Perturbative effect of heavy particles in an effective-Lagrangian approach
International Nuclear Information System (INIS)
Hagiwara, T.; Nakazawa, N.
1981-01-01
An effective-Lagrangian approach is summarized to estimate the perturbative effect of heavy-mass particles in the leading-logarithmic approximation: the logarithmic corrections to mass-suppressed amplitudes are given in a concise form. We apply the formalism to a simplified model with two scalar fields where one is heavy and the other is light. We derive an effective Lagrangian by calculating heavy-particle one-loop diagrams. Solving renormalization-group equations derived from the effective Lagrangian by light-particle one-loop corrections, we obtain logarithmic corrections to the mass-suppressed amplitudes. The results are confirmed by explicit two-loop calculation in the full theory, up to order O((1/M 2 )1nM 2 ), where M is a heavy scalar mass. It is found that the boundary condition for solving the renormalization-group equations must be specified by the renormalization at the heavy-particle mass. It must also be emphasized that in an effective-Lagrangian approach minimal subtraction is not a proper method of renormalization. The necessity to adopt the conventional momentum-shell subtraction is stressed. Several applications of this formalism are also mentioned
International Nuclear Information System (INIS)
Kaminski, J.Z.
1981-01-01
A renormalization group equation for the effective Lagrangian of QED is obtained. Starting from this equation, perturbation theory for the renormalization group equation (PTRGE) is developed. The results are in full agreement with the standard perturbation theory. Conjecturing that the asymptotic effective coupling constant is finite, the effective Lagrangian for a strong magnetic field is obtained, which is proportional to the Maxwellian Lagrangian. For the asymptotically free theories the situation is diametrically opposed to QED. In these cases the effective Lagrangian of the Yang-Mills system tends to infinity for very strong external Yang-Mills fields. (Auth.)
Versatility of field theory motivated nuclear effective Lagrangian approach
International Nuclear Information System (INIS)
Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.
2004-01-01
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei
Photoproduction of the eta prime meson in the effective Lagrangian approach
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, J.F. [Rensselaer Polytechnic Inst., Troy, NY (United States); Benmerrouche, M. [Univ. of Saskatchewan, Saskaton (Canada)
1994-04-01
In the framework of the effective Lagrangian approach, the authors study the {eta}{prime} photoproduction off protons, of great interest at CEBAF I and II. They calculate the contributions from the leading nucleon Born terms, vector meson exchanges, and estimate the resonance contributions, using the transition amplitudes from the recent quark model estimates by Capstick and Roberts. They discuss implications for the CEBAF experiments.
Effective Lagrangian approach to the fermion mass problem
International Nuclear Information System (INIS)
Shaw, D.S.; Volkas, R.R.
1994-01-01
An effective theory is proposed, combining the standard gauge group SU(3) C direct-product SU(2) L direct-product U(1) Y with a horizontal discrete symmetry. By assigning appropriate charges under this discrete symmetry to the various fermion fields and to (at least) two Higgs doublets, the broad spread of the fermion mass and mixing angle spectrum can be explained as a result of suppressed, non-renormalizable terms. A particular model is constructed which achieves the above while simultaneously suppressing neutral Higgs-induced flavour-changing processes. 9 refs., 3 tabs., 1 fig
Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach
International Nuclear Information System (INIS)
Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.
2005-01-01
It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei
Renormalization and effective lagrangians
International Nuclear Information System (INIS)
Polchinski, J.
1984-01-01
There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional lambda PHI 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. (orig.)
Phenomenological analysis of ε'/ε within an effective chiral Lagrangian approach at O(p6)
International Nuclear Information System (INIS)
Bel'kov, A.A.; Lanev, A.V.; Moshkin, A.A.; Bohm, G.
1999-01-01
We have combined a new systematic calculation of mesonic matrix elements at O(p 6 ) from an effective chiral Lagrangian approach with Wilson coefficients from [1], derived in the framework of perturbative QCD, and restricted partly by experimental data. We derive complete expressions for K → 2π amplitudes and compare the results for ε'/ε with experiment
Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach
Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon
2017-12-01
Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
γγ → ρρ: an effective lagrangian approach
International Nuclear Information System (INIS)
Moussallam, B.
1987-02-01
The process γγ → ρρ, at low energy, is considered using an effective lagrangian model. From the principle of vector dominance, it is related to the interactions of the ρ meson with itself and with other low mass mesons. We find the pseudoscalar exchange terms to be rather small and the self-interaction one to be very important. Using a K-matrix parametrization of the amplitude, this contribution alone generates about one half of the ρ 0 ρ 0 cross-section. The amplitude for ρ + ρ - then turns out to be much too large and has to be cancelled by other processes. We show that a diagram containing the tensor meson f plays this role in part. If the values of the coupling constants are taken from experiment, the cancellation is really effective only if a vertex form-factor is allowed for. Even so, the model is not sufficient to quantitatively explain the data
Effective lagrangian from bosonic string field theory
International Nuclear Information System (INIS)
Nakazawa, Naohito
1987-01-01
We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)
Effective Lagrangian from superstrings
International Nuclear Information System (INIS)
Cvetic, M.
1989-01-01
This paper presents a method to calculate the structure of the effective potential for four-dimensional vacua of the heterotic superstring with the space-time supersymmetry. The authors spell out the properties of the string vertices as defined in terms of the conformal field theory, the structure of the string amplitudes, in particular those that probe the superpotential terms, and present a method to evaluate such string amplitudes. The authors illustrate the approach by presenting certain results for the (blown-up) orbifolds
Derivation of mass relations for composite W* and Z* from effective Lagrangian approach
International Nuclear Information System (INIS)
Yasue, Masaki; Oneda, Sadao.
1985-04-01
In an effective-Lagrangian model with gauge bosons (W,Z,γ) and their neighboring spin J=1 composites (W*,Z*), we find relations among their masses, m sub(W), m sub(Z), m sub(W*) and m sub(Z*): m sub(W) m sub(W*) = cos theta m sub(Z) m sub(Z*) (as a generalization of m sub(W) = cos theta m sub(Z)) and m sub(W) 2 + m sub(W*) 2 + tan 2 theta m sub(W0) 2 = m sub(Z) 2 + m sub(Z*) 2 with m sub(W0) being the mass of W in the standard model provided that the system respects the SU(2) sub(L) x U(1) sub(Y) symmetry. W* and Z* are taken as the lowest-lying excited states belonging to an SU(2) sub(L)-triplet in the symmetric limit. The existence of W* coupling to the V-A current modifies the relation between G sub(F) and M sub(W) and that of Z* generates a new interaction of the (Jsup(em)) 2 -type as well as the deviation of sin theta sub(W) observed at low energies from the mixing angle sin theta in neutral-current interactions. (author)
Lagrangian approach in spin-oscillations problem
Directory of Open Access Journals (Sweden)
P.V. Pyshkin
2014-12-01
Full Text Available Lagrangian of electronic liquid in magneto-inhomogeneous micro-conductor has been constructed. A corresponding Euler-Lagrange equation has been solved. It was shown that the described system has eigenmodes of spin polarization and total electric current oscillations. The suggested approach permits to study the spin dynamics in an open-circuit which contains capacitance and/or inductivity.
Effective lagrangian for strong interactions
International Nuclear Information System (INIS)
Jain, P.
1988-01-01
We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model
The γp → na2+ (1320) → nρ0π+ reactions within an effective Lagrangian approach
International Nuclear Information System (INIS)
Huang, Yin; Xie, Jujun; He, Jun; Chen, Xurong; Zhang, Hongfei
2014-01-01
We investigate the tensor meson a 2 (1320) photon-production off proton in the γp → na 2 + (1320) and γp → nρ 0 π + reactions within the effective Lagrangian approach and isobar model. For γp → na 2 + (1320) reaction, by considering the contributions from only the t-channel π + exchange, we get a fairly good description of the current experimental data for the total cross-section. Based on the theoretical results of the γp → na 2 + (1320) reaction, we studied the role of a 2 (1320) meson in the γp → nρ 0 π + reaction, which mainly contributes to the γp → nπ + π + π - reaction. The latter reaction has been measured by the CLAS Collaboration at the photon energy E γ around 5.1 GeV. For the γp → nρ 0 π + reaction, we pay attention to the low photon energy region where the contribution from a 2 (1320) meson is dominant, while the contribution from the π 2 (1670) meson could be very small and hence can be neglected. The total cross-sections, invariant mass distribution and the Dalitz plot of γp → nρ 0 π + reaction are shown, which can be tested by future experiments. (author)
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Lagrangian Approach to Study Catalytic Fluidized Bed Reactors
Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration
2013-03-01
Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)
International Nuclear Information System (INIS)
Novales-Sanchez, H.; Toscano, J. J.
2008-01-01
The one-loop contribution of the two CP-violating components of the WWγ vertex, κ-tilde γ W μ + W ν - F-tilde μν and (λ-tilde γ /m W 2 )W μν + W ρ -ν F-tilde ρμ , on the electric dipole moment (EDM) of fermions is calculated using dimensional regularization and its impact at low energies reexamined in the light of the decoupling theorem. The Ward identities satisfied by these couplings are derived by adopting a SU L (2)xU Y (1)-invariant approach and their implications in radiative corrections discussed. Previous results on κ-tilde γ , whose bound is updated to |κ-tilde γ | -5 , are reproduced, but disagreement with those existing for λ-tilde γ is found. In particular, the upper bound |λ-tilde γ | -2 is found from the limit on the neutron EDM, which is more than 2 orders of magnitude less stringent than that of previous results. It is argued that this difference between the κ-tilde γ and λ-tilde γ bounds is the one that might be expected in accordance with the decoupling theorem. This argument is reinforced by analyzing carefully the low-energy behavior of the loop functions. The upper bounds on the W EDM, |d W | -21 e·cm, and the magnetic quadrupole moment, |Q-tilde W | -36 e·cm 2 , are derived. The EDM of the second and third families of quarks and charged leptons are estimated. In particular, EDM as large as 10 -20 e·cm and 10 -21 e·cm are found for the t and b quarks, respectively
Effective Lagrangian density in gauge supersymmetry
International Nuclear Information System (INIS)
Chang, S.S.
1976-01-01
In the framework of gauge supersymmetry proposed by Arnowitt and Nath, an effective Lagrangian density is formally rewritten in terms of a spontaneously broken vacuum metric and the remaining perturbative part in the gauge metric tensor. Tensor notations in the superspace are revised so that all sign factors of Grassmann parities appear more systematically
One-loop effective lagrangians after matching
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Santiago, J. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Kunszt, Z. [ETH Zuerich, Institute for Theoretical Physics, Zuerich (Switzerland)
2016-05-15
We discuss the limitations of the covariant derivative expansion prescription advocated to compute the one-loop Standard Model (SM) effective lagrangian when the heavy fields couple linearly to the SM. In particular, one-loop contributions resulting from the exchange of both heavy and light fields must be explicitly taken into account through matching because the proposed functional approach alone does not account for them. We review a simple case with a heavy scalar singlet of charge -1 to illustrate the argument. As two other examples where this matching is needed and this functional method gives a vanishing result, up to renormalization of the heavy sector parameters, we re-evaluate the one-loop corrections to the T-parameter due to a heavy scalar triplet with vanishing hypercharge coupling to the Brout-Englert-Higgs boson and to a heavy vector-like quark singlet of charged 2/3 mixing with the top quark, respectively. In all cases we make use of a new code for matching fundamental and effective theories in models with arbitrary heavy field additions. (orig.)
Effective Chiral Lagrangians and Lattice QCD
Heitger, J; Wittig, H; Heitger, Jochen; Sommer, Rainer; Wittig, Hartmut
2000-01-01
We propose a general method to obtain accurate estimates for some of the "low-energy constants" in the one-loop effective chiral Lagrangian by means of simulating lattice QCD. In particular, the method is sensitive to those constants whose values are required to test the hypothesis of a massless up-quark. Initial tests performed in the quenched approximation confirm that good statistical precision can be achieved. As a byproduct we obtain an accurate estimate for the ratio of pseudoscalar decay constants, F_K/F_pi, in the quenched approximation, which lies 10% below the experimental result. The quantities that serve to extract the low-energy constants also allow a test of the scaling behaviour of different discretizations of QCD and a search for the effects of dynamical quarks.
Lagrangian formulation of the general relativistic Poynting-Robertson effect
De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio
2018-04-01
We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.
A Lagrangian PFEM approach for non-Newtonian viscoplastic materials
Larese, A.
2017-01-01
This paper presents the application of a stabilized mixed Particle Finite Element Method (PFEM) to the solution of viscoplastic non-Newtonian flows. The application of the proposed model to the deformation of granular non-cohesive material is analysed. A variable yield threshold modified Bingham model is presented, using a Mohr Coulomb resistance criterion. Since the granular material is expected to undergo severe deformation, a Lagrangian approach is preferred to a fixed mesh one. PFEM i...
Effective Lagrangians in elementary particle physics
International Nuclear Information System (INIS)
Trahern, C.G.
1982-01-01
Non-linear effective Lagrangians are constructed to represent the low energy phenomenology of elementary particles. As approximate descriptions of the dynamics of hadrons, these models simulate the expected (but unproven) behavior of more complex theories such as quantum Chromo-dynamics [QCD]. A general formalism for non-linear models was developed in the late 1960's by Coleman, Wess and Zumino. This dissertation utilizes and extends their work by incorporating some of the advances that have been made in the understanding of quantum field theories in the last decade. In particular the significance of spatial boundary conditions for interpreting the ground state behavior of the non-linear models is investigated. In addition the existence of a dual theory for the non-linear model is discussed. For experimental purposes duality refers to the possibility that in different enrgy regimes there may be wholly distinct kinds of excitations in the physical spectrum. Corresponding to these phenomenological distinctions are mutually exclusive mathematical descriptions. A familiar example is the duality of electric and magnetic charge in electro-dynamics. If magnetic charges do exist, they are expected to be extremely massive states that are unobservable up to very high energies. The analysis of such states within electrodynamics shows that one cannot describe both electric and magnetic charges without admitting the presence of singularities in the electric potential. A completely analogous form of duality is found and discussed for the non-linear models
Low energy effective Lagrangians in open superstring theory
International Nuclear Information System (INIS)
Medina, Ricardo
2008-01-01
The low energy effective Lagrangian describes the interactions of the massless modes of String Theory. Present work is being done to obtain all alpha' 3 terms (bosonic and fermionic) by means of the known 5-point amplitudes and SUSY
Energy Technology Data Exchange (ETDEWEB)
Ames, Thomas L.; Farnsworth, Grant V.; Ketcheson, David Isaac; Robinson, Allen Conrad
2009-09-01
The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.
Lagrangian approach to understanding the origin of the gill-kinematics switch in mayfly nymphs.
Chabreyrie, R; Balaras, E; Abdelaziz, K; Kiger, K
2014-12-01
The mayfly nymph breathes under water through an oscillating array of plate-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly nymph as a pumping device fails in giving clear reasons for this switch. In order to shed some light on this switch between the two distinct kinematics, we analyze the problem under a Lagrangian viewpoint. We consider that a good Lagrangian transport that effectively distributes and stirs water and dissolved oxygen between and around the gills is the main goal of the gill motion. Using this Lagrangian approach, we are able to provide possible reasons behind the observed switch from rowing to flapping. More precisely, we conduct a series of in silico mayfly nymph experiments, where body shape, as well as gill shapes, structures, and kinematics are matched to those from in vivo. In this paper, we show both qualitatively and quantitatively how the change of kinematics enables better attraction, confinement, and stirring of water charged of dissolved oxygen inside the gills area. We reveal the attracting barriers to transport, i.e., attracting Lagrangian coherent structures, that form the transport skeleton between and around the gills. In addition, we quantify how well the fluid particles are stirred inside the gills area, which by extension leads us to conclude that it will increase the proneness of molecules of dissolved oxygen to be close enough to the gills for extraction.
Unsteady force estimation using a Lagrangian drift-volume approach
McPhaden, Cameron J.; Rival, David E.
2018-04-01
A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.
A few words about resonances in the electroweak effective Lagrangian
Energy Technology Data Exchange (ETDEWEB)
Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2016-01-22
Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.
Effective lagrangian for Kaon-nucleon scattering
International Nuclear Information System (INIS)
Andrade, S.C.B. de; Ferreira, E.M.
1980-11-01
A model for the Kaon-nucleon interaction is investigated, based on a lagrangian which includes the Yukawa interactions of hyperons, kaons and nucleons plus contact terms representing short range interactions in each isospin state. All diagrams up to fourth order are evaluated and the partial wave S matrix elements are unitarized through diagonal Pade approximants. The results of the calculations with this model give a good description of all experimental data on both I = O and I = 1 states of the KN system at low and intermediate energies. (Author) [pt
Valley method versus instanton-induced effective lagrangian up to (E/Espha)8/3
International Nuclear Information System (INIS)
Balitsky, I.; Schaefer, A.
1993-01-01
We compare the two most popular approaches to the problem of instanton-anti-instanton interaction at high energies - the valley method and the effective lagrangian approach - and use them to calculate the next-to-next-to-leading term in the expansion of the 'holy grail' function determining the cross section with baryon number violation in the standard model. (orig.)
An improved Lagrangian relaxation and dual ascent approach to facility location problems
DEFF Research Database (Denmark)
Jörnsten, Kurt; Klose, Andreas
2016-01-01
not be reduced to the same extent as in the case of ordinary semi-Lagrangian relaxation. Hence, an effective method for optimizing the Lagrangian dual function is of utmost importance for obtaining a computational advantage from the simplified Lagrangian dual function. In this paper, we suggest a new dual ascent...... method for optimizing both the semi-Lagrangian dual function as well as its simplified form for the case of a generic discrete facility location problem and apply the method to the uncapacitated facility location problem. Our computational results show that the method generally only requires a very few...
Hadronic interactions from effective chiral Lagrangians of quarks and gluons
International Nuclear Information System (INIS)
Krein, G.
1996-06-01
We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs
Formation control of marine surface craft: a Lagrangian approach
DEFF Research Database (Denmark)
Ihle, Ivar-Andre F.; Jouffroy, Jerome; Fossen, Thor I.
2006-01-01
This paper presents a method for formation control of marine surface craft inspired by Lagrangian mechanics. The desired formation configuration and response of the marine surface craft are given as a set of constraints in analytical mechanics. Thus, constraints forces arise and feedback from...
Accidental symmetries and the effective Lagrangian of string theory
International Nuclear Information System (INIS)
Ovrut, B.A.
1989-01-01
In this paper the relationship between accidental worldsheet symmetries of the string generating functional and target space invariance groups is discussed. Accidental symmetries are used to derive the invariance groups and effective low energy Lagrangian for the bosonic string, and the heterotic string compactified to four-dimensions on Z N orbifolds. The necessity of a new type of Green-Schwarz mechanism, associated with the auxiliary vector field in the four-dimensional N = 1 supergravity multiplet, is shown using these methods
A Discrete Approach to Meshless Lagrangian Solid Modeling
Directory of Open Access Journals (Sweden)
Matthew Marko
2017-07-01
Full Text Available The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with smooth particle applied mechanics by having the solid particles apply stresses expected with Hooke’s law, as opposed to using a smoothing function for neighboring solid particles. This method has been tested successfully with a bar in tension, compression, and shear, as well as a disk compressed into a flat plate, and the numerical model consistently matched the analytical Hooke’s law as well as Hertz contact theory for all examples. The solid modeling numerical method was then built into a 2-D model of a pressure vessel, which was tested with liquid water particles under pressure and simulated with smoothed particle hydrodynamics. This simulation was stable, and demonstrated the feasibility of Lagrangian specification modeling for fluid–solid interactions.
String perturbation theory and effective Lagrangians
International Nuclear Information System (INIS)
Klebanov, I.
1987-09-01
We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to β-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string
String loop divergences and effective lagrangians
International Nuclear Information System (INIS)
Fischler, W.; Klebanov, I.; Susskind, L.
1988-01-01
We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory, with a covariant cosmological term implied by the counting of string coupling constants. We find an inconsistency between the two. This might be a problem in eliminating divergences from the bosonic string. (orig.)
Geometric Lagrangian approach to the physical degree of freedom count in field theory
Díaz, Bogar; Montesinos, Merced
2018-05-01
To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.
Non-linear effective Lagrangian treatment of 'Penguin' interaction
International Nuclear Information System (INIS)
Pham, T.N.
1984-01-01
Using the non-linear effective lagrangian technique, we show explicitly that only derivative coupling is allowed for the K - π, K -> 2 π and K -> 3 π transitions induced by the ΔS = 1 Penguin operator of SVZ in agreement with chiral symmetry requirements. From a derivative coupling (3, anti 3) mass term and the SU(3) breaking effect for fsub(K)/fsub(π), we estimate the strength of the Penguin interactions and find it too small to account for the ΔI = 1/2 amplitude. (orig.)
The canonical Lagrangian approach to three-space general relativity
Shyam, Vasudev; Venkatesh, Madhavan
2013-07-01
We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.
A coherent structure approach for parameter estimation in Lagrangian Data Assimilation
Maclean, John; Santitissadeekorn, Naratip; Jones, Christopher K. R. T.
2017-12-01
We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parameters are estimated based on tracer trajectories. We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap particle filter when the physical model exhibits chaotic advection.
International Nuclear Information System (INIS)
Gaida, R.P.; Kluchkousky, Ya.B.; Tretyak, V.I.
1987-01-01
In the present report the main attention is paid to the interrelations of various three-dimensional approaches and to the relation of the latter to the Fokker-type action formalism; the problem of the correspondence between three-dimensional descriptions and singular Lagrangian formalism will be shortly concerned. The authors start with the three-dimensional Lagrangian formulation of the classical RDIT. The generality of this formalism enables, similarly as in the non-relativistic case, to consider it as a central link explaining naturally a number of features of other three-dimensional approaches, namely Newtonian (based directly on second order equations of motion) and Hamiltonian ones). It is also capable of describing four-dimensional manifestly covariant models using Fokker action integrals and singular Lagrangians
International Nuclear Information System (INIS)
Giedt, Joel
2003-01-01
We compute the component field four-dimensional N = 1 supergravity Lagrangian that is obtained from a superfield Lagrangian in the U(1) K formalism with a linear dilaton multiplet. All fermionic terms are presented. In a variety of important ways, our results generalize those that have been reported previously, and are flexible enough to accommodate many situations of phenomenological interest in string-inspired effective supergravity, especially models based on orbifold compactifications of the weakly coupled heterotic string. We provide for an effective theory of hidden gaugino and matter condensation. We include supersymmetric Green-Schwarz counterterms associated with the cancellation of U(1) and modular duality anomalies; the modular duality counterterm is of a rather general form. Our assumed form for the dilaton Kaehler potential is quite general and can accommodate Kaehler stabilization methods. We note possible applications of our results. We also discuss the usefulness of the linear dilaton formulation as a complement to the chiral dilaton approach
Fingerprints of heavy scales in electroweak effective Lagrangians
Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José
2017-04-01
The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.
Fingerprints of heavy scales in electroweak effective Lagrangians
Energy Technology Data Exchange (ETDEWEB)
Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)
2017-04-04
The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.
A multivector derivative approach to Lagrangian field theory
International Nuclear Information System (INIS)
Lasenby, A.; Gull, S.; Doran, C.
1993-01-01
A new calculus, based upon the multivector derivative, is developed for Lagrangian mechanics and field theory, providing streamlined and rigorous derivations of the Euler-Lagrange equations. A more general form of Noether's theorem is found which is appropriate to both discrete and continuous symmetries. This is used to find the conjugate currents of the Dirac theory, where it improves on techniques previously used for analyses of local observables. General formulas for the canonical stress-energy and angular-momentum tensors are derived, with spinors and vectors treated in a unified way. It is demonstrated that the antisymmetric terms in the stress-energy tensor are crucial to the correct treatment of angular momentum. The multivector derivative is extended to provide a functional calculus for linear functions which is more compact and more powerful than previous formalisms. This is demonstrated in a reformulation of the functional derivative with respect to the metric, which is then used to recover the full canonical stress-energy tensor. Unlike conventional formalisms, which result in a symmetric stress-energy tensor, this reformulation retains the potentially important antisymmetric contribution. 23 refs
Progress toward the effective Quantum Chromodynamic Lagrangian from symmetry considerations
International Nuclear Information System (INIS)
Salomone, A.N.
1982-01-01
The properties of an effective Lagrangian which satisfies both the axial and trace anomaly equations of Quantum Chromodynamics are investigated both from the theoretical and phenomenological points of view. The model Lagrangian requires that chiral symmetry be broken spontaneously. The non-linear approximation of the model illuminates eta-glue duality or mixing. The phase transition behavior of the model of Quantum Chromodynamics can be studied as the numbers of flavors and the vacuum angle are varied by analyzing a simple mechanical analog. The analog of the model is similar to the massive Schwinger model. The possibility of a physical scalar glue state is discussed and it is shown that it is characterized by a pronounced eta to two glue decay width. A nonperturbative Quantum Chromodynamic vacuum is seen to follow directly from satisfying the trace anomaly. The quark matter meson, eta, is at least as prominent as the glueball, iota, in the gluon dominated reaction psi to gamma plus anything. An associated large breaking of flavor SU(3) is shown to be ameliorated as the model is made more realistic by lowering scalar meson masses from infinity. The pi delta decay of the iota (1440) can be reasonably well estimated without the need of introducing any new parameters
The Gaussian streaming model and convolution Lagrangian effective field theory
Energy Technology Data Exchange (ETDEWEB)
Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)
2016-12-01
We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.
A Chern-Simons gauge-fixed Lagrangian in a 'non-canonical' BRST approach
International Nuclear Information System (INIS)
Constantinescu, R; Ionescu, C
2009-01-01
This paper presents a possible path which starts from the extended BRST Hamiltonian formalism and ends with a covariant Lagrangian action, using the equivalence between the two formalisms. The approach allows a simple account of the form of the master equation and offers a natural identification of some 'non-canonical' operators and variables. These are the main items which solve the major difficulty of the extended BRST Lagrangian formalism, i.e., the gauge-fixing problem. The algorithm we propose applies to a non-Abelian Chern-Simons model coupled with Dirac fields
Gao, Xi; Kong, Bo; Vigil, R Dennis
2017-01-01
A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effective Lagrangians for quantum many-body systems
Czech Academy of Sciences Publication Activity Database
Andersen, J. O.; Brauner, Tomáš; Hofmann, C. P.; Vuorinen, A.
2014-01-01
Roč. 2014, č. 8 (2014), 088 ISSN 1029-8479 Institutional support: RVO:61389005 Keywords : spontaneous symmetry breaking * chiral lagrangian s * global symmetries Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
Phenomenology of the Higgs effective Lagrangian via FEYNRULES
International Nuclear Information System (INIS)
Alloul, Adam; Fuks, Benjamin; Sanz, Verónica
2014-01-01
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FEYNRULES and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FEYNRULES capable to generate model files that can be understood by the MADGRAPH 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions
Phenomenology of the Higgs effective Lagrangian via FEYNRULES
Energy Technology Data Exchange (ETDEWEB)
Alloul, Adam [Groupe de Recherche de Physique des Hautes Énergies (GRPHE), Université de Haute-Alsace, IUT Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar Cedex (France); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, 23 rue du Loess, F-67037 Strasbourg (France); Sanz, Verónica [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)
2014-04-16
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FEYNRULES and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FEYNRULES capable to generate model files that can be understood by the MADGRAPH 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.
Phenomenology of the Higgs Effective Lagrangian via FeynRules
Alloul, Adam; Sanz, Verónica
2014-01-01
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FeynRules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FeynRules capable to generate model files that can be understood by the MadGraph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-...
Power corrections to the HTL effective Lagrangian of QED
Carignano, Stefano; Manuel, Cristina; Soto, Joan
2018-05-01
We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.
