Directory of Open Access Journals (Sweden)
Ankit Shah
2017-04-01
Full Text Available History of present illness: A 44-year-old female called 911 complaining of abdominal pain, but was unresponsive upon arrival by emergency medical services (EMS. She presented to the emergency department (ED as a full cardiac arrest and had return of spontaneous circulation (ROSC with cardiopulmonary resuscitation (CPR and epinephrine. The patient had a splenic embolization 1 week prior to presentation. Bedside ultrasound demonstrated free fluid throughout the abdomen. As part of the resuscitation, femoral central venous access was obtained by the Emergency Department (ED physician, and a medical student was allowed to place a Cordis over the guidewire. The attending was next to the student, though became distracted when the patient again lost pulses. The student lost control of the guidewire upon re-initiation of CPR. Another Cordis was placed in the same location by the ED physician after the guidewire was seen on a chest radiograph. The patient was taken to the operating room with massive transfusion protocol, and the guidewire was left in the vena caval system until the patient could be stabilized. Two days later, interventional radiology removed the guidewire via a right internal jugular (IJ approach without complications. The patient had a prolonged and complicated course, but was discharged home two weeks later at her baseline. Significant findings: Initial chest radiograph shows a guidewire in the inferior vena cava (IVC, superior vena cava (SVC, and right IJ veins. Discussion: Central line complications include failure to place the catheter, improper catheter location, hemothorax from vascular injury, infection, arrhythmia, and cardiac arrest1. Complications from lost guidewires include cardiac dysrhythmias, cardiac conduction abnormalities, perforation of vessels/heart chambers, kinking/looping/knotting of the wire, entanglement of previously placed intravascular devices, breakage of the tip of the wire and subsequent embolization and
Angiographic Guidewire with Measuring Markers: Design and Clinical Experience
International Nuclear Information System (INIS)
Kamei, Seiji; Ishiguchi, Tsuneo; Murata, Katsuhito; Matsuda, Joe; Ohno, Ryota; Kimura, Junko; Nakamura, Atsushi; Ohno, Kazuko; Kawamura, Toshiki; Ikeda, Mitsuru
2006-01-01
Purpose. We have developed an angiographic guidewire with measuring markers to determine accurately how far a guidewire is inserted within a catheter. We investigated whether use of this guidewire reduces the risk of vascular injury and the fluoroscopic time during guidewire manipulations. Methods. Four markers were put on the surface of the guidewire at 80, 100, 110, and 120 cm from the tip. The actual lengths of 54 catheters from seven manufacturers were measured and compared with the nominal lengths. Sixty consecutive patients who underwent angiography were randomized into two groups: in one group guidewires with surface markers were used (marker group) and in the other group, conventional guidewires (control group). For each guidewire insertion, the fluoroscopic time before the guidewire was pushed forward into the vessel lumen was recorded. The number of occasions on which unintentionally the guidewire had already been pushed out of the catheter at the start of fluoroscopy was also evaluated. Results. The actual lengths of all catheters were greater than the nominal lengths by 1.0-11.0 cm. Mean fluoroscopic time for each guidewire insertion was 3.3 sec in the marker group and 5.7 sec in the control group (p < 0.05). Guidewires were unintentionally pushed out of the catheters without fluoroscopy three times (3.6%), in each case in the control group. Conclusion. The guidewire with measuring markers is effective for enhancing safety and in reducing fluoroscopic radiation during angiographic procedures. It is recommended that operators be aware that actual lengths of catheters may vary significantly from the nominal lengths listed; they should be aware of this with any guidewire, but particularly with the angiographic measuring guidewire
A new technique for endoscopic treatment of gastric phytobezoars: fragmentation using guidewire.
Senturk, O; Hulagu, S; Celebi, A; Korkmaz, U; Duman, A E; Dindar, G; Bozkurt, N; Yilmaz, H; Ozturkler, M; Can, B; Batman, A
2014-12-01
Bezoars result from accumulation of indigestible materials in the gastrointestinal tract and often occur in the stomach. In this study, we evaluated the use of guidewires in patients with gastric phytobezoars (PBs) as a new method for PB removal and examined the safety of the procedure. Between February 2009 and January 2013, we analyzed data from 11 patients with gastric PBs. We fitted a transparent cap to a standard endoscope (EG450WR5, Fujinon), and a 0.025 inch guidewire was passed through the standart endoscope. PBs were surrounded by a loop in the guidewire and destroyed. After 2 weeks of treatment, patients were re-evaluated for effectiveness. PB fragmentation time was 5-11 minutes. In five patients with a history of gastric surgery, we needed an additional 16-28 minutes for removal of the fragments. In six patients additionally treated with enzymatic degradation after the breaking procedure, PBs completely disappeared within 2 weeks. There were no complications during the procedure. The guidewire and fragmentation procedure for PBs is an efficient and reliable method. When combined with enzymatic degradation, PBs can be managed quickly and effectively.
International Nuclear Information System (INIS)
Joseph, George; Kunwar, Brajesh Kumar
2013-01-01
A 46-year-old man presenting with massive hemoptysis was found to have a large pulmonary arteriovenous malformation (PAVM) in the right lung. Closure of the PAVM with an Amplatzer-type duct occluder was hampered by inability to advance the device delivery sheath into the PAVM due to vessel tortuosity and inadequate guidewire support. Atrial septal puncture was performed and a femorofemoral arteriovenous guidewire loop through the right pulmonary artery, PAVM, and left atrium was created. Traction on both ends of the guidewire loop allowed advancement of the device delivery sheath into the PAVM and successful completion of the procedure. Transseptal guidewire stabilization can be a valuable option during device closure of large PAVMs when advancement, stability, or kinking of the device delivery sheath is an issue.
Horberry, Tim; Teng, Yi-Chun; Ward, James; Patil, Vishal; Clarkson, P John
2014-01-01
Central Venous Catheterisation (CVC) has occasionally been associated with cases of retained guidewires in patients after surgery. In theory, this is a completely avoidable complication; however, as with any human procedure, operator error leading to guidewires being occasionally retained cannot be fully eliminated. The work described here investigated the issue in an attempt to better understand it both from an operator and a systems perspective, and to ultimately recommend appropriate safe design solutions that reduce guidewire retention errors. Nine distinct methods were used: observations of the procedure, a literature review, interviewing CVC end-users, task analysis construction, CVC procedural audits, two human reliability assessments, usability heuristics and a comprehensive solution survey with CVC end-users. The three solutions that operators rated most highly, in terms of both practicality and effectiveness, were: making trainees better aware of the potential guidewire complications and strongly emphasising guidewire removal in CVC training, actively checking that the guidewire is present in the waste tray for disposal, and standardising purchase of central line sets so that differences that may affect chances of guidewire loss is minimised. Further work to eliminate/engineer out the possibility of guidewires being retained is proposed.
Directory of Open Access Journals (Sweden)
Byeong jun Ahn
2015-11-01
Full Text Available Background We hypothesized that the direction of the J-tip of the guidewire during insertion into the internal jugular vein (IJV might determine its ultimate location. Methods In this study, 300 patients between the ages of 18 and 99 years who required central venous catheterization via IJV in the emergency department enrolled for randomization. IVJ catheterization was successful in 285 of 300 patients. An independent operator randomly prefixed the direction of the J-tip of the guidewire to one of three directions. Based on the direction of the J-tip, patients were allocated into three groups: the J-tip medial-directed group (Group A, the lateral-directed group (Group B, or the downward-directed group (Group C. Postoperative chest radiography was performed on all patients in order to visualize the location of the catheter tip. A catheter is considered malpositioned if it is not located in the superior vena cava or right atrium. Results Of the total malpositioned catheter tips (8 of 285; 2.8%, the majority (5 of 8; 62.5% entered the contralateral subclavian vein, 2 (25.0% were complicated by looping, and 1 (12.5% entered the ipsilateral subclavian vein. According to the direction of the J-tip of the guidewire, the incidence of malpositioning of the catheter tip was 4 of 92 in Group A (4.3%, 4 of 96 in Group B (4.2%, and there were no malpositions in Group C. There were no significant differences among the three groups (p = 0.114. Conclusions The direction of the J-tip of the guidewire had no statistically significant effect on incidence of malpositioned tips.
International Nuclear Information System (INIS)
Katsouras, Christos S.; Michalis, Lampros K.; Malamou-Mitsi, Vassiliki D.; Niokou, Demetra; Giogiakas, Vassilios; Nikas, Dimitrios; Massouras, Gerasimos; Dallas, Pavlos; Tsetis, Dimitrios K.; Sideris, Dimitris A.; Rees, Michael R.
2003-01-01
Purpose: To compare the damage caused by vibrating guidewire manipulation and conventional guidewire manipulation of soft coronary wires in normal sheep coronary arteries. Methods: Using an intact sheep model the two methods of passing a coronary guidewire down a normal coronary artery under fluoroscopic screening control were studied. The resulting arterial damage caused by the two techniques was studied histologically. The severity of damage was scored from 1 (no damage) to 4 (severe damage) and expressed as: (a) percentage of damaged sections, (b) mean damage score per section and (c) percentage of sections suffering the most severe degree of damage (scores 3 and 4). Results: One hundred and sixty-eight sections were studied.The percentage of damaged sections was lower in the vibrating guidewire group (p 0.004). The mean damage score and the percentage of sections with a damage score of 3 or 4 were smaller in the vibrating guidewire group than in the conventional guidewire manipulation group (p = 0.001 and p =0.009, respectively). Conclusions: Both methods of guidewire manipulation cause identifiable vascular damage. The extent and severity of damage appear greater when the guidewire is manipulated manually
Mitsudo, Kazuaki; Yamashita, Takehiro; Asakura, Yasushi; Muramatsu, Toshiya; Doi, Osamu; Shibata, Yoshisato; Morino, Yoshihiro
2008-11-01
The success rate of percutaneous coronary intervention (PCI) for chronic total coronary occlusion (CTO) lesions varies depending on the guidewire manipulation skills of the operator. The standardization of guidewire technique is very important. A new technique with a new tapered wire (Conquest, Confianza Pro) was tested to verify effectiveness for higher initial success rates and standardization of PCI for CTO. A prospective, multicenter registry was conducted at 6 investigational sites. In the CONQUEST trial, The CTO lesions were treated by using an intermediate guidewire to cross the lesion. If it did not cross, the guidewire was changed to the Conquest guidewire. If it did not cross, "seesaw-wiring" or the "parallel-wire technique" was performed. The primary endpoint was the initial procedural success rate. A total of 110 patients representing 116 CTO lesions were treated from July 2003 through March 2004. The procedural success rate was 86.2% on the first try, and 88.8% on the second try, respectively. The guidewire success rate on the second try was 90.5% during the hospital stay; no deaths, or acute myocardial infarctions were confirmed. Two patients deteriorated into tamponade, and surgical or percutaneous drainage was performed in each patient without any sequelae. A guidewire technique in PCI for CTOs that starts with the intermediate guidewire and moves to the Confianza Pro tapered guidewire, either alone or by performing a see-saw or parallel-wire technique, can achieve a high initial success rate with an acceptably low major complication rate.
African Journals Online (AJOL)
the inferior vena cava (Fig. 1). An interventional radiologist removed the guidewire via the femoral vein using a gooseneck snare. The patient recovered uneventfully. Discussion. Central venous access is an important strate- gy in the management of critically ill patients for CVP measurement, the infusion of drugs.
The Universal One-Loop Effective Action
Drozd, Aleksandra; Quevillon, Jérémie; You, Tevong
2016-01-01
We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.
The universal one-loop effective action
International Nuclear Information System (INIS)
Drozd, Aleksandra; Ellis, John; Quevillon, Jérémie; You, Tevong
2016-01-01
We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.
EUS-guided biliary rendezvous using a short hydrophilic guidewire.
Dhir, Vinay; Kwek, Boon Eu Andrew; Bhandari, Suryaprakash; Bapat, Mukta; Maydeo, Amit
2011-10-01
BACKGROUND AND STUDY AIMS: EUS-guided rendezvous technique for biliary access requires expert manipulation of the guidewire across the downstream stricture or papilla. Published literature reports usage of the long-wire system to prevent loss of wire during scope exchange. We studied the efficacy of using a short hydrophilic guidewire in EUS-guided rendezvous. PATIENTS AND METHODS: This is a retrospective study conducted in a tertiary care referral centre. 15 patients underwent EUS-guided biliary rendezvous with short wire. EUS-guided transduodenal/transgastric puncture of the biliary system was performed, followed by anterograde placement of a hydrophilic short-wire (260 cm) across the downstream stricture and/or papilla. Retrograde access was then achieved by retrieving the trans-papillary wire, followed by standard ERCP intervention. Main outcome measurements were rates of procedural success and complications. RESULTS: EUS-guided biliary rendezvous was successful in 14 patients (93.3%). Failure was seen in one patient due to a tight malignant biliary stricture. One patient had peri-choledochal bile tracking which did not require any specific treatment. CONCLUSIONS: Short-wire system in EUS-guided biliary rendezvous is highly effective and safe. It is a useful salvage procedure for biliary cannulation in patients with accessible papilla.
String loop effect on the BRST charge
International Nuclear Information System (INIS)
Das, A.; Nishino, H.
1987-07-01
An effective BRST charge Q BRST which incorporates the string one-loop corrections is presented for the closed bosonic string in an arbitrary background. The effective σ-model action which leads to such a Q BRST is obtained and some consequences are discussed. (author). 14 refs, 1 fig
Proteins mediating DNA loops effectively block transcription.
Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David
2017-07-01
Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Optimal tests for electroweak loop effects
International Nuclear Information System (INIS)
Aoki, Kenichi; Aoyama, Hideaki; Harvard Univ., Cambridge, MA
1986-01-01
A statistical analysis is given for the experimental precision necessary for establishing loop effects in the electroweak theory. Cases with three observables, gauge boson masses and the Weinberg angle, is analyzed by an optimised test. An information on the Weinberg angle with even 5% error (+-.01 in sin 2 thetasub(W)) is shown to reduce the requirement for the measurements of gauge boson masses significantly. (orig.)
One-loop effective lagrangians after matching
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Santiago, J. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Kunszt, Z. [ETH Zuerich, Institute for Theoretical Physics, Zuerich (Switzerland)
2016-05-15
We discuss the limitations of the covariant derivative expansion prescription advocated to compute the one-loop Standard Model (SM) effective lagrangian when the heavy fields couple linearly to the SM. In particular, one-loop contributions resulting from the exchange of both heavy and light fields must be explicitly taken into account through matching because the proposed functional approach alone does not account for them. We review a simple case with a heavy scalar singlet of charge -1 to illustrate the argument. As two other examples where this matching is needed and this functional method gives a vanishing result, up to renormalization of the heavy sector parameters, we re-evaluate the one-loop corrections to the T-parameter due to a heavy scalar triplet with vanishing hypercharge coupling to the Brout-Englert-Higgs boson and to a heavy vector-like quark singlet of charged 2/3 mixing with the top quark, respectively. In all cases we make use of a new code for matching fundamental and effective theories in models with arbitrary heavy field additions. (orig.)
Leptogenesis from loop effects in curved spacetime
Energy Technology Data Exchange (ETDEWEB)
McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Singleton Park, Swansea, SA2 8PP (United Kingdom)
2016-04-05
We describe a new mechanism — radiatively-induced gravitational leptogenesis — for generating the matter-antimatter asymmetry of the Universe. We show how quantum loop effects in C and CP violating theories cause matter and antimatter to propagate differently in the presence of gravity, and prove this is forbidden in flat space by CPT and translation symmetry. This generates a curvature-dependent chemical potential for leptons, allowing a matter-antimatter asymmetry to be generated in thermal equilibrium in the early Universe. The time-dependent dynamics necessary for leptogenesis is provided by the interaction of the virtual self-energy cloud of the leptons with the expanding curved spacetime background, which violates the strong equivalence principle and allows a distinction between matter and antimatter. We show here how this mechanism is realised in a particular BSM theory, the see-saw model, where the quantum loops involve the heavy sterile neutrinos responsible for light neutrino masses. We demonstrate by explicit computation of the relevant two-loop Feynman diagrams how the size of the radiative corrections relevant for leptogenesis becomes enhanced by increasing the mass hierarchy of the sterile neutrinos, and show how the induced lepton asymmetry may be sufficiently large to play an important rôle in determining the baryon-to-photon ratio of the Universe.
Effect of vacancy loops on swelling of metals under irradiation
International Nuclear Information System (INIS)
Golubov, S.I.
1981-01-01
Subsequent analysis of vacancy loops formation in metals under irradiation is carried out and effect of vacancy loops on vacancy porosity is studied. Expression for quasistationary function of vacancy loops distribution according to sizes taking into consideration two mechanisms of their initiation-cascade and fluctuational ones - is obtained. It is shown that rate of vacancy absorption and interstitials by vacancy loops in quasiequilibrium state is similar and depends only on summary length of loops, for its calculations the self-coordinated procedure is formulated. For the rate of metal swelling under irradiation obtained is the expression taking into consideration the presence of vacancy loops [ru
International Nuclear Information System (INIS)
Lee, Seung Ryong; Baek, Kyong Hee; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk; Rim, Hark
1997-01-01
To determine the efficacy of correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance. Between November 1994 and March 1997, we performed 15 manipulations in 12 patients in whom a dual-cuff, straight Tenckhoff peritoneal dialysis catheter had been implanted due to chronic renal failure. The causes of catheter malfunctioning were inadequate drainage of the dialysate(n=14) and painful dialysis(n=1). Under fluoroscopic guidance, adhesiolysis and repositioning of the malfunctioning catheter were performed with an Amplatz Super Stiff guidewire and the stiffener from a biliary drainage catheter. The results of procedures were categorized as either immediate or durable success, this latter being defined as adequate catheter function for at least one month after the procedure. Immediate success was achieved in 14 of 15 procedures (93%), and durable success in 7 of 15(47%). The mean duration of catheter function was 157 (range, 30 to 578) days. After manipulation, abdominal pain developed in eight patients and peritonitis in two, but with conservative treatment, these symptoms improved. The correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance is an effective means of restoring catheter function and may be an effective alternative to surgical reimplantation of the catheter, or hemodialysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Ryong; Baek, Kyong Hee; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk; Rim, Hark [Kosin Medical College, Pusan (Korea, Republic of)
1997-11-01
To determine the efficacy of correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance. Between November 1994 and March 1997, we performed 15 manipulations in 12 patients in whom a dual-cuff, straight Tenckhoff peritoneal dialysis catheter had been implanted due to chronic renal failure. The causes of catheter malfunctioning were inadequate drainage of the dialysate(n=14) and painful dialysis(n=1). Under fluoroscopic guidance, adhesiolysis and repositioning of the malfunctioning catheter were performed with an Amplatz Super Stiff guidewire and the stiffener from a biliary drainage catheter. The results of procedures were categorized as either immediate or durable success, this latter being defined as adequate catheter function for at least one month after the procedure. Immediate success was achieved in 14 of 15 procedures (93%), and durable success in 7 of 15(47%). The mean duration of catheter function was 157 (range, 30 to 578) days. After manipulation, abdominal pain developed in eight patients and peritonitis in two, but with conservative treatment, these symptoms improved. The correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance is an effective means of restoring catheter function and may be an effective alternative to surgical reimplantation of the catheter, or hemodialysis.
Outcome of emergency endovascular treatment of large internal iliac artery aneurysms with guidewires
International Nuclear Information System (INIS)
Cambj-Sapunar, Liana; Maskovic, Josip; Brkljacic, Boris; Radonic, Vedran; Dragicevic, Dragan; Ajduk, Marko
2010-01-01
Purpose: Guidewires have been reported as a useful occlusion material for large aneurysms of different locations with good short-term results. In this study we retrospectively evaluate long-term results of emergency embolization technique with guidewires in symptomatic internal iliac artery aneurysm (IIAA) impending rupture. Patients and methods: In four patients presented with acute abdominal pain, multidetector computed tomography revealed unstable, 7-14 cm large, IIAAs. Two patients were treated with coil embolization of distal branches followed by occlusion of aneurysmal sac with guidewires. In two patients embolization of aneurysmal sac alone was performed. Results: In three patients complete or near complete occlusion of the aneurysmal sac was achieved and abdominal pain ceased within hours. Two patients treated with embolization of distal iliac artery branches and aneurysmal sac developed claudication that lasted up to 1 year. Their aneurysms remained thrombosed and they were without symptoms until they died 31 and 56 months later of causes unrelated to IIAA. Two patients treated with embolization of the aneurysm alone were free of ischemic symptoms. Because of incomplete embolization of the sac in one patient open surgery treatment in a non-emergency setting was performed. Complete filling of aneurysmal sac was achieved in other patient but 2 years later his aneurysm re-opened and required open surgery treatment. Conclusion: Embolization of aneurysmal sac of large IIAA with guidewires may be effective for immediate treatment of impending rupture. Long-term results were better when embolization of the aneurysmal sac was combined with embolization of distal IIA branches.
Feng, X; Huang, Z C; Tao, F; Ou, X L
2016-02-01
To investigate clinical aspects and a new operative method for resecting third branchial fistula. The clinical aspects of 4 patients with third branchial fistula were retrospectively analyzed. It is difficult to locate the inner orifice of fistula through neck path due to tiny diameter of inner orifice. The inner orifice could be found and closed effectively by inserting yellow zebra guidewire from sinus piriformis with gastroscope. The mucous membrane of sinus piriformis could not be damaged due to the soft pointed end of yellow zebra guidewire. 4 cases were treated successfully without pharyngeal fistula or recurrent laryngeal nerve injury. No recurrent infections were found in all cases with follows-up of 6-66 months. Ineffectiveness of radiography with meglumine diatrizoate or oral administration of methylene blue before operation indicates tiny fistula. In this case, resection of third branchial fistula with the assistance of gastroscope and yellow zebra guidewire under general anesthesia can be performed. This innovative method of diagnosis and treatment is worth of application clinically.
Open-ended guidewire for percutaneous therapy of varicocele
International Nuclear Information System (INIS)
Benea, G.; Galeotti, R.; Tartari, S.; Mannella, P.
1989-01-01
Percutaneous transvenous treatment has become the elective therapy for varicocele because it is a simple, safe, economic and reliable procedure. The presence of proximal anastomoses connecting a competent valved spermatic trunk with the renal vein can be responsible for a varicocele and make its treatment difficult. In such cases, the valve of the spermatic venous trunk can be bypassed using an open-ended guidewire with a removable mandril core, and then injecting the sclerosing agent through the guide. Moreover, the guidewire can facilitate the insertion of catheter through the competent valve, thus allowing the placement of Gianturco coils. During the past 12 months the authors have successfully treated 4 patients affected by varicocele with competent valved venous trunk using the open-ended guidewire
International Nuclear Information System (INIS)
Krishnani, Mayur; Basu, Dipankar N.
2017-01-01
Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
International Nuclear Information System (INIS)
Fischer, Sebastian; Vogl, Thomas J.; Marzi, Ingo; Zangos, Stephan; Wichmann, Julian L.; Scholtz, Jan-Erik; Mack, Martin G.; Schmidt, Sven; Eichler, Katrin
2015-01-01
Highlights: • Minimally invasive sacroiliac screw fixation can be performed under CT-imaging. • Guidewires help in precise placement of cannulated sacroiliac screw. • Only a diminishing rate of misplacements can be seen. • The method appears to be a safe and very accurate procedure. - Abstract: Objective: The purpose of our study was to evaluate minimally invasive sacroiliac screw fixation for treatment of posterior pelvic instability with the help of CT controlled guidewires, assess its accuracy, safety and effectiveness, and discuss potential pitfalls. Methods: 100 guidewires and hollow titan screws were inserted in 38 patients (49.6 ± 19.5 years) suffering from 35 sacral fractures and/or 16 sacroiliac joint disruptions due to 33 (poly-)traumatic, 2 osteoporotic and 1 post-infectious conditions. The guidewire and screw positions were analyzed in multiplanar reconstructions. Results: The mean minimal distance between guidewire and adjacent neural foramina was 4.5 ± 2.01 mm, with a distinctly higher precision in S1 than S2. Eight guidewires showed cortical contacts, resulting in a total of 2% mismatched screws with subsequent wall violation. The fracture gaps were reduced from 3.6 ± 0.53 mm to 1.2 ± 0.54 mm. During follow-up 3 cases of minor iatrogenic sacral impaction (<5 mm) due to the bolting and 2 cases of screw loosening were observed. Interventional time was 84.0 min with a mean of 2.63 screws per patient whilst acquiring a mean of 93.7 interventional CT-images (DLP 336.7 mGy cm). Conclusions: The treatment of posterior pelvic instability with a guidewire-based screw insertion technique under CT-imaging results in a very high accuracy and efficacy with a low complication rate. Careful attention should be drawn to radiation levels
Energy Technology Data Exchange (ETDEWEB)
Fischer, Sebastian, E-mail: sebastian.fischer@kgu.de [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Vogl, Thomas J. [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Marzi, Ingo [Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Zangos, Stephan; Wichmann, Julian L.; Scholtz, Jan-Erik; Mack, Martin G. [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Schmidt, Sven [Orthopaedic University Hospital Friedrichsheim, Marienburgstraße, 260528 Frankfurt (Germany); Eichler, Katrin [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)
2015-02-15
Highlights: • Minimally invasive sacroiliac screw fixation can be performed under CT-imaging. • Guidewires help in precise placement of cannulated sacroiliac screw. • Only a diminishing rate of misplacements can be seen. • The method appears to be a safe and very accurate procedure. - Abstract: Objective: The purpose of our study was to evaluate minimally invasive sacroiliac screw fixation for treatment of posterior pelvic instability with the help of CT controlled guidewires, assess its accuracy, safety and effectiveness, and discuss potential pitfalls. Methods: 100 guidewires and hollow titan screws were inserted in 38 patients (49.6 ± 19.5 years) suffering from 35 sacral fractures and/or 16 sacroiliac joint disruptions due to 33 (poly-)traumatic, 2 osteoporotic and 1 post-infectious conditions. The guidewire and screw positions were analyzed in multiplanar reconstructions. Results: The mean minimal distance between guidewire and adjacent neural foramina was 4.5 ± 2.01 mm, with a distinctly higher precision in S1 than S2. Eight guidewires showed cortical contacts, resulting in a total of 2% mismatched screws with subsequent wall violation. The fracture gaps were reduced from 3.6 ± 0.53 mm to 1.2 ± 0.54 mm. During follow-up 3 cases of minor iatrogenic sacral impaction (<5 mm) due to the bolting and 2 cases of screw loosening were observed. Interventional time was 84.0 min with a mean of 2.63 screws per patient whilst acquiring a mean of 93.7 interventional CT-images (DLP 336.7 mGy cm). Conclusions: The treatment of posterior pelvic instability with a guidewire-based screw insertion technique under CT-imaging results in a very high accuracy and efficacy with a low complication rate. Careful attention should be drawn to radiation levels.
Guidewire-Controlled Advancement of the Amplatz Thrombectomy Device
International Nuclear Information System (INIS)
Mueller-Huelsbeck, Stefan; Schwarzenberg, Helmut; Heller, Martin
1998-01-01
The Amplatz Thrombectomy Device (ATD) is a percutaneous rotational catheter proven to homogenize thrombus. The catheter design allows neither application over a coaxial running guidewire nor the use of the device as a monorail system. We report a technical modification that provides guided advancement of the catheter over a wire in order to prevent failure of application and to facilitate the interventional procedure
Three-loop corrections in a covariant effective field theory
International Nuclear Information System (INIS)
McIntire, Jeff
2008-01-01
Chiral effective field theories have been used with success in the study of nuclear structure. It is of interest to systematically improve these energy functionals (particularly that of quantum hadrodynamics) through the inclusion of many-body correlations. One possible source of improvement is the loop expansion. Using the techniques of Infrared Regularization, the short-range, local dynamics at each order in the loops is absorbed into the parameterization of the underlying effective Lagrangian. The remaining nonlocal, exchange correlations must be calculated explicitly. Given that the interactions of quantum hadrodynamics are relatively soft, the loop expansion may be manageable or even perturbative in nuclear matter. This work investigates the role played by the three-loop contributions to the loop expansion for quantum hadrodynamics
Doorey, Andrew J; Gakhal, Mandip; Pasquale, Michael J
2006-04-01
Suspected prosthetic valve dysfunction is a difficult clinical problem, because of the high risk of repeat valvular surgery. Echocardiographic measurements of prosthetic valvular dysfunction can be misleading, especially with bileaflet valves. Direct measurement of trans-valvular gradients is problematic because of potentially serious catheter entrapment issues. We report a case in which a high-fidelity pressure sensor angioplasty guidewire was used to cross prosthetic mitral and aortic valves in a patient, with hemodynamic and echocardiographic assessment. This technique was safe and effective, refuting the inaccurate non-invasive tests that over-estimated the aortic valvular gradient.
One-loop effective potential on hyperbolic manifolds
International Nuclear Information System (INIS)
Cognola, G.; Kirsten, K.; Zerbini, S.
1993-01-01
The one-loop effective potential for a scalar field defined on an ultrastatic space-time whose spatial part is a compact hyperbolic manifold is studied using ζ-function regularization for the one-loop effective action. Other possible regularizations are discussed in detail. The renormalization group equations are derived, and their connection with the conformal anomaly is pointed out. The symmetry breaking and the topological mass generation are also discussed
Respiratory liver motion tracking during transcatheter procedures using guidewire detection
International Nuclear Information System (INIS)
Vanegas Orozco, Maria-Carolina; Gorges, Sebastien; Pescatore, Jeremie
2008-01-01
Transcatheter chemoembolization of liver tumors is performed under X-ray fluoroscopic image guidance. This is a difficult procedure because the vessels of the liver are constantly moving due to respiration and they are not visible in the X-ray image unless a contrast medium is injected. In order to help the interventional radiologist during the treatment, we propose to superimpose on to the fluoroscopic image a pre-acquired contrast-enhanced 2D or 3D image while accounting for liver motion. Our approach proposes to track the guidewire from frame to frame. Our proposed method can be split into two steps. First the guidewire is automatically detected; then the motion between two frames is estimated using a robust ICP (iterative closest point) algorithm. We have tested our method on simulated X-ray fluoroscopic images of a moving guidewire and applied it on 4 clinical sequences. Simulation demonstrated that the mean precision of our method is inferior to 1 mm. On clinical data, preliminary results demonstrated that this method allows for respiratory motion compensation of liver vessels with a mean accuracy inferior to 3 mm. (orig.)
Fischer, Sebastian; Vogl, Thomas J; Marzi, Ingo; Zangos, Stephan; Wichmann, Julian L; Scholtz, Jan-Erik; Mack, Martin G; Schmidt, Sven; Eichler, Katrin
2015-02-01
The purpose of our study was to evaluate minimally invasive sacroiliac screw fixation for treatment of posterior pelvic instability with the help of CT controlled guidewires, assess its accuracy, safety and effectiveness, and discuss potential pitfalls. 100 guidewires and hollow titan screws were inserted in 38 patients (49.6±19.5 years) suffering from 35 sacral fractures and/or 16 sacroiliac joint disruptions due to 33 (poly-)traumatic, 2 osteoporotic and 1 post-infectious conditions. The guidewire and screw positions were analyzed in multiplanar reconstructions. The mean minimal distance between guidewire and adjacent neural foramina was 4.5±2.01mm, with a distinctly higher precision in S1 than S2. Eight guidewires showed cortical contacts, resulting in a total of 2% mismatched screws with subsequent wall violation. The fracture gaps were reduced from 3.6±0.53mm to 1.2±0.54mm. During follow-up 3 cases of minor iatrogenic sacral impaction (<5mm) due to the bolting and 2 cases of screw loosening were observed. Interventional time was 84.0min with a mean of 2.63 screws per patient whilst acquiring a mean of 93.7 interventional CT-images (DLP 336.7mGycm). The treatment of posterior pelvic instability with a guidewire-based screw insertion technique under CT-imaging results in a very high accuracy and efficacy with a low complication rate. Careful attention should be drawn to radiation levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Nam, Jeong Gu; Seo, Young Woo; Hwang, Jae Cheol; Weon, Young Cheol; Kang, Byeong Seong; Bang, Sung Jo; Bang, Min Seo [Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)
2015-05-15
Although endoscopic retrograde cholangiopancreatography (ERCP) is an effective modality for diagnosis and treatment of biliary and pancreatic diseases, the risk for procedure-related complications is high. Hemorrhage is one of major complications of ERCP. Most ERCP-associated bleeding is primarily a complication related to sphincterotomy rather than diagnostic ERCP. We are reporting a case of massive hemobilia due to hepatic arteriobiliary fistula caused by guidewire-associated injury during ERCP, which was successfully treated with transarterial embolization of the hepatic artery.
Peripherally inserted central catheters. Guidewire versus nonguidewire use: a comparative study.
Loughran, S C; Edwards, S; McClure, S
1992-01-01
To date, no research articles have been published that explore the practice of using guidewires for placement of peripherally inserted central catheters. The literature contains speculations regarding the pros and cons of guidewire use. However, no studies to date have compared patient outcomes when peripherally inserted central catheter lines are inserted with and without guidewires. To examine the use of guidewires for peripherally inserted central lines, a comparative study was conducted at two acute care facilities, one using guidewires for insertion and one inserting peripherally inserted central catheter lines without guidewires. 109 catheters were studied between January 1, 1990 and January 1, 1991. The primary focus of this study was to examine whether guidewire use places patients at higher risk for catheter-related complications, particularly phlebitis. No significant differences in phlebitis rates between the two study sites were found. Other catheter-related and noncatheter-related complications were similar between the two facilities. The results of this study do not support the belief that guidewire use increases complication rates.
High maneuverability guidewire with functionally graded properties using new superelastic alloys.
Sutou, Y; Yamauchi, K; Suzuki, M; Furukawa, A; Omori, T; Takagi, T; Kainuma, R; Nishida, M; Ishida, K
2006-01-01
Nitinol shape memory alloys (SMAs) are attracting considerable attention as core materials for medical guidewires because of their excellent flexibility and shape retention. However, since Nitinol guidewires possess low rigidity, the pushability and torquability of the guidewires are insufficient. On the other hand, although guidewires made of stainless steel have high pushability, plastic deformation occurs easily. We have developed a new class of superelastic guidewires with functionally graded properties from the tip to the end by using new SMA core materials such as Cu-Al-Mn-based or Ni-free Ti-Mo-Sn SMAs. The tip portion of the guidewire shows excellent superelasticity (SE), while the body portion possesses high rigidity. These functionally graded characteristics can be realized by microstructural control. These guidewires with functionally graded properties show excellent pushability and torquability and are considerably easier to handle than conventional guidewires with Nitinol or stainless steel cores. Moreover, a metallic catheter using a Ni-free Ti-based SMA with high biocompatibility is introduced.
On the Convergence in Effective Loop Quantum Cosmology
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio
2010-01-01
In Loop Quantum Cosmology (LQC) there is a discreteness parameter λ, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider λ as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their λ-dependence, with a special interest on the limit λ→0 and the role of the evolution parameter in the convergence of such limit.
Effective state metamorphosis in semi-classical loop quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Singh, Parampreet [Institute for Gravitational Physics and Geometry, Pennsylvania State University, University Park, PA 16802 (United States)
2005-10-21
Modification to the behaviour of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way matter with arbitrary scale factor dependence in Hamiltonian incorporates this change in its effective dynamics in the loop-modified phase. For generic matter, the equation of state starts varying near a critical scale factor, becomes negative below it and violates the strong energy condition. This opens a new avenue to generalize various phenomenological applications in loop quantum cosmology. We show that different ways to define energy density may yield radically different results, especially for the case corresponding to classical dust. We also discuss implications for frequency dispersion induced by modification to geometric density at small scales.
