WorldWideScience

Sample records for effective robust design

  1. Robust Design Impact Metrics: Measuring the effect of implementing and using Robust Design

    DEFF Research Database (Denmark)

    Ebro, Martin; Olesen, Jesper; Howard, Thomas J.

    2014-01-01

    Measuring the performance of an organisation’s product development process can be challenging due to the limited use of metrics in R&D. An organisation considering whether to use Robust Design as an integrated part of their development process may find it difficult to define whether it is relevant......, and afterwards measure the effect of having implemented it. This publication identifies and evaluates Robust Design-related metrics and finds that 2 metrics are especially useful: 1) Relative amount of R&D Resources spent after Design Verification and 2) Number of ‘change notes’ after Design Verification....... The metrics have been applied in a case company to test the assumptions made during the evaluation. It is concluded that the metrics are useful and relevant, but further work is necessary to make a proper overview and categorisation of different types of robustness related metrics....

  2. ESBWR - Robust design for natural circulation and stability performance effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. D.; Marquino, W.; Yang, J.; Saha, P.; Fennern, L.; Colby, M. [GE-Hitachi Nuclear Energy, M/C A65, 3901Castle Hayne Road, Wilmington, NC 28401 (United States)

    2012-07-01

    ESBWR is a 4500 MWt Generation III+ natural circulation reactor with an array of robust design features and passive safety systems to deliver highly effective plant performance during normal operation and to keep the reactor safe during postulated transients and accidents. With the submittal of the latest revision of the Design Control Document (DCD) to US Nuclear Regulatory Commission, ESBWR is nearing the completion of the US design certification process. This paper focuses on the natural circulation-driven plant performance aspects during normal operation, and stability evaluation of the robust ESBWR design. The TRACG computer code is used for the analysis of ESBWR plant performance, safety analysis, and stability margins. The paper describes the evaluation of ESBWR stability performance during normal power operation including operation in the Core Power-Feed Water Temperature Operating Domain. For ESBWR the normal power operation condition has the highest power/flow ratio and is limiting from the perspective of stability. The paper includes results from detailed evaluation of the most limiting decay ratio for out-of-phase regional oscillations calculated by perturbing the core inlet flow rate in this out-of-phase mode about the line of symmetry for the azimuthal harmonic mode. The paper also summarizes the ESBWR regional mode stability evaluations during a limiting transient (Loss of Feedwater Heating), and during ATWS (Anticipated Transient without Scram). Nominal decay ratios of limiting Channel oscillation, Core wide oscillation and Regional oscillation are within the maximum acceptance criterion of 0.8, at 95% content and 95% confidence. These stability evaluation results indicate decay ratio is within design limits. The paper also describes the evaluation of ESBWR stability performance during plant startup, and summarizes the defense-in-depth stability solution for ESBWR. (authors)

  3. ESBWR - Robust design for natural circulation and stability performance effectiveness

    International Nuclear Information System (INIS)

    Alamgir, M. D.; Marquino, W.; Yang, J.; Saha, P.; Fennern, L.; Colby, M.

    2012-01-01

    ESBWR is a 4500 MWt Generation III+ natural circulation reactor with an array of robust design features and passive safety systems to deliver highly effective plant performance during normal operation and to keep the reactor safe during postulated transients and accidents. With the submittal of the latest revision of the Design Control Document (DCD) to US Nuclear Regulatory Commission, ESBWR is nearing the completion of the US design certification process. This paper focuses on the natural circulation-driven plant performance aspects during normal operation, and stability evaluation of the robust ESBWR design. The TRACG computer code is used for the analysis of ESBWR plant performance, safety analysis, and stability margins. The paper describes the evaluation of ESBWR stability performance during normal power operation including operation in the Core Power-Feed Water Temperature Operating Domain. For ESBWR the normal power operation condition has the highest power/flow ratio and is limiting from the perspective of stability. The paper includes results from detailed evaluation of the most limiting decay ratio for out-of-phase regional oscillations calculated by perturbing the core inlet flow rate in this out-of-phase mode about the line of symmetry for the azimuthal harmonic mode. The paper also summarizes the ESBWR regional mode stability evaluations during a limiting transient (Loss of Feedwater Heating), and during ATWS (Anticipated Transient without Scram). Nominal decay ratios of limiting Channel oscillation, Core wide oscillation and Regional oscillation are within the maximum acceptance criterion of 0.8, at 95% content and 95% confidence. These stability evaluation results indicate decay ratio is within design limits. The paper also describes the evaluation of ESBWR stability performance during plant startup, and summarizes the defense-in-depth stability solution for ESBWR. (authors)

  4. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  5. Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models.

    Science.gov (United States)

    Duffull, Stephen B; Hooker, Andrew C

    2017-12-01

    Optimal designs for nonlinear models are dependent on the choice of parameter values. Various methods have been proposed to provide designs that are robust to uncertainty in the prior choice of parameter values. These methods are generally based on estimating the expectation of the determinant (or a transformation of the determinant) of the information matrix over the prior distribution of the parameter values. For high dimensional models this can be computationally challenging. For nonlinear mixed-effects models the question arises as to the importance of accounting for uncertainty in the prior value of the variances of the random effects parameters. In this work we explore the influence of the variance of the random effects parameters on the optimal design. We find that the method for approximating the expectation and variance of the likelihood is of potential importance for considering the influence of random effects. The most common approximation to the likelihood, based on a first-order Taylor series approximation, yields designs that are relatively insensitive to the prior value of the variance of the random effects parameters and under these conditions it appears to be sufficient to consider uncertainty on the fixed-effects parameters only.

  6. A Robust Design Applicability Model

    DEFF Research Database (Denmark)

    Ebro, Martin; Lars, Krogstie; Howard, Thomas J.

    2015-01-01

    to be applicable in organisations assigning a high importance to one or more factors that are known to be impacted by RD, while also experiencing a high level of occurrence of this factor. The RDAM supplements existing maturity models and metrics to provide a comprehensive set of data to support management......This paper introduces a model for assessing the applicability of Robust Design (RD) in a project or organisation. The intention of the Robust Design Applicability Model (RDAM) is to provide support for decisions by engineering management considering the relevant level of RD activities...

  7. Robust control design with MATLAB

    CERN Document Server

    Gu, Da-Wei; Konstantinov, Mihail M

    2013-01-01

    Robust Control Design with MATLAB® (second edition) helps the student to learn how to use well-developed advanced robust control design methods in practical cases. To this end, several realistic control design examples from teaching-laboratory experiments, such as a two-wheeled, self-balancing robot, to complex systems like a flexible-link manipulator are given detailed presentation. All of these exercises are conducted using MATLAB® Robust Control Toolbox 3, Control System Toolbox and Simulink®. By sharing their experiences in industrial cases with minimum recourse to complicated theories and formulae, the authors convey essential ideas and useful insights into robust industrial control systems design using major H-infinity optimization and related methods allowing readers quickly to move on with their own challenges. The hands-on tutorial style of this text rests on an abundance of examples and features for the second edition: ·        rewritten and simplified presentation of theoretical and meth...

  8. Approximability of Robust Network Design

    NARCIS (Netherlands)

    Olver, N.K.; Shepherd, F.B.

    2014-01-01

    We consider robust (undirected) network design (RND) problems where the set of feasible demands may be given by an arbitrary convex body. This model, introduced by Ben-Ameur and Kerivin [Ben-Ameur W, Kerivin H (2003) New economical virtual private networks. Comm. ACM 46(6):69-73], generalizes the

  9. Design optimization for cost and quality: The robust design approach

    Science.gov (United States)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  10. Robust Parameter Coordination for Multidisciplinary Design

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper introduced a robust parameter coordination method to analyze parameter uncertainties so as to predict conflicts and coordinate parameters in multidisciplinary design. The proposed method is based on constraints network, which gives a formulated model to analyze the coupling effects between design variables and product specifications. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. To solve this constraint network model, a general consistent algorithm framework is designed and implemented with interval arithmetic and the genetic algorithm, which can deal with both algebraic and ordinary differential equations. With the help of this method, designers could infer the consistent solution space from the given specifications. A case study involving the design of a bogie dumping system demonstrates the usefulness of this approach.

  11. Applying Robust Design in an Industrial Context

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro

    mechanical architectures. Furthermore a set of 15 robust design principles for reducing the variation in functional performance is compiled in a format directly supporting the work of the design engineer. With these foundational methods in place, the existing tools, methods and KPIs of Robust Design...

  12. The importance of robust design methodology

    DEFF Research Database (Denmark)

    Eifler, Tobias; Howard, Thomas J.

    2018-01-01

    infamous recalls in automotive history, that of the GM ignition switch, from the perspective of Robust Design. It is investigated if available Robust Design methods such as sensitivity analysis, tolerance stack-ups, design clarity, etc. would have been suitable to account for the performance variation...

  13. The Variation Management Framework (VMF) for Robust Design

    DEFF Research Database (Denmark)

    Howard, Thomas J.; Ebro, Martin; Eifler, Tobias

    2014-01-01

    Robust Design is an approach to reduce the effects of variation. There are numerous tools,methods and models associated with robust design, however, there is both a lack of a processmodel formalising the step of a robust design process and a framework tying the models together.In this paper we pr...... in the market place and identifies areaswhere action can be taken against variation. An additional benefit of the framework is that itmakes the link between visual/sensory/perceptual robustness, product robustness, and productionvariation (Six Sigma)....

  14. PARAMETER COORDINATION AND ROBUST OPTIMIZATION FOR MULTIDISCIPLINARY DESIGN

    Institute of Scientific and Technical Information of China (English)

    HU Jie; PENG Yinghong; XIONG Guangleng

    2006-01-01

    A new parameter coordination and robust optimization approach for multidisciplinary design is presented. Firstly, the constraints network model is established to support engineering change, coordination and optimization. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. Secondly, the parameter coordination method is presented to solve the constraints network model, monitor the potential conflicts due to engineering changes, and obtain the consistency solution space corresponding to the given product specifications. Finally, the robust parameter optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. An example of bogie design is analyzed to show the scheme to be effective.

  15. Robust holographic storage system design.

    Science.gov (United States)

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  16. Robust Tensioned Kevlar Suspension Design

    Science.gov (United States)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  17. Design Robust Controller for Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.

  18. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  19. A robust anti-windup design procedure for SISO systems

    Science.gov (United States)

    Kerr, Murray; Turner, Matthew C.; Villota, Elizabeth; Jayasuriya, Suhada; Postlethwaite, Ian

    2011-02-01

    A model-based anti-windup (AW) controller design approach for constrained uncertain linear single-input-single-output (SISO) systems is proposed based on quantitative feedback theory (QFT) loopshaping. The design approach explicitly incorporates uncertainty, is suitable for the solution of both the magnitude and rate saturation problems, and provides for the design of low-order AW controllers satisfying robust stability and robust performance objectives. Robust stability is enforced using absolute stability theory and generic multipliers (i.e. circle, Popov, Zames-Falb), and robust performance is enforced using linear lower-bounds on the input-output maps capturing the effects of saturation as a metric. Two detailed design examples are presented. These show that even for simple systems, certain popular AW techniques lead to compensators that may fail to ensure robust stability and performance when saturation is encountered, but that the proposed QFT design approach is able to handle both saturation and uncertainty effectively.

  20. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  1. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  2. Occupant behaviour and robustness of building design

    DEFF Research Database (Denmark)

    Buso, Tiziana; Fabi, Valentina; Andersen, Rune Korsholm

    2015-01-01

    in a dynamic building energy simulation tool (IDA ICE). The analysis was carried out by simulating 15 building envelope designs in different thermal zones of an Office Reference Building in 3 climates: Stockholm, Frankfurt and Athens.In general, robustness towards changes in occupants' behaviour increased......Occupant behaviour can cause major discrepancies between the designed and the real total energy use in buildings. A possible solution to reduce the differences between predictions and actual performances is designing robust buildings, i.e. buildings whose performances show little variations...... with alternating occupant behaviour patterns. The aim of this work was to investigate how alternating occupant behaviour patterns impact the performance of different envelope design solutions in terms of building robustness. Probabilistic models of occupants' window opening and use of shading were implemented...

  3. Robust design optimization using the price of robustness, robust least squares and regularization methods

    Science.gov (United States)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  4. Robust design of microelectronics assemblies against mechanical shock, temperature and moisture effects of temperature, moisture and mechanical driving forces

    CERN Document Server

    Wong, E-H

    2015-01-01

    Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture discusses how the reliability of packaging components is a prime concern to electronics manufacturers. The text presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques. The authors use their extensive experience to produce detailed chapters covering temperature, moisture, and mechanical shock induced failure, adhesive interconnects, and viscoelasticity. Useful progr

  5. Robustness of Adaptive Survey Designs to Inaccuracy of Design Parameters

    Directory of Open Access Journals (Sweden)

    Burger Joep

    2017-09-01

    Full Text Available Adaptive survey designs (ASDs optimize design features, given 1 the interactions between the design features and characteristics of sampling units and 2 a set of constraints, such as a budget and a minimum number of respondents. Estimation of the interactions is subject to both random and systematic error. In this article, we propose and evaluate four viewpoints to assess robustness of ASDs to inaccuracy of design parameter estimates: the effect of both imprecision and bias on both ASD structure and ASD performance. We additionally propose three distance measures to compare the structure of ASDs. The methodology is illustrated using a simple simulation study and a more complex but realistic case study on the Dutch Travel Survey. The proposed methodology can be applied to other ASD optimization problems. In our simulation study and case study, the ASD was fairly robust to imprecision, but not to realistic dynamics in the design parameters. To deal with the sensitivity of ASDs to changing design parameters, we recommend to learn and update the design parameters.

  6. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  7. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  8. Robust network design for multispecies conservation

    Science.gov (United States)

    Ronan Le Bras; Bistra Dilkina; Yexiang Xue; Carla P. Gomes; Kevin S. McKelvey; Michael K. Schwartz; Claire A. Montgomery

    2013-01-01

    Our work is motivated by an important network design application in computational sustainability concerning wildlife conservation. In the face of human development and climate change, it is important that conservation plans for protecting landscape connectivity exhibit certain level of robustness. While previous work has focused on conservation strategies that result...

  9. Robust Design of Sounds in Mechanical Mechanisms

    DEFF Research Database (Denmark)

    Boegedal Jensen, Annemette; Munch, Natasja; Howard, Thomas J.

    2015-01-01

    mechanism consisting of a toothed rack and a click arm. First several geometries of the teeth and the click arm’s head were investigated to identify the most robust and repeatable design. It was found that a flat surface in the valleys between the teeth is very beneficial in relation to repeatability...

  10. Improving Large Cetacean Implantable Satellite Tag Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals

    Science.gov (United States)

    2015-09-30

    to Maximize Tag Robustness and Minimize Health Effects to Individual Animals Alexandre N. Zerbini Cascadia Research Collective 218 ½ 4 th Ave W...penetrating devices (Moore et al. 2013) will be evaluated through experiments on cetacean carcasses . These experiments along with existing information on tag...Objective (1) during laboratory experiments and in cetacean carcasses ; 3) Examine structural tissue damage in the blubber, sub-dermal sheath and muscle

  11. Robust Learning Control Design for Quantum Unitary Transformations.

    Science.gov (United States)

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  12. Design of Robust Neural Network Classifiers

    DEFF Research Database (Denmark)

    Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads

    1998-01-01

    This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...... suggest to adapt the outlier probability and regularisation parameters by minimizing the error on a validation set, and a simple gradient descent scheme is derived. In addition, the framework allows for constructing a simple outlier detector. Experiments with artificial data demonstrate the potential...

  13. Matlab as a robust control design tool

    Science.gov (United States)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  14. Design and implementation of robust controllers for a gait trainer.

    Science.gov (United States)

    Wang, F C; Yu, C H; Chou, T Y

    2009-08-01

    This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.

  15. Hybrid surface design for robust superhydrophobicity.

    Science.gov (United States)

    Dash, Susmita; Alt, Marie T; Garimella, Suresh V

    2012-06-26

    Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.

  16. Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties

    Science.gov (United States)

    Miao, Wei; Li, Yunzhou; Chen, Xiang; Zhou, Shidong; Wang, Jing

    This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.

  17. Robust design of head interconnect for hard disk drive

    Science.gov (United States)

    Gao, X. K.; Liu, Q. H.; Liu, Z. J.

    2005-05-01

    Design of head interconnect is one of the important issues for hard disk drives with higher data rate and storage capacity. The impedance of interconnect and electromagnetic coupling influence the quality level of data communication. Thus an insightful study on how the trace configuration affects the impedance and crosstalk is necessary. An effective design approach based on Taguchi's robust design method is employed therefore in an attempt to realize impedance matching and crosstalk minimization with the effects of uncontrollable sources taken into consideration.

  18. Trading Robustness Requirements in Mars Entry Trajectory Design

    Science.gov (United States)

    Lafleur, Jarret M.

    2009-01-01

    One of the most important metrics characterizing an atmospheric entry trajectory in preliminary design is the size of its predicted landing ellipse. Often, requirements for this ellipse are set early in design and significantly influence both the expected scientific return from a particular mission and the cost of development. Requirements typically specify a certain probability level (6-level) for the prescribed ellipse, and frequently this latter requirement is taken at 36. However, searches for the justification of 36 as a robustness requirement suggest it is an empirical rule of thumb borrowed from non-aerospace fields. This paper presents an investigation into the sensitivity of trajectory performance to varying robustness (6-level) requirements. The treatment of robustness as a distinct objective is discussed, and an analysis framework is presented involving the manipulation of design variables to effect trades between performance and robustness objectives. The scenario for which this method is illustrated is the ballistic entry of an MSL-class Mars entry vehicle. Here, the design variable is entry flight path angle, and objectives are parachute deploy altitude performance and error ellipse robustness. Resulting plots show the sensitivities between these objectives and trends in the entry flight path angles required to design to these objectives. Relevance to the trajectory designer is discussed, as are potential steps for further development and use of this type of analysis.

  19. Robust Optimal Design of Quantum Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ociel Morales

    2018-01-01

    Full Text Available We consider the optimal design of a sequence of quantum barriers, in order to manufacture an electronic device at the nanoscale such that the dependence of its transmission coefficient on the bias voltage is linear. The technique presented here is easily adaptable to other response characteristics. There are two distinguishing features of our approach. First, the transmission coefficient is determined using a semiclassical approximation, so we can explicitly compute the gradient of the objective function. Second, in contrast with earlier treatments, manufacturing uncertainties are incorporated in the model through random variables; the optimal design problem is formulated in a probabilistic setting and then solved using a stochastic collocation method. As a measure of robustness, a weighted sum of the expectation and the variance of a least-squares performance metric is considered. Several simulations illustrate the proposed technique, which shows an improvement in accuracy over 69% with respect to brute-force, Monte-Carlo-based methods.

  20. Robust Control Design via Linear Programming

    Science.gov (United States)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  1. Robust Control Design for Uncertain Nonlinear Dynamic Systems

    Science.gov (United States)

    Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

    2012-01-01

    Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

  2. Robust Optimization of Fourth Party Logistics Network Design under Disruptions

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-01-01

    Full Text Available The Fourth Party Logistics (4PL network faces disruptions of various sorts under the dynamic and complex environment. In order to explore the robustness of the network, the 4PL network design with consideration of random disruptions is studied. The purpose of the research is to construct a 4PL network that can provide satisfactory service to customers at a lower cost when disruptions strike. Based on the definition of β-robustness, a robust optimization model of 4PL network design under disruptions is established. Based on the NP-hard characteristic of the problem, the artificial fish swarm algorithm (AFSA and the genetic algorithm (GA are developed. The effectiveness of the algorithms is tested and compared by simulation examples. By comparing the optimal solutions of the 4PL network for different robustness level, it is indicated that the robust optimization model can evade the market risks effectively and save the cost in the maximum limit when it is applied to 4PL network design.

  3. Mechanisms and coherences of robust design methodology: a robust design process proposal

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    Although robust design (RD) methods are recognised as a way of developing mechanical products with consistent and predictable performance and quality, they do not experience widespread success in industry. One reason being the lack of a coherent RD process (RDP). In this contribution we analyse...

  4. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  5. Robust fast controller design via nonlinear fractional differential equations.

    Science.gov (United States)

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Robust design principles for reducing variation in functional performance

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability and percei......This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability...... and perceived quality of a product and efforts should be made to minimise it. The design principles are identified by a systematic decomposition of the Taguchi Transfer Function in combination with the use of existing literature and the authors’ experience. The paper presents 15 principles and describes...... their advantages and disadvantages along with example cases. Subsequently, the principles are classified based on their applicability in the various development and production stages. The VRP are to be added to existing robust design methodologies, helping the designer to think beyond robust design tool and method...

  7. Robust topology design of periodic grating surfaces

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Sigmund, Ole

    2012-01-01

    Modern nanoscale manufacturing techniques allow for a high degree of flexibility in designing surface microstructures and nanostructures. Injection molding of nanosized features allows for mass production of plastic components with a tailored nanostructure producing specific optical effects depen...

  8. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  9. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1998-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  10. Optimization of robustness of interdependent network controllability by redundant design.

    Directory of Open Access Journals (Sweden)

    Zenghu Zhang

    Full Text Available Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy or DBS (degree based strategy for node backup and HDF(high degree first for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability.

  11. Multidisciplinary Design Optimization for High Reliability and Robustness

    National Research Council Canada - National Science Library

    Grandhi, Ramana

    2005-01-01

    .... Over the last 3 years Wright State University has been applying analysis tools to predict the behavior of critical disciplines to produce highly robust torpedo designs using robust multi-disciplinary...

  12. In Silico Design of Robust Bolalipid Membranes

    NARCIS (Netherlands)

    Bulacu, Monica; Periole, Xavier; Marrink, Siewert J.; Périole, Xavier

    The robustness of microorganisms used in industrial fermentations is essential for the efficiency and yield of the production process. A viable tool to increase the robustness is through engineering of the cell membrane and especially by incorporating lipids from species that survive under harsh

  13. Multifidelity Robust Aeroelastic Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nielsen Engineering & Research (NEAR) proposes a new method to generate mathematical models of wind-tunnel models and flight vehicles for robust aeroelastic...

  14. Robust Analysis and Design of Multivariable Systems

    National Research Council Canada - National Science Library

    Tannenbaum, Allen

    1998-01-01

    In this Final Report, we will describe the work we have performed in robust control theory and nonlinear control, and the utilization of techniques in image processing and computer vision for problems in visual tracking...

  15. Designing Robustness to Temperature in a Feedforward Loop Circuit

    OpenAIRE

    Sen, Shaunak; Kim, Jongmin; Murray, Richard M.

    2013-01-01

    Incoherent feedforward loops represent important biomolecular circuit elements capable of a rich set of dynamic behavior including adaptation and pulsed responses. Temperature can modulate some of these properties through its effect on the underlying reaction rate parameters. It is generally unclear how to design such a circuit where the properties are robust to variations in temperature. Here, we address this issue using a combination of tools from control and dynamical systems theory as wel...

  16. A Novel Evolutionary Algorithm for Designing Robust Analog Filters

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.

  17. Proceedings of the First International Symposium on Robust Design 2014

    DEFF Research Database (Denmark)

    The symposium concerns the topic of robust design from a practical and industry orientated perspective. During the 2 day symposium we will share our understanding of the need of industry with respect to the control of variance, reliability issues and approaches to robust design. The target audience...

  18. Robust synergetic control design under inputs and states constraints

    Science.gov (United States)

    Rastegar, Saeid; Araújo, Rui; Sadati, Jalil

    2018-03-01

    In this paper, a novel robust-constrained control methodology for discrete-time linear parameter-varying (DT-LPV) systems is proposed based on a synergetic control theory (SCT) approach. It is shown that in DT-LPV systems without uncertainty, and for any unmeasured bounded additive disturbance, the proposed controller accomplishes the goal of stabilising the system by asymptotically driving the error of the controlled variable to a bounded set containing the origin and then maintaining it there. Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and constrained additive disturbances, and constraints in states, input commands and reference signals (set points), then invariant set theory is used to find an appropriate polyhedral robust invariant region in which the proposed control framework is guaranteed to robustly stabilise the closed-loop system. Furthermore, this is achieved even for the case of varying non-zero control set points in such uncertain DT-LPV systems. The controller is characterised to have a simple structure leading to an easy implementation, and a non-complex design process. The effectiveness of the proposed method and the implications of the controller design on feasibility and closed-loop performance are demonstrated through application examples on the temperature control on a continuous-stirred tank reactor plant, on the control of a real-coupled DC motor plant, and on an open-loop unstable system example.

  19. Optimal design of robust piezoelectric unimorph microgrippers

    DEFF Research Database (Denmark)

    Ruiz, David; Díaz-Molina, Alex; Sigmund, Ole

    2018-01-01

    Topology optimization can be used to design piezoelectric actuators by simultaneous design of host structure and polarization profile. Subsequent micro-scale fabrication leads us to overcome important manufacturing limitations: difficulties in placing a piezoelectric layer on both top and bottom...

  20. Decentralized robust control design using LMI

    Directory of Open Access Journals (Sweden)

    Dušan Krokavec

    2008-03-01

    Full Text Available The paper deals with application of decentralized controllers for large-scale systems with subsystems interaction and system matrices uncertainties. The desired stability of the whole system is guaranteed while at the same time the tolerable bounds in the uncertainties due to structural changes are maximized. The design approach is based on the linear matrix inequalities (LMI techniques adaptation for stabilizing controller design.

  1. Robust input design for nonlinear dynamic modeling of AUV.

    Science.gov (United States)

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  3. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-12-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  4. Robust design of large-displacement compliant mechanisms

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Schevenels, M.; Sigmund, Ole

    2011-01-01

    The aim of this article is to introduce a new topology optimisation formulation for optimal robust design of Micro Electro Mechanical Systems. Mesh independence in topology optimisation is most often ensured by using filtering techniques, which result in transition grey regions difficult to inter...... in nearly black and white mechanism designs, robust with respect to uncertainties in the production process, i.e. without any hinges or small details which can create manufacturing difficulties....

  5. Design of robust robotic proxemic behaviour

    NARCIS (Netherlands)

    Torta, E.; Cuijpers, R.H.; Juola, J.F.; Pol, van der D.; Mutlu, B.; Bartneck, C.; Ham, J.R.C.; Evers, V.; Kanda, T.

    2011-01-01

    Personal robots that share the same space with humans need to be socially acceptable and effective as they interact with people. In this paper we focus our attention on the definition of a behaviour-based robotic architecture that, (1) allows the robot to navigate safely in a cluttered and

  6. Robust synthetic biology design: stochastic game theory approach.

    Science.gov (United States)

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  7. Robust control design verification using the modular modeling system

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ben-Abdennour, A.; Lee, K.Y.

    1991-01-01

    The Modular Modeling System (B ampersand W MMS) is being used as a design tool to verify robust controller designs for improving power plant performance while also providing fault-accommodating capabilities. These controllers are designed based on optimal control theory and are thus model based controllers which are targeted for implementation in a computer based digital control environment. The MMS is being successfully used to verify that the controllers are tolerant of uncertainties between the plant model employed in the controller and the actual plant; i.e., that they are robust. The two areas in which the MMS is being used for this purpose is in the design of (1) a reactor power controller with improved reactor temperature response, and (2) the design of a multiple input multiple output (MIMO) robust fault-accommodating controller for a deaerator level and pressure control problem

  8. Lyapunov stability robust analysis and robustness design for linear continuous-time systems

    NARCIS (Netherlands)

    Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.

    1995-01-01

    The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is

  9. Robustness Issues for Design of Innovative Timber Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2013-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious conse-quences in case of failure. The present paper summaries issues with respect to robustness of timber structures. Two different...... large span timber structures are analyzed and based on these analyses the paper presents guidelines for the future development of innovative timber struc-tures which are robust with respect to design and execution errors, unforeseen degradation and other potential hazards....

  10. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    Science.gov (United States)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  11. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  12. Robust giant magnetoresistive effect type multilayer sensor

    NARCIS (Netherlands)

    Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.

    2002-01-01

    A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables

  13. Robust optimum design with maximum entropy method; Saidai entropy ho mochiita robust sei saitekika sekkeiho

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, K; Egashira, Y; Watanabe, G [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Vehicle and unit performance change according to not only external causes represented by the environment such as temperature or weather, but also internal causes which are dispersion of component characteristics and manufacturing processes or aged deteriorations. We developed the design method to estimate thus performance distributions with maximum entropy method and to calculate specifications with high performance robustness using Fuzzy theory. This paper describes the details of these methods and examples applied to power window system. 3 refs., 7 figs., 4 tabs.

  14. Towards robust optimal design of storm water systems

    Science.gov (United States)

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014

  15. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  16. LMI–based robust controller design approach in aircraft multidisciplinary design optimization problem

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2015-07-01

    Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.

  17. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei

    2016-07-01

    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  18. Creating geometrically robust designs for highly sensitive problems using topology optimization: Acoustic cavity design

    DEFF Research Database (Denmark)

    Christiansen, Rasmus E.; Lazarov, Boyan S.; Jensen, Jakob S.

    2015-01-01

    Resonance and wave-propagation problems are known to be highly sensitive towards parameter variations. This paper discusses topology optimization formulations for creating designs that perform robustly under spatial variations for acoustic cavity problems. For several structural problems, robust...... and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account...... further improves the robustness of the designs....

  19. Effect of smoothing on robust chaos.

    Science.gov (United States)

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  20. Robust chaotic control of Lorenz system by backstepping design

    International Nuclear Information System (INIS)

    Peng, C.-C.; Chen, C.-L.

    2008-01-01

    This work presents a robust chaotic control strategy for the Lorenz chaos via backstepping design. Backstepping technique is a systematic tool of control law design to provide Lyapunov stability. The concept of extended system is used such that a continuous sliding mode control (SMC) effort is generated using backstepping scheme. In the proposed control algorithm, an adaptation law is applied to estimate the system parameter and the SMC offers the robustness to model uncertainties and external disturbances so that the asymptotical convergence of tracking error can be achieved. Regarding the SMC, an equivalent control algorithm is chosen based on the selection of Lyapunov stability criterion during backstepping approach. The converging rate of error state is relative to the corresponding dynamics of sliding surface. Numerical simulations demonstrate its advantages to a regulation problem and an orbit tracking problem of the Lorenz chaos

  1. Designing robust control-based HIV-treatment

    Directory of Open Access Journals (Sweden)

    Fredy Andrés Olarte Dussán

    2008-05-01

    Full Text Available Designing a robust control-based treatment for human immunodeficiency virus (HIV-infected patients was studied. The dynamics of the immune system’s response to infection was modelled using a 5th order nonlinear model with separate efficacy coefficients for protease inhibitor (PIs and reverse transcriptase inhibitors (RTIs. The immune res-ponse has been represented as an uncertain system due to errors in parameter estimation and the existence of un-modelled dynamics. A polytopic system was constructed incorporating all possible system parameter values. A con-trol system was designed using robust pole location techniques stabilising the polytopic system around an equilibrium point having a low viral load. Numerical simulation results (including the organism’s pharmacokinetical response to anti-retroviral drugs showed that the control law could lead to long-term stable conditions, even in extreme cases.

  2. QUALITY IMPROVEMENT IN MULTIRESPONSE EXPERIMENTS THROUGH ROBUST DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    M. Shilpa

    2012-06-01

    Full Text Available Robust design methodology aims at reducing the variability in the product performance in the presence of noise factors. Experiments involving simultaneous optimization of more than one quality characteristic are known as multiresponse experiments which are used in the development and improvement of industrial processes and products. In this paper, robust design methodology is applied to optimize the process parameters during a particular operation of rotary driving shaft manufacturing process. The three important quality characteristics of the shaft considered here are of type Nominal-the-best, Smaller-the-better and Fraction defective. Simultaneous optimization of these responses is carried out by identifying the control parameters and conducting the experimentation using L9 orthogonal array.

  3. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    Science.gov (United States)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  4. Set-Membership Identification for Robust Control Design

    Science.gov (United States)

    1993-04-28

    Clauifica lion) ( U) Set-Memnbership Identification for Robust Control Design ___________________ 1. PERSONAL A UTHOR(SI Dr. Robert L. Kosul. Final Report...Shalom, E.Tse "Caution, probing, and the value of information in the control of un- certain systems", Annals of Economic and Social Measurement, 5/3, pp...knowing a bound on I the impulse response is quantitative. A similar clasoitication can be made regarding signal charateristics . Knowing that a signal is

  5. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  6. Robust Path Planning and Feedback Design Under Stochastic Uncertainty

    Science.gov (United States)

    Blackmore, Lars

    2008-01-01

    Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.

  7. Information about robustness, reliability and safety in early design phases

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster

    methods, and an industrial case to assess how the use of information about robustness, reliability and safety as practised by current methods influences concept development. Current methods cannot be used in early design phases due to their dependence on detailed design information for the identification...... alternatives. This prompts designers to reuse working principles that are inherently flawed, as they are liable to disturbances, failures and hazards. To address this issue, an approach based upon individual records of early design issues consists of comparing failures and benefits from prior working...... principles, before making a decision, and improving the more suitable alternatives through this feedback. Workshops were conducted with design practitioners to evaluate the potential of the approach and to simulate decision-making and gain feedback on a proof-of-concept basis. The evaluation has demonstrated...

  8. Enhancing product robustness in reliability-based design optimization

    International Nuclear Information System (INIS)

    Zhuang, Xiaotian; Pan, Rong; Du, Xiaoping

    2015-01-01

    Different types of uncertainties need to be addressed in a product design optimization process. In this paper, the uncertainties in both product design variables and environmental noise variables are considered. The reliability-based design optimization (RBDO) is integrated with robust product design (RPD) to concurrently reduce the production cost and the long-term operation cost, including quality loss, in the process of product design. This problem leads to a multi-objective optimization with probabilistic constraints. In addition, the model uncertainties associated with a surrogate model that is derived from numerical computation methods, such as finite element analysis, is addressed. A hierarchical experimental design approach, augmented by a sequential sampling strategy, is proposed to construct the response surface of product performance function for finding optimal design solutions. The proposed method is demonstrated through an engineering example. - Highlights: • A unifying framework for integrating RBDO and RPD is proposed. • Implicit product performance function is considered. • The design problem is solved by sequential optimization and reliability assessment. • A sequential sampling technique is developed for improving design optimization. • The comparison with traditional RBDO is provided

  9. Robust PID based power system stabiliser: Design and real-time implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bevrani, Hassan [Department of Electrical and Computer Eng., University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Hiyama, Takashi [Department of Electrical and Computer Eng., Kumamoto University, Kumamoto (Japan); Bevrani, Hossein [Department of Statistics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-02-15

    This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H{infinity} static output feedback control (H{infinity}-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H{infinity} and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly. (author)

  10. Robust parameter design for integrated circuit fabrication procedure with respect to categorical characteristic

    International Nuclear Information System (INIS)

    Sohn, S.Y.