Effective Lagrangians for SUSY QCD with properties seen in perturbation theory
International Nuclear Information System (INIS)
Sharatchandra, H.S.
1984-06-01
We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)
Matter composition at high density by effective scaled lagrangian
Energy Technology Data Exchange (ETDEWEB)
Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)
1998-06-01
We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)
Structure of pheomenological lagrangians for broken supersymmetry
International Nuclear Information System (INIS)
Uematsu, T.; Zachos, C.K.
1982-01-01
We consider the explicit connection between linear representations of supersymetry and the non-linear realizations associated with the generic effective lagrangians of the Volkov-Akulov type. We specify and illustrate a systematic approach for deriving the appropriate phenomenological lagrangian by transforming a pedagogical linear model, in which supersymmetry is broken at the tree level, into its corresponding non-linear lagrangian, in close analogy to the linear sigma model of pion dynamics. We discuss the significance and some properties of such phenomenological lagrangians. (orig.)
CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach
International Nuclear Information System (INIS)
Li, Haipeng; Anglart, Henryk
2015-01-01
Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate
Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians
Energy Technology Data Exchange (ETDEWEB)
LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)
2006-10-15
Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2018-03-01
Full Text Available A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravity theory (CQG-theory proposed recently and the related CQG-wave equation advancing in proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical solutions for the CQG-wave equation with non-vanishing cosmological constant are determined in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in proper-time. As a remarkable outcome of the theory achieved by implementing these analytical solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave dynamics is described by GLP trajectories.
Investigation of erosion behavior in different pipe-fitting using Eulerian-Lagrangian approach
Kulkarni, Harshwardhan; Khadamkar, Hrushikesh; Mathpati, Channamallikarjun
2017-11-01
Erosion is a wear mechanism of piping system in which wall thinning occurs because of turbulent flow along with along with impact of solid particle on the pipe wall, because of this pipe ruptures causes costly repair of plant and personal injuries. In this study two way coupled Eulerian-Lagrangian approach is used to solve the liquid solid (water-ferrous suspension) flow in the different pipe fitting namely elbow, t-junction, reducer, orifice and 50% open gate valve. Simulations carried out using incomressible transient solver in OpenFOAM for different Reynolds's number (10k, 25k, 50k) and using WenYu drag model to find out possible higher erosion region in pipe fitting. Used transient solver is a hybrid in nature which is combination of Lagrangian library and pimpleFoam. Result obtained from simulation shows that exit region of elbow specially downstream of straight, extradose of the bend section more affected by erosion. Centrifugal force on solid particle at bend affect the erosion behavior. In case of t-junction erosion occurs below the locus of the projection of branch pipe on the wall. For the case of reducer, orifice and a gate valve reduction area as well as downstream is getting more affected by erosion because of increase in velocities.
NLO qq -> ZH production and Effective Lagrangians for BSM Higgs Physics
Jomhari, Nur Zulaiha; CERN. Geneva. PH Department
2015-01-01
The naturalness issue is a compelling reason for the emergence of Beyond the Standard Model (BSM) physics at the Large Hadron Collider (LHC). Absence of hints in direct searches makes the model-independent Effective Field Theory (EFT) approach to Higgs physics interesting. It is important that to establish to which extent the new boson discovered at LHC is the scalar particle predicted by the SM. BSM physics can change the HZZ coupling that associated ZH production probes. Model-independent extensions of the SM can describe possible changes, described in a field-theoretical way, via an extended Lagrangian with the SM fields. In this project, Higgs boson is Attached to WeaK bosons (HAWK) and Madgraph5 are used as a Monte Carlo (MC) generator to distinguish higher-order SM corrections from actual BSM manifestations and this study attempts to address is whether one can “calibrate” EFT calculations to match the most accurate SM predictions.
Effective Lagrangians and parity-conserving time-reversal violation at low energies
International Nuclear Information System (INIS)
Engel, J.; Frampton, P.H.; Springer, R.P.
1996-01-01
Using effective Lagrangians, we argue that any time-reversal-violating but parity-conserving effects are too small to be observed in flavor-conserving nuclear processes without dramatic improvement in experimental accuracy. In the process we discuss other arguments that have appeared in the literature. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Sapershtein, E.E.; Khodel', V.A.
1981-01-01
The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established
Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.
Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano
2013-04-01
A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.
Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe
2014-02-01
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
International Nuclear Information System (INIS)
Antonowicz, M.; Szczyrba, W.
1985-01-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space
Heuristic approach to Satellite Range Scheduling with Bounds using Lagrangian Relaxation.
Energy Technology Data Exchange (ETDEWEB)
Brown, Nathanael J. K.; Arguello, Bryan; Nozick, Linda Karen; Xu, Ningxiong [Cornell
2017-03-01
This paper focuses on scheduling antennas to track satellites using a heuristic method. In order to validate the performance of the heuristic, bounds are developed using Lagrangian relaxation. The performance of the algorithm is established using several illustrative problems.
Ecological implications of eddy retention in the open ocean: a Lagrangian approach
International Nuclear Information System (INIS)
D’Ovidio, Francesco; Penna, Alice Della; Cotté, Cedric; De Monte, Silvia; Guinet, Christophe
2013-01-01
The repartition of tracers in the ocean’s upper layer on the scale of a few tens of kilometres is largely determined by the horizontal transport induced by surface currents. Here we consider surface currents detected from satellite altimetry (Jason and Envisat missions) and we study how surface waters may be trapped by mesoscale eddies through a semi-Lagrangian diagnostic which combines the Lyapunov approach with Eulerian techniques. Such a diagnostic identifies the regions of the ocean’s upper layer with different retention times that appear to influence the behaviour of a tagged marine predator (an elephant seal) along a foraging trip. The comparison between predator trajectory and eddy retention time suggests that water trapping by mesoscale eddies, derived from satellite altimetry, may be an important factor for monitoring hotspots of trophic interactions in the open ocean. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Constraints on effective Lagrangian of D-branes from non-commutative gauge theory
International Nuclear Information System (INIS)
Okawa, Yuji; Terashima, Seiji
2000-01-01
It was argued that there are two different descriptions of the effective Lagrangian of gauge fields on D-branes by non-commutative gauge theory and by ordinary gauge theory in the presence of a constant B field background. In the case of bosonic string theory, however, it was found in the previous works that the two descriptions are incompatible under the field redefinition which relates the non-commutative gauge field to the ordinary one found by Seiberg and Witten. In this paper we resolve this puzzle to observe the necessity of gauge-invariant but B-dependent correction terms involving metric in the field redefinition which have not been considered before. With the problem resolved, we establish a systematic method under the α' expansion to derive the constraints on the effective Lagrangian imposed by the compatibility of the two descriptions where the form of the field redefinition is not assumed
Properties of Strange Matter in a Model with Effective Lagrangian
Institute of Scientific and Technical Information of China (English)
WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang
2001-01-01
The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``
International Nuclear Information System (INIS)
Hojman, S.
1982-01-01
We present a review of the inverse problem of the Calculus of Variations, emphasizing the ambiguities which appear due to the existence of equivalent Lagrangians for a given classical system. In particular, we analyze the properties of equivalent Lagrangians in the multidimensional case, we study the conditions for the existence of a variational principle for (second as well as first order) equations of motion and their solutions, we consider the inverse problem of the Calculus of Variations for singular systems, we state the ambiguities which emerge in the relationship between symmetries and conserved quantities in the case of equivalent Lagrangians, we discuss the problems which appear in trying to quantize classical systems which have different equivalent Lagrangians, we describe the situation which arises in the study of equivalent Lagrangians in field theory and finally, we present some unsolved problems and discussion topics related to the content of this article. (author)
Lakshminarayanan, Vasudevan; Thyagarajan, K
2002-01-01
Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...
Lagrangian approach to the problem of the hydrodynamic instabilities of a spheical implosion
International Nuclear Information System (INIS)
Brun, L.; Sitt, B.
For the study of hydrodynamic instabilities of a spherical implosion, a very simple Lagrangian-type formulation is proposed, based on the introduction of a potential of transverse displacements, and on the decomposition of disturbances into spherical harmonics. The different modes are decoupled, and can be studied independently. The development of a numerical code utilizing this formulation can then be considered
Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics
International Nuclear Information System (INIS)
Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.
1994-06-01
By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)
The Effective Chiral Lagrangian for a Light Dynamical "Higgs Particle"
Alonso, R.; Merlo, L.; Rigolin, S.; Yepes, J.
2013-01-01
We generalize the basis of CP-even chiral effective operators describing a dynamical Higgs sector, to the case in which the Higgs-like particle is light. Gauge and gauge-Higgs operators are considered up to mass dimension five. This analysis completes the tool needed to explore at leading order the connection between linear realizations of the electroweak symmetry breaking mechanism - whose extreme case is the Standard Model - and non-linear realizations with a light Higgs-like particle present. It may also provide a model-independent guideline to explore which exotic gauge-Higgs couplings may be expected, and their relative strength to Higgsless observable amplitudes. With respect to fermions, the analysis is reduced by nature to the consideration of those flavour-conserving operators that can be written in terms of pure-gauge or gauge-Higgs ones via the equations of motion, but for the standard Yukawa-type couplings.
Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M
2015-01-01
Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Weinberg, S.
1979-01-01
The author presents an argument that phenomenological Lagrangians can be used not only to reproduce the soft pion results of current algebra, but also to justify these results, without any use of operator algebra, and shows how phenomenological Lagrangians can be used to calculate corrections to the leading soft pion results to any desired order in external momenta. The renormalization group is used to elucidate the structure of these corrections. Corrections due to the finite mass of the pion are treated and speculations are made about another possible application of phenomenological Lagrangians. (Auth.)
Fluctuations around classical solutions for gauge theories in Lagrangian and Hamiltonian approach
International Nuclear Information System (INIS)
Miskovic, Olivera; Pons, Josep M
2006-01-01
We analyse the dynamics of gauge theories and constrained systems in general under small perturbations around a classical solution in both Lagrangian and Hamiltonian formalisms. We prove that a fluctuations theory, described by a quadratic Lagrangian, has the same constraint structure and number of physical degrees of freedom as the original non-perturbed theory, assuming the non-degenerate solution has been chosen. We show that the number of Noether gauge symmetries is the same in both theories, but that the gauge algebra in the fluctuations theory becomes Abelianized. We also show that the fluctuations theory inherits all functionally independent rigid symmetries from the original theory and that these symmetries are generated by linear or quadratic generators according to whether the original symmetry is preserved by the background or is broken by it. We illustrate these results with examples
Peco, C.; Rosolen, A.; Arroyo, M.
2013-01-01
We present a Lagrangian phase-field method to study the low Reynolds number dynamics of vesicles embedded in a viscous fluid. In contrast to previous approaches, where the field variables are the phase-field and the fluid velocity, here we exploit the fact that the phasefield tracks a material interface to reformulate the problem in terms of the Lagrangian motion of a background medium, containing both the biomembrane and the fluid. We discretize the equations in space with maximum-entr...
Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.
2013-09-01
This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.
Cetina-Heredia, Paulina; van Sebille, Erik; Matear, Richard J.; Roughan, Moninya
2018-02-01
The Great Australian Bight (GAB), a coastal sea bordered by the Pacific, Southern, and Indian Oceans, sustains one of the largest fisheries in Australia but the geographical origin of nutrients that maintain its productivity is not fully known. We use 12 years of modeled data from a coupled hydrodynamic and biogeochemical model and an Eulerian-Lagrangian approach to quantify nitrate supply to the GAB and the region between the GAB and the Subantarctic Australian Front (GAB-SAFn), identify phytoplankton growth within the GAB, and ascertain the source of nitrate that fuels it. We find that nitrate concentrations have a decorrelation timescale of ˜60 days; since most of the water from surrounding oceans takes longer than 60 days to reach the GAB, 23% and 75% of nitrate used by phytoplankton to grow are sourced within the GAB and from the GAB-SAFn, respectively. Thus, most of the nitrate is recycled locally. Although nitrate concentrations and fluxes into the GAB are greater below 100 m than above, 79% of the nitrate fueling phytoplankton growth is sourced from above 100 m. Our findings suggest that topographical uplift and stratification erosion are key mechanisms delivering nutrients from below the nutricline into the euphotic zone and triggering large phytoplankton growth. We find annual and semiannual periodicities in phytoplankton growth, peaking in the austral spring and autumn when the mixed layer deepens leading to a subsurface maximum of phytoplankton growth. This study highlights the importance of examining phytoplankton growth at depth and the utility of Lagrangian approaches.
Lagrangian solution of supersonic real gas flows
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.
Gupta, Puneet; Bhowmick, Brojeshwar; Pal, Arpan
2017-07-01
Camera-equipped devices are ubiquitous and proliferating in the day-to-day life. Accurate heart rate (HR) estimation from the face videos acquired from the low cost cameras in a non-contact manner, can be used in many real-world scenarios and hence, require rigorous exploration. This paper has presented an accurate and near real-time HR estimation system using these face videos. It is based on the phenomenon that the color and motion variations in the face video are closely related to the heart beat. The variations also contain the noise due to facial expressions, respiration, eye blinking and environmental factors which are handled by the proposed system. Neither Eulerian nor Lagrangian temporal signals can provide accurate HR in all the cases. The cases where Eulerian temporal signals perform spuriously are determined using a novel poorness measure and then both the Eulerian and Lagrangian temporal signals are employed for better HR estimation. Such a fusion is referred as serial fusion. Experimental results reveal that the error introduced in the proposed algorithm is 1.8±3.6 which is significantly lower than the existing well known systems.
Cucco, Andrea; Umgiesser, Georg
2015-09-15
In this work, we investigated if the Eulerian and the Lagrangian approaches for the computation of the Transport Time Scales (TTS) of semi-enclosed water bodies can be used univocally to define the spatial variability of basin flushing features. The Eulerian and Lagrangian TTS were computed for both simplified test cases and a realistic domain: the Venice Lagoon. The results confirmed the two approaches cannot be adopted univocally and that the spatial variability of the water renewal capacity can be investigated only through the computation of both the TTS. A specific analysis, based on the computation of a so-called Trapping Index, was then suggested to integrate the information provided by the two different approaches. The obtained results proved the Trapping Index to be useful to avoid any misleading interpretation due to the evaluation of the basin renewal features just from an Eulerian only or from a Lagrangian only perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.
An approach using Lagrangian/surrogate relaxation for lot-sizing with transportation costs
Directory of Open Access Journals (Sweden)
Flavio Molina
2009-08-01
Full Text Available The aim of this work was to study a distribution and lot-sizing problem that considers costs with transportation to a company warehouse as well as, inventory, production and setup costs. The logistic costs are associated with necessary containers to pack produced items. The company negotiates a long-term contract in which a fixed cost per period is associated with the transportation of the items. On the other hand, a limited number of containers are available with a lower cost than the average cost. If an occasional demand increase occurs, other containers can be utilized; however, their costs are higher. A mathematical model was proposed in the literature and solved using the Lagrangian heuristic. Here, the use of the Lagrangian/surrogate heuristic to solve the problem is evaluated. Moreover, an extension of the literature model is considered adding capacity constraints and allowing backlogging. Computational tests show that Lagrangian/surrogate heuristics are competitive, especially when the capacity constraints are tight.Neste trabalho estuda-se um problema de dimensionamento de lotes e distribuição que envolve além de custos de estoques, produção e preparação, custos de transportes para o armazém da empresa. Os custos logísticos estão associados aos contêineres necessários para empacotar os produtos produzidos. A empresa negocia um contrato de longo prazo onde um custo fixo por período é associado ao transporte dos itens, em contrapartida um limite de contêineres é disponibilizado com custo mais baixo que o custo padrão. Caso ocorra um aumento ocasional de demanda, novos contêineres podem ser utilizados, no entanto, seu custo é mais elevado. Um modelo matemático foi proposto na literatura e resolvido utilizando uma heurística Lagrangiana. No presente trabalho a resolução do problema por uma heurística Lagrangiana/surrogate é avaliada. Além disso, é considerada uma extensão do modelo da literatura adicionando
Lagrangian solution of supersonic real gas flows
International Nuclear Information System (INIS)
Loh, Chingyuen; Liou, Mengsing
1993-01-01
This paper details the procedure of the real gas Riemann solution in the Lagrangian approach originally proposed by Loh and Hui for perfect gases. The extension to real gases is nontrivial and requires substantial development of an exact real-gas Riemann solver for the Lagrangian form of conservation laws. The first-order Gudonov scheme is enhanced for accuracy by adding limited anti-diffusive terms according to Sweby. Extensive calculations were made to test the accuracy and robustness of the present real gas Lagrangian approach, including complex wave interactions of different types. The accuracy for capturing 2D oblique waves and slip line is clearly demonstrated. In addition, we also show the real gas effect in a generic engine nozzle
Muon g-2 estimates: can one trust effective Lagrangians and global fits?
Energy Technology Data Exchange (ETDEWEB)
Benayoun, M., E-mail: benayoun@in2p3.fr [LPNHE des Universités Paris VI et Paris VII IN2P3/CNRS, 75252, Paris (France); David, P. [LPNHE des Universités Paris VI et Paris VII IN2P3/CNRS, 75252, Paris (France); LIED, Université Paris-Diderot/CNRS UMR 8236, 75013, Paris (France); DelBuono, L. [LPNHE des Universités Paris VI et Paris VII IN2P3/CNRS, 75252, Paris (France); Jegerlehner, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489, Berlin (Germany); Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738, Zeuthen (Germany)
2015-12-26
Previous studies have shown that the Hidden Local Symmetry (HLS) model, supplied with appropriate symmetry breaking mechanisms, provides an effective Lagrangian (Broken Hidden Local Symmetry, BHLS) which encompasses a large number of processes within a unified framework. Based on it, a global fit procedure allows for a simultaneous description of the e{sup +}e{sup -} annihilation into six final states—π{sup +}π{sup -}, π{sup 0}γ, ηγ, π{sup +}π{sup -}π{sup 0}, K{sup +}K{sup -}, K{sub L}K{sub S}—and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a{sub μ}{sup th} of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved in comparison to the standard approach of integrating the measured spectra directly. However, because most spectra for the annihilation process e{sup +}e{sup -}→π{sup +}π{sup -} undergo overall scale uncertainties which dominate the other sources, one may suspect some bias in the dipion contribution to a{sub μ}{sup th}, which could question the reliability of the global fit method. However, an iterated global fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied successfully to the e{sup +}e{sup -}→π{sup +}π{sup -} data samples from CMD2, SND, KLOE, BaBar, and BESSIII. The iterated fit solution is shown to further improve the prediction for a{sub μ}, which we find to deviate from its experimental value above the 4σ level. The contribution to a{sub μ} of the π{sup +}π{sup -} intermediate state up to 1.05 GeV has an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results.
Muon g - 2 estimates. Can one trust effective Lagrangians and global fits?
Energy Technology Data Exchange (ETDEWEB)
Benayoun, M.; DelBuono, L. [LPNHE des Universites Paris VI et Paris VII IN2P3/CNRS, Paris (France); David, P. [LPNHE des Universites Paris VI et Paris VII IN2P3/CNRS, Paris (France); LIED, Universite Paris-Diderot/CNRS UMR 8236, Paris (France); Jegerlehner, F. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2015-12-15
Previous studies have shown that the Hidden Local Symmetry (HLS) model, supplied with appropriate symmetry breaking mechanisms, provides an effective Lagrangian (Broken Hidden Local Symmetry, BHLS) which encompasses a large number of processes within a unified framework. Based on it, a global fit procedure allows for a simultaneous description of the e{sup +}e{sup -} annihilation into six final states - π{sup +}π{sup -}, π{sup 0}γ, ηγ, π{sup +}π{sup -}π{sup 0}, K{sup +}K{sup -}, K{sub L}K{sub S} - and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a{sub μ}{sup th} of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved in comparison to the standard approach of integrating the measured spectra directly. However, because most spectra for the annihilation process e{sup +}e{sup -} → π{sup +}π{sup -} undergo overall scale uncertainties which dominate the other sources, one may suspect some bias in the dipion contribution to a{sub μ}{sup th}, which could question the reliability of the global fit method. However, an iterated global fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied successfully to the e{sup +}e{sup -} → π{sup +}π{sup -} data samples from CMD2, SND, KLOE, BaBar, and BESSIII. The iterated fit solution is shown to further improve the prediction for a{sub μ}, which we find to deviate from its experimental value above the 4σ level. The contribution to a{sub μ} of the π{sup +}π{sup -} intermediate state up to 1.05 GeV has an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results. (orig.)
Equivalence of Lagrangian and Hamiltonian BRST quantizations
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Pseudoscalar glueball, η'-meson and its excitation in the chiral effective Lagrangian
International Nuclear Information System (INIS)
Nekrasov, M.L.
1995-12-01
A generalization of the chiral effective Lagrangian of order p 2 is obtained which describes interaction between singlet pseudoscalar states and octet of the lightest pseudoscalar states π, K, η. The singlet states were lowest quarkic state, its excitation, and the lowest gluonic state. The QCD renormalization group for the composite operators generating the singlet states, and some other QCD-inspired conditions have been taken into consideration. The way is found, which allows one to separate unambiguously the contributions of the lowest gluonic state and the single excited state. Besides, an additional condition is found which restricts the singlet-state contributions. The mixing picture of the singlet states is considered. The problem of the radiative decays of the singlet mesons is discussed. (author). 13 refs, 1 tab
Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach
North, Elizabeth W.; Schlag, Zachary; Adams, E. Eric; Sherwood, Christopher R.; He, Ruoying; Hyun, Hoon; Socolofsky, Scott A.
2011-01-01
An analytical multiphase plume model, combined with time-varying flow and hydrographic fields generated by the 3-D South Atlantic Bight and Gulf of Mexico model (SABGOM) hydrodynamic model, were used as input to a Lagrangian transport model (LTRANS), to simulate transport of oil droplets dispersed at depth from the recent Deepwater Horizon MC 252 oil spill. The plume model predicts a stratification-dominated near field, in which small oil droplets detrain from the central plume containing faster rising large oil droplets and gas bubbles and become trapped by density stratification. Simulated intrusion (trap) heights of ∼ 310–370 m agree well with the midrange of conductivity-temperature-depth observations, though the simulated variation in trap height was lower than observed, presumably in part due to unresolved variability in source composition (percentage oil versus gas) and location (multiple leaks during first half of spill). Simulated droplet trajectories by the SABGOM-LTRANS modeling system showed that droplets with diameters between 10 and 50 μm formed a distinct subsurface plume, which was transported horizontally and remained in the subsurface for >1 month. In contrast, droplets with diameters ≥90 μm rose rapidly to the surface. Simulated trajectories of droplets ≤50 μm in diameter were found to be consistent with field observations of a southwest-tending subsurface plume in late June 2010 reported by Camilli et al. [2010]. Model results suggest that the subsurface plume looped around to the east, with potential subsurface oil transport to the northeast and southeast. Ongoing work is focusing on adding degradation processes to the model to constrain droplet dispersal.
On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields
Energy Technology Data Exchange (ETDEWEB)
Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)
2016-12-15
In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.
Phenomenology of the Higgs effective Lagrangian via F eynR ules
Alloul, Adam; Fuks, Benjamin; Sanz, Verónica
2014-04-01
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of F eynR ules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of F eynR ules capable to generate model files that can be understood by the M adG raph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
International Nuclear Information System (INIS)
Krause, Katharina; Klopper, Wim
2016-01-01
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian
2014-05-01
Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates by L...efficiency. In this study, three-dimensional numerical simulations of single and two-hole injector nozzles under diesel conditions are conducted to...numerical simulations of single and two-hole injector nozzles under diesel conditions are conducted to study the spray behavior and the effect of
A Lagrangian Approach to Study the Gulf of Mexicoâs Deep Circulation (NCEI Accession 0159562)
National Oceanic and Atmospheric Administration, Department of Commerce — The data acquisition had two main elements: 1) a deep drifter study employing RAFOS floats and sound sources, which provided Lagrangian drifter tracks at 1500 and...
Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng
2015-03-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dimensional reduction of 10d heterotic string effective lagrangian with higher derivative terms
International Nuclear Information System (INIS)
Lalak, Z.; Pawelczyk, J.
1989-11-01
Dimensional reduction of the 10d Supergravity-Yang-Mills theories containing up to four derivatives is described. Unexpected nondiagonal corrections to 4d gauge kinetic function and negative contributions to scalar potential are found. We analyzed the general structure of the resulting lagrangian and discuss the possible phenomenological consequences. (author)
Quadratic Lagrangians and Legendre transformation
International Nuclear Information System (INIS)
Magnano, G.
1988-01-01
In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor
Muon g-2 Estimates. Can One Trust Effective Lagrangians and Global Fits?
International Nuclear Information System (INIS)
Benayoun, M.; DelBuono, L.
2015-07-01
Previous studies have shown that the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms, provides an Effective Lagrangian (BHLS) which encompasses a large number of processes within a unified framework; a global fit procedure allows for a simultaneous description of the e + e - annihilation into the 6 final states - π + π - , π 0 γ, ηγ, π + π - π 0 , K + K - , K L K S - and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a th μ of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved compared to its partner derived from integrating the measured spectra directly. However, most spectra for the process e + e - → π + π - undergo overall scale uncertainties which dominate the other sources, and one may suspect some bias in the dipion contribution to a th μ . However, an iterated fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied succesfully to the e + e - → π + π - data samples from CMD2, SND, KLOE (including the latest sample) and BaBar. The iterated fit solution is shown to be further improved and leads to a value for a μ different from aexp above the 4σ level. The contribution of the π + π - intermediate state up to 1.05 GeV to a μ derived from the iterated fit benefits from an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results. The main issue raised in this study and the kind of solution proposed may be of concern for other data driven methods when the data samples are dominated by global normalization uncertainties.
National Research Council Canada - National Science Library
Trevino, Theodore
2000-01-01
...) numerical technique. The investigation primarily examined the explosive-fluid, fluid-structure, and fluid-air interaction effects, and the shock wave pressure propagation through a subjected medium, with the intent...
A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.
Vaish, Mayank; Kleinstreuer, Clement
2015-09-01
Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).
An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model
International Nuclear Information System (INIS)
Bel'kov, A.A.; Lanev, A.V.; Schaale, A.; Scherer, S.; Mainz Univ.
1994-01-01
In this work we present a strong chiral meson Lagrangian up to and including O(p 6 ) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs
Muon g-2 Estimates. Can One Trust Effective Lagrangians and Global Fits?
Energy Technology Data Exchange (ETDEWEB)
Benayoun, M.; DelBuono, L. [Paris VI et Paris VII Univ. (France). LPNHE; David, P. [Paris VI et Paris VII Univ. (France). LPNHE; Paris-Diderot Univ./CNRS UMR 8236 (France). LIED; Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2015-07-15
Previous studies have shown that the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms, provides an Effective Lagrangian (BHLS) which encompasses a large number of processes within a unified framework; a global fit procedure allows for a simultaneous description of the e{sup +}e{sup -} annihilation into the 6 final states - π{sup +}π{sup -}, π{sup 0}γ, ηγ, π{sup +}π{sup -}π{sup 0}, K{sup +}K{sup -}, K{sub L}K{sub S} - and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a{sup th}{sub μ} of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved compared to its partner derived from integrating the measured spectra directly. However, most spectra for the process e{sup +}e{sup -} → π{sup +}π{sup -} undergo overall scale uncertainties which dominate the other sources, and one may suspect some bias in the dipion contribution to a{sup th}{sub μ}. However, an iterated fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied succesfully to the e{sup +}e{sup -} → π{sup +}π{sup -} data samples from CMD2, SND, KLOE (including the latest sample) and BaBar. The iterated fit solution is shown to be further improved and leads to a value for a{sub μ} different from aexp above the 4σ level. The contribution of the π{sup +}π{sup -} intermediate state up to 1.05 GeV to a{sub μ} derived from the iterated fit benefits from an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results. The main issue raised in this study and the kind of solution proposed may be of concern for other data driven methods when the data samples are dominated by global normalization uncertainties.