String loop divergences and effective lagrangians
International Nuclear Information System (INIS)
Fischler, W.; Klebanov, I.; Susskind, L.
1988-01-01
We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory, with a covariant cosmological term implied by the counting of string coupling constants. We find an inconsistency between the two. This might be a problem in eliminating divergences from the bosonic string. (orig.)
Yun, Cheol-Ho; Yeo, Leslie Y.; Friend, James R.; Yan, Bernard
2012-04-01
A 240-μm diameter ultrasonic micromotor is presented as a potential solution for an especially difficult task in minimally invasive neurosurgery, navigating a guidewire to an injury in the neurovasculature as the first step of surgery. The peak no-load angular velocity and maximum torque were 600 rad/s and 1.6 nN-m, respectively, and we obtained rotation about all three axes. By using a burst drive scheme, open-loop position and speed control were achieved. The construction method and control scheme proposed in this study remove most of the current limitations in minimally invasive, catheter-based actuation, enabling minimally invasive vascular surgery concepts to be pursued for a broad variety of applications.
Loop quantum gravity effects on inflation and the CMB
International Nuclear Information System (INIS)
Tsujikawa, Shinji; Singh, Parampreet; Maartens, Roy
2004-01-01
In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyse the cosmological perturbations generated when slow-roll is violated after super-inflation and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index
Quark loops and spin-flip effects in pomeron exchange
International Nuclear Information System (INIS)
Goloskokov, S.V.
1991-01-01
On the basis of QCD at large distances with taking account of some nonperturbative properties of the theory, the possibility of spin-flip effects in high energy hadron processes at fixed momenta transfer is investigated. It is shown that the diagrams with the quark loops in QCD at large distances may lead to the spin-flip amplitude growing as s for s→∞, t-fixed. The confirmation of this result is obtained by calculations of the nonleading contributions from quark loops in t-channel exchange in QED up to the end. Physical mechanisms leading to that behaviour of the spin-flip amplitude is discussed. So we conclude that the pomeron has a complicated spin structure. (orig.)
Thermal phase transition with full 2-loop effective potential
Laine, M.; Meyer, M.; Nardini, G.
2017-07-01
Theories with extended Higgs sectors constructed in view of cosmological ramifications (gravitational wave signal, baryogenesis, dark matter) are often faced with conflicting requirements for their couplings; in particular those influencing the strength of a phase transition may be large. Large couplings compromise perturbative studies, as well as the high-temperature expansion that is invoked in dimensionally reduced lattice investigations. With the example of the inert doublet extension of the Standard Model (IDM), we show how a resummed 2-loop effective potential can be computed without a high-T expansion, and use the result to scrutinize its accuracy. With the exception of Tc, which is sensitive to contributions from heavy modes, the high-T expansion is found to perform well. 2-loop corrections weaken the transition in IDM, but they are moderate, whereby a strong transition remains an option.
One-Loop Effective Action in Orbifold Compactifications
Von Gersdorff, Gero
2008-01-01
We employ the covariant background formalism to derive generic expressions for the one-loop effective action in field theoretic orbifold compactifications. The contribution of each orbifold sector is given by the effective action of its fixed torus with a shifted mass matrix. We thus study in detail the computation of the heat kernel on tori. Our formalism manifestly separates UV sensitive (local) from UV-insensitive (nonlocal) renormalization. To exemplify our methods, we study the effective potential of 6d gauge theory as well as kinetic terms for gravitational moduli in 11d supergravity.
It all unraveled from there: case report of a central venous catheter guidewire unraveling.
Zerkle, Samuel; Emdadi, Vanessa; Mancinelli, Marc
2014-12-01
Inferior vena cava (IVC) filters can present challenges to emergency physicians in the process of central venous catheter (CVC) placement. A 68-year-old woman presented to the emergency department with severe shortness of breath and was intubated. A central line was placed after the intubation to facilitate peripheral access. A CVC guidewire unraveled during placement after getting caught on an IVC filter. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians should be aware of the complications that IVC filters can cause in the placement of CVCs. Imaging and identification of IVC filters beforehand will allow for proper planning of how to manage the case in which a filter catches on the guidewire. Simple anecdotal techniques, such as advancing the guidewire and spinning the guidewire between the fingers, can facilitate the removal of the guide wire from the IVC filter. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, YongHun; Yu, JunSik; Kim, YoHan; Lee, WooSurng
2016-01-01
Although numerous complications of the Seldinger technique have been reported in the literature, only a few complications are related to guidewires. We here report a case of a patient with a guidewire lost and retained in the aorta during vertebral artery stenting. Unfortunately, the guidewire in the aorta was not detected for 5 years, and it penetrated through the aorta into the left thorax, leading to recurrent left pneumothorax. No physician identified the wandering guidewire in the left thorax, and the recurrent left pneumothorax was only managed with closed thoracostomy drainage several times. After 4 months, the patient presented to our hospital with repeated severe chest pain, and newly developed right pneumothorax was diagnosed on chest X-rays. We meticulously evaluated the radiological findings of the other hospitals to identify the cause of the recurrent pneumothorax and discovered that the lost and wandering guidewire had crossed over from the left to the right thorax through the anterior mediastinum. The guidewire was identified as the cause of the recurrent bilateral pneumothorax, and the patient was successfully treated with video-assisted thoracoscopic surgery without any events. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Loop quantum cosmology of Bianchi IX: effective dynamics
International Nuclear Information System (INIS)
Corichi, Alejandro; Montoya, Edison
2017-01-01
We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N = V and N = 1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k = 0,1 FLRW as well as Bianchi I, II, and VII 0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII 0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour. (paper)
Loop quantum cosmology of Bianchi IX: effective dynamics
Corichi, Alejandro; Montoya, Edison
2017-03-01
We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N = V and N = 1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k = 0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.
Gravitational interaction to one loop in effective quantum gravity
International Nuclear Information System (INIS)
Akhundov, A.
1996-10-01
The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature
Gravitational interaction to one loop in effective quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Akhundov, A. [Universitaet-gesamthochschule Siegen (Germany)]|[Azerbaijan Academy of Sciences, Baku (Azerbaijan). Institute of Physics; Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)
1996-10-01
The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature.
Secular effects on inflation from one-loop quantum gravity
International Nuclear Information System (INIS)
Cabrer, J.A.; Espriu, D.
2008-01-01
In this Letter we revisit and extend a previous analysis where the possible relevance of quantum gravity effects in a cosmological setup was studied. The object of interest are non-local (logarithmic) terms generated in the effective action of gravity due to the exchange in loops of massless modes (such as photons or the gravitons themselves). We correct one mistake existing in the previous work and discuss the issue in a more general setting in different cosmological scenarios. We obtain the one-loop quantum-corrected evolution equations for the cosmological scale factor up to a given order in a derivative expansion in two particular cases: a matter dominated universe with vanishing cosmological constant, and in a de Sitter universe. We show that the quantum corrections, albeit tiny, may have a secular effect that eventually modifies the expansion rate. For a de Sitter universe they tend to slow down the rate of the expansion, while the effect may be the opposite in a matter dominated universe
Kaneko, Umihiko; Kashima, Yoshifumi; Kanno, Daitaro; Sugie, Takuro; Kobayashi, Ken; Fujita, Tsutomu
2017-10-01
Although performing rotational atherectomy (RA) requires guidewire exchange for the dedicated guidewire, RotaWire guidewire (Boston Scientific) exhibits much lower performance than conventional guidewire. Consequently, there are times when RotaWire cannot be advanced past the lesion independently or using a microcatheter exchange technique, rendering RA impossible. We present a case of a heavily calcified, device-uncrossable, and non-expansible chronic total occlusion lesion successfully revascularized with RA over RG3 guidewire (Asahi Intecc), which has a length of 330 cm, hydrophilic coating, and a 0.010-inch-long shaft. RG3 provided excellent cross-ability and RA could also be performed over RG3 without guidewire exchange for the RotaWire.
Covariant effective action for loop quantum cosmology from order reduction
International Nuclear Information System (INIS)
Sotiriou, Thomas P.
2009-01-01
Loop quantum cosmology (LQC) seems to be predicting modified effective Friedmann equations without extra degrees of freedom. A puzzle arises if one decides to seek for a covariant effective action which would lead to the given Friedmann equation: The Einstein-Hilbert action is the only action that leads to second order field equations and, hence, there exists no covariant action which, under metric variation, leads to a modified Friedmann equation without extra degrees of freedom. It is shown that, at least for isotropic models in LQC, this issue is naturally resolved and a covariant effective action can be found if one considers higher order theories of gravity but faithfully follows effective field theory techniques. However, our analysis also raises doubts on whether a covariant description without background structures can be found for anisotropic models.
One-loop potential with scale invariance and effective operators
Ghilencea, D M
2016-01-01
We study quantum corrections to the scalar potential in classically scale invariant theories, using a manifestly scale invariant regularization. To this purpose, the subtraction scale $\\mu$ of the dimensional regularization is generated after spontaneous scale symmetry breaking, from a subtraction function of the fields, $\\mu(\\phi,\\sigma)$. This function is then uniquely determined from general principles showing that it depends on the dilaton only, with $\\mu(\\sigma)\\sim \\sigma$. The result is a scale invariant one-loop potential $U$ for a higgs field $\\phi$ and dilaton $\\sigma$ that contains an additional {\\it finite} quantum correction $\\Delta U(\\phi,\\sigma)$, beyond the Coleman Weinberg term. $\\Delta U$ contains new, non-polynomial effective operators like $\\phi^6/\\sigma^2$ whose quantum origin is explained. A flat direction is maintained at the quantum level, the model has vanishing vacuum energy and the one-loop correction to the mass of $\\phi$ remains small without tuning (of its self-coupling, etc) bey...
Hard thermal loops, static response, and the composite effective action
International Nuclear Information System (INIS)
Jackiw, R.; Liu, Q.; Lucchesi, C.
1994-01-01
First, we investigate the static non-Abelian Kubo equation. We prove that it does not possess finite energy solutions; thereby we establish that gauge theories do not support hard thermal solitons. This general result is verified by a numerical solution of the equations. A similar argument shows that ''static'' instantons are absent. In addition, we note that the static equations reproduce the expected screening of the non-Abelian electric field by a gauge-invariant Debye mass m=gT √(N+N F /2)/3 . Second, we derive the non-Abelian Kubo equation from the composite effective action. This is achieved by showing that the requirement of stationarity of the composite effective action is equivalent, within a kinematical approximation scheme, to the condition of gauge invariance for the generating functional of hard thermal loops
Protection of WWER type primary loops against extreme effects
International Nuclear Information System (INIS)
Podrouzek, J.; Rejent, B.
1985-01-01
Dynamic analyses of the WWER-440 primary loops for the Mochovce nuclear power plant showed that the unprotected primary loop is very soft with a first eigenfrequency of 0.38 Hz. Protection with amortisseurs and viscous shock absorbers was compared and the viscous shock absorber in all cases proved to be more suitable. GERB viscous absorbers will be installed at the Mochovce nuclear power plant. First calculations of the dynamic resistance of the WWER-1000 primary loops for the Temelin nuclear power plant to extreme events were also made. It was shown that the unprotected primary loop is rather soft with a first eigenfrequency of 0.9 Hz, or 0.6 Hz at the pressurizer branch. It will therefore be necessary to protect the primary loops with viscous shock absorbers. (Z.M.)
Effective dynamics of the closed loop quantum cosmology
International Nuclear Information System (INIS)
Mielczarek, Jakub; Szydłowski, Marek; Hrycyna, Orest
2009-01-01
In this paper we study dynamics of the closed FRW model with holonomy corrections coming from loop quantum cosmology. We consider models with a scalar field and cosmological constant. In case of the models with cosmological constant and free scalar field, dynamics reduce to 2D system and analysis of solutions simplify. If only free scalar field is included then universe undergoes non-singular oscillations. For the model with cosmological constant, different behaviours are obtained depending on the value of Λ. If the value of Λ is sufficiently small, bouncing solutions with asymptotic de Sitter stages are obtained. However if the value of Λ exceeds critical value Λ c = 3 1/2 m Pl 2 /2πγ 3 ≅ 21m Pl 2 then solutions become oscillatory. Subsequently we study models with a massive scalar field. We find that this model possess generic inflationary attractors. In particular field, initially situated in the bottom of the potential, is driven up during the phase of quantum bounce. This subsequently leads to the phase of inflation. Finally we find that, comparing with the flat case, effects of curvature do not change qualitatively dynamics close to the phase of bounce. Possible effects of inverse volume corrections are also briefly discussed
Directory of Open Access Journals (Sweden)
P. K. Vijayan
2008-01-01
Full Text Available In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.
Commissioning of an Integral Effect Test Loop for SMART
Energy Technology Data Exchange (ETDEWEB)
Park, Hyunsik; Bae, Hwang; Kim, Dongeok; Min, Kyoungho; Shin, Yongcheol; Ko, Yungjoo; Yi, Sungjae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
An integral-effect test loop for SMART, SMART-ITL (or FESTA), has been constructed at KAERI. Its height was preserved and its flow area and volume were scaled down to 1/49 compared with the prototype plant, SMART. The ratio of the hydraulic diameter is 1/7. The SMART is a 330 MW thermal power reactor, and its core exit temperature and PZR pressure are 323 .deg. C and 15 MPa during a normal working condition, respectively. The maximum power of the core heater in the SMART-ITL is 30% of the scaled full power. As shown in Fig. 1, the SMART-ITL consists of a primary system including a reactor pressure vessel with a pressurizer, four steam generators and four main coolant pumps, a secondary system, a safety system, and an auxiliary system. The SMART-ITL facility will be used to investigate the integral performance of the inter-connected components and possible thermal-hydraulic phenomena occurring in the SMART design, to validate its safety for various design basis events and broad transient scenarios, and to validate the related thermal-hydraulic models of the safety analysis codes. The scenarios include small-break loss-of coolant accident (SBLOCA) scenarios, complete loss of RCS flowrate (CLOF), steam generator tube rupture (SGTR), feedwater line break (FLB), and main steam line break (MSLB). The role of SMART-ITL will be extended to examine and verify the normal, abnormal, and emergency operating procedures required during the construction and export phases of SMART. After an extensive series of commissioning tests in 2012, the SMART-ITL facility is now in operation. In this paper, the major test results acquired during the commissioning tests will be discussed.
Two-loop effective potential for Wess-Zumino model using superfields
International Nuclear Information System (INIS)
Santos, R.P. dos; Srivastava, P.P.
1989-01-01
For the case of several interacting chiral superfields the propagators for the unconstrained superfield potentials in the 'shifted' theory, where the supersymmetry is explicity broken, are derived in a compact form. They are used to compute the one-loop effective potential in the general case, while a superfield calculation of the renormalized effective potential to two loops for the Wess-Zumino models is performed. (authors) [pt
Low-energy effective action in two-dimensional SQED: a two-loop analysis
Samsonov, I. B.
2017-07-01
We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.
Effect of Mixing on Microorganism Growth in Loop Bioreactors
Directory of Open Access Journals (Sweden)
A. M. Al Taweel
2012-01-01
Full Text Available The impact of mixing on the promotion of microorganism growth rate has been analyzed using a multiphase forced-circulation pipe-loop reactor model capable of identifying conditions under which it is possible to convert natural gas into Single-Cell Protein. The impact of mixing in the interphase mass transfer was found to exert a critical role in determining the overall productivity of the bioreactor, particularly at the high cell loadings needed to reduce the capital costs associated with the large-scale production needed for the production of relatively low-value SCP in a sustainable manner.
Peeled Guidewire Coating with Debulked Plaque Obtained by Directional Coronary Atherectomy
Directory of Open Access Journals (Sweden)
Rikuta Hamaya
2017-01-01
Full Text Available Percutaneous directional coronary atherectomy (DCA is a plaque debulking method performed in Japan, and recently a renewed DCA device has been launched. We present a case with a tight left anterior descending lesion undergoing percutaneous coronary intervention with application of DCA. After several sessions of DCA, white plaques accompanied by green, stringed materials were obtained from the device; some materials were considerably long (approximately 15 mm in length. A drug-eluting stent was subsequently implanted, and the procedure was completed successfully without any complications. The extracted plaques and artificial materials were pathologically examined, and no inflammatory changes were detected on plaques adjacent to the material. Assessing pathological findings and structure of the DCA catheter, the obtained artificial materials were considered as peeled guidewire, possibly resulting from the friction between the guidewire and metallic bearing in the housing of DCA catheter. Of note, this phenomenon has been recognized even in other DCA cases in which guidewires of the other kind are used. We report this phenomenon for the first time, warning of theoretically possible distal embolization of artificial materials caused by any debulking devices.
ZED-2 experiments on the effect of a Co absorber rod on an NRU loop
International Nuclear Information System (INIS)
Arbique, G.M.; French, P.M.
1983-02-01
A series of experiments has been performed in ZED-2 to measure the perturbing effects of an NRU cobalt absorber rod on a simulated NRU loop site containing graded enrichment U0 2 fuel. The objective of the measurements was to provide data useful in validating NRU reactor physics codes. Using a simulated NRU lattice containing a simulated NRU loop site and an asymmetrically placed Co absorber rod, measurements were made of: (a) reactivity effects, as measured by critical height changes, associated with voiding the loop and stepped insertion of the Co absorber rod, (b) flux perturbations at the simulated loop site and throughout the lattice induced by the Co rod, (c) Westcott r√T/Tsub(o) values throughout the lattice
Improved hard-thermal-loop effective action for hot QED and QCD
International Nuclear Information System (INIS)
Flechsig, F.; Rebhan, A.K.
1995-01-01
The conventional results for hard thermal loops, which are the building blocks of resummed perturbation theory in thermal field theories, have collinear singularities when external momenta are light-like. It is shown that by taking into account asymptotic thermal masses these singularities are removed. The thus improved hard thermal loops can be summarized by compact gauge-invariant effective actions, generalizing the ones found by Taylor and Wong, and by Braaten and Pisarski. (orig.)
Loop effects in AdS/CFT and beyond
International Nuclear Information System (INIS)
Gubser, Steven S.
2003-01-01
Double-trace operators which are relevant deformations of large N conformal field theories give rise to renormalization group flows that can be studied on both sides of the AdS/CFT duality. One-loop calculations in AdS can be compared successfully to results derived in field theory using the Hubbard-Stratonovich transformation. The calculations do not rely on supersymmetry, and they apply in any dimension, provided the original conformal field theory and its AdS dual are well-defined. A speculative idea is proposed for solving the cosmological constant problem based on non-gravitational strings that become light as the universe expands. This is a summary of my talk presented at the Nishinomiya-Yukawa Symposium in Nishinomiya, Japan. (author)
Energy Technology Data Exchange (ETDEWEB)
Trinkaus, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Singh, B.N. [Materials Research Department, Risoe National Laboratory, DK-4000 Roskilde (Denmark); Foreman, A.J.E. [Materials Performance Department, Harwell Laboratory, Oxfordshire OX11 0RA (United Kingdom)
1997-11-01
In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop `cloud` are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.). 55 refs.
International Nuclear Information System (INIS)
Trinkaus, H.; Foreman, A.J.E.
1997-01-01
In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop 'cloud' are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.)
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
International Nuclear Information System (INIS)
Lal, Shankar; Pant, K. K.
2016-01-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
Effect of non-condensable gas on steady-state operation of a loop thermosyphon
International Nuclear Information System (INIS)
He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu
2014-01-01
Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, extensive experimental investigation of the effect of NCG on the steady-state operation of an ammonia-stainless steel loop thermosyphon was conducted. In the experiments, nitrogen was injected into the loop thermosyphon as NCG, and the thermal performance of the loop thermosyphon was tested at different NCG inventories, heat loads applied to the evaporator and condenser cooling conditions, i.e. natural air cooling or circulating ethanol cooling. Experimental results reveal that NCG elevates the steady-state operating temperature of the evaporator, especially when the loop thermosyphon is operating in the low temperature range; meanwhile, the more NCG exists in the loop thermosyphon, the higher the operating temperature of the evaporator, and the lower the reservoir temperature. In addition, the existence of NCG results in the decrease of the overall thermal conductance of the loop thermosyphon, and the overall thermal conductance under the ethanol cooling condition may be even lower than that under the air cooling condition when the heat load is smaller than a certain value. Finally, the experimental results are theoretically analysed and explained. (authors)
Mixed heavy–light matching in the Universal One-Loop Effective Action
International Nuclear Information System (INIS)
Ellis, Sebastian A.R.; Quevillon, Jérémie; You, Tevong; Zhang, Zhengkang
2016-01-01
Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. Here we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure of the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.
Unexpected extra-renal effects of loop diuretics in the preterm neonate.
Cotton, Robert; Suarez, Sandra; Reese, Jeff
2012-08-01
The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, because of its actions on the ubiquitous Na(+) -K(+) -2Cl(-) isoform cotransporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through modulation of the GABA-A chloride channel. The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents because the range of their effects may be broader than the single action sought by the prescribing physician. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.
A gauge/gravity relation in the one-loop effective action
International Nuclear Information System (INIS)
Basar, Goekce; Dunne, Gerald V
2010-01-01
We identify an unusual new gauge/gravity relation: the one-loop effective action for a massive spinor in 2n-dimensional AdS space is expressed in terms of precisely the same function (a certain multiple gamma function) as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field (one for which the eigenvalues of F μν are maximally degenerate, corresponding in four dimensions to a self-dual field, equivalently to a field of definite helicity), subject to the identification F 2 ↔Λ, where Λ is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge/gravity relation at the non-perturbative level and at the amplitude level. (fast track communication)
Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system
International Nuclear Information System (INIS)
Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de
2009-01-01
We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail
Two-loop calculation of the effective potential for the Wess-Zumino model
International Nuclear Information System (INIS)
Fogleman, G.; Starkmann, G.D.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia
1983-01-01
The effective potential for the supersymmetric Wess-Zumino model is computed off-shell to two loops. A renormalization procedure which preserves positivity of the kinetic terms in the effective action is implemented. Supersymmetry is not broken to this order. (orig.)
Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED
International Nuclear Information System (INIS)
Sturm, Christian
2013-01-01
The running of the effective electromagnetic coupling is for many electroweak observables the dominant correction. It plays an important role for deriving constraints on the Standard Model in the context of electroweak precision measurements. We compute the four-loop QED corrections to the running of the effective electromagnetic coupling and perform a numerical evaluation of the different gauge invariant subsets
Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.
Directory of Open Access Journals (Sweden)
Jessica Marinello
Full Text Available Topoisomerase I-DNA-cleavage complexes (Top1cc stabilized by camptothecin (CPT have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.
International Nuclear Information System (INIS)
Migdal, A.A.
1982-01-01
Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics
The impact of two-loop effects on the scenario of MSSM Higgs alignment without decoupling
Energy Technology Data Exchange (ETDEWEB)
Haber, Howard E.; Stefaniak, Tim [University of California, Santa Cruz Institute for Particle Physics (SCIPP) and Department of Physics, Santa Cruz, CA (United States); Heinemeyer, Sven [Campus of International Excellence UAM+CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Instituto de Fisica Teorica, (UAM/CSIC), Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain)
2017-11-15
In multi-Higgs models, the properties of one neutral scalar state approximate those of the Standard Model (SM) Higgs boson in a limit where the corresponding scalar field is roughly aligned in field space with the scalar doublet vacuum expectation value. In a scenario of alignment without decoupling, a SM-like Higgs boson can be accompanied by additional scalar states whose masses are of a similar order of magnitude. In the Minimal Supersymmetric Standard Model (MSSM), alignment without decoupling can be achieved due to an accidental cancellation of tree-level and radiative loop-level effects. In this paper we assess the impact of the leading two-loop O(α{sub s}h{sub t}{sup 2}) corrections on the Higgs alignment condition in the MSSM. These corrections are sizable and important in the relevant regions of parameter space and furthermore give rise to solutions of the alignment condition that are not present in the approximate one-loop description. We provide a comprehensive numerical comparison of the alignment condition obtained in the approximate one-loop and two-loop approximations, and discuss its implications for phenomenologically viable regions of the MSSM parameter space. (orig.)
Effect of non-condensable gas on startup of a loop thermosyphon
International Nuclear Information System (INIS)
He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu
2013-01-01
Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, experimental investigation of the effect of NCG on the startup of an ammonia-stainless steel loop thermosyphon was conducted. In the experiment, nitrogen was injected into the loop thermosyphon as NCG. The effect of NCG inventory on the startup behavior was investigated by adjusting the injected amount of nitrogen. The experimental results reveal that NCG prolongs the startup time and increases the startup liquid superheat and temperature overshoot; the more NCG exists in the loop thermosyphon, the higher the liquid superheat and temperature overshoot. When NCG is present in the system, boiling usually occurs in the evaporator before startup, but it does not mean the system will start up instantly, which differs from the conditions without NCG. Under all the conditions, increasing the heat load can effectively shorten the startup time but leads to a large temperature overshoot; forced convection cooling of the condenser has almost no effect on shortening the startup time especially for large NCG inventory situations, but it can effectively limit the temperature overshoot. For large NCG inventory situations, the loop thermosyphon can start up at a small heat load (5 W) or even without a heat load when the condenser is cooled by forced convection of ethanol. No failed start-ups occurred during any of the tests. (authors)
Electroweak two-loop corrections to the effective weak mixing angle
International Nuclear Information System (INIS)
Awramik, Malgorzata; Czakon, Michal; Freitas, Ayres
2006-01-01
Recently exact results for the complete electroweak two-loop contributions to the effective weak mixing angle were published. This paper illustrates the techniques used for this computation, in particular the methods for evaluating the loop diagrams and the proper definition of Z-pole observables at next-to-next-to-leading order. Numerical results are presented in terms of simple parametrization formulae and compared in detail with a previous result of an expansion up to next-to-leading order in the top-quark mass. Finally, an estimate of the remaining theoretical uncertainties from unknown higher-order corrections is given
Two loop effective Kahler potential of (non)-renormalizable supersymmetric models
International Nuclear Information System (INIS)
Groot Nibbelink, S.; Nyawelo, T.S.
2005-10-01
We perform a supergraph computation of the effective Kahler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kahler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kahler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics. (author)
String states, loops and effective actions in noncommutative field theory and matrix models
Directory of Open Access Journals (Sweden)
Harold C. Steinacker
2016-09-01
Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
The 1-loop effective potential for the Standard Model in curved spacetime
Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen
2018-06-01
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.
String states, loops and effective actions in noncommutative field theory and matrix models
Energy Technology Data Exchange (ETDEWEB)
Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at
2016-09-15
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
Hydraulic noise in reactor circuits and loops, and its effect on nuclear fuel vibration
International Nuclear Information System (INIS)
Card, D.C.
This paper reports the results of an investigation at WNRE to monitor noise levels in reactor circuits and loops, so as to characterize the systems and establish the importance of this noise on fuel and pressure tube vibration. Some of the techniques necessary for in-reactor installations of pressure transducers have been developed and measurements have been obtained in the vertical fuel channels of a very noisy out-reactor loop as well as in the WR-1 reactor circuits. A very quiet out-reactor loop has been constructed to study the vibration behaviour of 37-element fuel bundles in the horizontal CANDU pressurized-heavy water reactor systems. In this facility various types and levels of hydraulic noise are being generated to study their effect on the fuel bundles and flow tube at flow velocities up to approximately 13 m/s. (author)
Effect of closed loop cooling water transit time on containment cooling
International Nuclear Information System (INIS)
Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.
1996-01-01
Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance
Rus, Rina R; Battelino, Nina; Ponikvar, Rafael; Premru, Vladimir; Novljan, Gregor
2017-02-01
A central venous catheter (CVC) can either be inserted "de novo" or placed by guidewire exchange (GWE). From September 1998 to September 2015, 32 children (19 boys, 13 girls) were hemodialyzed in our unit by using a CVC. The mean age at CVC insertion was 12.6 ± 0.5 years. A total of 121 uncuffed catheters were placed, either "de novo" or by GWE in 64 (52.9%) and 57 (47.1%) cases, respectively. The most frequent cause for line revision was catheter dysfunction in 40/121 (33.1%) patients. The overall incidence of bacteremia was 1.5/1000 catheter-days. The incidence in newly inserted and GWE catheters was 1.4 and 1.7/1000 catheter-days, respectively. The difference did not reach statistical significance (P = 0.939). The infection rate correlated with patient age, and was higher in younger children (P = 0.006). GWE is an effective option of line revision, and did not influence the infection rate in our study. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
Effects of internal hydrogen on the vacancy loop formation probability in Al
International Nuclear Information System (INIS)
Bui, T.X.; Sirois, E.; Robertson, I.M.
1990-04-01
The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 x 10 10 ions cm -2 sec -1 and the ion dose was between 10 11 and 10 13 ion cm -2 . Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability
International Nuclear Information System (INIS)
Weiss, N.
1983-01-01
The effective potential V(phi) of a scalar field theory coupled to fermions is undefined near phi = 0 if the scalar field has a spontaneously broken symmetry. This shows up in a loop expansion as an imaginary part in V(phi) which persists to all temperatures and densities, even when the symmetry is restored. This paper presents a modification of the loop expansion which yields a real V(phi) whenever the one-loop fermion corrections restore the symmetry
One-loop effective actions and higher spins. Part II
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.
2018-01-01
In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.
An addendum to the Heisenberg-Euler effective action beyond one loop
Energy Technology Data Exchange (ETDEWEB)
Gies, Holger; Karbstein, Felix [Helmholtz-Institut Jena,Fröbelstieg 3, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Abbe Center of Photonics,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)
2017-03-21
We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irreducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Mehta, Vimal, E-mail: drvimalmehta@yahoo.co.in; Pandit, Bhagya Narayan; Mehra, Pratishtha; Nigam, Arima; Vyas, Aniruddha; Yusuf, Jamal; Mukhopadhyay, Saibal; Trehan, Vijay [G.B. Pant Institute of Postgraduate Medical Education and Research (India)
2016-01-15
We report life-threatening bleeding from an external iliac artery perforation following guidewire manipulation in a patient with atherosclerotic iliac artery disease. This complication was successfully managed by indigenous hand-made stent-graft made from two peripheral stents in the catheterization laboratory.
International Nuclear Information System (INIS)
Mehta, Vimal; Pandit, Bhagya Narayan; Mehra, Pratishtha; Nigam, Arima; Vyas, Aniruddha; Yusuf, Jamal; Mukhopadhyay, Saibal; Trehan, Vijay
2016-01-01
We report life-threatening bleeding from an external iliac artery perforation following guidewire manipulation in a patient with atherosclerotic iliac artery disease. This complication was successfully managed by indigenous hand-made stent-graft made from two peripheral stents in the catheterization laboratory
Sharei Amarghan, H.; Alderliesten, Tanja; van den Dobbelsteen, J.J.; Dankelman, J.
2018-01-01
Guidewires and catheters are used during minimally invasive interventional procedures to traverse in vascular system and access the desired position. Computer models are increasingly being used to predict the behavior of these instruments. This information can be used to choose the right
Bansal, Ankur; Gupta, Piyush; Dalela, Disha; Dalela, Diwakar
2016-03-07
A JJ stent is usually inserted in antegrade fashion after percutaneous renal surgery. We describe a new technical modification for antegrade stent insertion that prevents intraoperative intra-urethral migration of the guidewire and saves operative time and cost. 2016 BMJ Publishing Group Ltd.
Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; SUN Wei-Min
2006-01-01
Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.
Dominant two-loop corrections to the MSSM finite temperature effective potential
International Nuclear Information System (INIS)
Espinosa, J.R.
1996-04-01
We show that two-loop corrections to the finite temperature effective potential in the MSSM can have a dramatic effect on the strength of the electroweak phase transition, making it more strongly first order. The change in the order parameter v/Tc can be as large as 75% of the one-loop daisy improved result. This effect can be decisive to widen the region in parameter space where erasure of the created baryons by sphaleron processes after the transition is suppressed and hence, where electroweak baryogenesis might be successful. We find an allowed region with tan β< or∼4.5 and a Higgs boson with standard couplings and mass below 80 GeV within the reach of LEP II. (orig.)
Dynamical symmetry breaking of λφ4 theory in the two loop effective potential
International Nuclear Information System (INIS)
Yang Jifeng; Ruan Jianhong
2002-01-01
The two loop effective potential of massless λφ 4 theory is presented in several regularization and renormalization prescriptions and the dynamical symmetry breaking solution is obtained in the strong-coupling situation in several prescriptions except the Coleman-Weinberg prescription. The beta function in the broken phase becomes negative and the UV fixed point turns out to be a strong-coupling one, and its numeric value varies with the renormalization prescriptions, a detail which is different from the asymptotic-free solution in the one loop case. The symmetry-breaking phase is shown to be an entirely strong-coupling phase. The reason for the relevance of the renormalization prescriptions is shown to be due to the nonperturbative nature of the effective potential. We also reanalyze the two loop effective potential by adopting a differential equation approach based on the understanding that all the quantum field theories are ill-defined formulations of the 'low-energy' effective theories of a complete underlying theory. The relevance of the prescriptions of fixing the local ambiguities to physical properties such as symmetry breaking is further emphasized. We also tentatively propose a rescaling insensitivity argument for fixing the quadratic ambiguities. Some detailed properties of the strongly coupled broken phase and related issues are discussed
New Constraints on Dark Matter Effective Theories from Standard Model Loops
Crivellin, Andreas; Procura, Massimiliano
2014-01-01
We consider an effective field theory for a gauge singlet Dirac dark matter (DM) particle interacting with the Standard Model (SM) fields via effective operators suppressed by the scale $\\Lambda \\gtrsim 1$ TeV. We perform a systematic analysis of the leading loop contributions to spin-independent (SI) DM--nucleon scattering using renormalization group evolution between $\\Lambda$ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity-suppressed and spin-dependent can actually contribute to SI scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are comparable to LHC bounds, and will significantly improve in the near future. Interestingly, the loop contribution we find is maximally isospin violating even if the underlying theory is isospin conserving.
Partially massless higher-spin theory II: one-loop effective actions
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH, 44106 (United States)
2017-01-30
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D=7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D=4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D=4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
Partially massless higher-spin theory II: one-loop effective actions
International Nuclear Information System (INIS)
Brust, Christopher; Hinterbichler, Kurt
2017-01-01
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D=7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D=4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D=4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.
The one-loop effects in the electroweak Glashow-Weinberg-Salam theory
International Nuclear Information System (INIS)
Christova Christova, P.
1987-01-01
In the near future the experiment will reach a great precision and will be able to test the standard electroweak theory. It is important now to put in order calculations of radiative corrections in this theory and to make correct and exact present theoretical predictions for the measured quantities. The survey of some results of group working in the JINR, Dubna, may serve this aim. We discuss here on-mass-shell renormalization scheme in the unitary gauge; the one-loop amplitudes of both charge and neutral currents-induced fermion scatterings; the large constant effects; the dynamical behaviour of the one-loop neutral-current corrections; the calculation of the W-and Z-boson masses; the difference between the various Weinberg parameters sin 2 Θ W . 44 refs., 10 figs., 1 tab. (author)
Enhancing the effectiveness of human-robot teaming with a closed-loop system.
Teo, Grace; Reinerman-Jones, Lauren; Matthews, Gerald; Szalma, James; Jentsch, Florian; Hancock, Peter
2018-02-01
With technological developments in robotics and their increasing deployment, human-robot teams are set to be a mainstay in the future. To develop robots that possess teaming capabilities, such as being able to communicate implicitly, the present study implemented a closed-loop system. This system enabled the robot to provide adaptive aid without the need for explicit commands from the human teammate, through the use of multiple physiological workload measures. Such measures of workload vary in sensitivity and there is large inter-individual variability in physiological responses to imposed taskload. Workload models enacted via closed-loop system should accommodate such individual variability. The present research investigated the effects of the adaptive robot aid vs. imposed aid on performance and workload. Results showed that adaptive robot aid driven by an individualized workload model for physiological response resulted in greater improvements in performance compared to aid that was simply imposed by the system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature
Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.
