novel kind of drug delivery system for magnetic targeting drugs, which can effectively deliver the drug to a tumor target site and increase therapeutic benefit, with the side effects minimized. This article summarizes the most outstanding papers on the of magnetic nanoparticles used as the targeting drug's delivery systems. (authors)

  15. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  16. Development of a gastroretentive pulsatile drug delivery platform.

    Science.gov (United States)

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  17. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Larsen, Marcus M.; Bharati, Pratyush

    2013-01-01

    This article examines antecedents and performance implications of global delivery models (GDMs) in global business services. GDMs require geographically distributed operations to exploit both proximity to clients and time-zone spread for efficient service delivery. We propose and empirically show...

  18. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  19. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  20. Epidural analgesia during labor: a retrospective cohort study on its effects on labour, delivery and neonatal outcome.

    Science.gov (United States)

    Hincz, Piotr; Podciechowskil, Lech; Grzesiak, Mariusz; Horzelski, Wojciech; Wilczyflski, Jan

    2014-12-01

    to evaluate the impact of epidural analgesia (EA) on labor delivery and neonatal status. retrospective, observational, cohort study comprising 5593 pregnant women who met the inclusion criteria (singleton pregnancy cephalic presentation, 37-42 weeks of gestation). Out of them, 2496 had EA and 3097 constituted the control group. incidence of labor complications and operativd deliveries in women who received EA, neonatal status assessed by Apgar score in 1- and 5-minute, and cord pH values. Labor complications were more frequently observed in the epidural group, with an almost 1.5-fold higher incidence in nulliparous (16.32% vs. 11.29%) and 1.4-fold in multiparous women (9.86% vs. 7.08%). Stepwise logistic regression confirmed that EA is a significant risk factor for labor complications in nulliparous women (OR 1.27, 95% CI 1.03-1.58) and for forceps delivery in multiparous women (5.20, 95% CI 3.31-8.177). Also, EA is an important risk factor for both, low cord arterial pH women, but has no effect on the incidence of cesarean sections, either in nulliparous or multiparous women. EA also increases the risk of labor complications, low 1-minute Apgar score and low umbilical cord pH, but is not associated with low 5-minute Apgar score.

  1. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy

    Science.gov (United States)

    Tukmachev, Dmitry; Lunov, Oleg; Zablotskii, Vitalii; Dejneka, Alexandr; Babic, Michal; Syková, Eva; Kubinová, Šárka

    2015-02-01

    Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal channel showed a good correlation with the calculated distribution of magnetic forces exerted onto the transplanted cells. The results suggest that focused targeting and fast delivery of stem cells can be achieved using the proposed non-invasive magnetic system. With future implementation the proposed targeting and delivery strategy bears advantages for the treatment of disease requiring fast stem cell transplantation.Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal

  2. Mode of delivery following successful external cephalic version: comparison with spontaneous cephalic presentations at delivery.

    Science.gov (United States)

    Kuppens, Simone M I; Hutton, Eileen K; Hasaart, Tom H M; Aichi, Nassira; Wijnen, Henrica A; Pop, Victor J M

    2013-10-01

    To compare the obstetric outcomes of pregnant women after successful external cephalic version (ECV) (cases) with a large group of pregnant women with a spontaneously occurring cephalic fetal position at delivery (controls). We conducted a retrospective matched cohort study in a teaching hospital in the Netherlands. Delivery outcomes of women with a successful ECV were compared with those of women with spontaneously occurring cephalic presentations, controlling for maternal age, parity, gestational age at delivery, and onset of labour (spontaneous or induced). Exclusion criteria were a history of Caesarean section, delivery at < 35 weeks, and elective Caesarean section. The primary outcome was the prevalence of Caesarean section and instrumental delivery in both groups; secondary outcomes were the characteristics of cases requiring intervention such as Caesarean section or instrumental delivery. Women who had a successful ECV had a significantly higher Caesarean section rate than the women in the control group (33/220 [15%] vs. 62/1030 [6.0 %]; P < 0.001). There was no difference in the incidence of instrumental delivery (20/220 [9.1%] vs. 103/1030 [10%]). Comparison of characteristics of women in the cases group showed that nulliparity, induction of labour, and occiput posterior presentation were associated with Caesarean section and instrumental deliveries. Compared with delivery of spontaneous cephalic presenta-tions, delivery of cephalic presenting babies following successful ECV is associated with an increased rate of Caesarean section, especially in nulliparous women and women whose labour is induced.

  3. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  4. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Erik Brewer

    2011-01-01

    Full Text Available Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few “smart” technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  5. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  6. The effect of local sustained delivery of sirolimus on the vascular PAI-1 and t-PA expression after angioplasty

    International Nuclear Information System (INIS)

    E Yajun; He Nengshu; Fan Hailun

    2011-01-01

    Objective: To investigate the effect of local sustained delivery of sirolimus on the vascular inhibitor of plasminogen activator-1 (PAI-1) and tissue type plasminogen activator (t-PA) expression after angioplasty. Methods: Experimental common carotid artery injury model was established in the rats. A total of 30 male Wistar rats were divided into experimental group (n=20) and control group (n=10). Adventitial administration of drug was applied. Pluronic F-127 gel containing sirolimus was administered to the exposed adventitial surface of injured carotid artery. The experimental group was divided into high concentration (600 μg/100 μl) sub-group and low concentration (300 μg/100μl) sub-group according to the concentration of sirolimus delivered. The effect of local sustained delivery sirolimus on vascular PAI-1 and t-PA expression after percutaneous angioplasty was evaluated by immunohistochemistry. Results: Compared to control group, 15 and 30 days after injury local sustained delivery of sirolimus in both high concentration and low concentration sub-groups the expression of the PAI-1 in neointima was significantly enhanced (P 0.05). At 15 and 30 days after injury, the expression of t-PA in neointima was decreased in both high and low concentration sub-groups (P<0.05), and the expression of t-PA in media was significantly decreased in high concentration sub-group (P<0.05) while on significant difference could be detected in low concentration sub-group. Conclusion: Local sustained delivery of sirolimus can induce the high expression of PAI-1 and low expression of t-PA in neointima although it inhibits the proliferation of neointima in the same time, and the imbalanced expression of t-PA and PAI-1 may probably play an important role in the late formation of thrombosis after the placement of drug-eluting stent. (authors)

  7. Enhanced antitumor effects of novel intracellular delivery of an active form of menaquinone-4, menahydroquinone-4, into hepatocellular carcinoma.

    Science.gov (United States)

    Setoguchi, Shuichi; Watase, Daisuke; Matsunaga, Kazuhisa; Matsubara, Misa; Kubo, Yohei; Kusuda, Mariko; Nagata-Akaho, Nami; Enjoji, Munechika; Nakashima, Manabu; Takeshita, Morishige; Karube, Yoshiharu; Takata, Jiro

    2015-02-01

    Reduced cellular uptake of menaquinone-4 (MK-4), a vitamin K2 homolog, in human hepatocellular carcinoma (HCC) limits its usefulness as a safe long-term antitumor agent for recurrent HCC and produces des-γ-carboxy prothrombin (DCP). We hypothesized that effective delivery of menahydroquinone-4 (MKH), the active form of MK-4 for γ-glutamyl carboxylation, into HCC cells is critical for regulating HCC growth, and may enable it to be applied as a safe antitumor agent. In this study, we verified this hypothesis using menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of MKH, and demonstrated its effectiveness. Intracellular delivery of MKH and subsequent growth inhibition of PLC/PRF/5 and Hep3B (DCP-positive) and SK-Hep-1 (DCP-negative) cells after MKH-DMG administration were determined and compared with MK-4. The activity of MKH-DMG against tumor progression in the liver alongside DCP formation was determined in a spleen-liver metastasis mouse model. MKH-DMG exhibited greater intracellular delivery of MKH in vitro (AUC0-72 hour of MKH) and increased growth-inhibitory activity against both DCP-positive and DCP-negative HCC cell lines. The phenomena of MKH delivery into cells in parallel with simultaneous growth inhibition suggested that MKH is the active form for growth inhibition of HCC cells. Cell-cycle arrest was determined to be involved in the growth inhibition mechanisms of MKH-DMG. Furthermore, MKH-DMG showed significant inhibition of tumor progression in the liver, and a substantial decrease in plasma DCP levels in the spleen-liver metastasis mouse model. Our results suggest that MKH-DMG is a promising new candidate antitumor agent for safe long-term treatment of HCC. ©2014 American Association for Cancer Research.

  8. The effect of chorionicity and twin-to-twin delivery time interval on short-term outcome of the second twin

    DEFF Research Database (Denmark)

    Hjortø, Sofie; Nickelsen, Carsten; Petersen, Janne

    2013-01-01

    Abstract Objectives: To investigate the effect of chorionicity and twin-to-twin delivery time interval on short-term outcome in the second twin. Additionally, to investigate predictors of adverse outcome in both twins. Methods: Data included vaginally delivered twins (≥ 36 weeks) from Copenhagen ...

  9. Effects of a Birth Hospital's Neonatal Intensive Care Unit Level and Annual Volume of Very Low-Birth-Weight Infant Deliveries on Morbidity and Mortality.

    Science.gov (United States)

    Jensen, Erik A; Lorch, Scott A

    2015-08-01

    The annual volume of deliveries of very low-birth-weight (VLBW) infants has a greater effect on mortality risk than does neonatal intensive care unit (NICU) level. The differential effect of these hospital factors on morbidity among VLBW infants is uncertain. To assess the independent effects of a birth hospital's annual volume of VLBW infant deliveries and NICU level on the risk of several neonatal morbidities and morbidity-mortality composite outcomes that are predictive of future neurocognitive development. Retrospective, population-based cohort study (performed in 2014) of all VLBW infants without severe congenital anomalies delivered in all hospitals in California, Missouri, and Pennsylvania between January 1, 1999, and December 31, 2009 (N = 72,431). Risk-adjusted odds ratios and risk-adjusted probabilities were determined by logistic regression. The primary study outcomes were the individual composites of death or bronchopulmonary dysplasia, necrotizing enterocolitis, retinopathy of prematurity, and severe intraventricular hemorrhage. Among the 72,431 VLBW infants in the present study, birth at a hospital with 10 or less deliveries of VLBW infants per year was associated with the highest risk-adjusted probability of death (15.3% [95% CI, 14.4%-16.3%]), death or severe intraventricular hemorrhage (17.5% [95% CI, 16.5%-18.6%]), and death or necrotizing enterocolitis (19.3% [95% CI, 18.1%-20.4%]). These complications were also more common among infants born at hospitals with a level I or II NICU compared with infants delivered at hospitals with a level IIIB/C NICU. The risk-adjusted probability of death or retinopathy of prematurity was highest among infants born at hospitals with a level IIIB/C NICU and lowest among infants born at hospitals with a level IIIA NICU. When the effects of NICU level and annual volume of VLBW infant deliveries were evaluated simultaneously, the annual volume of deliveries was the stronger contributor to the risk of death, death or

  10. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  11. Multi-Course Comparison of Traditional versus Web-based Course Delivery Systems

    Directory of Open Access Journals (Sweden)

    J. Michael Weber, PhD.,

    2007-07-01

    Full Text Available The purpose of this paper is to measure and compare the effectiveness of a Web-based course delivery system to a traditional course delivery system. The results indicate that a web-based course is effective and equivalent to a traditional classroom environment. As with the implementation of all new technologies, there are some pros and cons that should be considered. The significant pro is the element of convenience which eliminates the constrictive boundaries of space and time. The most notable con involves the impersonal nature of the online environment. Overall, we found the web-based course delivery system to be very successful in terms of learning outcomes and student satisfaction.

  12. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  13. Stoppage - Vat Return and Accounting Practice in Re-Delivery of a Delivery Subject to Stoppage

    Directory of Open Access Journals (Sweden)

    Ahmet Yanık

    2016-12-01

    Full Text Available Value Added Tax (VAT is calculated based on the goods and service delivery costs realized by the corporations. Unless this VAT is subject to stoppage, seller takes the VAT from the purchaser in delivery of goods or services and then the corporate pays this amount to the tax office or sets off through the VAT he paid for his service or goods procurement. However, in some cases, Ministry of Finance holds not those providing the delivery or service but those purchasing or procuring the goods or services responsible partly or fully for the tax calculated based on the delivery or service fee. The purpose of this paper is to reveal VAT stoppage, accounting entries with regards to the corporation accepting the delivery and re-delivering it, VAT set off and VAT return in the re-delivery of a delivery subject to stoppage pursuant to General Communiqué of VAT Serial No 117

  14. Tailoring the dendrimer core for efficient gene delivery.

    Science.gov (United States)

    Hu, Jingjing; Hu, Ke; Cheng, Yiyun

    2016-04-15

    Dendrimers have been widely used as non-viral gene vectors due to well-defined chemical structures, high density of cationic charges and ease of surface modification. Although a large number of studies have reported the important roles of dendrimer architecture, component, generation and surface functionality in gene delivery, the effect of dendrimer core on this issue still remains unclear. Recent literatures suggest that a slight alternation in dendrimer core has a profound effect in the transfection efficacy and biocompatibility. In this review, we will discuss the transfection mechanism of dendrimers with different types of cores in respect of flexibility, hydrophobicity and functionality. We hope to open a possibility of designing efficient dendrimers for gene delivery by choosing a proper dendrimer core. As a branch of researches on dendrimers and dendritic polymers, the design of biocompatible and high efficient polymeric gene carriers has attracted increasing attentions during these years. Although the effect of dendrimer generation, species, architecture and surface functionality on gene delivery have been widely reported, the effect of dendrimer core on this issue still remains unclear. Recent literatures suggest that a minor variation on the dendrimer core has a profound effect in the transfection efficacy and biocompatibility. This critical review summarized the dendrimers with different types of cores and discussed the transfection mechanism with particular focus on the flexibility, hydrophobicity, and functionality. It is hoped to provide a new insight to design efficient and safe dendrimer-based gene vectors by choosing a proper core. To the best of our knowledge, this is the first review on the effect of dendrimer core on gene delivery. The findings obtained in this filed are of central importance in the design of efficient polymeric gene vectors. This article will appeal a wide readership such as physical chemist, dendrimer chemist, biological

  15. Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level

    Directory of Open Access Journals (Sweden)

    Riggio Cristina

    2009-01-01

    Full Text Available Abstract In this article, a carbon nanotube (CNT array-based system combined with a polymer thin film is proposed as an effective drug release device directly at cellular level. The polymeric film embedded in the CNT array is described and characterized in terms of release kinetics, while in vitro assays on PC12 cell line have been performed in order to assess the efficiency and functionality of the entrapped agent (neural growth factor, NGF. PC12 cell differentiation, following incubation on the CNT array embedding the alginate delivery film, demonstrated the effectiveness of the proposed solution. The achieved results indicate that polymeric technology could be efficiently embedded in CNT array acting as drug delivery system at cellular level. The implication of this study opens several perspectives in particular in the field of neurointerfaces, combining several functions into a single platform.