    1999-01-01

    We consider a robust parameter design of the process for forming contact windows in complementary metal-oxide semiconductor circuits. Robust design is often used to find the optimal levels of process conditions which would provide the output of consistent quality as close to a target value. In this paper, we analyze the results of the fractional factorial design of nine factors: mask dimension, viscosity, bake temperature, spin speed, bake time, aperture, exposure time, developing time, etch time, where the outcome of the experiment is measured in terms of a categorized window size with five categories. Random effect analysis is employed to model both the mean and variance of categorized window size as functions of some controllable factors as well as random errors. Empirical Bayes' procedures are then utilized to fit both the models, and to eventually find the robust design of CMOS circuit process by means of a Bootstrap resampling approach

  11. Robust parameter design for integrated circuit fabrication procedure with respect to categorical characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S.Y

    1999-12-01

    We consider a robust parameter design of the process for forming contact windows in complementary metal-oxide semiconductor circuits. Robust design is often used to find the optimal levels of process conditions which would provide the output of consistent quality as close to a target value. In this paper, we analyze the results of the fractional factorial design of nine factors: mask dimension, viscosity, bake temperature, spin speed, bake time, aperture, exposure time, developing time, etch time, where the outcome of the experiment is measured in terms of a categorized window size with five categories. Random effect analysis is employed to model both the mean and variance of categorized window size as functions of some controllable factors as well as random errors. Empirical Bayes' procedures are then utilized to fit both the models, and to eventually find the robust design of CMOS circuit process by means of a Bootstrap resampling approach.

  12. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  13. Mechanical Design for Robustness of the LHC Collimators

    CERN Document Server

    Bertarelli, Alessandro; Assmann, R W; Calatroni, Sergio; Dallocchio, Alessandro; Kurtyka, Tadeusz; Mayer, Manfred; Perret, Roger; Redaelli, Stefano; Robert-Demolaize, Guillaume

    2005-01-01

    The functional specification of the LHC Collimators requires, for the start-up of the machine and the initial luminosity runs (Phase 1), a collimation system with maximum robustness against abnormal beam operating conditions. The most severe cases to be considered in the mechanical design are the asynchronous beam dump at 7 TeV and the 450 GeV injection error. To ensure that the collimator jaws survive such accident scenarios, low-Z materials were chosen, driving the design towards Graphite or Carbon/Carbon composites. Furthermore, in-depth thermo-mechanical simulations, both static and dynamic, were necessary.This paper presents the results of the numerical analyses performed for the 450 GeV accident case, along with the experimental results of the tests conducted on a collimator prototype in Cern TT40 transfer line, impacted by a 450 GeV beam of 3.1·1013

  14. Hiding the weakness: structural robustness using origami design

    Science.gov (United States)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  15. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chang Weider; Yan Junjuh

    2005-01-01

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p , K i , and K d , are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  16. Robust Design of Terminal ILC with H∞ Mixed Sensitivity Approach for a Thermoforming Oven

    Directory of Open Access Journals (Sweden)

    Guy Gauthier

    2008-01-01

    Full Text Available This paper presents a robust design approach for terminal iterative learning control (TILC. This robust design uses the H∞ mixed-sensitivity technique. An industrial application is described where TILC is used to control the reheat phase of plastic sheets in a thermoforming oven. The TILC adjusts the heater temperature setpoints such that, at the end of the reheat cycle, the surface temperature map of the plastic sheet will converge to the desired one. Simulation results are included to show the effectiveness of the control law.

  17. Passivity-based design of robust passive damping for LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Passive damping is proven as a robust stabilizing technique for LCL-filtered voltage source converters. However, conventional design methods of passive dampers are based on the passive components only, while the inherent damping effect of time delay in the digital control system is overlooked....... In this paper, a frequency-domain passivity-based design approach is proposed, where the passive dampers are designed to eliminate the negative real part of the converter output admittance with closed-loop current control, rather than shaping the LCL-filter itself. Thus, the influence of time delay...... in the current control is included, which allows a relaxed design of the passive damper with the reduced power loss and improved stability robustness against grid parameters variations. Design procedures of two commonly used passive dampers with LCL-filtered VSCs are illustrated. Experimental results validate...

  18. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  19. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    Science.gov (United States)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  20. H-Infinity robust controller design for the synchronization of master-slave chaotic systems with disturbance input

    Directory of Open Access Journals (Sweden)

    Hamid Reza Karimi

    2012-01-01

    Full Text Available This paper is concerned with the robust control problems for the synchronization of master-slave chaotic systems with disturbance input. By constructing a series of Lyapunov functions, novel H-Infinity robust synchronization controllers are designed, whose control regulation possess the characteristic of simpleness and explicitness. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed techniques.

  1. Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, 10617 Taipei (China)

    2009-03-15

    This paper applies fixed-order multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system, and implements the designed controllers on a microchip for system miniaturization. In previous studies, robust control was applied to guarantee system stability and to reduce hydrogen consumption for a PEMFC system. It was noted that for standard robust control design, the order of resulting H{sub {infinity}} controllers is dictated by the plants and weighting functions. However, for hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, in this paper the PEMFC is modeled as multivariable transfer matrices, then three fixed-order robust control algorithms are applied to design controllers with specified orders for a PEMFC. Finally, the designed controllers are implemented on a microchip to regulate the air and hydrogen flow rates. From the experimental results, fixed-order robust control is deemed effective in supplying steady power and reducing fuel consumption. (author)

  2. A systematic design method for robust synthetic biology to satisfy design specifications.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chih-Hung

    2009-06-30

    Synthetic biology is foreseen to have important applications in biotechnology and medicine, and is expected to contribute significantly to a better understanding of the functioning of complex biological systems. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to intrinsic parameter uncertainties, external disturbances and functional variations of intra- and extra-cellular environments. The design method for a robust synthetic gene network that works properly in a host cell under these intrinsic parameter uncertainties and external disturbances is the most important topic in synthetic biology. In this study, we propose a stochastic model that includes parameter fluctuations and external disturbances to mimic the dynamic behaviors of a synthetic gene network in the host cell. Then, based on this stochastic model, four design specifications are introduced to guarantee that a synthetic gene network can achieve its desired steady state behavior in spite of parameter fluctuations, external disturbances and functional variations in the host cell. We propose a systematic method to select a set of appropriate design parameters for a synthetic gene network that will satisfy these design specifications so that the intrinsic parameter fluctuations can be tolerated, the external disturbances can be efficiently filtered, and most importantly, the desired steady states can be achieved. Thus the synthetic gene network can work properly in a host cell under intrinsic parameter uncertainties, external disturbances and functional variations. Finally, a design procedure for the robust synthetic gene network is developed and a design example is given in silico to confirm the performance of the proposed method. Based on four design specifications, a systematic design procedure is developed for designers to engineer a robust synthetic biology network that can achieve its desired steady state behavior

  3. The effectiveness of robust RMCD control chart as outliers’ detector

    Science.gov (United States)

    Darmanto; Astutik, Suci

    2017-12-01

    A well-known control chart to monitor a multivariate process is Hotelling’s T 2 which its parameters are estimated classically, very sensitive and also marred by masking and swamping of outliers data effect. To overcome these situation, robust estimators are strongly recommended. One of robust estimators is re-weighted minimum covariance determinant (RMCD) which has robust characteristics as same as MCD. In this paper, the effectiveness term is accuracy of the RMCD control chart in detecting outliers as real outliers. In other word, how effectively this control chart can identify and remove masking and swamping effects of outliers. We assessed the effectiveness the robust control chart based on simulation by considering different scenarios: n sample sizes, proportion of outliers, number of p quality characteristics. We found that in some scenarios, this RMCD robust control chart works effectively.

  4. Robust design method and thermostatic experiment for multiple piezoelectric vibration absorber system

    International Nuclear Information System (INIS)

    Nambu, Yohsuke; Takashima, Toshihide; Inagaki, Akiya

    2015-01-01

    This paper examines the effects of connecting multiplexing shunt circuits composed of inductors and resistors to piezoelectric transducers so as to improve the robustness of a piezoelectric vibration absorber (PVA). PVAs are well known to be effective at suppressing the vibration of an adaptive structure; their weakness is low robustness to changes in the dynamic parameters of the system, including the main structure and the absorber. In the application to space structures, the temperature-dependency of capacitance of piezoelectric ceramics is the factor that causes performance reduction. To improve robustness to the temperature-dependency of the capacitance, this paper proposes a multiple-PVA system that is composed of distributed piezoelectric transducers and several shunt circuits. The optimization problems that determine both the frequencies and the damping ratios of the PVAs are multi-objective problems, which are solved using a real-coded genetic algorithm in this paper. A clamped aluminum beam with four groups of piezoelectric ceramics attached was considered in simulations and experiments. Numerical simulations revealed that the PVA systems designed using the proposed method had tolerance to changes in the capacitances. Furthermore, experiments using a thermostatic bath were conducted to reveal the effectiveness and robustness of the PVA systems. The maximum peaks of the transfer functions of the beam with the open circuit, the single-PVA system, the double-PVA system, and the quadruple-PVA system at 20 °C were 14.3 dB, −6.91 dB, −7.47 dB, and −8.51 dB, respectively. The experimental results also showed that the multiple-PVA system is more robust than a single PVA in a variable temperature environment from −10 °C to 50 °C. In conclusion, the use of multiple PVAs results in an effective, robust vibration control method for adaptive structures. (paper)

  5. Robust Trajectory Design in Highly Perturbed Environments Leveraging Continuation Methods, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed to investigate continuation methods to improve the robustness of trajectory design algorithms for spacecraft in highly perturbed dynamical...

  6. Systematic and robust design of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2010-01-01

    on a threshold projection. The objective is formulated to minimize the maximum error between actual group indices and a prescribed group index among these three designs. Novel photonic crystal waveguide facilitating slow light with a group index of n(g) = 40 is achieved by the robust optimization approach......A robust topology optimization method is presented to consider manufacturing uncertainties in tailoring dispersion properties of photonic crystal waveguides. The under, normal and over-etching scenarios in manufacturing process are represented by dilated, intermediate and eroded designs based....... The numerical result illustrates that the robust topology optimization provides a systematic and robust design methodology for photonic crystal waveguide design....

  7. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    Science.gov (United States)

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  8. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method

    Directory of Open Access Journals (Sweden)

    Hsun-Heng Tsai

    2009-02-01

    Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.

  9. Effect of robust torus on the dynamical transport

    International Nuclear Information System (INIS)

    Martins, C G L; Carvalho, R Egydio de; Caldas, I L; Roberto, M

    2010-01-01

    In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.

  10. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control...... system is constructed through a model-matching strategy. The stability, performance and robustness of the reconfigured system can be guaranteed when some conditions are satisfied. To illustrate the effectiveness of the proposed method, a robot system subjected to failures is used to demonstrate...

  11. Robust environmental closed-loop supply chain design under uncertainty

    International Nuclear Information System (INIS)

    MA, Ruimin; YAO, Lifei; JIN, Maozhu; REN, Peiyu; LV, Zhihan

    2016-01-01

    With the fast developments in product remanufacturing to improve economic and environmental performance, an environmental closed-loop supply (ECLSC) chain is important for enterprises' competitiveness. In this paper, a robust ECLSC network is investigated which includes multiple plants, collection centers, demand zones, and products, and consists of both forward and reverse supply chains. First, a robust multi-objective mixed integer nonlinear programming model is proposed to deal with ECLSC considering two conflicting objectives simultaneously, as well as the uncertain nature of the supply chain. Cost parameters of the supply chain and demand fluctuations are subject to uncertainty. The first objective function aims to minimize the economical cost and the second objective function is to minimize the environmental influence. Then, the proposed model is solved as a single-objective mixed integer programming model applying the LP-metrics method. Finally, numerical example has been presented to test the model. The results indicate that the proposed model is applicable in practice.

  12. Effective and Robust Generalized Predictive Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Patxi Alkorta

    2013-01-01

    Full Text Available This paper presents and validates a new proposal for effective speed vector control of induction motors based on linear Generalized Predictive Control (GPC law. The presented GPC-PI cascade configuration simplifies the design with regard to GPC-GPC cascade configuration, maintaining the advantages of the predictive control algorithm. The robust stability of the closed loop system is demonstrated by the poles placement method for several typical cases of uncertainties in induction motors. The controller has been tested using several simulations and experiments and has been compared with Proportional Integral Derivative (PID and Sliding Mode (SM control schemes, obtaining outstanding results in speed tracking even in the presence of parameter uncertainties, unknown load disturbance, and measurement noise in the loop signals, suggesting its use in industrial applications.

  13. Design of a Robust Stair Climbing Compliant Modular Robot to Tackle Overhang on Stairs

    OpenAIRE

    Bhole, Ajinkya; Turlapati, Sri Harsha; S, Rajashekhar V.; Dixit, Jay; Shah, Suril V.; Krishna, K Madhava

    2016-01-01

    This paper discusses the concept and parameter design of a Robust Stair Climbing Compliant Modular Robot, capable of tackling stairs with overhangs. Modifying the geometry of the periphery of the wheels of our robot helps in tackling overhangs. Along with establishing a concept design, robust design parameters are set to minimize performance variation. The Grey-based Taguchi Method is adopted for providing an optimal setting for the design parameters of the robot. The robot prototype is shown...

  14. Analysis and design of robust decentralized controllers for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  15. Mechanical design in embryos: mechanical signalling, robustness and developmental defects.

    Science.gov (United States)

    Davidson, Lance A

    2017-05-19

    Embryos are shaped by the precise application of force against the resistant structures of multicellular tissues. Forces may be generated, guided and resisted by cells, extracellular matrix, interstitial fluids, and how they are organized and bound within the tissue's architecture. In this review, we summarize our current thoughts on the multiple roles of mechanics in direct shaping, mechanical signalling and robustness of development. Genetic programmes of development interact with environmental cues to direct the composition of the early embryo and endow cells with active force production. Biophysical advances now provide experimental tools to measure mechanical resistance and collective forces during morphogenesis and are allowing integration of this field with studies of signalling and patterning during development. We focus this review on concepts that highlight this integration, and how the unique contributions of mechanical cues and gradients might be tested side by side with conventional signalling systems. We conclude with speculation on the integration of large-scale programmes of development, and how mechanical responses may ensure robust development and serve as constraints on programmes of tissue self-assembly.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Author(s).

  16. Optimal design of robust piezoelectric microgrippers undergoing large displacements

    DEFF Research Database (Denmark)

    Ruiz, D.; Sigmund, Ole

    2018-01-01

    Topology optimization combined with optimal design of electrodes is used to design piezoelectric microgrippers. Fabrication at micro-scale presents an important challenge: due to non-symmetrical lamination of the structures, out-of-plane bending spoils the behaviour of the grippers. Suppression...

  17. Design and Validation of Optimized Feedforward with Robust Feedback Control of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Shaffer, Roman; He Weidong; Edwards, Robert M.

    2004-01-01

    Design applications for robust feedback and optimized feedforward control, with confirming results from experiments conducted on the Pennsylvania State University TRIGA reactor, are presented. The combination of feedforward and feedback control techniques complement each other in that robust control offers guaranteed closed-loop stability in the presence of uncertainties, and optimized feedforward offers an approach to achieving performance that is sometimes limited by overly conservative robust feedback control. The design approach taken in this work combines these techniques by first designing robust feedback control. Alternative methods for specifying a low-order linear model and uncertainty specifications, while seeking as much performance as possible, are discussed and evaluated. To achieve desired performance characteristics, the optimized feedforward control is then computed by using the nominal nonlinear plant model that incorporates the robust feedback control

  18. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    Science.gov (United States)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.

  19. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  20. Control system design for electrical stimulation in upper limb rehabilitation modelling, identification and robust performance

    CERN Document Server

    Freeman, Chris

    2016-01-01

    This book presents a comprehensive framework for model-based electrical stimulation (ES) controller design, covering the whole process needed to develop a system for helping people with physical impairments perform functional upper limb tasks such as eating, grasping and manipulating objects. The book first demonstrates procedures for modelling and identifying biomechanical models of the response of ES, covering a wide variety of aspects including mechanical support structures, kinematics, electrode placement, tasks, and sensor locations. It then goes on to demonstrate how complex functional activities of daily living can be captured in the form of optimisation problems, and extends ES control design to address this case. It then lays out a design methodology, stability conditions, and robust performance criteria that enable control schemes to be developed systematically and transparently, ensuring that they can operate effectively in the presence of realistic modelling uncertainty, physiological variation an...

  1. Design of Robust AMB Controllers for Rotors Subjected to Varying and Uncertain Seal Forces

    DEFF Research Database (Denmark)

    Lauridsen, Jonas Skjødt; Santos, Ilmar

    2017-01-01

    This paper demonstrates the design and simulation results of model based controllers for AMB systems, subjectedto uncertain and changing dynamic seal forces. Specifically, a turbocharger with a hole-pattern seal mounted acrossthe balance piston is considered. The dynamic forces of the seal, which...... are dependent on the operational conditions,have a significant effect on the overall system dynamics. Furthermore, these forces are considered uncertain.The nominal and the uncertainty representation of the seal model are established using results from conventionalmodelling approaches, i.e. CFD and Bulkflow......, and experimental results. Three controllers are synthesized: I) AnH∞ controller based on nominal plant representation, II) A µ controller, designed to be robust against uncertaintiesin the dynamic seal model and III) a Linear Parameter Varying (LPV) controller, designed to provide a unifiedperformance over a large...

  2. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    Science.gov (United States)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  3. Robust Multivariable Optimization and Performance Simulation for ASIC Design

    Science.gov (United States)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application-specific-integrated-circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power, and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem, which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques, which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable, are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way that facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as a framework of software modules, templates, and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation.

  4. Design of robust microlinacs for wide replacement of radioisotope sources

    Science.gov (United States)

    Smirnov, A. V.; Agustsson, R. A.; Boucher, S.; Harrison, M.; Junge, K.; Savin, E.; Smirnov, A. Yu

    2017-12-01

    To improve public security and prevent the diversion of radioactive material for Radiation Dispersion Devices, development of an inexpensive, portable, easy-to-manufacture linac system is very important. The bremsstrahlung X-rays produced by relativistic electron beam on a high-Z converter can mimic X-rays radiated from various radioactive sources. Here we consider development of two designs: one matching a Ir-192 source used in radiography with ∼1-1.3 MeV electrons, and another one Cs137 source using 3.5-4 MeV electrons that can be considered for borehole logging. Both designs use standing wave, high group velocity, cm- wave, accelerating structure. The logging tool conceptual design is based on KlyLac concept combining a klystron and linac operating in self-oscillating mode and sharing the same vacuum envelop, and electron beam.

  5. Exact Constraint Design and its potential for Robust Embodiment

    DEFF Research Database (Denmark)

    Eifler, Tobias; Howard, Thomas J.

    2017-01-01

    Constraint Design. Examples are the calculation of a mechanisms’ mobility using the Grübler-Kutzbach criterion, the analysis of statically determinate assemblies by means of the screw theory or so called Schlussartenmatrizen, as well as the analysis of engaging surfaces in terms of location schemes...

  6. Perception-oriented methodology for robust motion estimation design

    NARCIS (Netherlands)

    Heinrich, A.; Vleuten, van der R.J.; Haan, de G.

    2014-01-01

    Optimizing a motion estimator (ME) for picture rate conversion is challenging. This is because there are many types of MEs and, within each type, many parameters, which makes subjective assessment of all the alternatives impractical. To solve this problem, we propose an automatic design methodology

  7. Robust design of microlenses arrays employing dielectric resonators metasurfaces

    NARCIS (Netherlands)

    Silvestri, F.; Gerini, G.; Bäumer, S.M.B.

    2017-01-01

    In the last years, much interest has grown around the concept of optical surfaces employing high contrast dielectric resonators. However, a systematic approach for the design of this optical surfaces under particular requirements has never been proposed. In this contribution, we describe this

  8. Using H∞ to design robust POD controllers for wind power plants

    DEFF Research Database (Denmark)

    Mehmedalic, Jasmin; Knüppel, Thyge; Østergaard, Jacob

    2012-01-01

    Large wind power plants (WPPs) can help to improve small signal stability by increasing the damping of electromechanical modes of oscillation. This can be done by adding a power system oscillation damping (POD) controller to the wind power plants, similar to power system stabilizer (PSS......) controllers on conventional generation. Here two different design methods are evaluated for their suitability in producing a robust power system oscillation damping controller for wind power plants with full-load converter wind turbine generators (WTGs). Controllers are designed using classic PSS design and H......∞ methods and the designed controllers evaluated on both performance and robustness. It is found that the choice of control signal has a large influence on the robustness of the controllers, and the best performance and robustness is found when the converter active power command is used as control signal...

  9. Design of Robust Adaptive Array Processors for Non-Stationary Ocean Environments

    National Research Council Canada - National Science Library

    Wage, Kathleen E

    2009-01-01

    The overall goal of this project is to design adaptive array processing algorithms that have good transient performance, are robust to mismatch, work with low sample support, and incorporate waveguide...

  10. Robust Nearfield Wideband Beamforming Design Based on Adaptive-Weighted Convex Optimization

    Directory of Open Access Journals (Sweden)

    Guo Ye-Cai

    2017-01-01

    Full Text Available Nearfield wideband beamformers for microphone arrays have wide applications in multichannel speech enhancement. The nearfield wideband beamformer design based on convex optimization is one of the typical representatives of robust approaches. However, in this approach, the coefficient of convex optimization is a constant, which has not used all the freedom provided by the weighting coefficient efficiently. Therefore, it is still necessary to further improve the performance. To solve this problem, we developed a robust nearfield wideband beamformer design approach based on adaptive-weighted convex optimization. The proposed approach defines an adaptive-weighted function by the adaptive array signal processing theory and adjusts its value flexibly, which has improved the beamforming performance. During each process of the adaptive updating of the weighting function, the convex optimization problem can be formulated as a SOCP (Second-Order Cone Program problem, which could be solved efficiently using the well-established interior-point methods. This method is suitable for the case where the sound source is in the nearfield range, can work well in the presence of microphone mismatches, and is applicable to arbitrary array geometries. Several design examples are presented to verify the effectiveness of the proposed approach and the correctness of the theoretical analysis.

  11. Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework

    International Nuclear Information System (INIS)

    Lee, Chibum; Salapaka, Srinivasa M

    2009-01-01

    This paper studies and analyses fundamental trade-offs between positioning resolution, tracking bandwidth, and robustness to modeling uncertainties in two-degree-of-freedom (2DOF) control designs for nanopositioning systems. The analysis of these systems is done in optimal control setting with various architectural constraints imposed on the 2DOF framework. In terms of these trade-offs, our analysis shows that the primary role of feedback is providing robustness to the closed-loop device whereas the feedforward component is mainly effective in overcoming fundamental algebraic constraints that limit the feedback-only designs. This paper presents (1) an optimal prefilter model matching design for a system with an existing feedback controller, (2) a simultaneous feedforward and feedback control design in an optimal mixed sensitivity framework, and (3) a 2DOF optimal robust model matching design. The experimental results on applying these controllers show a significant improvement, as high as 330% increase in bandwidth for similar robustness and resolution over optimal feedback-only designs. Other performance objectives can be improved similarly. We demonstrate that the 2DOF freedom design achieves performance specifications that are analytically impossible for feedback-only designs.

  12. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  13. Robust Control Design of Wheeled Inverted Pendulum Assistant Robot

    Institute of Scientific and Technical Information of China (English)

    Magdi S.Mahmoud; Mohammad T.Nasir

    2017-01-01

    This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H2 control and H∞ control. Simulation is performed for all the approaches yielding good performance results.

  14. Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration

    Science.gov (United States)

    Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul

    2015-01-01

    This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392

  15. Robust dynamical effects in traffic and chaotic maps on trees

    Indian Academy of Sciences (India)

    Here we study two types of well-defined diffusive dynamics on scale-free trees: traffic of packets as navigated random walks, and chaotic standard maps coupled along the network links. We show that in both cases robust collective dynamic effects appear, which can be measured statistically and related to non-ergodicity of ...

  16. The Effect of Self-Explaining on Robust Learning

    Science.gov (United States)

    Hausmann, Robert G. M.; VanLehn, Kurt

    2010-01-01

    Self-explaining is a domain-independent learning strategy that generally leads to a robust understanding of the domain material. However, there are two potential explanations for its effectiveness. First, self-explanation generates additional "content" that does not exist in the instructional materials. Second, when compared to…

  17. Electronic structure robustness and design rules for 2D colloidal heterostructures

    Science.gov (United States)

    Chu, Audrey; Livache, Clément; Ithurria, Sandrine; Lhuillier, Emmanuel

    2018-01-01

    Among the colloidal quantum dots, 2D nanoplatelets present exceptionally narrow optical features. Rationalizing the design of heterostructures of these objects is of utmost interest; however, very little work has been focused on the investigation of their electronic properties. This work is organized into two main parts. In the first part, we use 1D solving of the Schrödinger equation to extract the effective masses for nanoplatelets (NPLs) of CdSe, CdS, and CdTe and the valence band offset for NPL core/shell of CdSe/CdS. In the second part, using the determined parameters, we quantize how the spectra of the CdSe/CdS heterostructure get affected by (i) the application of an electric field and (ii) by the presence of a dull interface. We also propose design strategies to make the heterostructure even more robust.

  18. Robust design for shape parameters of high pressure thermal vapor compressor by numerical analysis

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A high motive pressure Thermal Vapor Compressor(TVC) for a commercial Multi-Effect Desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio

  19. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  20. Robust transceiver design for reciprocal M × N interference channel based on statistical linearization approximation

    Science.gov (United States)

    Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad

    2017-12-01

    This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.

  1. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    Science.gov (United States)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  2. Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT

    Directory of Open Access Journals (Sweden)

    P. Ubaidulla

    2009-01-01

    Full Text Available We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO downlink in the presence of imperfections in the channel state information at the transmitter (CSIT. The base station (BS is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i minimum SMSE, (ii MSE-constrained, and (iii MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs. Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.

  3. Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT

    Science.gov (United States)

    Ubaidulla, P.; Chockalingam, A.

    2009-12-01

    We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.

  4. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    Science.gov (United States)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  5. A robust fractional-order PID controller design based on active queue management for TCP network

    Science.gov (United States)

    Hamidian, Hamideh; Beheshti, Mohammad T. H.

    2018-01-01

    In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.

  6. Nonlinear Robust Disturbance Attenuation Control Design for Static Var Compensator in Power System

    Directory of Open Access Journals (Sweden)

    Ting Liu

    2013-01-01

    Full Text Available The problem of designing an adaptive backstepping controller for nonlinear static var compensator (SVC system is addressed adopting two perspectives. First, instead of artificially assuming an upper bound or inequality scaling, the minimax theory is used to treat the external unknown disturbances. The system is insensitive to effects of large disturbances due to taking into account the worst case disturbance. Second, a parameter projection mechanism is introduced in adaptive control to force the parameter estimate within a prior specified interval. The proposed controller handles the nonlinear parameterization without compromising control smoothness and at the same time the parameter estimate speed is improved and the robustness of system is strengthened. Considering the short-circuit ground fault and mechanical power perturbation, a simulation study is carried out. The results show the effectiveness of the proposed control method.

  7. Robust D-optimal designs under correlated error, applicable invariantly for some lifetime distributions

    International Nuclear Information System (INIS)

    Das, Rabindra Nath; Kim, Jinseog; Park, Jeong-Soo

    2015-01-01

    In quality engineering, the most commonly used lifetime distributions are log-normal, exponential, gamma and Weibull. Experimental designs are useful for predicting the optimal operating conditions of the process in lifetime improvement experiments. In the present article, invariant robust first-order D-optimal designs are derived for correlated lifetime responses having the above four distributions. Robust designs are developed for some correlated error structures. It is shown that robust first-order D-optimal designs for these lifetime distributions are always robust rotatable but the converse is not true. Moreover, it is observed that these designs depend on the respective error covariance structure but are invariant to the above four lifetime distributions. This article generalizes the results of Das and Lin [7] for the above four lifetime distributions with general (intra-class, inter-class, compound symmetry, and tri-diagonal) correlated error structures. - Highlights: • This paper presents invariant robust first-order D-optimal designs under correlated lifetime responses. • The results of Das and Lin [7] are extended for the four lifetime (log-normal, exponential, gamma and Weibull) distributions. • This paper also generalizes the results of Das and Lin [7] to more general correlated error structures

  8. Hybrid Robust Optimization for the Design of a Smartphone Metal Frame Antenna

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2018-01-01

    Full Text Available Hybrid robust optimization that combines a genetical swarm optimization (GSO scheme with an orthogonal array (OA is proposed to design an antenna robust to the tolerances arising during the fabrication process of the antenna in this paper. An inverted-F antenna with a metal frame serves as an example to explain the procedure of the proposed method. GSO is adapted to determine the design variables of the antenna, which operates on the GSM850 band (824–894 MHz. The robustness of the antenna is evaluated through a noise test using the OA. The robustness of the optimized antenna is improved by approximately 61.3% relative to that of a conventional antenna. Conventional and optimized antennas are fabricated and measured to validate the experimental results.

  9. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  10. The variation management framework (VMF): A unifying graphical representation of robust design

    DEFF Research Database (Denmark)

    Howard, Thomas J.; Eifler, Tobias; Pedersen, Søren Nygaard

    2017-01-01

    In this article a framework for robust design and variation management is proposed by combining central models to Robust Design, namely, the Quality Loss Function, the Transfer Function, and the Domains of Axiomatic Design. The Variation Management Framework (VMF) shows how variation can be mapped...... from production variation right through to the quality loss perceived by the customer for a single characteristic chain. Seven levers which can be activated to increase product quality are described and positioned on the VMF and variation metrics are proposed....

  11. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  12. The robust corrective action priority-an improved approach for selecting competing corrective actions in FMEA based on principle of robust design

    Science.gov (United States)

    Sutrisno, Agung; Gunawan, Indra; Vanany, Iwan

    2017-11-01

    In spite of being integral part in risk - based quality improvement effort, studies improving quality of selection of corrective action priority using FMEA technique are still limited in literature. If any, none is considering robustness and risk in selecting competing improvement initiatives. This study proposed a theoretical model to select risk - based competing corrective action by considering robustness and risk of competing corrective actions. We incorporated the principle of robust design in counting the preference score among corrective action candidates. Along with considering cost and benefit of competing corrective actions, we also incorporate the risk and robustness of corrective actions. An example is provided to represent the applicability of the proposed model.

  13. Design process robustness: A bi-partite network analysis reveals the central importance of people

    DEFF Research Database (Denmark)

    Piccolo, Sebastiano; Jørgensen, Sune Lehmann; Maier, Anja

    2018-01-01

    , reducing the risk of rework and delays. Although there has been much progress in modelling and understanding design processes, little is known about the interplay between people and the activities they perform and its influence on design process robustness. To analyse this interplay, we model a large...

  14. D-efficient or deficient? A robustness analysis of stated choice experimental designs

    DEFF Research Database (Denmark)

    Walker, Joan L.; Wang, Yanqiao; Thorhauge, Mikkel

    2017-01-01

    -aided surveys that readily allow for large fractions. Further, the results in the literature are abstract in that there is no reference point (i.e., meaningful units) to provide clear insight on the magnitude of any issue. Our objective is to analyze the robustness of different designs within a typical stated...... of the prior parameters. The simple mode choice setting allows for insightful visualizations of the designs themselves and also an interpretable reference point (VOT) for the range in which each design is robust. Not surprisingly, the D-efficient design is most efficient in the region where the true population......, the random design (which is the easiest to generate) performs as well as any design, and it (as well as any design) will perform even better if data cleaning is done to remove choice tasks where one alternative dominates the other....

  15. Gear hot forging process robust design based on finite element method

    International Nuclear Information System (INIS)

    Xuewen, Chen; Won, Jung Dong

    2008-01-01

    During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled

  16. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  17. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.

    Science.gov (United States)

    Tan, Jiazheng; Sun, Weijie; Yeow, John T W

    2017-05-26

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.

  18. Robust Coordinated Design of PSS and TCSC using PSO Technique for Power System Stability Enhancement

    Directory of Open Access Journals (Sweden)

    S. Panda

    2007-06-01

    Full Text Available Power system stability improvement by coordinated design of a Power System Stabilizer (PSS and a Thyristor Controlled Series Compensator (TCSC controller is addressed in this paper. Particle Swarm Optimization (PSO technique is employed for optimization of the parameterconstrained nonlinear optimization problem implemented in a simulation environment. The proposed controllers are tested on a weakly connected power system. The non-linear simulation results are presented for wide range of loading conditions with various fault disturbances and fault clearing sequences as well as for various small disturbances. The eigenvalue analysis and simulation results show the effectiveness and robustness of proposed controllers to improve the stability performance of power system by efficient damping of low frequency oscillations under various disturbances.

  19. Design of Nonlinear Robust Rotor Current Controller for DFIG Based on Terminal Sliding Mode Control and Extended State Observer

    Directory of Open Access Journals (Sweden)

    Guowei Cai

    2014-01-01

    Full Text Available As to strong nonlinearity of doubly fed induction generators (DFIG and uncertainty of its model, a novel rotor current controller with nonlinearity and robustness is proposed to enhance fault ride-though (FRT capacities of grid-connected DFIG. Firstly, the model error, external disturbances, and the uncertain factors were estimated by constructing extended state observer (ESO so as to achieve linearization model, which is compensated dynamically from nonlinear model. And then rotor current controller of DFIG is designed by using terminal sliding mode variable structure control theory (TSMC. The controller has superior dynamic performance and strong robustness. The simulation results show that the proposed control approach is effective.