International Nuclear Information System (INIS)
Martin, Stephen P.
2003-01-01
I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is significantly improved over previous approximations
Vortex loops in the critical Casimir effect in superfluid and superconducting films
International Nuclear Information System (INIS)
Williams, Gary A.
2004-01-01
Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir forces in superfluid and superconducting thin films. The force is found to become appreciable when the size of the thermally excited vortex loops is comparable to the film thickness, and the results for T c are found to match very well with perturbative renormalization-group theories that can only be carried out for T>T c . In helium films the Casimir force leads to a change in the film thickness close to T c that has been observed experimentally. A similar effect is predicted to occur near the transition temperature of high-T c superconducting films, which is also a vortex-loop phase transition. In this case the Casimir force takes the form of a voltage difference that will appear at the junction between a thin film and a bulk sample. Estimates show that this voltage can be appreciable (tens of microvolts), and it may be possible to observe the effect by measuring the voltage across two Josephson tunnel junctions to the film and to the bulk, using a SQUID voltmeter
Return momentum effect on reactor coolant water level distribution during mid-loop conditions
International Nuclear Information System (INIS)
Seo, Jae Kwang; Yang, Jae Young; Park, Goon Cherl
2001-01-01
An accurate prediction of the Reactor Coolant System( RCS) water level is of importance in the determination of the allowable operating range to ensure safety during mid-loop operations. However, complex hydrualic phenomena induced by the Shutdown Cooling System (SCS) return momentum causes different water levels from those in the loop where the water level indicators are located. This was apparently observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level distribution, a model using a one-dimensional momentum and energy conservation for cylindrical channel, hydraulic jump in operating cold leg, water level build-up at the Reactor Vessel (RV) inlet nozzle, Bernoulli constant in downcomer region, and total water volume conservation has been developed. The model predicts the RCS water levels at various RCS locations during the mid-loop conditions and the calculation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs, in conjuction with the pressure drop throughout the RCS, is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels
International Nuclear Information System (INIS)
Tanigawa, H.; Katoh, Y.; Kohyama, A.
1995-01-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other. (orig.)
Directory of Open Access Journals (Sweden)
Giovanna Sattin
Full Text Available Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to loop bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex. To assess the effect of mutations in loop bases on G-quadruplex folding and stability, we performed a comprehensive analysis of mutant telomeric sequences by spectroscopic techniques, molecular dynamics simulations and gel electrophoresis. We found that when the first position in the loop was mutated from T to C or A the resulting structure adopted a less stable antiparallel topology; when the second position was mutated to C or A, lower thermal stability and no evident conformational change were observed; in contrast, substitution of the third position from A to C induced a more stable and original hybrid conformation, while mutation to T did not significantly affect G-quadruplex topology and stability. Our results indicate that allelic variations generate G-quadruplex telomeric structures with variable conformation and stability. This aspect needs to be taken into account when designing new potential anticancer molecules.
Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Santa Barbara, KITP
2014-01-08
I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.
International Nuclear Information System (INIS)
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H.; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M.; Borm, Paul J. A.; Jacob, Augustinus L.; Bilecen, Deniz
2009-01-01
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. The guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J A; Jacob, Augustinus L; Bilecen, Deniz
2009-05-01
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. The guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.
Non-singular bounce scenarios in loop quantum cosmology and the effective field description
International Nuclear Information System (INIS)
Cai, Yi-Fu; Wilson-Ewing, Edward
2014-01-01
A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models
QED loop effects in the spacetime background of a Schwarzschild black hole
Emelyanov, Viacheslav A.
2017-12-01
The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.
A covariant technique for the calculation of the one-loop effective action
International Nuclear Information System (INIS)
Avramidi, I.G.
1991-01-01
We develop a manifestly covariant technique for a heat kernel calculation in the presence of arbitrary background fields in a curved space. The four lowest-order coefficients of the Schwinger-De Witt asymptotic expansion are explicitly computed. We also calculate the heat kernel asymptotic expansion up to terms of third order in rapidly varying background fields (curvatures). This approximate series is summed and covariant nonlocal expressions for the heat kernel, ξ-function and one-loop effective action are obtained. Other related problems are discussed. (orig.)
A Cost-Effective Approach to Hardware-in-the-Loop Simulation
DEFF Research Database (Denmark)
Pedersen, Mikkel Melters; Hansen, M. R.; Ballebye, M.
2012-01-01
This paper presents an approach for developing cost effective hardware-in-the- loop (HIL) simulation platforms for the use in controller software test and development. The approach is aimed at the many smaller manufacturers of e.g. mobile hydraulic machinery, which often do not have very advanced...... testing facilities at their disposal. A case study is presented where a HIL simulation platform is developed for the controller of a truck mounted loader crane. The total expenses in hardware and software is less than 10.000$....
Effects of one-loop corrections in the Weinberg-Salam theory
International Nuclear Information System (INIS)
Bardin, D.Y.; Fedorenko, O.M.; Christova, P.C.
1982-01-01
We have studied the one-loop effects in the Weinberg-Salam theory in the natural renormalization scheme which we have generalized to the case of an arbitrary unitary mixing of the fermion fields. We have discussed in detail the problems which are connected with carrying out the renormalization program in the Weinberg-Salam theory. We have calculated the masses of the W and Z bosons. We present a description of the finite renormalizations which relate to each other the three definitions of the Weinberg parameter sin 2 theta/sub W/
Loop corrections and other many-body effects in relativistic field theories
International Nuclear Information System (INIS)
Ainsworth, T.L.; Brown, G.E.; Prakash, M.; Weise, W.
1988-01-01
Incorporation of effective masses into negative energy states (nucleon loop corrections) gives rise to repulsive many-body forces, as has been known for some time. Rather than renormalizing away the three- and four-body terms, we introduce medium corrections into the effective σ-exchange, which roughly cancel the nucleon loop terms for densities ρ ≅ ρ nm , where ρ nm is nuclear matter density. Going to higher densities, the repulsive contributions tend to saturate whereas the attractive ones keep on growing in magnitude. The latter is achieved through use of a density-dependent effective mass for the σ-particle, m σ = m σ (ρ), such that m σ (ρ) decreases with increasing density. Such a behavior is seen e.g. in the Nambu-Jona-Lasinio model. It is argued that a smooth transition to chiral restoration implies a similar behavior. The resulting nuclear equation of state is, because of the self-consistency in the problem, immensely insensitive to changes in the mass or coupling constant of the σ-particle. (orig.)
Static and Dynamic Pricing Strategies in a Closed-Loop Supply Chain with Reference Quality Effects
Directory of Open Access Journals (Sweden)
Zhichao Zhang
2018-01-01
Full Text Available Remanufacturing of returned products has been increasingly recognized in industries as an effective approach to face environmental responsibility, government regulations, and increased awareness of consumers. In this paper, we address a closed-loop supply chain (CLSC in which the manufacturer produces the brand-new products, as well as the remanufactured goods while the retailer sells these products to customers. We consider several different scenarios: the manufacturer and the retailer adopt a steady-state price or a dynamic price with reference quality effects in a centralized case; either, neither or both the manufacturer and the retailer price dynamically with reference quality effects, respectively, in a decentralized model. We solve the problem with the retailer recycling the sold copies and deduce the optimal pricing strategies while the manufacturer in charge of recovering the used items in such a CLSC. The result shows that dynamic pricing strategies are much more profitable for the supply chain and its members when compared with pricing statically; the dynamic pricing strategies with time-varying quality characterized by reference quality are more suited to a long-term and cooperative closed-loop supply chain. Moreover, the optimal recycling fraction relies on the recovery cost coefficient and proves to be uniform despite adopting a dynamic price and quality in all distinct cases.
Infrared divergences and harmonic anomalies in the two-loop superstring effective action
Pioline, Boris
2015-01-01
We analyze the pertubative contributions to the $D^4 R^4$ and $D^6 R^4$ couplings in the low-energy effective action of type II string theory compactified on a torus $T^d$, with particular emphasis on two-loop corrections. In general, it is necessary to introduce an infrared cut-off $\\Lambda$ to separate local interactions from non-local effects due to the exchange of massless states. We identify the degenerations of the genus-two Riemann surface which are responsible for power-like dependence on $\\Lambda$, and give an explicit prescription for extracting the $\\Lambda$-independent effective couplings. These renormalized couplings are then shown to be eigenmodes of the Laplace operator with respect to the torus moduli, up to computable anomalous source terms arising in the presence of logarithmic divergences, in precise agreement with predictions from U-duality. Our results for the two-loop $D^6 R^4$ contribution also probe essential properties of the Kawazumi-Zhang invariant
Infrared divergences and harmonic anomalies in the two-loop superstring effective action
Energy Technology Data Exchange (ETDEWEB)
Pioline, Boris [CERN PH-TH,Case C01600, CERN, CH-1211 Geneva 23 (Switzerland); Sorbonne Universités,UPMC Université Paris 6, UMR 7589, F-75005 Paris (France); Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589,Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05 (France); Russo, Rodolfo [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)
2015-12-16
We analyze the pertubative contributions to the D{sup 4}R{sup 4} and D{sup 6}R{sup 4} couplings in the low-energy effective action of type II string theory compactified on a torus T{sup d}, with particular emphasis on two-loop corrections. In general, it is necessary to introduce an infrared cut-off Λ to separate local interactions from non-local effects due to the exchange of massless states. We identify the degenerations of the genus-two Riemann surface which are responsible for power-like dependence on Λ, and give an explicit prescription for extracting the Λ-independent effective couplings. These renormalized couplings are then shown to be eigenmodes of the Laplace operator with respect to the torus moduli, up to computable anomalous source terms arising in the presence of logarithmic divergences, in precise agreement with predictions from U-duality. Our results for the two-loop D{sup 6}R{sup 4} contribution also probe essential properties of the Kawazumi-Zhang invariant.
Spurgeon, Jessica; Ward, Geoff; Matthews, William J
2014-07-01
We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by concurrent articulation (CA; Experiment 1). We further assumed that the use of the phonological loop would be evidenced by greater serial recall for lists of phonologically dissimilar words relative to lists of phonologically similar words (Experiments 2A and 2B). We found that in both tasks, (a) CA reduced recall; (b) participants recalled short lists from the start of the list, leading to enhanced forward-ordered recall; (c) participants were increasingly likely to recall longer lists from the end of the list, leading to extended recency effects; (d) there were significant phonological similarity effects in ISR and IFR when both were analyzed using serial recall scoring; (e) these were reduced by free recall scoring and eliminated by CA; and (f) CA but not phonological similarity affected the tendency to initiate recall with the first list item. We conclude that similar mechanisms underpin ISR and IFR. Critically, the phonological loop is not strictly necessary for the forward-ordered recall of short lists on both tasks but may augment recall by increasing the accessibility of the list items (relative to CA), and in so doing, the order of later items is preserved better in phonologically dissimilar than in phonologically similar lists. PsycINFO Database Record (c) 2014 APA, all rights reserved.
One-loop effect of null-like cosmology's holographic dual super-Yang-Mills
International Nuclear Information System (INIS)
Lin, F.-L.; Tomino, Dan
2007-01-01
We calculate the 1-loop effect in super-Yang-Mills which preserves 1/4-supersymmetries and is holographically dual to the null-like cosmology with a big-bang singularity. Though the bosonic and fermionic spectra do not agree precisely, we do obtain vanishing 1-loop vacuum energy for generic warped plane-wave type backgrounds with a big-bang singularity. Moreover, we find that the cosmological 'constant' contributed either by bosons or fermions is time-dependent. The issues about the particle production of some background and about the UV structure are also commented. We argue that the effective higher derivative interactions are suppressed as long as the Fourier transform of the time-dependent coupling is UV-finite. Our result holds for scalar configurations that are BPS but with arbitrary time-dependence. This suggests the existence of non-renormalization theorem for such a new class of time-dependent theories. Altogether, it implies that such a super-Yang-Mills is scale-invariant, and that its dual bulk quantum gravity might behave regularly near the big bang
Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-12-01
The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.
A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect
DEFF Research Database (Denmark)
Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede
2016-01-01
This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....
International Nuclear Information System (INIS)
Khan, A.K.; Yao, Z.; Daymond, M.R.; Holt, R.A.
2012-01-01
Highlights: ► Effect of foil orientation on electron irradiation damage in Mg is analyzed. ► Prism plane defects increases in prism foils as compared to basal foils. ► Basal faults were interstitial and prism plane defects were mixed in character. ► Shrinkage of interstitial dislocations takes place by the self diffusion mechanism. - Abstract: The effect of foil orientation on damage accumulation behavior in commercial purity magnesium is investigated by in situ electron and ion irradiation. Transmission electron microscope has been used to study the dislocation loops formed by the agglomeration of point defects during irradiation. It has been observed that the ratio of prism plane to basal plane defects increases as the foil orientation is changed from basal to the prism foil. The ratio of vacancy to interstitial defects also increases in prism foils as compared to the basal foils. This point defect accumulation behavior is reversed when magnesium is irradiated with 1 MeV Kr 2+ ions and the formation of basal plane dislocation loops were only observed in prism foils and did not take place in the basal foils. Analysis showed that all the basal plane dislocation loops have Burgers vector of the type 1/(6〈202 ¯ 3〉) and are interstitial in nature whereas prism plane dislocation loops have Burgers vector of the type 1/(3〈112 ¯ 0〉) and are of mixed interstitial/vacancy in character. In situ annealing experiments at different temperatures performed on electron irradiated magnesium foils suggest that those dislocation loops that become thermodynamically unstable anneal out in a matter of few seconds whereas other stable dislocation loops continue to shrink by absorbing surrounding vacancy clusters. The activation energy for the shrinkage of the interstitial dislocation loops has been derived and the results show that the shrinkage of interstitial dislocation loops takes place by the mechanism of vacancy assisted self diffusion.
Karatasakis, Aris; Tarar, Muhammad Nauman J; Karmpaliotis, Dimitri; Alaswad, Khaldoon; Yeh, Robert W; Jaffer, Farouc A; Wyman, R Michael; Lombardi, William L; Grantham, J Aaron; Kandzari, David E; Lembo, Nicholas J; Moses, Jeffrey W; Kirtane, Ajay J; Parikh, Manish; Garcia, Santiago; Doing, Anthony; Pershad, Ashish; Shah, Alpesh; Patel, Mitul; Bahadorani, John; Shoultz, Charles A; Danek, Barbara A; Thompson, Craig A; Banerjee, Subhash; Brilakis, Emmanouil S
2017-03-01
We sought to describe contemporary guidewire and microcatheter utilization for antegrade wire escalation (AWE) during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Equipment utilization for AWE has been variable and evolving over time. We examined device utilization during 694 AWE attempts in 679 patients performed at 15 experienced US centers between May 2012 and April 2015. Mean age was 65.6 ± 9.7 years, and 85% of the patients were men. Successful wiring occurred in 436 AWE attempts (63%). Final technical and procedural success was 91% and 89%, respectively. The mean number of guidewire types used for AWE was 2.2 ± 1.4. The most frequently used guidewire types were the Pilot 200 (Abbott Vascular, 56% of AWE procedures), Fielder XT (Asahi Intecc, 45%), and the Confianza Pro 12 (Asahi Intecc, 28%). The same guidewires were the ones that most commonly crossed the occlusion: Pilot 200 (36% of successful AWE crossings), Fielder XT (20%), and Confianza Pro 12 (11%). A microcatheter or over-the-wire balloon was used for 81% of AWE attempts; the Corsair microcatheter (Asahi Intecc) was the most commonly used (44%). No significant association was found between guidewire type and incidence of major adverse cardiac events (MACE). Our contemporary, multicenter CTO PCI registry demonstrates that the most commonly used wires for AWE are polymer-jacketed guidewires. "Stiff" and polymer-jacketed guidewires appear to provide high crossing rates without an increase in MACE or perforation, and may thus be considered for upfront use. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Two-loop scale-invariant scalar potential and quantum effective operators
Ghilencea, D.M.
2016-11-29
Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $\\phi$ in theories in which scale symmetry is broken only spontaneously by the dilaton ($\\sigma$). Its vev $\\langle\\sigma\\rangle$ generates the DR subtraction scale ($\\mu\\sim\\langle\\sigma\\rangle$), which avoids the explicit scale symmetry breaking by traditional regularizations (where $\\mu$=fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking ($\\mu$=fixed scale). These operators have the form: $\\phi^6/\\sigma^2$, $\\phi^8/\\sigma^4$, etc, which generate an infinite series of higher dimensional polynomial operators upon expansion about $\\langle\\sigma\\rangle\\gg \\langle\\phi\\rangle$, where such hierarchy is arranged by {\\it one} initial, classical tuning. These operators emerge at the quantum...
International Nuclear Information System (INIS)
Hu, Zhifeng; Ma, Xiaoqian; Jiang, Enchen
2017-01-01
Highlights: • Microwave pretreatment is beneficial to chemical-looping gasification reaction. • Gasification efficiency and gas yield increased greatly under microwave pretreatment. • 60 s is the optimal microwave pretreatment time in CLG to produce syngas. • Suitable microwave pretreatment can make the structure of solid residue become loose. • 750 W is the optimal microwave pretreatment power in CLG to produce syngas. - Abstract: Chemical-looping gasification (CLG) of Chlorella vulgaris was carried out in a quartz tube reactor under different microwave pretreatment. The product fractional yields, conversion efficiency and analysis of performance parameters were analyzed in order to obtain the characterization and optimal conditions of microwave pretreatment for syngas production. The results indicate that microwave pretreatment is conducive to CLG reaction. Furthermore, the higher power or the longer time in the process of microwave pretreatment could not exhibit a better effect on CLG. In addition, 750 W and 60 s is the optimal microwave pretreatment power and time respectively to obtain a great reducibility of oxygen carrier, high conversion efficiency, high products yield and good LHV. The H_2 yield, LHV, gasification efficiency and gas yield increased obviously from 18.12%, 12.14 MJ/Nm"3, 59.76% and 1.04 Nm"3/kg of untreated Chlorella vulgaris to 24.55%, 13.13 MJ/Nm"3, 72.16% and 1.16 Nm"3/kg of the optimal microwave pretreatment condition, respectively.
Hoshino, Taro; Ookawara, Susumu; Miyazawa, Haruhisa; Ito, Kiyonori; Ueda, Yuichiro; Kaku, Yoshio; Hirai, Keiji; Mori, Honami; Yoshida, Izumi; Tabei, Kaoru
2015-04-01
Type 2 diabetic kidney disease (DKD) is frequently accompanied by uncontrollable hypertension due to the sodium sensitivity inherent in DKD and to diuretic-resistant edema. In general, diuretics are effective in treating this condition, but thiazide diuretics are thought to be innocuous in advanced chronic kidney disease (CKD). We examined the renoprotective effects of combination therapy with thiazides and loop diuretics in type 2 DKD patients with CKD stage G4 or G5. This study included 11 patients with type 2 DKD and an estimated glomerular filtration rate (eGFR) diuretics. Each patient received additional hydrochlorothiazide (HCTZ) therapy, which was continued for more than 12 months. We examined clinical parameters including blood pressure (BP), proteinuria, and eGFR before and after the addition of HCTZ. Patients received a 13.6 ± 3.8 mg/day dose of HCTZ in addition to loop diuretics (azosemide: 120 mg/day in 6 cases, 60 mg/day in 3 cases and furosemide: 80 mg/day in 1 case, 120 mg/day in 1 case). Side effects of HCTZ were not observed in all patients. After the addition of HCTZ therapy, systolic and diastolic blood pressures (S-BP, D-BP) as well as proteinuria significantly decreased (S-BP: at 6 months, p diuretics improves BP levels, and decreases proteinuria even in advanced stage type 2 DKD patients with severe edema. The addition of HCTZ therapy was not found to negatively affect the change in eGFR in the present study.
International Nuclear Information System (INIS)
Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju; Wirstam, Jens
2000-01-01
The one loop effective action in quantum field theory can be expressed as a quantum mechanical path integral over world lines, with internal symmetries represented by Grassmanian variables. In this paper, we develop a real time, many body, world line formalism for the one loop effective action. In particular, we study hot QCD and obtain the classical transport equations which, as Litim and Manuel have shown, reduce in the appropriate limit to the non-Abelian Boltzmann-Langevin equation first obtained by Boedeker. In the Vlasov limit, the classical kinetic equations are those that correspond to the hard thermal loop effective action. We also discuss the imaginary time world line formalism for a hot φ 4 theory, and elucidate its relation to classical transport theory. (c) 2000 The American Physical Society
Effective field theory of integrating out sfermions in the MSSM: Complete one-loop analysis
Huo, Ran
2018-04-01
We apply the covariant derivative expansion of the Coleman-Weinberg potential to the sfermion sector in the minimal supersymmetric standard model, matching it to the relevant dimension-6 operators in the standard model effective field theory at one-loop level. Emphasis is paid to nondegenerate large soft supersymmetry breaking mass squares, and the most general analytical Wilson coefficients are obtained for all pure bosonic dimension-6 operators. In addition to the non-logarithmic contributions, they generally have another logarithmic contributions. Various numerical results are shown, in particular the constraints in the large Xt branch reproducing the 125 GeV Higgs mass can be pushed to high values to almost completely probe the low stop mass region at the future FCC-ee experiment, even given the Higgs mass calculation uncertainty.
Directory of Open Access Journals (Sweden)
Yuki Ishikawa-Kakiya
Full Text Available Advanced techniques have been developed to overcome difficult cannulation cases in endoscopic retrograde cholangiopancreatography (ERCP. Pancreatic duct guidewire placement method (PGW is performed in difficult cannulation cases; it is possible that it places patients at risk of post-ERCP pancreatitis (PEP. The mechanism of PEP is still unclear, but pancreatic duct pressure and injury of pancreatic duct are known causes of PEP. Therefore, we hypothesized a relationship between pancreatic duct diameter and PEP and predicted that PGW would increase the risk of PEP in patients with non-dilated pancreatic ducts. This study aimed to investigate whether PGW increased the risk of PEP in patients with pancreatic duct diameter ≤ 3 mm.We analyzed 332 patients with pancreatic duct ≤ 3 mm who performed first time ERCP session. The primary endpoint was the rate of adverse event of PEP. We evaluated the risk of PEP in patients who had undergone PGW compared to those who had not, using the inverse probability of treatment weighting (IPTW analysis.PGW was found to be an independent risk factor for PEP by univariate analysis (odds ratio [OR], 2.45; 95% confidence interval [CI], 1.12-5.38; p = 0.03 after IPTW in patients with pancreatic duct diameter ≤ 3 mm. Adjusted for all covariates, PGW remained an independent risk factor for PEP (OR, 3.12; 95% CI, 1.33-7.33; p = 0.01.Our results indicate that PGW in patients with pancreatic duct diameter ≤ 3 mm increases the risk of PEP.
Two-loop N=4 super-Yang-Mills effective action and interaction between D3-branes
International Nuclear Information System (INIS)
Buchbinder, I.L.; Petrov, A.Yu.; Tseytlin, A.A.
2002-01-01
We compute the leading low-energy term in the planar part of the 2-loop contribution to the effective action of N=4 SYM theory in 4 dimensions, assuming that the gauge group SU(N+1) is broken to SU(N)xU(1) by a constant scalar background X. While the leading 1-loop correction is the familiar c 1 F 4 /vertical bar X vertical bar 4 term, the 2-loop expression starts with c 2 F 6 /vertical bar X vertical bar 8 . The 1-loop constant c 1 is known to be equal to the coefficient of the F 4 term in the Born-Infeld action for a probe D3-brane separated by distance vertical bar X vertical bar from a large number N of coincident D3-branes. We show that the same is true also for the 2-loop constant c 2 : it matches the coefficient of the F 6 term in the D3-brane probe action. In the context of the AdS/CFT correspondence, this agreement suggests a non-renormalization of the coefficient of the F 6 term beyond two loops. Thus the result of hep-th/9706072 about the agreement between the v 6 term in the D0-brane supergravity interaction potential and the corresponding 2-loop term in the (1+0)-dimensional reduction of N=4 SYM theory has indeed a direct generalization to 1+3 dimensions, as conjectured earlier in hep-th/9709087. We also discuss the issue of gauge theory-supergravity correspondence for higher order (F 8 , etc.) terms
Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin
2018-02-01
Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.
van Duren, B H; Sugand, K; Wescott, R; Carrington, R; Hart, A
2018-05-01
Hip fractures contribute to a significant clinical burden globally with over 1.6 million cases per annum and up to 30% mortality rate within the first year. Insertion of a dynamic hip screw (DHS) is a frequently performed procedure to treat extracapsular neck of femur fractures. Poorly performed DHS fixation of extracapsular neck of femur fractures can result in poor mobilisation, chronic pain, and increased cut-out rate requiring revision surgery. A realistic, affordable, and portable fluoroscopic simulation system can improve performance metrics in trainees, including the tip-apex distance (the only clinically validated outcome), and improve outcomes. We developed a digital fluoroscopic imaging simulator using orthogonal cameras to track coloured markers attached to the guide-wire which created a virtual overlay on fluoroscopic images of the hip. To test the accuracy with which the augmented reality system could track a guide-wire, a standard workshop femur was used to calibrate the system with a positional marker fixed to indicate the apex; this allowed for comparison between guide-wire tip-apex distance (TAD) calculated by the system to be compared to that physically measured. Tests were undertaken to determine: (1) how well the apex could be targeted; (2) the accuracy of the calculated TAD. (3) The number of iterations through the algorithm giving the optimal accuracy-time relationship. The calculated TAD was found to have an average root mean square error of 4.2 mm. The accuracy of the algorithm was shown to increase with the number of iterations up to 20 beyond which the error asymptotically converged to an error of 2 mm. This work demonstrates a novel augmented reality simulation of guide-wire insertion in DHS surgery. To our knowledge this has not been previously achieved. In contrast to virtual reality, augmented reality is able to simulate fluoroscopy while allowing the trainee to interact with real instrumentation and performing the procedure on
International Nuclear Information System (INIS)
Hama, Yukihiro; Kusano, Shoichi; Makita, Kohzoh
2004-01-01
The aim of this study was to verify the feasibility of using a J-tipped guidewire as a target for puncture of the subclavian artery in the placement of a reservoir port and catheter system (RPCS). Twenty-five patients with various hepatic malignancies underwent percutaneous implantation of an RPCS through the left subclavian artery for regional chemotherapy. To successfully puncture the left subclavian artery, a J-tipped guidewire was used as a target with fluoroscopic guidance. Technical success and complication rates, and numbers of puncture failures, were retrospectively analyzed. Implantation of the RPCS was successful in all patients. Eight (32%) patients had minor complications and no patient had major complications. The number of puncture failures per patient was 0 to 1 (mean=0.32). The J-tipped guidewire is a safe and appropriate target for puncture of the subclavian artery in the placement of an RPCS. (orig.)
The ξ/ξ2nd ratio as a test for Effective Polyakov Loop Actions
Caselle, Michele; Nada, Alessandro
2018-03-01
Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour of lattice gauge theories. They are much simpler to simulate than the original (3+1) dimensional LGTs and are affected by a milder sign problem. However it is not clear to which extent they really capture the rich spectrum of the original theories, a feature which is instead of great importance if one aims to address the sign problem. We propose here a simple way to address this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and becomes larger and larger as the complexity of the spectrum increases. Since both ξexp and ξ2nd are easy to measure on the lattice, this is an economic and effective way to keep track of the spectrum of the theory. In this respect we show using both numerical simulation and effective string calculations that this ratio increases dramatically as the temperature decreases. This non-trivial behaviour should be reproduced by the Polyakov loop effective action.
Kittler, Phyllis; Krinsky-McHale, Sharon J.; Devenny, Darlynne A.
2004-01-01
Semantic and phonological loop effects on verbal working memory were examined among middle-age adults with Down syndrome and those with unspecified mental retardation in the context of Baddeley's working memory model. Recall was poorer for phonologically similar, semantically similar, and long words compared to recall of dissimilar short words.…
Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models
International Nuclear Information System (INIS)
Burton, J.W.
1990-01-01
Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
Energy Technology Data Exchange (ETDEWEB)
Bondarenko, S.; Pozdnyakov, S.; Prygarin, A. [Ariel University, Physics Department, Ariel (Israel); Lipatov, L. [St. Petersburg State University, St. Petersburg (Russian Federation); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)
2017-09-15
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A{sub +} and A{sub -} reggeized gluons fields and application of the obtained results is discussed as well. (orig.)
Three- and two-point one-loop integrals in heavy particle effective theories
International Nuclear Information System (INIS)
Bouzas, A.O.
2000-01-01
We give a complete analytical computation of three- and two-point loop integrals occurring in heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and residual momenta. (orig.)
Reflooding Experiment on BETA Test Loop: The Effects of Inlet Temperature on the Rewetting Velocity
International Nuclear Information System (INIS)
Khairul H; Anhar R Antariksawan; Edy Sumarno; Kiswanta; Giarno; Joko P; Ismu Handoyo
2003-01-01
Loss of Coolant Accident (LOCA) on Nuclear Reactor Plant is an important topic because this condition is a severe accident that can be postulated. The phenomenon of LOCA on Pressurized Water Reactor (PWR) can be divided in three stages, e.g.: blowdown, refill and reflood. In the view of Emergency Coolant System evaluation, the reflood is the most important stage. In this stage, an injection of emergency water coolant must be done in a way that the core can be flooded and the overheating can be avoid. The experiment of rewetting on BETA Test Loop had been conducted. The experiment using one heated rod of the test section to study effects of inlet temperature on the wetting velocity. Results of the series of experiments on 2,5 lt/min flow rate and variable of temperature : 28 o C, 38 o C, 50 o C, 58 o C it was noticed that for 58 o C inlet temperature of test section and 572 o C rod temperature the rewetting phenomenon has been observed. The time of refill was 32.81 sec and time of rewetting was 42.87 sec. (author)
Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan
2010-02-01
The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.
Experimental study on the effect of fill ratio on an R744 two-phase thermosyphon loop
International Nuclear Information System (INIS)
Tong, Zhen; Liu, Xiao-Hua; Li, Zhen; Jiang, Yi
2016-01-01
Highlights: • Performance of R744 two-phase thermosyphon loop is experimentally analyzed. • There are usually some fluids that circulate in the loop without changing phase. • Maximum heat transfer ability is achieved at the fill ratio around 100%. • Lowest driving temperature difference is achieved at the fill ratio around 62%. • Thermosyphon loop with a lower fill ratio is more likely to fluctuate at small heat loads. - Abstract: As a natural, environmentally friendly fluid with excellent thermodynamic and transport properties, carbon dioxide is an effective alternative refrigerant. This paper describes an experiment conducted on an R744-based two-phase thermosyphon loop (TPTL). With different fill ratios of 45~151%, the effect of fill ratio on the working performance of the R744 TPTL is investigated. To maintain the conservation of momentum, part of the fluid circulates in the loop without changing phase; this part of the fluid may be liquid, vapor, or both liquid and vapor depending on the fill ratio. This is how the R744 TPTL self-adjusts among different heat loads. The experimental results show that the working state of the R744 TPTL has a lot to do with the fill ratio. With a low fill ratio, the TPTL is more likely to fluctuate under small heat loads. When the fill ratio is around 100%, the TPTL reaches its maximum heat transfer ability, and when the fill ratio is around 62%, the lowest driving temperature difference is achieved. Considering that the fill ratio's effect on the driving temperature difference is not very significant and that pursuing maximum heat transfer ability is more meaningful, a fill ratio of around 100% is recommended.
Zhu, X D
2017-08-01
I present a detailed account of a zero loop-area Sagnac interferometer operated at oblique incidence for detecting magneto-optic Kerr effects arising from a magnetized sample. In particular, I describe the symmetry consideration and various optical arrangements available to such an interferometer that enables measurements of magneto-optic effects due to both in-plane and out-of-plane magnetization of the sample with optimizable signal-to-noise ratios.
The complete two-loop integrated jet thrust distribution in soft-collinear effective theory
International Nuclear Information System (INIS)
Manteuffel, Andreas von; Schabinger, Robert M.; Zhu, Hua Xing
2014-01-01
In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e + e − annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, the sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function
Directory of Open Access Journals (Sweden)
Damjanović Miodrag
2014-01-01
Full Text Available Introduction. Entrapment and fracture of diagnostic or therapeutic devices within the coronary circulatory system are a rare, but increasing problem. Case report. A 70-yearold man was admitted in our clinic for coronary angiography before the planned aortic valve replacement. An arterial sheath was inserted in the right common femoral artery. After introducing a J-tip diagnostic coronary guidewire into the aorta and advancing a left Judkins diagnostic catheter over it, suddenly occured peeling off of the wire´s hydrophilic coating at the aortic arch level. Very soon, this outer coating of guidewire carried by the blood stream was entered into the left femoral artery, then into the left popliteal artery. This stripped part of guidewire was successfully caught and extracted out by using a goose-neck snare catheter. Conclusion. A sudden stripping of outer coating of a J-tip diagnostic hydrophilic coronary guidewire during coronary angiography is possible to manage quickly and successfully by the use of a simple cathether.
Energy Technology Data Exchange (ETDEWEB)
Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)
2016-06-10
Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.
The effect of the Polyakov loop on the chiral phase transition
Directory of Open Access Journals (Sweden)
Szép Zs.
2011-04-01
Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.
Effect of closed-loop order processing on the time to initial antimicrobial therapy.
Panosh, Nicole; Rew, Richardd; Sharpe, Michelle
2012-08-15
The results of a study comparing the average time to initiation of i.v. antimicrobial therapy with closed-versus open-loop order entry and processing are reported. A retrospective cohort study was performed to compare order-to-administration times for initial doses of i.v. antimicrobials before and after a closed-loop order-processing system including computerized prescriber order entry (CPOE) was implemented at a large medical center. A total of 741 i.v. antimicrobial administrations to adult patients during designated five-month preimplementation and postimplementation study periods were assessed. Drug-use reports generated by the pharmacy database were used to identify order-entry times, and medication administration records were reviewed to determine times of i.v. antimicrobial administration. The mean ± S.D. order-to-administration times before and after the implementation of the CPOE system and closed-loop order processing were 3.18 ± 2.60 and 2.00 ± 1.89 hours, respectively, a reduction of 1.18 hours (p Closed-loop order processing was associated with significant reductions in the average time to initiation of i.v. therapy in all patient care areas evaluated (cardiology, general medicine, and oncology). The study results suggest that CPOE-based closed-loop order processing can play an important role in achieving compliance with current practice guidelines calling for increased efforts to ensure the prompt initiation of i.v. antimicrobials for severe infections (e.g., sepsis, meningitis). Implementation of a closed-loop order-processing system resulted in a significant decrease in order-to-administration times for i.v. antimicrobial therapy.
Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten
International Nuclear Information System (INIS)
Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford
2016-01-01
Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10"6 to 10"1"2 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.
Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H
2018-05-28
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
Hashimoto, Sho; Takahashi, Akihiko; Yamada, Takeshi; Mizuguchi, Yukio; Taniguchi, Norimasa; Hata, Tetsuya; Nakajima, Shunsuke
2017-11-20
The extension support guiding catheter has been used to perform complex percutaneous coronary intervention to increase back-up support for the guiding catheter or to ensure deep intubation for device delivery. However, because of its monorail design, advancement of the stent into the distal extension tubing segment is sometimes problematic. Although this problem is considered due to simple collision of the stent, operators have observed tangling between a monorail extension catheter and coronary guidewire in some patients. To examine movement of the collar of the extension guide catheter during advancement of the guiding catheter, we set up an in vitro model in which the guiding catheter had two curves. Rotation of the extension guide catheter was examined by both fluoroscopic imaging and movement of the hub of the proximal end of the catheter. During advancement in the first curve, the collar moved toward the outer side of the curve of the guiding catheter as the operator pushed the shaft of the extension guiding catheter, which overrode the guidewire. After crossing the first curve, the collar moved again to the outer side of the second curve (the inner side of the first curve) of the mother catheter, and then, another clockwise rotation was observed in the proximal hub. Consequently, the collar and tubing portion of the extension guide catheter rotated 360° around the coronary guidewire, and the monorail extension catheter and guidewire became tangled. There is a potential risk of unintentional twisting with the guidewire during advancement into the curved guiding catheter because of its monorail design.
Effects of Load and Speed Variations in a Modified Closed Loop V/F ...
African Journals Online (AJOL)
This paper investigates the eects of load and reference speed variations in a modied closed loopv=f induction motor drive. A modied approach, involving the addition of a low frequency boostvoltage, is developed and adopted as an enhancement to the conventional closed loop v=f speedcontrol of a three phase squirrel ...
Two-loop disorder effects on the nematic quantum criticality in d-wave superconductors
International Nuclear Information System (INIS)
Wang, Jing
2015-01-01
The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic quantum critical point that is supposed to exist in some d-wave cuprate superconductors. This non-Fermi liquid state may be turned into a disorder-dominated diffusive metal if the fermions also couple to a disordered potential that generates a relevant perturbation in the sense of renormalization group theory. It is therefore necessary to examine whether a specific disorder is relevant or not. We study the interplay between critical nematic fluctuation and random chemical potential by performing renormalization group analysis. The parameter that characterizes the strength of random chemical potential is marginal at the one-loop level, but becomes marginally relevant after including the two-loop corrections. Thus even weak random chemical potential leads to diffusive motion of nodal fermions and the significantly critical behaviors of physical implications, since the strength flows eventually to large values at low energies. - Highlights: • The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic QCP. • The strength of random chemical potential is marginal at the one-loop level. • The strength becomes marginally relevant after including the two-loop corrections. • The diffusive metallic state is induced by the marginally relevant disorder. • The behaviors of some physical observables are presented at the nematic QCP
LoopIng: a template-based tool for predicting the structure of protein loops.
Messih, Mario Abdel
2015-08-06
Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.
George, Sudhakar; Cotton, James; Wrigley, Ben
2015-12-01
A 62-year-old man presented with an anterior ST elevation myocardial infarction and underwent primary percutaneous coronary intervention to an occluded diagonal artery. Following stenting, a type III distal guidewire-induced coronary perforation of the diagonal branch was recognized with extravasation of contrast into the pericardial space. Prolonged balloon inflations proximal to the site of the perforation were unsuccessful. Subcutaneous fat was therefore harvested from the patients upper thigh under local anesthetic and embolized through an Export catheter into the distal diagonal vessel, resulting in the immediate cessation of leak through the site of perforation. We discuss the technical aspects of this technique as well as alternative methods of distal embolization and the potential complications that must be considered. © 2015 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.
2005-01-01
A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory
Spurgeon, Jessica; Ward, Geoff; Matthews, William J.
2014-01-01
We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by…
Emohare, Osa; Peterson, Erik; Slinkard, Nathaniel; Janus, Seth; Morgan, Robert
2013-10-01
Study Design Case report. Clinical Question The clinical aim is to report on a previously unknown association between guidewire-assisted pedicle screw insertion and neuropraxia of the recurrent laryngeal nerve (RLN), and how this may overlap with the signs of Tapia syndrome; we also report our approach to the clinical management of this patient. Methods A 17-year-old male patient with idiopathic scoliosis experienced Tapia syndrome after posterior instrumentation and arthrodesis at the level of T1-L1. After extubation, the patient had a hoarse voice and difficulty in swallowing. Imaging showed a breach in the cortex of the anterior body of T1 corresponding to the RLN on the right. Results Otolaryngological examination noted right vocal fold immobility, decreased sensation of the endolarynx, and pooling of secretions on flexible laryngoscopy that indicated right-sided cranial nerve X injury and left-sided tongue deviation. Aspiration during a modified barium swallow prompted insertion of a percutaneous endoscopic gastrostomy tube before the patient was sent home. On postoperative day 20, a barium swallow demonstrated reduced aspiration, and the patient reported complete resolution of symptoms. The feeding tube was removed, and the patient resumed a normal diet 1 month later. Tapia syndrome, or persistent unilateral laryngeal and hypoglossal paralysis, is an uncommon neuropraxia, which has previously not been observed in association with a breached vertebral body at T1 along the course of the RLN. Conclusion Tapia syndrome should be a differential diagnostic consideration whenever these symptoms persist postoperatively and spine surgeons should be aware of this as a potential complication of guidewires in spinal instrumentation.
Penguin loops with confined quark propagators - the ΔI=1/2 rule as a long distance effect
International Nuclear Information System (INIS)
Eeg, J.O.
1985-01-01
We calculate the ΔS=1 penguin diagram by representing the internal quark lines in the loop by bag model wave functions. Because of the involved GIM mechanism we keep only the lowest internal quark modes in the loop, that is with quark momenta of order msub(c) and lower. Our results depends crucially on the values of the strong coupling constant and on the quark energy of the bag model wavefunctions. With reasonable values of parameters, we find contributions corresponding to effective penguin coefficients proportional2-5 times the standard perturbative ones. Thus the theoretical value for the ratio between ΔI=1/2 and ΔI=3/2 amplitudes seem to be improved. (orig.)
International Nuclear Information System (INIS)
Jung, Eui Guk; Boo, Joon Hong
2008-01-01
This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study
The analysis of SCS return momentum effects on the RCS water level during mid-loop operations
Energy Technology Data Exchange (ETDEWEB)
swang Seo, J.; Young Yang, J.; Tack Hwang, S. [Seoul National Univ. (Korea, Republic of)
1995-09-01
An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels.
The analysis of SCS return momentum effects on the RCS water level during mid-loop operations
International Nuclear Information System (INIS)
swang Seo, J.; Young Yang, J.; Tack Hwang, S.
1995-01-01
An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels
Directory of Open Access Journals (Sweden)
S. Hayakawa
2016-12-01
Full Text Available Molecular dynamics simulations were conducted to investigate the effects of stacking fault energy (SFE as a single variable parameter on the interaction between an edge dislocation and a Frank loop of self-interstitial atoms with a diameter of 8.0nm. The physical contact between the edge dislocation and the loop causes constriction of the edge dislocation, followed by the formation of a D-Shockley partial dislocation. The latter process is associated with either the formation of a screw component and its cross-slip, or the direct core reaction between the dislocation and the loop. These processes induce either the absorption of the loop into the dislocation or the transformation of the loop into a perfect loop. The SFE influences the interaction morphologies by determining the separation distance of the two partial dislocations and consequently the rate of constriction. The dependence of the interaction morphology on the SFE varies with the habit plane of the loop. A higher SFE increases the probability of the absorption or transformation interaction; however, only loop shearing is observed at the lower limit of the SFE range of austenitic stainless steels.
Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira
1995-08-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.
Anti -corrosion Effect of ETA on Materials in Secondary Loop of PWR
Institute of Scientific and Technical Information of China (English)
2002-01-01
In the world, over sixty percent of nuclear power plant have used advanced amunes ETA(Ethanolamine) as pH control agent in secondary loop of PWR. There are eighty percent of nuclear powerplants using ETA in USA. The corrosion of materials in steam generator (SG) tube and secondary looppower water reactor have been inhibited, the life of SG and the economics of the plant are increasedbecause of using ETA.
Effect of the Gribov horizon on the Polyakov loop and vice versa
Energy Technology Data Exchange (ETDEWEB)
Canfora, F.E. [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Dudal, D. [KU Leuven Campus Kortrijk, KULAK, Department of Physics, Kortrijk (Belgium); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Justo, I.F. [Ghent University, Department of Physics and Astronomy, Gent (Belgium); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Instituto de Fisica, Maracana, Rio de Janeiro (Brazil); Pais, P. [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Universite Libre de Bruxelles and International Solvay Institutes, Physique Theorique et Mathematique, Brussels (Belgium); Rosa, L. [Universita di Napoli Federico II, Dipartimento di Fisica, Monte S. Angelo (Italy); INFN, Sezione di Napoli, Monte S. Angelo (Italy); Vercauteren, D. [Duy Tan University, Institute of Research and Development, Da Nang (Viet Nam)
2015-07-15
We consider finite-temperature SU(2) gauge theory in the continuum formulation, which necessitates the choice of a gauge fixing. Choosing the Landau gauge, the existing gauge copies are taken into account by means of the Gribov-Zwanziger quantization scheme, which entails the introduction of a dynamical mass scale (Gribov mass) directly influencing the Green functions of the theory. Here, we determine simultaneously the Polyakov loop (vacuum expectation value) and Gribov mass in terms of temperature, by minimizing the vacuum energy w.r.t. the Polyakov-loop parameter and solving the Gribov gap equation. Inspired by the Casimir energy-style of computation, we illustrate the usage of Zeta function regularization in finite-temperature calculations. Our main result is that the Gribov mass directly feels the deconfinement transition, visible from a cusp occurring at the same temperature where the Polyakov loop becomes nonzero. In this exploratory work we mainly restrict ourselves to the original Gribov-Zwanziger quantization procedure in order to illustrate the approach and the potential direct link between the vacuum structure of the theory (dynamical mass scales) and (de)confinement. We also present a first look at the critical temperature obtained from the refined Gribov-Zwanziger approach. Finally, a particular problem for the pressure at low temperatures is reported. (orig.)
Emslie, A. G.; Li, Peng; Mariska, John T.
1992-01-01
A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.
Nair, Pradeep K; Carr, Jeffrey G; Bigelow, Brian; Bhatt, Deepak L; Berwick, Zachary C; Adams, George
2018-01-01
Proper vessel sizing during endovascular interventions is crucial to avoid adverse procedural and clinical outcomes. LumenRECON (LR) is a novel, nonimaging, 0.035-inch wire-based technology that uses the physics-based principle of Ohm's law to provide a simple, real-time luminal size while also providing a platform for therapy delivery. This study evaluated the accuracy, reliability, and safety of the LR system in patients presenting for a femoropopliteal artery intervention. This multicenter, prospective pilot study of 24 patients presenting for peripheral intervention compared LR measurements of femoropopliteal artery size to angiographic visual estimation, duplex ultrasound, quantitative angiography, and intravascular ultrasound. The primary effectiveness and safety end point was comparison against core laboratory adjudicated intravascular ultrasound values and major adverse events, respectively. Additional preclinical studies were also performed in vitro and in vivo in swine to determine the accuracy of the LR guidewire system. No intra- or postprocedure device-related adverse events occurred. A balloon or stent was successfully delivered in 12 patients (50%) over the LR wire. Differences in repeatability between successive LR measurements was 2.5±0.40% ( R 2 =0.96) with no significant bias. Differences in measurements of LR to other modalities were 0.5±1.7%, 5.0±1.8%, -1.5±2.0%, and 6.8±3.4% for intravascular ultrasound core laboratory, quantitative angiography, angiographic, and duplex ultrasound, respectively. This study demonstrates that through a physics-based principle, LR provides a real-time, safe, reproducible, and accurate vessel size of the femoropopliteal artery during intervention and can additionally serve as a conduit for therapy delivery over its wire-based platform. © 2018 American Heart Association, Inc.
International Nuclear Information System (INIS)
Nagae, Takashi; Tamaki, Tomohiko; Murase, Michio; Ayano, Teruyoshi
2003-01-01
In the mid-loop operation during shutdown of the pressurized water reactor (PWR) plant, the core decay heat is cooled by the residual heat removal (RHR) system. In the case of loss of the RHR function, core cooling is achieved by reflux cooling through the steam generator (SG) when the reactor coolant system (RCS) is closed, or by gravity injection of water from the refueling water storage pit (RWSP) when a large opening is present in the RCS. However, it is uncertain whether core cooling can be achieved by these alternative cooling methods, if the opening is not large enough in the RCS. In this study, the effectiveness of the reflux cooling through the SG and the gravity injection of water from the RWSP in the mid-loop operation three days after shutdown was investigated by using RELAP5/MOD3.2 with a plant model representing a typical 4-loop PWR plant in Japan, assuming that two bases of the pressurizer safety valves were removed. As a result, it was verified that in the case of a combination of the reflux cooling by through the SG and gravity injection of water from the RWSP, the time until the core was uncovered with water extended about an hour from that in the case of no cooling method. (author)
Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.
2014-10-01
Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.
Wind turbine inverter robust loop-shaping control subject to grid interaction effects
DEFF Research Database (Denmark)
Gryning, Mikkel Peter Sidoroff; Wu, Qiuwei; Blanke, Mogens
2015-01-01
the grid and the number of wind turbines connected. Power converter based turbines inject harmonic currents, which are attenuated by passive filters. A robust high order active filter controller is proposed to complement the passive filtering. The H∞ design of the control loop enables desired tracking......An H∞ robust control of wind turbine inverters employing an LCL filter is proposed in this paper. The controller dynamics are designed for selective harmonic filtering in an offshore transmission network subject to parameter perturbations. Parameter uncertainty in the network originates from...
Running coupling and pomeron loop effects on inclusive and diffractive DIS cross sections
Energy Technology Data Exchange (ETDEWEB)
Ducati, M.B. Gay [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Porto Alegre (Brazil); CERN, PH-TH, Geneva (Switzerland); Oliveira, E.G. de [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Santana Amaral, J.T. de [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas (Brazil)
2012-11-15
Within the framework of a (1+1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic {gamma} {sup *} h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed. (orig.)
Derivative expansion of one-loop effective energy of stiff membranes with tension
Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.
1999-03-01
With help of a derivative expansion, the one-loop corrections to the energy functional of a nearly flat, stiff membrane with tension due to thermal fluctuations are calculated in the Monge parametrization. Contrary to previous studies, an arbitrary tilt of the surface is allowed to exhibit the nontrivial relations between the different, highly nonlinear terms accompanying the ultraviolet divergences. These terms are shown to have precisely the same form as those in the original energy functional, as necessary for renormalizability. Also infrared divergences arise. These, however, are shown to cancel in a nontrivial way.
Running coupling and pomeron loop effects on inclusive and diffractive DIS cross sections
International Nuclear Information System (INIS)
Ducati, M.B. Gay; Oliveira, E.G. de; Santana Amaral, J.T. de
2012-01-01
Within the framework of a (1+1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic γ * h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed. (orig.)
Running coupling and pomeron loop effects on inclusive and diffractive DIS cross sections
Gay Ducati, M.B.; de Santana Amaral, J.T.
2012-01-01
Within the framework of a (1+1)--dimensional model which mimics high energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic $\\gamma^*h$ scattering cross sections. We analyze the cases of both fixed and running coupling within the mean field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, the suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.
International Nuclear Information System (INIS)
Okawa, Yuji
1999-01-01
The one-loop effective action for general trajectories of D-particles in Matrix theory is calculated in the expansion with respect to the number of derivatives up to six, which gives the equation of motion consistently. The result shows that the terms with six derivatives vanish for straight-line trajectories, however, they do not vanish in general. This provides a concrete example that non-renormalization of twelve-fermion terms does not necessarily imply that of six-derivative terms
Two-Loop Effective Theory Analysis of π (K)→eνe[γ] Branching Ratios
International Nuclear Information System (INIS)
Cirigliano, Vincenzo; Rosell, Ignasi
2007-01-01
We study the ratios R e/μ (P) ≡Γ(P→eν e [γ])/Γ(P→μν μ [γ]) (P=π, K) in Chiral Perturbation Theory to order e 2 p 4 . We complement the two-loop effective theory results with a matching calculation of the counterterm, finding R e/μ (π) =(1.2352±0.0001)x10 -4 and R e/μ (K) =(2.477±0.001)x10 -5
Effect of loop structure of bovine lactoferricin on apoptosis in Jurkat cells.
Zhang, Tie-nan; Yang, Wei; Liu, Ning
2010-06-01
Bovine lactoferricin (LfcinB) is a cationic peptide that selectively induces apoptosis in Jurkat cells. However less is known about the influence of this kind of apoptosis on the intra-cellular ceramide metabolism and the structure-function relationship between the loop structure of LfcinB and its action of inducing apoptosis in Jurkat cells. In the present study, the artificially synthesized LfcinB and LfcinB-derived peptide (Cys 19 residue in LfcinB was replaced by Ala) was added in Jurkat cells, the nucleolus shape was observed by fluorescent microscopy, the ceramide concentration in Jurkat cells was determined by reversed phase high performance liquid chromatography (RP-HPLC). The results of MTT assay showed that LfcinB inhibited proliferation of Jurkat cells, and the inhibition rate was approximately 18.90%. Moreover, the inhibition rate of LfcinB together with MAPP was upto approximately 59.89%. The RP-HPLC result showed that LfcinB improved the ceramide level in Jurkat cells. By using the DNA fragmentation assay and observing the nucleolus shape, the result displayed deficiency of the loop structure could cause LfcinB losing the biological activity of inducing apoptosis in Jurkat cells.
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Arka [Division of Cardiology, University of Alabama-Birmingham (United States); Brott, Brigitta C. [Division of Cardiology, University of Alabama-Birmingham (United States); Department of Biomedical Engineering, University of Alabama-Birmingham (United States); Foley, Robin [Department of Material Science and Engineering, University of Alabama-Birmingham (United States); Alli, Oluseun; Sasse, Mark; Ahmed, Mustafa; Al Solaiman, Firas; Reddy, Gautam; Ather, Sameer [Division of Cardiology, University of Alabama-Birmingham (United States); Leesar, Massoud A., E-mail: mleesar@uab.edu [Division of Cardiology, University of Alabama-Birmingham (United States)
2016-10-15
Background and propose: In coronary bifurcation lesions (CBL), hydrophilic guidewires used for side-branch (SB) protection can be withdrawn from underneath the stent easier than other wires. However, the safety of which has not been investigated. Methods/materials: We performed scanning electron microscopic (SEM) examination of hydrophilic wires – the Whisper and Runthrough wires – used for SB protection during stenting and proximal optimization technique (POT) in 30 patients with CBL. The distal 15 cm of the wire was examined every 1 mm by SEM and 4500 segments were analyzed to investigate for wire fracture, polymer shearing (PS), and its correlations with post-stenting creatine kinase (CK)-MB release. Results: SEM examination showed no evidence for wire fracture. The total area of PS and the largest defect on the wire were significantly larger with the Whisper wire versus the Runthrough wire (0.15 ± 0.04 mm{sup 2} vs. 0.026 ± 0.01 mm{sup 2} and 0.04 ± 0.05 mm{sup 2} vs. 0.01 ± 0.01 mm{sup 2}; P < 0.05, respectively). The total length of PS and the longest defect on the wire were significantly longer with the Whisper wire vs. the Runthrough wire (12.1 ± 14.5 mm vs. 2.7 ± 3.0 mm and 2.9 ± 4.2 mm vs. 1.0 ± 1.2 mm; P < 0.05, respectively), but there were weak correlations between the extents of PS with CK-MB release. Conclusions: Hydrophilic guidewires may be safely used for SB protection during stenting and POT in CBLs. The extent of PS was significantly greater with the Whisper wire than with the Runthrough wire, but its correlation with post-stenting CK-MB release was weak. - Highlights: • There was no wire fracture by jailing hydrophilic wires. • There was no wire entrapment by jailing hydrophilic wires. • There were weak correlations between polymer shearing and creatine kinase-MB levels. • The impact of polymer shearing on myocardial infraction warrants future studies.
High-temperature expansion of the one-loop effective action induced by scalar and Dirac particles
Energy Technology Data Exchange (ETDEWEB)
Kalinichenko, Igor; Kazinski, Peter [Tomsk State University, Physics Faculty, Tomsk (Russian Federation)
2017-12-15
The complete nonperturbative expressions for the high-temperature expansion of the one-loop effective action induced by the charged scalar and the charged Dirac particles both at zero and finite temperatures are derived with account of possible nontrivial boundary conditions. The background electromagnetic field is assumed to be stationary and such that the corresponding Klein-Gordon operator or the Dirac Hamiltonian is self-adjoint. The contributions of particles and antiparticles are obtained separately. The explicit expressions for the C-symmetric and the non-C-symmetric vacuum energies of the Dirac fermions are derived. The leading corrections to the high-temperature expansion due to the nontrivial boundary conditions are explicitly found. The corrections to the logarithmic divergence of the effective action that come from the boundary conditions are derived. The high-temperature expansion of the naive one-loop effective action induced by charged fermions turns out to be divergent in the limit of a zero fermion mass. (orig.)
One-loop effects on MSSM parameter determination via chargino production at the LC
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kalinowski, Jan [Warsaw Univ. (Poland). Faculty of Physics; Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Rolbiecki, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
At a future linear collider very precise measurements, typically with errors of <1%, are expected to be achievable. Such an accuracy gives sensitivity to the quantum corrections, which therefore must be incorporated in theoretical calculations in order to determine the underlying new physics parameters from prospective linear collider measurements. In the context of the chargino-neutralino sector of the minimal supersymmetric standard model, this involves fitting one-loop predictions to prospective measurements of the cross sections, forward-backward asymmetries and of the accessible chargino and neutralino masses. Taking recent results from LHC SUSY and Higgs searches into account we consider three benchmark scenarios, each with characteristic features. Our analysis shows how an accurate determination of the desired parameters is possible, providing in addition access to the stop masses and mixing angle.
One-loop effects on MSSM parameter determination via chargino production at the LC
International Nuclear Information System (INIS)
Bharucha, Aoife; Rolbiecki, Krzysztof
2012-11-01
At a future linear collider very precise measurements, typically with errors of <1%, are expected to be achievable. Such an accuracy gives sensitivity to the quantum corrections, which therefore must be incorporated in theoretical calculations in order to determine the underlying new physics parameters from prospective linear collider measurements. In the context of the chargino-neutralino sector of the minimal supersymmetric standard model, this involves fitting one-loop predictions to prospective measurements of the cross sections, forward-backward asymmetries and of the accessible chargino and neutralino masses. Taking recent results from LHC SUSY and Higgs searches into account we consider three benchmark scenarios, each with characteristic features. Our analysis shows how an accurate determination of the desired parameters is possible, providing in addition access to the stop masses and mixing angle.
Study of open-charm 0{sup +} states in unitarized chiral effective theory with one-loop potentials
Energy Technology Data Exchange (ETDEWEB)
Du, Meng-Lin [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Guo, Feng-Kun [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics (Germany); Yao, De-Liang [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics (Germany); Instituto de Fisica Corpuscular (Centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Valencia (Spain)
2017-11-15
Chiral potentials are derived for the interactions between Goldstone bosons and pseudo-scalar charmed mesons up to next-to-next-to-leading order in a covariant chiral effective field theory with explicit vector charmed-meson degrees of freedom. Using the extended-on-mass-shell scheme, we demonstrate that the ultraviolet divergences and the so-called power counting breaking terms can be properly absorbed by the low-energy constants of the chiral Lagrangians. We calculate the scattering lengths by unitarizing the one-loop potentials and fit them to the data extracted from lattice QCD. The obtained results are compared to the ones without an explicit contribution of vector charmed mesons given previously. It is found that the difference is negligible for S-wave scattering in the threshold region. This validates the use of D*-less one-loop potentials in the study of the pertinent scattering lengths. We search for dynamically generated open-charm states with J{sup P} = 0{sup +} as poles of the S-matrix on various Riemann sheets. The trajectories of those poles for varying pion masses are presented as well. (orig.)
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
An experimental study of dislocation loop nucleation
International Nuclear Information System (INIS)
Bounaud, J.Y.; Leteurtre, J.
1975-01-01
The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr
Energy Technology Data Exchange (ETDEWEB)
Zhang, Weiping [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Luo, Fengfeng [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Yu, Yanxia; Zheng, Zhongcheng; Shen, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2016-10-15
Single-beam and sequential-beam irradiations were performed to investigate the H/He synergistic effect on dislocation loops in reduced-activation ferritic/martensitic (RAFM) steels. The irradiations were carried out with 10 keV H{sup +}, 18 keV He{sup +} and 160 keV Ar{sup +}, alone and in combination at 723 K. He{sup +} single-beam irradiation induced much larger dislocation loops than that induced by both H{sup +} and Ar{sup +} single-beam irradiation. H{sup +} post-irradiation after He{sup +} irradiation further increased the size of dislocation loops, whilst He{sup +} post-irradiation or Ar{sup +} post-irradiation following H{sup +} irradiation only slightly increased the size of dislocation loops. The experiment results indicate that pre-implanted H{sup +} can drastically inhibit the growth while post-implanted H{sup +} can significantly enhance the growth of dislocation loops induced by He{sup +} irradiation. The mechanisms behind the complex synergistic phenomena between H and He and the different roles that H and He played in the growth of dislocation loops are discussed.
One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Cognola, Guido; Zerbini, Sergio [Universita di Trento (Italy); Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Trento, Dipartimento di Fisica, Trento (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Odintsov, Sergei D. [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); ICREA, Barcelona (Spain); TSPU, Center of Theor. Phys., Tomsk (Russian Federation)
2009-12-15
We discuss the classical and quantum properties of non-local modified Gauss-Bonnet gravity in de Sitter space, using its equivalent representation via string-inspired local scalar-Gauss-Bonnet gravity with a scalar potential. A classical, multiple de Sitter universe solution is found where one of the de Sitter phases corresponds to the primordial inflationary epoch, while the other de Sitter space solution - the one with the smallest Hubble rate - describes the late-time acceleration of our universe. A Chameleon scenario for the theory under investigation is developed, and it is successfully used to show that the theory complies with gravitational tests. An explicit expression for the one-loop effective action for this non-local modified Gauss-Bonnet gravity in the de Sitter space is obtained. It is argued that this effective action might be an important step towards the solution of the cosmological constant problem. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lee, Sukho; Lim, Sanggyu; You, Gukjong; Park, Youngsheop [Korea Hydro and Nuclear Power Company, Ltd., Daejeon (Korea, Republic of)
2014-05-15
The nuclear thermal hydraulic system code known as SPACE (Safety and Performance Analysis CodE) was developed and its V and V (Verification and Validation) have been conducted using well-known SETs (Separate Effect Tests) and IETs (Integral Effect Tests). At the same time, the SBLOCA (Small Break Loss of Coolant Accident) methodology in accordance with Appendix K of 10CFR50 for the APR1400 (Advanced Power Reactor 1400) was developed and applied to regulatory body for licensing in 2013. Especially, the SBLOCA methodology developed using SPACE v2.14 code adopts inherent test matrix independent of V and V test to show its conservatism for important phenomena. In this paper, the predictability of SPACE code for UPTF (Upper Plenum Test Facility) test simulating loop seal clearance of SBLOCA important phenomena and the related sensitivity analysis are introduced.
DEFF Research Database (Denmark)
Niero, Monia; Hauschild, Michael Zwicky; Hoffmeyer, Simon Boas
2017-01-01
Eco-efficiency (i.e., increasing value while reducing resource use and pollution) can with advantage be combined with eco-effectiveness (i.e., maximizing the benefits to ecological and economical systems) to address the challenges posed by the circular economy in the design of circular industrial......, the environmentally optimal beverage packaging life cycle scenario is identified, both in terms of defined use and reuse. Second, the limiting factors are identified for the continuous use of materials in multiple loops, meeting the two requirements in the C2C certification process that address the material level (i...... the most efficient and effective "upcycling" strategy for the beverage packaging, both from an environmental and an economic point of view. In the case of the aluminum cans, the main recommendation from both the LCA and C2C perspective is to ensure a system that enables can-to-can recycling....
Managing a closed-loop supply chain inventory system with learning effects
Jauhari, Wakhid Ahmad; Dwicahyani, Anindya Rachma; Hendaryani, Oktiviandri; Kurdhi, Nughthoh Arfawi
2018-02-01
In this paper, we propose a closed-loop supply chain model consisting of a retailer and a manufacturer. We intend to investigate the impact of learning in regular production, remanufacturing and reworking. The customer demand is assumed deterministic and will be satisfied from both regular production and remanufacturing process. The return rate of used items depends on quality. We propose a mathematical model with the objective is to maximize the joint total profit by simultaneously determining the length of ordering cycle for the retailer and the number of regular production and remanufacturing cycle. The algorithm is suggested for finding the optimal solution. A numerical example is presented to illustrate the application of using a proposed model. The results show that the integrated model performs better in reducing total cost compared to the independent model. The total cost is most affected by the changes in the values of unit production cost and acceptable quality level. In addition, the changes in the defective items proportion and the fraction of holding costs significantly influence the retailer's ordering period.
Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki
2012-08-15
In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This
Energy Technology Data Exchange (ETDEWEB)
Takata, Miki [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Fukushima, Kazuyo [Watanabe Oyster Laboratory Co., Ltd, Hachioji, Tokyo 192-0154 (Japan); Kino-Kimata, Noriko [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Nagao, Norio [Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Niwa, Chiaki [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan); Toda, Tatsuki, E-mail: toda@soka.ac.jp [Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577 (Japan)
2012-08-15
In Japan, a revised Food Recycling Law went into effect in 2007 to promote a 'recycling loop' that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of - 126 and - 49 kg-CO{sub 2}/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of - 15,648 and - 18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic
Energy Technology Data Exchange (ETDEWEB)
Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
A True Open-Loop Synchronization Technique
DEFF Research Database (Denmark)
Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.
2016-01-01
Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....
Goodaire, EG; Polcino Milies, C
1996-01-01
For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri
Analysis of the effects of time delay in clock recovery circuits based on Phase-locked loops
DEFF Research Database (Denmark)
Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders
2004-01-01
Influence of time delay in a balanced optical phase-locked loops (OPLL) with a proportional integrator (Pl) filter is investigated using a delayed differential equation (DDE) is investigated. The limitations, which a time delay imposes on the Pl filter bandwidth, at increasing values of loop gain...
Bassan, Milan S; Sundaralingam, Praka; Fanning, Scott B; Lau, James; Menon, Jayaram; Ong, Evan; Rerknimitr, Rungsun; Seo, Dong-Wan; Teo, Eng Kiong; Wang, Hsiu-Po; Reddy, D Nageshwar; Goh, Khean Lee; Bourke, Michael J
2018-06-01
Wire-guided biliary cannulation has been demonstrated to improve cannulation rates and reduce post-ERCP pancreatitis (PEP), but the impact of wire caliber has not been studied. This study compares successful cannulation rates and ERCP adverse events by using a 0.025-inch and 0.035-inch guidewire. A randomized, single blinded, prospective, multicenter trial at 9 high-volume tertiary-care referral centers in the Asia-Pacific region was performed. Patients with an intact papilla and conventional anatomy who did not have malignancy in the head of the pancreas or ampulla and were undergoing ERCP were recruited. ERCP was performed by using a standardized cannulation algorithm, and patients were randomized to either a 0.025-inch or 0.035-inch guidewire. The primary outcomes of the study were successful wire-guided cannulation and the incidence of PEP. Overall successful cannulation and ERCP adverse events also were studied. A total of 710 patients were enrolled in the study. The primary wire-guided biliary cannulation rate was similar in 0.025-inch and 0.035-inch wire groups (80.7% vs 80.3%; P = .90). The rate of PEP between the 0.025-inch and the 0.035-inch wire groups did not differ significantly (7.8% vs 9.3%; P = .51). No differences were noted in secondary outcomes. Similar rates of successful cannulation and PEP were demonstrated in the use of 0.025-inch and 0.035-inch guidewires. (Clinical trial registration number: NCT01408264.). Copyright © 2018. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki
2012-01-01
In Japan, a revised Food Recycling Law went into effect in 2007 to promote a “recycling loop” that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of − 126 and − 49 kg-CO 2 /t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of − 15,648 and − 18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
International Nuclear Information System (INIS)
Kumar, N.H.; Bai, V.S.
1996-01-01
The field variations of ac M-H loops are recorded at 77 K and 33 Hz using a lock-in flat-band detection method in sintered and press sintered 110-K-phase samples of the Bi-Sr-Ca-Cu-O system. From the slope of the M vs H m curve the flux profiles and the effective relative permeability (μ cer ) of the samples are determined. Using this value of μ cer the intergrain and intragrain contributions to the magnetization are separated out. The intergranular loops of the sintered sample could be simulated very well using Kim close-quote s model, while for the press-sintered sample the exponential model gives a better fit. Our results show that the loop closure exhibited by the intergranular loop can be simulated to the critical state models without subtracting the wing portion in contrast to the Dersch-Blatter approach. The intragranular loops of sintered samples show quite a good fit to the exponential model after introducing the surface barrier modification. The intergranular critical current density (J ci ) and the apparent lower critical field (H c1g ) of the grains are found to be enhanced due to press sintering. The field variations of the various physical quantities obtained from the loops are analyzed to see the effect of microstructural alterations introduced by the press-sintering method. By doing a fast Fourier transform on the M vs t curve the harmonic components are separated out and their variation with the ac field amplitude is studied. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Herman, Michael G.; Khadivi, Kevin O.; Kleinberg, Lawrence; Gage, Irene; Abrams, Ross A.
1997-01-01
Purpose: To determine the extent of organ and target motion due to patient respiration during chest radiotherapy using electronic portal imaging, to examine these effects on treatment volumes and to show that simulation and treatment port films do not reflect this range of motion. Materials and Methods: Twenty four patients consisting of 17 tangential breast and 7 AP-PA lung field arrangements were imaged during daily radiation treatment. Eight to 10 sequential movie-loop images were acquired during each field of each fraction with a liquid ion chamber electronic portal imaging device (EPID). Motion relative to the reference image was assessed orthogonally to the central axis of the beam. In tangential breast images, cranial, caudad and lateral lung-chest wall landmarks were used; for AP-PA lung, visible tumor, mediastinum and bronchus. Inter and intra-fractional landmark displacements were determined through off-line analysis. Intra-fractional displacements, determined from multiple images within one fraction, indicate motion of the landmark during treatment. Inter-fractional data represents motion between treatment fractions as seen in routine portal film imaging. The effects on treatment volumes were assessed for the largest displacements using the EPID data together with CT reconstruction. Results: The mean, maximum and standard deviation (σ) for observed respiration induced displacements in the cranio-caudad (CC) and lateral directions relative to the beam are summarized both within (intra) and between (inter) fractions: These data indicate that while the mean displacements are small, the standard deviations are significant and the maximum motion observed during a fraction due to respiration may exceed 3 cm in certain cases. In addition, the intra-fractional displacements significantly exceed the inter-fractional displacements, which suggests that anatomical motion is not fully quantified in routine portal imaging. In lung treatments where the largest
Directory of Open Access Journals (Sweden)
Eva Nada
2015-03-01
Full Text Available This paper explores the process of the rationalization of activation policies towards unemployed young people in Switzerland. It aims at analysing the mechanism of normalization for the criterion of “unqualified” among unemployed young people with no qualifications. Empirical observations show the growing difficulties for personal counsellors to categorize an increasingly heterogeneous population of young unemployed people. These difficulties crystallize themselves with the definition of the criterion “unqualified”, thereby ushering in a new activation measure that appraises the school- and psychological aptitudes of young people. This measure partially determines the eligibility of the unemployed young people and participates in producing a norm of the “right measure” in relation to the level of “unqualification”. The concept of “looping effect “ developed by Ian Hacking was used to analyse the mechanism of transformation of the category and its effects on the identities of both young people and the front line agents. The paper discusses how to apply a philosophical concept to the sociology of categorization in order to deepen our understanding of activation policies within the changing scene of European social policy.