Constraint theory, singular lagrangians and multitemporal dynamics
International Nuclear Information System (INIS)
Lusanna, L.
1988-01-01
Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory
Some Lagrangians for systems without a Lagrangian
International Nuclear Information System (INIS)
Nucci, M C; Leach, P G L
2011-01-01
We demonstrate how to construct many different Lagrangians for two famous examples that were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71-128) not to have a Lagrangian. Following Bateman's dictum (1931 Phys. Rev. 38 815-9), we determine different sets of equations that are compatible with those of Douglas and derivable from a variational principle.
Lagrangian ocean analysis : Fundamentals and practices
van Sebille, Erik; Deleersnijder, E.L.C.; Heemink, A.W.; Griffies, Stepehn M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Authors, More
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several
Lagrangian ocean analysis : Fundamentals and practices
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H.A.M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades,
Oettl, Dietmar; Uhrner, Ulrich
2011-02-01
Based on two recent publications using Lagrangian dispersion models to simulate NO-NO 2-O 3 chemistry for industrial plumes, a similar modified approach was implemented using GRAL-C ( Graz Lagrangian Model with Chemistry) and tested on two urban applications. In the hybrid dispersion model GRAL-C, the transport and turbulent diffusion of primary species such as NO and NO 2 are treated in a Lagrangian framework while those of O 3 are treated in an Eulerian framework. GRAL-C was employed on a one year street canyon simulation in Berlin and on a four-day simulation during a winter season in Graz, the second biggest city in Austria. In contrast to Middleton D.R., Jones A.R., Redington A.L., Thomson D.J., Sokhi R.S., Luhana L., Fisher B.E.A. (2008. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmospheric Environment 42, 415-427) and Alessandrini S., Ferrero E. (2008. A Lagrangian model with chemical reactions: application in real atmosphere. Proceedings of the 12th Int. Conf. on Harmonization within atmospheric dispersion modelling for regulatory purposes. Croatian Meteorological Journal, 43, ISSN: 1330-0083, 235-239) the treatment of ozone was modified in order to facilitate urban scale simulations encompassing dense road networks. For the street canyon application, modelled daily mean NO x/NO 2 concentrations deviated by +0.4%/-15% from observations, while the correlations for NO x and NO 2 were 0.67 and 0.76 respectively. NO 2 concentrations were underestimated in summer, but were captured well for other seasons. In Graz a fair agreement for NO x and NO 2 was obtained between observed and modelled values for NO x and NO 2. Simulated diurnal cycles of NO 2 and O 3 matched observations reasonably well, although O 3 was underestimated during the day. A possible explanation here might lie in the non-consideration of volatile organic compounds (VOCs) chemistry.
Scale-by-scale contributions to Lagrangian particle acceleration
Lalescu, Cristian C.; Wilczek, Michael
2017-11-01
Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.
International Nuclear Information System (INIS)
Tatekawa, Takayuki
2014-01-01
We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small
Mohrmann, J.; Albrecht, B. A.; Bretherton, C. S.; Ghate, V. P.; Zuidema, P.; Wood, R.
2015-12-01
The Cloud System Evolution in the Trades (CSET) field campaign took place during July/August 2015 with the purpose of characterizing the cloud, aerosol and thermodynamic properties of the northeast Pacific marine boundary layer. One major science goal of the campaign was to observe a Lagrangian transition from thin stratocumulus (Sc) upwind near California to trade cumulus (Cu) nearer to Hawaii. Cloud properties were observed from the NSF/NCAR Gulfstream V research plane (GV) using the HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL), among other instrumentation. Aircraft observations were complemented by a suite of satellite-derived products. To observe a the evolution of airmasses over the course of two days, upwind regions were sampled on an outbound flight to from Sacramento, CA, to Kona, HI. The sampled airmasses were then tracked using HYSPLIT trajectories based on GFS model forecasts, and the return flight to California was planned to intercept those airmasses, using satellite observation to track cloud evolution in the interim. This approach required that trajectories were reasonably stable up to 3 days prior to final sampling, and also that forecast trajectories were in agreement with post-flight analysis and visual cloud feature tracking. The extent to which this was realised, and hence the validity of this new approach to Lagrangian airmass observation, is assessed here. We also present results showing that a Sc-Cu airmass transition was consistently observed during the CSET study using measurements from research flights and satellite.
Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik
2015-06-09
An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.
Escapa, Alberto; Fukushima, Toshio
2010-05-01
of this relative motion, three characteristic proper modes appear: one in the direction of the figure axis (polar mode) and two orthogonal to it (equatorial modes). These modes are usually referred as Slichter triplet. In the case of the polar mode, Busse (1974) determined analytically its expression in an implicit way; later other authors have obtained by numerical methods the values of all the modes (e.g Rieutord 2002). These expressions differ substantially from the single degenerate mode existing for a non-rotating model, the differences arising from the roto-traslatory coupling of the system. To construct an analytical description of the motion of this non-isobarycentric Earth model we have approximated it by a Lagrangian system, inspired in the successful of this variational approach to tackle the rotational dynamics of isobarycentric Earth models (e.g. Moritz 1982, Getino and Ferrándiz 2001). In this way, the fluid flow is represented as the sum of a rigid motion part plus a potential motion part. In this way, the resulting dynamical system is described by means of nine generalized co-ordinates. Once constructed the kinetic energy of each layer of the Earth model and the potential energy due to the gravitational interaction of the spherical rigid inner core with the fluid, we form the Euler-Lagrange equations of the system which turn out to be non-linear. By assuming a small departure with respect to the steady rotation configuration we linearice the differential equations of the motion, deriving from them the analytical expressions of the Slichter triplet. These expressions are compared with the existing numerical ones, appearing some discrepancies between both approaches. They might be caused by neglecting the non-linear terms in the resolution of the equations or by an incomplete description of the fluid flow. However, the numerical values of the modes derived with this treatment show a great improvement with respect to the values obtained from performing
International Nuclear Information System (INIS)
Davidson, R.M.
1992-01-01
The author investigates theoretical uncertainties and model dependence in the extraction of the nucleon-delta(1232) electromagnetic transition amplitudes from the multipole data base. The starting point is an effective Lagrangian incorporating chiral symmetry, which includes at the tree level the pseudovector Born terms, leading t-channel vector meson exchanges, and s and u channel delta exchanges. The nucleon-delta magnetic dipole (M1) and electric quadrupole (E2) transition amplitudes are expressed in terms of two independent gauge couplings at the γNΔ vertex. After unitarizing the tree level amplitude, the gauge couplings are fitted to various multipole data sets, thus determining E2 and M1. Although there is much sensitivity to the method used to unitarize the amplitude, the author extracts the E2/M1 ratio to be negative, with a magnitude around 1.5%. 11 refs., 3 figs
Directory of Open Access Journals (Sweden)
G Boiger
2016-06-01
Full Text Available In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.
Nonlinear realizations and effective Lagrangian densities for nonlinear σ-models
International Nuclear Information System (INIS)
Hamilton-Charlton, Jason Dominic
2003-01-01
Nonlinear realizations of the groups SU(N), SO(m) and SO(t,s) are analysed, described by the coset spaces SU(N) / SU(N-1) x U(1), SO(m) / SO(m-1), SO(1,m-1) / SO(1,m-2) and SO(m) / SO(m-2 x SO(2). The analysis consists of determining the transformation properties of the Goldstone Bosons, constructing the most general possible Lagrangian for the realizations, and as a result identifying the coset space metric. We view the λ matrices of SU(N) as being the basis of an (N 2 - 1) dimensional real vector space, and from this we learn how to construct the basis of a Cartan Subspace associated with a vector. This results in a mathematical structure which allows us to find expressions for coset representative elements used in the analysis. This structure is not only relevant to SU(N) breaking models, but may also be used to find results in SO(m) and SO(1,m - 1) breaking models. (author)
Lagrangian velocity correlations in homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Gotoh, T.; Rogallo, R.S.; Herring, J.R.; Kraichnan, R.H.
1993-01-01
The Lagrangian velocity autocorrelation and the time correlations for individual wave-number bands are computed by direct numerical simulation (DNS) using the passive vector method (PVM), and the accuracy of the method is studied. It is found that the PVM is accurate when K max /k d ≥2 where K max is the maximum wave number carried in the simulation and k d is the Kolmogorov wave number. The Eulerian and Lagrangian time correlations for various wave-number bands are compared. At moderate to high wave number the Eulerian time correlation decays faster than the Lagrangian, and the effect of sweep on the former is observed. The time scale of the Eulerian correlation is found to be (kU 0 ) -1 while that of the Lagrangian is [∫ 0 k p 2 E(p)dp] -1/2 . The Lagrangian velocity autocorrelation in a frozen turbulent field is computed using the DIA, ALHDIA, and LRA theories and is compared with DNS measurements. The Markovianized Lagrangian renormalized approximation (MLRA) is compared with the DNS, and good agreement is found for one-time quantities in decaying turbulence at low Reynolds numbers and for the Lagrangian velocity autocorrelation in stationary turbulence at moderate Reynolds number. The effect of non-Gaussianity on the Lagrangian correlation predicted by the theories is also discussed
Problems of vector Lagrangians in field theories
International Nuclear Information System (INIS)
Krivsky, I.Yu.; Simulik, V.M.
1997-01-01
A vector Lagrange approach to the Dirac spinor field and the relationship between the vector Lagrangians for the spinor and electromagnetic fields are considered. A vector Lagrange approach for the system of interacting electromagnetic B=(B μ υ)=(E-bar,H-bar) and spinor Ψ fields is constructed. New Lagrangians (scalar and vector) for electromagnetic field in terms of field strengths are found. The foundations of two new QED models are formulated
Target Lagrangian kinematic simulation for particle-laden flows.
Murray, S; Lightstone, M F; Tullis, S
2016-09-01
The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.
International Nuclear Information System (INIS)
Beyl, L.M.
1979-01-01
It is shown that the Einstein, Weyl, supergravity and superconformal theories are special cases of gauge transformations in SU(4vertical-barN). This group is shown to contain SU(2,2) x SU(N) x U(1) for its commuting or Bose part, and to contain 8N supersymmetry generators for its anticommuting or Fermi part. Using the electromagnetic Lagrangian as a model, a super-Lagrangian is constructed for vector potentials. Invariance is automatic in free space, but, in the presence of matter, restrictions on the supersymmetry transformations are necessary. The Weyl action and the Einstein cosmological field equations are obtained in the appropriate limits. Finally, a super-Lagrangian is constructed from nongeometric principles which includes the Dirac Lagrangian and except for a sum over symmetry indices resembles the electron-electromagnetic Lagrangian
Energy Technology Data Exchange (ETDEWEB)
Pecorari, Eliana, E-mail: eliana.pecorari@unive.it [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy); Mantovani, Alice [OSMOTECH S.r.l., via Francesco Sforza, 15, 20122 Milano (Italy); Franceschini, Chiara [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy); Bassano, Davide [SAVE S.p.A., Marco Polo Venice airport viale G. Galilei 30/1, 30173 Tessera-Venezia (Italy); Palmeri, Luca [Department of Industrial Engineering, University of Padova, v. Marzolo 9, 35131 Padova (Italy); Rampazzo, Giancarlo [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy)
2016-01-15
The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po’ Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15–50%) has been observed during specific meteorological events
International Nuclear Information System (INIS)
Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo
2016-01-01
The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po’ Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15–50%) has been observed during specific meteorological events
Felici, Helene M.; Drela, Mark
1993-01-01
A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.
Lagrangian condensation microphysics with Twomey CCN activation
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation
Lagrangian condensation microphysics with Twomey CCN activation
Directory of Open Access Journals (Sweden)
W. W. Grabowski
2018-01-01
Full Text Available We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the
Directory of Open Access Journals (Sweden)
Youtao Gao
2016-01-01
Full Text Available The accuracy of autonomous orbit determination of Lagrangian navigation constellation will affect the navigation accuracy for the deep space probes. Because of the special dynamical characteristics of Lagrangian navigation satellite, the error caused by different estimation algorithm will cause totally different autonomous orbit determination accuracy. We apply the extended Kalman filter and the fading–memory filter to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The accuracy of autonomous orbit determination using fading-memory filter can improve 50% compared to the autonomous orbit determination accuracy using extended Kalman filter. We proposed an integrated Kalman fading filter to smooth the process of autonomous orbit determination and improve the accuracy of autonomous orbit determination. The square root extended Kalman filter is introduced to deal with the case of inaccurate initial error variance matrix. The simulations proved that the estimation method can affect the accuracy of autonomous orbit determination greatly.
Directory of Open Access Journals (Sweden)
J. Rinne
2012-06-01
Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.
Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo
2016-01-15
The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events
International Nuclear Information System (INIS)
Kazama, Y.; Yao, Y.
1982-01-01
In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy
Lagrangian descriptors in dissipative systems.
Junginger, Andrej; Hernandez, Rigoberto
2016-11-09
The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.
Lagrangian and Hamiltonian dynamics
Mann, Peter
2018-01-01
An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...
International Nuclear Information System (INIS)
Aranda, J. I.; Tututi, E. S.; Flores-Tlalpa, A.; Ramirez-Zavaleta, F.; Tlachino, F. J.; Toscano, J. J.
2009-01-01
Higgs mediated flavor violating electromagnetic interactions, induced at the one-loop level by a nondiagonal Hf i f j vertex, with f i and f j charged leptons or quarks, are studied within the context of a completely general effective Yukawa sector that comprises SU L (2)xU Y (1)-invariant operators of up to dimension-six. Exact formulae for the one-loop γf i f j and γγf i f j couplings are presented and their related processes used to study the phenomena of Higgs mediated lepton flavor violation. The experimental limit on the μ→eγ decay is used to derive a bound on the branching ratio of the μ→eγγ transition, which is 6 orders of magnitude stronger than the current experimental limit. Previous results on the τ→μγ and τ→μγγ decays are reproduced. The possibility of detecting signals of lepton flavor violation at γγ colliders is explored through the γγ→l i l j reaction, putting special emphasis on the τμ final state. Using the bound imposed on the Hτμ vertex by the current experimental data on the muon anomalous magnetic moment, it is found that about half a hundred events may be produced in the International Linear Collider.
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
Modeling pollutant transport using a meshless-lagrangian particle model
International Nuclear Information System (INIS)
Carrington, D.B.; Pepper, D.W.
2002-01-01
A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons
A purely Lagrangian method for the numerical integration of Fokker-Planck equations
International Nuclear Information System (INIS)
Combis, P.; Fronteau, J.
1986-01-01
A new numerical approach to Fokker-Planck equations is presented, in which the integration grid moves according to the solution of a differential system. The method is purely Lagrangian, the mean effect of the diffusion being inserted into the differential system itself
An investigation of singular Lagrangians as field systems
International Nuclear Information System (INIS)
Rabei, E.M.
1995-07-01
The link between the treatment of singular Lagrangians as field systems and the general approach is studied. It is shown that singular Lagrangians as field systems are always in exact agreement with the general approach. Two examples and the singular Lagrangian with zero rank Hessian matrix are studied. The equations of motion in the field systems are equivalent to the equations which contain acceleration, and the constraints are equivalent to the equations which do not contain acceleration in the general approach treatment. (author). 10 refs
Lagrangian motion, coherent structures, and lines of persistent material strain.
Samelson, R M
2013-01-01
Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Meaning of the BRS Lagrangian theory
International Nuclear Information System (INIS)
Cheng, H.; Tsai, E.
1989-01-01
A simplified treatment of the Becchi-Rouet-Stora (BRS) Lagrangian theory is presented. With this treatment we show that the BRS Lagrangian theory in general, and the Feynman-gauge field theory in particular, are effective theories, not the physical theory, and the Feynman gauge is not, strictly speaking, a gauge. The relationship between the quantum states in the BRS Lagrangian theory and those in the physical theory is explicitly given. We also show that one may obtain matrix elements of gauge-invariant operators in the physical theory by calculating corresponding ones in the BRS Lagrangian theory. The formulas which equate such matrix elements are called correspondence formulas. The correspondence formula for the S matrix enables us to equate the scattering amplitudes in the physical theory with those in the BRS Lagrangian theory, thus a proof of the unitary of the Feynman-gauge (as well as other covariant gauges) Feynman rules is rendered unnecessary. This treatment can be applied to various gauge field theories and the examples of the pure Yang-Mills theory and a gauge field theory with a Higgs field is explicitly worked out
Exact Lagrangian caps and non-uniruled Lagrangian submanifolds
Dimitroglou Rizell, Georgios
2015-04-01
We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.
Numerical methods for Eulerian and Lagrangian conservation laws
Després, Bruno
2017-01-01
This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.
Tracking Lagrangian trajectories in position–velocity space
International Nuclear Information System (INIS)
Xu, Haitao
2008-01-01
Lagrangian particle-tracking algorithms are susceptible to intermittent loss of particle images on the sensors. The measured trajectories are often interrupted into short segments and the long-time Lagrangian statistics are difficult to obtain. We present an algorithm to connect the segments of Lagrangian trajectories from common particle-tracking algorithms. Our algorithm tracks trajectory segments in the six-dimensional position and velocity space. We describe the approach to determine parameters in the algorithm and demonstrate the validity of the algorithm with data from numerical simulations and the improvement of long-time Lagrangian statistics on experimental data. The algorithm has important applications in measurements with high particle seeding density and in obtaining multi-particle Lagrangian statistics
Lagrangian multiforms and multidimensional consistency
Energy Technology Data Exchange (ETDEWEB)
Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)
2009-10-30
We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.
Lagrangian cobordism and tropical curves
Sheridan, Nick; Smith, Ivan
2018-01-01
We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstructions to and constructions of cobordisms; in particular, we give examples of symplectic tori in which the cobordism group has no non-trivial cobordism relations between pairwise distinct fibres, and ones in which the degree zero fibre cobordism gr...
Lagrangian vector field and Lagrangian formulation of partial differential equations
Directory of Open Access Journals (Sweden)
M.Chen
2005-01-01
Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.
Lagrangian ocean analysis: Fundamentals and practices
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
Functional integral for non-Lagrangian systems
Kochan, Denis
2010-01-01
A novel functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The new approach, which we call "stringy quantization," is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force $-\\kappa[\\dot{q}]^A$. Results for $A = 1$ are compared with those obtained in the approaches by Caldirola-Kanai, Bateman and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.
Spontaneous CP breaking and the axion potential: an effective Lagrangian approach
CERN. Geneva
2017-01-01
When we add to the model a generic axion field (in order to ensure CP at all values of $\\theta$) the above considerations have a bearing on the shape of the axion potential near the boundary of its periodicity interval. This ...
Lagrangian statistics in compressible isotropic homogeneous turbulence
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi
2011-11-01
In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.
Chaotic Lagrangian models for turbulent relative dispersion.
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Palatini approach to bouncing cosmologies and DSR-like effects
International Nuclear Information System (INIS)
Olmo, Gonzalo J
2012-01-01
It is shown that a quadratic gravitational Lagrangian in the Palatini formulation is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, in this theory field excitations propagating with different energy-densities perceive different background metrics, a fundamental characteristic of the DSR and Rainbow Gravity approaches. This theory, however, avoids the so-called soccer ball problem. Also, the resulting isotropic and anisotropic cosmologies are free from the big bang singularity. This singularity avoidance occurs non-perturbatively and shares some similitudes with the effective dynamics of loop quantum cosmology.
Lagrangian averaging with geodesic mean.
Oliver, Marcel
2017-11-01
This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.
Lagrangian relaxation based algorithm for trigeneration planning with storages
DEFF Research Database (Denmark)
Rong, Aiying; Lahdelma, Risto; Luh, Peter
2008-01-01
of three energy commodities follows a joint characteristic. This paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem...... an effective method for the long-term planning problem based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution. Numerical results based...
Sakhel, Asaad R.; Sakhel, Roger R.
2018-02-01
We examine the dynamics of a one-dimensional harmonically trapped Bose-Einstein condensate (BEC), induced by the addition of a dimple trap whose depth oscillates with time. For this purpose, the Lagrangian variational method (LVM) is applied to provide the required analytical equations. The goal is to provide an analytical explanation for the quasiperiodic oscillations of the BEC size at resonance, that is additional to the one given by Adhikari (J Phys B At Mol Opt Phys 36:1109, 2003). It is shown that LVM is able to reproduce instabilities in the dynamics along the same lines outlined by Lellouch et al. (Phys Rev X 7:021015, 2017). Moreover, it is found that at resonance the energy dynamics display ordered oscillations, whereas at off-resonance they tend to be chaotic. Further, by using the Poincare-Lindstedt method to solve the LVM equation of motion, the resulting solution is able to reproduce the quasiperiodic oscillations of the BEC.
Weyl's Lagrangian in teleparallel form
International Nuclear Information System (INIS)
Burnett, James; Vassiliev, Dmitri
2009-01-01
The Weyl Lagrangian is the massless Dirac Lagrangian. The dynamical variable in the Weyl Lagrangian is a spinor field. We provide a mathematically equivalent representation in terms of a different dynamical variable - the coframe (an orthonormal tetrad of covector fields). We show that when written in terms of this dynamical variable, the Weyl Lagrangian becomes remarkably simple: it is the wedge product of axial torsion of the teleparallel connection with a teleparallel lightlike element of the coframe. We also examine the issues of U(1)-invariance and conformal invariance. Examination of the latter motivates us to introduce a positive scalar field (equivalent to a density) as an additional dynamical variable; this makes conformal invariance self-evident.
Lagrangian postprocessing of computational hemodynamics.
Shadden, Shawn C; Arzani, Amirhossein
2015-01-01
Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.
Lagrangian Observations and Modeling of Marine Larvae
Paris, Claire B.; Irisson, Jean-Olivier
2017-04-01
Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.
International Nuclear Information System (INIS)
Ibrahim, Tarek; Nath, Pran; Psinas, Anastasios
2004-01-01
We extend previous analyses of the supersymmetric loop correction to the charged Higgs couplings to include the coupling H ± χ ± χ 0 . The analysis completes the previous analyses where similar corrections were computed for H + t-barb (H - tb-bar), and for H + τ - ν-bar τ (H - τ + ν τ ) couplings within the minimal supersymmetric standard model. The effective one loop Lagrangian is then applied to the computation of the charged Higgs decays. The sizes of the supersymmetric loop correction on branching ratios of the charged Higgs H + (H - ) into the decay modes tb-bar (t-barb), τ-barν τ (τν-bar τ ), and χ i + χ j 0 (χ i - χ j 0 )(i=1,2; j=1-4) are investigated and the supersymmetric loop correction is found to be significant, i.e., in the range 20-30 % in significant regions of the parameter space. The loop correction to the decay mode χ 1 ± χ 2 0 is examined in specific detail as this decay mode leads to a trileptonic signal. The effects of CP phases on the branching ratio are also investigated. A brief discussion of the implications of the analysis for colliders is given
Differential geometry based solvation model II: Lagrangian formulation.
Chen, Zhan; Baker, Nathan A; Wei, G W
2011-12-01
computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. © Springer-Verlag 2011
A new Lagrangian method for real gases at supersonic speed
Loh, C. Y.; Liou, Meng-Sing
1992-01-01
With the renewed interest in high speed flights, the real gas effect is of theoretical as well as practical importance. In the past decade, upwind splittings or Godunov-type Riemann solutions have received tremendous attention and as a result significant progress has been made both in the ideal and non-ideal gas. In this paper, we propose a new approach that is formulated using the Lagrangian description, for the calculation of supersonic/hypersonic real gas inviscid flows. This new formulation avoids the grid generation step which is automatically obtained as the solution procedure marches in the 'time-like' direction. As a result, no remapping is required and the accuracy is faithfully maintained in the Lagrangian level. In this paper, we give numerical results for a variety of real gas problems consisting of essential elements in high speed flows, such as shock waves, expansion waves, slip surfaces and their interactions. Finally, calculations for flows in a generic inlet and nozzle are presented.
International Nuclear Information System (INIS)
Theodorakis, S.
1988-01-01
This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition
Directory of Open Access Journals (Sweden)
G. Aad
2016-02-01
Full Text Available The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb−1 at s=8 TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.
The PDF method for Lagrangian two-phase flow simulations
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1996-04-01
A recent turbulence model put forward by Pope (1991) in the context of PDF modelling has been used. In this approach, the one-point joint velocity-dissipation pdf equation is solved by simulating the instantaneous behaviour of a large number of Lagrangian fluid particles. Closure of the evolution equations of these Lagrangian particles is based on stochastic models and more specifically on diffusion processes. Such models are of direct use for two-phase flow modelling where the so-called fluid seen by discrete inclusions has to be modelled. Full Lagrangian simulations have been performed for shear-flows. It is emphasized that this approach gives far more information than traditional turbulence closures (such as the K-ε model) and therefore can be very useful for situations involving complex physics. It is also believed that the present model represents the first step towards a complete Lagrangian-Lagrangian model for dispersed two-phase flow problems. (authors). 21 refs., 6 figs
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.
Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N
2015-04-21
Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Dynamics of Multibody Systems Near Lagrangian Points
Wong, Brian
This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term
Lagrangian multi-particle statistics
DEFF Research Database (Denmark)
Lüthi, Beat; Berg, Jacob; Ott, Søren
2007-01-01
Combined measurements of the Lagrangian evolution of particle constellations and the coarse-grained velocity derivative tensor. partial derivative(u) over tilde (i) /partial derivative x(j) are presented. The data are obtained from three-dimensional particle tracking measurements in a quasi isotr...
Λ{sub c}{sup +} production in antiproton-proton annihilation within an effective Lagrangian model
Energy Technology Data Exchange (ETDEWEB)
Shyam, Radhey [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Saha Institute of Nuclear Physics, Kolkata (India); Lenske, Horst [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany)
2014-07-01
Using effective hadronic Lagangians with physical hadron masses and coupling constants determined from SU(4) flavor symmetry, we study the production cross sections of charmed baryon Λ{sub c}{sup +} in the anti pp → anti Λ{sub c} Λ{sub c}{sup +} reaction. The production mechanism is described by the t-channel meson exchange diagrams involving the excahnge of D{sup 0} and D* mesons. At the ND{sup 0}Λ{sub c} and ND*Λ{sub c} vertices several types of form factors have been used and sensitivity of the production cross sections to their form and the cut-off parameters appearing therein have been investigated. With a monopole form factor and a cut-off parameter of 2.5 GeV, our cross sections are of the same order of magnitude as the obtained ones.
Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies
Dutt, A.; Lermusiaux, P. F. J.
2017-12-01
Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.
Extended hamiltonian formalism and Lorentz-violating lagrangians
Directory of Open Access Journals (Sweden)
Don Colladay
2017-09-01
Full Text Available A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler–Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
Extended hamiltonian formalism and Lorentz-violating lagrangians
Colladay, Don
2017-09-01
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
Algebraic geometry and effective lagrangians
International Nuclear Information System (INIS)
Martinec, E.J.; Chicago Univ., IL
1989-01-01
N=2 supersymmetric Landau-Ginsburg fixed points describe nonlinear models whose target spaces are algebraic varieties in certain generalized projective spaces; the defining equation is precisely the zero set of the superpotential, considered as a condition in the projective space. The ADE classification of modular invariants arises as the classification of projective descriptions of P 1 ; in general, the hierarchy of fixed points is conjectured to be isomorphic to the classification of quasihomogeneous singularities. The condition of vanishing first Chern class is an integrality condition on the Virasoro central charge; the central charge is determined by the superpotential. The operator algebra is given by the algebra of Wick contractions of perturbations of the superpotential. (orig.)
International Nuclear Information System (INIS)
Bel'kov, A.A.; Lanyov, A.V.; Ebert, D.