  20. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  1. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    Science.gov (United States)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  2. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2010-01-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  3. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    Science.gov (United States)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  4. Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution

    Energy Technology Data Exchange (ETDEWEB)

    Granados, A.; Martín-Carrasco, F.J.; García de Jalón, S.; Iglesias, A.

    2015-07-01

    Agriculture is a particularly sensitive sector to the potential impacts of climate change. Thus, irrigation infrastructure is required to be robust to cope with these potential threats. The objective of this research is designing more robust irrigation networks, considering cost and stakeholder contribution. To that end, the investigation was addressed in three phases: a sensitivity analysis to understand the effectiveness of the distinct variables, a cost-effectiveness analysis assessing their efficiency, and a global study of the most efficient variables to provide an insight into their function. The sensitivity analysis indicates that the networks oversized by means of the coefficient of utilisation or the factor of safety, behave better than those oversized via the continuous specific discharge; moreover, the degree of freedom has been shown ineffective. The cost-effectiveness analysis shows that the coefficient of utilisation and the factor of safety are the most efficient variables, as they introduced safety margin oversizing fewer network elements and to a lesser extent than the continuous specific discharge. It also shows that stakeholder contribution, conveyed as a reduction of the degree of freedom, plays an important role in the network’s adaptive capacity to change. The global study of these variables reveals the subtlety of the coefficient of utilisation, which is the variable that better reproduces the farmer behaviour during demand increase scenarios. In conclusion, the results identify the coefficient of utilisation as the variable which provides the safest margins and reveal the importance of stakeholder contribution in absorb the demand increase in a better manner. (Author)

  5. Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution

    Directory of Open Access Journals (Sweden)

    Alfredo Granados

    2015-12-01

    Full Text Available Agriculture is a particularly sensitive sector to the potential impacts of climate change. Thus, irrigation infrastructure is required to be robust to cope with these potential threats. The objective of this research is designing more robust irrigation networks, considering cost and stakeholder contribution. To that end, the investigation was addressed in three phases: a sensitivity analysis to understand the effectiveness of the distinct variables, a cost-effectiveness analysis assessing their efficiency, and a global study of the most efficient variables to provide an insight into their function. The sensitivity analysis indicates that the networks oversized by means of the coefficient of utilisation or the factor of safety, behave better than those oversized via the continuous specific discharge; moreover, the degree of freedom has been shown ineffective. The cost-effectiveness analysis shows that the coefficient of utilisation and the factor of safety are the most efficient variables, as they introduced safety margin oversizing fewer network elements and to a lesser extent than the continuous specific discharge. It also shows that stakeholder contribution, conveyed as a reduction of the degree of freedom, plays an important role in the network’s adaptive capacity to change. The global study of these variables reveals the subtlety of the coefficient of utilisation, which is the variable that better reproduces the farmer behaviour during demand increase scenarios. In conclusion, the results identify the coefficient of utilisation as the variable which provides the safest margins and reveal the importance of stakeholder contribution in absorb the demand increase in a better manner.

  6. Estimating temporary emigration and breeding proportions using capture-recapture data with Pollock's robust design

    Science.gov (United States)

    Kendall, W.L.; Nichols, J.D.; Hines, J.E.

    1997-01-01

    Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.

  7. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    Science.gov (United States)

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  8. A robust controller design method for feedback substitution schemes using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Mirsha M; Hadjiloucas, Sillas; Becerra, Victor M, E-mail: s.hadjiloucas@reading.ac.uk [Cybernetics, School of Systems Engineering, University of Reading, RG6 6AY (United Kingdom)

    2011-08-17

    Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.

  9. A Data-Driven Frequency-Domain Approach for Robust Controller Design via Convex Optimization

    CERN Document Server

    AUTHOR|(CDS)2092751; Martino, Michele

    The objective of this dissertation is to develop data-driven frequency-domain methods for designing robust controllers through the use of convex optimization algorithms. Many of today's industrial processes are becoming more complex, and modeling accurate physical models for these plants using first principles may be impossible. Albeit a model may be available; however, such a model may be too complex to consider for an appropriate controller design. With the increased developments in the computing world, large amounts of measured data can be easily collected and stored for processing purposes. Data can also be collected and used in an on-line fashion. Thus it would be very sensible to make full use of this data for controller design, performance evaluation, and stability analysis. The design methods imposed in this work ensure that the dynamics of a system are captured in an experiment and avoids the problem of unmodeled dynamics associated with parametric models. The devised methods consider robust designs...

  10. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    Science.gov (United States)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  11. Design and synthesis of multipurpose batch plant using a robust scheduling platform

    CSIR Research Space (South Africa)

    Seid, ER

    2013-10-01

    Full Text Available & Engineering Chemistry Research October 2012/ Vol. 52(46) Design and Synthesis of Multipurpose Batch Plants Using a Robust Scheduling Platform Esmael R. Seid † and Thokozani Majozi *†‡ † Department of Chemical Engineering, University of Pretoria...

  12. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xianfu Cheng

    2014-01-01

    Full Text Available The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  13. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    Science.gov (United States)

    Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system. PMID:24683334

  14. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    Science.gov (United States)

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  15. Design optimization of a robust sleeve antenna for hepatic microwave ablation

    International Nuclear Information System (INIS)

    Prakash, Punit; Webster, John G; Deng Geng; Converse, Mark C; Mahvi, David M; Ferris, Michael C

    2008-01-01

    We describe the application of a Bayesian variable-number sample-path (VNSP) optimization algorithm to yield a robust design for a floating sleeve antenna for hepatic microwave ablation. Finite element models are used to generate the electromagnetic (EM) field and thermal distribution in liver given a particular design. Dielectric properties of the tissue are assumed to vary within ± 10% of average properties to simulate the variation among individuals. The Bayesian VNSP algorithm yields an optimal design that is a 14.3% improvement over the original design and is more robust in terms of lesion size, shape and efficiency. Moreover, the Bayesian VNSP algorithm finds an optimal solution saving 68.2% simulation of the evaluations compared to the standard sample-path optimization method

  16. A Framework for the Application of Robust Design Methods and Tools

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Howard, Thomas J.

    2014-01-01

    can deliver are not always clear. Expectations to the output are sometimes misleading and imply the incorrect utilization of tools. A categorization of tools, methods and techniques typically associated with robust design methodology in the literature is provided in this paper in terms of purpose...... and deliverables of the individual tool or method. The majority of tools aims for optimizing an existing design solution or give an indication of how robust a design is, which requires a somewhat settled design. Furthermore, the categorization presented in this paper shows a lack in the methodology for tools...... of the existing tools. When to apply, what tool or method, for which purpose can be concluded. The paper also contributes with a framework for researchers to derive a generic landscape or database for RDM build upon the main premises and deliverables of each method....

  17. Robust state feedback controller design of STATCOM using chaotic optimization algorithm

    Directory of Open Access Journals (Sweden)

    Safari Amin

    2010-01-01

    Full Text Available In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM using Chaotic Optimization Algorithm (COA is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.

  18. Robust design of broadband EUV multilayer beam splitters based on particle swarm optimization

    International Nuclear Information System (INIS)

    Jiang, Hui; Michette, Alan G.

    2013-01-01

    A robust design idea for broadband EUV multilayer beam splitters is introduced that achieves the aim of decreasing the influence of layer thickness errors on optical performances. Such beam splitters can be used in interferometry to determine the quality of EUVL masks by comparing with a reference multilayer. In the optimization, particle swarm techniques were used for the first time in such designs. Compared to conventional genetic algorithms, particle swarm optimization has stronger ergodicity, simpler processing and faster convergence

  19. Topological design of electromechanical actuators with robustness toward over- and under-etching

    DEFF Research Database (Denmark)

    Qian, Xiaoping; Sigmund, Ole

    2013-01-01

    In this paper, we combine the recent findings in robust topology optimization formulations and Helmholtz partial differential equation based density filtering to improve the topological design of electromechanical actuators. For the electromechanical analysis, we adopt a monolithic formulation...... to model the coupled electrostatic and mechanical equations. For filtering, we extend the Helmholtz-based projection filter with Dirichlet boundary conditions to ensure appropriate design boundary conditions. For the optimization, we use the method of moving asymptotes, where the sensitivity is obtained...

  20. Robust Design of H-infinity Controller for a Launch Vehicle Autopilot against Disturbances

    OpenAIRE

    Graells, Antonio; Carrabina, Francisco

    2016-01-01

    Atmospheric flight phase of a launch vehicle is utilized to evaluate the performance of an H-infinity controller in the presence of disturbances. Dynamics of the vehicle is linearly modeled using time-varying parameters. An operating point was found to design a robust command tracker using H-infinity control theory that guarantees a stable maneuver. At the end, the controller was employed on the launch vehicle to assess the capability of control design on the linearized aerospace vehicle. Exp...

  1. Robust nonlinear control design with application to a marine cooling system

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2012-01-01

    . In this context, we apply a bilinear transformation to obtain a well-posed H-inf problem. The design procedure is applied to a marine cooling system with flow dependent delays and performance of the resulting control design is evaluated through a simulation example where a comparison is made to a linear control......In this paper we consider design of control laws for a class of nonlinear systems with time-varying state delays by use of principles from feedback linearization. To deal with model uncertainties and delay mismatches, a robust linear H-inf controller is designed for the feedback linearized system...

  2. The Use of Treatment Concurrences to Assess Robustness of Binary Block Designs Against the Loss of Whole Blocks

    OpenAIRE

    Godolphin, JD; Godolphin, EJ

    2015-01-01

    © 2015 Australian Statistical Publishing Association Inc. Criteria are proposed for assessing the robustness of a binary block design against the loss of whole blocks, based on summing entries of selected upper non-principal sections of the concurrence matrix. These criteria improve on the minimal concurrence concept that has been used previously and provide new conditions for measuring the robustness status of a design. The robustness properties of two-associate partially balanced designs ar...

  3. Robust experiment design for estimating myocardial β adrenergic receptor concentration using PET

    International Nuclear Information System (INIS)

    Salinas, Cristian; Muzic, Raymond F. Jr.; Ernsberger, Paul; Saidel, Gerald M.

    2007-01-01

    Myocardial β adrenergic receptor (β-AR) concentration can substantially decrease in congestive heart failure and significantly increase in chronic volume overload, such as in severe aortic valve regurgitation. Positron emission tomography (PET) with an appropriate ligand-receptor model can be used for noninvasive estimation of myocardial β-AR concentration in vivo. An optimal design of the experiment protocol, however, is needed for sufficiently precise estimates of β-AR concentration in a heterogeneous population. Standard methods of optimal design do not account for a heterogeneous population with a wide range of β-AR concentrations and other physiological parameters and consequently are inadequate. To address this, we have developed a methodology to design a robust two-injection protocol that provides reliable estimates of myocardial β-AR concentration in normal and pathologic states. A two-injection protocol of the high affinity β-AR antagonist [ 18 F]-(S)-fluorocarazolol was designed based on a computer-generated (or synthetic) population incorporating a wide range of β-AR concentrations. Timing and dosage of the ligand injections were optimally designed with minimax criterion to provide the least bad β-AR estimates for the worst case in the synthetic population. This robust experiment design for PET was applied to experiments with pigs before and after β-AR upregulation by chemical sympathectomy. Estimates of β-AR concentration were found by minimizing the difference between the model-predicted and experimental PET data. With this robust protocol, estimates of β-AR concentration showed high precision in both normal and pathologic states. The increase in β-AR concentration after sympathectomy predicted noninvasively with PET is consistent with the increase shown by in vitro assays in pig myocardium. A robust experiment protocol was designed for PET that yields reliable estimates of β-AR concentration in a population with normal and pathologic

  4. Assessing the Robustness of Green Infrastructure under Stochastic Design Storms and Climate Change Scenarios

    Science.gov (United States)

    Chui, T. F. M.; Yang, Y.

    2017-12-01

    Green infrastructures (GI) have been widely used to mitigate flood risk, improve surface water quality, and to restore predevelopment hydrologic regimes. Commonly-used GI include, bioretention system, porous pavement and green roof, etc. They are normally sized to fulfil different design criteria (e.g. providing certain storage depths, limiting peak surface flow rates) that are formulated for current climate conditions. While GI commonly have long lifespan, the sensitivity of their performance to climate change is however unclear. This study first proposes a method to formulate suitable design criteria to meet different management interests (e.g. different levels of first flush reduction and peak flow reduction). Then typical designs of GI are proposed. In addition, a high resolution stochastic design storm generator using copulas and random cascade model is developed, which is calibrated using recorded rainfall time series. Then, few climate change scenarios are generated by varying the duration and depth of design storms, and changing the parameters of the calibrated storm generator. Finally, the performance of GI with typical designs under the random synthesized design storms are then assessed using numerical modeling. The robustness of the designs is obtained by the comparing their performance in the future scenarios to the current one. This study overall examines the robustness of the current GI design criteria under uncertain future climate conditions, demonstrating whether current GI design criteria should be modified to account for climate change.

  5. Synchronization of a class of chaotic signals via robust observer design

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco 02200, Mexico, D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco 02200, Mexico, D.F. (Mexico); Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-07-15

    In this paper the signal synchronization of a class of chaotic systems based on robust observer design is tackled. The task is the synchronization of the signals generated by two Chen oscillators with different initial condition. The proposed observer is robust against model uncertainties and noisy output measurements. An alternative system representation is proposed to transform the measured disturbance onto system disturbance, which leads a more adequate observer structure. The proposed methodology contains an uncertainty estimator based on the predictive contribution to infer the unobservable uncertainties and corrective contribution to estimate the observable uncertainties; which provides robustness against noisy measurements and model uncertainties. Convergence analysis of the proposed estimation methodology is realized, analyzing the dynamic equation of the estimation error, where asymptotic convergence is shown. Numerical experiments illustrate the good performance of the proposed methodology.

  6. Synchronization of a class of chaotic signals via robust observer design

    International Nuclear Information System (INIS)

    Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael

    2008-01-01

    In this paper the signal synchronization of a class of chaotic systems based on robust observer design is tackled. The task is the synchronization of the signals generated by two Chen oscillators with different initial condition. The proposed observer is robust against model uncertainties and noisy output measurements. An alternative system representation is proposed to transform the measured disturbance onto system disturbance, which leads a more adequate observer structure. The proposed methodology contains an uncertainty estimator based on the predictive contribution to infer the unobservable uncertainties and corrective contribution to estimate the observable uncertainties; which provides robustness against noisy measurements and model uncertainties. Convergence analysis of the proposed estimation methodology is realized, analyzing the dynamic equation of the estimation error, where asymptotic convergence is shown. Numerical experiments illustrate the good performance of the proposed methodology

  7. A novel non-probabilistic approach using interval analysis for robust design optimization

    International Nuclear Information System (INIS)

    Sun, Wei; Dong, Rongmei; Xu, Huanwei

    2009-01-01

    A technique for formulation of the objective and constraint functions with uncertainty plays a crucial role in robust design optimization. This paper presents the first application of interval methods for reformulating the robust optimization problem. Based on interval mathematics, the original real-valued objective and constraint functions are replaced with the interval-valued functions, which directly represent the upper and lower bounds of the new functions under uncertainty. The single objective function is converted into two objective functions for minimizing the mean value and the variation, and the constraint functions are reformulated with the acceptable robustness level, resulting in a bi-level mathematical model. Compared with other methods, this method is efficient and does not require presumed probability distribution of uncertain factors or gradient or continuous information of constraints. Two numerical examples are used to illustrate the validity and feasibility of the presented method

  8. Fractional order differentiation and robust control design crone, h-infinity and motion control

    CERN Document Server

    Sabatier, Jocelyn; Melchior, Pierre; Oustaloup, Alain

    2015-01-01

    This monograph collates the past decade’s work on fractional models and fractional systems in the fields of analysis, robust control and path tracking. Themes such as PID control, robust path tracking design and motion control methodologies involving fractional differentiation are amongst those explored. It juxtaposes recent theoretical results at the forefront in the field, and applications that can be used as exercises that will help the reader to assimilate the proposed methodologies. The first part of the book deals with fractional derivative and fractional model definitions, as well as recent results for stability analysis, fractional model physical interpretation, controllability, and H-infinity norm computation. It also presents a critical point of view on model pseudo-state and “real state”, tackling the problem of fractional model initialization. Readers will find coverage of PID, Fractional PID and robust control in the second part of the book, which rounds off with an extension of H-infinity ...

  9. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    Science.gov (United States)

    Takemiya, Tetsushi

    differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.

  10. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  11. Robust control design for the plasma horizontal position control on J-TEXT Tokamak

    International Nuclear Information System (INIS)

    Yu, W.Z.; Chen, Z.P.; Zhuang, G.; Wang, Z.J.

    2013-01-01

    It is extremely important for tokamak to control the plasma position during routine discharge. However, the model of plasma in tokamak usually contains much of the uncertainty, such as structured uncertainties and unmodeled dynamics. Compared with the traditional PID control approach, robust control theory is more suitable to handle this problem. In the paper, we propose a H ∞ robust control scheme to control the horizontal position of plasma during the flat-top phase of discharge on Joint Texas Experimental Tokamak (J-TEXT) tokamak. First, the model of our plant for plasma horizontal position control is obtained from the position equilibrium equations. Then the H ∞ robust control framework is used to synthesize the controller. Based on this, an H ∞ controller is designed to minimize the regulation/tracking error. Finally, a comparison study is conducted between the optimized H ∞ robust controller and the traditional PID controller in simulations. The simulation results of the H ∞ robust controller show a significant improvement of the performance with respect to those obtained with traditional PID controller, which is currently used on our machine

  12. Robust decentralised PI based LFC design for time delay power systems

    International Nuclear Information System (INIS)

    Bevrani, Hassan; Hiyama, Takashi

    2008-01-01

    In this paper, two robust decentralised proportional integral (PI) control designs are proposed for load frequency control (LFC) with communication delays. In both methodologies, the PI based LFC problem is reduced to a static output feedback (SOF) control synthesis for a multiple delay system. The first one is based on the optimal H ∞ control design using a linear matrix inequalities (LMI) technique. The second control design gives a suboptimal solution using a developed iterative linear matrix inequalities (ILMI) algorithm via the mixed H 2 /H ∞ control technique. The control strategies are suitable for LFC applications that usually employ PI control. The proposed control strategies are applied to a three control area power system with time delays and load disturbance to demonstrate their robustness

  13. Optimal design of modular cogeneration plants for hospital facilities and robustness evaluation of the results

    International Nuclear Information System (INIS)

    Gimelli, A.; Muccillo, M.; Sannino, R.

    2017-01-01

    Highlights: • A specific methodology has been set up based on genetic optimization algorithm. • Results highlight a tradeoff between primary energy savings (TPES) and simple payback (SPB). • Optimized plant configurations show TPES exceeding 18% and SPB of approximately three years. • The study aims to identify the most stable plant solutions through the robust design optimization. • The research shows how a deterministic definition of the decision variables could lead to an overestimation of the results. - Abstract: The widespread adoption of combined heat and power generation is widely recognized as a strategic goal to achieve significant primary energy savings and lower carbon dioxide emissions. In this context, the purpose of this research is to evaluate the potential of cogeneration based on reciprocating gas engines for some Italian hospital buildings. Comparative analyses have been conducted based on the load profiles of two specific hospital facilities and through the study of the cogeneration system-user interaction. To this end, a specific methodology has been set up by coupling a specifically developed calculation algorithm to a genetic optimization algorithm, and a multi-objective approach has been adopted. The results from the optimization problem highlight a clear trade-off between total primary energy savings (TPES) and simple payback period (SPB). Optimized plant configurations and management strategies show TPES exceeding 18% for the reference hospital facilities and multi–gas engine solutions along with a minimum SPB of approximately three years, thereby justifying the European regulation promoting cogeneration. However, designing a CHP plant for a specific energetic, legislative or market scenario does not guarantee good performance when these scenarios change. For this reason, the proposed methodology has been enhanced in order to focus on some innovative aspects. In particular, this study proposes an uncommon and effective approach

  14. Robust and Effective Component-based Banknote Recognition for the Blind.

    Science.gov (United States)

    Hasanuzzaman, Faiz M; Yang, Xiaodong; Tian, Yingli

    2012-11-01

    We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users.

  15. Design of the robust synchronous generator stator voltage regulator based on the interval plant model

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe

    2013-01-01

    Full Text Available In this paper a novel method for the stator voltage regulator of a synchronous generator based on the interval plant mode, is presented. Namely, it is shown in the literature that, in order to design a controller for the first-order compensator, the limited number of interval plants needs to be examined. Consequently, the intervals of the plant model parameter variations used to calculate the four extreme interval plants required for the sequential PI controller design are determined. The controller is designed using frequency-domain-based techniques, while its robust performance is examined using simulation tests.

  16. A case study on robust optimal experimental design for model calibration of ω-Transaminase

    DEFF Research Database (Denmark)

    Daele, Timothy, Van; Van Hauwermeiren, Daan; Ringborg, Rolf Hoffmeyer

    the experimental space. However, it is expected that more informative experiments can be designed to increase the confidence of the parameter estimates. Therefore, we apply Optimal Experimental Design (OED) to the calibrated model of Shin and Kim (1998). The total number of samples was retained to allow fair......” parameter values are not known before finishing the model calibration. However, it is important that the chosen parameter values are close to the real parameter values, otherwise the OED can possibly yield non-informative experiments. To counter this problem, one can use robust OED. The idea of robust OED......Proper calibration of models describing enzyme kinetics can be quite challenging. This is especially the case for more complex models like transaminase models (Shin and Kim, 1998). The latter fitted model parameters, but the confidence on the parameter estimation was not derived. Hence...

  17. Estimating open population site occupancy from presence-absence data lacking the robust design.

    Science.gov (United States)

    Dail, D; Madsen, L

    2013-03-01

    Many animal monitoring studies seek to estimate the proportion of a study area occupied by a target population. The study area is divided into spatially distinct sites where the detected presence or absence of the population is recorded, and this is repeated in time for multiple seasons. However, when occupied sites are detected with probability p Ecology 84, 2200-2207) developed a multiseason model for estimating seasonal site occupancy (ψt ) while accounting for unknown p. Their model performs well when observations are collected according to the robust design, where multiple sampling occasions occur during each season; the repeated sampling aids in the estimation p. However, their model does not perform as well when the robust design is lacking. In this paper, we propose an alternative likelihood model that yields improved seasonal estimates of p and Ψt in the absence of the robust design. We construct the marginal likelihood of the observed data by conditioning on, and summing out, the latent number of occupied sites during each season. A simulation study shows that in cases without the robust design, the proposed model estimates p with less bias than the MacKenzie et al. model and hence improves the estimates of Ψt . We apply both models to a data set consisting of repeated presence-absence observations of American robins (Turdus migratorius) with yearly survey periods. The two models are compared to a third estimator available when the repeated counts (from the same study) are considered, with the proposed model yielding estimates of Ψt closest to estimates from the point count model. Copyright © 2013, The International Biometric Society.

  18. Low cost metamodel for robust design of periodic nonlinear coupled micro-systems

    Directory of Open Access Journals (Sweden)

    Chikhaoui K.

    2016-01-01

    Full Text Available To achieve robust design, in presence of uncertainty, nonlinearity and structural periodicity, a metamodel combining the Latin Hypercube Sampling (LHS method for uncertainty propagation and an enriched Craig-Bampton Component Mode Synthesis approach (CB-CMS for model reduction is proposed. Its application to predict the time responses of a stochastic periodic nonlinear micro-system proves its efficiency in terms of accuracy and reduction of computational cost.

  19. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    Science.gov (United States)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  20. Design of a H∞ Robust Controller with μ-Analysis for Steam Turbine Power Generation Applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Iannino

    2017-07-01

    Full Text Available Concentrated Solar Power plants are complex systems subjected to quite sensitive variations of the steam production profile and external disturbances, thus advanced control techniques that ensure system stability and suitable performance criteria are required. In this work, a multi-objective H∞ robust controller is designed and applied to the power control of a Concentered Solar Power plant composed by two turbines, a gear and a generator. In order to provide robust performance and stability in presence of disturbances, not modeled plant dynamics and plant-parameter variations, the advanced features of the μ-analysis are exploited. A high order controller is obtained from the process of synthesis that makes the implementation of the controller difficult and computational more demanding for a Programmable Logic Controller. Therefore, the controller order is reduced through the Balanced Truncation method and then discretized. The obtained robust control is compared to the current Proportional Integral Derivative-based governing system in order to evaluate its performance, considering unperturbed as well as perturbed scenarios, taking into account variations of steam conditions, sensor measurement delays and power losses. The simulations results show that the proposed controller achieves better robustness and performance compared to the existing Proportional Integral Derivative controller.

  1. LCL-Filter Design for Robust Active Damping in Grid-Connected Converters

    DEFF Research Database (Denmark)

    Pena-Alzola, Rafael; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    in the grid inductance may compromise system stability, and this problem is more severe for parallel converters. This situation, typical of rural areas with solar and wind resources, calls for robust LCL-filter design. This paper proposes a design procedure with remarkable results under severe grid inductance......Grid-connected converters employ LCL-filters, instead of simple inductors, because they allow lower inductances while reducing cost and size. Active damping, without dissipative elements, is preferred to passive damping for solving the associated stability problems. However, large variations...

  2. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    C. Trad

    2008-11-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  3. Robust design in generelaised linear models for improving the quality of polyurethane soles

    Directory of Open Access Journals (Sweden)

    Castro, Armando Mares

    2015-11-01

    Full Text Available In a process that manufactures polyurethane soles by casting, a number of problems lead to different types of defects on the sole, causing significant economic losses for the company. In order to improve the product quality and decrease the number of defects, this study conducts an experimental design in the context of robust design. Since the response variable is binary, the statistical analysis was performed using generalised linear models. The operational methodology reduced the percentage of defects, while combining the experimental technique and control systems to achieve superior quality and a consequent reduction in costs.

  4. AP1000R design robustness against extreme external events - Seismic, flooding, and aircraft crash

    International Nuclear Information System (INIS)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-01-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000 R nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is

  5. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel

  6. Robust Unconventional Interaction Design and Hybrid Tool Environments for Design and Engineering Processes

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kruiper, Ruben

    2017-01-01

    This paper investigates how and whether existing or current design tools, assist and support designers and engineers in the early-phases of ideation and conceptualization stages of design and engineering processes. The research explores how fluidly and/or congruously technology affords cognitive,

  7. Designing a Robust Nonlinear Dynamic Inversion Controller for Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Inseok Yang

    2014-01-01

    Full Text Available The robust nonlinear dynamic inversion (RNDI control technique is proposed to keep the relative position of spacecrafts while formation flying. The proposed RNDI control method is based on nonlinear dynamic inversion (NDI. NDI is nonlinear control method that replaces the original dynamics into the user-selected desired dynamics. Because NDI removes nonlinearities in the model by inverting the original dynamics directly, it also eliminates the need of designing suitable controllers for each equilibrium point; that is, NDI works as self-scheduled controller. Removing the original model also provides advantages of ease to satisfy the specific requirements by simply handling desired dynamics. Therefore, NDI is simple and has many similarities to classical control. In real applications, however, it is difficult to achieve perfect cancellation of the original dynamics due to uncertainties that lead to performance degradation and even make the system unstable. This paper proposes robustness assurance method for NDI. The proposed RNDI is designed by combining NDI and sliding mode control (SMC. SMC is inherently robust using high-speed switching inputs. This paper verifies similarities of NDI and SMC, firstly. And then RNDI control method is proposed. The performance of the proposed method is evaluated by simulations applied to spacecraft formation flying problem.

  8. Robust Transceivers Design for Multi-stream Multi-user MIMO Visible Light Communication

    KAUST Repository

    Sifaou, Houssem

    2017-11-27

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs, while offering high data rate performance. This paper focuses on the design of precoding and receiving schemes for downlink multi-user multiple-input multiple-output VLC systems using angle diversity receivers. Two major concerns need to be considered while solving such a problem. The first one is related to the inter-user interference, basically inherent to our consideration of a multi-user system, while the second results from the users’ mobility, causing imperfect channel estimates. To address both concerns, we propose robust precoding and receiver that solve the max-min SINR problem. The performance of the proposed VLC design is studied under different working conditions, where a significant gain of the proposed robust transceivers over their non-robust counterparts has been observed.

  9. Robust Transceivers Design for Multi-stream Multi-user MIMO Visible Light Communication

    KAUST Repository

    Sifaou, Houssem; Kammoun, Abla; Park, Kihong; Alouini, Mohamed-Slim

    2017-01-01

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs, while offering high data rate performance. This paper focuses on the design of precoding and receiving schemes for downlink multi-user multiple-input multiple-output VLC systems using angle diversity receivers. Two major concerns need to be considered while solving such a problem. The first one is related to the inter-user interference, basically inherent to our consideration of a multi-user system, while the second results from the users’ mobility, causing imperfect channel estimates. To address both concerns, we propose robust precoding and receiver that solve the max-min SINR problem. The performance of the proposed VLC design is studied under different working conditions, where a significant gain of the proposed robust transceivers over their non-robust counterparts has been observed.

  10. Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing Constraints in 65/45 nm CMOS

    Directory of Open Access Journals (Sweden)

    David Bol

    2011-01-01

    Full Text Available Ultra-low-voltage operation improves energy efficiency of logic circuits by a factor of 10×, at the expense of speed, which is acceptable for applications with low-to-medium performance requirements such as RFID, biomedical devices and wireless sensors. However, in 65/45 nm CMOS, variability and short-channel effects significantly harm robustness and timing closure of ultra-low-voltage circuits by reducing noise margins and jeopardizing gate delays. The consequent guardband on the supply voltage to meet a reasonable manufacturing yield potentially ruins energy efficiency. Moreover, high leakage currents in these technologies degrade energy efficiency in case of long stand-by periods. In this paper, we review recently published techniques to design robust and energy-efficient ultra-low-voltage circuits in 65/45 nm CMOS under relaxed yet strict timing constraints.

  11. Robust and flexible mapping for real-time distributed applications during the early design phases

    DEFF Research Database (Denmark)

    Gan, Junhe; Pop, Paul; Gruian, Flavius

    2012-01-01

    has a high chance of being schedulable, considering the wcet uncertainties, whereas a flexible mapping has a high chance to successfully accommodate the future scenarios. We propose a Genetic Algorithm-based approach to solve this optimization problem. Extensive experiments show the importance......We are interested in mapping hard real-time applications on distributed heterogeneous architectures. An application is modeled as a set of tasks, and we consider a fixed-priority preemptive scheduling policy. We target the early design phases, when decisions have a high impact on the subsequent...... in the functionality requirements are captured using “future scenarios”, which are task sets that model functionality likely to be added in the future. In this context, we derive a mapping of tasks in the application, such that the resulted implementation is both robust and flexible. Robust means that the application...

  12. Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making

    Science.gov (United States)

    Kwakkel, Jan; Haasnoot, Marjolijn

    2017-04-01

    Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.

  13. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    Science.gov (United States)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  14. Robustness-based evaluation of hydropower infrastructure design under climate change

    Directory of Open Access Journals (Sweden)

    Mehmet Ümit Taner

    2017-01-01

    Full Text Available The conventional tools of decision-making in water resources infrastructure planning have been developed for problems with well-characterized uncertainties and are ill-suited for problems involving climate nonstationarity. In the past 20 years, a predict-then-act-based approach to the incorporation of climate nonstationarity has been widely adopted in which the outputs of bias-corrected climate model projections are used to evaluate planning options. However, the ambiguous nature of results has often proved unsatisfying to decision makers. This paper presents the use of a bottom-up, decision scaling framework for the evaluation of water resources infrastructure design alternatives regarding their robustness to climate change and expected value of performance. The analysis begins with an assessment of the vulnerability of the alternative designs under a wide domain of systematically-generated plausible future climates and utilizes downscaled climate projections ex post to inform likelihoods within a risk-based evaluation. The outcomes under different project designs are compared by way of a set of decision criteria, including the performance under the most likely future, expected value of performance across all evaluated futures and robustness. The method is demonstrated for the design of a hydropower system in sub-Saharan Africa and is compared to the results that would be found using a GCM-based, scenario-led analysis. The results indicate that recommendations from the decision scaling analysis can be substantially different from the scenario-led approach, alleviate common shortcomings related to the use of climate projections in water resources planning, and produce recommendations that are more robust to future climate uncertainty.

  15. Integrating operation design into infrastructure planning to foster robustness of planned water systems

    Science.gov (United States)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of

  16. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  17. Robust control design for active driver assistance systems a linear-parameter-varying approach

    CERN Document Server

    Gáspár, Péter; Bokor, József; Nemeth, Balazs

    2017-01-01

    This monograph focuses on control methods that influence vehicle dynamics to assist the driver in enhancing passenger comfort, road holding, efficiency and safety of transport, etc., while maintaining the driver’s ability to override that assistance. On individual-vehicle-component level the control problem is formulated and solved by a unified modelling and design method provided by the linear parameter varying (LPV) framework. The global behaviour desired is achieved by a judicious interplay between the individual components, guaranteed by an integrated control mechanism. The integrated control problem is also formalized and solved in the LPV framework. Most important among the ideas expounded in the book are: application of the LPV paradigm in the modelling and control design methodology; application of the robust LPV design as a unified framework for setting control tasks related to active driver assistance; formulation and solution proposals for the integrated vehicle control problem; proposal for a re...

  18. Application of Iterative Robust Model-based Optimal Experimental Design for the Calibration of Biocatalytic Models

    DEFF Research Database (Denmark)

    Van Daele, Timothy; Gernaey, Krist V.; Ringborg, Rolf Hoffmeyer

    2017-01-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during...... experimentation is not actively used to optimise the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω......-transaminase catalysed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is a more accurate, but also a computationally more expensive method. As a result, an important deviation between both approaches...

  19. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles.