Evidence of extra-telomeric effects of hTERT and its regulation involving a feedback loop
International Nuclear Information System (INIS)
Lai, Serene R.; Cunningham, Amanda P.; Huynh, Vu Q.; Andrews, Lucy G.; Tollefsbol, Trygve O.
2007-01-01
The human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the enzyme telomerase which is responsible for telomeric maintenance and extension. Using RNA interference to knock down hTERT mRNA expression, we provide evidence that hTERT exerts extra-telomeric effects on the cell cycle and on its own regulatory proteins, specifically: p53 and p21. We tested our hypothesis that hTERT regulates its own expression through effects on upstream regulatory genes using transformed human embryonic kidney (HEK 293) cells, p53 and p16 INK4a null human ovarian cancer SKOV-3 cells, and p53-null MDA-MB-157 human mammary cancer cells. In HEK 293 cells, hTERT knockdown resulted in elevated p53 and p21 transcription and a decrease in cellular proliferation. Similar results were observed in the MDA-MB-157 cell line where p21 was upregulated, correlating with cell growth inhibition. In contrast, we observed a decrease in expression of p21 in SKOV-3 cells with hTERT knockdown and cell growth appeared to be unaffected. These findings suggest that hTERT may be involved in a feedback loop system, thereby playing a role in its own regulation
Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.
2015-10-01
The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.
Directory of Open Access Journals (Sweden)
K. E. Morozova
2014-06-01
Full Text Available To study the effectiveness of biofeedback (BFB in the closed loop of heart rate variability (HRV and paced breathing in patients with somatoform autonomic dysfunction (SAD 20 patients with SAD (14 women and 6 men, mean age 19,53 ± 1,55 were examined. All probationers were divided into two groups comparable for sex and age: 1 – BFB group (15 patients, in which 7 sessions was held and 2 – the comparison group (5 patients, where only two sessions were completed -at the first and seventh day of the study. Additionally, all patients in both groups received diet food (Table № 10 by Pevzner, mebicar, glycine, tiotriazolin. Effectiveness of biofeedback was evaluated by comparing of parameters optimality (O, sensitivity (S, the efficiency (E and the integral index BQI in both groups. It was determined that biofeedback in the closed loop of HRV and paced breathing allows to optimize the state of the regulatory systems of the body in patients with SAD, moreover the combination of biofeedback sessions in the test loop and medical treatment are significantly better than isolated pharmacological therapy. High effectiveness of biofeedback in closed loop of HRV and paced breathing in patients with SAD allows us to recommend it as independent method of treatment, and as a component of combined therapy of this disease.
Continuous-flow cardiac assistance : effects on aortic valve function in a mock loop
Tuzun, E.; Rutten, M.C.M.; Dat, M.; Kadipasaoglu, C.; Vosse, van de F.N.; Mol, de B.A.J.M.
2011-01-01
Background As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion—with resul-tant aortic regurgitation—has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we
Rück, Marlon; Reuther, Johannes
2018-04-01
We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.
Loop Transfer Matrix and Loop Quantum Mechanics
International Nuclear Information System (INIS)
Savvidy, George K.
2000-01-01
The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)
Effect of steam quality on two—phase flow in a netural circulation loop
Institute of Scientific and Technical Information of China (English)
贾海军; 吴少融; 等
1996-01-01
Test pressures are 1.0-4.0MPa,heating powers 27-190kW,inlet subcoolings 5-80℃,water used as coolant,and steam quality at the outlet of test section is less than 0.05,These test conditions cover the parameters for a typical 200MW heating reactor.The experimental results show that the stema quality is the dominant factor in a natural circulation system with low pressure and low steam quality about the effect of system pressure,heating power and inlet subcooling on the flow rate,relative oscilatroy amplitude and oscilatory region of flow rate.
International Nuclear Information System (INIS)
Lee, Keunsung; Choi, Sunmi; Kim, Eden
2016-01-01
The EU-APR design has been developed in order to expand and diversify the global nuclear power market of APR1400. For the improvement of shutdown risk for the EUAPR, the mid-loop level control system (MLCS) is considered during mid-loop operation for the EU-APR, which is not incorporated into SKN 3 and 4 (APR1400 Type) in Korea. Commonly, the risk associated with the NPP can be identified through the PSA. Thus, this paper discusses the low power and shutdown (LPSD) risk reduction effect by MLCS using the Low-Power and Shutdown PSA Result. LPSD level 1 PSA models for EU-APR have been developed. The risk reduction effect by MLCS is discussed. Because the loss of shutdown cooling function during mid-loop is one of the most vulnerable events, the MLCS have a significant influence on CDF in LPSD PSA. The shutdown risk of domestic power plants would likely be reduced if the MLCS is adopted in all operating NPPs in Korea during the mid-loop operation. It is expected that this work will contribute to reduce shutdown risk of domestic power plants
In-pile loop studies of the effect of PWR coolant pH on corrosion product radionuclide deposition
International Nuclear Information System (INIS)
Driscoll, M.J.; Harling, O.K.; Kohse, G.E.
1992-02-01
An in-pile loop which simulates the primary coolant system of a PWR has been constructed and operated in the MIT research reactor. A total of seven one-month-long irradiations have been carried out to evaluate the effect of coolant pH controlled by variation in LiOH/H 3 BO 3 concentrations. With the exception of one run at zero boron, all employed 800 ppm B; pH 300degreesC values of 6.5, 7.0, 7.2, 7.5 were studied, and two runs each at 7.0 and 7.2 were carried out. Finally, one of the runs at a pH 300degreesC of 7.2 was conducted with special care to exclude zinc because of its potential effects on cobalt deposition. The results show the expected benefits of high pH in reducing the rate of activity deposition on plant surfaces, but pH 300degreesC = 7.2 is approximately as effective as 7.5, while pH 300degreesC = 6.5 exhibits much larger activity transport and qualitatively different deposition behavior. Significant heat flux effects not predicted by current models have been consistently observed. While not as extensively studied, the zero-boron run suggests that the presence of boron species, at fixed pH, may reduce the net amount of activity deposited on ex-core surfaces. Neutron activation analysis of a variety of samples ruled out Zircaloy as an important source of Co-60, since its cobalt content is less than one ppm, considerably less than the applicable ASTM specification of ≤ 20 ppm. Amendment of the latter has been recommended
Quantum oscillation and the Aharonov-Bohm effect in a multiply connected normal-conductor loop
Takai, Daisuke; Ohta, Kuniichi
1994-12-01
The magnetostatic and electrostatic Aharonov-Bohm (AB) effects in multiply connected normal-conductor rings are studied. A previously developed model of a single mesoscopic ring is generalized to include an arbitrary number of rings, and the oscillatory behavior of the total transmission coefficients for the serially connected N (N is equal to integer) rings are derived as a function of the magnetic flux threading each ring and as a function of the electrostatic potential applied to the rings. It is shown that quantum oscillation of multiple rings exhibits greater variety of behavior than in periodic superlattices. We investigate the influence of the scattering at a junction and the number of atoms in the ring in both magnetostatic and electrostatic oscillation of multiring systems. For the electrostatic AB effects, when scattering occurs at the junctions between the connecting wire and the ring, the conductance in the AB oscillation is modified to an N-1 peaked shape. It is shown that this oscillatory behavior is greatly influenced by the number of atoms in the ring and is controlled by the electrostatic potential or magnetic flux that is applied to the ring. We discuss the behavior of the quantum oscillations upon varying the number of connected rings and the number of minibands.
Büttner, Anke Caroline
2012-01-01
When asked how many animals of each kind Moses took on the Ark, most people respond with "two" despite the substituted name (Moses for Noah) in the question. Possible explanations for semantic illusions appear to be related to processing limitations such as those of working memory. Indeed, individual working memory capacity has an impact upon how sentences containing substitutions are processed. This experiment examined further the role of working memory in the occurrence of semantic illusions using a dual-task working memory load approach. Participants verified statements while engaging in either articulatory suppression or random number generation. Secondary task type had a significant effect on semantic illusion rate, but only when comparing the control condition to the two dual-task conditions. Furthermore, secondary task performance in the random number generation condition declined, suggesting a tradeoff between tasks. Response time analyses also showed a different pattern of processing across the conditions. The findings suggest that the phonological loop plays a role in representing semantic illusion sentences coherently and in monitoring for details, while the role of the central executive is to assist gist-processing of sentences. This usually efficient strategy leads to error in the case of semantic illusions.
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi, Zanyar; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)
2017-08-10
There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model and the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.
Directory of Open Access Journals (Sweden)
Kammuang-Lue Niti
2017-01-01
Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.
One-loop effects on top pair production in the littlest Higgs model with T-parity at the LHC
International Nuclear Information System (INIS)
Yang, Bingfang; Liu, Ning
2013-01-01
In this work, we systematically investigate the one-loop corrections to t anti t production in the littlest Higgs model with T-parity (LHT) at the LHC for √(s) = 8,14 TeV. We focus on the effects of LHT particles on t anti t cross section, polarization asymmetries, spin correlation and charge asymmetry at the LHC. We also study the top quark forward-backward asymmetry at Tevatron and its correlations with the LHC observables. We found that: (1) the contributions of the LHT particles to t anti t production can only reach about 1 % at the 14 TeV LHC. Meanwhile, the anomalous top quark forward-backward asymmetry at Tevatron is also hardly to be explained in the LHT model. (2) The parity violating asymmetries in t anti t production, such as left-right asymmetry vertical stroke A LR vertical stroke and the polarization vertical stroke P t vertical stroke can, respectively, reach 1.1 % and 0.5 %, which may have the potential to provide a signal of LHT at the LHC. (orig.)
The importance of plasma effects on electron-cyclotron maser-emission from flaring loops
Sharma, R. R.; Vlahos, L.; Papadopoulos, K.
1982-01-01
Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.
Directory of Open Access Journals (Sweden)
Dash Srikanta
2006-11-01
Full Text Available Abstract Background The antiviral action of interferon alpha targets the 5' untranslated region (UTR used by hepatitis C virus (HCV to translate protein by an internal ribosome entry site (IRES mechanism. Although this sequence is highly conserved among different clinical strains, approximately half of chronically infected hepatitis C patients do not respond to interferon therapy. Therefore, development of small interfering RNA (siRNA targeted to the 5'UTR to inhibit IRES mediated translation may represent an alternative approach that could circumvent the problem of interferon resistance. Results Four different plasmid constructs were prepared for intracellular delivery of siRNAs targeting the stem loop II-III of HCV 5' UTR. The effect of siRNA production on IRES mediated translation was investigated using chimeric clones between the gene for green fluorescence protein (GFP and IRES sequences of six different HCV genotypes. The siRNA targeted to stem loop II effectively mediated degradation of HCV IRES mRNA and inhibited GFP expression in the case of six different HCV genotypes, where as siRNAs targeted to stem loop III did not. Furthermore, intracytoplasmic expression of siRNA into transfected Huh-7 cells efficiently degraded HCV genomic RNA and inhibited core protein expression from infectious full-length infectious clones HCV 1a and HCV 1b strains. Conclusion These in vitro studies suggest that siRNA targeted to stem-loop II is highly effective inhibiting IRES mediated translation of the major genotypes of HCV. Stem-loop II siRNA may be a good target for developing an intracellular immunization strategy based antiviral therapy to inhibit hepatitis C virus strains that are not inhibited by interferon.
Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.
Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas
2011-12-01
As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.
Accelerating the loop expansion
International Nuclear Information System (INIS)
Ingermanson, R.
1986-01-01
This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs
The effect of design and scale on the mixing and mass transfer in U-loop bioreactors
DEFF Research Database (Denmark)
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay
is altered? In this study we have investigated the mixing time and mass transfer capabilities of U-loop reactors of different geometries (high vs. diameter ratio) in pilot (0.15m3) and semi-industrial scales (2.2m3). A new expression for the mechanical power input into the system is also proposed, which......A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. Previous studies have proven that a U-loop fermenter, a novel...... indicates that an even more favorable relationship between power input and mass transfer rate (compared to previous literature) applies to U-loop fermenters....
Directory of Open Access Journals (Sweden)
Venkateswararao
2017-11-01
Full Text Available BACKGROUND Minimally-invasive tube thoracostomy made easy with a combination of thoracic ultrasound and small bore chest drain kits (12F to16F using guidewire technique. The present study is aimed at easy and safe insertion of small bore chest drains (12F to 16F using Seldinger technique under ultrasound guidance with least discomfort to the patient. Large bore chest drains of size >20F using blunt dissection technique is painful, difficult to place in thick chest walls and technically more demanding. Placing the drains blindly basing on chest x-ray image may sometimes injure the underlying lung. MATERIALS AND METHODS Present study included 21 cases, of which 12 cases (57.1% were of pleural effusion and 9 cases (42.8% were of pneumothorax. Thoracic ultrasound was utilised by the operator for all pleural effusions and for those cases of pneumothorax who were on ventilator before tube insertion. Small bore chest drains (12F to 16F designed for guidewire technique were used in the present study. RESULTS Complete and sustainable lung expansion was seen in 19 of 21 cases (90.4%. It failed in remaining 2 cases (9.5% who had complex empyemas and hepatic hydrothorax. Pleurodesis was attempted in 6 cases (28.5% using tetracycline injectable form with success rate of 90%. Patient tolerance was good with numeric pain rating score of 1 to 3 (range 0 to 10; 0 = no pain; 5 = moderate pain; 10 = worst possible pain. CONCLUSION Using small bore chest tubes of sizes 12F to 16F designed for guidewire technique of insertion and utilising thoracic ultrasound, while insertion made the procedure easy and safe, less painful and good tolerance from patient’s point of view. Complete and sustainable lung expansion was seen in 90.4% of cases and highly efficacious for spontaneous and iatrogenic pneumothorax and in noncomplex and malignant pleural effusions. The technique is less demanding and thoracic ultrasound knowledge can be easily learnt and a combination of this
Lawler, Gregory F.; Werner, Wendelin
2003-01-01
We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.
Thermodynamics in Loop Quantum Cosmology
International Nuclear Information System (INIS)
Li, L.F.; Zhu, J.Y.
2009-01-01
Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.
Effects of Zb states and bottom meson loops on ϒ (4 S )→ϒ (1 S ,2 S )π+π- transitions
Chen, Yun-Hua; Cleven, Martin; Daub, Johanna T.; Guo, Feng-Kun; Hanhart, Christoph; Kubis, Bastian; Meißner, Ulf-G.; Zou, Bing-Song
2017-02-01
We study the dipion transitions ϒ (4 S )→ϒ (n S )π+π- (n =1 ,2 ) . In particular, we consider the effects of the two intermediate bottomoniumlike exotic states Zb(10610 ) and Zb(10650 ) as well as bottom meson loops. The strong pion-pion final-state interactions, especially including channel coupling to K K ¯ in the S wave, are taken into account model independently by using dispersion theory. Based on a nonrelativistic effective field theory we find that the contribution from the bottom meson loops is comparable to those from the chiral contact terms and the Zb-exchange terms. For the ϒ (4 S )→ϒ (2 S )π+π- decay, the result shows that including the effects of the Zb exchange and the bottom meson loops can naturally reproduce the two-hump behavior of the π π mass spectra. Future angular distribution data are decisive for the identification of different production mechanisms. For the ϒ (4 S )→ϒ (1 S )π+π- decay, we show that there is a narrow dip around 1 GeV in the π π invariant mass distribution, caused by the final-state interactions. The distribution is clearly different from that in similar transitions from lower ϒ states, and needs to be verified by future data with high statistics. Also we predict the decay width and the dikaon mass distribution of the ϒ (4 S )→ϒ (1 S )K+K- process.
Directory of Open Access Journals (Sweden)
Abhijeet Ashok Salunke
Full Text Available ABSTRACT CONTEXT: Hardware breakage during hip surgery can pose challenging and difficult problems for orthopedic surgeons. Apart from technical difficulties relating to retrieval of the broken hardware, complications such as adjacent joint arthritis and damage to neurovascular structures and major viscera can occur. Complications occurring during the perioperative period must be informed to the patient and proper documentation is essential. The treatment options must be discussed with the patient and relatives and the implant company must be informed about this untoward incident. CASE REPORT: We report a case of complete removal of the implant and then removal of the broken guidewire using a combination of techniques, including a cannulated drill bit, pituitary forceps and Kerrison rongeur. CONCLUSIONS: We suggest some treatment options and recommendations for preventing an avoidable surgical catastrophe.
Loop quantization as a continuum limit
International Nuclear Information System (INIS)
Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A
2006-01-01
We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques
Renormalization of loop functions for all loops
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.; Sato, M.
1981-01-01
It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j
Bonatto, Ana C; Souza, Emanuel M; Pedrosa, Fábio O; Yates, M Geoffrey; Benelli, Elaine M
2005-01-01
Proteins of the PII family are found in species of all kingdoms. Although these proteins usually share high identity, their functions are specific to the different organisms. Comparison of structural data from Escherichia coli GlnB and GlnK and Herbaspirillum seropedicae GlnB showed that the T-loop and C-terminus were variable regions. To evaluate the role of these regions in signal transduction by the H. seropedicae GlnB protein, four mutants were constructed: Y51F, G108A/P109a, G108W and Q3R/T5A. The activities of the native and mutated proteins were assayed in an E. coli background constitutively expressing the Klebsiella pneumoniae nifLA operon. The results suggested that the T-loop and C-terminus regions of H. seropedicae GlnB are involved in nitrogen signal transduction.
Kakaei, Farzad; Beheshtirouy, Samad; Nejatollahi, Seyed Moahammad Reza; Rashidi, Iqbal; Asvadi, Touraj; Habibzadeh, Afshin; Oliaei-Motlagh, Mohammad
2015-12-01
Whipple surgery (pancreaticodeudenectomy) has a high complication rate. We aimed to evaluate whether adding Braun jejunojejunostomy (side-to-side anastomosis of afferent and efferent loops distal to the gastrojejunostomy site) to a standard Whipple procedure would reduce postoperative complications. We conducted a randomized clinical trial comparing patients who underwent standard Whipple surgery (standard group) and patients who underwent standard Whipple surgery with Braun jejunojejunostomy (Braun group). Patients were followed for 1 month after the procedure and postoperative complications were recorded. Our study included 30 patients: 15 in the Braun and 15 in the standard group. In the Braun group, 4 (26.7%) patients experienced 6 complications, whereas in the standard group, 7 (46.7%) patients experienced 11 complications (p = 0.14). Complications in the Braun group were gastrointestinal bleeding and wound infection (n = 1 each) and delayed gastric emptying and pulmonary infection (n = 2 each). Complications in the standard group were death, pancreatic anastomosis leak and biliary anastomosis leak (n = 1 each); gastrointestinal bleeding (n = 2); and afferent loop syndrome and delayed gastric emptying (n = 3 each). There was no significant difference between groups in the subtypes of complications. Our results showed that adding Braun jejunojejunostomy to standard Whipple procedure was associated with lower rates of afferent loop syndrome and delayed gastric emptying. However, more studies are needed to define the role of Braun jejunojejunostomy in this regard. IRCT2014020316473N1 (www.irct.ir).
Morbidity of temporary loop ileostomies
Bakx, R.; Busch, O. R. C.; Bemelman, W. A.; Veldink, G. J.; Slors, J. F. M.; van Lanschot, J. J. B.
2004-01-01
Background/Aims: A temporary loop ileostomy is constructed to protect a distal colonic anastomosis. Closure is usually performed not earlier than 8 - 12 weeks after the primary operation. During this period, stoma-related complications can occur and enhance the adverse effect on quality of life. The
Lawler, Gregory F.; Ferreras, José A. Trujillo
2004-01-01
The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...
On loop extensions and cohomology of loops
Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales
2015-01-01
In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...
Neutron transport in irradiation loops (IRENE loop)
International Nuclear Information System (INIS)
Sarsam, Maher.
1980-09-01
This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr
International Nuclear Information System (INIS)
Moeller, S.V.
1983-02-01
The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
International Nuclear Information System (INIS)
Creatini, F; Di Marco, P; Filippeschi, S; Fioriti, D; Mameli, M
2015-01-01
In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction. (paper)
Energy Technology Data Exchange (ETDEWEB)
Villanueva, J. F.; Carlos, S.; Martorell, S.; Sanchez, F. [Dpto. Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino Vera s/n, 46022 Valencia (Spain)
2012-07-01
The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primary coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)
Hu, Lanying; Lim, Kah Wai; Bouaziz, Serge; Phan, Anh Tuân
2009-11-25
Recently, it has been shown that in K(+) solution the human telomeric sequence d[TAGGG(TTAGGG)(3)] forms a (3 + 1) intramolecular G-quadruplex, while the Bombyx mori telomeric sequence d[TAGG(TTAGG)(3)], which differs from the human counterpart only by one G deletion in each repeat, forms a chair-type intramolecular G-quadruplex, indicating an effect of G-tract length on the folding topology of G-quadruplexes. To explore the effect of loop length and sequence on the folding topology of G-quadruplexes, here we examine the structure of the four-repeat Giardia telomeric sequence d[TAGGG(TAGGG)(3)], which differs from the human counterpart only by one T deletion within the non-G linker in each repeat. We show by NMR that this sequence forms two different intramolecular G-quadruplexes in K(+) solution. The first one is a novel basket-type antiparallel-stranded G-quadruplex containing two G-tetrads, a G x (A-G) triad, and two A x T base pairs; the three loops are consecutively edgewise-diagonal-edgewise. The second one is a propeller-type parallel-stranded G-quadruplex involving three G-tetrads; the three loops are all double-chain-reversal. Recurrence of several structural elements in the observed structures suggests a "cut and paste" principle for the design and prediction of G-quadruplex topologies, for which different elements could be extracted from one G-quadruplex and inserted into another.
PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS
Energy Technology Data Exchange (ETDEWEB)
Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)
2016-11-10
Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.
PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS
International Nuclear Information System (INIS)
Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.
2016-01-01
Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.
Conformal anomaly of super Wilson loop
Energy Technology Data Exchange (ETDEWEB)
Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)
2012-09-11
Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.
Trullàs, Joan Carles; Morales-Rull, José Luís; Casado, Jesús; Freitas Ramírez, Adriana; Manzano, Luís; Formiga, Francesc
2016-07-01
Fluid overload refractory to loop diuretic therapy can complicate acute or chronic heart failure (HF) management. The Safety and Efficacy of the Combination of Loop with Thiazide-type Diuretics in Patients with Decompensated Heart Failure (CLOROTIC) trial (Clinicaltrials.gov identifier NCT01647932) will test the hypothesis that blocking distal tubule sodium reabsorption with hydrochlorothiazide can antagonize the renal adaptation to chronic loop diuretic therapy and improve diuretic resistance. CLOROTIC is a randomized, placebo-controlled, double-blind, multicenter study. Three hundred and four patients with decompensated HF will be randomly assigned to receive hydrochlorothiazide or placebo in addition to a furosemide regimen. The main inclusion criteria are: age ≥18 years, history of chronic HF (irrespective of etiology and/or ejection fraction), admission for acute decompensation, and previous treatment with an oral loop diuretic for at least 1 month before randomization. The 2 coprimary endpoints are changes in body weight and changes in patient-reported dyspnea during hospital admission. Morbidity, mortality, and safety aspects will also be addressed. CLOROTIC is the first large-scale trial to evaluate whether the addition of a thiazide diuretic (hydrochlorothiazide) to a loop diuretic (furosemide) is a safe and effective strategy for improving congestive symptoms resulting from HF. This trial will provide important information and will therefore have a major impact on treatment strategies and future trials in these patients. Copyright © 2015 Elsevier Inc. All rights reserved.
On the Kählerian symmetries of the two-loop action of the effective string theory
Ozkurt, S S
2003-01-01
Sometimes ago, it has been proposed in a paper by N.Kaloper and K.A.Meissner (\\PR {\\bf D56} (1997) 7940) that if one makes local redefinitions of fields, it does not change the equations of motion (in the redefined fields); however, this comment has not generally been accepted, namely, the redefined fields satisfy different equations of motion. For this reason, in this paper, it is proved that the whole action can be written as a square of the zeroth-order field equations. In this way, we show that any solution of the zeroth-order field equations, which has some K\\"{a}hler symmetry, at the same time, is also a solution of the two-loop equations.
International Nuclear Information System (INIS)
Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.
1981-10-01
An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed
Long, Shiwei; Cao, Xun; Sun, Guangyao; Li, Ning; Chang, Tianci; Shao, Zewei; Jin, Ping
2018-05-01
Vanadium dioxide (VO2) is one of the most well-known thermochromic materials, which exhibits a notable optical change from transparent to reflecting in the infrared region upon a metal-insulator phase transition. For practical applications, VO2 thin films should be in high crystalline quality to obtain a strong solar modulation ability (ΔTsol). Meanwhile, narrow hysteresis loops and robust ambient durability are also indispensable for sensitivity and long-lived utilization, respectively. In this work, a series of high-quality V2O3/VO2 bilayer structures were grown on quartz glass substrates by reactive magnetron sputtering. Basically, the bottom V2O3 acts as the buffer layer to improve the crystallinity of the top VO2, while the VO2 serves as the thermochromic layer to guarantee the solar modulation ability for energy-saving. We observed an obvious increase in ΔTsol of 76% (from 7.5% to 13.2%) for VO2 films after introducing V2O3 buffer layers. Simultaneously, a remarkable reduction by 79% (from 21.9 °C to 4.7 °C) in width of hysteresis loop was obtained when embedding 60 nm V2O3 buffer for 60 nm VO2. In addition, VO2 with non-stoichiometry of V2O3±x buffer demonstrates a broadening hysteresis loops width, which is derived from the lattice distortion caused by lattice imperfection. Finally, durability of VO2 has been significantly improved due to positive effects of V2O3 buffer layer. Our results lead to a comprehensive enhancement in crystallinity of VO2 and shed new light on the promotion of thermochromic property by homologous oxides for VO2.
Loop corrections to primordial non-Gaussianity
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Energy Technology Data Exchange (ETDEWEB)
Li, Huijuan; Diao, Xiaoxu; Li, Boyuan; Smidts, Carol; Bragg-Sitton, Shannon
2017-03-01
This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and software faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.
Natively unstructured loops differ from other loops.
Directory of Open Access Journals (Sweden)
Avner Schlessinger
2007-07-01
Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested
Introduction to Loop Heat Pipes
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.
International Nuclear Information System (INIS)
Hart, C.F.
1981-01-01
A gauge invariant effective action which generalizes the usual background field method is applied to quantum non-Abelian gauge theories. The gauge properties of the theory as well as its equivalence to the conventional theory are presented. Solutions to the new effective field equations are found to be physical and it is shown how S-matrix elements may be computed in terms of this new effective action. Feynman rules are given and the renormalization theory is discussed using minimal subtraction and dimensional regularization. The resulting computation of counterterms is found to be simpler than that of the usual method. A complete two-loop calculation of the β function for pure Yang-Mills theory is given as a specific example of this approach
... this page: //medlineplus.gov/ency/article/001146.htm Blind loop syndrome To use the sharing features on ... Clinical Professor of Medicine, The George Washington University School of Medicine, Washington, DC. Also reviewed by David ...
National Research Council Canada - National Science Library
Heier, Jeffrey E
2008-01-01
...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...
International Nuclear Information System (INIS)
Sochaski, R.O.
1962-07-01
This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)
Dechanneling by dislocation loops
International Nuclear Information System (INIS)
Chalant, Gerard.
1976-09-01
Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr
Brewer, Matt T; Xiong, Nalee; Anderson, Kristi L; Carlson, Steve A
2013-08-01
To assess antimicrobial resistance and transfer of virulence genes facilitated by subtherapeutic concentrations of antimicrobials in swine intestines. 20 anesthetized pigs experimentally inoculated with donor and recipient bacteria. 4 recipient pathogenic bacteria (Salmonella enterica serotype Typhimurium, Yersinia enterocolitica, Shigella flexneri, or Proteus mirabilis) were incubated with donor bacteria in the presence of subinhibitory concentrations of 1 of 16 antimicrobials in isolated ligated intestinal loops in swine. Donor Escherichia coli contained transferrable antimicrobial resistance or virulence genes. After coincubations, intestinal contents were removed and assessed for pathogens that acquired new antimicrobial resistance or virulence genes following exposure to the subtherapeutic concentrations of antimicrobials. 3 antimicrobials (apramycin, lincomycin, and neomycin) enhanced transfer of an antimicrobial resistance plasmid from commensal E coli organisms to Yersinia and Proteus organisms, whereas 7 antimicrobials (florfenicol, hygromycin, penicillin G, roxarsone, sulfamethazine, tetracycline, and tylosin) exacerbated transfer of an integron (Salmonella genomic island 1) from Salmonella organisms to Yersinia organisms. Sulfamethazine induced the transfer of Salmonella pathogenicity island 1 from pathogenic to nonpathogenic Salmonella organisms. Six antimicrobials (bacitracin, carbadox, erythromycin, sulfathiazole, tiamulin, and virginiamycin) did not mediate any transfer events. Sulfamethazine was the only antimicrobial implicated in 2 types of transfer events. 10 of 16 antimicrobials at subinhibitory or subtherapeutic concentrations augmented specific antimicrobial resistance or transfer of virulence genes into pathogenic bacteria in isolated intestinal loops in swine. Use of subtherapeutic antimicrobials in animal feed may be associated with unwanted collateral effects.
Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad
2016-07-01
This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.
Pang, Ka Ming; Castanotto, Daniela; Li, Haitang; Scherer, Lisa; Rossi, John J
2018-01-09
Gene therapy by engineering patient's own blood cells to confer HIV resistance can potentially lead to a functional cure for AIDS. Toward this goal, we have previously developed an anti-HIV lentivirus vector that deploys a combination of shRNA, ribozyme and RNA decoy. To further improve this therapeutic vector against viral escape, we sought an additional reagent to target HIV integrase. Here, we report the development of a new strategy for selection and expression of aptamer for gene therapy. We developed a SELEX protocol (multi-tag SELEX) for selecting RNA aptamers against proteins with low solubility or stability, such as integrase. More importantly, we expressed these aptamers in vivo by incorporating them in the terminal loop of shRNAs. This novel strategy allowed efficient expression of the shRNA-aptamer fusions that targeted RNAs and proteins simultaneously. Expressed shRNA-aptamer fusions targeting HIV integrase or reverse transcriptase inhibited HIV replication in cell cultures. Viral inhibition was further enhanced by combining an anti-integrase aptamer with an anti-HIV Tat-Rev shRNA. This construct exhibited efficacy comparable to that of integrase inhibitor Raltegravir. Our strategy for the selection and expression of RNA aptamers can potentially extend to other gene therapy applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Palazzuoli, Alberto; Pellegrini, Marco; Franci, Beatrice; Beltrami, Matteo; Ruocco, Gaetano; Gonnelli, Stefano; Angelini, Gianni D; Nuti, Ranuccio
2015-02-01
Intravenous loop diuretics are still the cornerstone of therapy in acute decompensated heart failure, however, the optimal dosage and administration strategies remain poorly defined particularly in patients with an associated renal dysfunction. This is a single-center, pilot, randomized trial involving patients with acute HF and renal dysfunction. Patients were assigned to receive continuous furosemide infusion (cIV) or bolus injections of furosemide (iIV). Primary end points were the evaluation of urine output volumes, renal function, and b-type natriuretic peptide (BNP) levels during treatment time. Secondary end point included: weight loss, length of hospitalization, differences in plasma electrolytes, need for additional treatment, and evaluation of cardiac events during follow-up period. 57 patients were included in the study. The cIV group showed an increase in urine output (2,505 ± 796 vs 2140 ± 468 ml/day, p diuretics are responsible for worsening renal function and to define the best modality of administration.
Bacqué-Cazenave, Julien; Chung, Bryce; Cofer, David W; Cattaert, Daniel; Edwards, Donald H
2015-03-15
Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state. Copyright © 2015 the American Physiological Society.
Zero point energy of renormalized Wilson loops
International Nuclear Information System (INIS)
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.
Fluctuation current in superconducting loops
International Nuclear Information System (INIS)
Berger, Jorge
2012-01-01
A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.
Loop Diuretics in the Treatment of Hypertension.
Malha, Line; Mann, Samuel J
2016-04-01
Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.
Zero Point Energy of Renormalized Wilson Loops
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...
International Nuclear Information System (INIS)
Vijayan, P.K.; Bhojwani, V.K.; Bade, M.H.; Sharma, M.; Nayak, A.K.; Saha, D.; Sinha, R.K.
2002-01-01
An instability demonstration facility has been in operation in the heat transfer laboratory of the Reactor Engineering Div. for the past few years. This report deals with the investigations carried out in this facility so far. The facility is essentially a rectangular loop designed to generate single-phase natural circulation data on the steady state and stability behaviour for different orientations of the heat source and the heat sink. Effect of different heat addition paths (i.e. start-up from rest, power raising from initial stable steady and decay of instability due to power step back) and flow direction on the stability behaviour was also studied. The stability map of the system was generated both by the linear and the nonlinear methods
Conformal boundary loop models
International Nuclear Information System (INIS)
Jacobsen, Jesper Lykke; Saleur, Hubert
2008-01-01
We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling
Su, Chieh-Shou; Lai, Hui-Chin; Wang, Chih-Yen; Lee, Wen-Lieng; Wang, Kuo-Yang; Yang, Ya-Ling; Wang, Li-Chun; Liu, Chia-Ning; Liu, Tsun-Jui
2016-01-18
Tracheal intubation of laboratory mice remains essential yet challenging for most researchers. The aim of this study was to investigate whether this procedure can be more efficiently and safely accomplished by a novel method using slim and torqueable guidewires to guide access to the trachea. This study was carried out in an animal laboratory affiliated to a tertiary medical center. Mice weighing 22 to 28 g were subjected to various open-chest experiments after being anesthetized with intraperitoneal ketamine (100 mg/kg) and lidocaine hydrochloride (10 mg/kg). The oropharyngeal cavity was opened with angled tissue forceps, and the trachea was transilluminated using an external light. The vocal cords were then crossed using either the Conventional method with a 38-mm-long, end-blunted stiff needle as a guide for insertion of a 22-gauge, 25-mm-long intravenous catheter into the trachea, or the Modified method utilizing using a 0.014-inch-thin torqueable wire as the guide to introduce an identical tube over it into the trachea. The epithelial integrity of the trachea was later examined histologically when the animals were sacrificed either immediately after the surgery or at 28 days post-surgery, depending on the corresponding research protocols. Orotracheal intubation was successfully completed in all mice using either the Conventional (N = 42) or the Modified method (N = 50). With the Modified method, intubation took less time (1.73 vs. 2.17 min, Modified vs. Conventional, p Conventional method. Histological analysis revealed a significantly lower incidence of immediate (0% vs. 39%, p Conventional method. Tracheal intubation for laboratory mice can be completed efficiently, safely and atraumatically using the proposed Modified method employing readily available inexpensive instruments.