1990-08-01
In the framework of recently proposed effective Lagrangians for weak nonleptonic meson interactions the amplitudes of the decays K 0 → 3π have been calculated with inclusion of isospin breaking and meson rescattering effects. The imaginary part of the penguin diagram contribution, which determines direct CP-violation in nonleptonic kaon decays, has been fixed with the help of the measured ratio ε'/ε of CP-violation parameters. The modification of the Li-Wolfenstein relation for the direct CP-violation parameter in K 0 (K-bar 0 ) → π + π - π 0 decays is discussed. (author). 27 refs, 3 figs, 1 tab
Lagrangian Studies of Lateral Mixing
2017-09-19
Final Technical 3. DATES COVERED (From - To) 01/01/2009 – 12/31/2015 4. TITLE AND SUBTITLE Lagrangian Studies of Lateral Mixing 5a. CONTRACT NUMBER...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Lateral Mixing Experiment (LATMIX) focused on mixing and...anomalies. LATMIX2 targeted the wintertime Gulf Stream, where deep mixed layers, strong lateral density gradients (Gulf Stream north wall) and the
Chiral Lagrangians and the SSC
International Nuclear Information System (INIS)
Dawson, S.
1991-09-01
In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs
Extended Lagrangian Excited State Molecular Dynamics.
Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N
2018-02-13
An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).
Mean-Lagrangian formalism and covariance of fluid turbulence.
Ariki, Taketo
2017-05-01
Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.
Sigma decomposition: the CP-odd Lagrangian
Energy Technology Data Exchange (ETDEWEB)
Hierro, I.M. [Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padua (Italy); Merlo, L. [Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, 28049, Madrid (Spain); Rigolin, S. [Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padua (Italy)
2016-04-04
In Alonso et al., http://dx.doi.org/10.1007/JHEP12(2014)034, the CP-even sector of the effective chiral Lagrangian for a generic composite Higgs model with a symmetric coset has been constructed, up to four momenta. In this paper, the CP-odd couplings are studied within the same context. If only the Standard Model bosonic sources of custodial symmetry breaking are considered, then at most six independent operators form a basis. One of them is the weak-θ term linked to non-perturbative sources of CP violation, while the others describe CP-odd perturbative couplings between the Standard Model gauge bosons and an Higgs-like scalar belonging to the Goldstone boson sector. The procedure is then applied to three distinct exemplifying frameworks: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2)×U(1)) model, which intrinsically breaks custodial symmetry. Moreover, the projection of the high-energy electroweak effective theory to the low-energy chiral effective Lagrangian for a dynamical Higgs is performed, uncovering strong relations between the operator coefficients and pinpointing the differences with the elementary Higgs scenario.
Jain, Anuj Kumar; Rastogi, Vikas; Agrawal, Atul Kumar
2018-01-01
The main focus of this paper is to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system through extended Lagrangian formalism, where symmetries are broken in terms of the rotor stiffness. The complete insight of dynamic behaviour of multi-rotor-system with asymmetries is evaluated through extension of Lagrangian equation with a case study. In this work, a dynamic mathematical model of a multi-rotor-system through a novel approach of extension of Lagrangian mechanics is developed, where the system is having asymmetries due to varying stiffness. The amplitude and the natural frequency of the rotor are obtained analytically through the proposed methodology. The bond graph modeling technique is used for modeling the asymmetric rotor. Symbol-shakti® software is used for the simulation of the model. The effects of the stiffness of multi-rotor-system on amplitude and frequencies are studied using numerical simulation. Simulation results show a considerable agreement with the theoretical results obtained through extended Lagrangian formalism. It is further shown that amplitude of the rotor increases inversely the stiffness of the rotor up to a certain limit, which is also affirmed theoretically.
A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.
Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu
2017-10-01
The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.
The S-Lagrangian and a theory of homeostasis in living systems
Sandler, U.; Tsitolovsky, L.
2017-04-01
A major paradox of living things is their ability to actively counteract degradation in a continuously changing environment or being injured through homeostatic protection. In this study, we propose a dynamic theory of homeostasis based on a generalized Lagrangian approach (S-Lagrangian), which can be equally applied to physical and nonphysical systems. Following discoverer of homeostasis Cannon (1935), we assume that homeostasis results from tendency of the organisms to decrease of the stress and avoid of death. We show that the universality of homeostasis is a consequence of analytical properties of the S-Lagrangian, while peculiarities of the biochemical and physiological mechanisms of homeostasis determine phenomenological parameters of the S-Lagrangian. Additionally, we reveal that plausible assumptions about S-Lagrangian features lead to good agreement between theoretical descriptions and observed homeostatic behavior. Here, we have focused on homeostasis of living systems, however, the proposed theory is also capable of being extended to social systems.
The anomalous chiral Lagrangian of order p6
International Nuclear Information System (INIS)
Bijnens, J.; Talavera, P.
2002-01-01
We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order p 6 . The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of N f light flavors, 23 terms for three and 5 for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well. (orig.)
S-equivalents lagrangians in generalized mechanics
International Nuclear Information System (INIS)
Negri, L.J.; Silva, Edna G. da.
1985-01-01
The problem of s-equivalent lagrangians is considered in the realm of generalized mechanics. Some results corresponding to the ordinary (non-generalized) mechanics are extended to the generalized case. A theorem for the reduction of the higher order lagrangian description to the usual order is found to be useful for the analysis of generalized mechanical systems and leads to a new class of equivalence between lagrangian functions. Some new perspectives are pointed out. (Author) [pt
Attili, Antonio; Bisetti, Fabrizio
2013-01-01
. The proposed scheme exhibits superior properties with respect to conventional Eulerian schemes in terms of stability, accuracy, and grid convergence. Taking into account the quality of the solution, the Lagrangian approach can be computationally more economical
Lagrangian investigations of vorticity dynamics in compressible turbulence
Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji
2017-10-01
In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.
Alternative kinetic energy metrics for Lagrangian systems
Sarlet, W.; Prince, G.
2010-11-01
We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.
Low-energy phenomenological chiral Lagrangians
International Nuclear Information System (INIS)
Cavopol, A.V.
1987-01-01
We develop a phenomenological Lagrangian that satisfies the requirements of the so called alternative schemes designed to model low energy meson phenomenology. Linear and nonlinear σ type Lagrangians and symmetry breaking schemes are used to describe pions that exhibit masses proportional to the square of the symmetry breaking term's coefficient, ε. (m π 2 ∼ 0(ε 2 )). The invariance of the theory under coordinate dependent transformations is achieved by introducing gauge fields for both linear and nonlinear Lagrangians. Finally, analogies between the minimal symmetry breaking terms in Quantum Electrodynamics and in our phenomenological lagrangians are used to generate a discussion of the quark-pion mass dependence indicated by the model
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories
Buican, Matthew; Laczko, Zoltan
2018-02-01
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.
Buican, Matthew; Laczko, Zoltan
2018-02-23
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Contact manifolds, Lagrangian Grassmannians and PDEs
Directory of Open Access Journals (Sweden)
Eshkobilov Olimjon
2018-02-01
Full Text Available In this paper we review a geometric approach to PDEs. We mainly focus on scalar PDEs in n independent variables and one dependent variable of order one and two, by insisting on the underlying (2n + 1-dimensional contact manifold and the so-called Lagrangian Grassmannian bundle over the latter. This work is based on a Ph.D course given by two of the authors (G. M. and G. M.. As such, it was mainly designed as a quick introduction to the subject for graduate students. But also the more demanding reader will be gratified, thanks to the frequent references to current research topics and glimpses of higher-level mathematics, found mostly in the last sections.
On Active Current Selection for Lagrangian Profilers
Directory of Open Access Journals (Sweden)
J. Jouffroy
2013-01-01
Full Text Available Autonomous Lagrangian profilers are now widely used as measurement and monitoring platforms, notably in observation programs as Argo. In a typical mode of operation, the profilers drift passively at their parking depthbefore making a vertical profile to go back to the surface. This paperpresents simple and computationally-efficient control strategies to activelyselect and use ocean currents so that a profiler can autonomously reach adesired destination. After briefly presenting a typical profiler andpossible mechanical modifications for a coastal environment, we introducesimple mathematical models for the profiler and the currents it will use. Wethen present simple feedback controllers that, using the direction of thecurrents and taking into account the configuration of the environment(coastal or deep-sea, is able to steer the profiler to any desiredhorizontal location. To illustrate the approach, a few results are presentedusing both simulated currents and real current velocity profiles from theNorth Sea.
Lagrangian based methods for coherent structure detection
Energy Technology Data Exchange (ETDEWEB)
Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2015-09-15
There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.
Behaviour of Lagrangian triangular mixed fluid finite elements
Indian Academy of Sciences (India)
The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a ...
Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors.
Junginger, Andrej; Hernandez, Rigoberto
2016-03-03
Transition-state theories describing barrierless chemical reactions, or more general activated problems, are often hampered by the lack of a saddle around which the dividing surface can be constructed. For example, the time-dependent transition-state trajectory uncovering the nonrecrossing dividing surface in thermal reactions in the framework of the Langevin equation has relied on perturbative approaches in the vicinity of the saddle. We recently obtained an alternative approach using Lagrangian descriptors to construct time-dependent and recrossing-free dividing surfaces. This is a nonperturbative approach making no reference to a putative saddle. Here we show how the Lagrangian descriptor can be used to obtain the transition-state geometry of a dissipated and thermalized reaction across barrierless potentials. We illustrate the method in the case of a 1D Brownian motion for both barrierless and step potentials; however, the method is not restricted and can be directly applied to different kinds of potentials and higher dimensional systems.
A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.
Tian, Siyu; Huang, Xiaoxia; Li, Hongga
2017-03-15
Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coupled Eulerian-Lagrangian transport of large debris by tsunamis
Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos
2016-04-01
conservativeness of the model. This way, in highly resolved meshes and high quantities of debris, the model approaches full conservativeness only if the two-way coupling feature is present, an effect that is attenuated in coarse meshes or with small debris quantities. Aknownledgements: This work was partially funded by FEDER, program COMPETE, and by national funds through the Portuguese Foundation for Science and Technology (FCT) with project RECI/ECM-HID/0371/2012. References: Baptista M.A. & Miranda, J.M. (2009) Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25-42. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013) A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards Earth Syst. Sci., 13, 2533-2542. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2015) Mathematical modelling of tsunami impacts on critical infrastructures: exposure and severity associated with debris transport at Sines port. EGU General Assembly 2015, Vienna, Austria. Ferreira, R. M. L.; Franca, M. J.; Leal, J. G. & Cardoso, A. H. (2009) Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics, Can. J. Civil. Eng., 36, 1604-1621. LeVeque, R. J., George, D. L., & Berger, M. J. (2011) Tsunami modelling with adaptively refined finite volume methods, Acta Numerica, pp. 211-289.
Cohomology for Lagrangian systems and Noetherian symmetries
International Nuclear Information System (INIS)
Popp, O.T.
1989-06-01
Using the theory of sheaves we find some exact sequences describing the locally Lagrangian systems. Using cohomology theory of groups with coefficients in sheaves we obtain some exact sequences describing the Noetherian symmetries. It is shown how the results can be used to find all locally Lagrangian dynamics Noetherian invariant with respect to a given group of kinematical symmetries.(author)
Lagrangian submanifolds and dynamics on Lie algebroids
International Nuclear Information System (INIS)
Leon, Manuel de; Marrero, Juan C; MartInez, Eduardo
2005-01-01
In some previous papers, a geometric description of Lagrangian mechanics on Lie algebroids has been developed. In this topical review, we give a Hamiltonian description of mechanics on Lie algebroids. In addition, we introduce the notion of a Lagrangian submanifold of a symplectic Lie algebroid and we prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be described in terms of Lagrangian submanifolds of symplectic Lie algebroids. The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal with Lagrangian (Hamiltonian) functions not defined necessarily on tangent (cotangent) bundles. Thus, we may apply our results to the projection of Lagrangian (Hamiltonian) functions which are invariant under the action of a symmetry Lie group. As a consequence, we obtain that Lagrange-Poincare (Hamilton-Poincare) equations are the Euler-Lagrange (Hamilton) equations associated with the corresponding Atiyah algebroid. Moreover, we prove that Lagrange-Poincare (Hamilton-Poincare) equations are the local equations defining certain Lagrangian submanifolds of symplectic Atiyah algebroids. (topical review)
Form of the manifestly covariant Lagrangian
Johns, Oliver Davis
1985-10-01
The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.
A Lagrangian-dependent metric space
International Nuclear Information System (INIS)
El-Tahir, A.
1989-08-01
A generalized Lagrangian-dependent metric of the static isotropic spacetime is derived. Its behaviour should be governed by imposing physical constraints allowing to avert the pathological features of gravity at the strong field domain. This would restrict the choice of the Lagrangian form. (author). 10 refs
On the canonical treatment of Lagrangian constraints
International Nuclear Information System (INIS)
Barbashov, B.M.
2001-01-01
The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a special Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge
Lagrangian properties of particles in turbulence
Toschi, F.; Bodenschatz, E.
2009-01-01
The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing. In this article, we report some motivations behind the Lagrangian description of turbulence and focus on the statistical properties of
On the canonical treatment of Lagrangian constraints
International Nuclear Information System (INIS)
Barbashov, B.M.
2001-01-01
The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a specific Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge
Implications of Lagrangian transport for coupled chemistry-climate simulations
Stenke, A.; Dameris, M.; Grewe, V.; Garny, H.
2008-10-01
For the first time a purely Lagrangian transport algorithm is applied in a fully coupled chemistry-climate model (CCM). We use the Lagrangian scheme ATTILA for the transport of water vapour, cloud water and chemical trace species in the ECHAM4.L39(DLR)/CHEM (E39C) CCM. The advantage of the Lagrangian approach is that it is numerically non-diffusive and therefore maintains steeper and more realistic gradients than the operational semi-Lagrangian transport scheme. In case of radiatively active species changes in the simulated distributions feed back to model dynamics which in turn affect the modelled transport. The implications of the Lagrangian transport scheme for stratospheric model dynamics and tracer distributions in the upgraded model version E39C-ATTILA (E39C-A) are evaluated by comparison with observations and results of the E39C model with the operational semi-Lagrangian advection scheme. We find that several deficiencies in stratospheric dynamics in E39C seem to originate from a pronounced modelled wet bias and an associated cold bias in the extra-tropical lowermost stratosphere. The reduction of the simulated moisture and temperature bias in E39C-A leads to a significant advancement of stratospheric dynamics in terms of the mean state as well as annual and interannual variability. As a consequence of the favourable numerical characteristics of the Lagrangian transport scheme and the improved model dynamics, E39C-A generally shows more realistic stratospheric tracer distributions: Compared to E39C high stratospheric chlorine (Cly) concentrations extend further downward and agree now well with analyses derived from observations. Therefore E39C-A realistically covers the altitude of maximum ozone depletion in the stratosphere. The location of the ozonopause, i.e. the transition from low tropospheric to high stratospheric ozone values, is also clearly improved in E39C-A. Furthermore, the simulated temporal evolution of stratospheric Cly in the past is
The shallow water equations in Lagrangian coordinates
International Nuclear Information System (INIS)
Mead, J.L.
2004-01-01
Recent advances in the collection of Lagrangian data from the ocean and results about the well-posedness of the primitive equations have led to a renewed interest in solving flow equations in Lagrangian coordinates. We do not take the view that solving in Lagrangian coordinates equates to solving on a moving grid that can become twisted or distorted. Rather, the grid in Lagrangian coordinates represents the initial position of particles, and it does not change with time. We apply numerical methods traditionally used to solve differential equations in Eulerian coordinates, to solve the shallow water equations in Lagrangian coordinates. The difficulty with solving in Lagrangian coordinates is that the transformation from Eulerian coordinates results in solving a highly nonlinear partial differential equation. The non-linearity is mainly due to the Jacobian of the coordinate transformation, which is a precise record of how the particles are rotated and stretched. The inverse Jacobian must be calculated, thus Lagrangian coordinates cannot be used in instances where the Jacobian vanishes. For linear (spatial) flows we give an explicit formula for the Jacobian and describe the two situations where the Lagrangian shallow water equations cannot be used because either the Jacobian vanishes or the shallow water assumption is violated. We also prove that linear (in space) steady state solutions of the Lagrangian shallow water equations have Jacobian equal to one. In the situations where the shallow water equations can be solved in Lagrangian coordinates, accurate numerical solutions are found with finite differences, the Chebyshev pseudospectral method, and the fourth order Runge-Kutta method. The numerical results shown here emphasize the need for high order temporal approximations for long time integrations
Lagrangian numerical methods for ocean biogeochemical simulations
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
Unambiguous formalism for higher order Lagrangian field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris
2009-01-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Lagrangian formulation and symmetrical description of liquid dynamics.
Trachenko, K
2017-12-01
Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k-space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k-space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.
Mean Lagrangian drift in continental shelf waves
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
Schmitt , François G
2005-01-01
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...
Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2
International Nuclear Information System (INIS)
Shintani, M.
1986-11-01
Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)
Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori
Energy Technology Data Exchange (ETDEWEB)
R.B. White; Yu.V. Yakovenko; Ya.I. Kolesnichenko
2002-06-21
The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the firs t cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found.
Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori
International Nuclear Information System (INIS)
White, R.B.; Yakovenko, Yu.V.; Kolesnichenko, Ya.I.
2002-01-01
The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the first cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found
Coherent Lagrangian swirls among submesoscale motions.
Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G
2018-03-05
The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.
A functional LMO invariant for Lagrangian cobordisms
DEFF Research Database (Denmark)
Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël
2008-01-01
Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category...... of Jacobi diagrams. We prove some properties of this functorial LMO invariant, including its universality among rational finite-type invariants of Lagrangian cobordisms. Finally, we apply the LMO functor to the study of homology cylinders from the point of view of their finite-type invariants....
Leading-order classical Lagrangians for the nonminimal standard-model extension
Reis, J. A. A. S.; Schreck, M.
2018-03-01
In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.
Lagrangian generic second order traffic flow models for node
Directory of Open Access Journals (Sweden)
Asma Khelifi
2018-02-01
Full Text Available This study sheds light on higher order macroscopic traffic flow modeling on road networks, thanks to the generic second order models (GSOM family which embeds a myriad of traffic models. It has been demonstrated that such higher order models are easily solved in Lagrangian coordinates which are compatible with both microscopic and macroscopic descriptions. The generalized GSOM model is reformulated in the Lagrangian coordinate system to develop a more efficient numerical method. The difficulty in applying this approach on networks basically resides in dealing with node dynamics. Traffic flow characteristics at node are different from that on homogeneous links. Different geometry features can lead to different critical research issues. For instance, discontinuity in traffic stream can be an important issue for traffic signal operations, while capacity drop may be crucial for lane-merges. The current paper aims to establish and analyze a new adapted node model for macroscopic traffic flow models by applying upstream and downstream boundary conditions on the Lagrangian coordinates in order to perform simulations on networks of roads, and accompanying numerical method. The internal node dynamics between upstream and downstream links are taken into account of the node model. Therefore, a numerical example is provided to underscore the efficiency of this approach. Simulations show that the discretized node model yields accurate results. Additional kinematic waves and contact discontinuities are induced by the variation of the driver attribute.
Deformations of Lagrangian subvarieties of holomorphic symplectic manifolds
Lehn, Christian
2011-01-01
We generalize Voisin's theorem on deformations of pairs of a symplectic manifold and a Lagrangian submanifold to the case of Lagrangian normal crossing subvarieties. Partial results are obtained for arbitrary Lagrangian subvarieties. We apply our results to the study of singular fibers of Lagrangian fibrations.
The Wess-Zumino lagrangian and colored techni-pseudo-Goldstone bosons
International Nuclear Information System (INIS)
McKay, D.W.; Young Binglin; Iowa State Univ. of Science and Technology, Ames
1986-01-01
The construction of the Wess-Zumino type effective action is discussed for color octet techni-pion and techni-eta fields interacting with the light gauge bosons - gluon, photon, Wsup(+-) and Z. The explicit effective lagrangian for the one-pseudoscalar meson sector is displayed. GAMMA(eta->GWW), GAMMA(eta->GGγ) and GAMMA(eta->GGZ) are compared to GAMMA(eta->GZ) to illustrate the predictive content of the lagrangian. (orig.)
Option volatility and the acceleration Lagrangian
Baaquie, Belal E.; Cao, Yang
2014-01-01
This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.
Lagrangian-similarity diffusion-deposition model
International Nuclear Information System (INIS)
Horst, T.W.
1979-01-01
A Lagrangian-similarity diffusion model has been incorporated into the surface-depletion deposition model. This model predicts vertical concentration profiles far downwind of the source that agree with those of a one-dimensional gradient-transfer model
A new proposal for Lagrangian correlation coefficient
International Nuclear Information System (INIS)
Altinsoy, N.; Tugrul, A.B.
2002-01-01
The statistical description of dispersion in turbulent flow was first considered by Taylor (Proc. London Math. Soc. 20 (1921) 196) and the statistical properties of the field were determined by Lagrangian correlation coefficient R L (τ). Frenkiel (Adv. Appl. Mech. 3 (1953) 61) has proposed several simple forms for R L (τ). Some workers have investigated for a proper form of the Lagrangian correlation coefficient. In this work, a new proposal for the Lagrangian correlation coefficient is proposed and discussed. It can be written in general form with the one of the Frenkiel's (Adv. Appl. Mech. 3 (1953) 61) Lagrangian correlation coefficient. There is very satisfactory agreement between the new correlation and the experiment
Lagrangian Differentiation, Integration and Eigenvalues Problems
International Nuclear Information System (INIS)
Durand, L.
1983-01-01
Calogero recently proposed a new and very powerful method for the solution of Sturm-Liouville eigenvalue problems based on Lagrangian differentiation. In this paper, some results of a numerical investigation of Calogero's method for physical interesting problems are presented. It is then shown that one can 'invert' his differentiation technique to obtain a flexible, factorially convergent Lagrangian integration scheme which should be useful in a variety of problems, e.g. solution of integral equations
The universal lagrangian and the cosmic evolution
International Nuclear Information System (INIS)
El Tahir, A.
1984-08-01
By geometrizing Mach's Universe, we derive the most rational form of a Lagrangian which we, hence, call Universal. It contains both linear and nonlinear terms of the scalar curvature R, with constant coefficients which underlie a certain physical meaning. The metric derivable from this Lagrangian is believed to be far advanced from those derived from general relativity. A wave equation describing the overall evolution of the Universe is obtained and discussed. (author)
An online-coupled NWP/ACT model with conserved Lagrangian levels
Sørensen, B.; Kaas, E.; Lauritzen, P. H.
2012-04-01
Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.
SALE-3D, 3-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method
International Nuclear Information System (INIS)
Amsden, A.A.; Ruppel, H.M.
1991-01-01
1 - Description of problem or function: SALE-3D calculates three- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: SALE3D uses an ICED-ALE technique, which combines the ICE method of treating flow speeds and the ALE mesh treatment to calculate three-dimensional fluid flow. The finite- difference approximations to the conservation of mass, momentum, and specific internal energy differential equations are solved in a sequence of time steps on a network of deformable computational cells. The basic hydrodynamic part of each cycle is divided into three phases: (1) an explicit solution of the Lagrangian equations of motion updating the velocity field by the effects of all forces, (2) an implicit calculation using Newton-Raphson iterative scheme that provides time-advanced pressures and velocities, and (3) the addition of advective contributions for runs that are Eulerian or contain some relative motion of grid and fluid. A powerful feature of this three-phases approach is the ease with which
A new circulation type classification based upon Lagrangian air trajectories
Directory of Open Access Journals (Sweden)
Alexandre M. Ramos
2014-10-01
Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.
Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.
Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco
2017-08-25
We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.
Regularization of Hamilton-Lagrangian guiding center theories
International Nuclear Information System (INIS)
Correa-Restrepo, D.; Wimmel, H.K.
1985-04-01
The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.
Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan
2015-08-01
Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.
Inspections - a cost effective approach
International Nuclear Information System (INIS)
Joseph, C.
1981-01-01
This paper describes a cost effective approach for inspections of Computerized Nuclear Materials Control and Accounting Systems (CNMCAS). Highlighted is the capability to conduct an inspection program via portable telephone terminals from off-site locations. The program can be applied to various materials management functions including materials control, quality assurance, and materials accounting. The system is designed to facilitate inspections by both external and internal groups
Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion
International Nuclear Information System (INIS)
Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki
2002-01-01
We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index
A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies
Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.
2018-06-01
We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.
International Nuclear Information System (INIS)
Ruthe, Sebastian
2015-01-01
The ongoing shift towards decentralized power systems and the related rapidly growing number of decentralized energy resources (DER) like wind- and PV-units, CHP-units, storage devices and shiftable loads requires new information systems and control algorithms in order to pland and optimize the commitment of DER in line with the conventional generation system. In this context the paradigm of market based control derived from the Lagrangian relaxation of the unit commitment problem represents a promising solution approach to build highly scalable distributed systems able to perform this task within the required time limits. Market based control approaches typically achieve high quality solutions and protect the private data of the controlled units. However in case of DER with discontinuous utility functions market based control approaches suffer under the problem of ''joint commitment'', which may lead to a divergence of the iterative solution algorithm resulting in highly cost inefficient solutions. This thesis introduces a new concept of randomizing the Lagrangian multipliers to spread the individual commitment thresholds of DER thereby mitigating th negative effects of ''joint commitments''. Based on the randomized solution approach different boundaries for the solution quality regarding the overall energy production costs and the equilibrium constraints are established. Furthermore it is shown how the developed approach can be utilized to build new scalable information systems for future energy markets and their interfaces to the existing energy markets.
Lagrangian Curves on Spectral Curves of Monopoles
International Nuclear Information System (INIS)
Guilfoyle, Brendan; Khalid, Madeeha; Ramon Mari, Jose J.
2010-01-01
We study Lagrangian points on smooth holomorphic curves in TP 1 equipped with a natural neutral Kaehler structure, and prove that they must form real curves. By virtue of the identification of TP 1 with the space LE 3 of oriented affine lines in Euclidean 3-space, these Lagrangian curves give rise to ruled surfaces in E 3 , which we prove have zero Gauss curvature. Each ruled surface is shown to be the tangent lines to a curve in E 3 , called the edge of regression of the ruled surface. We give an alternative characterization of these curves as the points in E 3 where the number of oriented lines in the complex curve Σ that pass through the point is less than the degree of Σ. We then apply these results to the spectral curves of certain monopoles and construct the ruled surfaces and edges of regression generated by the Lagrangian curves.
Multidimensional Test Assembly Based on Lagrangian Relaxation Techniques. Research Report 98-08.
Veldkamp, Bernard P.
In this paper, a mathematical programming approach is presented for the assembly of ability tests measuring multiple traits. The values of the variance functions of the estimators of the traits are minimized, while test specifications are met. The approach is based on Lagrangian relaxation techniques and provides good results for the two…
The Mather problem for lower semicontinuous Lagrangians
Gomes, Diogo A.; Terrone, Gabriele
2013-01-01
In this paper we develop the Aubry-Mather theory for Lagrangians in which the potential energy can be discontinuous. Namely we assume that the Lagrangian is lower semicontinuous in the state variable, piecewise smooth with a (smooth) discontinuity surface, as well as coercive and convex in the velocity. We establish existence of Mather measures, various approximation results, partial regularity of viscosity solutions away from the singularity, invariance by the Euler-Lagrange flow away from the singular set, and further jump conditions that correspond to conservation of energy and tangential momentum across the discontinuity. © 2013 Springer Basel.
The Mather problem for lower semicontinuous Lagrangians
Gomes, Diogo A.