    Science.gov (United States)

    Tian, Jiayi; Zhang, Shifeng; Zhang, Yinhui; Li, Tong

    2018-03-01

    Since motion control plant (y (n) =f(⋅)+d) was repeatedly used to exemplify how active disturbance rejection control (ADRC) works when it was proposed, the integral chain system subject to matched disturbances is always regarded as a canonical form and even misconstrued as the only form that ADRC is applicable to. In this paper, a systematic approach is first presented to apply ADRC to a generic nonlinear uncertain system with mismatched disturbances and a robust output feedback autopilot for an airbreathing hypersonic vehicle (AHV) is devised based on that. The key idea is to employ the feedback linearization (FL) and equivalent input disturbance (EID) technique to decouple nonlinear uncertain system into several subsystems in canonical form, thus it would be much easy to directly design classical/improved linear/nonlinear ADRC controller for each subsystem. It is noticed that all disturbances are taken into account when implementing FL rather than just omitting that in previous research, which greatly enhances controllers' robustness against external disturbances. For autopilot design, ADRC strategy enables precise tracking for velocity and altitude reference command in the presence of severe parametric perturbations and atmospheric disturbances only using measurable output information. Bounded-input-bounded-output (BIBO) stable is analyzed for closed-loop system. To illustrate the feasibility and superiority of this novel design, a series of comparative simulations with some prominent and representative methods are carried out on a benchmark longitudinal AHV model. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A New Robust Tracking Control Design for Turbofan Engines: H∞/Leitmann Approach

    Directory of Open Access Journals (Sweden)

    Muxuan Pan

    2017-04-01

    Full Text Available In this paper, a H ∞ /Leitmann approach to the robust tracking control design is presented for an uncertain dynamic system. This new method is developed in the following two steps. Firstly, a tracking dynamic system with simultaneous consideration of parameter uncertainty and noise is modeled based on a linear system and a reference model. Accordingly, a “nominal system” from the tracking system is defined and controlled by a H ∞ control to obtain the asymptotical stability and noise resistance. Secondly, by making use of a Lyapunov function and the norm boundedness, a new robust control with the “Leitmann approach” is designed to cope with the uncertainty. The two controls collaborate with each other to achieve “uniform tracking boundedness” and “uniform ultimate tracking boundedness”. The new approach is then applied to an aircraft turbofan control design, and the numerical simulation results show the prescribed performances of the closed-loop system and the advantage of the developed approach.

  1. Designing a robust high-speed CMOS-MEMS capacitive humidity sensor

    International Nuclear Information System (INIS)

    Lazarus, N; Fedder, G K

    2012-01-01

    In our previous work (Lazarus and Fedder 2011 J. Micromech. Microeng. 21 0650281), we demonstrated a CMOS-MEMS capacitive humidity sensor with a 72% improvement in sensitivity over the highest previously integrated on a CMOS die. This paper explores a series of methods for creating a faster and more manufacturable high-sensitivity capacitive humidity sensor. These techniques include adding oxide pillars to hold the plates apart, spin coating polymer to allow sensors to be fabricated more cheaply, adding a polysilicon heater and etching away excess polymer in the release holes. In most cases a tradeoff was found between sensitivity and other factors such as response time or robustness. A robust high-speed sensor was designed with a sensitivity of 0.21% change in capacitance per per cent relative humidity, while dropping the response time constant from 70 to 4s. Although less sensitive than our design, the sensor remains 17% more sensitive than the most sensitive interdigitated designs successfully integrated with CMOS. (paper)

  2. Robust D-Stability Controller Design for a Ducted Fan Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Xiao-lu Ren

    2014-01-01

    Full Text Available This paper deals with the aerodynamic modeling of a small ducted fan UAV and the problem of attitude stabilization when the parameter of the vehicle is varied. The main aerodynamic model of the hovering flight UAV is first presented. Then, an attitude control is designed from a linearization of the dynamic model around the hovering flight, which is based on the H∞ output feedback control theory with D-stability. Simulation results show that such method has good robustness to the attitude system. They can meet the requirements of attitude control and verify further the feasibility of such a control strategy.

  3. Effects of traffic generation patterns on the robustness of complex networks

    Science.gov (United States)

    Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui

    2018-02-01

    Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.

  4. Robust time-shifted spoke pulse design in the presence of large B0 variations with simultaneous reduction of through-plane dephasing, B1+ effects, and the specific absorption rate using parallel transmission.

    Science.gov (United States)

    Guérin, Bastien; Stockmann, Jason P; Baboli, Mehran; Torrado-Carvajal, Angel; Stenger, Andrew V; Wald, Lawrence L

    2016-08-01

    To design parallel transmission spokes pulses with time-shifted profiles for joint mitigation of intensity variations due to B1+ effects, signal loss due to through-plane dephasing, and the specific absorption rate (SAR) at 7T. We derived a slice-averaged small tip angle (SA-STA) approximation of the magnetization signal at echo time that depends on the B1+ transmit profiles, the through-slice B0 gradient and the amplitude and time-shifts of the spoke waveforms. We minimize a magnitude least-squares objective based on this signal equation using a fast interior-point approach with analytical expressions of the Jacobian and Hessian. Our algorithm runs in less than three minutes for the design of two-spoke pulses subject to hundreds of local SAR constraints. On a B0/B1+ head phantom, joint optimization of the channel-dependent time-shifts and spoke amplitudes allowed signal recovery in high-B0 regions at no increase of SAR. Although the method creates uniform magnetization profiles (ie, uniform intensity), the flip angle varies across the image, which makes it ill-suited to T1-weighted applications. The SA-STA approach presented in this study is best suited to T2*-weighted applications with long echo times that require signal recovery around high B0 regions. Magn Reson Med 76:540-554, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. The Translation between Functional Requirements and Design Parameters for Robust Design

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Husung, Stephan; Howard, Thomas J.

    2016-01-01

    The specification of and justification for design parameter (DP) tolerances are primarily based on the acceptable variation of the functions’ performance and the functions’ sensitivity to the design parameters. However, why certain tolerances are needed is often not transparent, especially...... computer aided functional tolerancing. Non-optimal tolerances yield potentials for cost improvements in manufacturing and more consistency of the functional performance of the product. In this contribution a framework is proposed to overcome the observed problems and increase the clarity, transparency...... and traceability of tolerances by analyzing the translation between the DPs and their influence on the final function....

  6. A robust helium-cooled shield/blanket design for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Bourque, R.F.; Baxi, C.B.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding, its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology

  7. Improvement in Product Development: Use of back-end data to support upstream efforts of Robust Design Methodology

    Directory of Open Access Journals (Sweden)

    Vanajah Siva

    2012-12-01

    Full Text Available In the area of Robust Design Methodology (RDM less is done on how to use and work with data from the back-end of the product development process to support upstream improvement. The purpose of this paper is to suggest RDM practices for the use of customer claims data in early design phases as a basis for improvements. The back-end data, when systematically analyzed and fed back into the product development process, aids in closing the product development loop from claims to improvement in the design phase. This is proposed through a flow of claims data analysis tied to an existing tool, namely Failure Mode and Effects Analysis (FMEA. The systematic and integrated analysis of back-end data is suggested as an upstream effort of RDM to increase understanding of noise factors during product usage based on the feedback of claims data to FMEA and to address continuous improvement in product development.

  8. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Miles Miller

    Full Text Available Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism, demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in

  9. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity.

    Science.gov (United States)

    Miller, Miles; Hafner, Marc; Sontag, Eduardo; Davidsohn, Noah; Subramanian, Sairam; Purnick, Priscilla E M; Lauffenburger, Douglas; Weiss, Ron

    2012-01-01

    Synthetic biology efforts have largely focused on small engineered gene networks, yet understanding how to integrate multiple synthetic modules and interface them with endogenous pathways remains a challenge. Here we present the design, system integration, and analysis of several large scale synthetic gene circuits for artificial tissue homeostasis. Diabetes therapy represents a possible application for engineered homeostasis, where genetically programmed stem cells maintain a steady population of β-cells despite continuous turnover. We develop a new iterative process that incorporates modular design principles with hierarchical performance optimization targeted for environments with uncertainty and incomplete information. We employ theoretical analysis and computational simulations of multicellular reaction/diffusion models to design and understand system behavior, and find that certain features often associated with robustness (e.g., multicellular synchronization and noise attenuation) are actually detrimental for tissue homeostasis. We overcome these problems by engineering a new class of genetic modules for 'synthetic cellular heterogeneity' that function to generate beneficial population diversity. We design two such modules (an asynchronous genetic oscillator and a signaling throttle mechanism), demonstrate their capacity for enhancing robust control, and provide guidance for experimental implementation with various computational techniques. We found that designing modules for synthetic heterogeneity can be complex, and in general requires a framework for non-linear and multifactorial analysis. Consequently, we adapt a 'phenotypic sensitivity analysis' method to determine how functional module behaviors combine to achieve optimal system performance. We ultimately combine this analysis with Bayesian network inference to extract critical, causal relationships between a module's biochemical rate-constants, its high level functional behavior in isolation, and

  10. Experimental Optimization In Polymer BLEND Composite Preparation Based On Mix Level of Taguchi Robust Design

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Jaafar Abdullah; Dahlan Mohd; Rozaidi Rasid; Megat Harun AlRashid Megat Ahmad; Mahathir Mohamad; Mohd Hamzah Harun

    2012-01-01

    L 18 orthogonal array in mix level of Taguchi robust design method was carried out to optimize experimental conditions for the preparation of polymer blend composite. Tensile strength and neutron absorption of the composite were the properties of interest. Filler size, filler loading, ball mixing time and dispersion agent concentration were selected as parameters or factors which are expected to affect the composite properties. As a result of Taguchi analysis, filler loading was the most influencing parameter on the tensile strength and neutron absorption. The least influencing was ball-mixing time. The optimal conditions were determined by using mix-level Taguchi robust design method and a polymer composite with tensile strength of 6.33 MPa was successfully prepared. The composite was found to fully absorb thermal neutron flux of 1.04 x 10 5 n/ cm 2 / s with only 2 mm in thickness. In addition, the filler was also characterized by scanning electron microscopy (SEM) and elemental analysis (EDX). (Author)

  11. Analytical quality by design: a tool for regulatory flexibility and robust analytics.

    Science.gov (United States)

    Peraman, Ramalingam; Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT).

  12. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures.

    Science.gov (United States)

    Lim, Hyun Gyu; Lim, Jae Hyung; Jung, Gyoo Yeol

    2015-01-01

    Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our

  13. DESIGN OF ROBUST COMMAND TO LINE-OF-SIGHT GUIDANCE LAW: A FUZZY ADAPTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    ESMAIL SADEGHINASAB

    2016-11-01

    Full Text Available In this paper, the design of command to line-of-sight (CLOS missile guidance law is addressed. Taking a three dimensional guidance model, the tracking control problem is formulated. To solve the target tracking problem, the feedback linearization controller is first designed. Although such control scheme possesses the simplicity property, but it presents the acceptable performance only in the absence of perturbations. In order to ensure the robustness properties against model uncertainties, a fuzzy adaptive algorithm is proposed with two parts including a fuzzy (Mamdani system, whose rules are constructed based on missile guidance, and a so-called rule modifier to compensate the fuzzy rules, using the negative gradient method. Compared with some previous works, such control strategy provides a faster time response without large control efforts. The performance of feedback linearization controller is also compared with that of fuzzy adaptive strategy via various simulations.

  14. Robust Design of LCL-Filters for Active Damping in Grid Converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Grid converters require a simple inductor or an LCL-filter to limit the current ripples. The LCL-filter is nowadays the preferred solution as it allows lower inductance values. In order to solve the stability concerns, active damping is preferred to passive damping since it does not use dissipative...... elements. However, large variations in the grid inductance and resonances arising from parallel converters may still compromise the system stability. This calls for a robust design of LCL-filters with active damping. This paper proposes a design flow with little iteration for two well-known methods, namely...... lead-lag network and current capacitor feedback. The proposed formulas for the resonance frequency, grid and converter inductance ratio, and capacitance of the LCL-filter allow calculating all the LCL-filter parameters. An estimation for the achieved Total Harmonic Distortion (THD) of the grid current...

  15. How to implement and apply robust design: insights from industrial practice

    DEFF Research Database (Denmark)

    Krogstie, Lars; Ebro, Martin; Howard, Thomas J.

    2015-01-01

    . Empirical findings are based on a series of semi-structured interviews with four major engineering companies in Northern Europe. We present why they were motivated to use RD, how it has been implemented and currently applied. Success factors for solving implementation challenges are also presented......Robust design (RD) is a framework for designing products and processes which perform consistently in spite of variations. Although it is well described in literature, research shows limited industrial application. The purpose of this paper is to describe and discuss industrial best-practice on RD...... have all been successful in using RD but with quite different approaches, depending on, for example, their organisational culture, and (3) Not just management commitment, but also true management competencies in RD are essential for a successful implementation. The paper is aimed at professionals...

  16. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  17. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  18. A robust PSSs design using PSO in a multi-machine environment

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Safari, A.; Aghmasheh, R. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-04-15

    In this paper, multi-objective design of multi-machine power system stabilizers (PSSs) using particle swarm optimization (PSO) is proposed. The potential of the proposed approach for optimal setting of the widely used conventional lead-lag PSSs has been investigated. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electromechanical modes of all machines to a prescribed zone in the s-plane. The PSSs parameters tuning problem is converted to an optimization problem with the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes, which is solved by a PSO algorithm which has a strong ability to find the most optimistic results. The robustness of the proposed PSO-based PSSs (PSOPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed PSOPSS are compared with the genetic algorithm based tuned PSS and classical PSSs through eigenvalue analysis, nonlinear time-domain simulation and some performance indices to illustrate its robust performance for a wide range of loading conditions.

  19. The Robust Learning Model with a Spiral Curriculum: Implications for the Educational Effectiveness of Online Master Degree Programs

    Science.gov (United States)

    Neumann, Yoram; Neumann, Edith; Lewis, Shelia

    2017-01-01

    This study integrated the Spiral Curriculum approach into the Robust Learning Model as part of a continuous improvement process that was designed to improve educational effectiveness and then assessed the differences between the initial and integrated models as well as the predictability of the first course in the integrated learning model on a…

  20. Application of polynomial control to design a robust oscillation-damping controller in a multimachine power system.

    Science.gov (United States)

    Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj

    2015-11-01

    This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    Science.gov (United States)

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  2. Design of Robust Pulses to Insufficient Synchronization for OFDM/OQAM Systems in Doubly Dispersive Channels

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2015-01-01

    Full Text Available This paper presents a pulse shaping method robust to insufficient synchronization in orthogonal frequency division multiplexing with offset quadrature amplitude modulation (OFDM/OQAM systems over doubly dispersive (DD channels. The proposed pulse is designed as a linear combination of several well localized Hermite functions. The coefficients optimization problem is modeled as a nonconvex constrained fractional programming problem based on the signal-to-interference ratio (SIR maximization criterion. An efficient iterative algorithm is applied to simplify the problem to a series of quadratically constrained quadratic program (QCQP problems which can be solved by semidefinite relaxation (SDR method. Simulation results show that the proposed pulse is superior to traditional pulses with respect to SIR performance over DD channels in the presence of carrier frequency offset (CFO and timing offset (TO.

  3. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  4. Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation

    Science.gov (United States)

    Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy

    2001-01-01

    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.

  5. Uncertain Dynamics, Correlation Effects, and Robust Investment Decisions

    DEFF Research Database (Denmark)

    Flor, Christian Riis; Hesel, Søren

    2015-01-01

    We analyze a firm's investment problem when the dynamics of project value and investment cost are uncertain. We provide an explicit solution using a robust method for an ambiguity averse firm taking this into account. Ambiguity aversion regarding a common risk factor impacts differently than...... ambiguity aversion regarding investment cost residual risk. Correlation between project value and investment cost matters; ambiguity aversion regarding common risk can decrease the investment probability only if correlation is positive. Ambiguity aversion regarding residual risk always increases...... the investment probability. When only project value is risky, volatility can monotonically decrease the investment threshold; this does not hold with the multiple prior method....

  6. WGC Based Robust and Gain Scheduling PI Controller Design for Condensing Boilers

    Directory of Open Access Journals (Sweden)

    Cem Onat

    2014-05-01

    Full Text Available This paper addresses the water temperature PI control in condensing domestic boilers. The main challenge of this process under the controller design perspective is the fact that the dynamics of condensing boilers are strongly affected by the demanded water flow rate. First, a robust PI controller based on weighted geometrical center method is designed that stabilizes and achieves good performance for closed-loop system for a wide range of the water flow rate. Then, it is shown that if the water flow rate information is used to update the controller gains, through a technique known as gain scheduled control, the performance can be significantly improved. Important characteristics of these PI design approaches are that the resulting parameters are calculated numerically without using any graphical method or iterative optimization process and that it guarantees the stability of the closed-loop. Significantly, simulation results have demonstrated that the proposed tuning techniques can perform better for set point changes and load disturbance than other available methods in the literature.

  7. Robust Structural Analysis and Design of Distributed Control Systems to Prevent Zero Dynamics Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Xiaofei [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-12-12

    We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochastic systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.

  8. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  9. Temperature Switch PCR (TSP: Robust assay design for reliable amplification and genotyping of SNPs

    Directory of Open Access Journals (Sweden)

    Mather Diane E

    2009-12-01

    Full Text Available Abstract Background Many research and diagnostic applications rely upon the assay of individual single nucleotide polymorphisms (SNPs. Thus, methods to improve the speed and efficiency for single-marker SNP genotyping are highly desirable. Here, we describe the method of temperature-switch PCR (TSP, a biphasic four-primer PCR system with a universal primer design that permits amplification of the target locus in the first phase of thermal cycling before switching to the detection of the alleles. TSP can simplify assay design for a range of commonly used single-marker SNP genotyping methods, and reduce the requirement for individual assay optimization and operator expertise in the deployment of SNP assays. Results We demonstrate the utility of TSP for the rapid construction of robust and convenient endpoint SNP genotyping assays based on allele-specific PCR and high resolution melt analysis by generating a total of 11,232 data points. The TSP assays were performed under standardised reaction conditions, requiring minimal optimization of individual assays. High genotyping accuracy was verified by 100% concordance of TSP genotypes in a blinded study with an independent genotyping method. Conclusion Theoretically, TSP can be directly incorporated into the design of assays for most current single-marker SNP genotyping methods. TSP provides several technological advances for single-marker SNP genotyping including simplified assay design and development, increased assay specificity and genotyping accuracy, and opportunities for assay automation. By reducing the requirement for operator expertise, TSP provides opportunities to deploy a wider range of single-marker SNP genotyping methods in the laboratory. TSP has broad applications and can be deployed in any animal and plant species.

  10. Using a Robust Design Approach to Optimize Chair Set-up in Wheelchair Sport

    Directory of Open Access Journals (Sweden)

    David S. Haydon

    2018-02-01

    Full Text Available Optimisation of wheelchairs for court sports is currently a difficult and time-consuming process due to the broad range of impairments across athletes, difficulties in monitoring on-court performance, and the trade-off set-up that parameters have on key performance variables. A robust design approach to this problem can potentially reduce the amount of testing required, and therefore allow for individual on-court assessments. This study used orthogonal design with four set-up factors (seat height, depth, and angle, as well as tyre pressure at three levels (current, decreased, and increased for three elite wheelchair rugby players. Each player performed two maximal effort sprints from a stationary position in nine different set-ups, with this allowing for detailed analysis of each factor and level. Whilst statistical significance is difficult to obtain due to the small sample size, meaningful difference results aligning with previous research findings were identified and provide support for the use of this approach.

  11. A robust optimization model for green regional logistics network design with uncertainty in future logistics demand

    Directory of Open Access Journals (Sweden)

    Dezhi Zhang

    2015-12-01

    Full Text Available This article proposes a new model to address the design problem of a sustainable regional logistics network with uncertainty in future logistics demand. In the proposed model, the future logistics demand is assumed to be a random variable with a given probability distribution. A set of chance constraints with regard to logistics service capacity and environmental impacts is incorporated to consider the sustainability of logistics network design. The proposed model is formulated as a two-stage robust optimization problem. The first-stage problem before the realization of future logistics demand aims to minimize a risk-averse objective by determining the optimal location and size of logistics parks with CO2 emission taxes consideration. The second stage after the uncertain logistics demand has been determined is a scenario-based stochastic logistics service route choices equilibrium problem. A heuristic solution algorithm, which is a combination of penalty function method, genetic algorithm, and Gauss–Seidel decomposition approach, is developed to solve the proposed model. An illustrative example is given to show the application of the proposed model and solution algorithm. The findings show that total social welfare of the logistics system depends very much on the level of uncertainty in future logistics demand, capital budget for logistics parks, and confidence levels of the chance constraints.

  12. Robust Estimation and Moment Selection in Dynamic Fixed-effects Panel Data Models

    NARCIS (Netherlands)

    Cizek, P.; Aquaro, M.

    2015-01-01

    This paper extends an existing outlier-robust estimator of linear dynamic panel data models with fixed effects, which is based on the median ratio of two consecutive pairs of first-differenced data. To improve its precision and robust properties, a general procedure based on many pairwise

  13. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  14. Shock ignition: a brief overview and progress in the design of robust targets

    International Nuclear Information System (INIS)

    Atzeni, S; Marocchino, A; Schiavi, A

    2015-01-01

    Shock ignition is a laser direct-drive inertial confinement fusion (ICF) scheme in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF, reducing the threats due to Rayleigh–Taylor instability. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. This paper starts with a brief overview of the theoretical studies, target design and experimental results on shock ignition. The second part of the paper illustrates original work aiming at the design of robust targets and computation of the relevant gain curves. Following Chang et al (2010 Phys. Rev. Lett. 104 135002) a safety factor for high gain, ITF* (analogous to the ignition threshold factor ITF introduced by Clark et al (2008 Phys. Plasmas 15 056305)), is evaluated by means of parametric 1D simulations with artificially reduced reactivity. SI designs scaled as in Atzeni et al (2013 New J. Phys. 15 045004) are found to have nearly the same ITF*. For a given target, such ITF* increases with implosion velocity and laser spike power. A gain curve with a prescribed ITF* can then be simply generated by upscaling a reference target with that value of ITF*. An interesting option is scaling in size by reducing the implosion velocity to keep the ratio of implosion velocity to self-ignition velocity constant. At a given total laser energy, targets with higher ITF* are driven to higher implosion velocity and achieve a somewhat lower gain. However, a 1D gain higher than 100 is achieved at an (incident) energy below 1 MJ, an implosion velocity below 300 km s −1 and a peak incident power below 400 TW. 2D simulations of mispositioned targets show that targets with a higher ITF* indeed tolerate larger displacements. (paper)

  15. Design of Active Queue Management for Robust Control on Access Router for Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Åhlund Christer

    2011-01-01

    Full Text Available The Internet architecture is a packet switching technology that allows dynamic sharing of bandwidth among different flows with in an IP network. Packets are stored and forwarded from one node to the next until reaching their destination. Major issues in this integration are congestion control and how to meet different quality of service requirements associated with various services. In other words streaming media quality degrades with increased packet delay and jitter caused by network congestion. To mitigate the impact of network congestion, various techniques have been used to improve multimedia quality and one of those techniques is Active Queue Management (AQM. Access routers require a buffer to hold packets during times of congestion. A large buffer can absorb the bursty arrivals, and this tends to increase the link utilizations but results in higher queuing delays. Traffic burstiness has a considerable negative impact on network performance. AQM is now considered an effective congestion control mechanism for enhancing transport protocol performance over wireless links. In order to have good link utilization, it is necessary for queues to adapt to varying traffic loads. This paper considers a particular scheme which is called Adaptive AQM (AAQM and studies its performance in the presence of feedback delays and its ability to maintain a small queue length as well as its robustness in the presence of traffic burstiness. The paper also presents a method based on the well-known Markov Modulated Poisson Process (MPP to capture traffic burstiness and buffer occupancy. To demonstrate the generality of the presented method, an analytic model is described and verified by extensive simulations of different adaptive AQM algorithms. The analysis and simulations show that AAQM outperforms the other AQMs with respect to responsiveness and robustness.

  16. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    Science.gov (United States)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  17. Robustness of crossover trials against subject drop-out - Examples of perpetually connected designs.

    Science.gov (United States)

    Godolphin, P J; Godolphin, E J

    2017-01-01

    When performing a repeated measures experiment, such as a clinical trial, there is a risk of subject drop-out during the experiment. If one or more subjects leave the study prematurely, a situation could arise where the eventual design is disconnected, implying that very few treatment contrasts for both direct effects and carryover effects are estimable. This paper aims to identify experimental conditions where this problem with the eventual design can be avoided. It is shown that in the class of uniformly balanced repeated measurement designs consisting of two or more Latin squares, there are planned designs with the following useful property. Provided that all subjects have completed the first two periods of study, such a design will not be replaced by a disconnected eventual design due to drop-out, irrespective of the type of drop-out behaviour that may occur. Designs with this property are referred to as perpetually connected. These experimental conditions are identified and examined in the paper and an example of at least one perpetually connected uniformly balanced repeated measurement design is given in each case. The results improve upon previous contributions in the literature that have been confined largely to cases in which drop-out occurs only in the final periods of study.

  18. SU-E-T-266: Proton PBS Plan Design and Robustness Evaluation for Head and Neck Cancers

    International Nuclear Information System (INIS)

    Liang, X; Tang, S; Zhai, H; Kirk, M; Kalbasi, A; Lin, A; Ahn, P; Tochner, Z; McDonough, J; Both, S

    2014-01-01

    Purpose: To describe a newly designed proton pencil beam scanning (PBS) planning technique for radiotherapy of patients with bilateral oropharyngeal cancer, and to assess plan robustness. Methods: We treated 10 patients with proton PBS plans using 2 posterior oblique field (2F PBS) comprised of 80% single-field uniform dose (SFUD) and 20% intensity-modulated proton therapy (IMPT). All patients underwent weekly CT scans for verification. Using dosimetric indicators for both targets and organs at risk (OARs), we quantitatively compared initial plans and verification plans using student t-tests. We created a second proton PBS plan for each patient using 2 posterior oblique plus 1 anterior field comprised of 100% SFUD (3F PBS). We assessed plan robustness for both proton plan groups, as well as a photon volumetric modulated arc therapy (VMAT) plan group by comparing initial and verification plans. Results: The 2F PBS plans were not robust in target coverage. D98% for clinical target volume (CTV) degraded from 100% to 96% on average, with maximum change Δ D98% of −24%. Two patients were moved to photon VMAT treatment due to insufficient CTV coverage on verification plans. Plan robustness was especially weak in the low-anterior neck. The 3F PBS plans, however, demonstrated robust target coverage, which was comparable to the VMAT photon plan group. Doses to oral cavity were lower in the Proton PBS plans compared to photon VMAT plans due to no lower exit dose to the oral cavity. Conclusion: Proton PBS plans using 2 posterior oblique fields were not robust for CTV coverage, due to variable positioning of redundant soft tissue in the posterior neck. We designed 3-field proton PBS plans using an anterior field to avoid long heterogeneous paths in the low neck. These 3-field proton PBS plans had significantly improved plan robustness, and the robustness is comparable to VMAT photon plans

  19. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  20. The Study of an Optimal Robust Design and Adjustable Ordering Strategies in the HSCM.

    Science.gov (United States)

    Liao, Hung-Chang; Chen, Yan-Kwang; Wang, Ya-huei

    2015-01-01

    The purpose of this study was to establish a hospital supply chain management (HSCM) model in which three kinds of drugs in the same class and with the same indications were used in creating an optimal robust design and adjustable ordering strategies to deal with a drug shortage. The main assumption was that although each doctor has his/her own prescription pattern, when there is a shortage of a particular drug, the doctor may choose a similar drug with the same indications as a replacement. Four steps were used to construct and analyze the HSCM model. The computation technology used included a simulation, a neural network (NN), and a genetic algorithm (GA). The mathematical methods of the simulation and the NN were used to construct a relationship between the factor levels and performance, while the GA was used to obtain the optimal combination of factor levels from the NN. A sensitivity analysis was also used to assess the change in the optimal factor levels. Adjustable ordering strategies were also developed to prevent drug shortages.

  1. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    Science.gov (United States)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  2. A less field-intensive robust design for estimating demographic parameters with Mark-resight data

    Science.gov (United States)

    McClintock, B.T.; White, Gary C.

    2009-01-01

    The robust design has become popular among animal ecologists as a means for estimating population abundance and related demographic parameters with mark-recapture data. However, two drawbacks of traditional mark-recapture are financial cost and repeated disturbance to animals. Mark-resight methodology may in many circumstances be a less expensive and less invasive alternative to mark-recapture, but the models developed to date for these data have overwhelmingly concentrated only on the estimation of abundance. Here we introduce a mark-resight model analogous to that used in mark-recapture for the simultaneous estimation of abundance, apparent survival, and transition probabilities between observable and unobservable states. The model may be implemented using standard statistical computing software, but it has also been incorporated into the freeware package Program MARK. We illustrate the use of our model with mainland New Zealand Robin (Petroica australis) data collected to ascertain whether this methodology may be a reliable alternative for monitoring endangered populations of a closely related species inhabiting the Chatham Islands. We found this method to be a viable alternative to traditional mark-recapture when cost or disturbance to species is of particular concern in long-term population monitoring programs. ?? 2009 by the Ecological Society of America.

  3. Formulation and demonstration of a robust mean variance optimization approach for concurrent airline network and aircraft design

    Science.gov (United States)

    Davendralingam, Navindran

    Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is

  4. TCSC robust damping controller design based on particle swarm optimization for a multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-10-15

    In this paper, a new approach based on the particle swarm optimization (PSO) technique is proposed to tune the parameters of the thyristor controlled series capacitor (TCSC) power oscillation damping controller. The design problem of the damping controller is converted to an optimization problem with the time-domain-based objective function which is solved by a PSO technique which has a strong ability to find the most optimistic results. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The performance of the newly designed controller is evaluated in a four-machine power system subjected to the different types of disturbances in comparison with the genetic algorithm based damping controller. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based TCSC damping controller using the proposed fitness function has an excellent capability in damping power system inter-area oscillations and enhances greatly the dynamic stability of the power systems. Moreover, it is superior to the genetic algorithm based damping controller.

  5. An effective method to improve the robustness of small-world networks under attack

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You

    2014-01-01

    In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario. (interdisciplinary physics and related areas of science and technology)

  6. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

    Science.gov (United States)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

    2017-02-01

    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  7. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form....... By regarding the nominal control system as the desired model, an augmented control system is constructed through the model-matching formulation, such that the current robust control techniques can be usedto synthesize these dynamical modules. One extension of this method with respect to the performance...... recovery besides the functionality recovery is also discussed under this framework. Comparing with the conventional control mixer method, the proposed method considers the recon gured system's stability, performance and robustness simultaneously. Finally, the proposed method is illustrated by a case study...

  8. DETERMINING A ROBUST D-OPTIMAL DESIGN FOR TESTING FOR DEPARTURE FROM ADDITIVITY IN A MIXTURE OF FOUR PFAAS

    Science.gov (United States)

    Our objective was to determine an optimal experimental design for a mixture of perfluoroalkyl acids (PFAAs) that is robust to the assumption of additivity. Of particular focus to this research project is whether an environmentally relevant mixture of four PFAAs with long half-liv...

  9. Determining a Robust D-Optimal Design for Testing for Departure from Additivity in a Mixture of Four Perfluoroalkyl Acids.

    Science.gov (United States)

    Our objective is to determine an optimal experimental design for a mixture of perfluoroalkyl acids (PFAAs) that is robust to the assumption of additivity. PFAAs are widely used in consumer products and industrial applications. The presence and persistence of PFAAs, especially in ...

  10. Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application

    Energy Technology Data Exchange (ETDEWEB)

    Salazar A, Daniel E. [Division de Computacion Evolutiva (CEANI), Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Universidad de Las Palmas de Gran Canaria. Canary Islands (Spain)]. E-mail: danielsalazaraponte@gmail.com; Rocco S, Claudio M. [Universidad Central de Venezuela, Facultad de Ingenieria, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve

    2007-06-15

    This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue

  11. Wind turbine inverter robust loop-shaping control subject to grid interaction effects

    DEFF Research Database (Denmark)

    Gryning, Mikkel Peter Sidoroff; Wu, Qiuwei; Blanke, Mogens

    2015-01-01

    the grid and the number of wind turbines connected. Power converter based turbines inject harmonic currents, which are attenuated by passive filters. A robust high order active filter controller is proposed to complement the passive filtering. The H∞ design of the control loop enables desired tracking......An H∞ robust control of wind turbine inverters employing an LCL filter is proposed in this paper. The controller dynamics are designed for selective harmonic filtering in an offshore transmission network subject to parameter perturbations. Parameter uncertainty in the network originates from...

  12. The Policy Design Effect

    DEFF Research Database (Denmark)

    Hedegaard, Troels Fage

    2014-01-01

    attitudes have argued that this ‘policy design effect’ can be explained by a combination of self-interest patterns, public perceptions of the recipient group and whether eligibility under the policy is perceived as fair or arbitrary.The explanations, however, lack micro-level theory and testing as to why...... the design of a policy affects individual and public support. This article seeks to explain this policy design effect by theoretically outlining and testing how being proximate to recipients of a social benefit affects attitudes towards the benefit. A survey of attitudes towards spending on five social...

  13. On the Robustness of Anchoring Effects in WTP and WTA Experiments

    OpenAIRE

    Drew Fudenberg; David K Levine; Zacharias Maniadis

    2010-01-01

    We reexamine the effects of the anchoring manipulation of Ariely, Loewenstein, and Prelec (2003) on the evaluation of common market goods and find very weak anchoring effects. We perform the same manipulation on the evaluation of binary lotteries, and find no anchoring effects at all. This suggests limits on the robustness of anchoring effects. (JEL C91, D12, D44)

  14. A robust stochastic approach for design optimization of air cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Doodman, A.R.; Fesanghary, M.; Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology, 424-Hafez Avenue, 15875-4413 Tehran (Iran)

    2009-07-15

    This study investigates the use of global sensitivity analysis (GSA) and harmony search (HS) algorithm for design optimization of air cooled heat exchangers (ACHEs) from the economic viewpoint. In order to reduce the size of the optimization problem, GSA is performed to examine the effect of the design parameters and to identify the non-influential parameters. Then HS is applied to optimize influential parameters. To demonstrate the ability of the HS algorithm a case study is considered and for validation purpose, genetic algorithm (GA) is also applied to this case study. Results reveal that the HS algorithm converges to optimum solution with higher accuracy in comparison with GA. (author)

  15. A robust stochastic approach for design optimization of air cooled heat exchangers

    International Nuclear Information System (INIS)

    Doodman, A.R.; Fesanghary, M.; Hosseini, R.