Loop effects of heavy new scalars and fermions in b→sμ{sup +}μ{sup −}
Energy Technology Data Exchange (ETDEWEB)
Arnan, Pere [Departament de Física Quàntica i Astrofísica (FQA),Institut de Ciències del Cosmos - ICCUB, Universitat de Barcelona (UB), Barcelona (Spain); Crivellin, Andreas [Paul Scherrer Institut,CH-5232 Villigen PSI (Switzerland); Hofer, Lars; Mescia, Federico [Departament de Física Quàntica i Astrofísica (FQA),Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona - UB, Barcelona (Spain)
2017-04-10
Recent measurements of b→sμ{sup +}μ{sup −} processes at LHCb and BELLE have revealed tensions at the 2−3 σ level between the Standard Model (SM) prediction and the experimental results in the channels B→K{sup ∗}μ{sup +}μ{sup −} and B{sub s}→ϕμ{sup +}μ{sup −}, as well as in the lepton-flavor universality violating observable R{sub K}=Br(B→Kμ{sup +}μ{sup −})/Br(B→Ke{sup +}e{sup −}). Combined global fits to the available b→sμ{sup +}μ{sup −} data suggest that these tensions might have their common origin in New Physics (NP) beyond the SM because some NP scenarios turn out to be preferred over the SM by 4−5 σ. The fact that all these anomalies are related to muons further suggests a connection (and a common NP explanation) with the long-standing anomaly in the anomalous magnetic moment of the muon, a{sub μ}. In this article, we study the impact of a generic class of NP models featuring new heavy scalars and fermions that couple to the SM fermions via Yukawa-like interactions. We consider two different scenarios, introducing either one additional fermion and two scalars or two additional fermions and one scalar, and examine all possible representations of the new particles under the SM gauge group with dimension up to the adjoint one. The models induce one-loop contributions to b→sμ{sup +}μ{sup −} and a{sub μ} which are capable of solving the respective anomalies at the 2σ level, albeit a relatively large coupling of the new particles to muons is required. In the case of b→sμ{sup +}μ{sup −}, stringent constraints from B{sub s}−B̄{sub s} mixing arise which can be relaxed if the new fermion is a Majorana particle.
Nonequilibrium Chromosome Looping via Molecular Slip Links
Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.
2017-09-01
We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.
THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS
Energy Technology Data Exchange (ETDEWEB)
Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)
2016-11-10
We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated from the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.
International Nuclear Information System (INIS)
Pullin, J.
2015-01-01
Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)
... or scleroderma involving the small intestine History of radiation therapy to the abdomen Diabetes Diverticulosis of the small intestine Complications A blind loop can cause escalating problems, including: Poor absorption of fats. Bacteria in your small intestine break down the bile ...
Improving Loop Dependence Analysis
DEFF Research Database (Denmark)
Jensen, Nicklas Bo; Karlsson, Sven
2017-01-01
Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve th...
Cytokine loops driving senescence
Czech Academy of Sciences Publication Activity Database
Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan
2008-01-01
Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Random walk loop soups and conformal loop ensembles
van de Brug, T.; Camia, F.; Lis, M.
2016-01-01
The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a
Nanoscale dislocation shear loops at static equilibrium and finite temperature
Dang, Khanh; Capolungo, Laurent; Spearot, Douglas E.
2017-12-01
Atomistic simulations are used to determine the resolved shear stress necessary for equilibrium and the resulting geometry of nanoscale dislocation shear loops in Al. Dislocation loops with different sizes and shapes are created via superposition of elemental triangular dislocation displacement fields in the presence of an externally imposed shear stress. First, a bisection algorithm is developed to determine systematically the resolved shear stress necessary for equilibrium at 0 K. This approach allows for the identification of dislocation core structure and a correlation between dislocation loop size, shape and the computed shear stress for equilibrium. It is found, in agreement with predictions made by Scattergood and Bacon, that the equilibrium shape of a dislocation loop becomes more circular with increasing loop size. Second, the bisection algorithm is extended to study the influence of temperature on the resolved shear stress necessary for stability. An approach is presented to compute the effective lattice friction stress, including temperature dependence, for dislocation loops in Al. The temperature dependence of the effective lattice friction stress can be reliably computed for dislocation loops larger than 16.2 nm. However, for dislocation loops smaller than this threshold, the effective lattice friction stress shows a dislocation loop size dependence caused by significant overlap of the stress fields on the interior of the dislocation loops. Combined, static and finite temperature atomistic simulations provide essential data to parameterize discrete dislocation dynamics simulations.
International Nuclear Information System (INIS)
Olejnik, S.
1989-01-01
It is shown that the leading and next-to-leading non-gaussian effects have a minor inlfuence on the instanton density for the double-well potential: it is slightly increased, contrary to the claims of other authors. We point out a connection to recent quantitative studies of topological effects in gauge theories. (orig.)
International Nuclear Information System (INIS)
Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.; Bohacik, J.
1997-01-01
An approach to studying lattice gauge models in the weak-coupling region is proposed. Conceptually, this approach is based on the crucial role of original Z(N) symmetry and of the invariant gauge-group measure. As an example, an effective model from the compact Wilson formulation of SU(2) gauge theory is calculated in d=3 dimensions at zero temperature. The confining properties and the phase structure of the effective model are studied in detail
Dassau, E; Atlas, E; Phillip, M
2010-02-01
The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested
Russo, Marc; Cousins, Michael J; Brooker, Charles; Taylor, Nathan; Boesel, Tillman; Sullivan, Richard; Poree, Lawrence; Shariati, Nastaran Hesam; Hanson, Erin; Parker, John
2018-01-01
Conventional spinal cord stimulation (SCS) delivers a fixed-input of energy into the dorsal column. Physiologic effects such as heartbeat, respiration, spinal cord movement, and history of stimulation can cause both the perceived intensity and recruitment of stimulation to increase or decrease, with clinical consequences. A new SCS system controls stimulation dose by measuring the recruitment of fibers in the dorsal column and by using the amplitude of the evoked compound action potentials (ECAPs) to maintain stimulation within an individualized therapeutic range. Safety and efficacy of this closed-loop system was evaluated through six-month postimplantation. Chronic pain subjects with back and/or leg pain who were successfully trialed received a permanent system (Evoke; Saluda Medical, Sydney, Australia). Ratings of pain (100-mm visual analogue scale [VAS] and Brief Pain Instrument [BPI]), quality of life (EuroQol instrument [EQ-5D-5L]), function (Oswestry Disability Index [ODI]), and sleep (Pittsburgh Sleep Quality Index [PSQI]) were collected at baseline and repeated three and six months after implantation. Fifty-one subjects underwent a trial procedure; permanent implants were placed in 36 subjects. The proportion of subjects with ≥50% relief was 92.6% (back) and 91.3% (leg) at three months, and 85.7% (back) and 82.6% (leg) at six months. The proportion with ≥80% pain relief was 70.4% (back) and 56.5% (leg) at three months, and 64.3% (back) and 60.9% (leg) at six months. Statistically significant improvements in mean BPI, EQ-5D-5L, ODI, and PSQI were also observed at both time points. The majority of subjects experienced profound pain relief at three and six months, providing preliminary evidence for the effectiveness of the closed-loop SCS system. The exact mechanism of action for these outcomes is still being explored, although one likely hypothesis holds that ECAP feedback control may minimize recruitment of Aβ nociceptors and Aδ fibers during daily
International Nuclear Information System (INIS)
Soto Guzman, Mariana
2014-01-01
An evaluation is made of the technical and financial feasibility for the change of material of a platinum coil used in guidewires for procedures of cardiological intervention in a company producing medical devices in Costa Rica. The proposed exchange rate on the product has already was marketed. A validation and verification of the design are performed again for the characteristics impacted, in addition to notify the regulatory bodies of the material change and have its prior approval commercialization of the modified product. A radiopacity study of the proposed materials is carried out to evaluate the materials as well as a consultation with suppliers approved by the company to verify the availability of candidate materials. The load of the palladium spring is evaluated with respect to the Platinum spring to three defined extensions and is determined. The project has proposed to save $663 897 for the Palladium coil and $739 175 for the 'A alloy' coil composed mainly of Palladium. The project can be developed according to the financial study, since the savings gains are greater than the investment made by the company for the execution of the product. Deeper radiopacity tests are recommended to perform. Comparison of the current spring with those proposed under fluoroscopy in the field of application. Suppliers' studies have shown that the percentage of visibility of palladium is decreased in the energetic environment in which medical interventions are carried out and the guidewires are used. (author) [es
International Nuclear Information System (INIS)
Hyun-Sik Park; Ki-Yong Choi; Dong-Jin Euh; Tae-Soon Kwon; Won-Pil Baek
2005-01-01
Full text of publication follows: The simulation capability of the KAERI integral effect test facility, ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation), has been assessed for a large-break loss-of-coolant accident (LBLOCA) transient. The ATLAS facility is a 1/2 height-scaled, 1/144 area-scaled (1/288 in volume scale), and full-pressure test loop based on the design features of the APR1400, an evolutionary pressurized water reactor that has been developed by Korean industry. The APR1400 has four mechanically separated hydraulic trains for the emergency core cooling system (ECCS) with direct vessel injection (DVI). The APR1400 design features have brought about several new safety issues related to the LBLOCA including the steam-water interaction, ECC bypass, and boiling in the reactor vessel downcomer. The ATLAS facility will be used to investigate the multiple responses between the systems or between the components during various anticipated transients. The ATLAS facility has been designed according to a scaling method that is mainly based on the model suggested by Ishii and Kataoka. The ATLAS facility is being evaluated against the prototype plant APR1400 with the same control logics and accident scenarios using the best-estimated code, MARS. This paper briefly introduces the basic design features of the ATLAS facility and presents the results of pre-test analysis for a postulated LBLOCA of a cold leg. The LBLOCA analyses has been conducted to assess the validity of the applied scaling law and the similarity between the ATLAS facility and the APR1400. As the core simulator of the ATLAS facility has the 10% capability of the scaled full power, the blowdown phase can not be simulated, and the starting point of the accident scenario is around the end of blowdown. So it is an important problem to find the correct initial conditions. For the analyzed LBLOCA scenario, the ATLAS facility showed very similar thermal-hydraulic characteristics to the APR
Wilson loops in minimal surfaces
International Nuclear Information System (INIS)
Drukker, Nadav; Gross, David J.; Ooguri, Hirosi
1999-01-01
The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface
Wilson loops and minimal surfaces
International Nuclear Information System (INIS)
Drukker, Nadav; Gross, David J.; Ooguri, Hirosi
1999-01-01
The AdS-CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in four dimensions is described by a minimal surface in AdS 5 xS 5 . We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS 5 xS 5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop operator. In the N=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface. (c) 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Jung, Minhwan; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The objective of this study is to describe the procedure of the self-calibration test for the flowmeters and to analyze the result of the test. In this work, the test procedure of the self-calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility was described and the test result was analyzed. In regard to the long-term SFR development plan, a large-scale sodium thermal-hydraulic test project is being progressed by KAERI. This project is called STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment), and it is proceeding by adopting the QA (Quality Assurance) program. Due to the specificity of an experiment using sodium(Na) categorized as Class 3(pyrophoric material and water-prohibiting substance) by the Safety Control of Dangerous Substances Act, it is necessary to apply QA in consideration of the sodium experiment environment in certain parts. The one of them is about calibration of measuring instrument such as a flowmeter, thermocouple and pressure gauge. It is described in the QAP (Quality Assurance Procedures) of KAERI that calibration work should be conducted in accordance with self-calibration procedures in a special case where conventional calibration is not practicable. The calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility is the typical example. As a result of test, it was confirmed that the flowmeters meet the pass criterion. Therefore, it was concluded that the flowmeters maintain instrument capacity a year ago.
Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing
2018-05-01
Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.
International Nuclear Information System (INIS)
Boo, Joon Hong
2000-01-01
The thermal performance of a flat evaporator for Capillary Pumped Loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to 4.9x10 4 W/m 2 was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed
International Nuclear Information System (INIS)
Furuya, M.; Inada, F.; Yasuo, A.
2001-01-01
Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (orig.)
Wang, Shengping; Fan, Shasha; Fan, Lijing; Zhao, Yujun; Ma, Xinbin
2015-04-21
A series of CaO-based sorbents were synthesized through a sol-gel method and doped with different amounts of CeO2. The sorbent with a Ca/Ce molar ratio of 15:1 showed an excellent absorption capacity (0.59 gCO2/g sorbent) and a remarkable cycle durability (up to 18 cycles). The admirable capture performance of CaCe-15 was ascribed to its special morphology formed by the doping of CeO2 and the well-distributed CeO2 particles. The sorbents doped with CeO2 possessed a loose shell-connected cross-linking structure, which was beneficial for the contact between CaO and CO2. CaO and CeO2 were dispersed homogeneously, and the existence of CeO2 also decreased the grain size of CaO. The well-dispersed CeO2, which could act as a barrier, effectively prevented the CaO crystallite from growing and sintering, thus the sorbent exhibited outstanding stability. The doping of CeO2 also improved the carbonation rate of the sorbent, resulting in a high capacity in a short period of time.
On some properties of conjugacy closed loops
International Nuclear Information System (INIS)
Adeniran, John Olusola
2002-07-01
It is shown that central loops are not conjugacy closed loops but instead are loops of units in their loop algebras that are conjugacy closed. It is also shown that certain inner mappings of a conjugacy closed loop are nuclear. Some invariants of left conjugacy closed loops are obtained. (author)
International Nuclear Information System (INIS)
Li, Yingjie; Zhao, Changsui; Ren, Qiangqiang; Duan, Lunbo; Chen, Huichao; Chen, Xiaoping
2009-01-01
Rice husk ash/CaO was proposed as a CO 2 sorbent which was prepared by rice husk ash and CaO hydration together. The CO 2 capture behavior of rice husk ash/CaO sorbent was investigated in a twin fixed bed reactor system, and its apparent morphology, pore structure characteristics and phase variation during cyclic carbonation/calcination reactions were examined by SEM-EDX, N 2 adsorption and XRD, respectively. The optimum preparation conditions for rice husk ash/CaO sorbent are hydration temperature of 75 C, hydration time of 8 h, and mole ratio of SiO 2 in rice husk ash to CaO of 1.0. The cyclic carbonation performances of rice husk ash/CaO at these preparation conditions were compared with those of hydrated CaO and original CaO. The temperature at 660 C-710 C is beneficial to CO 2 absorption of rice husk ash/CaO, and it exhibits higher carbonation conversions than hydrated CaO and original CaO during multiple cycles at the same reaction conditions. Rice husk ash/CaO possesses better anti-sintering behavior than the other sorbents. Rice husk ash exhibits better effect on improving cyclic carbonation conversion of CaO than pure SiO 2 and diatomite. Rice husk ash/CaO maintains higher surface area and more abundant pores after calcination during the multiple cycles; however, the other sorbents show a sharp decay at the same reaction conditions. Ca 2 SiO 4 found by XRD detection after calcination of rice husk ash/CaO is possibly a key factor in determining the cyclic CO 2 capture behavior of rice husk ash/CaO. (author)
UPTF loop seal tests and their RELAP simulation
International Nuclear Information System (INIS)
Tuomainen, M.; Tuunanen, J.
1997-01-01
In a pressurized water reactor the loop seals have an effect on the natural circulation. If a loop seal is filled with water it can cause a flow stagnation in the loop during two-phase natural circulation. Also the pressure loss over a filled loop seal is high, which lowers the water level in the core. Tests to investigate the loop seal behaviour were performed on a German Upper Plenum Test Facility (UPTF). The purpose of the tests was to study the amount of water in the loop seal under different steam flow rates. The tests were simulated with RELAP5/MOD3.2. With high steam flow rates the code had problems in simulating the amount of the water remaining in the pump elbow, but in general the agreement between the calculated results and the experimental data was good. (orig.)
Design of diamagnetic loop on EAST superconducting tokamak
International Nuclear Information System (INIS)
Xi Weibin; Shen Biao; Qian Jinping; Wu Songtao; Wan Baonan
2007-01-01
The design of EAST diamagnetic measurement system including diamagnetic loop and compensation loop has been given. The advantage of this method is that, the compensation loop is applied for eliminating the change of toroidal flux produced by the toroidal coils and the adjustable structure can be used to decrease the error signals come from the poloidal field. On the other hand, the effect of the material and structure on the diamagnetic loop is detailedly checked during engineering design. Error analysis of the measurement system is given. (authors)
Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs
Directory of Open Access Journals (Sweden)
Daniel P. Aalberts
2011-11-01
Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.
Operation of the hot test loop facilities
International Nuclear Information System (INIS)
Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho
1994-12-01
The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new
Mass inflation in the loop black hole
International Nuclear Information System (INIS)
Brown, Eric G.; Mann, Robert; Modesto, Leonardo
2011-01-01
In classical general relativity the Cauchy horizon within a two-horizon black hole is unstable via a phenomenon known as mass inflation, in which the mass parameter (and the spacetime curvature) of the black hole diverges at the Cauchy horizon. Here we study this effect for loop black holes - quantum gravitationally corrected black holes from loop quantum gravity - whose construction alleviates the r=0 singularity present in their classical counterparts. We use a simplified model of mass inflation, which makes use of the generalized Dray-'t Hooft relation, to conclude that the Cauchy horizon of loop black holes indeed results in a curvature singularity similar to that found in classical black holes. The Dray-'t Hooft relation is of particular utility in the loop black hole because it does not directly rely upon Einstein's field equations. We elucidate some of the interesting and counterintuitive properties of the loop black hole, and corroborate our results using an alternate model of mass inflation due to Ori.
Logical inference techniques for loop parallelization
Oancea, Cosmin E.
2012-01-01
This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop\\'s memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = Ø, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = Ø). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECTCLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers. Copyright © 2012 ACM.
Analysis of severe accidents on fast reactor test loop
International Nuclear Information System (INIS)
Cenerini, R.; Verzelletti, G.; Curioni, S.
1975-01-01
The Pec reactor is a sodium cooled fast reactor which is being designed for the primary purpose of accomodating closed sodium cooled test loops for the developmental and proof testing of fast reactor fuel assemblies. The test loops are located in the central test region of reactor. The basic function for which the loop is designed is burn-up to failure testing of fuel under advanced performance conditions. It is therefore necessary to design the loop for failure conditions. Basically two types of accidents can occur within the loops: rupture of gas plenum in the fuel pins and coolant starvation. Explosive tests on Pec loop, whose first set is described in this report, are devoted to investigate the effects of an accidental energy release on loop containment. The loop model reproduces in the test section the prototype dimensions in radial scale 1:1. Using a wire explosive charge of 300mm, the height of test section is sufficient for determining the containment capability of the loop that has a nearly constant deformation in a length of. 3-4 time the diameter. The inertial effects of the coolant column are reproduced by two tubes at the extremities of test section, closed with top plugs. Some tests has been performed by wrapping around the test section four layers of steel wire in order to evaluate the influence on the containment of tungsten wire that is foreseen in prototype loop. The influence of the coolant around the loop was evaluated by inserting the model in water. Dummy sub-assemblies was used and explosive substitutes the central rods. Piezoelectric pressure transducers were mounted on the three plugs and radial deformation was measured directly at different height. From experiments performed it resulted the importance of harmonic wires and inertial reaction of external water on loop containment; maximum containable energy is about 50 Cal with E.1 explosive
Two-loop polygon Wilson loops in N = 4 SYM
International Nuclear Information System (INIS)
Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.
2009-01-01
We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.
High temperature storage loop :
Energy Technology Data Exchange (ETDEWEB)
Gill, David Dennis; Kolb, William J.
2013-07-01
A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort
Anomaly freedom in perturbative loop quantum gravity
International Nuclear Information System (INIS)
Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.
2008-01-01
A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.
Logical inference techniques for loop parallelization
DEFF Research Database (Denmark)
Oancea, Cosmin Eugen; Rauchwerger, Lawrence
2012-01-01
the parallelization transformation by verifying the independence of the loop's memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S={}, where S is a set expression representing array indexes. Using...... of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECT-CLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers....
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2016-10-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)
2017-05-30
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2017-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
On the Loop Current Penetration into the Gulf of Mexico
Weisberg, Robert H.; Liu, Yonggang
2017-12-01
The Gulf of Mexico Loop Current generally intrudes some distance into the Gulf of Mexico before shedding an anticyclonic eddy and retreating back to its more direct entry to exit pathway. The control of this aperiodic process remains only partially known. Here we describe the evolution of the Loop Current throughout the era of satellite altimetry, and offer a mechanistic hypothesis on Loop Current intrusion. As a complement to the known effects of Loop Current forcing on the west Florida shelf circulation, we argue that the west Florida shelf, in turn, impacts the Loop Current evolution. A Self-Organizing Map analysis shows that anomalous northward penetrations of the Loop Current into the Gulf of Mexico occur when the eastern side of Loop Current is positioned west from the southwest corner of the west Florida shelf, whereas the more direct inflow to outflow route occurs when the eastern side of the Loop Current comes in contact with the southwest corner of the west Florida shelf. In essence, we argue that the west Florida shelf anchors the Loop Current in its direct path configuration and that farther northward penetration into the Gulf of Mexico occurs when such anchoring is released. To test of this hypothesis heuristically, we estimate that the dissipation and buoyancy work due to known Loop Current forcing of the west Florida shelf circulation (when in contact with the southwest corner) may exceed the pressure work required for the Loop Current to advance against the ambient Gulf of Mexico fluid.Plain Language SummaryThe Gulf of Mexico Loop Current may intrude far into the Gulf of Mexico or take a more direct entry to exit pathway. Such Loop Current behaviors are described using remote observations by satellites, and a heuristic hypothesis on the control of Loop Current intrusion is presented. We argue that energy dissipation and buoyancy work by the west Florida shelf circulation, when the Loop Current contacts the southwest corner of the west Florida shelf
Mirror symmetry and loop operators
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)
2015-11-09
Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.
Reactor recirculation pump test loop
International Nuclear Information System (INIS)
Taka, Shusei; Kato, Hiroyuki
1979-01-01
A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)
Shortening a loop can increase protein native state entropy.
Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov
2015-12-01
Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.
Loop Corrections in Very Special Relativity Standard Model
Alfaro, Jorge
2018-01-01
In this talk we want to study one-loop corrections in VSRSM. In particular, we use the new Sim(2)-invariant dimensional regularization to compute one-loop corrections to the Effective Action in the subsector of the VSRSM that describe the interaction of photons with charged leptons. New stringent bounds for the masses of ve and vµ are obtained.
Loop Heat Pipe Startup Behaviors
Ku, Jentung
2016-01-01
A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.
Modeling of compact loop antennas
International Nuclear Information System (INIS)
Baity, F.W.
1987-01-01
A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak
WWER type reactor primary loop imitation on large test loop facility in MARIA reactor
International Nuclear Information System (INIS)
Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.
1982-01-01
At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru
International Nuclear Information System (INIS)
Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta
2004-01-01
Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein
Nosari, I; Lepore, G; Querci, F; Maglio, M L; Sileo, F; Pagani, G
1989-06-01
We studied the effects of a premeal sc injection of an analog of somatostatin (SMS 201-995, Sandoz) on the postprandial glycemic excursions, insulin requirement and hormone profiles (GH, glucagon and C-peptide) in 8 IDDM patients (diabetes duration 14.0 +/- 6.5 yr, daily insulin requirement 36 +/- 6.4 U) maintained normoglycemic by connecting them to a closed-loop insulin infusion system (Betalike, Genoa). The morning of the test the patients were connected to the Betalike and their glucose levels stabilized for at least 4 h. At 13:00 h the study was begun with a sc injection of 50 micrograms of SMS 201-995 or placebo (randomly) and a standardized mixed meal (800 Kcal) was given. Blood samples were obtained 0, 15, 30, 60, 120 and 180 min after the injection. Each patient was tested both with SMS 201-995 and placebo. Postmeal glycemic peaks were decreased after SMS 201-995 (119.6 +/- 5.4 mg/dl vs 149.1 +/- 4.2; p less than 0.05) as well as insulin requirements (3.2 +/- 0.8 U vs 13.3 +/- 1.9; p less than 0.01) for the 180 min postprandial period. Similarly, glucagon level was reduced 30 min postprandially (24 +/- 6 pg/ml vs 59 +/- 24; p less than 0.05) and so GH level only 180 min after lunch (p less than 0.05). The premeal injection of SMS decreases postprandial glycemic excursions and the corresponding insulin requirement. The action of SMS 201-995 may be mainly mediated by the suppression of postprandial glucagon peak.
International Nuclear Information System (INIS)
Aung, Nay Zar; Li, Songjing
2013-01-01
Highlights: • Optimum inclination for maximum heat flux changes with latitude of location. • Optimum inclination for maximum heat flux also changes local solar time. • Maximum flow rate increases with increasing of riser tube size. • Maximum mass flow rate is obtained at different inclinations for different risers. • Length of two-phase region depends on inclination angles but not riser tube size. - Abstract: In this work, the effect of riser diameter and its inclination angle on system parameters in a two-phase closed loop thermosyphon solar water heater has been numerically investigated. Here, receivable heat flux by the collector, circulating mass flow rate, driving pressure, total pressure drop, heat transfer coefficient in risers and collector efficiency are defined as system parameters. For this aim, a model of two-phase thermosyphon solar water heater that is acceptable for various inclinations is presented and variations of riser diameter and inclination are considered. The riser tube size is varied from 1.25 cm to 2.5 cm with inclination range 2–75°. The system absolute pressure is set as 3567 Pa and water is chosen as working fluid. The results show that higher inclination angle is required for higher latitude location to obtain maximum solar heat flux. At local solar noon of 21.996 north latitude, the optimum inclination angle increases in the range of 24–44° with increasing of riser diameter giving maximum circulating mass flow rate from 0.02288 kg/s to 0.03876 kg/s. The longer two-phase heat transfer characteristics can be obtained at smaller inclination angles and mass flow rate for all riser tube sizes. Therefore, it is observed that the optimum inclination angles and diameters for solar heat flux, circulating mass flow rate and heat transfer coefficient in two-phase thermosyphon systemdo not coincide. From this work, better understanding and useful information are provided for constructing two-phase thermosyphon solar heaters
Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng
2015-06-01
Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in
International Nuclear Information System (INIS)
Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.
2013-01-01
We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry
Paul, Clayton R
2010-01-01
"Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.
International Nuclear Information System (INIS)
Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.
2011-01-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
Miura, Masanobu; Sugimura, Koichiro; Sakata, Yasuhiko; Miyata, Satoshi; Tadaki, Soichiro; Yamauchi, Takeshi; Onose, Takeo; Tsuji, Kanako; Abe, Ruri; Oikawa, Takuya; Kasahara, Shintaro; Nochioka, Kotaro; Takahashi, Jun; Shimokawa, Hiroaki
2016-05-25
It remains to be elucidated whether addition of renin-angiotensin-aldosterone system (RAAS) inhibitors and/or β-blockers to loop diuretics has a beneficial prognostic impact on chronic heart failure (CHF) patients. From the Chronic Heart failure Analysis and Registry in the Tohoku district 2 (CHART-2) Study (n=10,219), we enrolled 4,134 consecutive patients with symptomatic stage C/D CHF (mean age, 69.3 years, 67.7% male). We constructed Cox models for composite of death, myocardial infarction, stroke and HF admission. On multivariate inverse probability of treatment weighted (IPTW) Cox modeling, loop diuretics use was associated with worse prognosis with hazard ratio (HR) 1.28 (Pdiuretics were associated with worse prognosis with HR 1.32 and 1.56, respectively (both Pdiuretics. Chronic use of loop diuretics is significantly associated with worse prognosis in CHF patients in a dose-dependent manner, whereas the triple combination of RAAS inhibitor(s), MRA, and β-blocker(s) is associated with better prognosis when combined with low-dose loop diuretics. (Circ J 2016; 80: 1396-1403).
International Nuclear Information System (INIS)
Ladd-Lively, Jennifer L
2008-01-01
The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by
A totally diverting loop colostomy.
Merrett, N. D.; Gartell, P. C.
1993-01-01
A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632
Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W
2015-01-01
We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.
LoopIng: a template-based tool for predicting the structure of protein loops.
Messih, Mario Abdel; Lepore, Rosalba; Tramontano, Anna
2015-01-01
) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has
Cosmological footprints of loop quantum gravity.
Grain, J; Barrau, A
2009-02-27
The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.
International Nuclear Information System (INIS)
Alizadeh, Mojtaba; Kojori, Shokrollah Shokri
2015-01-01
Offering substantial features, PMSG (permanent magnet synchronous generator) based WECS (wind energy conversion system) is definitely one of the most reliable and efficient ways of extracting electrical power from the wind. Like other WECSs, PMSG-based WECS (PMSG WECS) encompasses two main control loops, each equipped with PI (proportional integral) controller, to control speed and currents of the system. This work develops a virtually adaptive PI controller to enhance the performance of both main control loops of a PMSG WECS. A WNN (wavelet neural network) is proposed to be added to each closed control loop in series with PI controller. Due to having a cascade connection, the transfer function of the WNN, which is a pure gain in each time step, is multiplied by PI gains. Therefore, the value of transfer function of the WNN, and consequently, both parameters of PI controller can be changed in each time step by online training of the WNN, resulting in a virtually adaptive PI controller. The performance of the proposed controller in improving efficacy of both current and speed control loops is evaluated by simulation studies and is also compared to that of PI controller, WNNC (wavelet neural network controller), and QNNC (quantum neural network controller). - Highlights: • To propose a virtually adaptive PI controller to be used in a PMSG WECS. • Both parameters of PI controller can be changed in each time step. • The proposed controller can be used as both current or speed controller. • The plant data is not required for offline training of proposed current controller.
Loop residues and catalysis in OMP synthase
DEFF Research Database (Denmark)
Wang, Gary P.; Hansen, Michael Riis; Grubmeyer, Charles
2012-01-01
binding of OMP or PRPP in binary complexes was affected little by loop mutation, suggesting that the energetics of ground-state binding have little contribution from the catalytic loop, or that a favorable binding energy is offset by costs of loop reorganization. Pre-steady-state kinetics for mutants...... values for all four substrate molecules. The 20% (i.e., 1.20) intrinsic [1?-3H]OMP kinetic isotope effect (KIE) for WT is masked because of high forward and reverse commitment factors. K103A failed to express intrinsic KIEs fully (1.095 Â± 0.013). In contrast, H105A, which has a smaller catalytic lesion...... (preceding paper in this issue, DOI 10.1021/bi300083p)]. The full expression of KIEs by H105A and E107A may result from a less secure closure of the catalytic loop. The lower level of expression of the KIE by K103A suggests that in these mutant proteins the major barrier to catalysis is successful closure...
Semiclassical analysis of loop quantum gravity
International Nuclear Information System (INIS)
Conrady, F.
2005-01-01
In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)
Semiclassical analysis of loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Conrady, F.
2005-10-17
In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)
Logical inference techniques for loop parallelization
Oancea, Cosmin E.; Rauchwerger, Lawrence
2012-01-01
This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop's memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = Ø, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = Ø). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECTCLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers. Copyright © 2012 ACM.
Xenon oscillation tests in four-loop PWR cores
International Nuclear Information System (INIS)
Aoki, Norihiko; Osaka, Kenichi; Shimada, Shoichiro; Tochihara, Hiroshi; Machii, Seigo
1980-01-01
The Kansai Electric Power Co.'s OHI Unit 1 and 2 are the first 4-loop PWRs in Japan which use 17 x 17 fuel assemblies and have essentially the same plant parameters. A 4-loop core has larger core radius and higher power density than those of 2- or 3-loop cores, and is less stable for Xe oscillation. It is therefore important to confirm that Xe oscillations in radial direction are sufficiently stable in a 4-loop core. Radial and axial Xe oscillation tests were performed during the startup physics tests of OHI Unit 1 and 2; Xe oscillation was induced by perturbation of control rods and the Xe effect on power distribution observed periodically. The test results show that the transverse Xe oscillation in the 4-loop core is sufficiently stable and that the agreement between the measurement and the calculated prediction is good. (author)
Stepping out of homogeneity in loop quantum cosmology
International Nuclear Information System (INIS)
Rovelli, Carlo; Vidotto, Francesca
2008-01-01
We explore the extension of quantum cosmology outside the homogeneous approximation using the formalism of loop quantum gravity. We introduce a model where some of the inhomogeneous degrees of freedom are present, providing a tool for describing general fluctuations of quantum geometry near the initial singularity. We show that the dynamical structure of the model reduces to that of loop quantum cosmology in the Born-Oppenheimer approximation. This result corroborates the assumptions that ground loop cosmology sheds some light on the physical and mathematical relation between loop cosmology and full loop quantum gravity, and on the nature of the cosmological approximation. Finally, we show that the non-graph-changing Hamiltonian constraint considered in the context of algebraic quantum gravity provides a viable effective dynamics within this approximation
Directory of Open Access Journals (Sweden)
Giorgio Zamboni
2017-01-01
Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.
International Nuclear Information System (INIS)
McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.
2000-01-01
The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies
Two-loop hard-thermal-loop thermodynamics with quarks
International Nuclear Information System (INIS)
Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael
2004-01-01
We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N f =2 and with exact numerical results obtained in the large-N f limit
Autosomal mutations affecting Y chromosome loops in Drosophila melanogaster
Directory of Open Access Journals (Sweden)
Petrucci Romano
2008-04-01
Full Text Available Abstract Background The Y chromosome of Drosophila melanogaster harbors several genes required for male fertility. The genes for these fertility factors are very large in size and contain conspicuous amounts of repetitive DNA and transposons. Three of these loci (ks-1, kl-3 and kl-5 have the ability to develop giant lampbrush-like loops in primary spermatocytes, a cytological manifestation of their active state in these cells. Y-loops bind a number of non-Y encoded proteins, but the mechanisms regulating their development and their specific functions are still to be elucidated. Results Here we report the results of a screen of 726 male sterile lines to identify novel autosomal genes controlling Y-loop function. We analyzed mutant testis preparations both in vivo and by immunofluorescence using antibodies directed against Y-loop-associated proteins. This screen enabled us to isolate 17 mutations at 15 loci whose wild-type function is required for proper Y-loop morphogenesis. Six of these loci are likely to specifically control loop development, while the others display pleiotropic effects on both loops and meiotic processes such as spermiogenesis, sperm development and maturation. We also determined the map position of the mutations affecting exclusively Y-loop morphology. Conclusion Our cytological screening permitted us to identify novel genetic functions required for male spermatogenesis, some of which show pleiotropic effects. Analysis of these mutations also shows that loop development can be uncoupled from meiosis progression. These data represent a useful framework for the characterization of Y-loop development at a molecular level and for the study of the genetic control of heterochromatin.
String breaking with Wilson loops?
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.
BMN correlators by loop equations
International Nuclear Information System (INIS)
Eynard, Bertrand; Kristjansen, Charlotte
2002-01-01
In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)
Analysis of beam feedback loops of RF acceleration system at TARN II
International Nuclear Information System (INIS)
Katayama, Takeshi.
1992-08-01
Two beam-feedback-loops are prepared for the frequency control of RF acceleration system at cooler-synchrotron TARN II. One is the phase-loop and the other the radial-position-loop. In the present paper, the effects of these loops on the beam dynamics in the synchrotron are studied on the basis of Laplace transformation approach as well as the numerical values for the synchrotron acceleration at TARN II. (author)
International Nuclear Information System (INIS)
Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.
1984-06-01
The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system
Palkowski, Marek; Bielecki, Wlodzimierz
2017-06-02
RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.
Constructing QCD one-loop amplitudes
International Nuclear Information System (INIS)
Forde, D
2008-01-01
In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 (var e psilon). The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally
Directory of Open Access Journals (Sweden)
Mehdi Dehjourian
2016-08-01
Full Text Available The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.
International Nuclear Information System (INIS)
Castiglia, F.; Oliveri, E.; Taibi, S.; Vella, G.