2013-08-01
In this paper we develop the Aubry-Mather theory for Lagrangians in which the potential energy can be discontinuous. Namely we assume that the Lagrangian is lower semicontinuous in the state variable, piecewise smooth with a (smooth) discontinuity surface, as well as coercive and convex in the velocity. We establish existence of Mather measures, various approximation results, partial regularity of viscosity solutions away from the singularity, invariance by the Euler-Lagrange flow away from the singular set, and further jump conditions that correspond to conservation of energy and tangential momentum across the discontinuity. © 2013 Springer Basel.
Using Upper Tolerances in Lagrangian Relaxation for the DCMSTP
DEFF Research Database (Denmark)
Turkensteen, Marcel
, and if the constraint is not binding and the penalty value is positive, the penalty value is decreased. A condition for optimality is that the constraints with slack have a penalty value of zero. In Lagrangian relaxation, it generally takes a long time until the penalty values converge. Therefore, the result is often...... will contain at least d edges adjacent to the vertex. Thus, we can determine by how much the penalty values can be increased without creating both slack and a positive penalty for any constraint. Using this finding, our approach is able to obtain accurate penalty values quickly....
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Lagrangian relaxation technique in power systems operation planning: Multipliers updating problem
Energy Technology Data Exchange (ETDEWEB)
Ruzic, S. [Electric Power Utility of Serbia, Belgrade (Yugoslavia)
1995-11-01
All Lagrangian relaxation based approaches to the power systems operation planning have an important common part: the Lagrangian multipliers correction procedure. It is the subject of this paper. Different approaches presented in the literature are discussed and an original method for the Lagrangian multipliers updating is proposed. The basic idea of this new method is to update Lagrangian multipliers trying to satisfy Khun-Tucker optimality conditions. Instead of the dual function maximization the `distance of optimality function` is defined and minimized. If Khun-Tucker optimality conditions are satisfied the value of this function is in range (-1,0); otherwise the function has a big positive value. This method called `the distance of optimality method` takes into account future changes in planning generations due to the Lagrangian multipliers updating. The influence of changes in a multiplier associated to one system constraint to the satisfaction of some other system requirements is also considered. The numerical efficiency of the proposed method is analyzed and compared with results obtained using the sub-gradient technique. 20 refs, 2 tabs
Experimental investigation of Lagrangian structure functions in turbulence
DEFF Research Database (Denmark)
Berg, Jacob; Ott, Søren; Mann, Jakob
2009-01-01
Lagrangian properties obtained from a particle tracking velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure functions and to measure intermittency at small...
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column
Three-dimensional free Lagrangian hydrodynamics
International Nuclear Information System (INIS)
Trease, H.E.
1985-01-01
The purpose of the discussion is to describe the development of a 3-D free Lagrangian hyrodynamics algorithm. The 3-D algorithm is an outgrowth of an earlier 2-D free Lagrange model. Only the more pertinent issues of the free Lagrange algorithm are presented. A complete production code is being developed to support the free Lagrange algorithm described. 4 refs
QUANTIZATION OF NON-LAGRANGIAN SYSTEMS
Czech Academy of Sciences Publication Activity Database
Kochan, Denis
2009-01-01
Roč. 24, 28-29 (2009), s. 5319-5340 ISSN 0217-751X R&D Projects: GA MŠk(CZ) LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : dissipative quantization * non-Lagrangian system * umbilical string Subject RIV: BE - Theoretical Physics Impact factor: 0.941, year: 2009
Gravitational theory with the local quadratic Lagrangian
International Nuclear Information System (INIS)
Tentyukov, M.N.
1992-01-01
It is suggested that the vacuum gravitational equations should be derived from the local Lagrangian containing only first-order derivatives. As an example we demonstrate the properties of the derived equations by studying of the exact spherically-symmetric solutions. 23 refs
Sandler, U.
2017-11-01
In this paper, we extend our generalized Lagrangian dynamics (i.e., S-Lagrangian dynamics, which can be applied equally to physical and non-physical systems as per Sandler (2014)) to many-body systems. Unlike common Lagrangian dynamics, this is not a trivial task. For many-body systems with S-dependent Lagrangians, the Lagrangian and the corresponding Hamiltonian or energy become vector functions, conjugated momenta become second-order tensors, and the system inevitably develops a hierarchical structure, even if all bodies initially have similar status and Lagrangians. As an application of our theory, we consider dominance and hierarchy formation, which is present in almost all communities of living species. As a biological basis for this application, we assume that the primary motivation of a groups activity is to attempt to cope with stress arising as pressure from the environment and from intrinsic unmet needs of individuals. It has been shown that the S-Lagrangian approach to a group's evolution naturally leads to formation of linear or despotic dominance hierarchies, depending on differences between individuals in coping with stress. That is, individuals that cope more readily with stress take leadership roles during the evolution. Experimental results in animal groups which support our assumption and findings are considered.
Relating Lagrangian and Hamiltonian Formalisms of LC Circuits
Clemente-Gallardo, Jesús; Scherpen, Jacquelien M.A.
2003-01-01
The Lagrangian formalism earlier defined for (switching) electrical circuits, is adapted to the Lagrangian formalism defined on Lie algebroids. This allows us to define regular Lagrangians and consequently, well-defined Hamiltonian descriptions of arbitrary LC networks. The relation with other
"Lagrangian" for a Non-Lagrangian Field Theory with N=2 Supersymmetry.
Gadde, Abhijit; Razamat, Shlomo S; Willett, Brian
2015-10-23
We suggest that at least some of the strongly coupled N=2 quantum field theories in 4D can have a nonconformal N=1 Lagrangian description flowing to them at low energies. In particular, we construct such a description for the N=2 rank one superconformal field theory with E(6) flavor symmetry, for which a Lagrangian description was previously unavailable. We utilize this description to compute several supersymmetric partition functions.
Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-07-15
The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Insights into the three-dimensional Lagrangian geometry of the Antarctic polar vortex
Curbelo, Jezabel; José García-Garrido, Víctor; Mechoso, Carlos Roberto; Mancho, Ana Maria; Wiggins, Stephen; Niang, Coumba
2017-07-01
In this paper we study the three-dimensional (3-D) Lagrangian structures in the stratospheric polar vortex (SPV) above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979) and an interval of rapid SPV changes (October 1979). Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.
Next Generation Extended Lagrangian Quantum-based Molecular Dynamics
Negre, Christian
2017-06-01
A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.
Lagrangian analysis of multiscale particulate flows with the particle finite element method
Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy
2014-05-01
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
Gravitational Lagrangians, Mach's Principle, and the Equivalence Principle in an Expanding Universe
Essén, Hanno
2014-08-01
Gravitational Lagrangians as derived by Fock for the Einstein-Infeld-Hoffmann approach, and by Kennedy assuming only a fourth rank tensor interaction, contain long range interactions. Here we investigate how these affect the local dynamics when integrated over an expanding universe out to the Hubble radius. Taking the cosmic expansion velocity into account in a heuristic manner it is found that these long range interactions imply Mach's principle, provided the universe has the critical density, and that mass is renormalized. Suitable higher order additions to the Lagrangians make the formalism consistent with the equivalence principle.
International Nuclear Information System (INIS)
Levi, A.R.; Lubicz, V.; Rebbi, C.
1997-01-01
We discuss a general strategy to compute the coefficients of the QCD chiral Lagrangian using lattice QCD with Wilson fermions. This procedure requires the introduction of a lattice chiral Lagrangian as an intermediate step in the calculation. The QCD chiral Lagrangian is then obtained by expanding the lattice effective theory in increasing powers of the lattice spacing and the external momenta. In order to investigate the general structure of the lattice effective Lagrangian, we perform an analytical calculation at the leading order of the strong-coupling and large-N expansion. We find that the explicit chiral symmetry breaking, introduced on the lattice by the Wilson term, is reproduced in the effective theory by a set of additional terms, which do not have direct correspondence in the continuum chiral Lagrangian. We argue that these terms can be conveniently reabsorbed by a suitable renormalization procedure. This is shown explicitly at the leading order of the strong-coupling and large-N expansion. In fact, we find that at this order, as is known to be the case in the opposite weak-coupling limit, the vector and axial Ward identities of the continuum theory are reproduced on the lattice provided that the bare quark mass and the lattice operators are properly renormalized. copyright 1997 The American Physical Society
Space-Time Transformation in Flux-form Semi-Lagrangian Schemes
Directory of Open Access Journals (Sweden)
Peter C. Chu Chenwu Fan
2010-01-01
Full Text Available With a finite volume approach, a flux-form semi-Lagrangian (TFSL scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation, but also has higher accuracy (of a second order in both time and space. The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction.
Dispersion upscaling from a pore scale characterization of Lagrangian velocities
Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy
2013-04-01
Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.
Lagrangians for generalized Argyres-Douglas theories
Benvenuti, Sergio; Giacomelli, Simone
2017-10-01
We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.
An ambitwistor Yang-Mills Lagrangian
International Nuclear Information System (INIS)
Mason, L.J.; Skinner, D.
2006-01-01
We introduce a Chern-Simons Lagrangian for Yang-Mills theory as formulated on ambitwistor space via the Ward, Isenberg, Yasskin, Green, Witten construction. The Lagrangian requires the selection of a codimension-2 Cauchy-Riemann submanifold which is naturally picked out by the choice of space-time reality structure and we focus on the choice of Euclidean signature. The action is shown to give rise to a space-time action that is equivalent to the standard one, but has just cubic vertices. We identify the ambitwistor propagators and vertices and work out their corresponding expressions on space-time and momentum space. It is proposed that this formulation of Yang-Mills theory underlies the recursion relations of Britto, Cachazo, Feng and Witten and provides the generating principle for twistor diagrams for gauge theory
Engineering dynamics from the Lagrangian to simulation
Gans, Roger F
2013-01-01
This engineering dynamics textbook is aimed at beginning graduate students in mechanical engineering and other related engineering disciplines who need training in dynamics as applied to engineering mechanisms. It introduces the formal mathematical development of Lagrangian mechanics (and its corollaries), while solving numerous engineering applications. The author’s goal is to instill an understanding of the basic physics required for engineering dynamics, while providing a recipe (algorithm) for the simulation of engineering mechanisms such as robots. The book is reasonably self-contained so that the practicing engineer interested in this area can also make use of it. This book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications. • Provides an applied textbook for intermediate/advanced engineering dynamics courses; • Discusses Lagrangian mechanics in the context of numerous engineering applications...
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.
1987-01-01
A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1986-01-01
We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt
Test Particles with Acceleration-Dependent Lagrangian
Toller, M.
2005-01-01
We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to...
Lagrangian Statistics and Intermittency in Gulf of Mexico.
Lin, Liru; Zhuang, Wei; Huang, Yongxiang
2017-12-12
Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.
Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
Campos, Joventino Oliveira; Dos Santos, Rodrigo Weber; Sundnes, Joakim; Rocha, Bernardo Martins
2018-04-01
Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance. Copyright © 2017 John Wiley & Sons, Ltd.
Lagrangian formulation of classical BMT-theory
International Nuclear Information System (INIS)
Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto
2013-01-01
Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)
Jakovetic, Dusan; Xavier, João; Moura, José M. F.
2011-08-01
We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.
An augmented Lagrangian multi-scale dictionary learning algorithm
Directory of Open Access Journals (Sweden)
Ye Meng
2011-01-01
Full Text Available Abstract Learning overcomplete dictionaries for sparse signal representation has become a hot topic fascinated by many researchers in the recent years, while most of the existing approaches have a serious problem that they always lead to local minima. In this article, we present a novel augmented Lagrangian multi-scale dictionary learning algorithm (ALM-DL, which is achieved by first recasting the constrained dictionary learning problem into an AL scheme, and then updating the dictionary after each inner iteration of the scheme during which majorization-minimization technique is employed for solving the inner subproblem. Refining the dictionary from low scale to high makes the proposed method less dependent on the initial dictionary hence avoiding local optima. Numerical tests for synthetic data and denoising applications on real images demonstrate the superior performance of the proposed approach.
Lagrangian statistics and flow topology in forced two-dimensional turbulence.
Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K
2011-03-01
A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.
Cotter, C J; Gottwald, G A; Holm, D D
2017-09-01
In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.
Energy Technology Data Exchange (ETDEWEB)
Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-30
We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.
Valogiannis, Georgios; Bean, Rachel
2017-05-01
We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.
Attili, Antonio
2013-09-01
A Lagrangian particle scheme is applied to the solution of soot dynamics in turbulent nonpremixed flames. Soot particulate is described using a method of moments and the resulting set of continuum advection-reaction equations is solved using the Lagrangian particle scheme. The key property of the approach is the independence between advection, described by the movement of Lagrangian notional particles along pathlines, and internal aerosol processes, evolving on each notional particle via source terms. Consequently, the method overcomes the issues in Eulerian grid-based schemes for the advection of moments: errors in the advective fluxes pollute the moments compromising their realizability and the stiffness of source terms weakens the stability of the method. The proposed scheme exhibits superior properties with respect to conventional Eulerian schemes in terms of stability, accuracy, and grid convergence. Taking into account the quality of the solution, the Lagrangian approach can be computationally more economical than commonly used Eulerian schemes as it allows the resolution requirements dictated by the different physical phenomena to be independently optimized. Finally, the scheme posseses excellent scalability on massively parallel computers. © 2013 Elsevier Ltd.
CHASM Challenge Problem: Lagrangian Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hornung, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keasler, J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gokhale, M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2010-09-10
Computer simulations of many science and engineering problems require modeling the equations of hydrodynamics which describe the motion of materials relative to each other induced by various forces. Many important DoD simulation problems involve complex multi-material systems that undergo large deformations. Examples include the analysis of armor defense, penetration mechanics, blast effects, structural integrity, and conventional munitions such as shaped charges and explosively formed projectiles. Indeed, the original motivation for developing codes that solve the equations of hydrodynamics, herein referred to as “hydrocodes”, was to solve problems with defense applications. The FY2010 Requirements Analysis Report issued by the DoD High Performance Computing Modernization Program (HPCMP) Office shows that a major portion of DoD HPC activities involves hydrocodes [HPCMP2010]. The report surveyed 496 projects across the Services and various Agencies, representing 4,050 HPCMP users at more than 125 locations, including government, contractors, and academia, and grouped each project into one of ten categories.
Ma, Chi; Varghese, Tomy
2012-04-01
Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.
Between Laws and Models: Some Philosophical Morals of Lagrangian Mechanics
Butterfield, Jeremy
2004-01-01
I extract some philosophical morals from some aspects of Lagrangian mechanics. (A companion paper will present similar morals from Hamiltonian mechanics and Hamilton-Jacobi theory.) One main moral concerns methodology: Lagrangian mechanics provides a level of description of phenomena which has been largely ignored by philosophers, since it falls between their accustomed levels--``laws of nature'' and ``models''. Another main moral concerns ontology: the ontology of Lagrangian mechanics is bot...
A Chiang-type lagrangian in CP^2
Cannas da Silva, Ana
2018-03-01
We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.
Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data
2015-09-30
Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation
Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map
Rosales, Carlos
2011-07-01
A method for simple but realistic generation of three-dimensional synthetic turbulent passive scalar fields is presented. The method is an extension of the minimal turnover Lagrangian map approach (MTLM) [C. Rosales and C. Meneveau, Phys. Rev. E 78, 016313 (2008)] formulated for the generation of synthetic turbulent velocity fields. In this development, the minimal Lagrangian map is applied to deform simultaneously a vector field and an advected scalar field. This deformation takes place over a hierarchy of spatial scales encompassing a range from integral to dissipative scales. For each scale, fluid particles are mapped transporting the scalar property, without interaction or diffusional effects, from their initial configuration to new positions determined only by their velocity at the beginning of the motion and a parameter chosen to accumulate deformation for the equivalent of the phenomenological "turn-over" time scale. The procedure is studied for the case of inertial-convective regime. It is found that many features of passive scalar turbulence are well reproduced by this simple kinematical construction. Fundamental statistics of the resulting synthetic scalar fields, evaluated through the flatness and probability density functions of the scalar gradient and scalar increments, reproduce quite well the known statistical characteristics of passive scalars in turbulent fields. High-order statistics are also consistent with those observed in real hydrodynamic turbulence. The anomalous scaling of real turbulence is well reproduced for different kind of structure functions, with good quantitative agreement in general, for the scaling exponents. The spatial structure of the scalar field is also quite realistic, as well as several characteristics of the dissipation fields for the scalar variance and kinetic energy. Similarly, the statistical geometry at dissipative scales that ensues from the coupling of velocity and scalar gradients behaves in agreement with what is
Lagrangian model of conformal invariant interacting quantum field theory
International Nuclear Information System (INIS)
Lukierski, J.
1976-01-01
A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3
Lagrangians for plasmas in drift-fluid approximation
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1996-10-01
For drift waves and related instabilities conservation laws can play a crucial role. In an ideal theory these conservation laws are guaranteed when a Lagrangian can be found from which the equations for the various quantities result by Hamilton's principle. Such a Lagrangian for plasmas in drift-fluid approximation was obtained by a heuristic method in a recent paper by Pfirsch and Correa-Restrepo. In the present paper the same Lagrangian is derived from the exact multi-fluid Lagrangian via an iterative approximation procedure which resembles the standard method usually applied to the equations of motion. That method, however, does not guarantee all the conservation laws to hold. (orig.)
Prompt form of relativistic equations of motion in a model of singular lagrangian formalism
International Nuclear Information System (INIS)
Gajda, R.P.; Duviryak, A.A.; Klyuchkovskij, Yu.B.
1983-01-01
The purpose of the paper is to develope the way of transition from equations of motion in singular lagrangian formalism to three-dimensional equations of Newton type in the prompt form of dynamics in the framework of c -2 parameter expansion (s. c. quasireltativistic approaches), as well as to find corresponding integrals of motion. The first quasirelativistifc approach for Dominici, Gomis, Longhi model was obtained and investigated
Directory of Open Access Journals (Sweden)
Domingues M. O.
2013-12-01
Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
Effective emergency management: reconsidering the bureaucratic approach.
Neal, D M; Phillips, B D
1995-12-01
The command and control approach is compared with the Emergent Human Resources Model (EHRM) approach to emergency management. Four decades of systematic research shows that a rigid, bureaucratic command and control approach to emergency management generally leads to an ineffective emergency response. Previous studies and our own research suggest that flexible, malleable, loosely coupled, organizational configurations can create a more effective disaster response.
An entropic solver for ideal Lagrangian magnetohydrodynamics
International Nuclear Information System (INIS)
Bezard, F.; Despres, B.
1999-01-01
In this paper, the authors adapt to the ideal 1D lagrangian MHD equations a class of numerical schemes of order one in time and space presented in an earlier paper and applied to the gas dynamics system. They use some properties of systems of conservation laws with zero entropy flux which describe fluid models invariant by galilean transformation and reversible for regular solutions. These numerical schemes satisfy an entropy inequality under CFL conditions. In the last section, they describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy. The generalization to full Eulerian multidimensional MHD will be the subject of a forthcoming paper
Transitions in turbulent rotating convection: A Lagrangian perspective : A Lagrangian perspective
Rajaei, H.; Joshi, P.R.; Alards, K.M.J.; Kunnen, R.P.J.; Toschi, F.; Clercx, H.J.H.
2016-01-01
Using measurements of Lagrangian acceleration in turbulent rotating convection and accompanying direct numerical simulations, we show that the transition between turbulent states reported earlier [e.g., S. Weiss et al., Phys. Rev. Lett. 105, 224501 (2010)] is a boundary-layer transition between the
International Nuclear Information System (INIS)
Chang, Y.W.; Chu, H.Y.; Gvildys, J.; Wang, C.Y.
1979-01-01
The analysis of fluid-structure interaction involves the calculation of both fluid transient and structure dynamics. In the structural analysis, Lagrangian meshes have been used exclusively, whereas for the fluid transient, Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian (quasi-Eulerian) meshes have been used. This paper performs an evaluation on these three types of meshes. The emphasis is placed on the applicability of the method in analyzing fluid-structure interaction problems in HCDA analysis
Observations of Lagrangian transport in the Adriatic Sea from GPS-tracked surface drifters
DEFF Research Database (Denmark)
Carlson, Daniel Frazier
2014-01-01
-dependent dispersion on the surface ocean remains an important open subject in physical oceanography. Lagrangian observations from surface drifters come with their own set of problems, most notably limited numbers, sampling bias, finite lifetime, and position uncertainties from wind and wave effects. Despite...
Rossi, V.; Dubois, M.; Ser-Giacomi, E.; Monroy, P.; Lopez, C.; Hernandez-Garcia, E.
2016-02-01
Assessing the spatial structure and dynamics of marine populations is still a major challenge for ecologists. The necessity to manage marine resources from a large-scale perspective and considering the whole ecosystem is now recognized but the absence of appropriate tools to address these objectives limits the implementation of globally pertinent conservation planning. Inspired from Network Theory, we present a new methodological framework called Lagrangian Flow Network which allows a systematic characterization of multi-scale dispersal and connectivity of early life history stages of marine organisms. The network is constructed by subdividing the basin into an ensemble of equal-area subregions which are interconnected through the transport of propagules by ocean currents. The present version allows the identification of hydrodynamical provinces and the computation of various connectivity proxies measuring retention and exchange of larvae. Due to our spatial discretization and subsequent network representation, as well as our Lagrangian approach, further methodological improvements are handily accessible. These future developments include a parametrization of habitat patchiness, the implementation of realistic larval traits and the consideration of abiotic variables (e.g. temperature, salinity, planktonic resources...) and their effects on larval production and survival. While the model is potentially tunable to any species whose biological traits and ecological preferences are precisely known, it can also be used in a more generic configuration by efficient computing and analysis of a large number of experiments with relevant ecological parameters. It permits a better characterization of population connectivity at multiple scales and it informs its ecological and managerial interpretations.
International Nuclear Information System (INIS)
Reshetnyak, A.
2013-01-01
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having k rows, on a basis of the BRST–BFV approach suggested for bosonic fields in our first article [I.L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270, (arXiv:1110.5044 [hep-th])]. Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to osp(k|2k) superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2)
Photonic crystal fibres and effective index approaches
DEFF Research Database (Denmark)
Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard
2001-01-01
Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....
Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds
Onishi, Ryo; Kunishima, Yuichi
2017-11-01
We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).
Directory of Open Access Journals (Sweden)
V. Pérez-Muñuzuri
2018-06-01
Full Text Available Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and pathways. In these methods, a moisture volume is assigned to each particle, which is then advected by the wind flow. Usual Lagrangian methods consider this volume to remain constant and the particle to follow flow path lines exactly. In a different approach, the initial moisture volume can be considered to depend on time as it is advected by the flow due to thermodynamic processes. In this case, the tracer volume drag must be taken into account. Equations have been implemented and moisture convection was taken into account for both Lagrangian and inertial models. We apply these methods to evaluate the intense atmospheric rivers that devastated (i the Pacific Northwest region of the US and (ii the western Iberian Peninsula with flooding rains and intense winds in early November 2006 and 20 May 1994, respectively. We note that the usual Lagrangian method underestimates moisture availability in the continent, while active tracers achieve more realistic results.
An objective interpretation of Lagrangian quantum mechanics
International Nuclear Information System (INIS)
Roberts, K.V.
1978-01-01
Unlike classical mechanics, the Copenhagen interpretation of quantum mechanics does not provide an objective space-time picture of the actual history of a physical system. This paper suggests how the conceptual foundations of quantum mechanics can be reformulated, without changing the mathematical content of the theory or its detailed agreement with experiment and without introducing any hidden variables, in order to provide an objective, covariant, Lagrangian description of reality which is deterministic and time-symmetric on the microscopic scale. The basis of this description can be expressed either as an action functional or as a summation over Feynman diagrams or paths. The probability laws associated with the quantum-mechanical measurement process, and the asymmetry in time of the principles of macroscopic causality and of the laws of statistical mechanics, are interpreted as consequences of the particular boundary conditions that apply to the actual universe. The objective interpretation does not include the observer and the measurement process among the fundamental concepts of the theory, but it does not entail a revision of the ideas of determinism and of time, since in a Lagrangian theory both initial and final boundary conditions on the action functional are required. (author)
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
Generating functionals and Lagrangian partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin [Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Dept. 0112, La Jolla, California 92093-0112 (United States)
2013-08-15
The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an example of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.
Lagrangian descriptors of driven chemical reaction manifolds.
Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto
2017-08-01
The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
A Bernstein type result for special Lagrangian submanifolds
Tsui, Mao-Pei; Wang, Mu-Tao
2002-01-01
Let \\Sigma be a complete minimal Lagrangian submanifold of \\C^n. We identify regions in the Grassmannian of Lagrangian subspaces so that whenever the image of the Gauss map of \\Sigma lies in one of these regions, then \\Sigma is an affine space.
The Bach-Lanczos Lagrangian in matrix relativity
International Nuclear Information System (INIS)
Maluf, J.W.
1987-01-01
The author examines the generalisation of the Bach-Lanczos Lagrangian in matrix relativity where it is no longer a topological invariant, and find that for certain structures of the matrix affine connection a Yang-Mills type Lagrangian is obtained. Thus the possibility is considered of interpreting non-Abelian gauge fields as arising from an otherwise topological invariant. (author)
The Lagrangians and Hamiltonians of damped coupled vibrations
International Nuclear Information System (INIS)
Ding Guangtao; Gan Huilan; Zheng Xianfeng; Cui Zhifeng
2012-01-01
In this paper, the analytical mechanization of two kinds of damped coupled vibrations is studied. First, by use of coordinate transformations the equations of motion are transformed into the self-ad- joint form. Secondly, the Lagrangians are obtained according to Engels method. Finally the Lagrangians and Hamiltonians of the original equations are deduced by using the inverse transformation. (authors)
Lagrangian formalism for constrained systems. 2. Gauge symmetries
International Nuclear Information System (INIS)
Pyatov, P.N.
1990-01-01
Using the Lagrangian formalism for constrained systems all gauge symmetries peculiar for a given Lagrangian system and in establishing the relation between them and the constraints are constructed. Besides, the question about the possible dependence of gauge transformations on accelerations and other higher order time derivatives of coordinates is clarified. 14 refs
Jacobi equations as Lagrange equations of the deformed Lagrangian
International Nuclear Information System (INIS)
Casciaro, B.
1995-03-01
We study higher-order variational derivatives of a generic Lagrangian L 0 = L 0 (t,q,q). We introduce two new Lagrangians, L 1 and L 2 , associated to the first and second-order deformations of the original Lagrangian L 0 . In terms of these Lagrangians, we are able to establish simple relations between the variational derivatives of different orders of a Lagrangian. As a consequence of these relations the Euler-Lagrange and the Jacobi equations are obtained from a single variational principle based on L 1 . We can furthermore introduce an associated Hamiltonian H 1 = H 1 (t,q,q radical,η,η radical) with η equivalent to δq. If L 0 is independent of time then H 1 is a conserved quantity. (author). 15 refs
Hamilton-Jacobi equations and brane associated Lagrangians
International Nuclear Information System (INIS)
Baker, L.M.; Fairlie, D.B.
2001-01-01
This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. We find that the associated Lagrangians for strings or branes have a covariant description in terms of the square root of the same Lagrangian. If the Hamilton-Jacobi function is zero, rather than a constant, then it is in in one dimension lower, reminiscent of the 'holographic' idea. In the second part of the paper, we discuss properties of these Lagrangians, which lead to what we have called 'Universal Field Equations', characteristic of covariant equations of motion
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
Reconstructing baryon oscillations: A Lagrangian theory perspective
International Nuclear Information System (INIS)
Padmanabhan, Nikhil; White, Martin; Cohn, J. D.
2009-01-01
Recently Eisenstein and collaborators introduced a method to 'reconstruct' the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.