  16. Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejun; Zhang, Yi; Hu, Qian; Tang, Qiao [Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 (China); Xu, Jiake [The School of Pathology and Laboratory Medicine, University of Western Australia, Perth (Australia); Wu, Jianping; Kirk, Thomas Brett [3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University (Australia); Ma, Dong, E-mail: tmadong@jnu.edu.cn [Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 (China); Xue, Wei, E-mail: weixue_jnu@hotmail.com [Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 (China)

    2017-02-01

    The development of biocompatible vector for hydrophobic drug delivery remains a longstanding issue in cancer therapy. We design and synthesis a drug delivery system based on HPG modified β-CD (β-CD-HPG) by conjugating HPG branches onto β-CD core and its structure was confirmed by NMR, FTIR, GPC and solubility. In vitro biocompatibility tests showed that HPG modification significantly improved red blood cells morphology alteration and hemolysis cause by β-CD and β-CD-HPG displayed cell safety apparently in a wide range of 0.01–1 mg/mL. An anti-cancer drug, docetaxel, was effectively encapsulated into β-CD-HPG which was confirmed by DSC analysis. This copolymer could form nanoparticles with small size (< 200 nm) and exhibited better DTX loading capacity and controlled release kinetics without initial burst release behavior compared with β-CD. Furthermore, antitumor assay in vitro show that β-CD-HPG/DTX effectively inhibited proliferation of human breast adenocarcinoma cells. Therefore, β-CD-HPG/DTX exhibit great potential for cancer chemotherapy. - Highlights: • A new drug delivery system based on HPG modified β-CD (β-CD-HPG) has been synthesized. • It showed excellent cytocompatibility, hemocompatibility and docetaxel delivery ability. • It could effectively inhibited proliferation of human breast adenocarcinoma cells.

  17. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  18. Microneedle Patches as Drug and Vaccine Delivery Platform.

    Science.gov (United States)

    Li, Junwei; Zeng, Mingtao; Shan, Hu; Tong, Chunyi

    2017-01-01

    Transcutaneous delivery is the ideal method for delivering therapeutic reagents or vaccines into skin. With their promise of self-administration, cost-effective and high efficiency, microneedle patches have been studied intensively as therapeutic and vaccination delivery platform that replaces injection by syringe. This review aims to summarize the recent advancements of microneedle patches in application for drugs and vaccine delivery. We reviewed the most of recently published papers on microneedle patches, summarized their evolution, classification, state-of the-art capabilities and discussed promising application in drugs and vaccine delivery. With the rapid development of nanotechnology, microneedle patches have been improved by switching from undissolving to dissolving microneedles, and their safety has also improved dramatically. As a drug delivery tool, microneedle patches can deliver bioactive molecular of different physical size. Additionally, microneedle patches can be coated or encapsulate with DNA vaccine, subunit antigen, inactivated or live virus vaccine. Combining clinical results with the results of patient interview, microneedle patches are found to be feasible and are predicated to soon be acceptable for the medical service. In this review, we summarized the evolution, current and future application of microneedle patches as delivery vehicle for drugs and vaccines. Compared with traditional delivery tools, microneedle patches have many advantages, such as providing pain-free, non-invasive, convenient route for reagent administration and delivery, with no cold chain required for storage and transportation as well as decreasing sharp medical waste, needle-caused injury and transmission of blood-borne infectious disease in rural area. However, even though there are dramatic progress in preclinical investigation of microneedle patches, further testing will be required for clinical application. Further research should be implemented in multiple fields

  19. The impact of treatment complexity and computer-control delivery technology on treatment delivery errors

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Lash, Kathy L.; Matrone, Gwynne M.; Volkman, Susan K.; McShan, Daniel L.; Kessler, Marc L.; Lichter, Allen S.

    1998-01-01

    Purpose: To analyze treatment delivery errors for three-dimensional (3D) conformal therapy performed at various levels of treatment delivery automation and complexity, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system (CCRS). Methods and Materials: All treatment delivery errors which occurred in our department during a 15-month period were analyzed. Approximately 34,000 treatment sessions (114,000 individual treatment segments [ports]) on four treatment machines were studied. All treatment delivery errors logged by treatment therapists or quality assurance reviews (152 in all) were analyzed. Machines 'M1' and 'M2' were operated in a standard manual setup mode, with no record and verify system (R/V). MLC machines 'M3' and 'M4' treated patients under the control of the CCRS system, which (1) downloads the treatment delivery plan from the planning system; (2) performs some (or all) of the machine set up and treatment delivery for each field; (3) monitors treatment delivery; (4) records all treatment parameters; and (5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3; therefore, it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments, nonaxial and noncoplanar plans, multisegment intensity modulation, and pseudoisocentric treatments studied for a 6-month period (505 patients) concurrent with the period in which the delivery errors were obtained. Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines; therefore, this analysis does not depend on fixed therapist staff on particular

  20. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Møller Larsen, Marcus; Bharati, Pratyush

    -zone spread allowing for 24/7 service delivery and access to resources. Based on comprehensive data we show that providers are likely to establish GDM configurations when clients value access to globally distributed talent pools and speed of service delivery, and in particular when services are highly...

  1. Effect of penetration modifiers on the dermal and transdermal delivery of drugs and cosmetic active ingredients.

    Science.gov (United States)

    Otto, A; Wiechers, J W; Kelly, C L; Hadgraft, J; du Plessis, J

    2008-01-01

    In this study the effect of 2 penetration modifiers, dimethyl isosorbide (DMI) and diethylene glycol monoethyl ether (DGME) on the skin delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC) was investigated. Ten percent DMI and DGME were separately formulated into oil-in-water emulsions containing 1.8% HQ, SA and DIOIC, respectively. Skin delivery and the flux across split-thickness human skin of the active ingredients were determined using Franz diffusion cells. An emulsion with 10% water incorporated instead of the water-soluble penetration modifiers served as a control. The study showed that neither 10% DMI nor 10% DGME significantly enhanced the skin permeation of the various lipophilic active ingredients or the uptake into the skin. It was hypothesized that the addition of the penetration modifiers to the emulsions not only enhanced the solubility of the various active ingredients in the skin but also in the formulation, resulting in a reduced thermodynamic activity and hence a weaker driving force for penetration. Therefore, the effect of DMI and DGME on the solubility of the active ingredients in the skin was counteracted by a simultaneous reduction in the thermodynamic activity in the formulation. Copyright 2008 S. Karger AG, Basel.

  2. Drug delivery and nanoparticles: Applications and hazards

    Directory of Open Access Journals (Sweden)

    Wim H De Jong

    2008-06-01

    Full Text Available Wim H De Jong1, Paul JA Borm2,31Laboratory for Toxicology, Pathology and Genetics, National Institute for Public Health and the Environment (RIVM, Bilthoven, The Netherlands; 2Zuyd University, Centre of Expertise in Life Sciences, Heerlen, The Netherlands; 3Magnamedics GmbH, Aachen, GermanyAbstract: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation

  3. Advances in the synthesis and application of nanoparticles for drug delivery.

    Science.gov (United States)

    Park, Wooram; Na, Kun

    2015-01-01

    The continuous development of drug delivery systems (DDSs) has been extensively researched by the need to maximize therapeutic efficacy while minimizing undesirable side effects. Nanoparticle technology was recently shown to hold great promise for drug delivery applications in nanomedicine due to its beneficial properties, such as better encapsulation, bioavailability, control release, and lower toxic effect. Despite the great progress in nanomedicine, there remain many limitations for clinical application. To overcome these limitations, advanced nanoparticles for drug delivery have been developed to enable the spatially and temporally controlled release of drugs in response to specific stimuli at disease sites. Furthermore, the controlled self-assembly of organic and inorganic materials may enable their use in theranostic applications. This review presents an overview of a recent advanced nanoparticulate system that can be used as a potential drug delivery carrier and focuses on the potential applications of nanoparticles in various biomedical fields for human health care. © 2015 Wiley Periodicals, Inc.

  4. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.

    Science.gov (United States)

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H; Saltzman, W Mark; Glazer, Peter M

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.

  5. What Is a Cesarean Delivery?

    Science.gov (United States)

    ... Twitter Pinterest Email Print What is a cesarean delivery? A cesarean delivery is a surgical procedure in which a fetus ... 32.2% of U.S. births were by cesarean delivery. 2 The CDC also found that the number ...

  6. Data-driven nutrient analysis and reality check: Human inputs, catchment delivery and management effects

    Science.gov (United States)

    Destouni, G.

    2017-12-01

    Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.

  7. Recent Advances in Non-viral Vectors for Gene Delivery

    Science.gov (United States)

    Guo, Xia; Huang, Leaf

    2011-01-01

    CONSPECTUS Non-viral vectors, typically based on cationic lipids or polymers, are preferred due to safety concerns with viral vectors. So far, non-viral vectors can proficiently transfect cells in culture, but obtaining efficient nanomedicines is far from evident. To overcome the hurdles associated with non-viral vectors is significant for improving delivery efficiency and therapeutic effect of nucleic acid. The drawbacks include the strong interaction of cationic delivery vehicles with blood components, uptake by the reticuloendothelial system (RES), toxicity, targeting ability of the carriers to the cells of interest, and so on. PEGylation is the predominant method used to reduce the binding of plasma proteins with non-viral vectors and minimize the clearance by RES after intravenous administration. The nanoparticles that are not rapidly cleared from the circulation accumulate in the tumors due to the enhanced permeability and retention effect, and the targeting ligands attached to the distal end of the PEGylated components allow binding to the receptors on the target cell surface. Neutral or anionic liposomes have been also developed for systemic delivery of nucleic acids in experimental animal model. Designing and synthesizing novel cationic lipids and polymers, and binding nucleic acid with peptides, targeting ligands, polymers, or environmentally sensitive moieties also attract many attentions for resolving the problems encountered by non-viral vectors. The application of inorganic nanoparticles in nucleic acid delivery is an emerging field, too. Recently, different classes of non-viral vectors appear to be converging and the features of different classes of non-viral vectors could be combined in one strategy. More hurdles associated with efficient nucleic acid delivery therefore might be expected to be overcome. In this account, we will focus on these novel non-viral vectors, which are classified into multifunctional hybrid nucleic acid vectors, novel

  8. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  9. Effects of Phytophthora cinnamomi isolate, inoculum delivery method, flood, and drought on vigor, disease severity and mortality of blueberry plants

    Science.gov (United States)

    Four studies evaluated the effect of Phytophthora cinnamomi isolates, inoculum delivery methods, and flood and drought conditions on vigor, disease severity scores, and survival of blueberry plants grown in pots in the greenhouse. Phytophthora cinnamomi isolates were obtained from blueberry plants ...

  10. Pulmonary effects of bupivacaine, ropivacaine, and levobupivacaine in parturients undergoing spinal anaesthesia for elective caesarean delivery: a randomised controlled study

    NARCIS (Netherlands)

    Lirk, P.; Kleber, N.; Mitterschiffthaler, G.; Keller, C.; Benzer, A.; Putz, G.

    2010-01-01

    BACKGROUND: Spinal anaesthesia is the method of choice for elective caesarean delivery, but has been reported to worsen dynamic pulmonary function when using bupivacaine. Similar investigations are lacking for ropivacaine and levobupivacaine. We have therefore compared the pulmonary effects of

  11. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  12. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Combined Effect of Surface Nano-Topography and Delivery of Therapeutics on the Adhesion of Tumor Cells on Porous Silicon Substrates

    KAUST Repository

    De Vitis, S.

    2016-02-23

    Porous silicon is a nano material in which pores with different sizes, densities and depths are infiltrated in conventional silicon imparting it augmented properties including biodegradability, biocompatibility, photoluminescence. Here, we realized porous silicon substrates in which the pore size and the fractal dimension were varied over a significant range. We loaded the described substrates with a PtCl(O, O′ − acac)(DMSO) antitumor drug and determined its release profile as a function of pore size over time up to 15 days. We observed that the efficacy of delivery augments with the pore size moving from small (∼ 8nm, efficiency of delivery ∼ 0.2) to large (∼ 55nm, efficiency of delivery ∼ 0.7). Then, we verified the adhesion of MCF-7 breast cancer cells on the described substrates with and without the administration of the antitumor drug. This permitted to decouple and understand the coincidental effects of nano-topography and a controlled dosage of drugs on cell adhesion and growth. While large pore sizes guarantee elevated drug dosages, large fractal dimensions boost cell adhesion on a surface. For the particular case of tumor cells and the delivery of an anti-tumor drug, substrates with a small fractal dimension and large pore size hamper cell growth. The competition between nano-topography and a controlled dosage of drugs may either accelerate or block the adhesion of cells on a nanostructured surface, for applications in tissue engineering, regenerative medicine, personalized lab-on-a-chips, and the rational design of implantable drug delivery systems.

  14. Effects of epidural lidocaine analgesia on labor and delivery: A randomized, prospective, controlled trial

    Directory of Open Access Journals (Sweden)

    Nafisi Shahram

    2006-12-01

    Full Text Available Abstract Background Whether epidural analgesia for labor prolongs the active-first and second labor stages and increases the risk of vacuum-assisted delivery is a controversial topic. Our study was conducted to answer the question: does lumbar epidural analgesia with lidocaine affect the progress of labor in our obstetric population? Method 395 healthy, nulliparous women, at term, presented in spontaneous labor with a singleton vertex presentation. These patients were randomized to receive analgesia either, epidural with bolus doses of 1% lidocaine or intravenous, with meperidine 25 to 50 mg when their cervix was dilated to 4 centimeters. The duration of the active-first and second stages of labor and the neonatal apgar scores were recorded, in each patient. The total number of vacuum-assisted and cesarean deliveries were also measured. Results 197 women were randomized to the epidural group. 198 women were randomized to the single-dose intravenous meperidine group. There was no statistical difference in rates of vacuum-assisted delivery rate. Cesarean deliveries, as a consequence of fetal bradycardia or dystocia, did not differ significantly between the groups. Differences in the duration of the active-first and the second stages of labor were not statistically significant. The number of newborns with 1-min and 5-min Apgar scores less than 7, did not differ significantly between both analgesia groups. Conclusion Epidural analgesia with 1% lidocaine does not prolong the active-first and second stages of labor and does not increase vacuum-assisted or cesarean delivery rate.

  15. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  16. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light.

    Science.gov (United States)

    Karimi, Mahdi; Sahandi Zangabad, Parham; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R

    2017-04-05

    Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.

  17. Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight.

    Science.gov (United States)

    Lucas, N; Legrand, R; Breton, J; Déchelotte, P; Edwards-Lévy, F; Fetissov, S O

    2015-04-02

    Chronic delivery of neuropeptides in the brain is a useful experimental approach to study their long-term effects on various biological parameters. In this work, we tested albumin-alginate microparticles, as a potential delivery system, to study if continuous release in the hypothalamus of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, may result in a long-term decrease in food intake and body weight. The 2-week release of α-MSH from peptide-loaded particles was confirmed by an in vitro assay. Then, daily food intake and body weight were studied for 18 days in rats injected bilaterally into the paraventricular hypothalamic nucleus with particles loaded or not with α-MSH. A decrease in body weight gain, persisting throughout the study, was found in rats injected with α-MSH-charged particles as compared with rats receiving non-charged particles and with rats injected with the same dose of α-MSH in solution. Food intake was significantly decreased for 3 days in rats receiving α-MSH-loaded particles and it was not followed by the feeding rebound effect which appears after food restriction. The presence of α-MSH-loaded particles in the hypothalamus was confirmed by immunohistochemistry. In conclusion, our study validates albumin-alginate microparticles as a new carrier system for long-term delivery of neuropeptides in the brain and demonstrates that chronic delivery of α-MSH in the hypothalamus results in a prolonged suppression of food intake and a decrease of body weight gain in rats. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. 6. Home deliveries

    African Journals Online (AJOL)

    Sitwala

    determine factors associated with home deliveries. Main outcome ... deliver at home than a health facility compared to those who .... regression analysis, women who had four years of schooling or .... by report bias, the burden of home deliveries is a real challenge .... Journal of Econometrics 1987; 36: 185-204. 14. Michelo ...

  19. [Fathers of first infants--preparatory courses about delivery, experience of delivery and paternity leave].

    Science.gov (United States)

    Aagaard, J; Dueholm, M; Nielsen, K T; Wiese, J; Strand, J E; Jangaard, J K

    1989-05-22

    In the Central Hospital in Randers, 233 fathers of first infants replied to a questionnaire which illustrated their attitudes to the preparatory courses about delivery, experience of delivery and attitudes to paternity leave. 65% of the fathers participated in the course and 74% stated that they considered that this had been profitable. Where 77% of the men were concerned, these considered that participation in delivery had been a positive experience. 73% of the men had planned paternity leave around the time of delivery, which emphasizes the need for this arrangement.

  20. Multi-bunch effect of resistive wall in the Beam Delivery System of the Compact Linear Collider

    CERN Document Server

    Mutzner, R; Rumolo, G; Tomas, R; Pieloni, T

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present work focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Our simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. The two cases of 3 TeV and 500 GeV have been examined.

  1. Persuading Iranian Women toward Normal Vaginal Delivery: Using Pictorial Perception of the Labour Process

    Directory of Open Access Journals (Sweden)

    Safieh Kananikandeh

    2018-06-01

    CONCLUSION: Pictorial education could be effective on the intention of women to choose natural vaginal delivery among pregnant women, and it can be used as an effective training technique for developing health literacy, enhancing self-efficacy and decision-making power of women in the delivery.

  2. The effect of a home delivery meal service of energy- and protein-rich meals on quality of life in malnourished outpatients suffering from lung cancer

    DEFF Research Database (Denmark)

    Leedo, Eva; Gade, Josephine; Granov, Sabrina

    2017-01-01

    Undernutrition is prevalent in cancer patients and associated with increased incidence of complications and mortality. We investigated the effects of a home delivery meal service, providing a selection of energy-dense, protein-rich meals, on quality of life (QoL) in malnourished lung cancer....... Intervention exerted a significant positive effect on performance score after 12 wk (P = 0.047). Increased energy and protein intakes were strongly associated with improved QoL, functional score, hand grip strength, symptom and performance scores. Food delivery service with energy- and protein-rich main meals...

  3. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    Science.gov (United States)

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  4. On the concavity of delivery games

    NARCIS (Netherlands)

    Hamers, H.J.M.

    1995-01-01

    Delivery games, introduced by Hamers, Borm, van de Leensel and Tijs (1994), are combinatorial optimization games that arise from delivery problems closely related to the Chinese postman problem (CPP). They showed that delivery games are not necessarily balanced. For delivery problems corresponding

  5. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  6. Prenatal attitudes toward vaginal delivery and actual delivery mode: Variation by race/ethnicity and socioeconomic status.

    Science.gov (United States)

    Attanasio, Laura B; Hardeman, Rachel R; Kozhimannil, Katy B; Kjerulff, Kristen H

    2017-12-01

    Researchers documenting persistent racial/ethnic and socioeconomic status disparities in chances of cesarean delivery have speculated that women's birth attitudes and preferences may partially explain these differences, but no studies have directly tested this hypothesis. We examined whether women's prenatal attitudes toward vaginal delivery differed by race/ethnicity or socioeconomic status, and whether attitudes were differently related to delivery mode depending on race/ethnicity or socioeconomic status. Data were from the First Baby Study, a cohort of 3006 women who gave birth to a first baby in Pennsylvania between 2009 and 2011. We used regression models to examine (1) predictors of prenatal attitudes toward vaginal delivery, and (2) the association between prenatal attitudes and actual delivery mode. To assess moderation, we estimated models adding interaction terms. Prenatal attitudes toward vaginal delivery were not associated with race/ethnicity or socioeconomic status. Positive attitudes toward vaginal delivery were associated with lower odds of cesarean delivery (AOR=0.60, P socioeconomic status women may be more able to realize their preferences in childbirth. © 2017 Wiley Periodicals, Inc.

  7. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Science.gov (United States)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  8. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2012-11-15

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  9. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  10. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Yan X

    2018-01-01

    Full Text Available Xiuju Yan,1,* Lixiao Xu,1,* Chenchen Bi,1 Dongyu Duan,1 Liuxiang Chu,1 Xin Yu,1 Zimei Wu,1 Aiping Wang,1,2 Kaoxiang Sun1,2 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University, Ministry of Education, Yantai University, Yantai, Shandong Province, 2State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD. Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD.Materials and methods: The biodistribution of rotigotine nanoparticles (R-NPs and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs.Results: Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05 in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf

  11. Optimization of a truck-drone in tandem delivery network using K-means and genetic algorithm

    OpenAIRE

    Mourelo Ferrandez, Sergio; Harbison, Timothy; Webwer, Troy; Sturges, Robert; Rich, Robert

    2016-01-01

    Purpose: The purpose of this paper is to investigate the effectiveness of implementing unmanned aerial delivery vehicles in delivery networks. We investigate the notion of the reduced overall delivery time and energy for a truck-drone network by comparing the in-tandem system with a stand-alone delivery effort. The objectives are (1) to investigate the time and energy associated to a truck-drone delivery network compared to standalone truck or drone, (2) to propose an optimizat...

  12. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    Science.gov (United States)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  13. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  14. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats.

    Science.gov (United States)

    Yokoo, T; Kamimura, K; Suda, T; Kanefuji, T; Oda, M; Zhang, G; Liu, D; Aoyagi, Y

    2013-08-01

    The development of a safe and reproducible gene delivery system is an essential step toward the clinical application of the hydrodynamic gene delivery (HGD) method. For this purpose, we have developed a novel electric power-driven injection system called the HydroJector-EM, which can replicate various time-pressure curves preloaded into the computer program before injection. The assessment of the reproducibility and safety of gene delivery system in vitro and in vivo demonstrated the precise replication of intravascular time-pressure curves and the reproducibility of gene delivery efficiency. The highest level of luciferase expression (272 pg luciferase per mg of proteins) was achieved safely using the time-pressure curve, which reaches 30 mm Hg in 10 s among various curves tested. Using this curve, the sustained expression of a therapeutic level of human factor IX protein (>500 ng ml(-1)) was maintained for 2 months after the HGD of the pBS-HCRHP-FIXIA plasmid. Other than a transient increase in liver enzymes that recovered in a few days, no adverse events were seen in rats. These results confirm the effectiveness of the HydroJector-EM for reproducible gene delivery and demonstrate that long-term therapeutic gene expression can be achieved by automatic computer-controlled hydrodynamic injection that can be performed by anyone.

  15. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  16. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    Science.gov (United States)

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    Directory of Open Access Journals (Sweden)

    Dharani Manickavasagam

    2013-01-01

    Full Text Available Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure. However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a patient tolerability and acceptance, (b drug stability and drug release profiles, (c therapeutic efficacy, and (d toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma.

  18. Artificial Virus as Trump-card to Resolve Exigencies in Targeted Gene Delivery.

    Science.gov (United States)

    Ajithkumar, K C; Pramod, Kannissery

    2018-01-01

    Viruses are potent pathogens that can effectively deliver the genetic material to susceptible host cells. This capability is beneficially utilized to successfully deliver the genetic material. However, the use of virus mediated gene delivery is considered divisive, because the potentially replicable genomes recombine or integrate with the cell DNA resulting in immunogenicity, ranging from inflammation to death. Thus, the need for potentially effective non-viral gene delivery vehicles arises. Non-viral vectors, protein only particles and virus like particles (VLP) can be constructed which contain all the necessary functional moieties. These resemble viruses and are called artificial or synthetic virus. The artificial virus eliminates the disadvantages of viral vectors but retain the beneficial effects of the viruses. Need for further functionalization can be avoided by this approach because incorporation of requisite agents such as cell ligands, membrane active peptides, etc. into proteins is possible. The protein- DNA complexes resemble bacterial inclusion bodies. Nucleic acids influence conformation of protein units which subsequently result in cell uptake and finally to the cell nucleus. Such tunable systems mimic the activities of infected viruses and are used for the safe and effective delivery of drugs and genetic material in gene therapy. The versatility, stability and biocompatible nature of artificial virus along with high transfection efficacy have made it favorite for gene delivery purposes, in addition to being useful for various biomedical and drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Variation in Primary Cesarean Delivery Rates by Individual Physician within a Single Hospital Laborist Model

    Science.gov (United States)

    METZ, Torri D.; ALLSHOUSE, Amanda A.; GILBERT, Sara A Babcock; DOYLE, Reina; TONG, Angie; CAREY, J. Christopher

    2016-01-01

    Background Laborist practice models are associated with lower cesarean delivery rates than individual private practice models in several studies; however, this effect is not uniform. Further exploration of laborist models may help us better understand the observed reduction in cesarean delivery rates in some hospitals with implementation of a laborist model. Objective Our objective was to evaluate the degree of variation in primary cesarean delivery rates by individual laborists within a single institution employing a laborist model. In addition, we sought to evaluate whether differences in cesarean delivery rates resulted in different maternal or short-term neonatal outcomes. Study Design At this teaching institution, one laborist (either a generalist or maternal-fetal medicine attending physician) is directly responsible for labor and delivery management during each shift. No patients are followed in a private practice model nor are physicians incentivized to perform deliveries. We retrospectively identified all laborists who delivered nulliparous, term women with cephalic singletons at this institution from 2007-14. Overall and individual primary cesarean delivery rates were reported as percentages with exact Pearson 95% CI. Laborists were grouped by tertile as having low, medium or high cesarean delivery rates. Characteristics of the women delivered, indications for cesarean delivery, and short-term neonatal outcomes were compared between these groups. A binomial regression model of cesarean delivery was estimated, where the relative rates of each laborist compared to the lowest-unadjusted laborist rate were calculated; a second model was estimated to adjust for patient-level maternal characteristics. Results Twenty laborists delivered 2,224 nulliparous, term women with cephalic singletons. The overall cesarean delivery rate was 24.1% (95% CI 21.4-26.8). In an unadjusted binomial model, the overall effect of individual laborist was significant (pcesarean

  20. 38 CFR 21.4505 - Check delivery.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Check delivery. 21.4505...) VOCATIONAL REHABILITATION AND EDUCATION Education Loans § 21.4505 Check delivery. (a) General. Education... surviving spouse is enrolled for delivery by the educational institution. (b) Delivery and certification. (1...