1992-01-01
In order to improve the safety features of a 3-loop pressurized water nuclear reactor we propose a slight design variant consisting in the introduction of a bypass hole in the divider plate of the coolant chambers of the steam generators. The aim is to reduce both the extent and the duration of the core exposure and thus the maximum value of the peak cladding temperature, in case of a hypothetical cold leg small break loss of coolant accident. The proposal, as attested by a preliminary RELAP5/MOD3 analysis, seems to deserve some attention. (6 figures) (Author)
Operator decision support system for sodium loop
Energy Technology Data Exchange (ETDEWEB)
Lee, Kwang Hyeang; Park, Kyu Ho; Kim, Tak Kon; Jo, Choong Ho; Seong, Kyeong A; Lee, Keon Myeong; Kim, Yeong Dal; Kim, Chang Beom; Kim, Jong Kyu; Jo, Hee Chang; Lee, Ji Hyeong; Jeong, Yoon Soo; Chio, Jong Hyeong; Jeong, Bong Joon; Hong, Joon Seong; Kim, Bong Wan; Seong, Byeong Hak [Korea Advanced Institute Science and Technology, Taejon (Korea, Republic of)
1994-07-01
The objective of this study is to develop an operator decision support system by computerizing the sodium circuit. This study developed graphical display interface for the control panel which provides the safety control of equipment, the recognition of experimental process states and sodium circuit states. In this study, basic work to develop an operator decision support real-time expert system for sodium loop was carried out. Simplification of control commands and effective operation of various real-time data and signals by equipment code standardization are studied. The cost ineffectiveness of the single processor structure provides the ground for the development of cost effective parallel processing system. The important tasks of this study are (1) design and implementation of control state surveillance panel of sodium loop, (2) requirement analysis of operator support real-time expert system for sodium loop, (3) design of standard code rule for operating equipment and research on the cost effective all purpose parallel processing system and (4) requirement analysis of expert system and design of control state variables and user interface for experimental process. 10 refs., 36 figs., 20 tabs.
On the One Loop Corrections to Inflation II
DEFF Research Database (Denmark)
Sloth, Martin Snoager
2006-01-01
In this paper we extend our previous treatment of the one-loop corrections to inflation. Previously we calculated the one-loop corrections to the background and the two-point correlation function of inflaton fluctuations in a specific model of chaotic inflation. We showed that the loop correction...... model of chaotic inflation with a quadratic inflationary potential. We discuss the physical interpretation of the effect in terms of the tensor-to-scalar consistency relation. Finally, we discuss the relation to the work of Weinberg on quantum contributions to cosmological correlators....
Point-defect migration into an infinitesimal dislocation loop
International Nuclear Information System (INIS)
Woo, C.H.
1981-11-01
Point-defect migration into an infinitesimal dislocation loop in an isotropic linear elastic medium is described. Particular care has been taken to include the effects of the saddle-point shape anisotropy of the point defect. Expressions for the reaction radii and the bias are derived, both in the presence and absence of an external applied stress. These are found to depend on intrinsic parameters, such as the loop strength, the loop nature (vacancy or interstitial), the relaxation volume, the saddle-point shape, and extrinsic parameters, such as the magnitude and direction of the external stress, and the temperature. The implications of the results are discussed
Directory of Open Access Journals (Sweden)
Mengzhe Guo
Full Text Available Mass spectrometry is a valuable tool for the analysis and identification of chemical compounds, particularly proteins and peptides. Lichenysins G, the major cyclic lipopeptide of lichenysin, and the non-covalent complex of lichenysins G and 4-ethylguaiacol were investigated with negative ion ESI tandem mass spectrometry. The different fragmentation mechanisms for these compounds were investigated. Our study shows the 4-ethylguaiacol hydrogen bond with the carbonyl oxygen of the ester group in the loop of lichenysins G. With the help of this hydrogen bond interaction, the ring structure preferentially opens in lactone linkage rather than O-C bond of the ester-group to produce alcohol and ketene. Isothermal titration 1H-NMR analysis verified the hydrogen bond and determined the proportion of subject and ligand in the non-covalent complex to be 1∶1. Theoretical calculations also suggest that the addition of the ligand can affect the energy of the transition structures (TS during loop opening.
Rahman, Md. Lutfor; Afrose, Tonima; Tahmina, Halima Khatun; Rinky, Rumana Parvin; Ali, Mohammad
2016-07-01
Pulsating heat pipe (PHP) is a new innovation in the modern era of miniaturizes thermal management system for its higher heating and cooling capacity. The objective of this experiment is to observe the performance of open loop pulsating heat pipe using two fluids at different filling ratios. This OLPHP is a copper capillary tube of 2.5mm outer diameter and 2mm inner diameter. It consists of 8 loops where the evaporative section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is conducted with distilled water and acetone at 40%, 50%, 60%, and 70% filling ratios where 0° (vertical) is considered as definite angle of inclination. Distilled water and acetone are selected as working fluids considering their different latent heat of vaporization and surface tension. It is found that acetone shows lower thermal resistance than water at all heat inputs. Best performance of acetone is attained at 70% filling ratio. Water displays better heat transfer capability at 50% filling ratio.
Loop equations in the theory of gravitation
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Voronov, N.A.
1981-01-01
Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru
Kalman Orbit Optimized Loop Tracking
Young, Lawrence E.; Meehan, Thomas K.
2011-01-01
Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.
Loop transfer recovery for general observer architecture
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Søgaard-Andersen, Per; Stoustrup, Jakob
1991-01-01
A general and concise formulation is given of the loop transfer recovery (LTR) design problem based on recovery errors. Three types of recovery errors are treated: open loop recovery, sensitivity recovery and input-output recovery errors. The three corresponding versions of the asymptotic recovery...... recovery cases. This general recovery formulation covers all known observer based compensator types as special cases. The conditions given in this setting are effectively the aim of all known LTR design methods. The recovery formulation is interpreted in terms of a modelmatching problem as well, which...... is examined by means of the Q-parametrization. It is shown how the general controller obtained by the Q-parametrization can be written as a Luenberger observer based controller. In all cases, n controller states suffice to achieve recovery. The compensators are characterized for errors both on the input...
Symmetry reduction of loop quantum gravity
International Nuclear Information System (INIS)
Brunnemann, Johannes; Koslowski, Tim A
2011-01-01
The relation between standard loop quantum cosmology (LQC) and full loop quantum gravity (LQG) fails already at the first nontrivial step: the configuration space of LQC cannot be embedded into the configuration space of full LQG due to a topological obstruction. We investigate this obstruction in detail, because many topological obstructions are the source of physical effects. For this, we derive the topology of a large class of subspaces of the LQG configuration space. This allows us to find the extension of the standard LQC configuration space that admits an embedding in agreement with Fleischhack (arXiv:1010.0449v1 [math-ph]). We then construct the embedding for flat FRW LQC and find the reassuring result that it coincides asymptotically with standard LQC. (paper)
Penguin loops with confined quark propagators
International Nuclear Information System (INIS)
Eeg, J.O.
1984-12-01
The ΔS = 1 penguin diagram is calculated by representing the internal quark lines in the loop by bag model wave functions. Because of the involved GIM-mecanism, only the lowest internal quark modes are kept in the loop. The result depends cruically on the values of the strong coupling constant and the quark energy of the bag model wave functions. With reasonable values of parameters, contributions corresponding to effective penguin coeffisient values of approximately two to five times the standard pertubative ones, have been found. Thus the theoretical value for the ratio between ΔI = 1/2 and ΔI = 3/2 amplitudes seems to be improved
A type of loop algebra and the associated loop algebras
International Nuclear Information System (INIS)
Tam Honwah; Zhang Yufeng
2008-01-01
A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out
Probability safety assessment of LOOP accident to molten salt reactor
International Nuclear Information System (INIS)
Mei Mudan; Shao Shiwei; Yu Zhizhen; Chen Kun; Zuo Jiaxu
2013-01-01
Background: Loss of offsite power (LOOP) is a possible accident to any type of reactor, and this accident can reflect the main idea of reactor safety design. Therefore, it is very important to conduct a study on probabilistic safety assessment (PSA) of the molten salt reactor that is under LOOP circumstance. Purpose: The aim is to calculate the release frequency of molten salt radioactive material to the core caused by LOOP, and find out the biggest contributor to causing the radioactive release frequency. Methods: We carried out the PSA analysis of the LOOP using the PSA process risk spectrum, and assumed that the primary circuit had no valve and equipment reliability data based on the existing mature power plant equipment reliability data. Results: Through the PSA analysis, we got the accident sequences of the release of radioactive material to the core caused by LOOP and its frequency. The results show that the release frequency of molten salt radioactive material to the core caused by LOOP is about 2×10 -11 /(reactor ·year), which is far below that of the AP1000 LOOP. In addition, through the quantitative analysis, we obtained the point estimation and interval estimation of uncertainty analysis, and found that the biggest contributor to cause the release frequency of radioactive material to the core is the reactor cavity cooling function failure. Conclusion: This study provides effective help for the design and improvement of the following molten salt reactor system. (authors)
Universality hypothesis breakdown at one-loop order
Carvalho, P. R. S.
2018-05-01
We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
Stability analysis for single-phase liquid metal rectangular natural circulation loops
International Nuclear Information System (INIS)
Lu, Daogang; Zhang, Xun; Guo, Chao
2014-01-01
Highlights: • The stability for asymmetric liquid metal natural circulation loops is analyzed. • The Na and NaK loops have higher critical Reynolds number than Pb and LBE loops. • Decreasing the ratio of height to width of loop can increase loop stability. • The length of heater would not affect the loop stability obviously. • Adding the length or heat transfer coefficient of cooler can increase loop stability. - Abstract: Natural circulation systems are preferred in some advanced nuclear power plants as they can simplify the designs and improve the inherent safety. The stability and steady-state characteristics of natural circulation are important for the applications of natural circulation loops (NCLs). A linear stability analysis method was used to study the stability behavior of liquid metal NCLs. The influences of the types of working fluids and loop geometry parameters on the stability of NCLs were evaluated. The liquid sodium (Na) loop and sodium–potassium alloy (NaK) loop would be more stable than lead bismuth eutectics (LBE) loop. The pressure drop could stabilize the loop behavior and also lead an increase of operating temperature for the loop. The NCL with a lower aspect ratio (ratio of vertical center distance between the heating and cooling section to the horizontal length of loop) is supposed to be more stable. It was found that the length of heating section would not have an obvious effect on the stability of NCL. However, the loop behavior could be stabilized by adding the length or heat transfer coefficient of the cooling section
International Nuclear Information System (INIS)
Deviren, Bayram; Keskin, Mustafa
2012-01-01
The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-02-20
The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.
Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop
Directory of Open Access Journals (Sweden)
Geslot Benoit
2018-01-01
Full Text Available Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop and another one where the power is free to drift (open loop. First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.
Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop
Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick
2018-01-01
Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.
Tritium Management Loop Design Status
Energy Technology Data Exchange (ETDEWEB)
Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)
2017-12-01
This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.
Criteria for saturated magnetization loop
International Nuclear Information System (INIS)
Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.
2016-01-01
Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.
Criteria for saturated magnetization loop
Energy Technology Data Exchange (ETDEWEB)
Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)
2016-03-15
Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.
Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation
Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.
2017-08-01
In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.
OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE
Energy Technology Data Exchange (ETDEWEB)
Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
2016-03-10
With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.
Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study
Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.
2007-01-01
The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979
DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics
Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.
2012-01-01
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924
Institute of Scientific and Technical Information of China (English)
聂佳佳
2012-01-01
Reverse logistics (e. g. product remanufacturing or recycling) practices can not only reduce the natural resources needed and the waste produced, but also help reduce the environmental burden. It is not unusual to see in practice the used-product collection activity contracted by a manufacturer to a third party, who is engaged only in the collection of the used products from the market. For example, in the automobile industry, used-product collection activities for the original equipment manufacturers are handled by some independent third parties. Recently, in the United States the "big three" auto manufacturers started to invest in joint research and remanufacturing partnerships with dismantling centers to benefit from their experiences and economics of scale. With the independent third parties joining the closed-loop supply chain, it becomes more difficult to study the closed-loop supply chain for of the increasing number supply chain members. In the third-party collecting closed-loop supply chain, there are several channels structures including no strategic alliance, strategic alliance between the retailer and the manufacturer, strategic alliance between the retailer and the third-party and strategic alliance between the manufacturer and the third-party. In this research, the aim is to examine the effect of these channel structures on the performance of members in a third-party collecting closed-loop supply chain. First, this paper adopts the game theory to develop four models of closed-loop supply chain. Second, the optimal retail prices, wholesale prices, return rates and profits of these models are derived. Third, these four models are compared with each other. Fourth, the effect of system parameters on the performance of members is researched with numerical simulation and some new findings are revealed. This study shows five interesting results. First, the retail price is the highest, the demand is the least and return rate is the lowest in the no strategic
International Nuclear Information System (INIS)
Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.
2016-01-01
A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.
Mordi, Natalie A; Mordi, Ify R; Singh, Jagdeep S; Baig, Fatima; Choy, Anna-Maria; McCrimmon, Rory J; Struthers, Allan D; Lang, Chim C
2017-01-01
Introduction Type 2 diabetes (T2D) and heart failure (HF) are a frequent combination, where treatment options remain limited. There has been increasing interest around the sodium–glucose cotransporter 2 (SGLT2) inhibitors and their use in patients with HF. Data on the effect of SGLT2 inhibitor use with diuretics are limited. We hypothesise that SGLT2 inhibition may augment the effects of loop diuretics and the benefits of SGLT2 inhibitors may extend beyond those of their metabolic (glycaemic parameters and weight loss) and haemodynamic parameters. The effects of SGLT2 inhibitors as an osmotic diuretic and on natriuresis may underlie the cardiovascular and renal benefits demonstrated in the recent EMPA-REG study. Methods and analysis To assess the effect of SGLT2 inhibitors when used in combination with a loop diuretic, the RECEDE-CHF (Renal and Cardiovascular Effects of SGLT2 inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure) trial is a single-centre, randomised, double-blind, placebo-controlled, cross-over trial conducted in a secondary care setting within NHS Tayside, Scotland. 34 eligible participants, aged between 18 and 80 years, with stable T2D and CHF will be recruited. Renal physiological testing will be performed at two points (week 1 and week 6) on each arm to assess the effect of 25 mg empagliflozin, on the primary and secondary outcomes. Participants will be enrolled in the trial for a total period between 14 and 16 weeks. The primary outcome will assess the effect of empagliflozin versus placebo on urine output. The secondary outcomes are to assess the effect of empagliflozin on glomerular filtration rate, cystatin C, urinary sodium excretion, urinary protein/creatinine ratio and urinary albumin/creatinine ratio when compared with placebo. Ethics and dissemination Ethics approval was obtained by the East of Scotland Research Ethics Service. Results of the trial will be submitted for publication in a peer
High pressure experimental water loop
International Nuclear Information System (INIS)
Grenon, M.
1958-01-01
A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr
Toward precision holography with supersymmetric Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Faraggi, Alberto [Instituto de Física, Pontificia Universidad Católica de Chile,Casilla 306, Santiago (Chile); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics,University of Michigan, Ann Arbor, MI 48109 (United States); Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)
2016-04-11
We consider certain 1/4 BPS Wilson loop operators in SU(N)N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS{sub 5}×S{sup 5}. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.
Gluon quasidistribution function at one loop
Energy Technology Data Exchange (ETDEWEB)
Wang, Wei; Zhao, Shuai [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China); Zhu, Ruilin [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China); Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing, Jiangsu (China)
2018-02-15
We study the unpolarized gluon quasidistribution function in the nucleon at one loop level in the large momentum effective theory. For the quark quasidistribution, power law ultraviolet divergences arise in the cut-off scheme and an important observation is that they all are subjected to Wilson lines. However for the gluon quasidistribution function, we first point out that the linear ultraviolet divergences also exist in the real diagram which is not connected to any Wilson line. We then study the one loop corrections to parton distribution functions in both cut-off scheme and dimensional regularization to deal with the ultraviolet divergences. In addition to the ordinary quark and gluon distributions, we also include the quark to gluon and gluon to quark splitting diagrams. The complete one-loop matching factors between the quasi and light cone parton distribution functions are presented in the cut-off scheme. We derive the P{sup z} evolution equation for quasi parton distribution functions, and find that the P{sup z} evolution kernels are identical to the DGLAP evolution kernels. (orig.)
Closed-loop, open-source electrophysiology
Directory of Open Access Journals (Sweden)
John D Rolston
2010-09-01
Full Text Available Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents to the neuronal network. Multi-unit or local field potential recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation triggered by recordings with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents.
Integrable systems and loop coproducts
International Nuclear Information System (INIS)
Musso, Fabio
2010-01-01
We present a generalization of a framework for the construction of classical integrable systems that we call loop coproduct formulation (Musso 2010 J. Phys. A: Math. Theor. 43 434026). In this paper, the loop coproduct formulation includes systems of Gelfand-Tsetlin type, the linear r-matrix formulation, the Sklyanin algebras, the reflection algebras, the coalgebra symmetry approach and some of its generalizations as particular cases, showing that all these apparently different approaches have a common algebraic origin. On the other hand, all these subcases do not exhaust the domain of applicability of this new technique, so that new possible directions of investigation do naturally emerge in this framework.
Perturbations in loop quantum cosmology
International Nuclear Information System (INIS)
Nelson, W; Agullo, I; Ashtekar, A
2014-01-01
The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB
LISA Pathfinder: OPD loop characterisation
Born, Michael; LPF Collaboration
2017-05-01
The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.
LOOP: engineering marvel, economic calamity
Energy Technology Data Exchange (ETDEWEB)
Brossard, E B
1985-01-01
The Louisiana Offshore Oil Port (LOOP) is the first superport built in the Lower 48. The United States was the only major oil-importing country that did not have a superport, and therefore, could not offload very large crude carriers (VLCCs). Unfortunately, a number of factors changed after it was decided to build LOOP, and these, plus the onerous provisions of the Deepwater Ports Act of 1974, which authorized superports, prevented LOOP from operating economically. LOOP's facilities consist of an offshore platform complex with three single-point-mooring (SPM) system buoys, 19 miles offshore in 110 feet of water, as well as a 32-million-barrel storage terminal 31 miles inland at Clovelly Salt Dome, and connecting pipelines offshore and onshore. By the time LOOP was started-up in May 1981, demand for oil had declined, because of rises in the price of oil, and the source of US oil imports had shifted back to the western hemisphere, away from the eastern hemisphere, closer to the US. The refinery mix in the US also changed, because of up-grading of a number of big refineries, which further reduced demand and made heavier crudes from countries like Mexico and Venezuela more economical. Because of reduced oil imports and shorter hauls, oil shippers started using or continued to use smaller tankers. Smaller tankers are not economical for LOOP, nor do they need LOOP. The start-up of the Trans-Alaska Pipeline System (TAPS) in mid-1977 backed out 1.5 million bd/sup -1/ of foreign imports. TAPS' capacity coincides with LOOP's offloading capacity of 1.4 million bd/sup -1/. US decontrol of domestic crude in 1981 and increased drilling, plus general energy conservation further reduced US oil imports. US consumption declined to 15.1 million bd/sup -1/ in 1983, from 18.8 million bd/sup -1/ in 1978. This award-winning superport needed federal decontrol and increased oil imports along with more VLCCs, in order to operate economically.
International Nuclear Information System (INIS)
Bern, Z.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.J.; Kosower, D.A.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
Fermions and loops on graphs: I. Loop calculus for determinants
International Nuclear Information System (INIS)
Chernyak, Vladimir Y; Chertkov, Michael
2008-01-01
This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix
Robust fault detection in open loop vs. closed loop
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Stoustrup, J.
1997-01-01
The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...
A virtual closed loop method for closed loop identification
Agüero, J.C.; Goodwin, G.C.; Hof, Van den P.M.J.
2011-01-01
Indirect methods for the identification of linear plant models on the basis of closed loop data are based on the use of (reconstructed) input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct identification requires
Elastic field of approaching dislocation loop in isotropic bimaterial
International Nuclear Information System (INIS)
Wu, Wenwang; Xu, Shucai; Zhang, Jinhuan; Xia, Re; Qian, Guian
2015-01-01
A semi-analytical solution is developed for calculating interface traction stress (ITS) fields due to elastic modulus mismatch across the interface plane of isotropic perfectly bounded bimaterial system. Based on the semi-analytical approaches developed, ITS is used to correct the bulk elastic field of dislocation loop within infinite homogenous medium, and to produce continuous displacement and stress fields across the perfectly-bounded interface. Firstly, calculation examples of dislocation loops in Al–Cu bimaterial system are performed to demonstrate the efficiency of the developed semi-analytical approach; Then, the elastic fields of dislocation loops in twinning Cu and Cu–Nb bimaterial are analyzed; Finally, the effect of modulus mismatch across interface plane on the elastic field of bimaterial system is investigated, it is found that modulus mismatch has a drastic impact on the elastic fields of dislocation loops within bimaterial system. (paper)
Nonlinear model predictive control for chemical looping process
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
2017-08-22
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.
Conformal anomaly of generalized form factors and finite loop integrals
Chicherin, Dmitry
2017-01-01
We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $\\ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(\\ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.
3-D numerical simulations of coronal loops oscillations
Directory of Open Access Journals (Sweden)
M. Selwa
2009-10-01
Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.
3-D numerical simulations of coronal loops oscillations
Directory of Open Access Journals (Sweden)
M. Selwa
2009-10-01
Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.
Free loop spaces and cyclohedra
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2003-01-01
Roč. 71, - (2003), s. 151-157 R&D Projects: GA AV ČR IAA1019203 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : cyclohedron * free loop space * recognition Subject RIV: BA - General Mathematics
Feedback - closing the loop digitally
International Nuclear Information System (INIS)
Zagel, J.; Chase, B.
1992-01-01
Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)
Wilson loops in Kerr gravitation
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1981-01-01
The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt
Loop quantum cosmology: Recent progress
Indian Academy of Sciences (India)
Aspects of the full theory of loop quantum gravity can be studied in a simpler .... group) 1-forms and vector fields and Λ is an SO(3)-matrix indicating the internal ... are p and c which are related to the more familiar scale factor by the relations.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Independent SU(2)-loop variables
International Nuclear Information System (INIS)
Loll, R.
1991-04-01
We give a reduction procedure for SU(2)-trace variables and introduce a complete set of indepentent, gauge-invariant and almost local loop variables for the configuration space of SU(2)-lattice gauge theory in 2+1 dimensions. (orig.)
International Nuclear Information System (INIS)
Tiwari, Abhinav; Igoshin, Oleg A
2012-01-01
Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details. (paper)
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Directory of Open Access Journals (Sweden)
Byung Duk Song
2017-09-01
Full Text Available In the green manufacturing system that pursues the reuse of used products, the residual value of collected used products (CUP hugely affects a variety of managerial decisions to construct profitable and environmental remanufacturing plans. This paper deals with a closed-loop green manufacturing system for companies which perform both manufacturing with raw materials and remanufacturing with collected used products (CUP. The amount of CUP is assumed as a function of buy-back cost while the quality level of CUP, which means the residual value, follows a known distribution. In addition, the remanufacturing cost can differ according to the quality of the CUP. Moreover, nowadays companies are subject to existing environment-related laws such as Extended Producer Responsibility (EPR. Therefore, a company should collect more used products than its obligatory take-back quota or face fines from the government for not meeting its quota. Through the development of mathematical models, two kinds of inspection policies are examined to validate the efficiency of two different operation processes. To find a managerial solution, a genetic algorithm is proposed and tested with numerical examples.
Directory of Open Access Journals (Sweden)
Glenn M Marshall
2011-06-01
Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.
Graham, Paul; Menkir, Getahun; Levis, Robert J.
2003-06-01
The photodissociation channels of acetophenone (C 6H 5)CO(CH 3), can be controlled by the use of tailored strong-field laser pulses together with a feedback loop incorporating an adaptive algorithm. This optimal control strategy is used to selectively cleave either the OCCH 3 or OCC 6H 5 bonds, monitored by detecting either mass 105 or 77, respectively. Varying the pulse chirp and duration prior to optimization is shown to affect the dynamic range of control. We show that it is possible to decrease the search space by limiting the retardance range of the spatial light modulator (SLM), or by decreasing the number of frequency elements manipulated by the SLM, and still achieve a certain degree of control over acetophenone dissociation. Performing consecutive experiments with identical experimental parameters and search criteria reveals that the learning algorithm may find solutions that have the same degree of control (various local solutions), with either similar SLM retardances or markedly different retardances. Comparison of the dynamic range of control between single-parameter optimizations (pulse energy and duration) with the tailored electric field profiles generated by the adaptive algorithm reveals an enhancement in the control of reaction product distributions in the latter scheme.
Lassen, E; Thomsen, K; Sørensen, S S; Pedersen, E B
1986-11-01
This paper examines a possible interaction between non-steroid antiinflammatory drugs (NSAI drugs) and renal lithium clearance in conscious, unoperated rats with diabetes insipidus (Brattleboro strain) and ordinary Wistar rats. The drugs were given with the food for 5 days before clearance determinations in the following daily doses per kg body weight: acetylsalicyclic acid 115 mg/kg, phenylbutazone 20 mg/kg, indomethacin 5 mg/kg, and penicillamine 65 mg/kg. None of the drugs affected the lithium clearance. Also urine flow, sodium clearance, potassium clearance, and prostaglandin E2 excretion remained unaffected by the treatments. The results suggest that a continued lowering of lithium clearance cannot be produced, at least not by administration of the drugs with the food. Since lithium clearance is a quantitative measure of the delivery of tubular fluid from the proximal tubules to the loop of Henle, the results also suggest that chronic administration of NSAI drugs does not influence delivery from the proximal tubules in rats. The lowering of lithium clearance observed by others after administration of the drugs by injection or by gastric tube may have been transient, lasting only for a short period after each administration.
Two- and three-loop amplitudes in covariant loop calculus
International Nuclear Information System (INIS)
Roland, K.
1988-04-01
We study 2- and 3-loop vacuum-amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space: One, based on the covariant Reggeon loop calculus (where modular invariance is not manifest). The other, based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the Reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to 'high' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretical structure. Agreement is found only by exploiting the connection between the 4 Jacobi θ-functions and number theory. (orig.)
Two- and three-loop amplitudes in covariant loop calculus
International Nuclear Information System (INIS)
Roland, K.
1989-01-01
We study two- and three-loop vacuum amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space. One is based on the covariant reggeon loop calculus (where modular invariance is not manifest). The other is based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to ''high'' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretic structure. Agreement is found only by exploiting the connection between the four Jacobi θ-functions and number theory. (orig.)
Saturating representation of loop conformational fragments in structure databanks
Directory of Open Access Journals (Sweden)
Fiser András
2006-07-01
Full Text Available Abstract Background Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks. Results We studied the representation of protein loop fragments up to 14 residues in length. All possible query fragments found in sequence databases (Sequence Space were clustered and cross referenced with available structural fragments in Protein Data Bank (Structure Space. We found that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in Structure Space with 50% or higher sequence identity. By correlating sequence and structure clusters of loops we found that a 50% sequence identity generally guarantees structural similarity. These percentages of coverage at 50% sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for loops of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence Space at any length up to 14 residues that is not matched with a conformational segment that shares at least 20% sequence identity. This minimum observed identity is 40% for loops of 12 residues or shorter and is as high as 50% for 10 residue or shorter loops. We also assessed the impact of rapidly growing sequence databanks on the estimated number of new loop conformations and found that while the number of sequentially unique sequence segments increased about six folds during the last five years there are almost no unique conformational segments among these up to 12 residues long fragments. Conclusion The results suggest that fragment based prediction approaches are not limited any more by the completeness of fragments in databanks but
International Nuclear Information System (INIS)
Ito, Hiroyuki
1989-01-01
In conventional FBR type reactors, primary coolants at high temperature uprise at a great flow rate and, due to the dynamic pressure thereof, the free surface is raised or sodium is partially jetted upwardly and then fallen again. Then, a wave killing plate comprising a buffer plate and a deflection plate is disposed to the liquid surface of coolants. Most of primary sodium uprising from the reactor core along the side of the upper mechanism during operation collide against the buffer plate of the wave killing plate to moderate the dynamic pressure and, further, disperse radially of the reactor vessel. On the other hand, primary sodium passing through flowing apertures collides against the deflection plate opposed to the flowing apertures to moderate the dynamic pressure, by which the force of raising the free surface is reduced. Thus, uprising and waving of the free surface can effectively be suppressed to reduce the incorporation of cover gases into the primary sodium, so that it is possible to prevent in injury of the recycling pump, abrupt increase of the reactor core reactivity and reduction of the heat efficiency of intermediate heat exchangers. (N.H.)
Quenching phenomena in natural circulation loop
International Nuclear Information System (INIS)
Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki
1995-01-01
Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity
Thermoelectric power generator with intermediate loop
Bell, Lon E; Crane, Douglas Todd
2013-05-21
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Pressure wave propagation in sodium loop
International Nuclear Information System (INIS)
Botelho, D.A.
1989-01-01
A study was done on the pressure wave propagation within the pipes and mixture vessel of a termohydraulic loop for thermal shock with sodium. It was used the characteristic method to solve the one-dimensional continuity and momentum equations. The numerical model includes the pipes and the effects of valves and other accidents on pressure losses. The study was based on designer informations and engineering tables. It was evaluated the pressure wave sizes, parametrically as a function of the draining valve closure times. (author) [pt
Evolution of active region loop plasma
International Nuclear Information System (INIS)
Krall, K.R.; Antiochos, S.K.
1980-01-01
We investigate numerically the adjustment of coronal active-region loops to changes in their heating rate. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux if dissipated by a static chromosphere, and (2) the method by which rhe chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates
Quenching phenomena in natural circulation loop
Energy Technology Data Exchange (ETDEWEB)
Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)
1995-09-01
Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.
Estimation of complex permittivity using loop antenna
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2004-01-01
A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....
Automation of loop amplitudes in numerical approach
International Nuclear Information System (INIS)
Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.
1997-01-01
An automatic calculating system GRACE-L1 of one-loop Feynman amplitude is reviewed. This system can be applied to 2 to 2-body one-loop processes. A sample calculation of 2 to 3-body one-loop amplitudes is also presented. (orig.)
Loop connectors in dentogenic diastema
Directory of Open Access Journals (Sweden)
Sanjna Nayar
2015-01-01
Full Text Available Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. Loss of anterior teeth with existing diastema may result in excess space available for pontic. This condition presents great esthetic challenge for prosthodontist. If implant supported prosthesis is not possible because of inadequate bone support, FPD along with loop connector may be a treatment option to maintain the diastema and provide optimal esthetic restoration. Here, we report a clinical case where FPD along with loop connector was used to achieve esthetic rehabilitation in maxillary anterior region in which midline diastema has been maintained.
In pile helium loop ''COMEDIE''
International Nuclear Information System (INIS)
Abassin, J.J.; Blanchard, R.J.; Gentil, J.
1981-01-01
The SR1 test in the COMEDIE loop has permitted to demonstrate particularly the device operation reliability with a fuel loading. The post-irradiation examinations have pointed out the good filter efficiency and have enabled to determine the deposition profiles either for the activation products (e.g.: 51 Cr, 60 Co) or for the fission products (e.g.: sup(110m)Ag, 131 I, 134 Cs, 137 Cs). (author)
Ground Loop Impedance of Long EHV Cable Lines
DEFF Research Database (Denmark)
Ohno, Teruo; Bak, Claus Leth; Sørensen, Thomas K.
2012-01-01
The distance protection scheme without communication is often applied to the backup protection of EHV cable lines. For a reliable operation of a ground distance relay, the ground loop impedance of EHV cable lines needs to have a linear relationship to the distance from the relay location...... to the fault location. The discontinuity of the ground loop impedance at cross-bonding points may have an ill effect on the reliable operation of the ground distance relay. However, the cause and parameters of the discontinuity and its effects on the ground distance relay protection have not been discussed...... in literature. Through the calculation of the ground loop impedance for cable lines, it has been found that, for long EHV cable lines, the reliable operation of the ground distance relay is possible with a typical relay setting. Effects of parameters, such as substation grounding, cable layouts...
Soft thermal contributions to 3-loop gauge coupling
Laine, M.; Schicho, P.; Schröder, Y.
2018-05-01
We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.
Dispersion relations in loop calculations
International Nuclear Information System (INIS)
Kniehl, B.A.
1996-01-01
These lecture notes give a pedagogical introduction to the use of dispersion relations in loop calculations. We first derive dispersion relations which allow us to recover the real part of a physical amplitude from the knowledge of its absorptive part along the branch cut. In perturbative calculations, the latter may be constructed by means of Cutkosky's rule, which is briefly discussed. For illustration, we apply this procedure at one loop to the photon vacuum-polarization function induced by leptons as well as to the γf anti-f vertex form factor generated by the exchange of a massive vector boson between the two fermion legs. We also show how the hadronic contribution to the photon vacuum polarization may be extracted from the total cross section of hadron production in e + e - annihilation measured as a function of energy. Finally, we outline the application of dispersive techniques at the two-loop level, considering as an example the bosonic decay width of a high-mass Higgs boson. (author)
Forhan, Sara E; Godfrey, Catherine C; Watts, D Heather; Langley, Carol L
2015-04-15
Cervical cancer, almost all of which is caused by human papillomavirus, accounts for 12% of female cancers worldwide and is more common among HIV-infected women. Nine of 10 deaths from cervical cancer occur in low- and middle-income countries (LMICs). Simple screening methods and outpatient treatment of precursor lesions save lives but the benefit of these interventions among HIV-infected women is uncertain. We reviewed evidence of the effects of screening with visual inspection with acetic acid (VIA), and outpatient treatment for cervical precancer among HIV-infected women in LMIC. A systematic review of articles published from January 1995 through July 2013 was conducted using key terms for VIA cervical screening, cervical precancer treatment with cryotherapy or loop electrosurgical excision procedure, HIV-infected women, low-resource settings, and outcomes, including morbidity and mortality. Of 2159 articles screened, 14 met inclusion criteria; all considered only morbidity outcomes. No articles dealt with the long-term impact of screening/treatment on cervical cancer incidence or mortality among HIV-infected women. Articles reported on performance of VIA, prevalence of cervical dysplasia, and complications and rates of recurrent dysplasia after treatment. Dysplasia prevalence and recurrence were higher among HIV-infected compared with HIV-uninfected women but morbidity from treatment was similar. Few data exist on long-term outcomes of VIA, cryotherapy, or loop electrosurgical excision procedure interventions among HIV-infected women in LMIC; longer-term outcomes research is needed to assess the effects of VIA or other screening modalities and outpatient treatment on prevention of cervical cancer among HIV-infected women.
Oscillation damping of chiral string loops
International Nuclear Information System (INIS)
Babichev, Eugeny; Dokuchaev, Vyacheslav
2002-01-01
Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Algorithm for counting large directed loops
Energy Technology Data Exchange (ETDEWEB)
Bianconi, Ginestra [Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Gulbahce, Natali [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545 (United States)
2008-06-06
We derive a Belief-Propagation algorithm for counting large loops in a directed network. We evaluate the distribution of the number of small loops in a directed random network with given degree sequence. We apply the algorithm to a few characteristic directed networks of various network sizes and loop structures and compare the algorithm with exhaustive counting results when possible. The algorithm is adequate in estimating loop counts for large directed networks and can be used to compare the loop structure of directed networks and their randomized counterparts.
Functional Fourier transforms and the loop equation
International Nuclear Information System (INIS)
Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.
1986-01-01
The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Closing the loop of deep brain stimulation.
Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance
2013-12-20
High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.
Closing the loop of deep brain stimulation
Directory of Open Access Journals (Sweden)
Romain eCARRON
2013-12-01
Full Text Available High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfils these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.