Non-Lagrangian theories from brane junctions
Energy Technology Data Exchange (ETDEWEB)
Bao, Ling [Chalmers Univ. of Technology, Goeteborg (Sweden); Mitev, Vladimir [Humboldt Univ., Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Taki, Masato [RIKEN Nishina Center, Saitama (Japan). Mathematical Physics Lab.; Yagi, Futoshi [International School of Advanced Studies (SISSA), Trieste (Italy); INFN, Trieste (Italy); Korea Institute for Advanced Study (KIAS), Seoul (Korea, Republic of)
2013-10-15
In this article we use 5-brane junctions to study the 5D T{sub N} SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W{sub N} Toda theories.
Non-Lagrangian theories from brane junctions
International Nuclear Information System (INIS)
Bao, Ling; Mitev, Vladimir
2013-10-01
In this article we use 5-brane junctions to study the 5D T N SCFTs corresponding to the 5D N=1 uplift of the 4D N=2 strongly coupled gauge theories, which are obtained by compactifying N M5 branes on a sphere with three full punctures. Even though these theories have no Lagrangian description, by using the 5-brane junctions proposed by Benini, Benvenuti and Tachikawa, we are able to derive their Seiberg-Witten curves and Nekrasov partition functions. We cross-check our results with the 5D superconformal index proposed by Kim, Kim and Lee. Through the AGTW correspondence, we discuss the relations between 5D superconformal indices and n-point functions of the q-deformed W N Toda theories.
On the Lagrangian description of dissipative systems
Martínez-Pérez, N. E.; Ramírez, C.
2018-03-01
We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.
A hybrid Lagrangian Voronoi-SPH scheme
Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.
2017-11-01
A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.
Markov Chain Monte Carlo from Lagrangian Dynamics.
Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark
2015-04-01
Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.
LSPRAY-V: A Lagrangian Spray Module
Raju, M. S.
2015-01-01
LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.
Phi Photoproduction in a Coupled-Channel Approach
Ozaki, S.; Nagahiro, H.; Hosaka, A.; Scholten, O.
2010-01-01
We investigate photoproduction of phi-mesons off protons within a coupled-channel effective-Lagrangian method which is based on the K-matrix approach. We take into account pi N, rho N, eta N, K Lambda, K Sigma, K Lambda (1520) and phi N channels. Especially we focus on K Lambda(1520) channel. We
Effective field theory approach to nuclear matter
International Nuclear Information System (INIS)
Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.
2006-01-01
Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions
International Nuclear Information System (INIS)
Blanchet, Y.; Obry, P.; Louvet, J.; Graveleau, J.
1981-04-01
Two different numerical methods have been implemented in two computer codes developed in CEA/DRNR, Cadarache, to predict the dynamic response of the containment of Super-Phenix reactor after a hypothetical energy excursion. Both codes are 2D-axisymmetric and solve the time-dependent flow of compressible fluids in the presence of deformable thin structures. The first one, called SIRIUS, uses only Lagrangian meshes; in the second one, called CASSIOPEE, the thick elastic-plastic materials are calculated in Lagrangian coordinates while fluids can be calculated either in Lagrangian or in Eulerian coordinates. The treatment of hydrodynamic, elastic-plastic thick domains then the thin shells models and the fluid-structure couplings are described in parallel for both codes. The efficiency and the limits of the previous methods are finally illustrated by comparison of measured and predicted strains of a vessel issued from one of the MARA experiments which are being purposely performed in Cadarache for validation of these codes in Super-Phenix scale models. These comparisons are encouraging and justify that the Super-Phenix reactor vessel response can be determined using the SIRIUS and CASSIOPEE codes
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
International Nuclear Information System (INIS)
Froyland, Gary
2015-01-01
The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume.The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer–Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian.Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation. (paper)
International Nuclear Information System (INIS)
Oliphant, T.A.; Morel, J.E.; Gula, W.P.; Pfeufer, G.W.
1997-01-01
The cell-centered diffusion differencing scheme presented by Morel et al. has been applied to magnetic diffusion associated with Lagrangian hydrodynamic codes. Thus, the method applies to non-orthogonal meshes. Although the present application involves structured meshes, the method applies equally well to unstructured meshes. Morel's example of application is to 2D diffusion using Ficke's law. Thus, a volume integral approach is applied to the divergence operator. In 2D magnetic diffusion symmetry allows the use of an area integral approach involving the field components normal to the area, e.g. A-theta and B-theta. Instead of a divergence of a term proportional to the field gradient a curl of a term proportional to the curl of the field is used. An essential fact that allows this procedure is that the solenoidal property of the magnetic field is automatic. In the case of 3D it is necessary to return to the volumetric integral approach and to use rectangular components of the vector potential. Successful benchmarks have been run in comparison with the 1D code RAVEN. A typical example is that of a metal cylinder being compressed by a magnetic field applied at the outer boundary. So far, the 3D diffusion model has been tested in the orthogonal case and found to preserve the linear, homogeneous solution. Results of these and further tests are presented
Inverse kinematics for the variable geometry truss manipulator via a Lagrangian dual method
Directory of Open Access Journals (Sweden)
Yanchun Zhao
2016-11-01
Full Text Available This article studies the inverse kinematics problem of the variable geometry truss manipulator. The problem is cast as an optimization process which can be divided into two steps. Firstly, according to the information about the location of the end effector and fixed base, an optimal center curve and the corresponding distribution of the intermediate platforms along this center line are generated. This procedure is implemented by solving a non-convex optimization problem that has a quadratic objective function subject to quadratic constraints. Then, in accordance with the distribution of the intermediate platforms along the optimal center curve, all lengths of the actuators are calculated via the inverse kinematics of each variable geometry truss module. Hence, the approach that we present is an optimization procedure that attempts to generate the optimal intermediate platform distribution along the optimal central curve, while the performance index and kinematic constraints are satisfied. By using the Lagrangian duality theory, a closed-form optimal solution of the original optimization is given. The numerical simulation substantiates the effectiveness of the introduced approach.
Lagrangian particle modeling of air pollution transport in southwestern United States
Energy Technology Data Exchange (ETDEWEB)
Uliasz, M. [Warsaw Univ. of Technology (Poland); Stocker, R.A.; Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)
1994-12-31
Several modeling techniques of various complexity and accuracy are applied in a numerical modeling study of regional air pollution transport being performed within the Measurement Of Haze And Visual Effect (MOHAVE) project. The goal of this study is to assess the impact of the Mohave Power Project (MPP) and other potential sources of air pollution to specific Class I areas located in the desert southwest United States including the Grand Canyon National Park. The Colorado State University team is performing the daily meteorological and dispersion simulations for a year long study using a nonhydrostatic mesoscale meteorological model; the Regional Atmospheric Modeling System (RAMS) coupled with a Lagrangian particle dispersion (LPD) model. The modeling domain covers the southwestern United States with its extremely complex terrain. Two complementary dispersion modeling techniques: a traditional source-oriented approach and receptor-oriented approach are used to calculate concentration and influence function fields, respectively. All computations are performed on two IBM RISC-6000 workstations dedicated to the project. The goal of this paper is to present our design for daily dispersion simulations with an emphasis on influence function calculations using examples from the winter and summer intensive periods of the MOHAVE project.
Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows
Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs
2017-11-01
A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.
Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri
2018-04-01
In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.
Shear and shearless Lagrangian structures in compound channels
Enrile, F.; Besio, G.; Stocchino, A.
2018-03-01
Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.
Quantizing non-Lagrangian gauge theories: an augmentation method
International Nuclear Information System (INIS)
Lyakhovich, Simon L.; Sharapov, Alexei A.
2007-01-01
We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in d dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest
Integration over families of Lagrangian submanifolds in BV formalism
Mikhailov, Andrei
2018-03-01
Gauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold (the BV phase space). A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds.
Invariant Lagrangians, mechanical connections and the Lagrange-Poincare equations
International Nuclear Information System (INIS)
Mestdag, T; Crampin, M
2008-01-01
We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated with Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper, we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincare equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory
Approximate Noether symmetries and collineations for regular perturbative Lagrangians
Paliathanasis, Andronikos; Jamal, Sameerah
2018-01-01
Regular perturbative Lagrangians that admit approximate Noether symmetries and approximate conservation laws are studied. Specifically, we investigate the connection between approximate Noether symmetries and collineations of the underlying manifold. In particular we determine the generic Noether symmetry conditions for the approximate point symmetries and we find that for a class of perturbed Lagrangians, Noether symmetries are related to the elements of the Homothetic algebra of the metric which is defined by the unperturbed Lagrangian. Moreover, we discuss how exact symmetries become approximate symmetries. Finally, some applications are presented.
The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2003-01-01
. This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... Integral Method" to simulate viscoelastic flow, the governing equations are solved for the particle positions (Lagrangian kinematics). Therefore, the transient motion of surfaces can be followed in a particularly simple fashion even in 3D viscoelastic flow. The "3D Lagrangian Integral Method" is described...
The quantum Hall effects: Philosophical approach
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Canonical quantization of so-called non-Lagrangian systems
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)
2007-04-15
We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)
Canonical quantization of so-called non-Lagrangian systems
International Nuclear Information System (INIS)
Gitman, D.M.; Kupriyanov, V.G.
2007-01-01
We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)
MESOILT2, a Lagrangian trajectory climatological dispersion model
International Nuclear Information System (INIS)
Ramsdell, J.V. Jr.; Burk, K.W.
1991-03-01
The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at the Hanford Site. An independent Technical Steering Panel (TSP) directs the project, which is conducted by the Pacific Northwest Laboratory (PNL). The TSP directed PNL to demonstrate that its recommended approach for dose reconstruction is technically feasible and practical. This demonstration was Phase 1 of the project. This report is specifically concerned with the approach that PNL recommends for dealing with the atmospheric pathway. The TSP established a model domain for the atmospheric pathway for Phase 1 that includes 10 counties in Washington and Oregon and covers several thousand square miles. It is unrealistic to assume that atmospheric models which estimate transport and diffusion based on the meteorological conditions near the point of release of material at the time of release are adequate for a region this large. As a result, PNL recommended use of a Lagrangian trajectory, puff dispersion model for the Phase I study. This report describes the MESOILT2 computer code and the atmospheric transport, diffusion, deposition, and depletion models used in Phase I. The contents of the report include a technical description of the models, a user's guide for the codes, and descriptions of the individual code elements. 53 refs., 17 figs., 5 tabs
Syrlic: a Lagrangian code to handle industrial problems involving particles and droplets
International Nuclear Information System (INIS)
Peniguel, C.
1997-01-01
Numerous industrial applications require to solve droplets or solid particles trajectories and their effects on the flow. (fuel injection in combustion engine, agricultural spraying, spray drying, spray cooling, spray painting, particles separator, dispersion of pollutant, etc). SYRLIC is being developed to handle the dispersed phase while the continuous phase is tackled by classical Eulerian codes like N3S-EF, N3S-NATUR, ESTET. The trajectory of each droplet is calculated on unstructured grids or structured grids according the Eulerian code with SYRLIC is coupled. The forces applied to each particle are recalculated along each path. The Lagrangian approach treats the convection and the source terms exactly. It is particularly adapted to problems involving a wide range of particles characteristics (diameter, mass, etc). In the near future, wall interaction, heat transfer, evaporation more complex physics, etc, will be included. Turbulent effects will be accounted for by a Langevin equation. The illustration shows the trajectories followed by water droplets (diameter from 1 mm to 4 mm) in a cooling tower. the droplets are falling down due to gravity but are deflected towards the center of the tower because of a lateral wind. It is clear that particles are affected differently according their diameter. The Eulerian flow field used to compute the forces has been generated by N3S-AERO, on an unstructured mesh
Semi-implicit semi-Lagrangian modelling of the atmosphere: a Met Office perspective
Directory of Open Access Journals (Sweden)
Benacchio Tommaso
2016-09-01
Full Text Available The semi-Lagrangian numerical method, in conjunction with semi-implicit time integration, provides numerical weather prediction models with numerical stability for large time steps, accurate modes of interest, and good representation of hydrostatic and geostrophic balance. Drawing on the legacy of dynamical cores at the Met Office, the use of the semi-implicit semi-Lagrangian method in an operational numerical weather prediction context is surveyed, together with details of the solution approach and associated issues and challenges. The numerical properties and performance of the current operational version of the Met Office’s numerical model are then investigated in a simplified setting along with the impact of different modelling choices.
Anderson, James S M; Ayers, Paul W
2018-06-30
Generalizing our recent work on relativistic generalizations of the quantum theory of atoms in molecules, we present the general setting under which the principle of stationary action for a region leads to open quantum subsystems. The approach presented here is general and works for any Hamiltonian, and when a reasonable Lagrangian is selected, it often leads to the integral of the Laplacian of the electron density on the region vanishing as a necessary condition for the zero-flux surface. Alternatively, with this method, one can design a Lagrangian that leads to a surface of interest (though this Lagrangian may not be, and indeed probably will not be, "reasonable"). For any reasonable Lagrangian for the electronic wave function and any two-component method (related by integration by parts to the Hamiltonian) considered, the Bader definition of an atom is recaptured. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
A Novel Approach for Solving Semidefinite Programs
Directory of Open Access Journals (Sweden)
Hong-Wei Jiao
2014-01-01
Full Text Available A novel linearizing alternating direction augmented Lagrangian approach is proposed for effectively solving semidefinite programs (SDP. For every iteration, by fixing the other variables, the proposed approach alternatively optimizes the dual variables and the dual slack variables; then the primal variables, that is, Lagrange multipliers, are updated. In addition, the proposed approach renews all the variables in closed forms without solving any system of linear equations. Global convergence of the proposed approach is proved under mild conditions, and two numerical problems are given to demonstrate the effectiveness of the presented approach.
Geometry of Lagrangian first-order classical field theories
International Nuclear Information System (INIS)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N.
1996-01-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether's theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
The complete lowest order chiral Lagrangian from a little box
International Nuclear Information System (INIS)
DeGrand, T.; Schaefer, S.
2007-09-01
We recently performed a pilot study determining the parameters of the leading order chiral Lagrangian from distributions of the eigenvalues of a quenched Dirac operator coupled to an imaginary isospin chemical potential. (orig.)
Weak stability of Lagrangian solutions to the semigeostrophic equations
International Nuclear Information System (INIS)
Faria, Josiane C O; Lopes Filho, Milton C; Nussenzveig Lopes, Helena J
2009-01-01
In (Cullen and Feldman 2006 SIAM J. Math. Anal. 37 137–95), Cullen and Feldman proved the existence of Lagrangian solutions for the semigeostrophic system in physical variables with initial potential vorticity in L p , p > 1. Here, we show that a subsequence of the Lagrangian solutions corresponding to a strongly convergent sequence of initial potential vorticities in L 1 converges strongly in L q , q < ∞, to a Lagrangian solution, in particular extending the existence result of Cullen and Feldman to the case p = 1. We also present a counterexample for Lagrangian solutions corresponding to a sequence of initial potential vorticities converging in BM. The analytical tools used include techniques from optimal transportation, Ambrosio's results on transport by BV vector fields and Orlicz spaces
Ambiguities in the Lagrangians formalism: the time-dependent case
International Nuclear Information System (INIS)
Moreira, D.T.
1986-01-01
An intrinsic formulation of the equivalence problem for time-dependent Lagrangians is given. A new demostration of a theorem derived by Henneaux (1982) is obtained. The relationship to transformation groups is discussed. (Author) [pt
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Second post-Newtonian Lagrangian dynamics of spinning compact binaries
Energy Technology Data Exchange (ETDEWEB)
Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)
2016-09-15
The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)
Hydrodynamical model based on a bag-like Lagrangian
International Nuclear Information System (INIS)
Chiu, C.B.; Lam, C.S.; Wang, K.H.
1976-06-01
Equations of motion of hydrodynamical model are derived from a bag-like Lagrangian by using the technique of information theory. Comments on the break-up of the system and on the properties of decay products are included
High Order Semi-Lagrangian Advection Scheme
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
LSPRAY-IV: A Lagrangian Spray Module
Raju, M. S.
2012-01-01
LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.
Flux form Semi-Lagrangian methods for parabolic problems
Directory of Open Access Journals (Sweden)
Bonaventura Luca
2016-09-01
Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.
Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics
Webb, G. M.; Anco, S. C.
2016-02-01
The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.
Sequential weak continuity of null Lagrangians at the boundary
Czech Academy of Sciences Publication Activity Database
Kalamajska, A.; Kraemer, S.; Kružík, Martin
2014-01-01
Roč. 49, 3/4 (2014), s. 1263-1278 ISSN 0944-2669 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : null Lagrangians * nonhomogeneous nonlinear mappings * sequential weak/in measure continuity Subject RIV: BA - General Mathematics Impact factor: 1.518, year: 2014 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-sequential weak continuity of null lagrangians at the boundary.pdf
On the dynamics of second-order Lagrangian systems
Directory of Open Access Journals (Sweden)
Ronald Adams
2017-04-01
Full Text Available In this article we are concerned with improving the twist condition for second-order Lagrangian systems. We characterize a local Twist property and demonstrate how results on the existence of simple closed characteristics can be extended in the case of the Swift-Hohenberg / extended Fisher-Kolmogorov Lagrangian. Finally, we describe explicit evolution equations for broken geodesic curves that could be used to investigate more general systems or closed characteristics.
Semi-Lagrangian methods in air pollution models
Directory of Open Access Journals (Sweden)
A. B. Hansen
2011-06-01
Full Text Available Various semi-Lagrangian methods are tested with respect to advection in air pollution modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch andWilliamson (1990 and Machenhauer et al. (2008 as possible. The focus in this study is on accuracy and local mass conservation.
The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran (1999, second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002, third, semi-Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserving Semi-Lagrangian (LMCSL, by Kaas (2008, and last, semi-Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2010.
Semi-Lagrangian (SL interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass conserving monotonic filter imposes monotonicity.
All schemes are tested with advection alone or with advection and chemistry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives (ASD, see Frohn et al. (2002, presently used at the National Environmental Research Institute (NERI in Denmark. To enable a consistent comparison only non-divergent flow configurations are tested.
The test cases are based either on the traditional slotted cylinder or the rotating cone, where the schemes' ability to model both steep gradients and slopes are challenged.
The tests showed that the locally mass conserving monotonic filter improved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the current ASD scheme
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Lagrangian structures in time-periodic vortical flows
Directory of Open Access Journals (Sweden)
S. V. Kostrykin
2006-01-01
Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.
General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems
International Nuclear Information System (INIS)
Musielak, Z.E.
2009-01-01
Equations of motion describing dissipative dynamical systems with coefficients varying either in time or in space are considered. To identify the equations that admit a Lagrangian description, two classes of non-standard Lagrangians are introduced and general conditions required for the existence of these Lagrangians are determined. The conditions are used to obtain some non-standard Lagrangians and derive equations of motion resulting from these Lagrangians.
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
Patra, Sarbani; Keshavamurthy, Srihari
2018-02-14
It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.
Quasiconfigurations: an approach to effective forces
International Nuclear Information System (INIS)
Poves, A.; Pasquini, E.; Zuker, A.P.
1978-01-01
Many body effective operators appear naturally by dressing states through a perturbative unitary transformation. They have forms that differ from those obtained in the Bloch-Horowitz approach. The fsub(7/2)sup(n) problem is treated explicitly. Pandya's transforms are generalized
Hamiltonian analysis for linearly acceleration-dependent Lagrangians
Energy Technology Data Exchange (ETDEWEB)
Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Física, Universidad Veracruzana, 91000 Xalapa, Veracruz, México (Mexico); Molgado, Alberto, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Salvador Nava S/N Zona Universitaria, CP 78290 San Luis Potosí, SLP, México (Mexico)
2016-06-15
We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.
Zhang, Yong; Meerschaert, Mark M.; Baeumer, Boris; LaBolle, Eric M.
2015-08-01
This study develops an explicit two-step Lagrangian scheme based on the renewal-reward process to capture transient anomalous diffusion with mixed retention and early arrivals in multidimensional media. The resulting 3-D anomalous transport simulator provides a flexible platform for modeling transport. The first step explicitly models retention due to mass exchange between one mobile zone and any number of parallel immobile zones. The mobile component of the renewal process can be calculated as either an exponential random variable or a preassigned time step, and the subsequent random immobile time follows a Hyper-exponential distribution for finite immobile zones or a tempered stable distribution for infinite immobile zones with an exponentially tempered power-law memory function. The second step describes well-documented early arrivals which can follow streamlines due to mechanical dispersion using the method of subordination to regional flow. Applicability and implementation of the Lagrangian solver are further checked against transport observed in various media. Results show that, although the time-nonlocal model parameters are predictable for transport with retention in alluvial settings, the standard time-nonlocal model cannot capture early arrivals. Retention and early arrivals observed in porous and fractured media can be efficiently modeled by our Lagrangian solver, allowing anomalous transport to be incorporated into 2-D/3-D models with irregular flow fields. Extensions of the particle-tracking approach are also discussed for transport with parameters conditioned on local aquifer properties, as required by transient flow and nonstationary media.
An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems
International Nuclear Information System (INIS)
Zhang Jianzhong; Zhang Liwei
2010-01-01
We consider an inverse quadratic programming (QP) problem in which the parameters in the objective function of a given QP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with a positive semidefinite cone constraint and its dual is a linearly constrained semismoothly differentiable (SC 1 ) convex programming problem with fewer variables than the original one. We demonstrate the global convergence of the augmented Lagrangian method for the dual problem and prove that the convergence rate of primal iterates, generated by the augmented Lagrange method, is proportional to 1/r, and the rate of multiplier iterates is proportional to 1/√r, where r is the penalty parameter in the augmented Lagrangian. As the objective function of the dual problem is a SC 1 function involving the projection operator onto the cone of symmetrically semi-definite matrices, the analysis requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and properties of the projection operator in the symmetric-matrix space. Furthermore, the semismooth Newton method with Armijo line search is applied to solve the subproblems in the augmented Lagrange approach, which is proven to have global convergence and local quadratic rate. Finally numerical results, implemented by the augmented Lagrangian method, are reported.
Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates
Cheng, Ralph T.; Casulli, Vincenzo; Milford, S. Nevil
1984-01-01
The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system. The values of the dependent variable off the grid are calculated by interpolation. When a linear interpolation is used, the method is a slight improvement over the upwind difference method. At this level of approximation both the ELM and the upwind difference method suffer from large numerical dispersion. However, if second-order Lagrangian polynomials are used in the interpolation, the ELM is proven to be free of artificial numerical dispersion for the convection-dispersion equation. The concept of the ELM is extended for treatment of anisotropic dispersion in natural coordinates. In this approach the anisotropic properties of dispersion can be conveniently related to the properties of the flow field. Several numerical examples are given to further substantiate the results of the present analysis.
Real-time functional integral approach to the quantum disordered spin systems
International Nuclear Information System (INIS)
Kopec, T.K.
1989-01-01
In this paper the effect of randomness and frustration in the quantum Ising spin glass in a transverse field is studied by using the thermofield dynamics (TFD), the real time, finite temperature quantum field theory. It is shown that the method can be conveniently used for the averaging of the free energy of the system by completely avoiding the use of the n-replica trick. The effective dynamic Lagrangian for the disorder averaged causal, correlations and response Green functions is derived by functional integral approach. Furthermore, the properties of this Lagrangian are analyzed by the saddle point method which leads to the self-consistent equation for the spin glass order parameter
Lagrangian analysis. Modern tool of the dynamics of solids
Cagnoux, J.; Chartagnac, P.; Hereil, P.; Perez, M.; Seaman, L.
Lagrangian specificity of the required measurements is assured by the fact that a transducer enclosed within a solid material is necessarily linked in motion to the particles of the material which surround it. This Lagrangian instrumentation is described in the second chapter. The authors are concerned with the techniques considered today to be the most effective. These are, for stress : piezoresistive gauges (50 Ω and low impedance) and piezoelectric techniques (PVF2 gauges, quartz transducers) ; and for particle velocity : electromagnetic gauges, VISAR and IDL Doppler laser interferometers. In each case both the physical principles as well as techniques of use are set out in detail. For the most part, the authors use their own experience to describe the calibration of these instrumentation systems and to compare their characteristics : measurement range, response time, accuracy, useful recording time, detection area... These characteristics should be taken into account by the physicist when he has to choose the instrumentation systems best adapted to the Lagrangian analysis he intends to apply to any given material. The discussion at the end of chapter 2 should guide his choice both for plane and spherical one-dimensional motions. The third chapter examines to what extent the accuracy of Lagrangian analysis is affected by the accuracies of the numerical analysis methods and experimental techniques. By means of a discussion of different cases of analysis, the authors want to make the reader aware of the different kinds of sources of errors that may be encountered. This work brings up to date the state of studies on Lagrangian analysis methods based on a wide review of bibliographical sources together with the contribution made to research in this field by the four authors themselves in the course of the last ten years. Le formage des métaux par explosif, la consolidation dynamique des poudres, la balistique terminale, l'abattage des roches par explosif, sont autant d
Quantum information metric and Berry curvature from a Lagrangian approach
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Jimenez, Javier [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,Circuito Exterior, C.University, Ciudad de México 04510 (Mexico); Dector, Aldo [Instituto de Física Teórica IFT UAM/CSIC,Calle Nicolás Cabrera 13. UAM, Cantoblanco 28049, Madrid (Spain); Vergara, J. David [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,Circuito Exterior, C.University, Ciudad de México 04510 (Mexico)
2017-03-08
We take as a starting point an expression for the quantum geometric tensor recently derived in the context of the gauge/gravity duality. We proceed to generalize this formalism in such way it is possible to compute the geometrical phases of quantum systems. Our scheme provides a conceptually complete description and introduces a different point of view of earlier works. Using our formalism, we show how this expression can be applied to well-known quantum mechanical systems.
Forecasting Future Sea Ice Conditions: A Lagrangian Approach
2015-09-30
AVHRR, AMSRE) combining the bootstrap and NASA-Team algorithms (Fowler et al, 2013). The PP data product also assimilates buoy data, which... business as usual” or that hopes to benefit from environmental change. These issues are playing out now in the Arctic, as it shifts from white, ice
Smarr formula for Lovelock black holes: A Lagrangian approach
Liberati, Stefano; Pacilio, Costantino
2016-04-01
The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an application of Wald's formalism. We apply this formalism to compute the mass and the Smarr formula for static Lovelock black holes. Finally, we propose a new prescription for Wald's entropy in the case of Lovelock black holes, which takes into account topological contributions to the entropy functional.
Reaction enhancement of initially distant scalars by Lagrangian coherent structures
International Nuclear Information System (INIS)
Pratt, Kenneth R.; Crimaldi, John P.; Meiss, James D.
2015-01-01
Turbulent fluid flows have long been recognized as a superior means of diluting initial concentrations of scalars due to rapid stirring. Conversely, experiments have shown that the structures responsible for this rapid dilution can also aggregate initially distant reactive scalars and thereby greatly enhance reaction rates. Indeed, chaotic flows not only enhance dilution by shearing and stretching but also organize initially distant scalars along transiently attracting regions in the flow. To show the robustness of this phenomenon, a hierarchical set of three numerical flows is used: the periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that Lagrangian coherent structures (LCS), as identified by ridges in finite time Lyapunov exponents, are directly responsible for this coalescence of reactive scalar filaments. When highly concentrated filaments coalesce, reaction rates can be orders of magnitude greater than would be predicted in a well-mixed system. This is further supported by an idealized, analytical model that was developed to quantify the competing effects of scalar dilution and coalescence. Chaotic flows, known for their ability to efficiently dilute scalars, therefore have the competing effect of organizing initially distant scalars along the LCS at timescales shorter than that required for dilution, resulting in reaction enhancement
PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS
Directory of Open Access Journals (Sweden)
FELEA. I.
2017-09-01
Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.
Lagrangian speckle model and tissue-motion estimation--theory.
Maurice, R L; Bertrand, M
1999-07-01
It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.
Parallel MR image reconstruction using augmented Lagrangian methods.