    2009-01-01

    This study investigates the use of global sensitivity analysis (GSA) and harmony search (HS) algorithm for design optimization of air cooled heat exchangers (ACHEs) from the economic viewpoint. In order to reduce the size of the optimization problem, GSA is performed to examine the effect of the design parameters and to identify the non-influential parameters. Then HS is applied to optimize influential parameters. To demonstrate the ability of the HS algorithm a case study is considered and for validation purpose, genetic algorithm (GA) is also applied to this case study. Results reveal that the HS algorithm converges to optimum solution with higher accuracy in comparison with GA

  16. Managing Uncertainty in Water Infrastructure Design Using Info-gap Robustness

    Science.gov (United States)

    Irias, X.; Cicala, D.

    2013-12-01

    Info-gap theory, a tool for managing deep uncertainty, can be of tremendous value for design of water systems in areas of high seismic risk. Maintaining reliable water service in those areas is subject to significant uncertainties including uncertainty of seismic loading, unknown seismic performance of infrastructure, uncertain costs of innovative seismic-resistant construction, unknown costs to repair seismic damage, unknown societal impacts from downtime, and more. Practically every major earthquake that strikes a population center reveals additional knowledge gaps. In situations of such deep uncertainty, info-gap can offer advantages over traditional approaches, whether deterministic approaches that use empirical safety factors to address the uncertainties involved, or probabilistic methods that attempt to characterize various stochastic properties and target a compromise between cost and reliability. The reason is that in situations of deep uncertainty, it may not be clear what safety factor would be reasonable, or even if any safety factor is sufficient to address the uncertainties, and we may lack data to characterize the situation probabilistically. Info-gap is a tool that recognizes up front that our best projection of the future may be wrong. Thus, rather than seeking a solution that is optimal for that projection, info-gap seeks a solution that works reasonably well for all plausible conditions. In other words, info-gap seeks solutions that are robust in the face of uncertainty. Info-gap has been used successfully across a wide range of disciplines including climate change science, project management, and structural design. EBMUD is currently using info-gap to help it gain insight into possible solutions for providing reliable water service to an island community within its service area. The island, containing about 75,000 customers, is particularly vulnerable to water supply disruption from earthquakes, since it has negligible water storage and is

  17. Robust Guaranteed Cost Observer Design for Singular Markovian Jump Time-Delay Systems with Generally Incomplete Transition Probability

    Directory of Open Access Journals (Sweden)

    Yanbo Li

    2014-01-01

    Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.

  18. A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization

    International Nuclear Information System (INIS)

    Pourgholi Mahdi; Majd Vahid Johari

    2011-01-01

    In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported. (general)

  19. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Diego [University of São Paulo, Polytechnic School, LAC -PTC, São Paulo (Brazil); Balthazar, José M. [São Paulo State University - Rio Claro Campus, Rio Claro (Brazil); Reis, Célia A. dos [São Paulo State University - Bauru Campus, Bauru (Brazil); Bueno, Átila M.; Diniz, Ivando S. [São Paulo State University - Sorocaba Campus, Sorocaba (Brazil); Rosa, Suelia de S. R. F. [University of Brasilia, Brasilia (Brazil)

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  20. Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study.

    Science.gov (United States)

    Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman

    2017-02-01

    Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.

  1. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  2. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  3. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  4. Robust Sequential Circuits Design Technique for Low Voltage and High Noise Scenarios

    Directory of Open Access Journals (Sweden)

    Garcia-Leyva Lancelot

    2016-01-01

    In this paper we introduce an innovative input and output data redundancy principle for sequential block circuits, the responsible to keep the state of the system, showing its efficiency in front of other robust technique approaches. The methodology is totally different from the Von Neumann approaches, because element are not replicated N times, but instead, they check the coherence of redundant input data no allowing data propagation in case of discrepancy. This mechanism does not require voting devices.

  5. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2010-01-01

    Full Text Available Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  6. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  7. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization

    Science.gov (United States)

    Verly, Pierre G.

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  8. Investigating risk and robustness measures for supply chain network design under demand uncertainty

    DEFF Research Database (Denmark)

    Govindan, Kannan; Fattahi, Mohammad

    2017-01-01

    to obtain risk-averse and robust solutions, respectively. Computational results are presented on a real-life case study to illustrate the applicability of the proposed approaches. To compare these different decision-making situations, a simulation approach is used. Furthermore, by several test problems......-variable demands. To deal with the stochastic demands, a Latin Hypercube Sampling method is applied to generate a fan of scenarios and then, a backward scenario reduction technique reduces the number of scenarios. Weighted mean-risk objectives by using different risk measures and minimax objective are examined...

  9. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  10. An Effective, Robust And Parallel Implementation Of An Interior Point Algorithm For Limit State Optimization

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2013-01-01

    The artide describes a robust and effective implementation of the interior point optimization algorithm. The adopted method includes a precalculation step, which reduces the number of variables by fulfilling the equilibrium equations a priori. This work presents an improved implementation of the ...

  11. An effective, robust and parallel implementation of an interior point algorithm for limit state optimization

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Frier, Christian

    2014-01-01

    A robust and effective finite element based implementation of lower bound limit state analysis applying an interior point formulation is presented in this paper. The lower bound formulation results in a convex optimization problem consisting of a number of linear constraints from the equilibrium...

  12. Robust estimation and moment selection in dynamic fixed-effects panel data models

    NARCIS (Netherlands)

    Cizek, Pavel; Aquaro, Michele

    Considering linear dynamic panel data models with fixed effects, existing outlier–robust estimators based on the median ratio of two consecutive pairs of first-differenced data are extended to higher-order differencing. The estimation procedure is thus based on many pairwise differences and their

  13. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  14. Design of Robust Supertwisting Algorithm Based Second-Order Sliding Mode Controller for Nonlinear Systems with Both Matched and Unmatched Uncertainty

    Directory of Open Access Journals (Sweden)

    Marwa Jouini

    2017-01-01

    Full Text Available This paper proposes a robust supertwisting algorithm (STA design for nonlinear systems where both matched and unmatched uncertainties are considered. The main contributions reside primarily to conceive a novel structure of STA, in order to ensure the desired performance of the uncertain nonlinear system. The modified algorithm is formed of double closed-loop feedback, in which two linear terms are added to the classical STA. In addition, an integral sliding mode switching surface is proposed to construct the attractiveness and reachability of sliding mode. Sufficient conditions are derived to guarantee the exact differentiation stability in finite time based on Lyapunov function theory. Finally, a comparative study for a variable-length pendulum system illustrates the robustness and the effectiveness of the proposed approach compared to other STA schemes.

  15. Mechanically and electrically robust metal-mask design for organic CMOS circuits

    Science.gov (United States)

    Shintani, Michihiro; Qin, Zhaoxing; Kuribara, Kazunori; Ogasahara, Yasuhiro; Hiromoto, Masayuki; Sato, Takashi

    2018-04-01

    The design of metal masks for fabricating organic CMOS circuits requires the consideration of not only the electrical property of the circuits, but also the mechanical strength of the masks. In this paper, we propose a new design flow for metal masks that realizes coanalysis of the mechanical and electrical properties and enables design exploration considering the trade-off between the two properties. As a case study, we apply a “stitching technique” to the mask design of a ring oscillator and explore the best design. With this technique, mask patterns are divided into separate parts using multiple mask layers to improve the mechanical strength at the cost of high resistance of the vias. By a numerical experiment, the design trade-off of the stitching technique is quantitatively analyzed, and it is demonstrated that the proposed flow is useful for the exploration of the designs of metal masks.

  16. Feedback control linear, nonlinear and robust techniques and design with industrial applications

    CERN Document Server

    Dodds, Stephen J

    2015-01-01

    This book develops the understanding and skills needed to be able to tackle original control problems. The general approach to a given control problem is to try the simplest tentative solution first and, when this is insufficient, to explain why and use a more sophisticated alternative to remedy the deficiency and achieve satisfactory performance. This pattern of working gives readers a full understanding of different controllers and teaches them to make an informed choice between traditional controllers and more advanced modern alternatives in meeting the needs of a particular plant. Attention is focused on the time domain, covering model-based linear and nonlinear forms of control together with robust control based on sliding modes and the use of state observers such as disturbance estimation. Feedback Control is self-contained, paying much attention to explanations of underlying concepts, with detailed mathematical derivations being employed where necessary. Ample use is made of diagrams to aid these conce...

  17. Robust optimization of the output voltage of nanogenerators by statistical design of experiments

    KAUST Repository

    Song, Jinhui; Xie, Huizhi; Wu, Wenzhuo; Roshan Joseph, V.; Jeff Wu, C. F.; Wang, Zhong Lin

    2010-01-01

    Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  18. Experimental Investigation on Adaptive Robust Controller Designs Applied to Constrained Manipulators

    Directory of Open Access Journals (Sweden)

    Marco H. Terra

    2013-04-01

    Full Text Available In this paper, two interlaced studies are presented. The first is directed to the design and construction of a dynamic 3D force/moment sensor. The device is applied to provide a feedback signal of forces and moments exerted by the robotic end-effector. This development has become an alternative solution to the existing multi-axis load cell based on static force and moment sensors. The second one shows an experimental investigation on the performance of four different adaptive nonlinear H∞ control methods applied to a constrained manipulator subject to uncertainties in the model and external disturbances. Coordinated position and force control is evaluated. Adaptive procedures are based on neural networks and fuzzy systems applied in two different modeling strategies. The first modeling strategy requires a well-known nominal model for the robot, so that the intelligent systems are applied only to estimate the effects of uncertainties, unmodeled dynamics and external disturbances. The second strategy considers that the robot model is completely unknown and, therefore, intelligent systems are used to estimate these dynamics. A comparative study is conducted based on experimental implementations performed with an actual planar manipulator and with the dynamic force sensor developed for this purpose.

  19. Robust optimization of the output voltage of nanogenerators by statistical design of experiments

    KAUST Repository

    Song, Jinhui

    2010-09-01

    Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  20. Robust and Effective Component-based Banknote Recognition by SURF Features.

    Science.gov (United States)

    Hasanuzzaman, Faiz M; Yang, Xiaodong; Tian, YingLi

    2011-01-01

    Camera-based computer vision technology is able to assist visually impaired people to automatically recognize banknotes. A good banknote recognition algorithm for blind or visually impaired people should have the following features: 1) 100% accuracy, and 2) robustness to various conditions in different environments and occlusions. Most existing algorithms of banknote recognition are limited to work for restricted conditions. In this paper we propose a component-based framework for banknote recognition by using Speeded Up Robust Features (SURF). The component-based framework is effective in collecting more class-specific information and robust in dealing with partial occlusion and viewpoint changes. Furthermore, the evaluation of SURF demonstrates its effectiveness in handling background noise, image rotation, scale, and illumination changes. To authenticate the robustness and generalizability of the proposed approach, we have collected a large dataset of banknotes from a variety of conditions including occlusion, cluttered background, rotation, and changes of illumination, scaling, and viewpoints. The proposed algorithm achieves 100% recognition rate on our challenging dataset.

  1. A traditional and a less-invasive robust design: choices in optimizing effort allocation for seabird population studies

    Science.gov (United States)

    Converse, S.J.; Kendall, W.L.; Doherty, P.F.; Naughton, M.B.; Hines, J.E.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    For many animal populations, one or more life stages are not accessible to sampling, and therefore an unobservable state is created. For colonially-breeding populations, this unobservable state could represent the subset of adult breeders that have foregone breeding in a given year. This situation applies to many seabird populations, notably albatrosses, where skipped breeders are either absent from the colony, or are present but difficult to capture or correctly assign to breeding state. Kendall et al. have proposed design strategies for investigations of seabird demography where such temporary emigration occurs, suggesting the use of the robust design to permit the estimation of time-dependent parameters and to increase the precision of estimates from multi-state models. A traditional robust design, where animals are subject to capture multiple times in a sampling season, is feasible in many cases. However, due to concerns that multiple captures per season could cause undue disturbance to animals, Kendall et al. developed a less-invasive robust design (LIRD), where initial captures are followed by an assessment of the ratio of marked-to-unmarked birds in the population or sampled plot. This approach has recently been applied in the Northwestern Hawaiian Islands to populations of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. In this paper, we outline the LIRD and its application to seabird population studies. We then describe an approach to determining optimal allocation of sampling effort in which we consider a non-robust design option (nRD), and variations of both the traditional robust design (RD), and the LIRD. Variations we considered included the number of secondary sampling occasions for the RD and the amount of total effort allocated to the marked-to-unmarked ratio assessment for the LIRD. We used simulations, informed by early data from the Hawaiian study, to address optimal study design for our example cases. We found that

  2. Development and validation of simple RP-HPLC-PDA analytical protocol for zileuton assisted with Design of Experiments for robustness determination

    Directory of Open Access Journals (Sweden)

    Saurabh B. Ganorkar

    2017-02-01

    Full Text Available A simple, rapid, sensitive, robust, stability-indicating RP-HPLC-PDA analytical protocol was developed and validated for the analysis of zileuton racemate in bulk and in tablet formulation. Development of method and resolution of degradation products from forced; hydrolytic (acidic, basic, neutral, oxidative, photolytic (acidic, basic, neutral, solid state and thermal (dry heat degradation was achieved on a LC – GC Qualisil BDS C18 column (250 mm × 4.6 mm × 5 μm by isocratic mode at ambient temperature, employing a mobile phase methanol and (0.2%, v/v orthophosphoric acid in ratio of (80:20, v/v at a flow rate of 1.0 mL min−1 and detection at 260 nm. ‘Design of Experiments’ (DOE employing ‘Central Composite Design’ (CCD and ‘Response Surface Methodology’ (RSM were applied as an advancement to traditional ‘One Variable at Time’ (OVAT approach to evaluate the effects of variations in selected factors (methanol content, flow rate, concentration of orthophosphoric acid as graphical interpretation for robustness and statistical interpretation was achieved with Multiple Linear Regression (MLR and ANOVA. The method succeeded over the validation parameters: linearity, precision, accuracy, limit of detection and limit of quantitation, and robustness. The method was applied effectively for analysis of in-house zileuton tablets.

  3. A Robust Process Analytical Technology (PAT) System Design for Crystallization Processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan; Gernaey, Krist

    2013-01-01

    A generic computer-aided framework for systematic design of a process monitoring and control system for crystallization processes has been developed to study various aspects of crystallization operations. The design framework contains a generic multidimensional modelling framework, a tool for gen...

  4. The Contradiction Index (CI): A New Metric Combining System Complexity and Robustness for Early Design Stages

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Howard, Thomas J.

    2015-01-01

    For complex and integrated products, companies experience difficulties in achieving a satisfactory and consistent functional performance. When a design has “contradicting” parameter/property requirements it often requires fine tuning with numerous design iterations and complex optimizations to fi...

  5. A Robust Pre-Filter and Power Loading Design for Time Reversal UWB Systems over Time-Correlated MIMO Channels

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2014-04-01

    Full Text Available Conventional Time Reversal (TR technique suffers from performance degradation in time varying Multiple-Input Multiple-Output Ultra-Wideband (MIMO-UWB systems due to outdating Channel State Information (CSI over time progressions. That is, the outdated CSI degrades the TR performance significantly in time varying channels. The correlation property of time correlated channels can improve the TR performance against other traditional TR designs. Based on this property, at first, we propose a robust TR-MIMO-UWB system design for a time-varying channel in which the CSI is updated only at the beginning of each block of data where the CSI is assumed to be known. As the channel varies over time, pre-processor blindly pre-equalizes the channel during the next symbol time by using the correlation property. Then, a novel recursive power allocation strategy is derived over time-correlated time-varying TR-MIMO-UWB channels. We show that the proposed power loading technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI with robust pre-filter. The proposed algorithms lead to a cost-efficient CSI updating procedure for the TR optimization. Simulation results are provided to confirm the new design performance against traditional method.

  6. Service Quality Robust Design by the Integration of Taguchi Experiments and SERVQUAL Approach in a Travel Agency

    Directory of Open Access Journals (Sweden)

    nassibeh janatyan

    2012-02-01

    Full Text Available The main purpose of this research is to address how robust design of service quality dimensions can be obtained. Service Quality Robust Design has been conducted by the integration of Taguchi Design of Experiments and SERVQUAL approach in Iran Travel Agency. Five basic dimensions of service quality, i.e. reliability, responsiveness, assurance, empathy, tangibles and price have been assumed as control factors. Response factor has been defined as two alternatives i the sum of customer expectations, and ii the sum of service quality gaps. In this investigation assumed that noise factor is not existed. The advantage of this paper is to improve the average and standard deviation simultaneously. Signal to noise ratio has been computed and the desired mix of the levels of service quality dimensions has been addressed. The main findings of this research includes the desired mix of the levels of service quality dimensions based on the sum of customer expectations and the desired mix of the levels of service quality dimensions based on the sum of service quality gaps. Comparing the two sets of findings helps the agency to analyze the cost of attracting new customers or retaining regular customers.

  7. Robust design and thermal fatigue life prediction of anisotropic conductive film flip chip package

    International Nuclear Information System (INIS)

    Nam, Hyun Wook

    2004-01-01

    The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF(Anisotropic Conductive Film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue life of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear bi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design Of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2 nd DOE was conducted to obtain RSM equation for the choose 3 design parameter. The coefficient of determination (R 2 ) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for Feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430μm, and 78μm, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter

  8. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs.

    Directory of Open Access Journals (Sweden)

    Esther Herberich

    2010-03-01

    Full Text Available Investigating differences between means of more than two groups or experimental conditions is a routine research question addressed in biology. In order to assess differences statistically, multiple comparison procedures are applied. The most prominent procedures of this type, the Dunnett and Tukey-Kramer test, control the probability of reporting at least one false positive result when the data are normally distributed and when the sample sizes and variances do not differ between groups. All three assumptions are non-realistic in biological research and any violation leads to an increased number of reported false positive results. Based on a general statistical framework for simultaneous inference and robust covariance estimators we propose a new statistical multiple comparison procedure for assessing multiple means. In contrast to the Dunnett or Tukey-Kramer tests, no assumptions regarding the distribution, sample sizes or variance homogeneity are necessary. The performance of the new procedure is assessed by means of its familywise error rate and power under different distributions. The practical merits are demonstrated by a reanalysis of fatty acid phenotypes of the bacterium Bacillus simplex from the "Evolution Canyons" I and II in Israel. The simulation results show that even under severely varying variances, the procedure controls the number of false positive findings very well. Thus, the here presented procedure works well under biologically realistic scenarios of unbalanced group sizes, non-normality and heteroscedasticity.

  9. Robust motion control design for dual-axis motion platform using ...

    Indian Academy of Sciences (India)

    control for the multi-axis systems has attracted much attention. As an ... mechanisms interact under different environmental conditions. ...... Subbu R, Goebel K, Frederick D K 2005 Evolutionary design and optimization of aircraft engine.

  10. Nyquist AD Converters, Sensor Interfaces, and Robustness Advances in Analog Circuit Design, 2012

    CERN Document Server

    Baschirotto, Andrea; Steyaert, Michiel

    2013-01-01

    This book is based on the presentations during the 21st workshop on Advances in Analog Circuit Design.  Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.  Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of Nyquist A/D converters, capacitive sensor interfaces, reliability, variability, and connectivity.

  11. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    Science.gov (United States)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  12. A robust frame element with cyclic plasticity and local joint effects

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2018-01-01

    A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam member with end joints with properties permitting representation of the effect of section forces in adjoining members, like axial forces. By use of the equilibrium formulation...... is developed, using a mid-step state to obtain representative information about the return path. The element is implemented in a co-rotational large-deformation computer program for frame structures. The formulation is illustrated by application to a couple of typical offshore frame structures, and comparison...... of different representations of the plastic effects illustrates the importance of a robust element with realistic representation of the cyclic plastic mechanisms....

  13. Robust Optimization Approach for Design for a Dynamic Cell Formation Considering Labor Utilization: Bi-objective Mathematical Mode

    Directory of Open Access Journals (Sweden)

    Hiwa Farughi

    2016-05-01

    Full Text Available In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell formation problem considering labor utilization with uncertain data is carried out. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. In this research, cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer programming (MIP model is developed to formulate the related robust dynamic cell formation problem. Then the problem is transformed into a bi-objective linear one. The first objective function seeks to minimize relevant costs of the problem including machine procurement and relocation costs, machine variable cost, inter-cell movement and intra-cell movement costs, overtime cost and labor shifting cost between cells, machine maintenance cost, inventory, holding part cost. The second objective function seeks to minimize total man-hour deviations between cells or indeed labor utilization of the modeled.

  14. Designing Robust Process Analytical Technology (PAT) Systems for Crystallization Processes: A Potassium Dichromate Crystallization Case Study

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan

    2013-01-01

    The objective of this study is to test and validate a Process Analytical Technology (PAT) system design on a potassium dichromate crystallization process in the presence of input uncertainties using uncertainty and sensitivity analysis. To this end a systematic framework for managing uncertaintie...

  15. Robust Scale Transformation Methods in IRT True Score Equating under Common-Item Nonequivalent Groups Design

    Science.gov (United States)

    He, Yong

    2013-01-01

    Common test items play an important role in equating multiple test forms under the common-item nonequivalent groups design. Inconsistent item parameter estimates among common items can lead to large bias in equated scores for IRT true score equating. Current methods extensively focus on detection and elimination of outlying common items, which…

  16. Cacti beginner's guide leverage Cacti to design a robust network operations center

    CERN Document Server

    Urban, Thomas

    2017-01-01

    The book is designed in such a way that you can explore it chapter-by-chapter or skip any chapter without missing a beat. If you are a network operator and want to use Cacti for implementing performance measurement for trending, troubleshooting, and reporting purposes, then this book is for you. You only need to know the basics of network ...

  17. Predictive control of irrigation canals – robust design and real-time implementation

    NARCIS (Netherlands)

    Aguilar, José V.; Langarita, Pedro; Rodellar, José; Linares, Lorenzo; Horváth, K.

    2016-01-01

    Predictive control is one of the most commonly used control methods in a variety of application areas, including hydraulic processes such as water distribution canals for irrigation. This article presents the design and application of predictive control for the water discharge entering into an

  18. Design of LLCL-filter for grid-connected converter to improve stability and robustness

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    of the switching frequency range. The resonance frequencies of the LLCL-filters based grid-connected converters are sensitive to the grid impedance as well as cable capacitance, which may influence the stability of the overall system. This paper proposes a new parameter design method for LLCL-filter from the point...

  19. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Dittrich, T.R.; Fetterman, A.J.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Salmonson, J.D.; Strobel, G.L.; Suter, L.J.

    2005-01-01

    Targets meant to achieve ignition on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)] have been redesigned and their performance simulated. Simulations indicate dramatically reduced growth of short wavelength hydrodynamic instabilities, resulting from two changes in the designs. First, better optimization results from systematic mapping of the ignition target performance over the parameter space of ablator and fuel thickness combinations, using techniques developed by one of us (Herrmann). After the space is mapped with one-dimensional simulations, exploration of it with two-dimensional simulations quantifies the dependence of instability growth on target dimensions. Low modes and high modes grow differently for different designs, allowing a trade-off of the two regimes of growth. Significant improvement in high-mode stability can be achieved, relative to previous designs, with only insignificant increase in low-mode growth. This procedure produces capsule designs that, in simulations, tolerate several times the surface roughness that could be tolerated by capsules optimized by older more heuristic techniques. Another significant reduction in instability growth, by another factor of several, is achieved with ablators with radially varying dopant. In this type of capsule the mid-Z dopant, which is needed in the ablator to minimize x-ray preheat at the ablator-ice interface, is optimally positioned within the ablator. A fabrication scenario for graded dopants already exists, using sputter coating to fabricate the ablator shell. We describe the systematics of these advances in capsule design, discuss the basis behind their improved performance, and summarize how this is affecting our plans for NIF ignition

  20. Designing an Effective Survey

    National Research Council Canada - National Science Library

    Kasunic, Mark

    2005-01-01

    ... of them. However, to protect the validity of conclusions drawn from a survey, certain procedures must be followed throughout the process of designing, developing, and distributing the survey questionnaire...

  1. The design of robust independence multivariable controller for robot manipulator using inverse dynamics

    International Nuclear Information System (INIS)

    Han, Sung Hyun

    1993-01-01

    This paper proposes a new approach to the design of multivariable control schemes for assembly robot manipulator to achieve accuracy trajectory tracking by joint angles. The proposed control scheme consists of a multivariable feedforward controller and a feedback controller. In this control scheme, the feedback controller is proportional integral-derivative type and is designed to achieve the pole placement. The feedforward controller is the inverse of the linealized model of robot manipulator dynamics. The feedback controller ensures that each joint tracks any reference trajectory. The proposed robot controller scheme has a computationally efficient schemes for either offline gain scheduling or online gain computation to account for variations in the linealized robot dynamic model due to changes in operating point. The simulation results demonstrate that the proposed control schemesperporms remarkably well for parameter uncertainties and load variations. (Author)

  2. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    Directory of Open Access Journals (Sweden)

    Wei Peng Lin

    2015-12-01

    Full Text Available Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV with a docking hoop (DH to recover an autonomous underwater vehicle (AUV named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and simulation to testing in water. As shown in a three-dimensional simulation of an AUVDH model using MATLAB™/Simulink™ during the launch and recovery process, the control simulation of a sliding mode controller is able to control the positions and velocities under the external wave, current, and tether forces. In the water test using the proposed Python-based GUI platform, it shows that the AUVDH is capable to perform station-keeping under the external disturbances.

  3. Robustness Design for CNN Templates with Performance of Extracting Closed Domain

    International Nuclear Information System (INIS)

    Li Weidong; Min Lequan

    2006-01-01

    The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domains in binary images, and gives a general method for designing templates of such a kind of CNNs. One theorem provides parameter inequalities for determining parameter intervals for implementing prescribed image processing functions, respectively. Examples for extracting closed domains in binary scale images are given.

  4. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg-1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  5. Scope Oriented Thermoeconomic analysis of energy systems. Part II: Formation Structure of Optimality for robust design

    International Nuclear Information System (INIS)

    Piacentino, Antonio; Cardona, Ennio

    2010-01-01

    This paper represents the Part II of a paper in two parts. In Part I the fundamentals of Scope Oriented Thermoeconomics have been introduced, showing a scarce potential for the cost accounting of existing plants; in this Part II the same concepts are applied to the optimization of a small set of design variables for a vapour compression chiller. The method overcomes the limit of most conventional optimization techniques, which are usually based on hermetic algorithms not enabling the energy analyst to recognize all the margins for improvement. The Scope Oriented Thermoeconomic optimization allows us to disassemble the optimization process, thus recognizing the Formation Structure of Optimality, i.e. the specific influence of any thermodynamic and economic parameter in the path toward the optimal design. Finally, the potential applications of such an in-depth understanding of the inner driving forces of the optimization are discussed in the paper, with a particular focus on the sensitivity analysis to the variation of energy and capital costs and on the actual operation-oriented design.

  6. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-13

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  7. Wireless sensing and vibration control with increased redundancy and robustness design.

    Science.gov (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  8. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    Science.gov (United States)

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  10. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    Science.gov (United States)

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Robust Variance Estimation with Dependent Effect Sizes: Practical Considerations Including a Software Tutorial in Stata and SPSS

    Science.gov (United States)

    Tanner-Smith, Emily E.; Tipton, Elizabeth

    2014-01-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…

  12. Workshop in political institutions - institutional analysis and global climate change: Design principles for robust international regimes

    International Nuclear Information System (INIS)

    McGinnis, M.

    1992-01-01

    Scientific evidence suggests that human activities have a significant effect on the world's climate. Political pressures are growing to establish political institutions at the global level that would help manage the social and economic consequences of climate change. Disagreements remain about the magnitude of these effects, as well as the regional distribution of the detrimental consequences of climate change. In this paper we do not wish to enter into the complexities of these technical debates. Instead, we wish to challenge a seemingly widespread consensus about the nature of the political response appropriate to this global dilemma. Specifically, we question the extent to which the open-quotes answerclose quotes can be said to reside primarily in the establishment of the new global institutions likely to emerge from the first open-quotes Earth Summitclose quotes - the United Nations (UN) Conference on Environment and Development - scheduled for June of 1992 in Rio de Janeiro

  13. The robust design for improving crude palm oil quality in Indonesian Mill

    Science.gov (United States)

    Maretia Benu, Siti; Sinulingga, Sukaria; Matondang, Nazaruddin; Budiman, Irwan

    2018-04-01

    This research was conducted in palm oil mill in Sumatra Utara Province, Indonesia. Currently, the main product of this mill is Crude Palm Oil (CPO) and hasn’t met the expected standard quality. CPO is the raw material for many fat derivative products. The generally stipulated quality criteria are dirt count, free fatty acid, and moisture of CPO. The aim of this study is to obtain the optimal setting for factor’s affect the quality of CPO. The optimal setting will result in an improvement of product’s quality. In this research, Experimental Design with Taguchi Method is used. Steps of this method are identified influence factors, select the orthogonal array, processed data using ANOVA test and signal to noise ratio, and confirmed the research using Quality Loss Function. The result of this study using Taguchi Method is to suggest to set fruit maturity at 75.4-86.9%, digester temperature at 95°C and press at 21 Ampere to reduce quality deviation until 42.42%.

  14. Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Luis Govinda García-Valdovinos

    2014-01-01

    Full Text Available Underwater remotely operated vehicles (ROVs play an important role in a number of shallow and deep-water missions for marine science, oil and gas extraction, exploration and salvage. In these applications, the motions of the ROV are guided either by a human pilot on a surface support vessel through an umbilical cord providing power and telemetry, or by an automatic pilot. In the case of automatic control, ROV state feedback is provided by acoustic and inertial sensors and this state information, along with a controller strategy, is used to perform several tasks such as station-keeping and auto-immersion/heading, among others. In this paper, the modelling, design and control of the Kaxan ROV is presented: i The complete six degrees of freedom, non linear hydrodynamic model with its parameters, ii the Kaxan hardware/software architecture, iii numerical simulations in Matlab/Simulink platform of a model-free second order sliding mode control along with ocean currents as disturbances and thruster dynamics, iv a virtual environment to visualize the motion of the Kaxan ROV and v experimental results of a one degree of freedom underwater system.

  15. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    Science.gov (United States)

    Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  16. Design for Reliability and Robustness Tool Platform for Power Electronic Systems – Study Case on Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Wang, Huai; Blaabjerg, Frede

    2018-01-01

    conventional approach, mainly based on failure statistics from the field, the reliability evaluation of the power devices is still a challenging task. In order to address the given problem, a MATLAB based reliability assessment tool has been developed. The Design for Reliability and Robustness (DfR2) tool...... allows the user to easily investigate the reliability performance of the power electronic components (or sub-systems) under given input mission profiles and operating conditions. The main concept of the tool and its framework are introduced, highlighting the reliability assessment procedure for power...... semiconductor devices. Finally, a motor drive application is implemented and the reliability performance of the power devices is investigated with the help of the DfR2 tool, and the resulting reliability metrics are presented....

  17. Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.

    Science.gov (United States)

    Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R

    2012-01-01

    This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Analytical Evaluation of Preliminary Drop Tests Performed to Develop a Robust Design for the Standardized DOE Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Smith, N.L.; Snow, S.D.; Rahl, T.E.

    1999-01-01

    The Department of Energy (DOE) has developed a design concept for a set of standard canisters for the handling, interim storage, transportation, and disposal in the national repository, of DOE spent nuclear fuel (SNF). The standardized DOE SNF canister has to be capable of handling virtually all of the DOE SNF in a variety of potential storage and transportation systems. It must also be acceptable to the repository, based on current and anticipated future requirements. This expected usage mandates a robust design. The canister design has four unique geometries, with lengths of approximately 10 feet or 15 feet, and an outside nominal diameter of 18 inches or 24 inches. The canister has been developed to withstand a drop from 30 feet onto a rigid (flat) surface, sustaining only minor damage - but no rupture - to the pressure (containment) boundary. The majority of the end drop-induced damage is confined to the skirt and lifting/stiffening ring components, which can be removed if de sired after an accidental drop. A canister, with its skirt and stiffening ring removed after an accidental drop, can continue to be used in service with appropriate operational steps being taken. Features of the design concept have been proven through drop testing and finite element analyses of smaller test specimens. Finite element analyses also validated the canister design for drops onto a rigid (flat) surface for a variety of canister orientations at impact, from vertical to 45 degrees off vertical. Actual 30-foot drop testing has also been performed to verify the final design, though limited to just two full-scale test canister drops. In each case, the analytical models accurately predicted the canister response

  19. Design Margin Elimination Through Robust Timing Error Detection at Ultra-Low Voltage

    OpenAIRE

    Reyserhove, Hans; Dehaene, Wim

    2017-01-01

    This paper discusses a timing error masking-aware ARM Cortex M0 microcontroller system. Through in-path timing error detection, operation at the point-of-first-failure is possi- ble without corrupting the pipeline state, effectively eliminat- ing traditional timing margins. Error events are flagged and gathered to allow dynamic voltage scaling. The error-aware microcontroller was implemented in a 40nm CMOS process and realizes ultra-low voltage operation down to 0.29V at 5MHz consuming 12.90p...

  20. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    Science.gov (United States)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  1. Robust design of decentralized power system stabilizers using meta-heuristic optimization techniques for multimachine systems

    Directory of Open Access Journals (Sweden)

    Jeevanandham Arumugam

    2009-01-01

    Full Text Available In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization for solving the optimization problem. The objective function allows the selection of the stabilizer parameters to optimally place the closed-loop eigen values in the left hand side of the complex s-plane. The single machine connected to infinite bus system and 10-machine 39-bus system are considered for this study. The effectiveness of the stabilizer tuned using the best technique, in enhancing the stability of power system. Stability is confirmed through eigen value analysis and simulation results and suitable heuristic technique will be selected for the best performance of the system.