Closing the loop of deep brain stimulation
Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance
2013-01-01
High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555
Towards cosmological dynamics from loop quantum gravity
Li, Bao-Fei; Singh, Parampreet; Wang, Anzhong
2018-04-01
We present a systematic study of the cosmological dynamics resulting from an effective Hamiltonian, recently derived in loop quantum gravity using Thiemann's regularization and earlier obtained in loop quantum cosmology (LQC) by keeping the Lorentzian term explicit in the Hamiltonian constraint. We show that quantum geometric effects result in higher than quadratic corrections in energy density in comparison to LQC, causing a nonsingular bounce. Dynamics can be described by the Hamilton or Friedmann-Raychaudhuri equations, but the map between the two descriptions is not one to one. A careful analysis resolves the tension on symmetric versus asymmetric bounce in this model, showing that the bounce must be asymmetric and symmetric bounce is physically inconsistent, in contrast to the standard LQC. In addition, the current observations only allow a scenario where the prebounce branch is asymptotically de Sitter, similar to a quantization of the Schwarzschild interior in LQC, and the postbounce branch yields the classical general relativity. For a quadratic potential, we find that a slow-roll inflation generically happens after the bounce, which is quite similar to what happens in LQC.
Gaugino condensation, loop corrections and S-duality constraint
International Nuclear Information System (INIS)
Saririan, K.; California Univ., Berkeley, CA
1996-11-01
This talk is a brief review of gaugino condensation in superstring effective field theories and some related issues (such as renormalization of the gauge coupling in the effective supergravity theories and modular anomaly cancellation). As a specific example, we discuss a model containing perturbative (1-loop) corrections to the Kaehler potential and approximate S-duality symmetry
Polyakov loop fluctuations in the presence of external fields
Lo, Pok Man; Szymański, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2018-06-01
We study the implications of the spontaneous and explicit Z(3) center symmetry breaking for the Polyakov loop susceptibilities. To this end, ratios of the susceptibilities of the real and imaginary parts, as well as of the modulus of the Polyakov loop are computed within an effective model using a color group integration scheme. We show that the essential features of the lattice QCD results of these ratios can be successfully captured by the effective approach. Furthermore we discuss a novel scaling relation in one of these ratios involving the explicit breaking field, volume, and temperature.
Hyperstaticity and loops in frictional granular packings
Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.
2009-06-01
The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.
ABJM Wilson loops in arbitrary representations
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
ABJM Wilson loops in arbitrary representations
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi
2013-06-01
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Regularization ambiguities in loop quantum gravity
International Nuclear Information System (INIS)
Perez, Alejandro
2006-01-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
Advanced multi-evaporator loop thermosyphon
International Nuclear Information System (INIS)
Mameli, M.; Mangini, D.; Vanoli, G.F.T.; Araneo, L.; Filippeschi, S.; Marengo, M.
2016-01-01
A novel prototype of multi-evaporator closed loop thermosyphon is designed and tested at different heaters position, inclinations and heat input levels, in order to prove that a peculiar arrangement of multiple heaters may be used in order to enhance the flow motion and consequently the thermal performance. The device consists in an aluminum tube (Inner/Outer tube diameter 3.0 mm/5.0 mm), bent into a planar serpentine with five U-turns and partially filled with FC-72, 50% vol. The evaporator zone is equipped with five heated patches (one for each U-turn) in series with respect to the flow path. In the first arrangement, heaters are wrapped on each bend symmetrically, while in the second layout heaters are located on the branch just above the U-turn, non-symmetrical with respect to the gravity direction, in order to promote the fluid circulation in a preferential direction. The condenser zone is cooled by forced air and equipped with a 50 mm transparent section for the flow pattern visualization. The non-symmetrical heater arrangement effectively promotes a stable fluid circulation and a reliable operation for a wider range of heat input levels and orientations with respect to the symmetrical case. In vertical position, the heat flux dissipation exceeds the pool boiling heat transfer limit for FC-72 by 75% and the tube wall temperatures in the evaporator zone are kept lower than 80 °C. Furthermore, the heat flux capability is up to five times larger with respect to the other existing wickless heat pipe technologies demonstrating the attractiveness of the new concept for electronic cooling thermal management. - Highlights: • A novel passive heat transfer device named Multi-Evaporator Loop Thermosyphon is tested. • The loop is investigated at different heating patterns, inclinations and heat power levels. • The non-symmetrical heating configuration promotes the fluid circulation within the loop. • The performance in terms of maximum heat flux exceeds the
Growth kinetics of dislocation loops in irradiated ceramic materials
International Nuclear Information System (INIS)
Ryazanov, A.I.; Kinoshita, C.
2002-01-01
Ceramic materials are expected to be applied in the future fusion reactor as radio frequency (RF) windows, toroidal insulating breaks and diagnostic probes. The radiation resistance of ceramic materials, degradation of the electrical properties and radiation induced conductivity of these materials under neutron irradiation are determined by the kinetics of the accumulation of point defects in the matrix and point defect cluster formation (dislocation loops, voids, etc.). Under irradiation, due to the ionization process, excitation of electronic subsystem and covalent type of interaction between atoms the point defects in ceramic materials are characterized by the charge state (e.g. an F + center, an oxygen vacancy with a single trapped electron) and the effective charge. For the investigation of radiation resistance of ceramic materials for future fusion applications it is very important to understand the physical mechanisms of formation and growth of dislocation loops and voids under irradiation taking into account in this system the effective charge of point defects. In the present paper the physical mechanisms of dislocation loop growth in ceramic material are investigated. For this aim a theoretical model is suggested for the description of the kinetics of point defect accumulation in the matrix taking into account the charge state of the point defects and the effect of an electric field on diffusion migration process of charged point defects. A self-consistent system of kinetic equations describing the generation of electrical fields near dislocation loops and diffusion migration of charged point defects in elastic and electrical fields is formulated. The solution of the kinetic equations allows to find the growth rate of dislocation loops in ceramic materials under irradiation taking into account the charge state of the point defects and the effect of electric and elastic stress fields near dislocation loop on the diffusion processes
A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.
Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A
2005-11-01
While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.
Molecular Velcro constructed from polymer loop brushes showing enhanced adhesion force
Zhou, Tian; Han, Biao; Han, Lin; Li, Christopher; Department of Materials Science; Engineering Team; School of Biomedical Engineering, Science; Health Systems Team
2015-03-01
Molecular Velcro is commonly seen in biological systems as the formation of strong physical entanglement at molecular scale could induce strong adhesion, which is crucial to many biological processes. To mimic this structure, we designed, and fabricated polymer loop brushes using polymer single crystals with desired surface functionality and controlled chain folding. Compared with reported loop brushes fabricated using triblock copolymers, the present loop bushes have precise loop sizes, loop grafting density, and well controlled tethering locations on the solid surface. Atomic force microscopy-based force spectroscopy measurements using a polymer chain coated probe reveal that the adhesion force are significantly enhanced on the loop brush surface as compared with its single-strand counterpart. This study directly shows the effect of polymer brush conformation on their properties, and suggests a promising strategy for advanced polymer surface design.
Sensing loop performance monitoring in the safety systems of nuclear power stations
International Nuclear Information System (INIS)
Colley, R.C.; Widmeyer, M.; Weiss, J.H.; Wiegle, H.R.
1991-01-01
This paper reports on plant technical specifications and NRC regulatory guides which require testing of sensing loops to detect degradation and failure. Industry efforts have focused on specific manual testing to detect individual failure modes such as increased response time and calibration drift. Recent work performed by EPRI and by others using instrument loop data, failure modes, and effects analyses (FMEAs), and experience with utility on-line sensor health monitoring programs has established qualitative physical models of the sensing loop. This methodology has demonstrated that sensing loop cross comparison techniques can provide equivalent indication of sensing loop performance. It also provides more frequent sensing loop health indication than manual testing and reduces the requirement for manual testing
Loop diagrams without γ matrices
International Nuclear Information System (INIS)
McKeon, D.G.C.; Rebhan, A.
1993-01-01
By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions
Perturbation calculations with Wilson loop
International Nuclear Information System (INIS)
Peixoto Junior, L.B.
1984-01-01
We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt
Current control loop design and analysis based on resonant regulators for microgrid applications
DEFF Research Database (Denmark)
Federico, de Bosio; Pastorelli, Michelle; de Sousa Ribeiro, Luiz Antonio
2015-01-01
Voltage and current control loops play an important role in the performance of microgrids employing power electronics voltage source inverters. Correct design of feedback loops is essential for the proper operation of these systems. This paper analyzes the influence of state feedback cross......-coupling in the design of resonant regulators for inner current loops in power converters operating in standalone microgrids. It is also demonstrated that the effect of state feedback cross-coupling degrades the performance of the control loops by increasing the steady-state error. Different resonant regulators...
Invariant measure of the one-loop quantum gravitational backreaction on inflation
Miao, S. P.; Tsamis, N. C.; Woodard, R. P.
2017-06-01
We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.
Gauge theory loop operators and Liouville theory
International Nuclear Information System (INIS)
Drukker, Nadav; Teschner, Joerg
2009-10-01
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
ORIENTATION: KEY TO THE OODA LOOP – THE CULTURE FACTOR
Directory of Open Access Journals (Sweden)
Donald A. MACCUISH
2012-01-01
Full Text Available The late Colonel John Boyd developed what he called the OODA-Loop as both a learning and decision making model to help us better understand how we make decisions and learn. His OODA-Loop model consists of non-sequential elements: Observe – Orient – Decide – Action. He contended if one could cycle through these phases quicker and more accurately than one’s adversary you could then get inside your adversary’s OODA-Loop and “win”. The key to the OODA-Loop he noted is Orientation. He only drew one diagram of his OODA-Loop. Only in the Orientation phase did he elaborate component elements. These elements are: Cultural Traditions, Genetic Heritage, Analysis/Synthesis, New Information, and Previous Experience. All of these elements he contended are interconnected. Thus, the interaction of all these factors effects how we orient ourselves to the situation at hand. In this article I will share my view of the “Culture Factor” in Orientation.
On the determination of loop nature in the TEM
International Nuclear Information System (INIS)
Jenkins, M.L.
1997-01-01
The two direct methods available for determining the nature of small clusters, were studied. Experiments in heavy-ion irradiated Ag and Cu, including comparisons with Black-White contrast analysis (B-W), forced us to conclude that use of the 2-1/2D technique for analysis of faulted loops is impossible because of reciprocal-lattice spike and other effects. We used B-W analysis to study the clusters produced by RT heavy-ion irradiation of Cu. In-situ irradiations were performed in Argonne HVEM-Tandem Facility using 40 and 80 keV Kr + ions. Nearly all the analysable first-layer loops were vacancy in nature. Some deeper cluster were also certainly vacancy. There is no unequivocal evidence for interstitial loops under these conditions. The near impossibility of establishing that interstitial loops are not present, is shown by the fact that a large fraction of loops (over 50%) could not be analyzed either because they did not display clear B-W contrast under any condition or sufficiently consistent B-W contrast under several different operating conditions
Operational characteristics of miniature loop heat pipe with flat evaporator
Energy Technology Data Exchange (ETDEWEB)
Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)
2009-12-15
Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)
Covariant entropy bound and loop quantum cosmology
International Nuclear Information System (INIS)
Ashtekar, Abhay; Wilson-Ewing, Edward
2008-01-01
We examine Bousso's covariant entropy bound conjecture in the context of radiation filled, spatially flat, Friedmann-Robertson-Walker models. The bound is violated near the big bang. However, the hope has been that quantum gravity effects would intervene and protect it. Loop quantum cosmology provides a near ideal setting for investigating this issue. For, on the one hand, quantum geometry effects resolve the singularity and, on the other hand, the wave function is sharply peaked at a quantum corrected but smooth geometry, which can supply the structure needed to test the bound. We find that the bound is respected. We suggest that the bound need not be an essential ingredient for a quantum gravity theory but may emerge from it under suitable circumstances.
Two-loop electroweak top corrections are they under control?
Degrassi, G.; Feruglio, F.; Gambino, P.; Vicini, A.; Degrassi, G; Fanchiotti, S; Feruglio, F; Gambino, P; Vicini, A
1995-01-01
The assumption that two-loop top corrections are well approximated by the O(G_mu^2 mt^4) contribution is investigated. It is shown that in the case of the ratio neutral-to-charged current amplitudes at zero momentum transfer the O(G_mu^2 mt^2 M_Z^2) terms are numerically comparable to the m_t^4 contribution for realistic values of the top mass. An estimate of the theoretical error due to unknown two-loop top effect is presented for a few observables of LEP interest.
Dilaton gravity, Poisson sigma models and loop quantum gravity
International Nuclear Information System (INIS)
Bojowald, Martin; Reyes, Juan D
2009-01-01
Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.
Virtual Induction Loops Based on Cooperative Vehicular Communications
Directory of Open Access Journals (Sweden)
Maria Calderon
2013-01-01
Full Text Available Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures. Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop, a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces.
From maximal to minimal supersymmetry in string loop amplitudes
Energy Technology Data Exchange (ETDEWEB)
Berg, Marcus; Buchberger, Igor [Department of Physics, Karlstad University,651 88 Karlstad (Sweden); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Potsdam (Germany)
2017-04-28
We calculate one-loop string amplitudes of open and closed strings with N=1,2,4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.
Virtual Induction Loops Based on Cooperative Vehicular Communications
Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria
2013-01-01
Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033
Challenges in LCA modelling of multiple loops for aluminium cans
DEFF Research Database (Denmark)
Niero, Monia; Olsen, Stig Irving
considered the case of closed-loop recycling for aluminium cans, where body and lid are different alloys, and discussed the abovementioned challenge. The Life Cycle Inventory (LCI) modelling of aluminium processes is traditionally based on a pure aluminium flow, therefore neglecting the presence of alloying...... elements. We included the effect of alloying elements on the LCA modelling of aluminium can recycling. First, we performed a mass balance of the main alloying elements (Mn, Fe, Si, Cu) in aluminium can recycling at increasing levels of recycling rate. The analysis distinguished between different aluminium...... packaging scrap sources (i.e. used beverage can and mixed aluminium packaging) to understand the limiting factors for multiple loop aluminium can recycling. Secondly, we performed a comparative LCA of aluminium can production and recycling in multiple loops considering the two aluminium packaging scrap...
Superhorizon electromagnetic field background from Higgs loops in inflation
Kaya, Ali
2018-03-01
If Higgs is a spectator scalar, i.e. if it is not directly coupled to the inflaton, superhorizon Higgs modes must have been exited during inflation. Since Higgs is unstable its decay into photons is expected to seed superhorizon photon modes. We use in-in perturbation theory to show that this naive physical expectation is indeed fulfilled via loop effects. Specifically, we calculate the first order Higgs loop correction to the magnetic field power spectrum evaluated at some late time after inflation. It turns out that this loop correction becomes much larger than the tree-level power spectrum at the superhorizon scales. This suggests a mechanism to generate cosmologically interesting superhorizon vector modes by scalar-vector interactions.
Motion of matter in flare loops of the solar disc
International Nuclear Information System (INIS)
Xu Ao-ao
1987-01-01
By using the optical observation data of a Class 3B double-ribbon flare obtained on July 14, 1980 at the Yunan Observatory, and the x-ray result from the SMM satellite for the same flare, the law of motion of matter in the flare loops of the solar disc is discussed. First, the solar disc positions from the Hα and x-ray images for the flare were compared, and the altitude of the flare loop was determined according to projection effects. Second, the line-of-sight velocity distribution in the region of flare activity due to the falling of matter in the flare loop was estimated theoretically. The result agreed with the observed data
Loop quantum corrected Einstein Yang-Mills black holes
Protter, Mason; DeBenedictis, Andrew
2018-05-01
In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R ×S2 . Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.
3D DD modelling of the prismatic loops and dislocations interaction in pure iron
International Nuclear Information System (INIS)
Novokshanov, R.; Roberts, S.
2007-01-01
Full text of publication follows: Neutron irradiation can increase the yield stress and reduce the ductility of metals. These effects are mainly caused by the interaction of dislocations with damage produced during irradiation. In iron irradiated with fast neutrons the damage takes the form of 1/2 and 1/2 prismatic dislocation loops (the size of the loops varies from 2 nm to 20 nm depending on the dose of irradiation). The interaction between such loops and dislocations is the subject of this research. 3D dislocation dynamics simulations have been carried out to model the interaction between prismatic loops and dis- locations in pure iron subject to uniaxial loading conditions. The primary goal was to understand the mechanism of interaction of a a/2 loop and a mobile dislocation. The simulations have shown a complicated 3D interaction resulting in either bowing around an obstacle (prismatic loop, Orowan mechanism) or cutting it through, carrying part of the loop away and leaving the other part behind. Cross-slip can be important, in a manner depending on the type of mobile dislocation, size, type and orientation of prismatic loop. The secondary goal was to investigate the dependence of the critical stress needed for dislocations to overcome the obstacles as a function of: size of loops, initial separation between loops, the direction of motion of the mobile dislocation and its type (pure edge or screw), and type of a loop (interstitial or vacancy). Many different configurations have been simulated. The size of the loops was varied from 10 nm to 100 nm; the separation between the loops in a row was varied from one to four loop diameters; the distance between the glide plane and the loop plane was varied from 0 to 20 nm. The glide plane of the mobile dislocation was either perpendicular to and or inclined to the loop plane. The results show a strong dependence of the critical stress on the size of the loops and the initial configuration. (authors)
Quantum chromodynamics as dynamics of loops
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Migdal, A.A.
1981-01-01
QCD is entirely reformulated in terms of white composite fields - the traces of the loop products. The 1/N expansion turns out to be the WKB (Hartree-Fock) approximation for these fields. The 'classical' equation describing the N = infinite case is reduced tp a bootstrap form. New, manifestly gauge-invariant perturbation theory in the loop space, reproducing asymptotic freedom, is developed by iterations of this equation. The area law appears to be a self-consistent solution at large loops. (orig.)
International Nuclear Information System (INIS)
Fort, H.
1994-01-01
We present a survey on the state of the art in the formulation of lattice compact QED in the space of loops. In a first part we review our most recent Hamiltonian results which signal a second order transition for (3+1) compact QED. We devote the second part to the Lagrangian loop formalism, showing the equivalence of the recently proposed loop action with the Villain form. (orig.)
LMFBR with booster pump in pumping loop
International Nuclear Information System (INIS)
Rubinstein, H.J.
1975-01-01
A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation
Two-loop matching coefficients for heavy quark currents
International Nuclear Information System (INIS)
Kniehl, B.A.; Onishchenko, A.; Petersburg Nuclear Physics Institute, Gatchina; Piclum, J.H.; Karlsruhe Univ.; Steinhauser, M.
2006-04-01
In this paper we consider the matching coefficients up to two loops between Quantum Chromodynamics (QCD) and Non-Relativistic QCD (NRQCD) for the vector, axial-vector, scalar and pseudo-scalar currents. The structure of the effective theory is discussed and analytical results are presented. Particular emphasis is put on the singlet diagrams. (Orig.)
Loop Growth and Point-Defect Profiles during HVEM Irradiation
DEFF Research Database (Denmark)
Leffers, Torben; Singh, Bachu Narain
1979-01-01
The point-defect profile in a thin foil is included in the model for the growth of dislocation loops during HVEM irradiation suggested by Kiritani, Yoshida, Takata, and Maehara, and the possible effect of divacancies is discussed. It is found that there is a fairly wide transition range between...
Beyond Waste Reduction: Creating Value with Information Systems in Closed-Loop Supply Chains
O.R. Koppius (Otto); O. Ozdemir (Oznur); E.A. van der Laan (Erwin)
2011-01-01
textabstractWe study the role of information systems in enabling closed-loop supply chains. Past research in green IS and closed-loop supply chains has shown that it can result in substantial cost savings and waste reduction. We complement this research by showing that the effects are more than
Inner Current Loop Analysis and Design Based on Resonant Regulators for Isolated Microgrids
DEFF Research Database (Denmark)
Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Soares Lima, Marcel
2015-01-01
Inner current and voltage loops are fundamental in achieving good performance of microgrids based on power electronics voltage source inverters. The analysis and design of these loops are essential for the adequate operation of these systems. This paper investigates the effect of state feedback...
A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors
DEFF Research Database (Denmark)
Lynagh, Timothy; Lynch, Joseph W.
2010-01-01
Ivermectin exerts its anthelmintic effect by activating nematode Cys-loop glutamate-gated receptors. Here we show that a glycine residue at a specific transmembrane domain location is essential for high ivermectin sensitivity in both glycine- and glutamate-gated Cys-loop receptors. We also show...
DEFF Research Database (Denmark)
Jonassen, Thomas; Christensen, Sten; Marcussen, Niels
2006-01-01
not affect the abundance of NCKK2 within the outer medulla. Together with the histological findings, these results indicate that IROA reduces the total number of NKCC2 within the outer medulla. In conclusion, the results indicate a direct intrarenal effect of octreotide on TAL function and morphology......We have previously shown that systemic treatment with the somatostatin analog octreotide has marked beneficial effects on renal function in rats with liver cirrhosis induced by common bile duct ligation (CBL; Jonassen TEN, Christensen S, Sørensen AM, Marcussen N, Flyvbjerg A, Andreasen F......, and Petersen JS. Hepatology 29: 1387-1395, 1999). In the present study, we tested the hypothesis that octreotide has a direct effect on renal tubular function. Rats (CBL or Sham-CBL) were intrarenally treated with low-dose octreotide in a long-acting release formulation, which had no systemic actions (100...
Soft Neutrosophic Loops and Their Generalization
Directory of Open Access Journals (Sweden)
Mumtaz Ali
2014-06-01
Full Text Available Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. In this paper we introduced soft neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the discuission of some of their characteristics. We also introduced a new type of soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure neutrosophic character. This notion also found in all the other corresponding notions of soft neutrosophic thoery. We also given some of their properties of this newly born soft structure related to the strong part of neutrosophic theory.
Vertically Polarized Omnidirectional Printed Slot Loop Antenna
DEFF Research Database (Denmark)
Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper
2015-01-01
A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....
Quantum chromodynamics as dynamics of loops
International Nuclear Information System (INIS)
Makeenko, Yu.; Migdal, A.A.
1980-01-01
The problem of a possibility of reformulating quantum chromodynamics (QCD) in terms of colourless composite fields instead of coloured quarks and gluons is considered. The role of such fields is played by the gauge invariant loop functionals. The Shwinger equations of motion is derived in the loop space which completely describe dynamics of the loop fields. New manifestly gauge invariant diagram technique in the loop space is developed. These diagrams reproduce asymptotic freedom in the ultraviolet range and are consistent with the confinement law in the infrared range
Systematic classification of two-loop realizations of the Weinberg operator
Energy Technology Data Exchange (ETDEWEB)
Sierra, D. Aristizabal; Degee, A. [IFPA, Dep. AGO, Universite de Liege,Bat B5, Sart Tilman B-4000 Liege 1 (Belgium); Dorame, L.; Hirsch, M. [AHEP Group, Instituto de Fisica Corpuscular-C.S.I.C./Universitat de Valencia,Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain)
2015-03-09
We systematically analyze the d=5 Weinberg operator at 2-loop order. Using a diagrammatic approach, we identify two different interesting categories of neutrino mass models: (i) Genuine 2-loop models for which both, tree-level and 1-loop contributions, are guaranteed to be absent. And (ii) finite 2-loop diagrams, which correspond to the 1-loop generation of some particular vertex appearing in a given 1-loop neutrino mass model, thus being effectively 2-loop. From the large list of all possible 2-loop diagrams, the vast majority are infinite corrections to lower order neutrino mass models and only a moderately small number of diagrams fall into these two interesting classes. Moreover, all diagrams in class (i) are just variations of three basic diagrams, with examples discussed in the literature before. Similarly, we also show that class (ii) diagrams consists of only variations of these three plus two more basic diagrams. Finally, we show how our results can be consistently and readily used in order to construct two-loop neutrino mass models.
Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities
International Nuclear Information System (INIS)
Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.
1997-01-01
A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs
Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities
Energy Technology Data Exchange (ETDEWEB)
Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.
1997-01-01
A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.
In pile helium loop ''Comedie''
International Nuclear Information System (INIS)
Blanchard, R.J.
1985-01-01
The loop is located in the SILOE reactor at Centre d'Etudes Nucleaires de Grenoble. The purpose and objectives are divided into two groups, principal and secondary. The primary objective was to provide basic data on the deposition behavior of important condensable fission products on a variety of steel surfaces, i.e. temperature (sorption isotherms) and mass transfer (physical adsorption) dependencies; to provide information concerning the degree of penetration of important fission products into the metals comprising the heat exchanger-recuperator tubes as a function of alloy type and/or metal temperature; to provide complementary information on the reentrainment (liftoff) of important fission and activation products by performing out-of-pile blowdown experiments on tube samples representative of the alloy types used in the heat exchanger-recuperator and of the surface temperatures experienced during plateout. The secondary objective was to provide information concerning the migration of important fission products through graphite. To this end, concentration profiles in the web between the fuel rods containing the fission product source and the coolant channels and in the graphite diffusion sample will be measured to study the corrosion of metallic specimens placed in the conditions of high temperature gas cooled reactor. The first experiment SRO enables to determine the loop characteristics and possibilities related to thermal, thermodynamic, chemical and neutronic properties. The second experiment has been carried out in high temperature gas cooled reactor operating conditions. It enables to determine in particular the deposition axial profile of activation and fission products in the plateout section constituting the heat exchanger, the fission products balance trapped in the different filter components, and the cumulated released fraction of solid fission products. The SR1 test permits to demonstrate in particular the Comedie loop operation reliability, either
Rapid Simulation of Flat Knitting Loops Based On the Yarn Texture and Loop Geometrical Model
Directory of Open Access Journals (Sweden)
Lu Zhiwen
2017-06-01
Full Text Available In order to create realistic loop primitives suitable for the fast computer-aided design (CAD of the flat knitted fabric, we have a research on the geometric model of the loop as well as the variation of the loop surface. Establish the texture variation model based on the changing process from the normal yarn to loop that provides the realistic texture of the simulative loop. Then optimize the simulative loop based on illumination variation. This paper develops the computer program with the optimization algorithm and achieves the loop simulation of different yarns to verify the feasibility of the proposed algorithm. Our work provides a fast CAD of the flat knitted fabric with loop simulation, and it is not only more realistic but also material adjustable. Meanwhile it also provides theoretical value for the flat knitted fabric computer simulation.
High-energy evolution to three loops
Caron-Huot, Simon; Herranen, Matti
2018-02-01
The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.
CO2 capture by chemical looping combustion
International Nuclear Information System (INIS)
Forero, Carmen R; Adanez, Juan; Gayan, Pilar; Garcia L, Francisco; Abad, Alberto
2010-01-01
NiO and CuO based oxygen carriers (OCs) supported on Al 2 O 3 prepared by impregnation were selected for its evaluation in a continuous pilot plant of 500 Wth of two interconnected fluidized beds, where both methane and syngas were used as fuel gas. In addition, the effect of possible impurities in the fuel gas such as sulphur compounds and other hydrocarbons in the combustion efficiency of the process and the behaviour of the OCs were studied. Based on these results, it can be concluded that both OCs are suitable for a chemical looping combustion (CLC) process with methane, syngas and methane with impurities such as light hydrocarbons or sulphur.
Dynamical behaviour of natural convection in closed loops
International Nuclear Information System (INIS)
Ehrhard, P.
1988-04-01
A one dimensional model is presented together with experiments, which describe the natural convective flow in closed loops heated at the bottom and cooled in the upper semicircle. Starting from a single loop, mechanical and thermal coupling with a second loop is discussed. The experiments and the theoretical model both concurrently demonstrate that the investigated natural convection is clearly influenced by non-linear effects. Beside the variety of stable steady flows there are extensive subcritical ranges of convective flow. In these parameter ranges subcritical instabilities of the steady state flow could occur in the presence of finite amplitude disturbances. However, the supercritical, global unstable range is characterized by chaotic histories of the variables of state. Non-symmetric heating generates an imperfect bifurcation out of the steady solution with zero velocity in the loop. This effect stabilizes the flow in the preferred direction. The flow in the opposite direction only remains stable in a small isolated interval of the heating parameter. Furthermore the calculations with the model equations demonstrate that a stable periodic behaviour of the flow is possible in a small parameter window. However, it has not been possible to verify this particular effect in the experiments conducted to date. (orig./GL) [de
CERN. Geneva
2016-01-01
Developing in python is fast. Computation, however, can often be another story. Or at least that is how it may seem. When working with arrays and numerical datasets one can subvert many of python’s computational limitations by utilizing numpy. Numpy is python’s standard matrix computation library. Many python users only use numpy to store and generate arrays, failing to utilize one of python’s most powerful computational tools. By leveraging numpy’s ufuncs, aggregation, broadcasting and slicing/masking/indexing functionality one can cut back on slow python loops and increase the speed of their programs by as much as 100x. This talk aims at teaching attendees how to use these tools through toy examples.
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
International Nuclear Information System (INIS)
Le-Prioux, Arno
2017-01-01
During irradiation in reactor, the microstructure of UO 2 changes and deteriorates, causing modifications of its physical and mechanical properties. The kinetic models used to describe these changes such as cluster dynamics (CRESCENDO calculation code) consider the main microstructural elements that are cavities and interstitial dislocation loops, and provide a rather rough description of the loop thermodynamics. In order to tackle this issue, this work has led to the development of a thermodynamic model of interstitial dislocation loops based on empirical potential calculations. The model considers two types of interstitial dislocation loops on two different size domains: Type 1: Dislocation loops similar to Frank partials in F.C.C. materials which are stable in the smaller size domain. Type 2: Perfect dislocation loops of Burgers vector (a/2)(110) stable in the larger size domain. The analytical formula used to compute the interstitial dislocation loop formation energies is the one for circular loops which has been modified in order to take into account the effects of the dislocation core, which are significant at smaller sizes. The parameters have been determined by empirical potential calculations of the formation energies of prismatic pure edge dislocation loops. The effect of the habit plane reorientation on the formation energies of perfect dislocation loops has been taken into account by a simple interpolation method. All the different types of loops seen during TEM observations are thus accounted for by the model. (author) [fr
International Nuclear Information System (INIS)
Dillistone, M.J.
1989-08-01
RELAP5/MOD2 predictions of countercurrent flow limitation in the UPTF hot leg separate effects Test (test 11) are compared with the experimental data. The code underestimates, by a factor of more than three, the gas flow necessary to prevent liquid runback from the steam generator, and this is shown to be due to an oversimplified flow-regime map which does not allow the possibility of stratified flow in the hot leg riser. The predicted countercurrent flow is also shown to depend, wrongly, on the depth of liquid in the steam generator plenum. The same test is also modelled using a version of the code in which stratified flow in the riser is made possible. The gas flow needed to prevent liquid runback is then predicted quite well, but at all lower gas flows the code predicts that the flow is completely unrestricted - i.e. liquid flows between full flow and zero flow are not predicted. This is shown to happen because the code cannot calculate correctly the liquid level in the hot leg, mainly because of a numerical effect of upwind donoring in the momentum flux terms of the code's basic equations. It is also shown that the code cannot model the considerable effect of the ECCS injection pipe (which runs inside the hot leg) on the liquid level. (author)
Loop quantum cosmology: a status report
International Nuclear Information System (INIS)
Ashtekar, Abhay; Singh, Parampreet
2011-01-01
Loop quantum cosmology (LQC) is the result of applying principles of loop quantum gravity (LQG) to cosmological settings. The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of LQG. In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low spacetime curvature but rises very rapidly in the Planck regime, overwhelming the classical gravitational attraction. In cosmological models, while Einstein's equations hold to an excellent degree of approximation at low curvature, they undergo major modifications in the Planck regime: for matter satisfying the usual energy conditions, any time a curvature invariant grows to the Planck scale, quantum geometry effects dilute it, thereby resolving singularities of general relativity. Quantum geometry corrections become more sophisticated as the models become richer. In particular, in anisotropic models, there are significant changes in the dynamics of shear potentials which tame their singular behavior in striking contrast to older results on anisotropies in bouncing models. Once singularities are resolved, the conceptual paradigm of cosmology changes and one has to revisit many of the standard issues-e.g. the 'horizon problem'-from a new perspective. Such conceptual issues as well as potential observational consequences of the new Planck scale physics are being explored, especially within the inflationary paradigm. These considerations have given rise to a burst of activity in LQC in recent years, with contributions from quantum gravity experts, mathematical physicists and cosmologists. The goal of this review is to provide an overview of the current state of the art in LQC for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general and cosmologists who wish to apply LQC to probe modifications in the standard paradigm of the early universe. In this review, effort has been made to
A complex approach to the blue-loop problem
Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga
2015-08-01
The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.
In-pile loop experiments in water chemistry and corrosion
International Nuclear Information System (INIS)
Kysela, J.; Jindrich, K.; Masarik, V.; Fric, Z.; Chotivka, V.; Hamerska, H.; Vsolak, R.; Erben, O.
1986-08-01
Methods and techniques used were as follows: (a) Method of polarizing resistance for remote monitoring of instantaneous rate of uniform corrosion. (b) Out-of-pile loop at the temperature 350 degC, pressure 19 MPa, circulation 20 kgs/h, testing time 1000 h. (c) High temperature electromagnetic filter with classical solenoid and ball matrix for high pressure filtration tests. (d) High pressure and high temperature in-pile water loop with coolant flow rate 10 000 kgs/h, neutron flux in active channel 7x10 13 n/cm 2 .s, 16 MPa, 330 degC. (e) Evaluation of experimental results by chemical and radiochemical analysis of coolant, corrosion products and corrosion layer on surface. The results of measurements carried out in loop facilities can be summarized into the following conclusions: (a) In-pile and out-of-pile loops are suitable means of investigating corrosion processes and mass transport in the nuclear power plant primary circuit. (b) In studying transport phenomena in the loop, it is necessary to consider the differences in geometry of the loop and the primary circuit, mainly the ratio of irradiated and non-irradiated surfaces and volumes. (c) In the experimental facility simulating the WWER-type nuclear power plant primary circuit, solid suspended particles of a chemical composition corresponding most frequently to magnetite or nickel ferrite, though with non-stoichiometric composition Me x 2+ Fe 3-x 3+ O 4 , were found. (d) Continuous filtration of water by means of an electromagnetic filter removing large particles of corrosion products leads to a decrease in radioactivity of the outer epitactic layer only. The effect of filtration on the inner topotactic layer is negligible
Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop
Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan
2018-01-01
The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.
Simon, M. K.; Alem, W. K.
1978-01-01
Unbalanced quadriphase-shift-keying (QPSK) is an attractive means for transmitting two digital data streams which in general have different average powers, data rates, and data formats. Previous analyses of the tracking performance of Costas loop demodulators of unbalanced QPSK have accounted only for the filtering effect produced by the loop's two arm filters on the equivalent additive noise perturbing the loop. When the bandwidth of these filters is selected on the basis of the order of the data rate, as is typical of optimum Costas loop design, the filtering degradations of the data modulations themselves and the cross-modulation noise produced by their multiplication in the loop often cannot be neglected. The purpose of this paper is to incorporate these additional filtering effects into the analysis. Many of the results obtained herein are in the form of closed-form expressions which can easily be evaluated numerically for design and performance prediction purposes.
Kim, Jung Hyup; Rothrock, Ling; Laberge, Jason
2014-05-01
This paper provides a case study of Signal Detection Theory (SDT) as applied to a continuous monitoring dual-task environment. Specifically, SDT was used to evaluate the independent contributions of sensitivity and bias to different qualitative gauges used in process control. To assess detection performance in monitoring the gauges, we developed a Time Window-based Human-In-The-Loop (TWHITL) simulation bed. Through this test bed, we were able to generate a display similar to those monitored by console operators in oil and gas refinery plants. By using SDT and TWHITL, we evaluated the sensitivity, operator bias, and response time of flow, level, pressure, and temperature gauge shapes developed by Abnormal Situation Management(®) (ASM(®)) Consortium (www.asmconsortium.org). Our findings suggest that display density influences the effectiveness of participants in detecting abnormal shapes. Furthermore, results suggest that some shapes elicit better detection performance than others. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.