Ramani, Sathish; Fessler, Jeffrey A
2011-03-01
Magnetic resonance image (MRI) reconstruction using SENSitivity Encoding (SENSE) requires regularization to suppress noise and aliasing effects. Edge-preserving and sparsity-based regularization criteria can improve image quality, but they demand computation-intensive nonlinear optimization. In this paper, we present novel methods for regularized MRI reconstruction from undersampled sensitivity encoded data--SENSE-reconstruction--using the augmented Lagrangian (AL) framework for solving large-scale constrained optimization problems. We first formulate regularized SENSE-reconstruction as an unconstrained optimization task and then convert it to a set of (equivalent) constrained problems using variable splitting. We then attack these constrained versions in an AL framework using an alternating minimization method, leading to algorithms that can be implemented easily. The proposed methods are applicable to a general class of regularizers that includes popular edge-preserving (e.g., total-variation) and sparsity-promoting (e.g., l(1)-norm of wavelet coefficients) criteria and combinations thereof. Numerical experiments with synthetic and in vivo human data illustrate that the proposed AL algorithms converge faster than both general-purpose optimization algorithms such as nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA.
A Lagrangian View of Stratospheric Trace Gas Distributions
Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.
1998-01-01
As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.
Lagrangian and ALE Formulations For Soil Structure Coupling with Explosive Detonation
Directory of Open Access Journals (Sweden)
M Souli
2017-03-01
Full Text Available Simulation of Soil-Structure Interaction becomes more and more the focus of computational engineering in civil and mechanical engineering, where FEM (Finite element Methods for structural and soil mechanics and Finite Volume for CFD are dominant. New formulations have been developed for FSI applications using ALE (Arbitrary Lagrangian Eulerian and mesh free methods as SPH method, (Smooth Particle Hydrodynamic. In defence industry, engineers have been developing protection systems for many years to reduce the vulnerability of light armoured vehicles (LAV against mine blast using classical Lagrangian FEM methods. To improve simulations and assist in the development of these protections, experimental tests, and new numerical techniques are performed. To carry out these numerical calculations, initial conditions such as the loading prescribed by a mine on a structure need to be simulated adequately. The effects of blast on structures depend often on how these initial conditions are estimated and applied. In this report, two methods were used to simulate a mine blast: the classical Lagrangian and the ALE formulations. The comparative study was done for a simple and a more complex target. Particle methods as SPH method can also be used for soil structure interaction.
Reducible gauge theories in local superfield Lagrangian BRST quantization
Energy Technology Data Exchange (ETDEWEB)
Gitman, D. M. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica; Moshin, P.Yu. [Tomsk State Pedagogical University (Russian Federation); Reshetnyak, A.A. [Inst. of Strength Physics and Materials Science, Tomsk (Russian Federation). Lab. of Non-equilibrium State Theory
2007-12-15
The construction of {theta}-local superfield Lagrangian BRST quantization in non-Abelian hyper gauges for generic gauge theories based on the action principle is examined in the case of reducible local superfield models (LSM) on the basis of embedding a gauge theory into a special {theta}-local superfield model with anti symplectic constraints and a Grassmann-odd time parameter {theta}. We examine the problem of establishing a new correspondence between the odd-Lagrangian and odd-Hamiltonian formulations of a local LSM in the case of degeneracy of the Lagrangian description with respect to derivatives over {theta} of generalized classical superfields A{sup I}({theta}). We also reveal the role of the nilpotent BRST-BFV charge for a formal dynamical system corresponding to the BV-BFV dual description of an LSM. (author)
Diffusion coefficient adaptive correction in Lagrangian puff model
International Nuclear Information System (INIS)
Tan Wenji; Wang Dezhong; Ma Yuanwei; Ji Zhilong
2014-01-01
Lagrangian puff model is widely used in the decision support system for nuclear emergency management. The diffusion coefficient is one of the key parameters impacting puff model. An adaptive method was proposed in this paper, which could correct the diffusion coefficient in Lagrangian puff model, and it aimed to improve the accuracy of calculating the nuclide concentration distribution. This method used detected concentration data, meteorological data and source release data to estimate the actual diffusion coefficient with least square method. The diffusion coefficient adaptive correction method was evaluated by Kincaid data in MVK, and was compared with traditional Pasquill-Gifford (P-G) diffusion scheme method. The results indicate that this diffusion coefficient adaptive correction method can improve the accuracy of Lagrangian puff model. (authors)
Minimal local Lagrangians for higher-spin geometry
International Nuclear Information System (INIS)
Francia, Dario; Sagnotti, Augusto
2005-01-01
The Fronsdal Lagrangians for free totally symmetric rank-s tensors φ μ 1 ...μ s rest on suitable trace constraints for their gauge parameters and gauge fields. Only when these constraints are removed, however, the resulting equations reflect the expected free higher-spin geometry. We show that geometric equations, in both their local and non-local forms, can be simply recovered from local Lagrangians with only two additional fields, a rank-(s-3) compensator α μ 1 ...μ s-3 and a rank-(s-4) Lagrange multiplier β μ 1 ...μ s-4 . In a similar fashion, we show that geometric equations for unconstrained rank-n totally symmetric spinor-tensors ψ μ 1 ...μ n can be simply recovered from local Lagrangians with only two additional spinor-tensors, a rank-(n-2) compensator ξ μ 1 ...μ n-2 and a rank-(n-3) Lagrange multiplier λ μ 1 ...μ n-3
The semi-Lagrangian method on curvilinear grids
Directory of Open Access Journals (Sweden)
Hamiaz Adnane
2016-09-01
Full Text Available We study the semi-Lagrangian method on curvilinear grids. The classical backward semi-Lagrangian method [1] preserves constant states but is not mass conservative. Natural reconstruction of the field permits nevertheless to have at least first order in time conservation of mass, even if the spatial error is large. Interpolation is performed with classical cubic splines and also cubic Hermite interpolation with arbitrary reconstruction order of the derivatives. High odd order reconstruction of the derivatives is shown to be a good ersatz of cubic splines which do not behave very well as time step tends to zero. A conservative semi-Lagrangian scheme along the lines of [2] is then described; here conservation of mass is automatically satisfied and constant states are shown to be preserved up to first order in time.
Seakeeping with the semi-Lagrangian particle finite element method
Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio
2017-07-01
The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.
Nonleptonic decay of charmed mesons and chiral lagrangians
International Nuclear Information System (INIS)
Kalinovskij, Yu.L.; Pervushin, V.N.
1978-01-01
Nonleptonic decays of charmed mesons in chiral theory are considered. The lagrangian of strong interaction is taken to be invariant under the SU(4)xSU(4) group. Symmetry breaking is chosen according to the (4,4sup(*))+(4sup(*),4) simplest representation of the SU(4)xSU(4) group. The lagrangian of weak interaction is taken in the ''current x current'' form and satisfies exactly the rule probabilities of decays for D and F mesons are compared with available experimental data
Complex nonlinear Lagrangian for the Hasegawa-Mima equation
International Nuclear Information System (INIS)
Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.
2005-01-01
The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)
Heister, Timo
2012-01-29
Efficient preconditioning for Oseen-type problems is an active research topic. We present a novel approach leveraging stabilization for inf-sup stable discretizations. The Grad-Div stabilization shares the algebraic properties with an augmented Lagrangian-type term. Both simplify the approximation of the Schur complement, especially in the convection-dominated case. We exploit this for the construction of the preconditioner. Solving the discretized Oseen problem with an iterative Krylov-type method shows that the outer iteration numbers are retained independent of mesh size, viscosity, and finite element order. Thus, the preconditioner is very competitive. © 2012 John Wiley & Sons, Ltd.
Heister, Timo; Rapin, Gerd
2012-01-01
Efficient preconditioning for Oseen-type problems is an active research topic. We present a novel approach leveraging stabilization for inf-sup stable discretizations. The Grad-Div stabilization shares the algebraic properties with an augmented Lagrangian-type term. Both simplify the approximation of the Schur complement, especially in the convection-dominated case. We exploit this for the construction of the preconditioner. Solving the discretized Oseen problem with an iterative Krylov-type method shows that the outer iteration numbers are retained independent of mesh size, viscosity, and finite element order. Thus, the preconditioner is very competitive. © 2012 John Wiley & Sons, Ltd.
Partition function of a chiral boson on a 2-torus from the Floreanini–Jackiw Lagrangian
International Nuclear Information System (INIS)
Chen, Wei-Ming; Ho, Pei-Ming; Kao, Hsien-chung; Khoo, Fech Scen; Matsuo, Yutaka
2014-01-01
We revisit the problem of quantizing a chiral boson on a torus. The conventional approach is to extract the partition function of a chiral boson from the path integral of a non-chiral boson. Instead we compute it directly from the chiral boson Lagrangian of Floreanini and Jackiw modified by topological terms involving an auxiliary field. A careful analysis of the gauge-fixing condition for the extra gauge symmetry reproduces the correct results for the free chiral boson, and has the advantage of being applicable to a wider class of interacting chiral boson theories
A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation
Directory of Open Access Journals (Sweden)
Alexander Efremov
2014-01-01
Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.
Radioimmunotherapy: Development of an effective approach
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
Goals of this program are to answer the fundamental scientific questions for the development of an effective approach for delivering radiation therapy to cancer on antibody-based radiopharmaceuticals. The following list consists of highlights of developments from our program: documented therapeutic response of lymphoma in patients receiving radioimmunotherapy; development and application of quantitative radionuclide imaging techniques for therapy planning and dosimetry calculations; multicompartmental modeling and analysis of the in vivo MoAb kinetics in patients; a MoAb macrocycle chelate for Cu-67: development, production, in vitro and in vivo testing; NMR analysis of immunoradiotherapeutic effects on the metabolism of lymphoma; analysis of the variable molecular characteristics of the MoAb radiopharmaceutical, and their significance; in vivo studies in mice and patients of the metabolism of radioiodinated MoAb as well as In-111 CITC MoAb; and biodistribution of Cu-67 TETA MoAb in nude mice with human lymphoma.
Radioimmunotherapy: Development of an effective approach
International Nuclear Information System (INIS)
1987-01-01
Goals of this program are to answer the fundamental scientific questions for the development of an effective approach for delivering radiation therapy to cancer on antibody-based radiopharmaceuticals. The following list consists of highlights of developments from our program: documented therapeutic response of lymphoma in patients receiving radioimmunotherapy; development and application of quantitative radionuclide imaging techniques for therapy planning and dosimetry calculations; multicompartmental modeling and analysis of the in vivo MoAb kinetics in patients; a MoAb macrocycle chelate for Cu-67: development, production, in vitro and in vivo testing; NMR analysis of immunoradiotherapeutic effects on the metabolism of lymphoma; analysis of the variable molecular characteristics of the MoAb radiopharmaceutical, and their significance; in vivo studies in mice and patients of the metabolism of radioiodinated MoAb as well as In-111 CITC MoAb; and biodistribution of Cu-67 TETA MoAb in nude mice with human lymphoma
IMPOSING A LAGRANGIAN PARTICLE FRAMEWORK ON AN EULERIAN HYDRODYNAMICS INFRASTRUCTURE IN FLASH
International Nuclear Information System (INIS)
Dubey, A.; Daley, C.; Weide, K.; Graziani, C.; ZuHone, J.; Ricker, P. M.
2012-01-01
In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.
Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash
Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.
2012-01-01
In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.
Effect of Process Approach to Writing on Senior Secondary Students ...
African Journals Online (AJOL)
Effect of Process Approach to Writing on Senior Secondary Students' ... The study adopted a quasi-experimental non equivalent pretest-posttest research design. ... Key words: process approach, product approach, essay, writing, achievement.
Implicit Lagrangian equations and the mathematical modeling of physical systems
Moreau, Luc; van der Schaft, Arjan
2002-01-01
We introduce a class of optimal control problems on manifolds which gives rise (via the Pontryagin maximum principle) to a class of implicit Lagrangian systems (a notion which is introduced in the paper). We apply this to the mathematical modeling of interconnected mechanical systems and mechanical
Classical dynamical variables for the Wess-Zumino matter Lagrangian
International Nuclear Information System (INIS)
Domenech, G.; Buenos Aires Univ. Nacional; Levinas, M.; Buenos Aires Univ. Nacional; Umerez, N.
1989-01-01
We study the macroscopic behaviour of the Wess-Zumino matter multiplet. The Lagrangian and the energy-momentum tensor are obtained in terms of densities and velocities of an interacting fluid in N=1 supergravity background. Equations of motion and conditions for consistency are found. (orig.)
Superconformal Lagrangian without the need to introduce constraints
International Nuclear Information System (INIS)
Pilot, C.H.
1986-01-01
A field Lagrangian invariant under all the symmetries of the superconformal group has been constructed without the need to introduce constraints on the curvatures. We have thus generalized the action of Townsend, van Nieuwenhuizen, and Kaku. We maintain that any and all constraints on the curvatures should result as a consequence of spontaneous symmetry breaking and not be a priori enforced. 14 refs
Lagrangian fluid dynamics using the Voronoi-Delauanay mesh
International Nuclear Information System (INIS)
Dukowicz, J.K.
1981-01-01
A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed
Extended Lagrangian formalism for rheonomic systems with variable mass
Directory of Open Access Journals (Sweden)
Mušicki Đorđe
2017-01-01
Full Text Available In this paper the extended Lagrangian formalism for the rheonomic systems (Dj. Mušicki, 2004, which began with the modification of the mechanics of such systems (V. Vujičić, 1987, is extended to the systems with variable mass, with emphasis on the corresponding energy relations. This extended Lagrangian formalism is based on the extension of the set of chosen generalized coordinates by new quantities, suggested by the form of nonstationary constraints, which determine the position of the frame of reference in respect to which these generalized coordinates refer. As a consequence, an extended system of the Lagrangian equations is formulated, accommodated to the variability of the masses of particles, where the additional ones correspond to the additional generalized coordinates. By means of these equations, the energy relations of such systems have been studied, where it is demonstrated that here there are four types of energy conservation laws. The obtained energy laws are more complete and natural than the corresponding ones in the usual Lagrangian formulation for such systems. It is demonstrated that the obtained energy laws, are in full accordance with the energy laws in the corresponding vector formulation, if they are expressed in terms of the quantities introduced in this formulation of mechanics. The obtained results are illustrated by an example: the motion of a rocket, which ejects the gasses backwards, while this rocket moves up a straight line on an oblique plane, which glides uniformly in a horizontal direction.
Infinitely many inequivalent field theories from one Lagrangian
100__; Mavromatos, Nick E.; Sarkar, Sarben
2014-01-01
Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\\phi$. In Euclidean space the Lagrangian of such a theory, $L=\\frac{1}{2}(\
Translating solitons to symplectic and Lagrangian mean curvature flows
International Nuclear Information System (INIS)
Han Xiaoli; Li Jiayu
2007-05-01
In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)
Perturbative QCD lagrangian at large distances and stochastic dimensionality reduction
International Nuclear Information System (INIS)
Shintani, M.
1986-10-01
We construct a Lagrangian for perturbative QCD at large distances within the covariant operator formalism which explains the color confinement of quarks and gluons while maintaining unitarity of the S-matrix. It is also shown that when interactions are switched off, the mechanism of stochastic dimensionality reduction is operative in the system due to exact super-Lorentz symmetries. (orig.)
An unconditionally stable fully conservative semi-Lagrangian method
Lentine, Michael; Gré tarsson, Jó n Tó mas; Fedkiw, Ronald
2011-01-01
of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving
Towards Selective Tidal-Stream Transport for Lagrangian profilers
DEFF Research Database (Denmark)
Jouffroy, Jerome; Zhou, Qiuyang; Zielinski, Oliver
2011-01-01
Autonomous Lagrangian profilers are widely used as measurement and monitoring platforms. In their current mode of operation, the profilers usually drift passively at their parking depth before making a vertical profile to go back to the surface. This paper presents a control strategy to actively...
High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function
International Nuclear Information System (INIS)
Zhao Hongxia; Ma Shanjun
2008-01-01
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
Directory of Open Access Journals (Sweden)
Otstavnov Evgeniy Igorevich
2013-05-01
Full Text Available In the article, the two-dimensional boundary layer is considered on the basis of the Lagrangian approach to the continuous medium description using coordinates of particles. Classical L. Prandtl’s method of Navier-Stokes equation simplification through expansion of dependent variables in a series is applied to develop the model. Direct transformation of widely used Euler equations derived by L. Prandtl generates the same result. Boundary conditions are regarded as one-sided or non-holonomic restrictions from the viewpoint of analytical mechanics.The mass conservation equation can be detached from the main equation of motion. At the same time, one can conclude that a particle starting its motion from an internal part of the layer will remain there without reaching any boundary in a finite time. The perpendicular coordinate evolution can be calculated when one has a law of motion along the boundary employed using the standard approach to the certain PDE solution. The model presentation is based on the Hamiltonian apparatus of classical mechanics. Derivatives of spatial variables take the form of the Poisson brackets. Hence, the full equation for the Newton’s second law has acceleration and doubled application of Poisson brackets. The pressure gradient is a function of a single coordinate; therefore, it can be eliminated by another Poisson bracket application due to the symmetric property of the skew.Приведен вывод уравнений плоского пограничного слоя с использованием подхода Лагранжа. Граничные условия рассмотрены с позиций теоретической механики в качестве связей, наложенных на систему. Уравнение движения вдоль границы отделяется, что дает еще одну форму скалярного описания плоского погранслоя.
A human factors approach to effective maintenance
International Nuclear Information System (INIS)
Penington, J.; Shakeri, S.
2006-01-01
Traditionally in the field of Human Factors within the nuclear industry, the focus has been to identify the potential for human errors in operating tasks, and develop strategies to prevent their occurrence, provide recovery mechanisms, and mitigate the consequences of error as appropriate. Past experience has demonstrated however a significant number of human errors within the nuclear industry occur during maintenance tasks. It is for this reason, and the fact that our nuclear power plants are ageing and increasingly in need of maintenance, that the industry must pay more attention to maintenance tasks. The purpose of this paper is to present a framework for effective maintenance programs, and based upon this framework discuss an approach (an audit tool) that can be used to both design such a program, and to assess existing programs. In addition, this tool can form the basis of cost benefit decisions relating to priorities for improvements to existing programs. (author)
Next generation extended Lagrangian first principles molecular dynamics.
Niklasson, Anders M N
2017-08-07
Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.
Reyes, Jonathan; Shadwick, B. A.
2016-10-01
Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.
Identifying finite-time coherent sets from limited quantities of Lagrangian data
Energy Technology Data Exchange (ETDEWEB)
Williams, Matthew O. [Program in Applied and Computational Mathematics, Princeton University, New Jersey 08544 (United States); Rypina, Irina I. [Department of Physical Oceanography, Woods Hole Oceanographic Institute, Massachusetts 02543 (United States); Rowley, Clarence W. [Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544 (United States)
2015-08-15
A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.
Identifying finite-time coherent sets from limited quantities of Lagrangian data
International Nuclear Information System (INIS)
Williams, Matthew O.; Rypina, Irina I.; Rowley, Clarence W.
2015-01-01
A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea
Identifying finite-time coherent sets from limited quantities of Lagrangian data.
Williams, Matthew O; Rypina, Irina I; Rowley, Clarence W
2015-08-01
A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that "leak" from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, "data rich" test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or "mesh-free" methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.
An Effective Approach to Teaching Electrochemistry.
Birss, Viola I.; Truax, D. Rodney
1990-01-01
An approach which may be useful for teaching electrochemistry in freshman college chemistry courses is presented. Discussed are the potential problems with teaching this subject and solutions provided by this approach. (CW)
Lagrangian Stochastic Dispersion Model IMS Model Suite and its Validation against Experimental Data
International Nuclear Information System (INIS)
Bartok, J.
2010-01-01
The dissertation presents IMS Lagrangian Dispersion Model, which is a 'new generation' Slovak dispersion model of long-range transport, developed by MicroStep-MIS. It solves trajectory equation for a vast number of Lagrangian 'particles' and stochastic equation that simulates the effects of turbulence. Model contains simulation of radioactive decay (full decay chains of more than 300 nuclides), and dry and wet deposition. Model was integrated into IMS Model Suite, a system in which several models and modules can run and cooperate, e.g. LAM model WRF preparing fine resolution meteorological data for dispersion. The main theme of the work is validation of dispersion model against large scale international campaigns CAPTEX and ETEX, which are two of the largest tracer experiments. Validation addressed treatment of missing data, data interpolation into comparable temporal and spatial representation. The best model results were observed for ETEX I, standard results for CAPTEXes and worst results for ETEX II, known in modelling community for its meteorological conditions that can be hardly resolved by models. The IMS Lagrangian Dispersion Model was identified as capable long range dispersion model for slowly- or nonreacting chemicals and radioactive matter. Influence of input data on simulation quality is discussed within the work. Additional modules were prepared according to praxis requirement: a) Recalculation of concentrations of radioactive pollutant into effective doses form inhalation, immersion in the plume and deposition. b) Dispersion of mineral dust was added and tested in desert locality, where wind and soil moisture were firstly analysed and forecast by WRF. The result was qualitatively verified in case study against satellite observations. (author)
Lindner, Michael; Donner, Reik V
2017-03-01
We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
Differentiating Performance Approach Goals and Their Unique Effects
Edwards, Ordene V.
2014-01-01
The study differentiates between two types of performance approach goals (competence demonstration performance approach goal and normative performance approach goal) by examining their unique effects on self-efficacy, interest, and fear of failure. Seventy-nine students completed questionnaires that measure performance approach goals,…
Lagrangian intersection Floer theory anomaly and obstruction, part II
Fukaya, Kenji; Ohta, Hiroshi; Ono, Kaoru
2009-01-01
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered A_\\infty-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered A_\\infty algebras and A_\\infty bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-co...
Lagrangian intersection Floer theory anomaly and obstruction, part I
Fukaya, Kenji; Ohta, Hiroshi; Ono, Kaoru
2009-01-01
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered A_\\infty-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered A_\\infty algebras and A_\\infty bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-co...
An algorithm for discovering Lagrangians automatically from data
Directory of Open Access Journals (Sweden)
Daniel J.A. Hills
2015-11-01
Full Text Available An activity fundamental to science is building mathematical models. These models are used to both predict the results of future experiments and gain insight into the structure of the system under study. We present an algorithm that automates the model building process in a scientifically principled way. The algorithm can take observed trajectories from a wide variety of mechanical systems and, without any other prior knowledge or tuning of parameters, predict the future evolution of the system. It does this by applying the principle of least action and searching for the simplest Lagrangian that describes the system’s behaviour. By generating this Lagrangian in a human interpretable form, it can also provide insight into the workings of the system.
A non-conventional discontinuous Lagrangian for viscous flow
Marner, F.
2017-01-01
Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided. PMID:28386415
Lagrangian space consistency relation for large scale structure
International Nuclear Information System (INIS)
Horn, Bart; Hui, Lam; Xiao, Xiao
2015-01-01
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
DEFF Research Database (Denmark)
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n......Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components...
Symplectic invariants of some families of Lagrangian T3-fibrations
International Nuclear Information System (INIS)
Castano Bernard, R.
2003-12-01
We construct families of Lagrangian 3-torus fibrations resembling the topology of some of the singularities in Topological Mirror Symmetry. We perform a detailed analysis of the affine structure on the base of these fibrations near their discriminant loci. This permits us to classify the aforementioned families up to fibre preserving symplectomorphism. The kind of degenerations we investigate give rise to a large number of symplectic invariants. (author)
A contemporary look at Hermann Hankel's 1861 pioneering work on Lagrangian fluid dynamics
Frisch, Uriel; Grimberg, Gérard; Villone, Barbara
2017-12-01
The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected documents [Eur. Phys. J. H 42, 557-609 (2017)]. Here we give a critical assessment of Hankel's work, which covers many important aspects of fluid dynamics considered from a Lagrangian-coordinates point of view: variational formulation in the spirit of Hamilton for elastic (barotropic) fluids, transport (we would now say Lie transport) of vorticity, the Lagrangian significance of Clebsch variables, etc. Hankel's work is also put in the perspective of previous and future work. Hence, the action spans about two centuries: from Lagrange's 1760-1761 Turin paper on variational approaches to mechanics and fluid mechanics problems to Arnold's 1966 founding paper on the geometrical/variational formulation of incompressible flow. The 22-year-old Hankel - who was to die 12 years later — emerges as a highly innovative master of mathematical fluid dynamics, fully deserving Riemann's assessment that his Preisschrift contains "all manner of good things."
High order curvilinear finite elements for elastic–plastic Lagrangian dynamics
International Nuclear Information System (INIS)
Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.
2014-01-01
This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow
On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory
Vandommelen, Leon L.; Cowley, Stephen J.
1989-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
On the Lagrangian description of unsteady boundary-layer separation. I - General theory
Van Dommelen, Leon L.; Cowley, Stephen J.
1990-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus
Mayer, D.; Reiczigel, J.; Rubel, F.
Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.
Lagrangian measurements of sulfur dioxide to sulfate conversion rates
Energy Technology Data Exchange (ETDEWEB)
Zak, B D
1981-12-01
On the basis of Project MISTT data and proposed homogenous gas phase oxidation mechanisms for sulfur dioxide, it has been suggested that the degree of mixing with background air, the chemical composition of the background air, and the intensity of the sunlight available are key factors determining the rate of sulfur dioxide to sulfate conversion. These hypotheses are examined in light of Lagrangian measrements of conversion rates in power plant plumes made during the Tennessee Plume Study and Project Da Vinci. It is found that the Lagrangian conversion rate measurements are consistent with these hypotheses. It has also been suggested that the concentration of ozone may serve as a workable surrogate for the concentrations of the free radicals involved in the homogeneous gas phase mechanism. The night-time Lagrangian data remind one that the gross difference in mean lifetime of ozone and free radicals can lead to situations in which the ozone concentration is not a good surrogate for the free radical concentrations.
Deconstructing field-induced ketene isomerization through Lagrangian descriptors.
Craven, Galen T; Hernandez, Rigoberto
2016-02-07
The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.
Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P
2015-08-01
Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.
Lagrangian statistics in weakly forced two-dimensional turbulence.
Rivera, Michael K; Ecke, Robert E
2016-01-01
Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.
Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.
2006-06-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.
Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics
International Nuclear Information System (INIS)
Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J
2005-01-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs
Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
International Nuclear Information System (INIS)
Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.
2006-01-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)
Unified approach to dense matter
International Nuclear Information System (INIS)
Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque
2005-01-01
We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons
Directory of Open Access Journals (Sweden)
Claudio A. Careglio
2016-01-01
Full Text Available In simulations of forged and stamping processes using the finite element method, load displacement paths and three-dimensional stress and strains states should be well and reliably represented. The simple tension test is a suitable and economical tool to calibrate constitutive equations with finite strains and plasticity for those simulations. A complex three-dimensional stress and strain states are developed when this test is done on rectangular bars and the necking phenomenon appears. In this work, global and local numerical results of the mechanical response of rectangular bars subjected to simple tension test obtained from two different finite element formulations are compared and discussed. To this end, Updated and Total Lagrangian formulations are used in order to get the three-dimensional stress and strain states. Geometric changes together with strain and stress distributions at the cross section where necking occurs are assessed. In particular, a detailed analysis of the effective plastic strain, stress components in axial and transverse directions and pressure, and deviatoric stress components is presented. Specific numerical results are also validated with experimental measurements comparing, in turn, the performance of the two numerical approaches used in this study.
de'Michieli Vitturi, Mattia; Pardini, Federica; Spanu, Antonio; Neri, Augusto; Vittoria Salvetti, Maria
2015-04-01
Volcanic ash clouds represent a major hazard for populations living nearby volcanic centers producing a risk for humans and a potential threat to crops, ground infrastructures, and aviation traffic. Lagrangian particle dispersal models are commonly used for tracking ash particles emitted from volcanic plumes and transported under the action of atmospheric wind fields. In this work, we present the results of an uncertainty propagation analysis applied to volcanic ash dispersal from weak plumes with specific focus on the uncertainties related to the grain-size distribution of the mixture. To this aim, the Eulerian fully compressible mesoscale non-hydrostatic model WRF was used to generate the driving wind, representative of the atmospheric conditions occurring during the event of November 24, 2006 at Mt. Etna. Then, the Lagrangian particle model LPAC (de' Michieli Vitturi et al., JGR 2010) was used to simulate the transport of mass particles under the action of atmospheric conditions. The particle motion equations were derived by expressing the Lagrangian particle acceleration as the sum of the forces acting along its trajectory, with drag forces calculated as a function of particle diameter, density, shape and Reynolds number. The simulations were representative of weak plume events of Mt. Etna and aimed to quantify the effect on the dispersal process of the uncertainty in the particle sphericity and in the mean and variance of a log-normal distribution function describing the grain-size of ash particles released from the eruptive column. In order to analyze the sensitivity of particle dispersal to these uncertain parameters with a reasonable number of simulations, and therefore with affordable computational costs, response surfaces in the parameter space were built by using the generalized polynomial chaos technique. The uncertainty analysis allowed to quantify the most probable values, as well as their pdf, of the number of particles as well as of the mean and
Post-dryout heat transfer analysis model with droplet Lagrangian simulation
International Nuclear Information System (INIS)
Keizo Matsuura; Isao Kataoka; Kaichiro Mishima
2005-01-01
Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)
Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams
Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.