  1. 18 CFR 157.211 - Delivery points.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Delivery points. 157... for Certain Transactions and Abandonment § 157.211 Delivery points. (a) Construction and operation—(1... delivery point, excluding the construction of certain delivery points subject to the prior notice...

  2. Development of strategies to reduce cesarean delivery rates in iran 2012-2014: A mixed methods study

    Directory of Open Access Journals (Sweden)

    Razieh Lotfi

    2014-01-01

    Full Text Available Background: With the change in population policy from birth control toward encouraging birth and population growth in Iran, repeated cesarean deliveries as a main reason of cesarean section are associated with more potential adverse consequences. The aim of this research was to explore effective strategies to reduce cesarean delivery rates in Iran. Methods: A mixed methodological study was designed and implemented. First, using a qualitative approach, concepts and influencing factors of increased cesarean delivery were explored. Based on the findings of this phase of the study, a questionnaire including the proposed strategies to reduce cesarean delivery was developed. Then in a quantitative phase, the questionnaire was assessed by key informants from across the country and evaluated to obtain more effective strategies to reduce cesarean delivery. Ten participants in the qualitative study included policy makers from the Ministry of Health, obstetricians, midwives and anthropologists. In the next step, 141 participants from private and public hospitals, insurance experts, Academic Associations of Midwifery, and policy makers in Maternity Health Affairs of Ministry of Health were invited to assess and provide feedback on the strategies that work to reduce cesarean deliveries. Results: Qualitative data analysis showed four concept related to increased cesarean delivery rates including; "standardization", "education", "amending regulations", and "performance supervision". Effective strategies extracted from qualitative data were rated by participants then, using ACCEPT derived from A as attainability, C as costing, C as complication, E as effectiveness, P as popularity, and T as timing table 19 strategies were detected as priorities. Conclusions: Although developing effective strategies to reduce cesarean delivery rates is complex process because of the multi-factorial nature of increased cesarean deliveries, in this study we have achieved

  3. Effects of delivery mode and sociodemographic factors on postpartum stress urinary incontinency in primipara women: A prospective cohort study

    Directory of Open Access Journals (Sweden)

    Roya Kokabi

    2017-08-01

    Conclusion: Vaginal delivery is associated with a twofold increased risk of postpartum SUI in primipara women compared with elective cesarean section. Age and birth weight are the main risk factors of postpartum SUI in both modes of delivery. Tool-assisted delivery and episiotomy were determined as the risk factors of postpartum SUI in vaginal delivery.

  4. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.

    Science.gov (United States)

    Hani, Umme; Shivakumar, H G

    2014-01-01

    Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.

  5. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review

    Directory of Open Access Journals (Sweden)

    Mukta Paranjpe

    2014-04-01

    Full Text Available Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.

  6. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Advanced SLARette delivery machine

    International Nuclear Information System (INIS)

    Bodner, R.R.

    1995-01-01

    SLARette 1 equipment, comprising of a SLARette Delivery Machine, SLAR Tools, SLAR power supplies and SLAR Inspection Systems was designed, developed and manufactured to service fuel channels of CANDU 6 stations during the regular yearly station outages. The Mark 2 SLARette Delivery Machine uses a Push Tube system to provide the axial and rotary movements of the SLAR Tool. The Push Tubes are operated remotely but must be attached and removed manually. Since this operation is performed at the Reactor face, there is radiation dose involved for the workers. An Advanced SLARette Delivery Machine which incorporates a computer controlled telescoping Ram in the place of the Push Tubes has been recently designed and manufactured. Utilization of the Advanced SLARette Delivery Machine significantly reduces the amount of radiation dose picked up by the workers because the need to have workers at the face of the Reactor during the SLARette operation is greatly reduced. This paper describes the design, development and manufacturing process utilized to produce the Advanced SLARette Delivery Machine and the experience gained during the Gentilly-2 NGS Spring outage. (author)

  8. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  9. Determinants of institutional delivery in rural Jhang, Pakistan

    Directory of Open Access Journals (Sweden)

    Carton Thomas W

    2011-07-01

    Full Text Available Abstract Background There is expert consensus that delivery at a health facility substantially reduces the risk of maternal death. By increasing the use of antenatal (ANC, postnatal care (PNC and family planning, the risk of maternal death can be further reduced. There has been little investigation of factors associated with the use of these services in Pakistan. Methods A representative household survey was conducted in rural areas of Jhang district, Pakistan, to determine the effect of demographic, economic and program factors on the utilization of maternal health services. Married women who had children ages 12 months or younger were interviewed. Data was collected from 2,018 women on socio-demographic characteristics and the utilization of health services. Logistic regression analysis was conducted to identify the correlates of health services use. Marginal effects quantify the impact of various factors on service utilization. Results Parity and education had the largest impact on institutional delivery: women were substantially less likely to deliver at a health facility after their first birth; women with primary or higher education were much more likely to have an institutional delivery. Age, autonomy, household wealth, proximity to a health facility and exposure to mass media were also important drivers of institutional delivery. The use of family planning within a year of delivery was low, with parity, education and husband's approval being the strongest determinants of use. Conclusions The findings suggest that rural women are likely to respond to well-designed interventions that remove financial and physical barriers to accessing maternal health services and motivate women by emphasizing the benefits of these services. Interventions should specifically target women who have two or more living children, little formal education and are from the poorest households.

  10. DNA nanomaterials for preclinical imaging and drug delivery.

    Science.gov (United States)

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A review on electrospun nanofibers for oral drug delivery

    Directory of Open Access Journals (Sweden)

    Abbas Akhgari

    2017-10-01

    Full Text Available Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics such as high porosity, high surface area to volume ratio, high loading capacity and encapsulation efficiency, delivery of multiple drugs, and enhancement of drug solubility. Due to these properties electrospun nanofibers have been extensively used for different biomedical applications including wound dressing, tissue engineering, enzyme immobilization, artificial organs, and drug delivery. Different synthetic and natural polymers have been successfully electrospun into ultrafine fibers. Using electrospun nanofibers as vehicles for oral drug delivery has been investigated in different release manners- fast, biphasic or sustained release. This article presents a review on application of electrospinning technique in oral drug delivery.

  12. 19 CFR 10.101 - Immediate delivery.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Immediate delivery. 10.101 Section 10.101 Customs... Importations § 10.101 Immediate delivery. (a) Shipments entitled to immediate delivery. Shipments consigned to... as shipments the immediate delivery of which is necessary within the purview of section 448(b...

  13. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  14. Pregnancy week at delivery and the risk of shoulder dystocia: a population study of 2,014,956 deliveries.

    Science.gov (United States)

    Øverland, E A; Vatten, L J; Eskild, A

    2014-01-01

    To study whether pregnancy week at delivery is an independent risk factor for shoulder dystocia. Population study. Medical Birth Registry of Norway. All vaginal deliveries of singleton offspring in cephalic presentation in Norway during 1967 through 2009 (n = 2,014,956). The incidence of shoulder dystocia was calculated according to pregnancy week at delivery. The associations of pregnancy week at delivery with shoulder dystocia were estimated as crude and adjusted odds ratios using logistic regression analyses. We repeated the analyses in pregnancies with and without maternal diabetes. Shoulder dystocia at delivery. The overall incidence of shoulder dystocia was 0.73% (n = 14,820), and the incidence increased by increasing pregnancy week at delivery. Birthweight was strongly associated with shoulder dystocia. After adjustment for birthweight, induction of labour, use of epidural analgesia at delivery, prolonged labour, forceps-assisted and vacuum-assisted delivery, parity, period of delivery and maternal age in multivariable analyses, the adjusted odds ratios for shoulder dystocia were 1.77 (1.42-2.20) for deliveries at 32-35 weeks of gestation, and 0.84 (0.79-0.88) at 42-43 weeks of gestation, using weeks 40-41 as the reference. In pregnancies affected by diabetes (n = 11,188), the incidence of shoulder dystocia was 3.95%, and after adjustment for birthweight the adjusted odds ratio for shoulder dystocia was 2.92 (95% CI 1.54-5.52) for deliveries at weeks 32-35 of gestation, and 0.91 (95% CI 0.50-1.66) at 42-43 weeks of gestation. The risk of shoulder dystocia was associated with increased birthweight, diabetes, induction of labour, use of epidural analgesia at delivery, prolonged labour, forceps-assisted and vacuum-assisted delivery, parity and period of delivery but not with post-term delivery. © 2013 Royal College of Obstetricians and Gynaecologists.

  15. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  16. [Study on liver targeted drug delivery system of the effective anticancer component from Bolbstemma paniculatum].

    Science.gov (United States)

    Sun, Yi-Yi; Ll, Tong-Hui; Tang, Chen-Kang; Zhu, Zi-Ping; Chi, Qun; Hou, Shi-Xiang

    2005-06-01

    To study the liver targeted drug delivery system of TBMS--the effective anticancer component from Bolbstemma paniculatum, and to discuss the system's function of decreasing toxicity. BCA was used as carrier material. The preparation through overall feedback dynamic techniques. The properties of preparation and toxicology were also technology of nanoparticles was optimized studied. Thenanoparticles' targeting in mice vivo was observed with transmission electron microscopy. The function of decreasing toxicity was researched by the XXTX-2000 automatic quantitative analysis management system. D50 was 0.68 microm. Drug-loading rate and entrapment rate were 37.3% and 88.6% respectively. The release in vitro accorded with Weibull equation. The reaching release balance time and the t 1/2 extended 26 times and 19 times respectively comparing with injection. Nanoparticles mainly distributed in liver tissue. Their toxicity to lung and liver was evidently lower than injection. Nanoparticles' LD50 exceeded injection's by 13.5% and their stimulus was much lower than injection. The TBMS can be targeted to liver by liver targeted drug delivery system. At the same time, the problem about the toxicity hindering clinical application could be solved, which lays the foundation for the further studies on TBMS.

  17. Closing the delivery gaps in pediatric HIV care in Togo, West Africa: using the care delivery value chain framework to direct quality improvement.

    Science.gov (United States)

    Fiori, Kevin; Schechter, Jennifer; Dey, Monica; Braganza, Sandra; Rhatigan, Joseph; Houndenou, Spero; Gbeleou, Christophe; Palerbo, Emmanuel; Tchangani, Elfamozo; Lopez, Andrew; Bensen, Emily; Hirschhorn, Lisa R

    2016-03-01

    Providing quality care for all children living with HIV/AIDS remains a global challenge and requires the development of new healthcare delivery strategies. The care delivery value chain (CDVC) is a framework that maps activities required to provide effective and responsive care for a patient with a particular disease across the continuum of care. By mapping activities along a value chain, the CDVC enables managers to better allocate resources, improve communication, and coordinate activities. We report on the successful application of the CDVC as a strategy to optimize care delivery and inform quality improvement (QI) efforts with the overall aim of improving care for Pediatric HIV patients in Togo, West Africa. Over the course of 12 months, 13 distinct QI activities in Pediatric HIV/AIDS care delivery were monitored, and 11 of those activities met or exceeded established targets. Examples included: increase in infants receiving routine polymerase chain reaction testing at 2 months (39-95%), increase in HIV exposed children receiving confirmatory HIV testing at 18 months (67-100%), and increase in patients receiving initial CD4 testing within 3 months of HIV diagnosis (67-100%). The CDVC was an effective approach for evaluating existing systems and prioritizing gaps in delivery for QI over the full cycle of Pediatric HIV/AIDS care in three specific ways: (1) facilitating the first comprehensive mapping of Pediatric HIV/AIDS services, (2) identifying gaps in available services, and (3) catalyzing the creation of a responsive QI plan. The CDVC provided a framework to drive meaningful, strategic action to improve Pediatric HIV care in Togo.

  18. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters

    International Nuclear Information System (INIS)

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-01-01

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4–167.1 cc) and motion amplitude (2.9–30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τ es ), time required for magnet settling (τ ss ), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior–inferior motion amplitude alone. Larger spot sizes (σ ∼ 9–16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ∼ 2–4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes

  19. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.

    Science.gov (United States)

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-06-21

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The

  20. Nanoparticle bioconjugate for controlled cellular delivery of doxorubicin

    Science.gov (United States)

    Sangtani, Ajmeeta; Petryayeva, Eleonora; Wu, Miao; Susumu, Kimihiro; Oh, Eunkeu; Huston, Alan L.; Lasarte-Aragones, Guillermo; Medintz, Igor L.; Algar, W. Russ; Delehanty, James B.

    2018-02-01

    Nanoparticle (NP)-mediated drug delivery offers the potential to overcome limitations of systemic delivery, including the ability to specifically target cargo and control release of NP-associated drug cargo. Doxorubicin (DOX) is a widely used FDA-approved cancer therapeutic; however, multiple side effects limit its utility. Thus, there is wide interest in modulating toxicity after cell delivery. Our goal here was to realize a NP-based DOX-delivery system that can modulate drug toxicity by controlling the release kinetics of DOX from the surface of a hard NP carrier. To achieve this, we employed a quantum dot (QD) as a central scaffold which DOX was appended via three different peptidyl linkages (ester, disulfide, hydrazone) that are cleavable in response to various intracellular conditions. Attachment of a cell penetrating peptide (CPP) containing a positively charged polyarginine sequence facilitates endocytosis of the ensemble. Polyhistidine-driven metal affinity coordination was used to self-assemble both peptides to the QD surface, allowing for fine control over both the ratio of peptides attached to the QD as well as DOX dose delivered to cells. Microplate-based Förster resonance energy transfer assays confirmed the successful ratiometric assembly of the conjugates and functionality of the linkages. Cell delivery experiments and cytotoxicity assays were performed to compare the various cleavable linkages to a control peptide where DOX is attached through an amide bond. The role played by various attachment chemistries used in QD-peptide-drug assemblies and their implications for the rationale in design of NPbased constructs for drug delivery is described here.

  1. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery

    Science.gov (United States)

    Jang, Hun-jae; Hur, Eugene; Kim, Yoonkwan; Lee, Seol-Hoon; Kang, Nae G.; Yoh, Jack J.

    2014-11-01

    A breakthrough in the efficient transdermal delivery of drug via the laser-driven microjet is reported. A single source of laser beam is split into two: one beam ablates a targeted spot on a skin and another beam drives the injector for fast microjet ejection into a preablated spot. This combined ablation and microjet injection scheme using a beam splitter utilizes 1∶4 laser energy sharing between generation of the microhole via ablation and the microjet which is generated using the Er:YAG laser beam at a 2940-nm wavelength and 150-μs pulse duration. A careful analysis of the injection mechanism is carried out by studying the response of the elastic membrane that separates a driving water unit for bubble expansion from a drug unit for a microjet ejection. The efficiency of the present delivery scheme is evaluated by the abdominal porcine skin test using the fluorescein isothiocyanate staining and the confocal microscopy for quantitative delivery confirmation. The depth of penetration and the injected volume of the drug are also confirmed by polyacrylamide gel tests.

  2. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  3. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    Science.gov (United States)

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route.

    Science.gov (United States)

    Puri, Ashana; Sivaraman, Arunprasad; Zhang, Wei; Clark, Meredith R; Banga, Ajay K

    2017-01-01

    Constant efforts for HIV prevention using antiretroviral drugs, pre- and postexposure prophylactic agents, and microbicides are being made by researchers. Drug-delivery systems such as oral tablets and coitally dependent vaginal gels are short acting, require daily application, and are associated with user adherence issues, whereas the coitally independent systems such as injectables and biodegradable implants are long acting, lasting several months, during which time the termination of prophylaxis is impractical in case of adverse effects. An effective drug-delivery system to be used for an intermediate duration, if available, would be an attractive alternative option for users in terms of adherence. Transdermal delivery systems, overcoming most of the limitations of the other routes of administration and aiming to provide sustained delivery of drugs through skin, may be explored for HIV prevention. Passive and physical enhancement techniques may be designed strategically to improve the transdermal delivery of HIV preventive agents.

  5. Vaginal Birth After Cesarean Delivery: Deciding on a Trial of Labor After a Cesarean Delivery (TOLAC)

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ070 LABOR, DELIVERY, AND POSTPARTUM CARE Vaginal Birth After Cesarean Delivery • What is a vaginal birth after cesarean delivery (VBAC)? • What is a trial of labor ...

  6. A Biomimic Reconstituted High-Density-Lipoprotein-Based Drug and p53 Gene Co-delivery System for Effective Antiangiogenesis Therapy of Bladder Cancer

    Science.gov (United States)

    Ouyang, Qiaohong; Duan, Zhongxiang; Jiao, Guangli; Lei, Jixiao

    2015-07-01

    A biomimic reconstituted high-density-lipoprotein-based drug and p53 gene co-delivery system (rHDL/CD-PEI/p53 complexes) was fabricated as a targeted co-delivery nanovector of drug and gene for potential bladder cancer therapy. Here, CD-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL, and to act as an antitumor drug to suppress tumor angiogenesis. The rHDL/CD-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge, and low cytotoxicity in vitro. The results of confocal laser scanning microscopy and flow cytometry confirmed that SR-BI-targeted function induced specific cytoplasmic delivery and high gene transfection efficiency in MBT-2 murine bladder cells. In addition, rHDL/CD-PEI/p53 complexes co-delivering CD and p53 gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) messenger RNA (mRNA) and protein via different pathways in vitro. In vivo investigation on C3H/He mice bearing MBT-2 tumor xenografts revealed that rHDL/CD-PEI/p53 complexes possessed strong antitumor activity. These findings suggested that rHDL/CD-PEI/p53 complexes could be an ideal tumor-targeting system for simultaneous transfer of drug and gene, which might be a new promising strategy for effective bladder cancer therapy.

  7. Effect of volatile compounds on excimer laser power delivery.

    Science.gov (United States)

    Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K

    2002-01-01

    To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.

  8. Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...

    African Journals Online (AJOL)

    Delivery System for Improved Delivery to Heart ... Conclusion: Microparticulate floating (gastroretentive) oral drug delivery system of diltiazem prepared ..... treatment of cardiac disease. ... hydrochloride-loaded mucoadhesive microspheres.

  9. A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas

    Directory of Open Access Journals (Sweden)

    Jiyoon Park

    2018-03-01

    Full Text Available Unmanned aerial vehicles (UAV, drones used as delivery vehicles have received increasing attention due to their mobility and accessibility to remote areas. The purpose of this study is to evaluate the environmental impacts of drone versus motorcycle delivery and to compare the expected environmental improvements due to drone delivery in urban and rural areas. In addition, the potential environmental contributions of electric motorcycles were assessed to determine the effects of introducing this new type of vehicle. Changes in the national electricity generation plan were also examined. The results showed that global warming potential (GWP per 1 km delivery by drone was one-sixth that of motorcycle delivery, and the particulates produced by drone delivery were half that of motorcycle delivery. The actual environmental impact reduction in consideration of the delivery distance was 13 times higher in a rural area than in an urban area. Increasing the use of environmentally friendly electricity systems, such as solar and wind power, would further enhance the environmental effects of a drone delivery system.

  10. Fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Erlendsson, Andrés M; Doukas, Apostolos G; Farinelli, William A

    2016-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is rapidly evolving as one of the foremost techniques for cutaneous drug delivery. While AFXL has effectively improved topical drug-induced clearance rates of actinic keratosis, treatment of basal cell carcinomas (BCCs) has been challenging......, potentially due to insufficient drug uptake in deeper skin layers. This study sought to investigate a standardized method to actively fill laser-generated channels by altering pressure, vacuum, and pressure (PVP), enquiring its effect on (i) relative filling of individual laser channels; (ii) cutaneous...

  11. Comparison of Fetomaternal Outcome between 47 Deliveries Following Successful External Cephalic Version for Breech Presentation and 7456 Deliveries Following Spontaneous Cephalic Presentation.

    Science.gov (United States)

    de Gregorio, Nikolaus; Friedl, Thomas; Schramm, Amelie; Reister, Frank; Janni, Wolfgang; Ebner, Florian

    2017-08-25

    Achieving a cephalic position after a successful external cephalic version (ECV) is desired to result in delivery and fetal outcomes that are similar to those of deliveries following spontaneous cephalic presentation. We performed a retrospective cohort study including patients with successful ECV following fetal breech position (ECV cohort, n = 47) or with a singleton spontaneous cephalic pregnancy at ≥37 weeks of gestational age (control group, n = 7,456) attempting a vaginal delivery between 2010 and 2013 at the University Hospital Ulm. The mode of delivery and fetal outcome parameters were compared between these 2 groups using nonparametric statistics. ECV cohort and control group did not differ with respect to maternal age, parity, gestational age at birth, and fetal gender. There were no significant differences between the 2 groups with regard to all parameters indicating fetal outcome. However, the rate of cesarean sections was higher after successful ECV compared to spontaneous cephalic presentation (27.7 vs. 12.8%, OR 2.615). While vaginal delivery is less likely to happen after a successful ECV compared to spontaneous cephalic singleton pregnancies, fetal outcome parameters showed no difference between the 2 groups. Physicians should be counseling and encouraging women to attempt ECV, as it is a safe and effective procedure. © 2017 S. Karger AG, Basel.

  12. Geographic information system-coupling sediment delivery distributed modeling based on observed data.

    Science.gov (United States)

    Lee, S E; Kang, S H

    2014-01-01

    Spatially distributed sediment delivery (SEDD) models are of great interest in estimating the expected effect of changes on soil erosion and sediment yield. However, they can only be applied if the model can be calibrated using observed data. This paper presents a geographic information system (GIS)-based method to calculate the sediment discharge from basins to coastal areas. For this, an SEDD model, with a sediment rating curve method based on observed data, is proposed and validated. The model proposed here has been developed using the combined application of the revised universal soil loss equation (RUSLE) and a spatially distributed sediment delivery ratio, within Model Builder of ArcGIS's software. The model focuses on spatial variability and is useful for estimating the spatial patterns of soil loss and sediment discharge. The model consists of two modules, a soil erosion prediction component and a sediment delivery model. The integrated approach allows for relatively practical and cost-effective estimation of spatially distributed soil erosion and sediment delivery, for gauged or ungauged basins. This paper provides the first attempt at estimating sediment delivery ratio based on observed data in the monsoon region of Korea.

  13. Multi-Bunch effect of resistive wall in the beam delivery system of the Compact Linear Collider

    CERN Document Server

    Mutzner, Raphael; Pieloni, Tatiana; Rivkin, Leonid

    2010-01-01

    Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present master thesis focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. We examine the two cases of 3 TeV and 500 GeV in this work, for stainless steel and copper pipes.

  14. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models.

    Science.gov (United States)

    Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping

    2017-08-07

    The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (pmicroemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  16. Effects of membrane composition on release of model hydrophilic compound from osmotic delivery systems.

    Science.gov (United States)

    Ozdemir, N; Ozalp, Y; Ozkan, Y

    2000-01-01

    In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.

  17. An industry update: the latest developments in Therapeutic delivery.

    Science.gov (United States)

    Steinbach, Oliver C

    2018-05-01

    The present industry update covers the period of 1 January-31 January 2018, with information sourced from company press releases, regulatory and patent agencies as well as scientific literature. Several public offerings (Gecko, Insmed), licensing (Foresee) and commercialization agreements (Alnylam, Collegium Pharmaceutical) as well as patent filings (Elute) continue to prove the sustained investments in the drug delivery market. In increasing numbers, more effective ways to deliver the active ingredient to the right location and the right dose through devices (Boehringer Ingelheim's Respimat, Medtronics' SynchroMedII) or improved compound properties through formulation (Aquestive Therapeutics' PharmFilm, Noven Pharmaceuticals' transdermal patch) are reaching the market. Furthering biologics and gene delivery (Avacta, Bracco) proves that novel drug delivery technologies are successfully addressing more challenging drug formats.

  18. Laser assisted drug delivery: a review of an evolving technology.

    Science.gov (United States)

    Sklar, Lindsay R; Burnett, Christopher T; Waibel, Jill S; Moy, Ronald L; Ozog, David M

    2014-04-01

    Topically applied drugs have a relatively low cutaneous bioavailability. This article reviews the existing applications of laser assisted drug delivery, a means by which the permeation of topically applied agents can be enhanced into the skin. The existing literature suggests that lasers are a safe and effective means of enhancing the delivery of topically applied agents through the skin. The types of lasers most commonly studied in regards to drug delivery are the carbon dioxide (CO2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) lasers. Both conventional ablative and fractional ablative modalities have been utilized and are summarized herein. The majority of the existing studies on laser assisted drug delivery have been performed on animal models and additional human studies are needed. Laser assisted drug delivery is an evolving technology with potentially broad clinical applications. Multiple studies demonstrate that laser pretreatment of the skin can increase the permeability and depth of penetration of topically applied drug molecules for both local cutaneous and systemic applications. © 2014 Wiley Periodicals, Inc.

  19. Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Directory of Open Access Journals (Sweden)

    Baozhen Yao

    2014-02-01

    Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.

  20. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.

    Science.gov (United States)

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2009-02-01

    Growing attentions have been paid to the pulmonary route for systemic delivery of peptide and protein drugs, such as insulin. Advantages of this non-injective route include rapid drug deposition in the target organ, fewer systemic side effects and avoiding first pass metabolism. However, sustained release formulations for pulmonary delivery have not been fully exploited till now. In our study, a novel dry powder inhalation (DPI) system of insulin loaded solid lipid nanoparticles (Ins-SLNs) was investigated for prolonged drug release, improved stability and effective inhalation. Firstly, the drug was incorporated into the lipid carriers for a maximum entrapment efficiency as high as 69.47 +/- 3.27% (n = 3). Secondly, DPI formulation was prepared by spray freeze drying of Ins-SLNs suspension, with optimized lyoprotectant and technique parameters in this procedure. The properties of DPI particles were characterized for their pulmonary delivery potency. Thirdly, the in vivo study of intratracheal instillation of Ins-SLNs to diabetic rats showed prolonged hypoglycemic effect and a relative pharmacological bioavailability of 44.40% could be achieved in the group of 8 IU/kg dosage. These results indicated that SLNs have shown increasing potential as an efficient and non-toxic lipophilic colloidal drug carrier for enhanced pulmonary delivery of insulin.

  1. Human Resources Management and Service Delivery in Nigeria ...

    African Journals Online (AJOL)

    The paper represents essentially an attempt to analyse and comprehend the role of Human Resource Management (HRM) in effective service delivery in Nigeria. The paper advocates that the revamping and transformation of the Nigerian Civil Service to render effective service to the public lies not in the continuous ...

  2. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Science.gov (United States)

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  3. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System.

    Science.gov (United States)

    Zhang, Yuefeng; Yang, Bin; Liu, Yajie; Qin, Wenjie; Li, Chao; Wang, Lantian; Zheng, Wen; Wu, Yulian

    2016-05-01

    RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).

  4. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.; Buttner, Ulrich; Yi, Ying

    2016-01-01

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  5. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  6. Early elective cesarean delivery before 36 weeks vs late spontaneous delivery in infants with gastroschisis.

    Science.gov (United States)

    Hadidi, Ahmed; Subotic, Ulrike; Goeppl, Maximilian; Waag, Karl-L

    2008-07-01

    The aim of this study is to assess the value of early elective cesarean delivery for patients with gastroschisis in comparison with late spontaneous delivery. Analysis of infants with gastroschisis admitted between 1986 and 2006 at a tertiary care center was performed. The findings were analyzed statistically. Eighty-six patients were involved in the study. This included 15 patients who underwent emergency cesarean delivery (EM CD group) because of fetal distress and/or bowel ischemia. The remaining 71 patients born electively were stratified into 4 groups. The early elective cesarean delivery (ECD) group included 23 patients born by ECD before 36 weeks; late vaginal delivery (LVD) group included 23 patients who had LVD after 36 weeks; 24 patients had LCD after 36 weeks because of delayed diagnosis that resulted in late referral; and 1 patient had early spontaneous vaginal delivery (EVD group) before 36 weeks. The mean time to start oral feeding, incidence of complications, and primary closure were significantly better in the ECD group than in the LVD group. The duration of ventilation and the length of stay were shorter in ECD group, but the difference was not statistically significant. Elective cesarean delivery before 36 weeks allows earlier enteral feeding and is associated with less complications and higher incidence of primary closure (statistically significant).

  7. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  8. Intranasal delivery of antiviral siRNA.

    Science.gov (United States)

    Barik, Sailen

    2011-01-01

    Intranasal administration of synthetic siRNA is an effective modality of RNAi delivery for the prevention and therapy of respiratory diseases, including pulmonary infections. Vehicles used for nasal siRNA delivery include established as well as novel reagents, many of which have been recently optimized. In general, they all promote significant uptake of siRNA into the lower respiratory tract, including the lung. When properly designed and optimized, these siRNAs offer significant protection against respiratory viruses such as influenza virus, parainfluenza virus and respiratory syncytial virus (RSV). Nasally administered siRNA remains within the lung and does not access systemic blood flow, as judged by its absence in other major organs such as liver, heart, kidney, and skeletal muscle. Adverse immune reaction is generally not encountered, especially when immunogenic and/or off-target siRNA sequences and toxic vehicles are avoided. In fact, siRNA against RSV has entered Phase II clinical trials in human with promising results. Here, we provide a standardized procedure for using the nose as a specific route for siRNA delivery into the lung of laboratory animals. It should be clear that this simple and efficient system has enormous potential for therapeutics.

  9. Optimal delivery of aerosols to infants during mechanical ventilation.

    Science.gov (United States)

    Longest, P Worth; Azimi, Mandana; Hindle, Michael

    2014-10-01

    The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80-90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2-4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1-10% to a range of 45-60%.

  10. A case series study on the effect of Ebola on facility-based deliveries in rural Liberia.

    Science.gov (United States)

    Lori, Jody R; Rominski, Sarah Danielson; Perosky, Joseph E; Munro, Michelle L; Williams, Garfee; Bell, Sue Anne; Nyanplu, Aloysius B; Amarah, Patricia N M; Boyd, Carol J

    2015-10-12

    As communities' fears of Ebola virus disease (EVD) in West Africa exacerbate and their trust in healthcare providers diminishes, EVD has the potential to reverse the recent progress made in promoting facility-based delivery. Using retrospective data from a study focused on maternal and newborn health, this analysis examined the influence of EVD on the use of facility-based maternity care in Bong Country, Liberia, which shares a boarder with Sierra Leone - near the epicenter of the outbreak. Using a case series design, retrospective data from logbooks were collected at 12 study sites in one county. These data were then analyzed to determine women's use of facility-based maternity care between January 2012 and October 2014. The primary outcome was the number of facility-based deliveries over time. The first suspected case of EVD in Bong County was reported on June 30, 2014. Heat maps were generated and the number of deliveries was normalized to the average number of deliveries during the full 12 months before the EVD outbreak (March 2013 - February 2014). Prior to the EVD outbreak, facility-based deliveries steadily increased in Bong County reaching an all-time high of over 500 per month at study sites in the first half of 2014 - indicating Liberia was making inroads in normalizing institutional maternal healthcare. However, as reports of EVD escalated, facility-based deliveries decreased to a low of 113 in August 2014. Ebola virus disease has negatively impacted the use of facility-based maternity services, placing childbearing women at increased risk for morbidity and death.

  11. Implementation of a protocol to reduce occurrence of retained sponges after vaginal delivery.

    Science.gov (United States)

    Lutgendorf, Monica A; Schindler, Lynnett L; Hill, James B; Magann, Everett F; O'Boyle, John D

    2011-06-01

    Retained sponges (gossypiboma) following vaginal delivery are an uncommon occurrence. Although significant morbidity from such an event is unlikely, there are many reported adverse effects, including symptoms of malodorous discharge, loss of confidence in providers and the medical system, and legal claims. To report a protocol intended to reduce the occurrence of retained sponges following vaginal delivery. After identification of limitations with existing delivery room protocols, we developed a sponge count protocol to reduce occurrence of retained vaginal sponges. We report our experience at Naval Medical Center Portsmouth, a large tertiary care military treatment facility with our efforts to implement a sponge count protocol to reduce retained sponges following vaginal delivery. With appropriate pre-implementation training, protocols which incorporate post-delivery vaginal sweep and sponge counts are well accepted by the health care team and can be incorporated into the delivery room routine.

  12. Probiotics in the Space Food System: Delivery, Microgravity Effects, and the Potential Benefit to Crew Health

    Science.gov (United States)

    Castro, S. L.; Ott, C. M.; Douglas, G. L.

    2014-01-01

    As mission distance and duration increase, the need grows for non-invasive disease prevention and immunomodulation, especially given the limited medical response capability expected for these missions and the immune dysregulation documented in crew. Additionally, changes in diet, lifestyle, antibiotic usage, and the environmental stresses during spaceflight may alter crewmembers' intestinal microbiome. The addition of probiotic bacteria to the space food system is expected to confer immunostimulatory benefits on crewmembers, with the potential to counteract the immune dysregulation that has been documented in spaceflight. Based on previous studies that demonstrated unique microbiological responses to the low shear environment of spaceflight, probiotic organisms hold the potential to induce enhanced beneficial responses through mechanisms, such as beneficial interactions with human immune cells and repression of colonization of pathogens on the mucosa. The work presented here will begin to address two research gaps related to providing probiotics in spaceflight: 1) delivery, and 2) the effect of the low shear microgravity environment on probiotic attributes. The probiotic Lactobacillus acidophilus was selected for investigation due to its wide commercial use and documented benefits that include inhibition of virulence related gene expression in pathogens and mucosal stimulation of immune cells. The delivery system for probiotics has not been determined for spaceflight, where the food system is shelf stable and the lack of refrigeration prevents the use of traditional dairy delivery methods. In order to demonstrate the potential of the space food system to deliver viable probiotic bacteria to crewmembers, the probiotic L. acidophilus was packaged in high barrier flight packaging in nonfat dry milk (NFDM) or retained in commercial capsule form. Viable cells were enumerated over 8 months of storage at 22, 4, and -80ºC. The survival of L. acidophilus rehydrated in NFDM

  13. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  14. A Multi-Modality Mobility Concept for a Small Package Delivery UAV

    Science.gov (United States)

    Young, L. A.

    2017-01-01

    This paper will discuss a different approach to the typical notional small package delivery drone concept. Most delivery drone concepts employ a point-to-point aerial delivery CONOPS (Concept of Operations) from a warehouse directly to the front or back yards of a customers residence or a commercial office space. Instead, the proposed approach is somewhat analogous to current postal deliveries: a small aerial vehicle flies from a warehouse to designated neighborhood VTOL (Vertical Take-Off and Landing) landing spots where the aerial vehicle then converts to a "roadable" (ground-mobility) vehicle that then transits on sidewalks and/or bicycle paths till it arrives to the residence/office drop-off points. This concept and associated platform or vehicle will be referred in this paper as MICHAEL (Multimodal Intra-City Hauling and Aerial-Effected Logistics) concept. It is suggested that the MICHAEL concept potentially results in a more community friendly "delivery drone" approach.

  15. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  16. Laser plasma jet driven microparticles for DNA/drug delivery.

    Directory of Open Access Journals (Sweden)

    Viren Menezes

    Full Text Available This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications.

  17. Evaluating the Effect of Lead Time on Quality Service Delivery in the Banking Industry in Kumasi Metropolis of Ghana

    Directory of Open Access Journals (Sweden)

    Stephen Okyere

    2015-07-01

    Full Text Available Customers are becoming more attracted to quality service delivery and are being impatience and unsatisfied when they had to be delayed or wait for longer times before they are served.  Hence, Quality Service Delivery is of utmost importance to every service organisation especially financial industry. Most financial institutions focus attention on product innovation at the expense of lead time management which is a major factor in ensuring service quality and customer satisfaction. Consequently, this research looks at evaluating the effect of lead time on quality service delivery in the Banking Industry in Kumasi Metropolis of Ghana. The study relied on Primary data collected through questionnaires, observation and interview instruments, administered to staff and customers of some selected branches of a commercial bank in the study area. The data was analysed qualitatively. The researchers realised that despite the immense importance of lead time on quality service delivery, little attention is given to the concept. It was revealed that, customers were dissatisfied with the commercial bank’s services as a result of the unnecessary delays and queuing at the bank premises. The long lead time was found to be attributable to plant/system failure, skill gap on the part of employees, ATM underutilization and frequent breakdowns, among others. This has consequently resulted into long lead time, waiting, queuing and unnecessary delay at the banking hall. It is recommended that Tellers should be provided with electronic card readers for verification of customer’s data and processing to be faster.

  18. The Effect of Service Compact (SERVICOM) on Service Delivery in Nnamdi Azikiwe University Teaching Hospital Nnewi, Nigeria

    OpenAIRE

    Jude Kennedy Emejulu; M. C. Muo; E. E.O. Chukwuemeka

    2014-01-01

    This study examined the effect of service compact (Servicom Service delivery) in Nnamdi Azikiwe University Teaching Hospital Nnewi. Questionnaire and face-to-face interviews were used in the collection of data. The hypotheses were tested using descriptive statistics. The study discovered among other things that with the inauguration of the SERVICOM Charter by the Federal Government of Nigeria, the Management of Nnamdi Azikiwe University Teaching Hospital Nnewi identified key areas that requir...

  19. Membrane-Mimic Nanoparticles for Drug and Gene Delivery

    KAUST Repository

    Alamoudi, Kholod

    2017-12-01

    and drug delivery. For the final project, a nature inspired coating was used in periodic mesoporous organosilica (PMO) NPs. PMOs were functionalized with colorectal cancer cell membrane. The resulting CC@NH2-TSPMOs, holding the diverse cancer cell membrane antigens showed a promising potential towards disease targeting and improved pharmacokinetics. This research confirms the notion of how nanotechnology engineering approaches are effective to improve the quality and effectiveness of cancer therapeutics.

  20. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery.

    Science.gov (United States)

    Lykke, Jacob A; Langhoff-Roos, Jens; Lockwood, Charles J; Triche, Elizabeth W; Paidas, Michael J

    2010-07-01

    The combined effects of preterm delivery, small-for-gestational-age offspring, hypertensive disorders of pregnancy, placental abruption and stillbirth on early maternal death from cardiovascular causes have not previously been described in a large cohort. We investigated the effects of pregnancy complications on early maternal death in a registry-based retrospective cohort study of 782 287 women with a first singleton delivery in Denmark 1978-2007, followed for a median of 14.8 years (range 0.25-30.2) accruing 11.6 million person-years. We employed Cox proportional hazard models of early death from cardiovascular and non-cardiovascular causes following preterm delivery, small-for-gestational-age offspring and hypertensive disorders of pregnancy. We found that preterm delivery and small-for-gestational-age were both associated with subsequent death of mothers from cardiovascular and non-cardiovascular causes. Severe pre-eclampsia was associated with death from cardiovascular causes only. There was a less than additive effect on cardiovascular mortality hazard ratios with increasing number of pregnancy complications: preterm delivery 1.90 [95% confidence intervals 1.49, 2.43]; preterm delivery and small-for-gestational-age offspring 3.30 [2.25, 4.84]; preterm delivery, small-for-gestational-age offspring and pre-eclampsia 3.85 [2.07, 7.19]. Thus, we conclude that, separately and combined, preterm delivery and small-for-gestational-age are strong markers of early maternal death from both cardiovascular and non-cardiovascular causes, while hypertensive disorders of pregnancy are markers of early death of mothers from cardiovascular causes.

  1. Gated Treatment Delivery Verification With On-Line Megavoltage Fluoroscopy

    International Nuclear Information System (INIS)

    Tai An; Christensen, James D.; Gore, Elizabeth; Khamene, Ali; Boettger, Thomas; Li, X. Allen

    2010-01-01

    Purpose: To develop and clinically demonstrate the use of on-line real-time megavoltage (MV) fluoroscopy for gated treatment delivery verification. Methods and Materials: Megavoltage fluoroscopy (MVF) image sequences were acquired using a flat panel equipped for MV cone-beam CT in synchrony with the respiratory signal obtained from the Anzai gating device. The MVF images can be obtained immediately before or during gated treatment delivery. A prototype software tool (named RTReg4D) was developed to register MVF images with phase-sequenced digitally reconstructed radiograph images generated from the treatment planning system based on four-dimensional CT. The image registration can be used to reposition the patient before or during treatment delivery. To demonstrate the reliability and clinical usefulness, the system was first tested using a thoracic phantom and then prospectively in actual patient treatments under an institutional review board-approved protocol. Results: The quality of the MVF images for lung tumors is adequate for image registration with phase-sequenced digitally reconstructed radiographs. The MVF was found to be useful for monitoring inter- and intrafractional variations of tumor positions. With the planning target volume contour displayed on the MVF images, the system can verify whether the moving target stays within the planning target volume margin during gated delivery. Conclusions: The use of MVF images was found to be clinically effective in detecting discrepancies in tumor location before and during respiration-gated treatment delivery. The tools and process developed can be useful for gated treatment delivery verification.

  2. Liposome as nanocarrier: Site targeted delivery in lung cancer

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2017-08-01

    Full Text Available Lung cancer is fatal and spreading rapidly worldwide. Different clinical strategies are applied to stop this cancer. As the lung is a delicate organ, special clinical applications must be used and nanodrugs delivery systems are the most important applications of all. This review discusses the lung problems such as lung cancer, lung inflammation and bronchi constrictions followed by repetitive intake of some drugs. The objective of this review is to study how nanodrug delivery systems were synthesized and used in lung disorder treatment especially in lung cancer. The authors studied some articles from 1989 to 2015. Liposome encapsulation was done in various ways for the delivery of different drugs such as metaproterenol into liposomes caused bronchodilation, immunoliposomes bearing antibodies for doxorubicin reduced 50% inhibitory effects, radioliposomes with high penetrating ability to peripheral airways, aerosol delivery systems with deep pulmonary deposition, polymeric drug delivery having potential to improve beneficial index of drug, solid lipid liposomes, liposomal gentamicin with altered different clinical susceptibilities of resistance, transferrin conjugated liposomes to deliver cytostatic drugs to site of lungs, anti-inflammatory drugs with mannosylated liposomes, liposomal suspensions with single stranded RNAs and peptide encapsulation of liposomes. This review indicates that many animals perished with intravenous administration of drugs but survived in liposomal targeting groups.

  3. Effective Nanoparticle-based Gene Delivery by a Protease Triggered Charge Switch

    DEFF Research Database (Denmark)

    Gjetting, Torben; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2014-01-01

    Gene carriers made from synthetic materials are of interest in relation to gene therapy but suffer from lack of transfection efficiency upon systemic delivery. To address this problem, a novel lipo-peptide-PEG conjugate constituted by a lipid-anchor, a peptide sensitive to proteases and a poly (e...

  4. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    Science.gov (United States)

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations. Published by Elsevier B.V.

  5. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas.

    Science.gov (United States)

    Boujelben, Ahmed; Watson, Michael; McDougall, Steven; Yen, Yi-Fen; Gerstner, Elizabeth R; Catana, Ciprian; Deisboeck, Thomas; Batchelor, Tracy T; Boas, David; Rosen, Bruce; Kalpathy-Cramer, Jayashree; Chaplain, Mark A J

    2016-10-06

    Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization, and they typically exhibit a disrupted blood-brain barrier (BBB). Although it has been hypothesized that the 'normalization' of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of BBB integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper, we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated-flow rate, vessel permeability and tissue diffusion coefficient-interact nonlinearly to produce the observed average drug concentration in the microenvironment.

  6. Enhanced delivery of cosmeceuticals by microdermabrasion.

    Science.gov (United States)

    Zhou, Yingcong; Banga, Ajay K

    2011-09-01

    Microdermabrasion (MDA) is one of the top five nonsurgical cosmetic procedures performed. It is a well-established technology with widespread applications in the cosmetic industry. To investigate the effects of MDA on skin and delivery of cosmeceuticals. The alternation of skin structure post-MDA was examined by histological sectioning and transepidermal water loss measurements. The effect of MDA treatment on skin permeation profiles of hydrophilic and lipophilic molecules was investigated by laser scanning confocal microscopy and in vitro permeation studies. Confocal images indicated different absorption profiles and permeation depths for hydrophilic and lipophilic molecules. Microdermabrasion enhanced the transdermal delivery of nicotinamide, the model hydrophilic compound employed. On the other hand, permeation of retinol, the model lipophilic compound, did not improve after treatment with MDA. When treated with 20 passes, the skin recovered from MDA induced changes in 4 days. Permeation of cosmeceuticals into skin was found to be affected by their lipophilicity. Application of skin care products post-MDA therapy may be promising to improve their dermal uptake. © 2011 Wiley Periodicals, Inc.

  7. Aerosol delivery and humidification with the Boussignac continuous positive airway pressure device.

    Science.gov (United States)

    Thille, Arnaud W; Bertholon, Jean-François; Becquemin, Marie-Hélène; Roy, Monique; Lyazidi, Aissam; Lellouche, François; Pertusini, Esther; Boussignac, Georges; Maître, Bernard; Brochard, Laurent

    2011-10-01

    A simple method for effective bronchodilator aerosol delivery while administering continuing continuous positive airway pressure (CPAP) would be useful in patients with severe bronchial obstruction. To assess the effectiveness of bronchodilator aerosol delivery during CPAP generated by the Boussignac CPAP system and its optimal humidification system. First we assessed the relationship between flow and pressure generated in the mask with the Boussignac CPAP system. Next we measured the inspired-gas humidity during CPAP, with several humidification strategies, in 9 healthy volunteers. We then measured the bronchodilator aerosol particle size during CPAP, with and without heat-and-moisture exchanger, in a bench study. Finally, in 7 patients with acute respiratory failure and airway obstruction, we measured work of breathing and gas exchange after a β(2)-agonist bronchodilator aerosol (terbutaline) delivered during CPAP or via standard nebulization. Optimal humidity was obtained only with the heat-and-moisture exchanger or heated humidifier. The heat-and-moisture exchanger had no influence on bronchodilator aerosol particle size. Work of breathing decreased similarly after bronchodilator via either standard nebulization or CPAP, but P(aO(2)) increased significantly only after CPAP aerosol delivery. CPAP bronchodilator delivery decreases the work of breathing as effectively as does standard nebulization, but produces a greater oxygenation improvement in patients with airway obstruction. To optimize airway humidification, a heat-and-moisture exchanger could be used with the Boussignac CPAP system, without modifying aerosol delivery.

  8. Albumin-based drug delivery: harnessing nature to cure disease.

    Science.gov (United States)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke; Howard, Kenneth A

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

  9. Pregnancy and delivery following midurethral sling surgery for stress urinary incontinence.

    Science.gov (United States)

    Huser, Martin; Belkov, Ivan A; Janku, Petr; Sedlakova, Katerina

    2012-11-01

    To analyze the available clinical evidence on the continued effectiveness of midurethral sling (MUS) surgery for stress urinary incontinence (SUI) in women who become pregnant and undergo delivery, and then to determine the optimal mode of delivery for such women. An online search was carried out to retrieve the available evidence regarding the risk of SUI recurrence during pregnancy and after delivery following a successful MUS treatment. Appropriate keywords were used to identify all relevant reports published from 1996 through 2011. Basic patient characteristics, mode of delivery, and presence of SUI during pregnancy and the postpartum were analyzed. No more than 36 relevant cases were found. The overall urinary continence rates were 91.7% during pregnancy and 80.6% during the postpartum. Most (58.3%) of the women were delivered vaginally. The evidence indicates that the risk of SUI recurrence is not significantly different after a vaginal or a cesarean delivery. In women successfully treated with a MUS, pregnancy care and delivery mode therefore need to be considered case by case, according to factors other than the risk of recurrence. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Effects of Alternate Format In-Service Delivery on Teacher Knowledge Base and Problem-Solving Related to Autism & Adaptations: What Teachers Need to Know

    Science.gov (United States)

    Bruening, Marie Diane

    2010-01-01

    This study's purpose was to explore effectiveness of alternate format in-service delivery for what teachers needed to know to effectively teach their students with Autism Spectrum Disorder/High Functioning Autism/Asperger Syndrome (ASD/HFA/AS) in the general education setting. The study's research questions included: Did participants learn…

  11. Effect of parents occupational exposures on risk of stillbirth, preterm delivery, and small-for-gestational-age in infants

    International Nuclear Information System (INIS)

    Savitz, D.A.; Whelan, E.A.; Kleckner, R.C.

    1989-01-01

    Epidemiologic research on the effects of parental occupational exposures on fetal development has been limited. The National Natality and Fetal Mortality surveys obtained applicable data of probability samples of live births and fetal deaths which occurred in the US in 1980 among married women. Analyses were conducted for case groups of stillbirths (2,096 mothers, 3,170 fathers), preterm deliveries (<37 weeks completed gestation) (363 mothers, 552 fathers), and small-for gestational-age infants (218 mothers, 371 fathers) compared with controls. Occupational exposures were defined by industry of employment and by imputed exposures based on a job-exposure linkage system. For stillbirth, maternal work in the rubber, plastics, and synthetics industry and lead exposure and paternal employment in the textile industry had the largest odds ratios. Preterm birth was most strongly associated with maternal lead exposure, corroborating previous findings. Twofold increased risk of preterm delivery was found with paternal employment in the glass, clay, and stone; textile; and mining industries. Paternal exposures to x-rays and polyvinyl alcohol were associated with 1.5-fold increase in risk. The occupation of the mother was not associated with delivery of a small-for-gestational-age infant, in contrast to paternal employment in the art and textile industries. Several toxic agents were associated with risk elevation of 1.3 or greater for fathers, most notably benzene

  12. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ana Grenha

    2012-09-01

    Full Text Available Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures.

  13. IMPROVEMENTS IN THE QUALITY OF COURIER DELIVERY

    Directory of Open Access Journals (Sweden)

    Jacek Karcz

    2016-06-01

    Full Text Available The functioning of courier companies is a vital component of modern trade. E-commerce services are changing the way of shopping. Along with them, also courier services change and become more advance. Customers of courier companies become more aware of quality, which they should expect from supplier of these services. The article presents the result of the research of the effectiveness and the timelines of deliveries realized by one of the terminals of a leading courier operator in Poland. The survey involved 55 courier routes over the course of 10 business days. The author analyses weak points of the supply chain and presents two solutions, which may improve quality of delivery processes.

  14. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  15. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery.

    Science.gov (United States)

    Kassem, Ahmed Alaa

    2018-02-06

    Drug toxicity and inefficacy are commonly experienced problems with drug therapy failure. To face these problems, extensive research work took place aiming to design new dosage forms for drug delivery especially nanoparticulate systems. These systems are designed to increase the quantity of the therapeutic molecule delivered to the desired site concurrently with reduced side effects. In order to achieve this objective, nanocarriers must principally display suitable drug vehiculization abilities and a controlled biological destiny of drug molecules. Only the intelligent design of the nanomedicine will accomplish these fundamentals. The present review article is dedicated to the discussion of the important fundamentals to be considered in the fabrication of nanomedicines. These include the therapeutic agent, the nanocarrier and the functionalization moieties. Special consideration is devoted to the explanation and compilation of highly potential fabrication approaches assisting how to control the in vivo destiny of the nanomedicine. Finally, some nanotechnology-based drug delivery systems, for the development of nanomedicine, are also discussed. The nanotechnology-based drug delivery systems showed remarkable outcomes based on passive and active targeting as well as improvement of the drug pharmacodynamic and pharmacokinetic profiles. Multifunctional nanocarrier concept affords a revolutionary drug delivery approach for maximizing the efficacy, safety and monitoring the biological fate of the therapeutic molecule. Nanomedicines may enhance the efficacy of therapeutic molecules and reduce their toxic effects. Meanwhile, further research works are required to rightly optimize (and define) the effectiveness, nanotoxicity, in vivo destiny and feasibility of these nanomedicines which, from a preclinical standpoint, are actually promising. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Pectin-based colon-specific drug delivery

    OpenAIRE

    Shailendra Shukla; Deepak Jain; Kavita Verma; Shiddarth Verma

    2011-01-01

    Colon-specific drug delivery have a great importance in the delivery of drugs for the treatment of local colonic, as well as systemic diseases like Crohn′s disease, ulcerative colitis, colorectal cancer, amoebiasis, asthma, arthritis and inflammation which can be achieved by targeted delivery of drug to colon. Specific systemic absorption in the colon gave interesting possibilities for the delivery of protein and peptides. It contains relatively less proteolytic enzyme activities in the colon...

  17. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses

    Directory of Open Access Journals (Sweden)

    Mahmoud Ameri

    2014-05-01

    Full Text Available This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC. Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables.

  18. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses.

    Science.gov (United States)

    Ameri, Mahmoud; Kadkhodayan, Miryam; Nguyen, Joe; Bravo, Joseph A; Su, Rebeca; Chan, Kenneth; Samiee, Ahmad; Daddona, Peter E

    2014-05-15

    This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH) on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP)-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP) using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables.

  19. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..

  20. On the Road to Development of an in Vitro Permeation Test (IVPT) Model to Compare Heat Effects on Transdermal Delivery Systems: Exploratory Studies with Nicotine and Fentanyl.

    Science.gov (United States)

    Shin, Soo Hyeon; Ghosh, Priyanka; Newman, Bryan; Hammell, Dana C; Raney, Sam G; Hassan, Hazem E; Stinchcomb, Audra L

    2017-09-01

    At elevated temperatures, the rate of drug release and skin permeation from transdermal delivery systems (TDS) may be higher than at a normal skin temperature. The aim of this study was to compare the effect of heat on the transdermal delivery of two model drugs, nicotine and fentanyl, from matrix-type TDSs with different formulations, using in vitro permeation tests (IVPT). IVPT experiments using pig skin were performed on two nicotine and three fentanyl TDSs. Both continuous and transient heat exposures were investigated by applying heat either for the maximum recommended TDS wear duration or for short duration. Continuous heat exposure for the two nicotine TDSs resulted in different effects, showing a prolonged heat effect for one product but not the other. The J max enhancement ratio due to the continuous heat effect was comparable between the two nicotine TDS, but significantly different (p drug from the skin depot after TDS removal differently for two drugs, with fentanyl exhibiting a longer heat effect. This exploratory work suggests that an IVPT study may be able to discriminate differences in transdermal drug delivery when different TDS are exposed to elevated temperatures. However, the clinical significance of IVPT heat effects studies should be further explored by conducting in vivo clinical studies with similar study designs.

  1. T cells enhance gold nanoparticle delivery to tumors in vivo

    Science.gov (United States)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  2. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    Directory of Open Access Journals (Sweden)

    Thomas J. Kean

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC therapeutic dose.

  3. Effect of milk sample delivery methods and arrival conditions on bacterial contamination rates.

    Science.gov (United States)

    Dinsmore, R P; English, P B; Matthews, J C; Sears, P M

    1990-07-01

    A cross sectional study was performed of factors believed to contribute to the contamination of bovine milk sample cultures submitted to the Ithaca Regional Laboratory of the Quality Milk Promotion Services/New York State Mastitis Control. Of 871 samples entered in the study, 137 (15.7%) were contaminated. There were interactions between the sample source (veterinarian vs dairyman), delivery method, and time between sample collection and arrival at the laboratory. If only those samples collected and hand delivered by the dairyman within 1 day of collection were compared to a like subset of samples collected and hand delivered by veterinarians, no statistically significant differences in milk sample contamination rate (MSCR) were found. Samples were delivered to the laboratory by hand, US Postal Service, United Parcel Service, via the New York State College of Veterinary Medicine Diagnostic Laboratory, or Northeast Dairy Herd Improvement Association Courier. The MSCR was only 7.6% for hand delivered samples, while 26% of Postal Service samples were contaminated. These rates differed significantly from other delivery methods (P less than 0.0001). The USPS samples arrived a longer time after sampling than did samples sent by other routes, and time had a significant effect on MSCR (0 to 1 day, 8.9%; greater than 1 day, 25.9%; P less than 0.01). Samples packaged with ice packs sent by routes other than the Postal Service had a lower MSCR than those not packaged with ice packs, but ice packs did not reduce the MSCR for samples sent by the Postal Service.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The effects of anemia in pregnancy on the mode of delivery and newborn

    Directory of Open Access Journals (Sweden)

    Necmi Arslan

    2014-03-01

    Full Text Available Objective: The aim of this study is to evaluate the effects of anemia in pregnancy on the mode of delivery and new-born. Methods: Between June and October 2009, 307 pregnant women were evaluated in terms of hemoglobin (Hb and hematocrit (Hct values, and delivery mode retrospectively. And also, the first and fifth minute Apgar scores, birth weight, and the values of Hb, Hct, and bilirubin, which obtained from the cord blood of neonates, were analyzed. Pregnant women were divided into two groups and classified as: hemoglobin value under 11.1 g / dl as anemic and the others as non-anemic group. In addition, the anemic group were divided into three group in terms of hemoglobin value, as follows: Group 1: 10.1 -11 mg/dl, group 2: 9.1 - 10 mg/dl, and group 3: <9 mg/dl. Results: In the study, 146 pregnants were anemic, while the 161 were non-anemic. The rate of low birth weight neonates was significantly higher in anemic pregnant women (p=0.029. The values of Hb (p=0.026 and Htc (p=0.006 were found to be lower in the anemic pregnant’ neonates. The incidence of low birth weight was significant increased when the maternal Hb value was smaller than 10g/dl (62.5% sensitivity, 74.7% specificity. Conclusion: It is observed that the low birth weight and the low values of Hb and Hct were more common in anemic pregnant neonates. Therefore, anemia should be screened and treated during the pregnancy due to the potential negative consequences.

  5. Preterm delivery predicted by soluble CD163 and CRP in women with symptoms of preterm delivery

    DEFF Research Database (Denmark)

    Vogel, Ida; Grove, Jakob; Thorsen, Poul

    2005-01-01

    : High levels of sCD163 or CRP are associated with an increased risk of preterm delivery in women with symptoms of delivery. Good prediction of preterm delivery before 34 weeks of gestation was obtained by a combination of preterm prelabour rupture of membranes (PPROM), overweight, relaxin, CRP and s...

  6. Improvement of arbutin trans-epidermal delivery using ...

    African Journals Online (AJOL)

    Purpose: To assess the ability of radiofrequency (RF) microporation to promote trans-epidermal delivery of arbutin. Methods: To investigate the enhancing effect of RF microchannels on skin permeation of arbutin, in vitro skin permeability studies were performed with RF microporation-treated Hartley albino guinea pig skin ...

  7. Drug delivery and formulations.

    Science.gov (United States)

    Breitkreutz, Jörg; Boos, Joachim

    2011-01-01

    Paediatric drug delivery is a major challenge in drug development. Because of the heterogeneous nature of the patient group, ranging from newborns to adolescents, there is a need to use appropriate excipients, drug dosage forms and delivery devices for different age groups. So far, there is a lack of suitable and safe drug formulations for children, especially for the very young and seriously ill patients. The new EU legislation will enforce paediatric clinical trials and drug development. Current advances in paediatric drug delivery include interesting new concepts such as fast-dissolving drug formulations, including orodispersible tablets and oral thin strips (buccal wafers), and multiparticulate dosage forms based on mini-tabletting or pelletization technologies. Parenteral administration is likely to remain the first choice for children in the neonatal period and for emergency cases. Alternative routes of administration include transdermal, pulmonary and nasal drug delivery systems. A few products are already available on the market, but others still need further investigations and clinical proof of concept.

  8. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  10. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  11. Ultrasound-guided drug delivery in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K. [Dept. of Radiology, Stanford University School of Medicine, Stanford (United States)

    2017-07-15

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  12. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  13. Effective conversion of irinotecan to SN-38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. Laboratory investigation.

    Science.gov (United States)

    Wang, Weijun; Ghandi, Alex; Liebes, Leonard; Louie, Stan G; Hofman, Florence M; Schönthal, Axel H; Chen, Thomas C

    2011-03-01

    Irinotecan (CPT-11), a topoisomerase I inhibitor, is a cytotoxic agent with activity against malignant gliomas and other tumors. After systemic delivery, CPT-11 is converted to its active metabolite, SN-38, which displays significantly higher cytotoxic potency. However, the achievement of therapeutically effective plasma levels of CPT-11 and SN-38 is seriously complicated by variables that affect drug metabolism in the liver. Thus the capacity of CPT-11 to be converted to the active SN38 intratumorally in gliomas was addressed. For in vitro studies, 2 glioma cell lines, U87 and U251, were tested to determine the cytotoxic effects of CPT-11 and SN-38 in a dose-dependent manner. In vivo studies were performed by implanting U87 intracranially into athymic/nude mice. For a period of 2 weeks, SN-38, CPT-11, or vehicle was administered intratumorally by means of an osmotic minipump. One series of experiments measured the presence of SN-38 or CPT-11 in the tumor and surrounding brain tissues after 2 weeks' exposure to the drug. In a second series of experiments, after 2 weeks' exposure to the drug, the animals were maintained, in the absence of drug, until death. The survival curves were then calculated. The results show that the animals that had CPT-11 delivered intratumorally by the minipump expressed SN-38 in vivo. Furthermore, both CPT-11 and SN-38 accumulated at higher levels in tumor tissues compared with uninvolved brain. Intratumoral delivery of CPT-11 or SN-38 extended the average survival time of tumor-bearing animals from 22 days to 46 and 65 days, respectively. These results demonstrate that intratumorally administered CPT-11 can be effectively converted to SN-38 and this method of drug delivery is effective in extending the survival time of animals bearing malignant gliomas.

  14. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  15. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods.

    Science.gov (United States)

    McClements, David Julian

    2013-12-01

    The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.

  16. Supporting the delivery of cost-effective interventions in primary health-care systems in low-income and middle-income countries: an overview of systematic reviews.

    Science.gov (United States)

    Lewin, Simon; Lavis, John N; Oxman, Andrew D; Bastías, Gabriel; Chopra, Mickey; Ciapponi, Agustín; Flottorp, Signe; Martí, Sebastian García; Pantoja, Tomas; Rada, Gabriel; Souza, Nathan; Treweek, Shaun; Wiysonge, Charles S; Haines, Andy

    2008-09-13

    Strengthening health systems is a key challenge to improving the delivery of cost-effective interventions in primary health care and achieving the vision of the Alma-Ata Declaration. Effective governance, financial and delivery arrangements within health systems, and effective implementation strategies are needed urgently in low-income and middle-income countries. This overview summarises the evidence from systematic reviews of health systems arrangements and implementation strategies, with a particular focus on evidence relevant to primary health care in such settings. Although evidence is sparse, there are several promising health systems arrangements and implementation strategies for strengthening primary health care. However, their introduction must be accompanied by rigorous evaluations. The evidence base needs urgently to be strengthened, synthesised, and taken into account in policy and practice, particularly for the benefit of those who have been excluded from the health care advances of recent decades.

  17. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery.

    Science.gov (United States)

    Song, Hyun Beom; Lee, Kang Ju; Seo, Il Ho; Lee, Ji Yong; Lee, Sang-Mok; Kim, Jin Hyoung; Kim, Jeong Hun; Ryu, WonHyoung

    2015-07-10

    It has been challenging for microneedles to deliver drugs effectively to thin tissues with little background support such as the cornea. Herein, we designed a microneedle pen system, a single microneedle with a spring-loaded microneedle applicator to provide impact insertion. To firmly attach solid microneedles with 140 μm in height at the end of macro-scale applicators, a transfer molding process was employed. The fabricated microneedle pens were then applied to mouse corneas. The microneedle pens successfully delivered rhodamine dye deep enough to reach the stromal layer of the cornea with small entry only about 1000 μm(2). When compared with syringes or 30 G needle tips, microneedle pens could achieve more localized and minimally invasive delivery without any chances of perforation. To investigate the efficacy of microneedle pens as a way of drug delivery, sunitinib malate proven to inhibit in vitro angiogenesis, was delivered to suture-induced angiogenesis model. When compared with delivery by a 30 G needle tip dipped with sunitinib malate, only delivery by microneedle pens could effectively inhibit corneal neovascularization in vivo. Microneedle pens could effectively deliver drugs to thin tissues without impairing merits of using microneedles: localized and minimally invasive delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    Science.gov (United States)

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  19. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications

    International Nuclear Information System (INIS)

    Desai, Salil; Perkins, Jessica; Harrison, Benjamin S.; Sankar, Jag

    2010-01-01

    Drug delivery and dosage concentrations are considered as major focal points in conventional as well as battlefield emergency medicine. The concept of localizing drug delivery via microcapsules is an evolving field to confine the adverse side effects of high concentration drug doses. This paper focuses on understanding release kinetics through biopolymer microcapsules for time-dependent drug release. Calcium alginate microcapsules were manufactured using a direct-write inkjet technique. Rhodamine 6G was used as the release agent to observe the release kinetics from calcium alginate beads in distilled water. A design of experiments was constructed to compare the effect of the microcapsule diameter and different concentrations of calcium chloride (M) and sodium alginate (%, w/v) solutions on the release kinetics profiles of the microcapsules. This research gives insight to identify favorable sizes of microcapsules and concentrations of sodium alginate and calcium chloride solutions for controlled release behavior of drug delivery microcapsules.

  20. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.