  2. Design and analysis of single- ended robust low power 8T SRAM cell

    Directory of Open Access Journals (Sweden)

    Gupta Neha

    2016-01-01

    Full Text Available This paper is based on the observation of 8T single ended static random access memory (SRAM and two techniques for reducing the sub threshold leakage current, power consumption are examined. In the first technique, effective supply voltage and ground node voltages are changed using a dynamic variable voltage level technique(VVL. In the second technique power supply is scaled down. This 8T SRAM cell uses one word line, two bitlinesand a transmission gate. Simulations and analytical results show that when the two techniques combine the new SRAM cell has correct read and write operation and also the cell contains 55.6% less leakage and the dynamic power is 98.8% less than the 8T single ended SRAM cell. Simulations are performed using cadence virtuoso tool at 45nm technology.

  3. Robust incentives and the design of a climate change governance regime

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2010-01-01

    In building a governance regime to address climate change, should we prioritize the development of global institutions or national ones? This paper focuses on two neglected characteristics to inform the governance problem: the incentives for investment in low-carbon energy technology and the influence of historical policy volatility. Examining a case study of an important low-carbon energy technology, wind power, this study finds: (1) policy volatility has been substantial, (2) policy changes were uncorrelated across jurisdictions, suggesting that (3) investors could have substantially reduced their exposure to the risk of policy volatility by operating globally. While it also has downsides, a poorly coordinated international policy regime has the advantage of reducing the risk associated with a global policy failure. Beyond this case study, the importance of this positive effect depends on: the probability of policy failures in each country, the correlations among them, and the probability of a global policy failure. (author)

  4. Design and Analysis of Robust Active Damping for LCL Filters using Digital Notch Filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2017-01-01

    Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp the reso......Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp...... the resonance, where the notch frequency should be aligned exactly to the resonant frequency of the LCL filter. However, parameter variations of the LCL filter as well as the time delay appearing in digital control systems will induce resonance drifting, and thus break this alignment, possibly deteriorating...... the original damping. In this paper, the effectiveness of the notch filter based active damping is firstly explored, considering the drifts of the resonant frequency. It is revealed that, when the resonant frequency drifts away from its nominal value, the phase lead or lag introduced by the notch filter may...

  5. The remarkable robustness of the first-offer effect: across culture, power, and issues.

    Science.gov (United States)

    Gunia, Brian C; Swaab, Roderick I; Sivanathan, Niro; Galinsky, Adam D

    2013-12-01

    The first-offer effect demonstrates that negotiators achieve better outcomes when making the first offer than when receiving it. The evidence, however, primarily derives from studies of Westerners without systematic power differences negotiating over one issue-contexts that may amplify the first-offer effect. Thus, the present research explored the effect across cultures, among negotiators varying in power, and in negotiations involving single and multiple issues. The first two studies showed that the first-offer effect remains remarkably robust across cultures and multi-issue negotiations. The final two studies demonstrated that low-power negotiators benefit from making the first offer across single- and multi-issue negotiations. The second and fourth studies used multi-issue negotiations with distributive, integrative, and compatible issues, allowing us to show that first offers operate through the distributive, not the integrative or compatible issues. Overall, these results reveal that moving first can benefit negotiators across many organizational and personal situations.

  6. Progress towards a high-gain and robust target design for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, Enrique; Grant Logan, B. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2012-07-15

    Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an 'X.' X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of {approx}50 g/cm{sup 3} at peak compression, and fusion gains of {approx}50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities {approx}2 g/cm{sup 2} using two annular beams to implode the target to peak DT densities {approx}100 g/cm{sup 3}, followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in {approx}200 ps to start the burn propagation, obtaining gains of {approx}300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase

  7. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  8. Structural Robustness Evaluation of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Bontempi, Franco

    2010-01-01

    in the framework of a safe design: it depends on different factors, like exposure, vulnerability and robustness. Particularly, the requirement of structural vulnerability and robustness are discussed in this paper and a numerical application is presented, in order to evaluate the effects of a ship collision...

  9. The Key Role of the Vector Optimization Algorithm and Robust Design Approach for the Design of Polygeneration Systems

    Directory of Open Access Journals (Sweden)

    Alfredo Gimelli

    2018-04-01

    Full Text Available In recent decades, growing concerns about global warming and climate change effects have led to specific directives, especially in Europe, promoting the use of primary energy-saving techniques and renewable energy systems. The increasingly stringent requirements for carbon dioxide reduction have led to a more widespread adoption of distributed energy systems. In particular, besides renewable energy systems for power generation, one of the most effective techniques used to face the energy-saving challenges has been the adoption of polygeneration plants for combined heating, cooling, and electricity generation. This technique offers the possibility to achieve a considerable enhancement in energy and cost savings as well as a simultaneous reduction of greenhouse gas emissions. However, the use of small-scale polygeneration systems does not ensure the achievement of mandatory, but sometimes conflicting, aims without the proper sizing and operation of the plant. This paper is focused on a methodology based on vector optimization algorithms and developed by the authors for the identification of optimal polygeneration plant solutions. To this aim, a specific calculation algorithm for the study of cogeneration systems has also been developed. This paper provides, after a detailed description of the proposed methodology, some specific applications to the study of combined heat and power (CHP and organic Rankine cycle (ORC plants, thus highlighting the potential of the proposed techniques and the main results achieved.

  10. Designing interfaces patterns for effective interaction design

    CERN Document Server

    Tidwell, Jenifer

    2005-01-01

    This convenient resource offers advice on creating user-friendly interface designs--whether they're delivered on the Web, a CD, or a smart" devices like a cell phone. Solutions to common UI design problems are expressed as a collection of patterns--each one containing concrete examples, recommendations, and warnings. Intended for designers with basic UI design knowledge

  11. Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs

    Science.gov (United States)

    Adhikari, Nilanjan; Amin, Sk. Abdul; Saha, Achintya; Jha, Tarun

    2018-03-01

    Matrix metalloproteinase-2 (MMP-2) is a promising pharmacological target for designing potential anticancer drugs. MMP-2 plays critical functions in apoptosis by cleaving the DNA repair enzyme namely poly (ADP-ribose) polymerase (PARP). Moreover, MMP-2 expression triggers the vascular endothelial growth factor (VEGF) having a positive influence on tumor size, invasion, and angiogenesis. Therefore, it is an urgent need to develop potential MMP-2 inhibitors without any toxicity but better pharmacokinetic property. In this article, robust validated multi-quantitative structure-activity relationship (QSAR) modeling approaches were attempted on a dataset of 222 MMP-2 inhibitors to explore the important structural and pharmacophoric requirements for higher MMP-2 inhibition. Different validated regression and classification-based QSARs, pharmacophore mapping and 3D-QSAR techniques were performed. These results were challenged and subjected to further validation to explain 24 in house MMP-2 inhibitors to judge the reliability of these models further. All these models were individually validated internally as well as externally and were supported and validated by each other. These results were further justified by molecular docking analysis. Modeling techniques adopted here not only helps to explore the necessary structural and pharmacophoric requirements but also for the overall validation and refinement techniques for designing potential MMP-2 inhibitors.

  12. The framing effect in a monetary gambling task is robust in minimally verbal language switching contexts.

    Science.gov (United States)

    Korn, Christoph W; Heekeren, Hauke R; Oganian, Yulia

    2018-04-01

    Decision-making biases, in particular the framing effect, can be altered in foreign language settings (foreign language effect) and following switching between languages (the language switching effect on framing). Recently, it has been suggested that the framing effect is only affected by foreign language use if the task is presented in a rich textual form. Here, we assess whether an elaborate verbal task is also a prerequisite for the language switching effect on framing. We employed a financial gambling task that induces a robust framing effect but is less verbal than the classical framing paradigms (e.g., the Asian disease problem). We conducted an online experiment ( n = 485), where we orthogonally manipulated language use and language switching between trials. The results showed no effects of foreign language use or language switching throughout the experiment. This online result was confirmed in a laboratory experiment ( n = 27). Overall, we find that language switching does not reduce the framing effect in a paradigm with little verbal content and thus that language switching effects seem contingent on the amount of verbal processing required.

  13. Fuzzy adaptive robust control for space robot considering the effect of the gravity

    Directory of Open Access Journals (Sweden)

    Qin Li

    2014-12-01

    Full Text Available Space robot is assembled and tested in gravity environment, and completes on-orbit service (OOS in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control (FARC strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative (PD controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.

  14. Robust optimal control design using a differential game approach for open-loop linear quadratic descriptor systems

    NARCIS (Netherlands)

    Musthofa, M.W.; Salmah, S.; Engwerda, Jacob; Suparwanto, A.

    This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for

  15. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    Science.gov (United States)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis

  16. Robustness of third family solutions for hybrid stars against mixed phase effects

    Science.gov (United States)

    Ayriyan, A.; Bastian, N.-U.; Blaschke, D.; Grigorian, H.; Maslov, K.; Voskresensky, D. N.

    2018-04-01

    We investigate the robustness of third family solutions for hybrid compact stars with a quark matter core that correspond to the occurrence of high-mass twin stars against a softening of the phase transition by means of a construction that mimics the effects of pasta structures in the mixed phase. We consider a class of hybrid equations of state that exploits a relativistic mean-field model for the hadronic as well as for the quark matter phase. We present parametrizations that correspond to branches of high-mass twin star pairs with maximum masses between 2.05 M⊙ and 1.48 M⊙ having radius differences between 3.2 and 1.5 km, respectively. When compared to a Maxwell construction with a fixed value of critical pressure Pc, the effect of the mixed phase construction consists in the occurrence of a region of pressures around Pc belonging to the coexistence of hadronic and quark matter phases between the onset pressure at PH and the end of the transition at PQ. The maximum broadening which would still allow mass-twin compact stars is found to be (PQ-PH)max≈Pc for all parametrizations within the present class of models. At least the heavier of the neutron stars of the binary merger GW170817 could have been a member of the third family of hybrid stars. We present the example of another class of hybrid star equations of state for which the appearance of the third family branch is not as robust against mixed phase effects as that of the present work.

  17. Design of the Revascularization With Open Bypass vs Angioplasty and Stenting of the Lower Extremity Trial (ROBUST): a randomized clinical trial.

    Science.gov (United States)

    Malas, Mahmoud B; Qazi, Umair; Glebova, Natalia; Arhuidese, Isibor; Reifsnyder, Thomas; Black, James; Perler, Bruce A; Freischlag, Julie A

    2014-12-01

    To our knowledge, there is no level 1 evidence comparing open bypass with angioplasty and stenting in TransAtlantic Inter-Society Consensus (TASC II) B and C superficial femoral artery lesions. The Revascularization With Open Bypass vs Angioplasty and Stenting of the Lower Extremity Trial (ROBUST) is the first prospective randomized clinical trial comparing both treatments. To report the design of the ROBUST trial. The primary aim of the trial is to compare (1) the patency rate (primary, primary assisted, and secondary patency at 6 and 12 months), (2) improvement of quality of life, (3) clinical improvement (at least 1 Rutherford category), and (4) wound healing and limb salvage in patients presenting with critical limb ischemia; secondary aims include (1) cost-effectiveness by factoring procedure and hospital admission costs including rehabilitation, readmission, and reintervention costs, (2) amputation-free survival, (3) reintervention rate, and (4) 30-day operative mortality, morbidity, and wound and access complications. ROBUST is a prospective randomized clinical trial with the aim to enroll 320 patients with intermittent claudication that does not respond to medical management and patients with critical limb ischemia. The maximum level of medical therapy will be administered using antiplatelet agents and statins, as well as measures to control hypertension and diabetes mellitus. Patients with TASC II B or C lesions are prospectively randomized to receive either femoropopliteal bypass or percutaneous transluminal angioplasty and stenting; patients with TASC II A and D lesions are not randomized and receive percutaneous transluminal angioplasty and stenting or femoropopliteal bypass, respectively. All patients will be evaluated at 1, 6, and 12 months postoperatively with physical examination, ankle brachial index, duplex, and a quality-of-life questionnaire. The trial is actively enrolling participants. At the time of writing, 29 patients have been enrolled

  18. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses.

    Science.gov (United States)

    Kumar, Sunny; Kesharwani, Siddharth S; Kuppast, Bhimanna; Bakkari, Mohammed Ali; Tummala, Hemachand

    2017-09-10

    New and improved vaccines are needed against challenging diseases such as malaria, tuberculosis, Ebola, influenza, AIDS, and cancer. The majority of existing vaccine adjuvants lack the ability to significantly stimulate the cellular immune response, which is required to prevent the aforementioned diseases. This study designed a novel particulate based pathogen-mimicking vaccine delivery system (PMVDS) to target antigen-presenting-cells (APCs) such as dendritic cells. The uniqueness of PMVDS is that the polymer used to prepare the delivery system, Inulin Acetate (InAc), activates the innate immune system. InAc was synthesized from the plant polysaccharide, inulin. PMVDS provided improved and persistent antigen delivery to APCs as an efficient vaccine delivery system, and simultaneously, activated Toll-Like Receptor-4 (TLR-4) on APCs to release chemokine's/cytokines as an immune-adjuvant. Through this dual mechanism, PMVDS robustly stimulated both the humoral (>32 times of IgG1 levels vs alum) and the cell-mediated immune responses against the encapsulated antigen (ovalbumin) in mice. More importantly, PMVDS stimulated both cytotoxic T cells and natural killer cells of cell-mediated immunity to provide tumor (B16-ova-Melanoma) protection in around 40% of vaccinated mice and significantly delayed tumor progression in rest of the mice. PMVDS is a unique bio-active vaccine delivery technology with broader applications for vaccines against cancer and several intracellular pathogens, where both humoral and cellular immune responses are desired. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Two-Stage DEA to Analyze the Effect of Entrance Deregulation on Iranian Insurers: A Robust Approach

    OpenAIRE

    Jalali Naini, Seyed Gholamreza; Nouralizadeh, Hamid Reza

    2012-01-01

    We use two-stage data envelopment analysis (DEA) model to analyze the effects of entrance deregulation on the efficiency in the Iranian insurance market. In the first stage, we propose a robust optimization approach in order to overcome the sensitivity of DEA results to any uncertainty in the output parameters. Hence, the efficiency of each ongoing insurer is estimated using our proposed robust DEA model. The insurers are then ranked based on their relative efficiency scores for an eight-year...

  20. Robust Wavelet Estimation to Eliminate Simultaneously the Effects of Boundary Problems, Outliers, and Correlated Noise

    Directory of Open Access Journals (Sweden)

    Alsaidi M. Altaher

    2012-01-01

    Full Text Available Classical wavelet thresholding methods suffer from boundary problems caused by the application of the wavelet transformations to a finite signal. As a result, large bias at the edges and artificial wiggles occur when the classical boundary assumptions are not satisfied. Although polynomial wavelet regression and local polynomial wavelet regression effectively reduce the risk of this problem, the estimates from these two methods can be easily affected by the presence of correlated noise and outliers, giving inaccurate estimates. This paper introduces two robust methods in which the effects of boundary problems, outliers, and correlated noise are simultaneously taken into account. The proposed methods combine thresholding estimator with either a local polynomial model or a polynomial model using the generalized least squares method instead of the ordinary one. A primary step that involves removing the outlying observations through a statistical function is considered as well. The practical performance of the proposed methods has been evaluated through simulation experiments and real data examples. The results are strong evidence that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating the effects of outliers and correlated noise.

  1. Framing effects are robust to linguistic disambiguation: A critical test of contemporary theory.

    Science.gov (United States)

    Chick, Christina F; Reyna, Valerie F; Corbin, Jonathan C

    2016-02-01

    Theoretical accounts of risky choice framing effects assume that decision makers interpret framing options as extensionally equivalent, such that if 600 lives are at stake, saving 200 implies that 400 die. However, many scholars have argued that framing effects are caused, instead, by filling in pragmatically implied information. This linguistic ambiguity hypothesis is grounded in neo-Gricean pragmatics, information leakage, and schema theory. In 2 experiments, we conducted critical tests of the linguistic ambiguity hypothesis and its relation to framing. We controlled for this crucial implied information by disambiguating it using instructions and detailed examples, followed by multiple quizzes. After disambiguating missing information, we presented standard framing problems plus truncated versions, varying types of missing information. Truncations were also critical tests of prospect theory and fuzzy trace theory. Participants were not only college students, but also middle-age adults (who showed similar results). Contrary to the ambiguity hypothesis, participants who interpreted missing information as complementary to stated information nonetheless showed robust framing effects. Although adding words like "at least" can change interpretations of framing information, this form of linguistic ambiguity is not necessary to observe risky choice framing effects. (c) 2016 APA, all rights reserved).

  2. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss.

    Science.gov (United States)

    Tanner-Smith, Emily E; Tipton, Elizabeth

    2014-03-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    Science.gov (United States)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings

  4. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag

  5. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data.

    Science.gov (United States)

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-10-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses.

  6. A robust upscaling of the effective particle deposition rate in porous media

    Science.gov (United States)

    Boccardo, Gianluca; Crevacore, Eleonora; Sethi, Rajandrea; Icardi, Matteo

    2018-05-01

    In the upscaling from pore to continuum (Darcy) scale, reaction and deposition phenomena at the solid-liquid interface of a porous medium have to be represented by macroscopic reaction source terms. The effective rates can be computed, in the case of periodic media, from three-dimensional microscopic simulations of the periodic cell. Several computational and semi-analytical models have been studied in the field of colloid filtration to describe this problem. They typically rely on effective deposition rates defined by complex fitting procedures, neglecting the advection-diffusion interplay, the pore-scale flow complexity, and assuming slow reactions (or large Péclet numbers). Therefore, when these rates are inserted into general macroscopic transport equations, they can lead to several conceptual inconsistencies and significant errors. To study more accurately the dependence of deposition on the flow parameters, in this work we advocate a clear distinction between the surface processes (that altogether defines the so-called attachment efficiency), and the pore-scale processes. With this approach, valid when colloidal particles are small enough, we study Brownian and gravity-driven deposition on a face-centred cubic (FCC) arrangement of spherical grains, and define a robust upscaling based on a linear effective reaction rate. The case of partial deposition, defined by an attachment probability, is studied and the limit of perfect sink is retrieved as a particular case. We introduce a novel upscaling approach and a particularly convenient computational setup that allows the direct computation of the asymptotic stationary value of effective rates. This allows to drastically reduce the computational domain down to the scale of the single repeating periodic unit. The savings are ever more noticeable in the case of higher Péclet numbers, when larger physical times are needed to reach the asymptotic regime and thus, equivalently, much larger computational domain and

  7. Random reward priming is task-contingent: The robustness of the 1-trial reward priming effect

    Directory of Open Access Journals (Sweden)

    Árni Gunnar Ásgeirsson

    2014-04-01

    Full Text Available Consistent financial reward of particular features influences the allocation of visual attention in many ways. More surprising are 1-trial reward priming effects on attention where reward schedules are random and reward on one trial influences attentional allocation on the next. Those findings are thought to reflect that rewarded features become more salient than unrewarded ones on the subsequent trial. Here we attempt to conceptually replicate this effect, testing its generalizability. In three versions of an analogous paradigm to the additional singleton paradigm involving singleton search for a Gabor patch of odd spatial frequency we found no evidence of reward priming, while we only partially replicate the reward priming in the exact original paradigm tested by Hickey and colleagues. The results cast doubt on the proposal that random reward enhances salience, suggested in the original papers, and highlight the need for a more nuanced account. In many other paradigms reward effects have been found to progress gradually, becoming stronger as they build up, and we argue that for robust reward priming, reward schedules need to be more consistent than in the original 1-trial reward priming paradigm.

  8. LQG/LTR [linear quadratic Gaussian with loop transfer recovery] robust control system design for a low-pressure feedwater heater train

    International Nuclear Information System (INIS)

    Murphy, G.V.; Bailey, J.M.

    1990-01-01

    This paper uses the linear quadratic Gaussian with loop transfer recovery (LQG/LTR) control system design method to obtain a level control system for a low-pressure feedwater heater train. The control system performance and stability robustness are evaluated for a given set of system design specifications. The tools for analysis are the return ratio, return difference, and inverse return difference singular-valve plots for a loop break at the plant output. 3 refs., 7 figs., 2 tabs

  9. Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design.

    Science.gov (United States)

    Liu, Lei; Wang, Zhanshan; Zhang, Huaguang

    2018-04-01

    This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.

  10. Design and Implement a Digital H{sub {infinity}}Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Howlander, Abdul Motin [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Urasaki, Naomitsu [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Yona, Atsushi [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Senjyu, Tomonobu [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Saber, Ahmed Yousuf [Operation Technology, Irvine, CA (United States)

    2013-04-15

    A digital H{sub {infinity}}controller for a permanent magnet synchronous generator (PMSG) based wind energy conversion system (WECS) is presented. Wind energy is an uncertain fluctuating resource which requires a tight control management. So, it is still an exigent task for the control design engineers. The conventional proportional-integral (PI) control is not ideal during high turbulence wind velocities, and the nonlinear behavior of the power converters. These are raising interest towards the robust control concepts. The robust design is to find a controller, for a given system, such that the closed-loop system becomes robust that assurance high-integrity and fault tolerant control system, robust H{sub {infinity}}control theory has befallen a standard design method of choice over the past two decades in industrial control applications. The robust H{sub {infinity}}control theory is also gaining eminence in the WECS. Due to the implementation complexity for the continuous H{sub {infinity}}controller, and availability of the high speedy micro-controllers, the design of a sample-data or a digital H{sub {infinity}}controller is very important for the realistic implementation. But there isn’t a single research to evaluate the performance of the digital H{sub {infinity}}controller for the WECS. In this paper, the proposed digital H{sub {infinity}}controller schemes comprise for the both generator and grid interactive power converters, and the control performances are compared with the conventional PI controller and the fuzzy controller. Simulation results confirm the efficacy of the proposed method Energies 2013, 6 2085 which are ensured the WECS stabilities, mitigate shaft stress, and improving the DC-link voltage and output power qualities.

  11. Design and Implement a Digital H∞ Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Tomonobu Senjyu

    2013-04-01

    Full Text Available A digital H∞ controller for a permanent magnet synchronous generator (PMSG based wind energy conversion system (WECS is presented. Wind energy is an uncertain fluctuating resource which requires a tight control management. So, it is still an exigent task for the control design engineers. The conventional proportional-integral (PI control is not ideal during high turbulence wind velocities, and the nonlinear behavior of the power converters. These are raising interest towards the robust control concepts. The robust design is to find a controller, for a given system, such that the closed-loop system becomes robust that assurance high-integrity and fault tolerant control system, robust H∞ control theory has befallen a standard design method of choice over the past two decades in industrial control applications. The robust H∞ control theory is also gaining eminence in the WECS. Due to the implementation complexity for the continuous H∞ controller, and availability of the high speedy micro-controllers, the design of a sample-data or a digital H∞ controller is very important for the realistic implementation. But there isn’t a single research to evaluate the performance of the digital H∞ controller for the WECS. In this paper, the proposed digital H∞ controller schemes comprise for the both generator and grid interactive power converters, and the control performances are compared with the conventional PI controller and the fuzzy controller. Simulation results confirm the efficacy of the proposed method Energies 2013, 6 2085 which are ensured the WECS stabilities, mitigate shaft stress, and improving the DC-link voltage and output power qualities.

  12. A Robust Multivariable Feedforward/Feedback Controller Design for Integrated Power Control of Boiling Water Reactor Power Plants

    International Nuclear Information System (INIS)

    Shyu, S.-S.; Edwards, Robert M.

    2002-01-01

    In this paper, a methodology for synthesizing a robust multivariable feedforward/feedback control (FF/FBC) strategy is proposed for an integrated control of turbine power, throttle pressure, and reactor water level in a nuclear power plant. In the proposed method, the FBC is synthesized by the robust control approach. The feedforward control, which is generated via nonlinear programming, is added to the robust FBC system to further improve the control performance. The plant uncertainties, including unmodeled dynamics, linearization, and model reduction, are characterized and estimated. The comparisons of simulation responses based on a nonlinear reactor model demonstrate the achievement of the proposed controller with specified performance and endurance under uncertainty. It is also important to note that all input variables are manipulated in an orchestrated manner in response to a single output's setpoint change

  13. The effects of ecology and evolutionary history on robust capuchin morphological diversity.

    Science.gov (United States)

    Wright, Kristin A; Wright, Barth W; Ford, Susan M; Fragaszy, Dorothy; Izar, Patricia; Norconk, Marilyn; Masterson, Thomas; Hobbs, David G; Alfaro, Michael E; Lynch Alfaro, Jessica W

    2015-01-01

    Recent molecular work has confirmed the long-standing morphological hypothesis that capuchins are comprised of two distinct clades, the gracile (untufted) capuchins (genus Cebus, Erxleben, 1777) and the robust (tufted) capuchins (genus Sapajus Kerr, 1792). In the past, the robust group was treated as a single, undifferentiated and cosmopolitan species, with data from all populations lumped together in morphological and ecological studies, obscuring morphological differences that might exist across this radiation. Genetic evidence suggests that the modern radiation of robust capuchins began diversifying ∼2.5 Ma, with significant subsequent geographic expansion into new habitat types. In this study we use a morphological sample of gracile and robust capuchin craniofacial and postcranial characters to examine how ecology and evolutionary history have contributed to morphological diversity within the robust capuchins. We predicted that if ecology is driving robust capuchin variation, three distinct robust morphotypes would be identified: (1) the Atlantic Forest species (Sapajus xanthosternos, S. robustus, and S. nigritus), (2) the Amazonian rainforest species (S. apella, S. cay and S. macrocephalus), and (3) the Cerrado-Caatinga species (S. libidinosus). Alternatively, if diversification time between species pairs predicts degree of morphological difference, we predicted that the recently diverged S. apella, S. macrocephalus, S. libidinosus, and S. cay would be morphologically comparable, with greater variation among the more ancient lineages of S. nigritus, S. xanthosternos, and S. robustus. Our analyses suggest that S. libidinosus has the most derived craniofacial and postcranial features, indicative of inhabiting a more terrestrial niche that includes a dependence on tool use for the extraction of imbedded foods. We also suggest that the cranial robusticity of S. macrocephalus and S. apella are indicative of recent competition with sympatric gracile capuchin

  14. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

    Science.gov (United States)

    Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee

    2012-10-23

    Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect

  15. A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Science.gov (United States)

    Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme. PMID:24892078

  16. A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Das

    2014-01-01

    Full Text Available In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.

  17. A robust and effective smart-card-based remote user authentication mechanism using hash function.

    Science.gov (United States)

    Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.

  18. Use of the robust design to estimate seasonal abundance and demographic parameters of a coastal bottlenose dolphin (Tursiops aduncus population.

    Directory of Open Access Journals (Sweden)

    Holly C Smith

    Full Text Available As delphinid populations become increasingly exposed to human activities we rely on our capacity to produce accurate abundance estimates upon which to base management decisions. This study applied mark-recapture methods following the Robust Design to estimate abundance, demographic parameters, and temporary emigration rates of an Indo-Pacific bottlenose dolphin (Tursiops aduncus population off Bunbury, Western Australia. Boat-based photo-identification surveys were conducted year-round over three consecutive years along pre-determined transect lines to create a consistent sampling effort throughout the study period and area. The best fitting capture-recapture model showed a population with a seasonal Markovian temporary emigration with time varying survival and capture probabilities. Abundance estimates were seasonally dependent with consistently lower numbers obtained during winter and higher during summer and autumn across the three-year study period. Specifically, abundance estimates for all adults and juveniles (combined varied from a low of 63 (95% CI 59 to 73 in winter of 2007 to a high of 139 (95% CI 134 to148 in autumn of 2009. Temporary emigration rates (γ' for animals absent in the previous period ranged from 0.34 to 0.97 (mean  =  0.54; ±SE 0.11 with a peak during spring. Temporary emigration rates for animals present during the previous period (γ'' were lower, ranging from 0.00 to 0.29, with a mean of 0.16 (± SE 0.04. This model yielded a mean apparent survival estimate for juveniles and adults (combined of 0.95 (± SE 0.02 and a capture probability from 0.07 to 0.51 with a mean of 0.30 (± SE 0.04. This study demonstrates the importance of incorporating temporary emigration to accurately estimate abundance of coastal delphinids. Temporary emigration rates were high in this study, despite the large area surveyed, indicating the challenges of sampling highly mobile animals which range over large spatial areas.

  19. Effect of using different cover image quality to obtain robust selective embedding in steganography

    Science.gov (United States)

    Abdullah, Karwan Asaad; Al-Jawad, Naseer; Abdulla, Alan Anwer

    2014-05-01

    One of the common types of steganography is to conceal an image as a secret message in another image which normally called a cover image; the resulting image is called a stego image. The aim of this paper is to investigate the effect of using different cover image quality, and also analyse the use of different bit-plane in term of robustness against well-known active attacks such as gamma, statistical filters, and linear spatial filters. The secret messages are embedded in higher bit-plane, i.e. in other than Least Significant Bit (LSB), in order to resist active attacks. The embedding process is performed in three major steps: First, the embedding algorithm is selectively identifying useful areas (blocks) for embedding based on its lighting condition. Second, is to nominate the most useful blocks for embedding based on their entropy and average. Third, is to select the right bit-plane for embedding. This kind of block selection made the embedding process scatters the secret message(s) randomly around the cover image. Different tests have been performed for selecting a proper block size and this is related to the nature of the used cover image. Our proposed method suggests a suitable embedding bit-plane as well as the right blocks for the embedding. Experimental results demonstrate that different image quality used for the cover images will have an effect when the stego image is attacked by different active attacks. Although the secret messages are embedded in higher bit-plane, but they cannot be recognised visually within the stegos image.

  20. Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    This paper describes the background of the robustness requirements implemented in the Danish Code of Practice for Safety of Structures and in the Danish National Annex to the Eurocode 0, see (DS-INF 146, 2003), (DS 409, 2006), (EN 1990 DK NA, 2007) and (Sørensen and Christensen, 2006). More...... frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential....... According to Danish design rules robustness shall be documented for all structures in high consequence class. The design procedure to document sufficient robustness consists of: 1) Review of loads and possible failure modes / scenarios and determination of acceptable collapse extent; 2) Review...

  1. How Subsurface Water Technologies (SWT) can Provide Robust, Effective, and Cost-Efficient Solutions for Freshwater Management in Coastal Zones

    NARCIS (Netherlands)

    Zuurbier, K.G.; Raat, K.J.; Paalman, M.; Oosterhof, A.T.; Stuyfzand, P.J.

    2016-01-01

    Freshwater resources in coastal zones are limited while demands are high, resulting in problems like seasonal water shortage, overexploitation of freshwater aquifers, and seawater intrusion. Three subsurface water technologies (SWT) that can provide robust, effective, and cost-efficient solutions to

  2. A robust demonstration of the cognate facilitation effect in first-language and second-language naming.

    Science.gov (United States)

    Sheng, Li; Lam, Boji Pak Wing; Cruz, Diana; Fulton, Aislynn

    2016-01-01

    The cognate facilitation effect refers to the phenomenon that in bilinguals performance on various vocabulary tasks is enhanced for cross-linguistic cognates as opposed to noncognates. However, research investigating the presence of the cognate advantage in bilingual children remains limited. Most studies with children conducted to date has not included a control group or rigorously designed stimuli, which may jeopardize the validity and robustness of the emerging evidence. The current study addressed these methodological problems by examining performance in picture naming tasks in 34 4- to 7-year-old Spanish-English bilinguals and 52 Mandarin-English bilinguals as well as 37 English-speaking monolinguals who served as controls. Stimuli were controlled for phonology, word frequency, and length. The Spanish-English bilinguals performed better for cognates than for noncognates and exhibited a greater number of doublet responses (i.e., providing correct responses in both languages) in naming cognate targets than in naming noncognates. The control groups did not show differences in performance between the two sets of words. These findings provide compelling evidence that cross-linguistic similarities at the phonological level allow bootstrapping of vocabulary learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  4. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    International Nuclear Information System (INIS)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R.

    2006-01-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  5. Effects of methodology and analysis strategy on robustness of pestivirus phylogeny.

    Science.gov (United States)

    Liu, Lihong; Xia, Hongyan; Baule, Claudia; Belák, Sándor; Wahlberg, Niklas

    2010-01-01

    Phylogenetic analysis of pestiviruses is a useful tool for classifying novel pestiviruses and for revealing their phylogenetic relationships. In this study, robustness of pestivirus phylogenies has been compared by analyses of the 5'UTR, and complete N(pro) and E2 gene regions separately and combined, performed by four methods: neighbour-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). The strategy of analysing the combined sequence dataset by BI, ML, and MP methods resulted in a single, well-supported tree topology, indicating a reliable and robust pestivirus phylogeny. By contrast, the single-gene analysis strategy resulted in 12 trees of different topologies, revealing different relationships among pestiviruses. These results indicate that the strategies and methodologies are two vital aspects affecting the robustness of the pestivirus phylogeny. The strategy and methodologies outlined in this paper may have a broader application in inferring phylogeny of other RNA viruses.

  6. Effects of sample size on robustness and prediction accuracy of a prognostic gene signature

    Directory of Open Access Journals (Sweden)

    Kim Seon-Young

    2009-05-01

    Full Text Available Abstract Background Few overlap between independently developed gene signatures and poor inter-study applicability of gene signatures are two of major concerns raised in the development of microarray-based prognostic gene signatures. One recent study suggested that thousands of samples are needed to generate a robust prognostic gene signature. Results A data set of 1,372 samples was generated by combining eight breast cancer gene expression data sets produced using the same microarray platform and, using the data set, effects of varying samples sizes on a few performances of a prognostic gene signature were investigated. The overlap between independently developed gene signatures was increased linearly with more samples, attaining an average overlap of 16.56% with 600 samples. The concordance between predicted outcomes by different gene signatures also was increased with more samples up to 94.61% with 300 samples. The accuracy of outcome prediction also increased with more samples. Finally, analysis using only Estrogen Receptor-positive (ER+ patients attained higher prediction accuracy than using both patients, suggesting that sub-type specific analysis can lead to the development of better prognostic gene signatures Conclusion Increasing sample sizes generated a gene signature with better stability, better concordance in outcome prediction, and better prediction accuracy. However, the degree of performance improvement by the increased sample size was different between the degree of overlap and the degree of concordance in outcome prediction, suggesting that the sample size required for a study should be determined according to the specific aims of the study.

  7. The behavioral economics of social anxiety disorder reveal a robust effect for interpersonal traits.

    Science.gov (United States)

    Rodebaugh, Thomas L; Tonge, Natasha A; Weisman, Jaclyn S; Lim, Michelle H; Fernandez, Katya C; Bogdan, Ryan

    2017-08-01

    Recent evidence suggests that reduced generosity among individuals with social anxiety disorder (SAD) in behavioral economic tasks may result from constraint in changing behavior according to interpersonal contingencies. That is, people with SAD may be slower to be more generous when the situation warrants. Conversely, more global effects on generosity may be related to interpersonal vindictiveness, a dimension only somewhat related to SAD. A total of 133 participants, 73 with the generalized form of SAD, completed self-report instruments and a behavioral economic task with simulated interpersonal (friend, romantic partner, stranger) interactions. In a separate visit, friends (n = 88) also came to the lab and rated participants on vindictiveness. Interpersonal vindictiveness was associated with reduced initial and overall giving to simulated friends. SAD predicted a lack of increased giving to a simulated friend, and attenuated an increase in giving to simulated known versus unknown players compared to participants without SAD. Friend-reported vindictiveness predicted in the same direction as diagnosis. However, the findings for SAD were less robust than those for vindictiveness. SAD is perhaps weakly related to behavioral constraint in economic tasks that simulate interpersonal interactions, whereas vindictiveness is strongly related to lower overall generosity as well as (via friend report) behavioral constraint. Further study is needed to better characterize the construct of vindictiveness. Our findings dovetail with the suggestion that SAD is related to impairment in the proposed affiliation and attachment system, but further suggest that direct study of that system may be more fruitful than focusing on disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. IAEA Assistance in Helping Member States Develop Effectively Independent and Robust Regulators for Nuclear Installation Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nicic, A., E-mail: A.Nicic@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Wagramer Strasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2014-10-15

    Full text: The International Conference on Topical Issues in Nuclear Installation Safety will be focused on the exchange of information on the latest thinking and advances in the implementation of the concept of Defence-in-Depth (DID) in nuclear installations, and the associated challenges. The focus will be on operating nuclear installations, including nuclear power plants, research reactors and fuel cycle facilities, and on how lessons learned from operating experience and recent events (e.g. the Fukushima Daiichi accident) are used to enhance safety. The implementation of DID covers a number of elements that are directly related to the different states and phases of a nuclear facility. This presentation will discuss the importance of the regulatory body in its oversight role as a cross-cutting element of DID in helping to assure the safety of nuclear installations. Taking note of the numerous challenges in developing an effectively independent and robust regulatory body, the presentation will describe how the IAEA assists Member States in their development of the appropriate regulatory infrastructure and necessary capacity to carry out their regulatory responsibilities – consistent with the IAEA Safety Standards. The presentation will describe the importance of the self-assessment process which serves as a starting point for helping Member States gain an understanding of what support they need and when the support should be provided as they develop into a competent regulatory authority. The presentation will discuss recent improvements in the self-assessment process and related IAEA services in this regard. Once regulatory bodies are established, it is essential that they seek continuous improvement. In this regard, the presentation will describe the IAEA’s assistance provided through the Integrated Regulatory Review Service (IRRS) and recent activities to improve the IRRS, consistent with the IAEA’s Action Plan on Nuclear Safety. (author)

  9. Production and robustness of a Cacao agroecosystem: effects of two contrasting types of management strategies.

    Science.gov (United States)

    Sabatier, Rodolphe; Wiegand, Kerstin; Meyer, Katrin

    2013-01-01

    Ecological intensification, i.e. relying on ecological processes to replace chemical inputs, is often presented as the ideal alternative to conventional farming based on an intensive use of chemicals. It is said to both maintain high yield and provide more robustness to the agroecosystem. However few studies compared the two types of management with respect to their consequences for production and robustness toward perturbation. In this study our aim is to assess productive performance and robustness toward diverse perturbations of a Cacao agroecosystem managed with two contrasting groups of strategies: one group of strategies relying on a high level of pesticides and a second relying on low levels of pesticides. We conducted this study using a dynamical model of a Cacao agroecosystem that includes Cacao production dynamics, and dynamics of three insects: a pest (the Cacao Pod Borer, Conopomorpha cramerella) and two characteristic but unspecified beneficial insects (a pollinator of Cacao and a parasitoid of the Cacao Pod Borer). Our results showed two opposite behaviors of the Cacao agroecosystem depending on its management, i.e. an agroecosystem relying on a high input of pesticides and showing low ecosystem functioning and an agroecosystem with low inputs, relying on a high functioning of the ecosystem. From the production point of view, no type of management clearly outclassed the other and their ranking depended on the type of pesticide used. From the robustness point of view, the two types of managements performed differently when subjected to different types of perturbations. Ecologically intensive systems were more robust to pest outbreaks and perturbations related to pesticide characteristics while chemically intensive systems were more robust to Cacao production and management-related perturbation.

  10. Profit enhancement by a set of performance and robustness indices based design of dual-dimensional PODC and PSS2B in smart grids

    International Nuclear Information System (INIS)

    Shayeghi, H.; Hashemi, Y.

    2014-01-01

    Highlights: • Design based on a set of performance and robustness criteria can increase profit. • Time delay as uncertainty in smart grid decrease profit. • Design method applied in this paper deal with large structure of controllers. • INSGA-II optimization and FDM method is applied to specify the best solution. - Abstract: Expansion of power systems is accompanied by innovations in smart grid solutions to power system operation and control. Profit enhancement by power oscillation damping controllers (PODC) and acceleration based power system stabilizer (PSS), model PSS2B, designed by the idea of pseudo-spectra based on multi-objective optimization is presented. The contribution of multi-objective functions in respect of performance and robustness criteria in stability enhancement is evaluated by considering the control actions of PODC and PSS2B as an ancillary service (AS). The robustness requirement is achieved by using the idea of pseudo-spectra to handle the changes of power system parameters and time delay introduced by processing of remote signals in the wide-area supplementary damping controller (WASDC). The weighted sum of six objective functions as performance and robustness criteria is selected as low-frequency oscillation damping index (LFODI). Two scenarios for the evaluation of small signal stability as an AS provided by PODC and PSS2B are considered. A multi-objective optimization approach based on LFODI, generation costs is formulated and improved non-dominated sorting genetic algorithm-II (INSGA-II) is employed to solve this problem. Fuzzy decision making (FDM) is used to find the best compromise solution from the set of Pareto-solution obtained by INSGA-II. Comparative analysis of the results of the conventional method and the proposed design method is presented by case study on a modified 2-area 4-machine power system

  11. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach.

    Science.gov (United States)

    Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian

    2011-04-01

    This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.

  12. Robust non-local effects of ocean heat uptake on radiative feedback and subtropical cloud cover

    Science.gov (United States)

    Rose, B. E. J.

    2016-02-01

    Much recent work has pointed to the limitations of the global mean planetary energy budget as a useful diagnostic tool for understanding transient climate response, because the climate sensitivity (or radiative feedback) governing the relationships between ocean heat content, surface temperature and top-of-atmosphere energy imbalance depends sensitively on timescale, spatial pattern and nature of the climate forcing. Progress has been made by treating the slowly-evolving (and spatially complex) pattern of ocean heat uptake as a quasi-equilibrium forcing on the "fast" components of the climate system: the atmospheric radiative-dynamical processes that link air-sea heat exchange to the top-of-atmosphere energy budget. Differences between these feedbacks and those on CO2 radiative forcing can be expressed as an "efficacy" of ocean heat uptake. We use idealized slab ocean GCMs forced by prescribed steady energy sinks limited to specific latitude bands (representing heat exchange with the deep ocean) to quantify how (and why) the efficacy depends on the spatial pattern of ocean heat uptake. By repeating the experiment across several independent GCMs we identify robust and non-robust aspects of the response. We find that the efficacy of sub-polar heat uptake is 3 to 4 times larger than the efficacy of tropical heat uptake. Radiative kernel analysis allows an accurate partition into feedbacks due to temperature, water vapor and clouds. We find large and robust differences in clear-sky lapse rate feedbacks, associated with robust differences in large-scale atmospheric circulation and stratification driven by ocean heat uptake. A more novel and surprising result is the robustness across several independent GCMs of the differences in subtropical low cloud feedback (positive under high-latitude uptake, strongly negative under tropical uptake). We trace these robust differences to thermodynamic constraints associated with lower-tropospheric stability and boundary layer

  13. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    Science.gov (United States)

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  14. Visualization of the Invisible, Explanation of the Unknown, Ruggedization of the Unstable: Sensitivity Analysis, Virtual Tryout and Robust Design through Systematic Stochastic Simulation

    International Nuclear Information System (INIS)

    Zwickl, Titus; Carleer, Bart; Kubli, Waldemar

    2005-01-01

    In the past decade, sheet metal forming simulation became a well established tool to predict the formability of parts. In the automotive industry, this has enabled significant reduction in the cost and time for vehicle design and development, and has helped to improve the quality and performance of vehicle parts. However, production stoppages for troubleshooting and unplanned die maintenance, as well as production quality fluctuations continue to plague manufacturing cost and time. The focus therefore has shifted in recent times beyond mere feasibility to robustness of the product and process being engineered. Ensuring robustness is the next big challenge for the virtual tryout / simulation technology.We introduce new methods, based on systematic stochastic simulations, to visualize the behavior of the part during the whole forming process -- in simulation as well as in production. Sensitivity analysis explains the response of the part to changes in influencing parameters. Virtual tryout allows quick exploration of changed designs and conditions. Robust design and manufacturing guarantees quality and process capability for the production process. While conventional simulations helped to reduce development time and cost by ensuring feasible processes, robustness engineering tools have the potential for far greater cost and time savings.Through examples we illustrate how expected and unexpected behavior of deep drawing parts may be tracked down, identified and assigned to the influential parameters. With this knowledge, defects can be eliminated or springback can be compensated e.g.; the response of the part to uncontrollable noise can be predicted and minimized. The newly introduced methods enable more reliable and predictable stamping processes in general

  15. Visualization of the Invisible, Explanation of the Unknown, Ruggedization of the Unstable: Sensitivity Analysis, Virtual Tryout and Robust Design through Systematic Stochastic Simulation

    Science.gov (United States)

    Zwickl, Titus; Carleer, Bart; Kubli, Waldemar

    2005-08-01

    In the past decade, sheet metal forming simulation became a well established tool to predict the formability of parts. In the automotive industry, this has enabled significant reduction in the cost and time for vehicle design and development, and has helped to improve the quality and performance of vehicle parts. However, production stoppages for troubleshooting and unplanned die maintenance, as well as production quality fluctuations continue to plague manufacturing cost and time. The focus therefore has shifted in recent times beyond mere feasibility to robustness of the product and process being engineered. Ensuring robustness is the next big challenge for the virtual tryout / simulation technology. We introduce new methods, based on systematic stochastic simulations, to visualize the behavior of the part during the whole forming process — in simulation as well as in production. Sensitivity analysis explains the response of the part to changes in influencing parameters. Virtual tryout allows quick exploration of changed designs and conditions. Robust design and manufacturing guarantees quality and process capability for the production process. While conventional simulations helped to reduce development time and cost by ensuring feasible processes, robustness engineering tools have the potential for far greater cost and time savings. Through examples we illustrate how expected and unexpected behavior of deep drawing parts may be tracked down, identified and assigned to the influential parameters. With this knowledge, defects can be eliminated or springback can be compensated e.g.; the response of the part to uncontrollable noise can be predicted and minimized. The newly introduced methods enable more reliable and predictable stamping processes in general.

  16. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  17. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  18. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  19. Robust Fault Estimation Design for Discrete-Time Nonlinear Systems via A Modified Fuzzy Fault Estimation Observer.

    Science.gov (United States)

    Xie, Xiang-Peng; Yue, Dong; Park, Ju H

    2018-02-01

    The paper provides relaxed designs of fault estimation observer for nonlinear dynamical plants in the Takagi-Sugeno form. Compared with previous theoretical achievements, a modified version of fuzzy fault estimation observer is implemented with the aid of the so-called maximum-priority-based switching law. Given each activated switching status, the appropriate group of designed matrices can be provided so as to explore certain key properties of the considered plants by means of introducing a set of matrix-valued variables. Owing to the reason that more abundant information of the considered plants can be updated in due course and effectively exploited for each time instant, the conservatism of the obtained result is less than previous theoretical achievements and thus the main defect of those existing methods can be overcome to some extent in practice. Finally, comparative simulation studies on the classical nonlinear truck-trailer model are given to certify the benefits of the theoretic achievement which is obtained in our study. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Design and Simulation of the Robust ABS and ESP Fuzzy Logic Controller on the Complex Braking Maneuvers

    Directory of Open Access Journals (Sweden)

    Andrei Aksjonov

    2016-11-01

    Full Text Available Automotive driving safety systems such as an anti-lock braking system (ABS and an electronic stability program (ESP assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability control in complex braking maneuvers. The proposed control algorithm is implemented for a sport utility vehicle (SUV and investigated for braking on different surfaces. The results obtained for the vehicle software simulator confirm the robustness of the developed control strategy for a variety of road profiles and surfaces.

  1. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  2. What makes Software Design Effective

    NARCIS (Netherlands)

    Tang, A.; Aleti, A.; Burge, J.; van Vliet, J.C.

    2010-01-01

    Software design is a complex cognitive process in which decision making plays a major role, but our understanding of how decisions are made is limited, especially with regards to reasoning with design problems and formulation of design solutions. In this research, we have observed software designers

  3. Designing Effective Undergraduate Research Experiences

    Science.gov (United States)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  4. Robustness of structures

    DEFF Research Database (Denmark)

    Vrouwenvelder, T.; Sørensen, John Dalsgaard

    2009-01-01

    After the collapse of the World Trade Centre towers in 2001 and a number of collapses of structural systems in the beginning of the century, robustness of structural systems has gained renewed interest. Despite many significant theoretical, methodical and technological advances, structural...... of robustness for structural design such requirements are not substantiated in more detail, nor have the engineering profession been able to agree on an interpretation of robustness which facilitates for its uantification. A European COST action TU 601 on ‘Robustness of structures' has started in 2007...... by a group of members of the CSS. This paper describes the ongoing work in this action, with emphasis on the development of a theoretical and risk based quantification and optimization procedure on the one side and a practical pre-normative guideline on the other....

  5. Towards effective and robust list-based packet filter for signature-based network intrusion detection: an engineering approach

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam For

    2017-01-01

    Network intrusion detection systems (NIDSs) which aim to identify various attacks, have become an essential part of current security infrastructure. In particular, signature-based NIDSs are being widely implemented in industry due to their low rate of false alarms. However, the signature matching...... this problem, packet filtration is a promising solution to reduce unwanted traffic. Motivated by this, in this work, a list-based packet filter was designed and an engineering method of combining both blacklist and whitelist techniques was introduced. To further secure such filters against IP spoofing attacks...... in traffic filtration as well as workload reduction, and is robust against IP spoofing attacks....

  6. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics

    KAUST Repository

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2015-01-01

    Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver–organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.

  7. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics

    KAUST Repository

    Vaseem, Mohammad

    2015-12-29

    Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver–organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.

  8. The pin detector - a simple, robust, cheap and effective nuclear radiation detector

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1984-01-01

    The development of a series of radiation detectors bases on the point anode is reported. Using readily available preformed pins from a variety of electrical connectors as the anodes, a family of devices has been created with useful properties as X-ray detectors, radiation monitors and internal beta counters. A wide variety of gas fillings can be used, argon/CH 4 premix being the most convenient. The structures are robust and call for no precision alignments so keeping costs down. Performance of the devices in respect of sensitivity and pulse height resolution is comparable to that of conventional wire counters. (author)

  9. Taste avoidance induced by wheel running: effects of backward pairings and robustness of conditioned taste aversion.

    Science.gov (United States)

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C

    2004-09-15

    Rats repeatedly exposed to a distinctive novel solution (conditioned stimulus, CS) followed by the opportunity to run in a wheel subsequently drink less of this solution. Investigations on this phenomenon indicate that wheel running is an effective unconditioned stimulus (US) for establishing conditioned taste aversion (CTA) when using a forward conditioning procedure (i.e., the US-wheel running follows the CS-taste). However, other studies show that wheel running produces reliable preference for a distinctive place when pairings are backward (i.e., the CS-location follows the US-wheel running). One possibility to account for these results is that rewarding aftereffects of wheel running conditioned preference to the CS. The main objective of the present study was to assess the effects of backward conditioning using wheel running as the US and a distinctive taste as the CS. In a between-groups design, two experimental groups [i.e., forward (FC) and backward conditioning (BC)] and two control groups [CS-taste alone (TA) and CS-US unpaired (UNP)] were compared. Results from this experiment indicated that there is less suppression of drinking when a CS-taste followed a bout of wheel running. In fact, rats in the BC group drank more of the paired solution than all the other groups.

  10. Robust source and mask optimization compensating for mask topography effects in computational lithography.

    Science.gov (United States)

    Li, Jia; Lam, Edmund Y

    2014-04-21

    Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.

  11. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    National Research Council Canada - National Science Library

    Postma, Barry D

    2005-01-01

    ...) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants...

  12. Expertise Effects in Face-Selective Areas are Robust to Clutter and Diverted Attention, but not to Competition.

    Science.gov (United States)

    McGugin, Rankin Williams; Van Gulick, Ana E; Tamber-Rosenau, Benjamin J; Ross, David A; Gauthier, Isabel

    2015-09-01

    Expertise effects for nonface objects in face-selective brain areas may reflect stable aspects of neuronal selectivity that determine how observers perceive objects. However, bottom-up (e.g., clutter from irrelevant objects) and top-down manipulations (e.g., attentional selection) can influence activity, affecting the link between category selectivity and individual performance. We test the prediction that individual differences expressed as neural expertise effects for cars in face-selective areas are sufficiently stable to survive clutter and manipulations of attention. Additionally, behavioral work and work using event related potentials suggest that expertise effects may not survive competition; we investigate this using functional magnetic resonance imaging. Subjects varying in expertise with cars made 1-back decisions about cars, faces, and objects in displays containing one or 2 objects, with only one category attended. Univariate analyses suggest car expertise effects are robust to clutter, dampened by reducing attention to cars, but nonetheless more robust to manipulations of attention than competition. While univariate expertise effects are severely abolished by competition between cars and faces, multivariate analyses reveal new information related to car expertise. These results demonstrate that signals in face-selective areas predict expertise effects for nonface objects in a variety of conditions, although individual differences may be expressed in different dependent measures depending on task and instructions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. The Robust Software Feedback Model: An Effective Waterfall Model Tailoring for Space SW

    Science.gov (United States)

    Tipaldi, Massimo; Gotz, Christoph; Ferraguto, Massimo; Troiano, Luigi; Bruenjes, Bernhard

    2013-08-01

    The selection of the most suitable software life cycle process is of paramount importance in any space SW project. Despite being the preferred choice, the waterfall model is often exposed to some criticism. As matter of fact, its main assumption of moving to a phase only when the preceding one is completed and perfected (and under the demanding SW schedule constraints) is not easily attainable. In this paper, a tailoring of the software waterfall model (named “Robust Software Feedback Model”) is presented. The proposed methodology sorts out these issues by combining a SW waterfall model with a SW prototyping approach. The former is aligned with the SW main production line and is based on the full ECSS-E-ST-40C life-cycle reviews, whereas the latter is carried out in advance versus the main SW streamline (so as to inject its lessons learnt into the main streamline) and is based on a lightweight approach.

  14. Robustness of critical points in a complex adaptive system: Effects of hedge behavior

    Science.gov (United States)

    Liang, Yuan; Huang, Ji-Ping

    2013-08-01

    In our recent papers, we have identified a class of phase transitions in the market-directed resource-allocation game, and found that there exists a critical point at which the phase transitions occur. The critical point is given by a certain resource ratio. Here, by performing computer simulations and theoretical analysis, we report that the critical point is robust against various kinds of human hedge behavior where the numbers of herds and contrarians can be varied widely. This means that the critical point can be independent of the total number of participants composed of normal agents, herds and contrarians, under some conditions. This finding means that the critical points we identified in this complex adaptive system (with adaptive agents) may also be an intensive quantity, similar to those revealed in traditional physical systems (with non-adaptive units).

  15. Robust integer and fractional helical modes in the quantum Hall effect

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  16. Robustness testing, using experimental design, of a flow-through dissolution method for a product where the actives have markedly differing solubility properties.

    Science.gov (United States)

    Bloomfield, M S; Butler, W C

    2000-09-25

    The use of experimental design for the robustness testing of a flow-through dissolution method (Ph Eur/USP Apparatus 4) for atovaquone, one of the drug substances in a dual-active anti-malarial tablet formulation, Malarone tablets, is described. This procedure was developed to overcome the suppression of the atovaquone solubility, caused by the presence of the co-drug proguanil hydrochloride and potential imprecision due to the poor solubility of the coating material in the basic dissolution media employed. For this testing a quarter fractional two-level factorial design was applied, assessing six factors in sixteen experiments, with a further six centre points to assess natural experimental variation. Results demonstrate that the method is robust to small changes in all the main factors evaluated at sample times of 30 min or greater. At 15 min, variations in the concentration of sodium hydroxide in the dissolution media, peristaltic pump speed and flow rate were assessed as statistically significant. This observation is a result of the initial steepness of the dissolution release curve and hence these factors are now controlled routinely in the method. Release of this poorly soluble drug is limited at the 45 min time point (Q=75%) according to pharmacopoeial guidelines. The approach may be applied for other dissolution procedures.

  17. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Luois-Marie

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract...... of introducing small perturbations into formal models. We address this problem of robust implementations in timed specification theories. We first consider a fixed perturbation and study the robustness of timed specifications with respect to the operators of the theory. To this end we synthesize robust...... specification to an implementation, we need to reason about the possibility to effectively implement the theoretical specifications on physical systems, despite their limited precision. In the literature, this implementation problem has been linked to the robustness problem that analyzes the consequences...

  18. Toward a bioethical framework for antibiotic use, antimicrobial resistance and for empirically designing ethically robust strategies to protect human health: a research protocol.

    Science.gov (United States)

    Hernández-Marrero, Pablo; Martins Pereira, Sandra; de Sá Brandão, Patrícia Joana; Araújo, Joana; Carvalho, Ana Sofia

    2017-12-01

    Introduction Antimicrobial resistance (AMR) is a challenging global and public health issue, raising bioethical challenges, considerations and strategies. Objectives This research protocol presents a conceptual model leading to formulating an empirically based bioethics framework for antibiotic use, AMR and designing ethically robust strategies to protect human health. Methods Mixed methods research will be used and operationalized into five substudies. The bioethical framework will encompass and integrate two theoretical models: global bioethics and ethical decision-making. Results Being a study protocol, this article reports on planned and ongoing research. Conclusions Based on data collection, future findings and using a comprehensive, integrative, evidence-based approach, a step-by-step bioethical framework will be developed for (i) responsible use of antibiotics in healthcare and (ii) design of strategies to decrease AMR. This will entail the analysis and interpretation of approaches from several bioethical theories, including deontological and consequentialist approaches, and the implications of uncertainty to these approaches.

  19. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system.

    Science.gov (United States)

    Bae, Myungsoo; Lee, Sangmin; Kim, Namkug

    2018-07-01

    To develop and validate a robust and cost-effective 3D respiratory monitoring system based on a Kinect device with a custom-made simple marker. A 3D respiratory monitoring system comprising the simple marker and the Microsoft Kinect v2 device was developed. The marker was designed for simple and robust detection, and the tracking algorithm was developed using the depth, RGB, and infra-red images acquired from the Kinect sensor. A Kalman filter was used to suppress movement noises. The major movements of the marker attached to the four different locations of body surface were determined from the initially collected tracking points of the marker while breathing. The signal level of respiratory motion with the tracking point was estimated along the major direction vector. The accuracy of the results was evaluated through a comparison with those of the conventional stereovision navigation system (NDI Polaris Spectra). Sixteen normal volunteers were enrolled to evaluate the accuracy of this system. The correlation coefficients between the respiratory motion signal from the Kinect device and conventional navigation system ranged from 0.970 to 0.999 and from 0.837 to 0.995 at the abdominal and thoracic surfaces, respectively. The respiratory motion signal from this system was obtained at 27-30 frames/s. This system with the Kinect v2 device and simple marker could be used for cost-effective, robust and accurate 3D respiratory motion monitoring. In addition, this system is as reliable for respiratory motion signal generation and as practically useful as the conventional stereovision navigation system and is less sensitive to patient posture. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Robustness Analyses of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Hald, Frederik

    2013-01-01

    The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many mo...... with respect to robustness of timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many...... modern building codes consider the need for the robustness of structures and provide strategies and methods to obtain robustness. Therefore, a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues...

  1. Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

    Science.gov (United States)

    Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2016-04-01

    Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays

    DEFF Research Database (Denmark)

    Petersen, J.; Poulsen, Lena; Petronis, S.

    2008-01-01

    is called a multi-thermal array washer (MTAW), and it has eight individually controlled heating zones, each of which corresponds to the location of a subarray on a slide. Allele-specific oligonucleotide probes for nine mutations in the beta-globin gene were spotted in eight identical subarrays at positions......DNA microarrays are generally operated at a single condition, which severely limits the freedom of designing probes for allele-specific hybridization assays. Here, we demonstrate a fluidic device for multi-stringency posthybridization washing of microarrays on microscope slides. This device...

  3. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    Science.gov (United States)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  4. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    Science.gov (United States)

    Collins, Emmanuel G., Jr.; Phillips, Douglas; Hyland, David C.

    1990-01-01

    An experiment was conducted to design controllers that would provide substantial reduction of line-of-sight control errors. The satisfaction of this objective required the controllers to attenuate the beam vibration significantly. Particular emphasis was placed on controller simplicity (i.e., reduced-order and decentralized controller architectures). Complexity reduction in control law implementation is of paramount interest due to stringent limitations on throughput of even state-of-the-art space qualified processors. The results of this experiment successfully demonstrate active vibrator control for a flexible structure. The testbed is the ACES structure at the NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  5. Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control.

    Science.gov (United States)

    Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A

    2007-10-31

    The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.

  6. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.

    Science.gov (United States)

    Rowland, Clare E; Susumu, Kimihiro; Stewart, Michael H; Oh, Eunkeu; Mäkinen, Antti J; O'Shaughnessy, Thomas J; Kushto, Gary; Wolak, Mason A; Erickson, Jeffrey S; Efros, Alexander L; Huston, Alan L; Delehanty, James B

    2015-10-14

    The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.

  7. Robustness of IPTV business models

    NARCIS (Netherlands)

    Bouwman, H.; Zhengjia, M.; Duin, P. van der; Limonard, S.

    2008-01-01

    The final stage in the STOF method is an evaluation of the robustness of the design, for which the method provides some guidelines. For many innovative services, the future holds numerous uncertainties, which makes evaluating the robustness of a business model a difficult task. In this chapter, we

  8. Framing Effects Are Robust to Linguistic Disambiguation: A Critical Test of Contemporary Theory

    Science.gov (United States)

    Chick, Christina F.; Reyna, Valerie F.; Corbin, Jonathan C.

    2016-01-01

    Theoretical accounts of risky choice framing effects assume that decision makers interpret framing options as extensionally equivalent, such that if 600 lives are at stake, saving 200 implies that 400 die. However, many scholars have argued that framing effects are caused, instead, by filling in pragmatically implied information. This linguistic…

  9. The Crane Robust Control

    Directory of Open Access Journals (Sweden)

    Marek Hicar

    2004-01-01

    Full Text Available The article is about a control design for complete structure of the crane: crab, bridge and crane uplift.The most important unknown parameters for simulations are burden weight and length of hanging rope. We will use robustcontrol for crab and bridge control to ensure adaptivity for burden weight and rope length. Robust control will be designed for current control of the crab and bridge, necessary is to know the range of unknown parameters. Whole robust will be splitto subintervals and after correct identification of unknown parameters the most suitable robust controllers will be chosen.The most important condition at the crab and bridge motion is avoiding from burden swinging in the final position. Crab and bridge drive is designed by asynchronous motor fed from frequency converter. We will use crane uplift with burden weightobserver in combination for uplift, crab and bridge drive with cooperation of their parameters: burden weight, rope length and crab and bridge position. Controllers are designed by state control method. We will use preferably a disturbance observerwhich will identify burden weight as a disturbance. The system will be working in both modes at empty hook as well asat maximum load: burden uplifting and dropping down.

  10. Robust C–C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas

    Directory of Open Access Journals (Sweden)

    Damien Thirion

    2016-10-01

    Full Text Available Effective carbon dioxide (CO2 capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

  11. A Two-Stage DEA to Analyze the Effect of Entrance Deregulation on Iranian Insurers: A Robust Approach

    Directory of Open Access Journals (Sweden)

    Seyed Gholamreza Jalali Naini

    2012-01-01

    Full Text Available We use two-stage data envelopment analysis (DEA model to analyze the effects of entrance deregulation on the efficiency in the Iranian insurance market. In the first stage, we propose a robust optimization approach in order to overcome the sensitivity of DEA results to any uncertainty in the output parameters. Hence, the efficiency of each ongoing insurer is estimated using our proposed robust DEA model. The insurers are then ranked based on their relative efficiency scores for an eight-year period from 2003 to 2010. In the second stage, a comprehensive statistical analysis using generalized estimating equations (GEE is conducted to analyze some other factors which could possibly affect the efficiency scores. The first results from DEA model indicate a decline in efficiency over the entrance deregulation period while further statistical analysis confirms that the solvency ignorance which is a widespread paradigm among state owned companies is one of the main drivers of efficiency in the Iranian insurance market.

  12. Robust estimation of the proportion of treatment effect explained by surrogate marker information.

    Science.gov (United States)

    Parast, Layla; McDermott, Mary M; Tian, Lu

    2016-05-10

    In randomized treatment studies where the primary outcome requires long follow-up of patients and/or expensive or invasive obtainment procedures, the availability of a surrogate marker that could be used to estimate the treatment effect and could potentially be observed earlier than the primary outcome would allow researchers to make conclusions regarding the treatment effect with less required follow-up time and resources. The Prentice criterion for a valid surrogate marker requires that a test for treatment effect on the surrogate marker also be a valid test for treatment effect on the primary outcome of interest. Based on this criterion, methods have been developed to define and estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker. These methods aim to identify useful statistical surrogates that capture a large proportion of the treatment effect. However, current methods to estimate this proportion usually require restrictive model assumptions that may not hold in practice and thus may lead to biased estimates of this quantity. In this paper, we propose a nonparametric procedure to estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on a potential surrogate marker and extend this procedure to a setting with multiple surrogate markers. We compare our approach with previously proposed model-based approaches and propose a variance estimation procedure based on a perturbation-resampling method. Simulation studies demonstrate that the procedure performs well in finite samples and outperforms model-based procedures when the specified models are not correct. We illustrate our proposed procedure using a data set from a randomized study investigating a group-mediated cognitive behavioral intervention for peripheral artery disease participants. Copyright © 2015 John Wiley & Sons, Ltd.

  13. The effect of portion size on food intake is robust to brief education and mindfulness exercises.

    Science.gov (United States)

    Cavanagh, Karen; Vartanian, Lenny R; Herman, C Peter; Polivy, Janet

    2014-06-01

    We examined whether a brief education and a brief mindfulness exercise would reduce the effect of portion size on food intake. Participants were randomly assigned to one of the three information conditions (education, mindfulness, or control) and then received a small or large portion of pasta for lunch. Neither education nor mindfulness was effective in reducing the effect of portion size: Overall, participants served a large portion consumed 34 percent more pasta than did those served a small portion. Participants in the mindfulness condition tended to eat less overall than participants did in the two other conditions, but this trend was not significant. © The Author(s) 2013.

  14. Optimal and robust control of a class of nonlinear systems using dynamically re-optimised single network adaptive critic design

    Science.gov (United States)

    Tiwari, Shivendra N.; Padhi, Radhakant

    2018-01-01

    Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.

  15. Robust Helicopter Stabilization in the Face of Wind Disturbance

    DEFF Research Database (Denmark)

    A. Danapalasingam, Kumeresan; Leth, John-Josef; la Cour-Harbo, Anders

    2010-01-01

    When a helicopter is required to hover with minimum deviations from a desired position without measurements of an affecting persistent wind disturbance, a robustly stabilizing control action is vital. In this paper, the stabilization of the position and translational velocity of a nonlinear...... controller is then designed based on nonlinear adaptive output regulations and robust stabilization of a chain of integrators by a saturated feedback. Simulation results show the effectiveness of the control design in the stabilization of helicopter motion and the built-in robustness of the controller...

  16. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  17. On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model

    Directory of Open Access Journals (Sweden)

    H. Morrison

    2012-08-01

    Full Text Available A cloud system-resolving model (the Weather Research and Forecasting model with 1 km horizontal grid spacing is used to investigate the response of an idealized supercell storm to increased cloud droplet concentrations associated with polluted conditions. The primary focus is on exploring robustness of simulated aerosol effects in the face of complex process interactions and feedbacks between the cloud microphysics and dynamics. Simulations are run using sixteen different model configurations with various microphysical or thermodynamic processes modified or turned off. Robustness of the storm response to polluted conditions is also explored for each configuration by performing additional simulations with small perturbations to the initial conditions. Differences in the domain-mean accumulated surface precipitation and convective mass flux between polluted and pristine conditions are small for almost all model configurations, with relative differences in each quantity generally less than 15%. Configurations that produce a decrease (increase in cold pool strength in polluted conditions also tend to simulate a decrease (increase in surface precipitation and convective mass flux. Combined with an analysis of the dynamical and thermodynamic fields, these results indicate the importance of interactions between microphysics, cold pool evolution, and dynamics along outflow boundaries in explaining the system response. Several model configurations, including the baseline, produce an overall similar storm response (weakening in polluted conditions despite having different microphysical or thermodynamic processes turned off. With hail initiation turned off or the hail fallspeed-size relation set to that of snow, the model produces an invigoration instead of weakening of the storm in polluted conditions. These results highlight the difficulty of foreseeing impacts of changes to model parameterizations and isolating process interactions that drive the system

  18. A robust tool for photon source geometry measurements using the fractional Talbot effect

    Czech Academy of Sciences Publication Activity Database

    Lovric, G.; Oberta, Peter; Mohacsi, I.; Stampanoni, M.; Mokso, R.

    2014-01-01

    Roč. 22, č. 3 (2014), s. 2745-2760 ISSN 1094-4087 Institutional support: RVO:68378271 Keywords : hard X-rays * X-ray imaging * Talbot and self-imaging effects * synchrotron radiation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014 http://www.opticsinfobase.org/oe/search2.cfm?reissue=J&journalList=4&fullrecord=oberta&basicsearch=Go

  19. The drawing effect: Evidence for reliable and robust memory benefits in free recall.

    Science.gov (United States)

    Wammes, Jeffrey D; Meade, Melissa E; Fernandes, Myra A

    2016-01-01

    In 7 free-recall experiments, the benefit of creating drawings of to-be-remembered information relative to writing was examined as a mnemonic strategy. In Experiments 1 and 2, participants were presented with a list of words and were asked to either draw or write out each. Drawn words were better recalled than written. Experiments 3-5 showed that the memory boost provided by drawing could not be explained by elaborative encoding (deep level of processing, LoP), visual imagery, or picture superiority, respectively. In Experiment 6, we explored potential limitations of the drawing effect, by reducing encoding time and increasing list length. Drawing, relative to writing, still benefited memory despite these constraints. In Experiment 7, the drawing effect was significant even when encoding trial types were compared in pure lists between participants, inconsistent with a distinctiveness account. Together these experiments indicate that drawing enhances memory relative to writing, across settings, instructions, and alternate encoding strategies, both within- and between-participants, and that a deep LoP, visual imagery, or picture superiority, alone or collectively, are not sufficient to explain the observed effect. We propose that drawing improves memory by encouraging a seamless integration of semantic, visual, and motor aspects of a memory trace.

  20. Can genetic estimators provide robust estimates of the effective number of breeders in small populations?

    Directory of Open Access Journals (Sweden)

    Marion Hoehn

    Full Text Available The effective population size (N(e is proportional to the loss of genetic diversity and the rate of inbreeding, and its accurate estimation is crucial for the monitoring of small populations. Here, we integrate temporal studies of the gecko Oedura reticulata, to compare genetic and demographic estimators of N(e. Because geckos have overlapping generations, our goal was to demographically estimate N(bI, the inbreeding effective number of breeders and to calculate the N(bI/N(a ratio (N(a =number of adults for four populations. Demographically estimated N(bI ranged from 1 to 65 individuals. The mean reduction in the effective number of breeders relative to census size (N(bI/N(a was 0.1 to 1.1. We identified the variance in reproductive success as the most important variable contributing to reduction of this ratio. We used four methods to estimate the genetic based inbreeding effective number of breeders N(bI(gen and the variance effective populations size N(eV(gen estimates from the genotype data. Two of these methods - a temporal moment-based (MBT and a likelihood-based approach (TM3 require at least two samples in time, while the other two were single-sample estimators - the linkage disequilibrium method with bias correction LDNe and the program ONeSAMP. The genetic based estimates were fairly similar across methods and also similar to the demographic estimates excluding those estimates, in which upper confidence interval boundaries were uninformative. For example, LDNe and ONeSAMP estimates ranged from 14-55 and 24-48 individuals, respectively. However, temporal methods suffered from a large variation in confidence intervals and concerns about the prior information. We conclude that the single-sample estimators are an acceptable short-cut to estimate N(bI for species such as geckos and will be of great importance for the monitoring of species in fragmented landscapes.

  1. Cost-effective and robust mitigation of space debris in low earth orbit

    Science.gov (United States)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  2. Integrated robust controller for vehicle path following

    Energy Technology Data Exchange (ETDEWEB)

    Mashadi, Behrooz; Ahmadizadeh, Pouyan, E-mail: p-ahmadizadeh@iust.ac.ir; Majidi, Majid, E-mail: m-majidi@iust.ac.ir [Iran University of Science and Technology, School of Automotive Engineering (Iran, Islamic Republic of); Mahmoodi-Kaleybar, Mehdi, E-mail: m-mahmoodi-k@iust.ac.ir [Iran University of Science and Technology, School of Mechanical Engineering (Iran, Islamic Republic of)

    2015-02-15

    The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties.

  3. Integrated robust controller for vehicle path following

    International Nuclear Information System (INIS)

    Mashadi, Behrooz; Ahmadizadeh, Pouyan; Majidi, Majid; Mahmoodi-Kaleybar, Mehdi

    2015-01-01

    The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties

  4. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...

  5. Robust factorization

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Fisker, Rune; Åström, Kalle

    2002-01-01

    Factorization algorithms for recovering structure and motion from an image stream have many advantages, but they usually require a set of well-tracked features. Such a set is in generally not available in practical applications. There is thus a need for making factorization algorithms deal effect...

  6. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  7. Multimodel Robust Control for Hydraulic Turbine

    OpenAIRE

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  8. Robust Trust in Expert Testimony

    Directory of Open Access Journals (Sweden)

    Christian Dahlman

    2015-05-01

    Full Text Available The standard of proof in criminal trials should require that the evidence presented by the prosecution is robust. This requirement of robustness says that it must be unlikely that additional information would change the probability that the defendant is guilty. Robustness is difficult for a judge to estimate, as it requires the judge to assess the possible effect of information that the he or she does not have. This article is concerned with expert witnesses and proposes a method for reviewing the robustness of expert testimony. According to the proposed method, the robustness of expert testimony is estimated with regard to competence, motivation, external strength, internal strength and relevance. The danger of trusting non-robust expert testimony is illustrated with an analysis of the Thomas Quick Case, a Swedish legal scandal where a patient at a mental institution was wrongfully convicted for eight murders.

  9. The research on optimization of auto supply chain network robust model under macroeconomic fluctuations

    International Nuclear Information System (INIS)

    Guo, Chunxiang; Liu, Xiaoli; Jin, Maozhu; Lv, Zhihan

    2016-01-01

    Considering the uncertainty of the macroeconomic environment, the robust optimization method is studied for constructing and designing the automotive supply chain network, and based on the definition of robust solution a robust optimization model is built for integrated supply chain network design that consists of supplier selection problem and facility location–distribution problem. The tabu search algorithm is proposed for supply chain node configuration, analyzing the influence of the level of uncertainty on robust results, and by comparing the performance of supply chain network design through the stochastic programming model and robustness optimize model, on this basis, determining the rational layout of supply chain network under macroeconomic fluctuations. At last the contrastive test result validates that the performance of tabu search algorithm is outstanding on convergence and computational time. Meanwhile it is indicated that the robust optimization model can reduce investment risks effectively when it is applied to supply chain network design.

  10. Flight controller design of unmanned airplane for radiation monitoring system via structured robust controller design using multiple model approach. Radiation monitoring flight in Namie-machi in Fukushima prefecture

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2015-01-01

    Due to the tragic accident of radioactive contaminant spread from Fukushima Dai-ichi nuclear power plant, the necessity of unmanned systems for radiation monitoring has been increasing. This paper concerns the flight controller design of an unmanned airplane which has been developed for radiation monitoring around the power plant. The flight controller consists of conventional control elements, i.e. Stability/Control Augmentation System (S/CAS) with PI controllers and guidance loops with PID controllers. The gains in these controllers are designed by minimizing appropriately defined cost functions for several possible models and disturbances to produce structured robust flight controllers. (This method is called as 'multiple model approach'.) Control performance of our flight controller was evaluated through flight tests and a primitive flight of radiation monitoring in Namie-machi in Fukushima prefecture was conducted in Jan. 2014. Flight results are included in this paper. (author)

  11. Linear open-loop and closed-loop control theory. Modelling of control paths, robust stability, design of robust controllers, trajectory control with follow-up contorl, polynomial description of MIMO systems, time discrete control loops and scanning control loops; Lineare Regelungs- und Steuerungstheorie. Modellierung von Regelstrecken, Robuste Stabilitaet und Entwurf robuster Regler, Trajektoriensteuerung mit Folgeregelung, Polynomiale Beschreibung von MIMO-Systemen, Zeitdiskrete und Abtastregelkreise

    Energy Technology Data Exchange (ETDEWEB)

    Reinschke, K. [Technische Univ. Dresden (Germany). Inst. fuer Regelungs- und Streuerungstheorie

    2006-07-01

    After the introduction of bachelor and master studies in Germany, new training concepts are required. In the field of engineering, there is a lack of research-oriented German-language textbooks which are also suited for further training of professionally experienced engineers. The author addresses readers with good prior knowledge of mathematics and application-oriented basic training in open-loop and control-loop engineering who intend to deepen their knowledge of the methods of control of linear time-continuous processes. The reader is enabled to apply the mathematical tools of linear system theory for control purposes. Unavoidable uncertainties in the modelling of control paths are considered. The focus is on function theoretical and algebraic aspects which enable the design of robust stabilising controllers as well as trajectory control and follow-up control and also the time-continuous treatment of scanning control loops. There are many examples to illustrate the general laws that are presented. (orig.) [German] Die Einfuehrung von gestuften Bachelor- und Master-Studiengaengen erfordert neue Ausbildungskonzepte. Fuer die Master- und Promotionsstudiengaenge der Ingenieure mangelt es bisher an forschungsorientierten deutschsprachigen Lehrwerken, die zugleich auch zur Fortbildung von berufserfahrenen Ingenieuren geeignet sind. Dieses Buch traegt zur Behebung dieses Mangels bei. Der Autor wendet sich an Leser, die eine gute mathematische Vorbildung und eine anwendungsorientierte Grundausbildung in Regelungs- und Steuerungstechnik abgeschlossen haben und nun tiefer in die Methoden der Regelung und Steuerung von linearen zeitkontinuierlichen Prozessen eindringen wollen. Der Leser wird befaehigt, die mathematischen Werkzeuge der linearen Systemtheorie fuer regelungstechnische Zwecke einzusetzen. Bei der Modellierung von Regelstrecken werden die unvermeidlichen Unbestimmtheiten beruecksichtigt. Im Zentrum stehen die funktionentheoretischen und algebraischen

  12. Optimization of Tape Winding Process Parameters to Enhance the Performance of Solid Rocket Nozzle Throat Back Up Liners using Taguchi's Robust Design Methodology

    Science.gov (United States)

    Nath, Nayani Kishore

    2017-08-01

    The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.

  13. Robust digital controllers for uncertain chaotic systems: A digital redesign approach

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, Mohammad [Department of Controls, FMC Kongsberg Subsea, FMC Energy Systems, Houston, TX 77067 (United States); Barajas-Ramirez, Juan-Gonzalo [CICESE, Depto. De Electronica y Telecomunicaciones, Ensenada, BC, 22860 (Mexico); Chen Guanrong [Centre for Chaos Control and Synchronization, Department of Electronic Engineering, City University of Hong Kong (China); Shieh, Leang S. [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 (United States)

    2007-03-15

    In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems--chaotic systems.

  14. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    Science.gov (United States)

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity.

    Science.gov (United States)

    Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for

  16. Robust determination of effective atomic numbers for electron interactions with TLD-100 and TLD-100H thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Taylor, M.L.

    2011-01-01

    Lithium fluoride thermoluminescent dosimeters (TLD) are the most commonly implemented for clinical dosimetry. The small physical magnitude of TLDs makes them attractive for applications such as small field measurement, in vivo dosimetry and measurement of out-of-field doses to critical structures. The most broadly used TLD is TLD-100 (LiF:Mg,Ti) and, for applications requiring higher sensitivity to low-doses, TLD-100H (LiF:Mg,Cu,P) is frequently employed. The radiological properties of these TLDs are therefore of significant interest. For the first time, in this study effective atomic numbers for radiative, collisional and total electron interaction processes are calculated for TLD-100 and TLD-100H dosimeters over the energy range 1 keV-100 MeV. This is undertaken using a robust, energy-dependent method of calculation rather than typical power-law approximations. The influence of dopant concentrations and unwanted impurities is also investigated. The two TLDs exhibit similar effective atomic numbers, ranging from approximately 5.77-6.51. Differences arising from the different dopants are most pronounced in low-energy radiative effects. The TLDs have atomic numbers approximately 1.48-2.06 times that of water. The effective atomic number of TLD-100H is consistently higher than that of TLD-100 over a broad energy range, due to the greater influence of the higher-Z dopants on the electron interaction cross sections. Typical variation in dopant concentration does not significantly influence the effective atomic number. The influence on TLD-100H is comparatively more pronounced than that on TLD-100. Contrariwise, unwanted hydroxide impurities influence TLD-100 more than TLD-100H. The effective atomic number is a key parameter that influences the radiological properties and energy response of TLDs. Although many properties of these TLDs have been studied rigorously, as yet there has been no investigation of their effective atomic numbers for electron interactions. The

  17. Systemic Design for Second-Order Effects

    Directory of Open Access Journals (Sweden)

    Evan Barba

    2017-04-01

    Full Text Available Second-order effects refer to changes within a system that are the result of changes made somewhere else in the system (the first-order effects. Second-order effects can occur at different spatial, temporal, or organizational scales from the original interventions, and are difficult to control. Some organizational theorists suggest that careful management of feedback processes can facilitate controlled change from one organizational configuration to another. Recognizing that skill in managing feedback processes is a core competency of design suggests that design skills are potentially useful tools in achieving organizational change. This paper describes a case study in which a co-design methodology was used to control the second-order effects resulting from a classroom intervention to create organizational change. This approach is then theorized as the Instigator Systems approach.

  18. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies.

    Science.gov (United States)

    Jenkins, Michael J; Farid, Suzanne S

    2015-01-01

    The ability to develop cost-effective, scalable and robust bioprocesses for human pluripotent stem cells (hPSCs) will be key to their commercial success as cell therapies and tools for use in drug screening and disease modelling studies. This review outlines key process economic drivers for hPSCs and progress made on improving the economic and operational feasibility of hPSC bioprocesses. Factors influencing key cost metrics, namely capital investment and cost of goods, for hPSCs are discussed. Step efficiencies particularly for differentiation, media requirements and technology choice are amongst the key process economic drivers identified for hPSCs. Progress made to address these cost drivers in hPSC bioprocessing strategies is discussed. These include improving expansion and differentiation yields in planar and bioreactor technologies, the development of xeno-free media and microcarrier coatings, identification of optimal bioprocess operating conditions to control cell fate and the development of directed differentiation protocols that reduce reliance on expensive morphogens such as growth factors and small molecules. These approaches offer methods to further optimise hPSC bioprocessing in terms of its commercial feasibility. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  19. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  20. Robust distributed cognitive relay beamforming

    KAUST Repository

    Pandarakkottilil, Ubaidulla; Aissa, Sonia

    2012-01-01

    design takes into account a parameter of the error in the channel state information (CSI) to render the performance of the beamformer robust in the presence of imperfect CSI. Though the original problem is non-convex, we show that the proposed design can

  1. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  2. Non-random temporary emigration and the robust design: Conditions for bias at the end of a time series: Section VIII

    Science.gov (United States)

    Langtimm, Catherine A.

    2008-01-01

    Deviations from model assumptions in the application of capture–recapture models to real life situations can introduce unknown bias. Understanding the type and magnitude of bias under these conditions is important to interpreting model results. In a robust design analysis of long-term photo-documented sighting histories of the endangered Florida manatee, I found high survival rates, high rates of non-random temporary emigration, significant time-dependence, and a diversity of factors affecting temporary emigration that made it difficult to model emigration in any meaningful fashion. Examination of the time-dependent survival estimates indicated a suspicious drop in survival rates near the end of the time series that persisted when the original capture histories were truncated and reanalyzed under a shorter time frame. Given the wide swings in manatee emigration estimates from year to year, a likely source of bias in survival was the convention to resolve confounding of the last survival probability in a time-dependent model with the last emigration probabilities by setting the last unmeasurable emigration probability equal to the previous year’s probability when the equality was actually false. Results of a series of simulations demonstrated that if the unmeasurable temporary emigration probabilities in the last time period were not accurately modeled, an estimation model with significant annual variation in survival probabilities and emigration probabilities produced bias in survival estimates at the end of the study or time series being explored. Furthermore, the bias propagated back in time beyond the last two time periods and the number of years affected varied positively with survival and emigration probabilities. Truncating the data to a shorter time frame and reanalyzing demonstrated that with additional years of data surviving temporary emigrants eventually return and are detected, thus in subsequent analysis unbiased estimates are eventually realized.

  3. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design

    Directory of Open Access Journals (Sweden)

    Kyosuke Hiyama

    2015-01-01

    Full Text Available Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.

  4. Assigning Robust Default Values in Building Performance Simulation Software for Improved Decision-Making in the Initial Stages of Building Design.

    Science.gov (United States)

    Hiyama, Kyosuke

    2015-01-01

    Applying data mining techniques on a database of BIM models could provide valuable insights in key design patterns implicitly present in these BIM models. The architectural designer would then be able to use previous data from existing building projects as default values in building performance simulation software for the early phases of building design. The author has proposed the method to minimize the magnitude of the variation in these default values in subsequent design stages. This approach maintains the accuracy of the simulation results in the initial stages of building design. In this study, a more convincing argument is presented to demonstrate the significance of the new method. The variation in the ideal default values for different building design conditions is assessed first. Next, the influence of each condition on these variations is investigated. The space depth is found to have a large impact on the ideal default value of the window to wall ratio. In addition, the presence or absence of lighting control and natural ventilation has a significant influence on the ideal default value. These effects can be used to identify the types of building conditions that should be considered to determine the ideal default values.

  5. Robustness in laying hens

    NARCIS (Netherlands)

    Star, L.

    2008-01-01

    The aim of the project ‘The genetics of robustness in laying hens’ was to investigate nature and regulation of robustness in laying hens under sub-optimal conditions and the possibility to increase robustness by using animal breeding without loss of production. At the start of the project, a robust

  6. Effects of Environmental Design on Patient Outcome

    DEFF Research Database (Denmark)

    Laursen, Jannie; Danielsen, Anne Kjaergaard; Rosenberg, Jacob

    2014-01-01

    OBJECTIVE: The aim of this systematic review was to assess how inpatients were affected by the built environment design during their hospitalization. BACKGROUND: Over the last decade, the healthcare system has become increasingly aware of how focus on healthcare environment might affect patient....... The following databases were searched: Medline/PubMed, Cinahl, and Embase. Inclusion criteria were randomized clinical trials (RCTs) investigating the effect of built environment design interventions such as music, natural murals, and plants in relation to patients' health outcome. RESULTS: Built environment...... satisfaction. The focus on environmental design has become a field with great potential because of its possible impact on cost control while improving quality of care. METHODS: A systematic literature search was conducted to identify current and past studies about evidence-based healthcare design...

  7. 3’-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway

    Science.gov (United States)

    Li, Bai; Hou, Yangyang; Zhu, Ming; Bao, Hongkun; Nie, Jun; Zhang, Grace Y.; Shan, Liping; Yao, Yao; Du, Kai; Yang, Hongju; Li, Meizhang; Zheng, Bingrong; Xu, Xiufeng; Xiao, Chunjie; Du, Jing

    2016-01-01

    Background: The development of rapid and safe antidepressants for the treatment of major depression is in urgent demand. Converging evidence suggests that glutamatergic signaling seems to play important roles in the pathophysiology of depression. Methods: We studied the antidepressant effects of 3’-deoxyadenosine (3’-dA, Cordycepin) and the critical role of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in male CD-1 mice via behavioral and biochemical experiments. After 3’-dA treatment, the phosphorylation and synaptic localization of the AMPA receptors GluR1 and GluR2 were determined in the prefrontal cortex (PFC) and hippocampus (HIP). The traditional antidepressant imipramine was applied as a positive control. Results: We found that an injection of 3’-dA led to a rapid and robust antidepressant effect, which was significantly faster and stronger than imipramine, after 45min in tail suspension and forced swim tests. This antidepressant effect remained after 5 days of treatment with 3’-dA. Unlike the psycho-stimulants, 3’-dA did not show a hyperactive effect in the open field test. After 45min or 5 days of treatment, 3’-dA enhanced GluR1 S845 phosphorylation in both the PFC and HIP. In addition, after 45min of treatment, 3’-dA significantly up-regulated GluR1 S845 phosphorylation and GluR1, but not GluR2 levels, at the synapses in the PFC. After 5 days of treatment, 3’-dA significantly enhanced GluR1 S845 phosphorylation and GluR1, but not GluR2, at the synapses in the PFC and HIP. Moreover, the AMPA-specific antagonist GYKI 52466 was able to block the rapid antidepressant effects of 3’-dA. Conclusion: This study identified 3’-dA as a novel rapid antidepressant with clinical potential and multiple beneficial mechanisms, particularly in regulating the prefrontal AMPA receptor signaling pathway. PMID:26443809

  8. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans

  9. Best Practices for Effective Poster Design

    Science.gov (United States)

    Star Cartier, Kimberly Michelle; Zhao, Ming; Beatty, Thomas G.; Morehead, Robert C.; Jontof-Hutter, Daniel

    2016-01-01

    This meta-poster illustrates how good poster design can effectively communicate scientific ideas to a broad professional audience. Inclusion of illustrative fugues supplemented by concise explanations of scientific information will provide a clear overview of your science to aid your oral pitch.

  10. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method.

    Science.gov (United States)

    Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro

    2018-04-18

    Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

  11. Advances in robust fractional control

    CERN Document Server

    Padula, Fabrizio

    2015-01-01

    This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...

  12. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme.

    Science.gov (United States)

    Syed Ali, M; Vadivel, R; Saravanakumar, R

    2018-06-01

    This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. On cost-effective communication network designing

    Science.gov (United States)

    Zhang, Guo-Qiang

    2010-02-01

    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.

  14. Optical Illusions and Effects on Clothing Design

    Directory of Open Access Journals (Sweden)

    Saliha AĞAÇ

    2015-06-01

    Full Text Available “Visual perception” is in the first ranking between the types of perception. Gestalt Theory of the major psychological theories are used in how visual perception realizes and making sense of what is effective in this process. In perception stage brain tak es into account not only stimulus from eyes but also expectations arising from previous experience and interpreted the stimulus which are not exist in the real world as if they were there. Misperception interpretations that brain revealed are called as “Pe rception Illusion” or “Optical Illusion” in psychology. Optical illusion formats come into existence due to factors such as brightness, contrast, motion, geometry and perspective, interpretation of three - dimensional images, cognitive status and color. Opti cal illusions have impacts of different disciplines within the study area on people. Among the most important types of known optical illusion are Oppel - Kundt, Curvature - Hering, Helzholtz Sqaure, Hermann Grid, Muller - Lyler, Ebbinghaus and Ponzo illusion etc . In fact, all the optical illusions are known to be used in numerous area with various techniques and different product groups like architecture, fine arts, textiles and fashion design from of old. In recent years, optical illusion types are frequently us ed especially within the field of fashion design in the clothing model, in style, silhouette and fabrics. The aim of this study is to examine the clothing design applications where optical illusion is used and works done in this subject. Some research of the design with the changing fashion of clothes of different types of optical illusions is discussed with examples of their effects on visual perception. In the study, optical illusory clothing models are scanned by visual analysis from documents like film , video, picture, web pages. The findings were analyzed in terms of the surface and design and effects of the optical illusion on clothing design has tried to put

  15. Design And Implementation Of Cost Effective Inverter

    Directory of Open Access Journals (Sweden)

    Niaz Morshedul Haque

    2017-10-01

    Full Text Available This paper deals with the design and construct of a 100 Watt 220 Volt and 50 Hz Inverter. The system is designed without any microcontroller and it has a cost-effective design architecture. The elementary purpose of this device is to transmute 12 V DC to 220 V AC. Snubber technology is used to diminish the reverse potential transients and excessive heat of transformer winding and transistor switches. Switching pulse generated by NE 555 timer circuit and comparator circuit was used to take signal strength input from its rear as well as from both sides for triggering the MOSFET switches. Another switch is used to invert pulse between two switching circuitries. A 5 volts regulator IC 7805 was used to supply fixed 5V for biasing the switching and amplifying circuitry.

  16. Efficient reanalysis techniques for robust topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Sigmund, Ole; Lazarov, Boyan Stefanov

    2012-01-01

    efficient robust topology optimization procedures based on reanalysis techniques. The approach is demonstrated on two compliant mechanism design problems where robust design is achieved by employing either a worst case formulation or a stochastic formulation. It is shown that the time spent on finite...

  17. Robust efficient video fingerprinting

    Science.gov (United States)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  18. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  19. Attractive ellipsoids in robust control

    CERN Document Server

    Poznyak, Alexander; Azhmyakov, Vadim

    2014-01-01

    This monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the “attractive ellipsoid method.” Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability properties. The authors discuss linear-style feedback control synthesis in the context of the above-mentioned systems. The development and physical implementation of high-performance robust-feedback controllers that work in the absence of complete information is addressed, with numerous examples to illustrate how to apply the attractive ellipsoid method to mechanical and electromechanical systems. While theorems are proved systematically, the emphasis is on understanding and applying the theory to real-world situations. Attractive Ellipsoids in Robust Control will a...

  20. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing.

  1. Giant magnetic anisotropy and robust quantum anomalous Hall effect in boron-doped graphene with Re-adsorption

    Science.gov (United States)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan

    2018-04-01

    Recently topological materials have attracted much attention due to their quantization transports as well as edge states. It will be excellent to realize the robust quantum anomalous Hall transports in graphene-based devices. Using density-functional theory and tight-binding method, we investigated the structural, magnetic and topological properties for the boron-doped graphene with Re-adsorption. A large band-gap of 32.5 meV is opened by the Rashba spin-orbital coupling, and the band-gap is robust against the shape deformation of  ± 4% along the zigzag direction. Giant magnetic anisotropy emerges in this adsorption system together with the Fermi level lying in the band gap. Both the magnetic anisotropy and the band gap can be tuned by a moderate electric field. Calculations reveal that the system exhibits the quantization transports with the Chern number C=2 .

  2. Robust snapshot interferometric spectropolarimetry.

    Science.gov (United States)

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  3. Robust visual hashing via ICA

    International Nuclear Information System (INIS)

    Fournel, Thierry; Coltuc, Daniela

    2010-01-01

    Designed to maximize information transmission in the presence of noise, independent component analysis (ICA) could appear in certain circumstances as a statistics-based tool for robust visual hashing. Several ICA-based scenarios can attempt to reach this goal. A first one is here considered.

  4. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, althou...

  5. Robustness of Long Span Reciprocal Timber Structures

    DEFF Research Database (Denmark)

    Balfroid, Nathalie; Kirkegaard, Poul Henning

    2011-01-01

    engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper makes a discussion of such robustness issues related to the future development of reciprocal timber structures. The paper concludes that these kind of structures can have...... a potential as long span timber structures in real projects if they are carefully designed with respect to the overall robustness strategies.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. The interest has also been facilitated due to recently severe structural failures...

  6. Robust Nonlinear Control with Compensation Operator for a Peltier System

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wen

    2014-01-01

    Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.

  7. Comparing Repetition Priming Effects in Words and Arithmetic Equations: Robust Priming Regardless of Color or Response Hand Change

    Directory of Open Access Journals (Sweden)

    Ailsa Humphries

    2018-01-01

    Full Text Available Previous studies have shown that stimulus repetition can lead to reliable behavioral improvements. Although this repetition priming (RP effect has been reported in a number of paradigms using a variety of stimuli including words, objects, and faces, only a few studies have investigated mathematical cognition involving arithmetic computation, and no prior research has directly compared RP effects in a linguistic task with an arithmetic task. In two experiments, we used a within-subjects design to investigate and compare the magnitude of RP, and the effects of changing the color or the response hand for repeated, otherwise identical, stimuli in a word and an arithmetic categorization task. The results show that the magnitude of RP was comparable between the two tasks and that changing the color or the response hand had a negligible effect on priming in either task. These results extended previous findings in mathematical cognition. They also indicate that priming does not vary with stimulus domain. The implications of the results were discussed with reference to both facilitation of component processes and episodic memory retrieval of stimulus–response binding.

  8. Comparing Repetition Priming Effects in Words and Arithmetic Equations: Robust Priming Regardless of Color or Response Hand Change.

    Science.gov (United States)

    Humphries, Ailsa; Chen, Zhe; Neumann, Ewald

    2017-01-01

    Previous studies have shown that stimulus repetition can lead to reliable behavioral improvements. Although this repetition priming (RP) effect has been reported in a number of paradigms using a variety of stimuli including words, objects, and faces, only a few studies have investigated mathematical cognition involving arithmetic computation, and no prior research has directly compared RP effects in a linguistic task with an arithmetic task. In two experiments, we used a within-subjects design to investigate and compare the magnitude of RP, and the effects of changing the color or the response hand for repeated, otherwise identical, stimuli in a word and an arithmetic categorization task. The results show that the magnitude of RP was comparable between the two tasks and that changing the color or the response hand had a negligible effect on priming in either task. These results extended previous findings in mathematical cognition. They also indicate that priming does not vary with stimulus domain. The implications of the results were discussed with reference to both facilitation of component processes and episodic memory retrieval of stimulus-response binding.

  9. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-feng; GUO Qing-ding

    2005-01-01

    A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

  10. Robustness Assessment of Spatial Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    2012-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern buildi...... to robustness of spatial timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern building...... codes consider the need for robustness of structures and provide strategies and methods to obtain robustness. Therefore a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues with respect...

  11. UNIX-based operating systems robustness evaluation

    Science.gov (United States)

    Chang, Yu-Ming

    1996-01-01

    Robust operating systems are required for reliable computing. Techniques for robustness evaluation of operating systems not only enhance the understanding of the reliability of computer systems, but also provide valuable feed- back to system designers. This thesis presents results from robustness evaluation experiments on five UNIX-based operating systems, which include Digital Equipment's OSF/l, Hewlett Packard's HP-UX, Sun Microsystems' Solaris and SunOS, and Silicon Graphics' IRIX. Three sets of experiments were performed. The methodology for evaluation tested (1) the exception handling mechanism, (2) system resource management, and (3) system capacity under high workload stress. An exception generator was used to evaluate the exception handling mechanism of the operating systems. Results included exit status of the exception generator and the system state. Resource management techniques used by individual operating systems were tested using programs designed to usurp system resources such as physical memory and process slots. Finally, the workload stress testing evaluated the effect of the workload on system performance by running a synthetic workload and recording the response time of local and remote user requests. Moderate to severe performance degradations were observed on the systems under stress.

  12. Robust Reliability or reliable robustness? - Integrated consideration of robustness and reliability aspects

    DEFF Research Database (Denmark)

    Kemmler, S.; Eifler, Tobias; Bertsche, B.

    2015-01-01

    products are and vice versa. For a comprehensive understanding and to use existing synergies between both domains, this paper discusses the basic principles of Reliability- and Robust Design theory. The development of a comprehensive model will enable an integrated consideration of both domains...

  13. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  14. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather

    Science.gov (United States)

    Zeyringer, Marianne; Price, James; Fais, Birgit; Li, Pei-Hao; Sharp, Ed

    2018-05-01

    The design of cost-effective power systems with high shares of variable renewable energy (VRE) technologies requires a modelling approach that simultaneously represents the whole energy system combined with the spatiotemporal and inter-annual variability of VRE. Here, we soft-link a long-term energy system model, which explores new energy system configurations from years to decades, with a high spatial and temporal resolution power system model that captures VRE variability from hours to years. Applying this methodology to Great Britain for 2050, we find that VRE-focused power system design is highly sensitive to the inter-annual variability of weather and that planning based on a single year can lead to operational inadequacy and failure to meet long-term decarbonization objectives. However, some insights do emerge that are relatively stable to weather-year. Reinforcement of the transmission system consistently leads to a decrease in system costs while electricity storage and flexible generation, needed to integrate VRE into the system, are generally deployed close to demand centres.

  15. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  16. Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    KAUST Repository

    Xing, Chengwen

    2012-09-01

    In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplifyand-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimationerrors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.

  17. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Liu, W; Shen, J; Stoker, J; Bues, M; Schild, S; Wong, W; Chang, J; Liao, Z; Wen, Z; Sahoo, N; Herman, M; Mohan, R

    2015-01-01

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses to achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest

  18. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Shen, J; Stoker, J; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States); Schild, S; Wong, W [Mayo Clinic, Phoenix, Arizona (United States); Chang, J; Liao, Z; Wen, Z; Sahoo, N [MD Anderson Cancer Center, Houston, TX (United States); Herman, M [Mayo Clinic, Rochester, MN (United States); Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses to achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest

  19. Robustness of raw quantum tomography

    Science.gov (United States)

    Asorey, M.; Facchi, P.; Florio, G.; Man'ko, V. I.; Marmo, G.; Pascazio, S.; Sudarshan, E. C. G.

    2011-01-01

    We scrutinize the effects of non-ideal data acquisition on the tomograms of quantum states. The presence of a weight function, schematizing the effects of a finite window or equivalently noise, only affects the state reconstruction procedure by a normalization constant. The results are extended to a discrete mesh and show that quantum tomography is robust under incomplete and approximate knowledge of tomograms.

  20. Robustness of raw quantum tomography

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M. [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Facchi, P. [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Florio, G. [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Man' ko, V.I., E-mail: manko@lebedev.r [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Pascazio, S. [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States)

    2011-01-31

    We scrutinize the effects of non-ideal data acquisition on the tomograms of quantum states. The presence of a weight function, schematizing the effects of a finite window or equivalently noise, only affects the state reconstruction procedure by a normalization constant. The results are extended to a discrete mesh and show that quantum tomography is robust under incomplete and approximate knowledge of tomograms.