2011-01-01
Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.
Building Effective Collaboration in a Comprehensive Approach
Essens, P.J.M.D.; Thompson, M.T.; Karrasch, A.; Jermalavičius, J.
2016-01-01
The Comprehensive Approach (CA) to crisis management operations is an essential element in NATO’s transformation in modern operations. At the Bucharest Summit in April 2008, Allied leaders endorsed an Action Plan for the development and implementation of NATO’s contribution to a Comprehensive
International Nuclear Information System (INIS)
Ge Fengjun; Jiang Shaozhou; Wang Qing
2011-01-01
The electroweak chiral Lagrangian for the topcolor-assisted technicolor model proposed by K. Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in this study. We found that the features of the model are qualitatively similar to those of Lane's previous natural topcolor-assisted technicolor prototype model, but there is no limit on the upper bound of the Z ' mass. We discuss the phase structure and possible walking behavior of the model. We obtained the values of all coefficients of the electroweak chiral Lagrangian up to an order of p 4 . We show that although the walking effect reduces the S parameter to half its original value, it maintains an order of 2. Moreover, a special hypercharge arrangement is needed to achieve further reductions in its value.
Calò, Antonio; Lett, Christophe; Mourre, Baptiste; Pérez-Ruzafa, Ángel; García-Charton, José Antonio
2018-03-01
The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effects of Different Teaching Approaches in Introductory Financial Accounting
Chiang, Bea; Nouri, Hossein; Samanta, Subarna
2014-01-01
The purpose of the research is to examine the effect of the two different teaching approaches in the first accounting course on student performance in a subsequent finance course. The study compares 128 accounting and finance students who took introductory financial accounting by either a user approach or a traditional preparer approach to examine…
Evaluation of the Monotonic Lagrangian Grid and Lat-Long Grid for Air Traffic Management
Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay
2011-01-01
The Air Traffic Monotonic Lagrangian Grid (ATMLG) is used to simulate a 24 hour period of air traffic flow in the National Airspace System (NAS). During this time period, there are 41,594 flights over the United States, and the flight plan information (departure and arrival airports and times, and waypoints along the way) are obtained from an Federal Aviation Administration (FAA) Enhanced Traffic Management System (ETMS) dataset. Two simulation procedures are tested and compared: one based on the Monotonic Lagrangian Grid (MLG), and the other based on the stationary Latitude-Longitude (Lat- Long) grid. Simulating one full day of air traffic over the United States required the following amounts of CPU time on a single processor of an SGI Altix: 88 s for the MLG method, and 163 s for the Lat-Long grid method. We present a discussion of the amount of CPU time required for each of the simulation processes (updating aircraft trajectories, sorting, conflict detection and resolution, etc.), and show that the main advantage of the MLG method is that it is a general sorting algorithm that can sort on multiple properties. We discuss how many MLG neighbors must be considered in the separation assurance procedure in order to ensure a five-mile separation buffer between aircraft, and we investigate the effect of removing waypoints from aircraft trajectories. When aircraft choose their own trajectory, there are more flights with shorter duration times and fewer CD&R maneuvers, resulting in significant fuel savings.
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.
Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua
2015-01-01
Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.
Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.
Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N
2015-06-09
The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.
Jet-calculus approach including coherence effects
International Nuclear Information System (INIS)
Jones, L.M.; Migneron, R.; Narayanan, K.S.S.
1987-01-01
We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics
Ghoussoub, Nassif; Tzou, Leo
2005-01-01
Anti-selfdual Lagrangians on a state space lift to path space provided one adds a suitable selfdual boundary Lagrangian. This process can be iterated by considering the path space as a new state space for the newly obtained anti-selfdual Lagrangian. We give here two applications for these remarkable permanence properties. In the first, we establish for certain convex-concave Hamiltonians ${\\cal H}$ on a --possibly infinite dimensional--symplectic space $H^2$, the existence of a solution for t...
Near-Surface Monsoonal Circulation of the Vietnam East Sea from Lagrangian Drifters
2015-09-30
Sea from Lagrangian Drifters Luca Centurioni Scripps Institution of Oceanography 9500 Gilman Drive Mail Code 0213 La Jolla, California 92103...Contribute to the study of coastal and open ocean current systems in sparsely sampled regions such us the South China Sea (SCS), using a Lagrangian ...We intend to make new Lagrangian and Eulerian observations to measure the seasonal circulation 1) in the coastal waters of Vietnam and 2) in the SCS
An arbitrary Lagrangian-Eulerian method for interfacial flows with insoluble surfactants
Yang, Xiaofeng
Interfacial flows, fluid flows involving two or more fluids that do not mix, are common in many natural and industrial processes such as rain drop formation, crude oil recovery, polymer blending, fuel spray formation, and so on. Surfactants (surface active substances) play an important role in such processes because they significantly change the interfacial dynamics. In this thesis, an arbitrary Lagrangian-Eulerian (ALE) method has been developed to numerically simulate interfacial flows with insoluble surfactants. The interface is captured using a coupled level set and volume of fluid method. To evolve the surfactant concentration, the method directly tracks the surfactant mass and the interfacial area. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. By directly tracking the surfactant mass, the method conserves the surfactant mass exactly. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The evolution of the level set function, volume fraction, interfacial area, and the surfactant mass is performed using an ALE approach. The fluid flow is governed by Stokes equations, which are solved using a finite element method. The surface forces are included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, interfacial regions of high surface curvature, and near contact regions between two interacting interfaces, the grid near the interface is adaptively refined. The method is extendible to axisymmetric and 3D spaces, and can be coupled with other flow solvers, such as Navier-Stokes and viscoelastic flow solvers, as well. The method has been applied to study the effect of surfactants on drop deformation and breakup in an extensional flow. Drop deformation results are compared with available experimental and theoretical
Kraus, Tamara; Carpenter, Kurt; Bergamaschi, Brian; Parker, Alexander; Stumpner, Elizabeth; Downing, Bryan D.; Travis, Nicole; Wilkerson, Frances; Kendall, Carol; Mussen, Timothy
2017-01-01
Phytoplankton are critical component of the food web in most large rivers and estuaries, and thus identifying dominant controls on phytoplankton abundance and species composition is important to scientists, managers, and policymakers. Recent studies from a variety of systems indicate that ammonium ( NH+4) in treated wastewater effluent decreases primary production and alters phytoplankton species composition. However, these findings are based mainly on laboratory and enclosure studies, which may not adequately represent natural systems. To test effects of effluent high in ammonium on phytoplankton at the ecosystem scale, we conducted whole-river–scale experiments by halting discharges to the Sacramento River from the regional wastewater treatment plant (WWTP), and used a Lagrangian approach to compare changes in phytoplankton abundance and species composition in the presence (+EFF) and absence (−EFF) of effluent. Over 5 d of downstream travel from 20 km above to 50 km below the WWTP, chlorophyll concentrations declined from 15–25 to ∼2.5 μg L−1, irrespective of effluent addition. Benthic diatoms were dominant in most samples. We found no significant difference in phytoplankton abundance or species composition between +EFF and −EFF conditions. Moreover, greatest declines in chlorophyll occurred upstream of the WWTP where NH+4 concentrations were low. Grazing by clams and zooplankton could not account for observed losses, suggesting other factors such as hydrodynamics and light limitation were responsible for phytoplankton declines. These results highlight the advantages of conducting ecosystem-scale, Lagrangian-based experiments to understand the dynamic and complex interplay between physical, chemical, and biological factors that control phytoplankton populations.
Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map
AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong
2017-04-01
The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by
An unconditionally stable fully conservative semi-Lagrangian method
Lentine, Michael
2011-04-01
Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Directory of Open Access Journals (Sweden)
Nikolai N. Bogolubov
2015-04-01
Full Text Available We review new electrodynamics models of interacting charged point particles and related fundamental physical aspects, motivated by the classical A.M. Ampère magnetic and H. Lorentz force laws electromagnetic field expressions. Based on the Feynman proper time paradigm and a recently devised vacuum field theory approach to the Lagrangian and Hamiltonian, the formulations of alternative classical electrodynamics models are analyzed in detail and their Dirac type quantization is suggested. Problems closely related to the radiation reaction force and electron mass inertia are analyzed. The validity of the Abraham-Lorentz electromagnetic electron mass origin hypothesis is argued. The related electromagnetic Dirac–Fock–Podolsky problem and symplectic properties of the Maxwell and Yang–Mills type dynamical systems are analyzed. The crucial importance of the remaining reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized.
Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability
Energy Technology Data Exchange (ETDEWEB)
Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)
2010-05-14
In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.
Lagrangian 3D tracking of fluorescent microscopic objects in motion
Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.
2016-01-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in micro-fluidic devices. The system is based on real-time image processing, determining the displacement of a x,y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displ...
N =1 Lagrangians for generalized Argyres-Douglas theories
Agarwal, Prarit; Sciarappa, Antonio; Song, Jaewon
2017-10-01
We find N = 1 Lagrangian gauge theories that flow to generalized ArgyresDouglas theories with N = 2 supersymmetry. We find that certain SU quiver gauge theories flow to generalized Argyres-Douglas theories of type ( A k-1 , A mk-1) and ( I m,km , S). We also find quiver gauge theories of SO/Sp gauge groups flowing to the ( A 2 m-1 , D 2 mk+1), ( A 2 m , D 2 m( k-1)+ k ) and D m(2 k + 2) m(2 k + 2) [ m] theories.
Uses of the chiral Lagrangian at the SSC
International Nuclear Information System (INIS)
Dawson, S.
1992-09-01
In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. In particular, we consider the question of whether there is a ''no-lose'' corollary at the SSC. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC
Lagrangian formulation of a consistent relativistic guiding center theory
International Nuclear Information System (INIS)
Wimmel, H.K.
1983-02-01
A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville's theorem. The theory reduces to Littlejohn's theory in the non-relativistic limit and agrees to leading orders in epsilon identical rsub(g)/L with the relativistic theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived. (orig.)
LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.
Schoellhamer, David H.
1987-01-01
The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.
A systemic approach to modelling of radiobiological effects
International Nuclear Information System (INIS)
Obaturov, G.M.
1988-01-01
Basic principles of the systemic approach to modelling of the radiobiological effects at different levels of cell organization have been formulated. The methodology is proposed for theoretical modelling of the effects at these levels
Mang, Andreas; Ruthotto, Lars
2017-01-01
We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.
Integrating Adult Learning and Technologies for Effective Education: Strategic Approaches
Wang, Victor C. X.
2010-01-01
As adult learners and educators pioneer the use of technology in the new century, attention has been focused on developing strategic approaches to effectively integrate adult learning and technology in different learning environments. "Integrating Adult Learning and Technologies for Effective Education: Strategic Approaches" provides innovative…
Canadian and international approaches to regulatory effectiveness
International Nuclear Information System (INIS)
Lojk, R.
2014-01-01
Regulatory effectiveness is an important attribute of any regulator, particularly nuclear regulators. As the nuclear industry has matured, and as the social landscape has changed, so have views on what constitutes regulatory effectiveness. Canada has evolved its regulatory structure and modernized its legislative framework and technical requirements and guidance over time. In addition, Canada continues to collaborate with international agencies, particularly the NEA and the IAEA, to ensure that there is a common understanding of the indicators and key attributes of regulatory effectiveness. This paper discusses Canadian and international views on the subject, including perspectives from other industries. (author)
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-02-10
The strength and tensor structure of the Higgs boson's interactions are investigated within an effective field theory framework, which allows new CP-even and CP-odd interactions that can lead to changes in the kinematic properties of the Higgs boson and associated jet spectra. The parameters of the effective field theory are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the $H \\rightarrow \\gamma\\gamma$ decay channel with an integrated luminosity of 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the $H \\rightarrow \\gamma\\gamma$ candidate events in the proton-proton collision data. No significant deviations from the Standard Model are observed and limits on the effective field theory parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model int...
Energy Absorbing Effectiveness – Different Approaches
Directory of Open Access Journals (Sweden)
Kotełko Maria
2018-03-01
Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.
Iterative approach to effective interactions in nuclei
International Nuclear Information System (INIS)
Heiss, W.D.
1982-01-01
Starting from a non-linear equation for the effective interaction in a model space, various iteration procedures converge to a correct solution irrespective of the presence of intruder states. The physical significance of the procedures and the respective solution is discussed
A Satellite-Based Lagrangian View on Phytoplankton Dynamics
Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan
2018-01-01
The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter—the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.
Lagrangian structures, integrability and chaos for 3D dynamical equations
International Nuclear Information System (INIS)
Bustamante, Miguel D; Hojman, Sergio A
2003-01-01
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion
A Lagrangian mixing frequency model for transported PDF modeling
Turkeri, Hasret; Zhao, Xinyu
2017-11-01
In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.
Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.
Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua
2016-08-01
We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.
The Monotonic Lagrangian Grid for Rapid Air-Traffic Evaluation
Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay
2010-01-01
The Air Traffic Monotonic Lagrangian Grid (ATMLG) is presented as a tool to evaluate new air traffic system concepts. The model, based on an algorithm called the Monotonic Lagrangian Grid (MLG), can quickly sort, track, and update positions of many aircraft, both on the ground (at airports) and in the air. The underlying data structure is based on the MLG, which is used for sorting and ordering positions and other data needed to describe N moving bodies and their interactions. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. Recent upgrades to ATMLG include adding blank place-holders within the MLG data structure, which makes it possible to dynamically change the MLG size and also improves the quality of the MLG grid. Additional upgrades include adding FAA flight plan data, such as way-points and arrival and departure times from the Enhanced Traffic Management System (ETMS), and combining the MLG with the state-of-the-art strategic and tactical conflict detection and resolution algorithms from the NASA-developed Stratway software. In this paper, we present results from our early efforts to couple ATMLG with the Stratway software, and we demonstrate that it can be used to quickly simulate air traffic flow for a very large ETMS dataset.
A Lagrangian dynamic subgrid-scale model turbulence
Meneveau, C.; Lund, T. S.; Cabot, W.
1994-01-01
A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.
A Satellite-Based Lagrangian View on Phytoplankton Dynamics.
Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan
2018-01-03
The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.
Schieschke, Nils; Di Remigio, Roberto; Frediani, Luca; Heuser, Johannes; Höfener, Sebastian
2017-07-15
We present the explicit derivation of an approach to the multiscale description of molecules in complex environments that combines frozen-density embedding (FDE) with continuum solvation models, in particular the conductor-like screening model (COSMO). FDE provides an explicit atomistic description of molecule-environment interactions at reduced computational cost, while the outer continuum layer accounts for the effect of long-range isotropic electrostatic interactions. Our treatment is based on a variational Lagrangian framework, enabling rigorous derivations of ground- and excited-state response properties. As an example of the flexibility of the theoretical framework, we derive and discuss FDE + COSMO analytical molecular gradients for excited states within the Tamm-Dancoff approximation (TDA) and for ground states within second-order Møller-Plesset perturbation theory (MP2) and a second-order approximate coupled cluster with singles and doubles (CC2). It is shown how this method can be used to describe vertical electronic excitation (VEE) energies and Stokes shifts for uracil in water and carbostyril in dimethyl sulfoxide (DMSO), respectively. In addition, VEEs for some simplified protein models are computed, illustrating the performance of this method when applied to larger systems. The interaction terms between the FDE subsystem densities and the continuum can influence excitation energies up to 0.3 eV and, thus, cannot be neglected for general applications. We find that the net influence of the continuum in presence of the first FDE shell on the excitation energy amounts to about 0.05 eV for the cases investigated. The present work is an important step toward rigorously derived ab initio multilayer and multiscale modeling approaches. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Relativistic particle dynamics: Lagrangian proof of the no-interaction theorem
International Nuclear Information System (INIS)
Marmo, G.; Mukunda, N.; Sudarshan, E.C.G.
1983-11-01
An economical proof is given, in the Lagrangian framework, of the No Interaction Theorem of relativistic particle mechanics. It is based on the assumption that there is a Lagrangian, which if singular is allowed to lead at most to primary first class constraints. The proof works with Lagrange rather than Poisson brackets, leading to considerable simplifications compared to other proofs
Schroeder, Craig; Zheng, Wen; Fedkiw, Ronald
2012-01-01
-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension
Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan
2018-01-01
We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.
Syed, H.A.M.S.; Primeau, F.W.; Deleersnijder, E.L.C.; Heemink, A.W.
2017-01-01
Lagrangian forward and backward models are introduced into a coarse-grid ocean global circulation model to trace the ventilation routes of the deep North Pacific Ocean. The random walk aspect in the Lagrangian model is dictated by a rotated isopycnal diffusivity tensor in the circulation model,
Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow
Jeltsema, Dimitri; Schaft, Arjan J. van der
The classical Lagrangian and Hamiltonian formulation of an electrical transmission line is reviewed and extended to allow for varying boundary conditions, The method is based on the definition of an infinite-dimensional analogue of the affine Lagrangian and Hamiltonian input-output systems
Lagrangian viscoelastic flow computations using a generalized molecular stress function model
DEFF Research Database (Denmark)
Rasmussen, Henrik K.
2002-01-01
A new finite element technique for the numerical simulation of 3D time-dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. It represents a further development of the 3D Lagrangian integral method (3D-LIM) from a Rivlin...
Simulation of Steady Laser Hardening by an Arbitrary Lagrangian Eulerian Method
Geijselaers, Hubertus J.M.; Huetink, Han
2004-01-01
One of the most practical methods for simulation of steady state thermal processing is the Arbitrary Lagrangian- Eulerian method. Each calculation step is split into two phases. In the first phase, the Lagrangian phase, the element mesh remains attached to the material. The evolution of the state
Benzi, R.; Biferale, L.; Fisher, R.T.; Lamb, D.Q.; Toschi, F.
2009-01-01
We report a detailed study of Eulerian and Lagrangian statistics from high resolution Direct Numerical Simulations of isotropic weakly compressible turbulence. Reynolds number at the Taylor microscale is estimated to be around 600. Eulerian and Lagrangian statistics is evaluated over a huge data
Chiral perturbation theory approach to hadronic weak amplitudes
International Nuclear Information System (INIS)
Rafael, E. de
1989-01-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)
International Nuclear Information System (INIS)
Amitava Choudhuri; Subrata Ghosh; Talukdar, B.
2011-01-01
We identify two alternative Lagrangian representations for the damped harmonic oscillator characterised by a frictional coefficient γ. The first one is explicitly time independent while the second one involves time parameter explicitly. With separate attention to both Lagrangians we make use of the Noether theorem to compute the variational symmetries and conservation laws in order to study how association between them changes as one goes from one representation to the other. In the case of time independent representation squeezing symmetry leads to conservation of angular momentum for γ = 0, while for the time-dependent Lagrangian the same conserved quantity results from rotational invariance. The Lie algebra (g) of the symmetry vectors that leaves the action corresponding to the time-independent Lagrangian invariant is semi-simple. On the other hand, g is only a simple Lie algebra for the action characterised by the time-dependent Lagrangian. (authors)
Field theory approach to quantum hall effect
International Nuclear Information System (INIS)
Cabo, A.; Chaichian, M.
1990-07-01
The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig
Towards effective extension delivery approach and strategies for ...
African Journals Online (AJOL)
Towards effective extension delivery approach and strategies for food security poverty ... Journal Home > Vol 6, No 1 (2010) > ... groups, promotion of best practices and environment friendly initiatives among others were recommended.
Application of chiral resonance Lagrangian theories to the muon g-2
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-12-15
We think that phenomenological resonance Lagrangian models, constrained by global fits from low energy hadron reaction data, can help to improve muon g-2 predictions. The main issue are those contributions which cannot be calculated by perturbative means: the hadronic vacuum polarization (HVP) effects and the hadronic light-by-light (HLbL) scattering contribution. I review recent progress in the evaluation of the HVP contribution within the broken Hidden Local Symmetry (HLS) framework, worked out in collaboration with M. Benayoun, P. David and L. Del-Buono. Our HLS driven estimate reads a{sub {mu}}{sup LO} {sup had} = (688.60{+-}4.24) . 10{sup -10} and we find a{sub {mu}}{sup the} = (11659177.65{+-}5.76) . 10{sup -10}.
Application of chiral resonance Lagrangian theories to the muon g-2
International Nuclear Information System (INIS)
Jegerlehner, Fred
2013-12-01
We think that phenomenological resonance Lagrangian models, constrained by global fits from low energy hadron reaction data, can help to improve muon g-2 predictions. The main issue are those contributions which cannot be calculated by perturbative means: the hadronic vacuum polarization (HVP) effects and the hadronic light-by-light (HLbL) scattering contribution. I review recent progress in the evaluation of the HVP contribution within the broken Hidden Local Symmetry (HLS) framework, worked out in collaboration with M. Benayoun, P. David and L. Del-Buono. Our HLS driven estimate reads a μ LO had = (688.60±4.24) . 10 -10 and we find a μ the = (11659177.65±5.76) . 10 -10 .
Some aspects of pion physics in the Nambu- and Jona-Lasinio model and chiral Lagrangians
International Nuclear Information System (INIS)
Tegen, R.
1994-03-01
I discuss here to what extent the original two-flavour NJL model (which has a minimal number of adjustable parameters) reproduces pion observables. In particular, the sensitivity of the recently calculated electromagnetic mass shift to these NJL parameters is pointed out and a new way to fix them is suggested. A new set of O(1/N c ) diagrams, which are the first meson loop corrections to the RPA, is presented and its effect on the pionic Goldstone mode, its electromagnetic form factor, weak decay constant, and on the constituent quark mass m is discusseed. The relation of these NJL model results to some other chiral Lagrangians is pointed out, where ever possible. The here presented higher order diagrams indicate how one could systematically generate the next-order diagrams. It is, however, questionable whether the simplistic but mathematically manageable contact interaction of the NJL model should be maintained also in these higher order diagrams. (orig.)
Application of Lagrangian puff model in the early stage of a nuclear emergency
International Nuclear Information System (INIS)
Yu Qi; Liu Yuanzhong
2000-01-01
The effect of changes of intervention levels and meteorological conditions on the early emergency countermeasures is analysed for nuclear power plant emergencies. A Lagrangian puff model RIMPUFF is used to predict dose distributions under stable and unstable meteorological conditions. The release scenario for PWR6 is used as an example to determine emergency areas for different intervention levels. The prediction results show that the evacuation area radius is 5 km and the radii for sheltering and intake-of stable iodine are both 10 km. The difference between the emergency areas determined by the intervention levels given in HAF0703/NEPA9002 and IAEA safety series No. 109 is only in the sheltering area which is much smaller using the IAEA guidelines
Lagrangian modelling of dispersion, sedimentation and resuspension processes in marine environments
International Nuclear Information System (INIS)
Gidhagen, L.; Rahm, L.; Nyberg, L.
1989-01-01
The model is based on a modified Langevin's equation which simulates the turbulent crossflow velocity fluctuations in shear flows. The velocity and turbulence fields used are generated by a 2-dimensional hydrodynamical model including a k-ε turbulence scheme. Since the dispersion model is formulated for only low particle concentrations, it is decoupled from the hydrodynamical model calculations. A great drawback in conventional dispersion modelling is the more or less unavoidable numerical diffusion. The use of a Lagrangian particle model will avoid this effect and the resulting too low concentrations for a given release. One consequence is a more realistic distribution of deposited particles. However, with regard to the overall deposition rates the simulated sedimentation process agrees well with well-established advection/diffusion model formulations. With a modified hydrodynamic model, the dispersion model can directly be applied to stratified 3D simulations. (orig./HP) [de
Does the effective Lagrangian for low-energy QCD scale?
International Nuclear Information System (INIS)
Birse, M.C.
1994-01-01
Quantum chromodynamics is not an approximately scale-invariant theory. Hence a dilaton field is not expected to provide a good description of the low-energy dynamics associated with the gluon condensate. Even if such a field is introduced, it remains almost unchanged in hadronic matter at normal densities. This is because the large glueball mass together with the size of the phenomenological gluon condensate ensure that changes to that condensate are very small at such densities. Any changes in hadronic masses and decay constants in matter generated by that condensate will be much smaller than those produced directly by changes in the quark condensate. Hence, masses and decay constants are not expected to display a universal scaling. (author)
Effective field theory: A modern approach to anomalous couplings
International Nuclear Information System (INIS)
Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen
2013-01-01
We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics
Optimal design of a lagrangian observing system for hydrodynamic surveys in coastal areas
Cucco, Andrea; Quattrocchi, Giovanni; Antognarelli, Fabio; Satta, Andrea; Maicu, Francesco; Ferrarin, Christian; Umgiesser, Georg
2014-05-01
The optimization of ocean observing systems is a pressing need for scientific research. In particular, the improvement of ocean short-term observing networks is achievable by reducing the cost-benefit ratio of the field campaigns and by increasing the quality of measurements. Numerical modeling is a powerful tool for determining the appropriateness of a specific observing system and for optimizing the sampling design. This is particularly true when observations are carried out in coastal areas and lagoons where, the use satellites is prohibitive due to the water shallowness. For such areas, numerical models are the most efficient tool both to provide a preliminary assess of the local physical environment and to make short -term predictions above its change. In this context, a test case experiment was carried out within an enclosed shallow water areas, the Cabras Lagoon (Sardinia, Italy). The aim of the experiment was to explore the optimal design for a field survey based on the use of coastal lagrangian buoys. A three-dimensional hydrodynamic model based on the finite element method (SHYFEM3D, Umgiesser et al., 2004) was implemented to simulate the lagoon water circulation. The model domain extent to the whole Cabras lagoon and to the whole Oristano Gulf, including the surrounding coastal area. Lateral open boundary conditions were provided by the operational ocean model system WMED and only wind forcing, provided by SKIRON atmospheric model (Kallos et al., 1997), was considered as surface boundary conditions. The model was applied to provide a number of ad hoc scenarios and to explore the efficiency of the short-term hydrodynamic survey. A first field campaign was carried out to investigate the lagrangian circulation inside the lagoon under the main wind forcing condition (Mistral wind from North-West). The trajectories followed by the lagrangian buoys and the estimated lagrangian velocities were used to calibrate the model parameters and to validate the
Lagrangian 3D tracking of fluorescent microscopic objects in motion
Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
Conformal, Riemannian and Lagrangian geometry the 2000 Barrett lectures
Chang, Sun-Yung A; Grove, Karsten; Yang, Paul C; Freire, Alexandre
2002-01-01
Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactifications of manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove's lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially in connection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus...