WorldWideScience

Sample records for effective energy internal irradiation

  1. Radioresistance and immunization effectiveness under internal irradiation

    International Nuclear Information System (INIS)

    Kal'nitskij, S.A.

    1978-01-01

    The effect of preliminary immunization on the radioresistance of mice to internal irradiation from incorporated 137 Cs or 90 Sr was studied, and it was found that a preliminary single immunization with bacterial vaccines had a favorable effect on the outcome of radiation injury. The present results suggested that vaccination had a very pronounced radioprotective effect and so may be used as a means of biologic protection from internal irradiation

  2. Combined effect of external and internal irradiation

    International Nuclear Information System (INIS)

    Kiradzhiev, G.

    1987-01-01

    Some of the general regularities of the combined effect of external irradiation and iodine 131 are discussed. Data are adduced showing that modification of the effects of these two radiation factors, when jointly applied, is also determined by the quantitative relations of the applied doses of external and internal irradiation, referred to a particular moment of the effects. It was shown that the effects of the radionuclides in these combined radiation injuries are basically realized by two mechanisms: 1. changes are found in the radionuclide kinetic parameters (nonspecific effects); 2. changes in their kinetic parameters are absent (specific effect). These two mechanisms underlie different approaches to therapy

  3. Food irradiation receives international acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Beddoes, J M [Atomic Energy of Canada Ltd., Ottawa, Ontario. Commercial Products

    1982-04-01

    Irradiation has advantages as a method of preserving food, especially in the Third World. The author tabulates some examples of actual use of food irradiation with dates and tonnages, and tells the story of the gradual acceptance of food irradiation by the World Health Organization, other international bodies, and the U.S. Food and Drug Administration (USFDA). At present, the joint IAEA/FAO/WHO standard permits an energy level of up to 5 MeV for gamma rays, well above the 1.3 MeV energy level of /sup 60/Co. The USFDA permits irradiation of any food up to 10 krad, and minor constituents of a diet may be irradiated up to 5 Mrad. The final hurdle to be cleared, that of economic acceptance, depends on convincing the food processing industry that the process is technically and economically efficient.

  4. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  5. Food irradiation receives international acceptance

    International Nuclear Information System (INIS)

    Beddoes, J.M.

    1982-01-01

    Irradition has advantages as a method of preserving food, especially in the Third World. The author tabulates some examples of actual use of food irradiation with dates and tonnages, and tells the story of the gradual acceptance of food irradiation by the World Health Organization, other international bodies, and the U.S. Food and Drug Administration (USFDA). At present, the joint IAEA/FAO/WHO standard permits an energy level of up to 5 MeV for gamma rays, well above the 1.3 MeV energy level of 60 Co. The USFDA permits irradiation of any food up to 10 krad, and minor constituents of a diet may be irradiated up to 5 Mrad. The final hurdle to be cleared, that of economic acceptance, depends on convincing the food processing industry that the process is technically and economically efficient

  6. Internal friction in irradiated textolite

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Kozhamkulov, B.A.; Koztaeva, U.P.

    1996-01-01

    Structural relaxation in irradiated textolite of ST and ST-EhTF trade marks presenting pressed material got by method of impregnation of fibreglass by phenole and epoxytriphenole binders relatively. Measuring of temperature dependences of internal friction (TDIF) is carried out in torsional pendulum at oscillation frequency 0.6-1.0 Hz before and after irradiation by stopped gamma-quanta with energy 3 MeV on electron accelerator EhLU-4. α and β peaks, related with segments motion in base and side chains of macromolecular have being observed on TDIF of all textolite. Growth of peaks height after irradiation evident about increase of segments mobility in base chain and about de-freezing of segments in side chains and it could be considered as qualitative measure of radiation destruction rate. Comparison of temperature dependences of internal friction indicates on higher radiation stability of textolite of ST-EhTF trade mark

  7. Internal irradiation for cystic craniopharyngioma

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuya; Kageyama, Naoki

    1979-01-01

    Internal irradiation with P-32 chromic phosphate and Au-198 colloid was used to treat cystic craniopharyngioma. A newly developed dosimetric formula, by which the radiation dose can be calculated simultaneously at the cyst wall and at a point far from the radioactive source and the untoward effect of irradiation on surrounding brain tissue can be eliminated, especially in cases in which the wall is thin and can be penetrated by beta emission, was used. Radioactive phosphate or gold was injected into eight craniopharyngioma cysts throught the Ommaya reservoir and a tube inserted at the first craniotomy. All cysts were effectively treated for 3 to 33 months, to eliminate fluid retention or collapse. A collapsed cyst was removed at the second craniotomy and irradiation was histologically shown to be effective. Oculomotor palsy, a side effect of irradiation, occurred 10 days after the injection of 5 mc of P-32 chromic phosphate only in a case of small cysts (5.0 ml) in the supra- and intracellular regions. The thickness of the cyst wall was less than 0.5 mm and the oculomotor nerves were thought to adhere to the wall. Not only the amount of wall dose but also the thickness of the wall and localization of the cyst are important factors in internal irradiation. Sufficient and safer doses which kill tumor cells in the wall and have no side effects, are 9,000 to 30,000 rad. Internal irradiation can be used to treat large cysts of more than 10 ml which are supposedly difficult to remove radically and or multiple cysts. It is effective not only for cystic craniopharyngioma but also for intracrania cystic tumors other than craniopharyngioma, if dosimetry is accurate. (J.P.N.)

  8. Use of studies with laboratory animals to assess the potential early health effects of combined internal alpha and beta irradiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Hahn, F.F.; Guilmette, R.A.; Muggenburg, B.A.; Snipes, M.B.; Boecker, B.B.; McClellan, R.O.

    1986-01-01

    The potential health impacts of radionuclides released in nuclear accidents are of major concern to the public and to regulatory and other governmental agencies. One mode of potential exposure is by inhalation of airborne radionuclides, which could lead to combined internal irradiation by high (alpha) and low (beta) linear energy transfer (LET) radiations. Epidemiological data for health effects of human inhalation exposure are too limited to derive reliable estimates of risks of potential health effects. However, results of studies in which beagle dogs were exposed by inhalation to insoluble radioactive aerosols can be used to estimate expected effects in humans. Data for mortality from radiation pneumonitis and pulmonary fibrosis caused by internal irradiation of dog lungs by alpha or beta radiations are used to derive the relative biological effectiveness (RBE) of alpha irradiation compared to beta irradiation; predict the expected combined effects of alpha and beta irradiation of dog lungs; and extrapolate the results to humans. The extrapolation to humans assumed that, for similar ages at exposure, dog and human lungs have similar sensitivities to lung irradiation. Results of theoretical calculations related to mortality from early effects indicated that the synergistic effects of high- and low-LET radiations should depend on the percentages of the total dose contributed by high- and low-LET radiations, and for very low or very high doses, synergistic effects should be negligible. 23 refs., 8 figs

  9. International standards, Agreements and Policy of food Irradiation

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1997-01-01

    There are few internationally recognised standards and agreements related to irradiated foods. Codex Alimentarius has its General standard for Irradiated foods. This sets standards for the production of irradiated foods that are safe and nutritionally adequate. Guidelines for the proper processing of foods by irradiation are covered in the Codex Recommended International Code of Practice for the Operation of Radiation Facilities Used for the Treatment of Food. For irradiation as a quarantine treatment for fruit, vegetables and other plants, the relevant international organization is the International Plant Protection Convention (IPPC), IPPC has no standards or guidelines for irradiation treatments. However, regional organizations within IPPC are moving towards recognition of irradiation as a technically viable and effective method of insect disinfestation. Especially notable are actions within the North American Plant Protection Organisation (NAPPO). NAPPO has endorsed a standard on the use of irradiation as a quarantine treatment. Other speakers have provided considerable detail on the Codex standard and on the situation with regard to quarantine issues. In this talk I will concentrate on irradiated foods as commodities that will be traded internationally in increasing amounts as we approach the next century. International trade is governed by bilateral arrangements. However, these arrangements should be consistent with the overarching multilateral agreements of the World trade Organization (WTO). The WTO Agreements do not refer directly to irradiation or irradiated foods. However, in this talk I will try to interpret the implications of the Agreements for trade in irradiated food. (Author)

  10. International standards, Agreements and Policy of food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B. [Industrial and Biological Section. Institute of Geological and Nuclear Science. P.O. Box 31. Lower Hutt (New Zealand)

    1997-12-31

    There are few internationally recognised standards and agreements related to irradiated foods. Codex Alimentarius has its General standard for Irradiated foods. This sets standards for the production of irradiated foods that are safe and nutritionally adequate. Guidelines for the proper processing of foods by irradiation are covered in the Codex Recommended International Code of Practice for the Operation of Radiation Facilities Used for the Treatment of Food. For irradiation as a quarantine treatment for fruit, vegetables and other plants, the relevant international organization is the International Plant Protection Convention (IPPC), IPPC has no standards or guidelines for irradiation treatments. However, regional organizations within IPPC are moving towards recognition of irradiation as a technically viable and effective method of insect disinfestation. Especially notable are actions within the North American Plant Protection Organisation (NAPPO). NAPPO has endorsed a standard on the use of irradiation as a quarantine treatment. Other speakers have provided considerable detail on the Codex standard and on the situation with regard to quarantine issues. In this talk I will concentrate on irradiated foods as commodities that will be traded internationally in increasing amounts as we approach the next century. International trade is governed by bilateral arrangements. However, these arrangements should be consistent with the overarching multilateral agreements of the World trade Organization (WTO). The WTO Agreements do not refer directly to irradiation or irradiated foods. However, in this talk I will try to interpret the implications of the Agreements for trade in irradiated food. (Author)

  11. Food Irradiation. Proceedings of the International Symposium on Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-11-15

    For some years research has been done in several countries, with the object of contributing to the world's food supplies, on the application of nuclear methods to food preservation and processing. The importance of food preservation is of particular relevance in certain regions of the world where up to thirty per cent of harvested foodstuffs are being lost because of damage by animal pests and microorganisms. A series of international meetings have been held on this subject; the first, held in 1958 at Harwell, was followed by further meetings in 1960 in Paris and in 1961 in Brussels. The International Symposium on Food Irradiation organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations through their Joint Division of Atomic Energy in Agriculture, and held at the Karlsruhe Nuclear Research Centre, Karlsruhe, from 6 to 10 June 1966, at the generous invitation of the Government of the Federal Republic of Germany, is the most recent of this series of meetings. It was held for the purpose of exchanging the most up-to-date results of research, of contributing towards co-operative efforts between Member States, and of stimulating trade in the international exchange of irradiated products between nations. Papers describing research over the past fourteen years were given by outstanding authorities; the results point to a breakthrough having been achieved in the use of ionizing radiation in food preservation, notwithstanding some problems still to be solved, such as overcoming changes in colour, flavour, odour or texture. The Symposium was attended by over 200 scientists from 25 countries and four international organizations. Sixty-nine papers were presented. It was shown that a wide variety of foodstuffs exist for which radiation could be used for three different purposes: to produce indefinitely stable products, to rid food of organisms that constitute health hazards, and to extend the normal shelf or market life

  12. Food Irradiation. Proceedings of the International Symposium on Food Irradiation

    International Nuclear Information System (INIS)

    1966-01-01

    For some years research has been done in several countries, with the object of contributing to the world's food supplies, on the application of nuclear methods to food preservation and processing. The importance of food preservation is of particular relevance in certain regions of the world where up to thirty per cent of harvested foodstuffs are being lost because of damage by animal pests and microorganisms. A series of international meetings have been held on this subject; the first, held in 1958 at Harwell, was followed by further meetings in 1960 in Paris and in 1961 in Brussels. The International Symposium on Food Irradiation organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations through their Joint Division of Atomic Energy in Agriculture, and held at the Karlsruhe Nuclear Research Centre, Karlsruhe, from 6 to 10 June 1966, at the generous invitation of the Government of the Federal Republic of Germany, is the most recent of this series of meetings. It was held for the purpose of exchanging the most up-to-date results of research, of contributing towards co-operative efforts between Member States, and of stimulating trade in the international exchange of irradiated products between nations. Papers describing research over the past fourteen years were given by outstanding authorities; the results point to a breakthrough having been achieved in the use of ionizing radiation in food preservation, notwithstanding some problems still to be solved, such as overcoming changes in colour, flavour, odour or texture. The Symposium was attended by over 200 scientists from 25 countries and four international organizations. Sixty-nine papers were presented. It was shown that a wide variety of foodstuffs exist for which radiation could be used for three different purposes: to produce indefinitely stable products, to rid food of organisms that constitute health hazards, and to extend the normal shelf or market life

  13. Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems

    Directory of Open Access Journals (Sweden)

    Hussein Al-Taani

    2018-02-01

    Full Text Available Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect.

  14. International document on food irradiation

    International Nuclear Information System (INIS)

    1990-06-01

    This international document highlights the major issues related to the acceptance of irradiated food by consumers, governmental and intergovernmental activities, the control of the process, and trade. The conference recognized that: Food irradiation has the potential to reduce the incidence of foodborne diseases. It can reduce post-harvest food losses and make available a larger quantity and a wider variety of foodstuffs for consumers. Regulatory control by competent authorities is a necessary prerequisite for introduction of the process. International trade in irradiated foods would be facilitated by harmonization of national procedures based on internationally recognized standards for the control of food irradiation. Acceptance of irradiated food by the consumer is a vital factor in the successful commercialization of the irradiation process, and information dissemination can contribute to this acceptance

  15. Internal irradiation for cystic craniopharyngioma

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kageyama, N.; Ohara, K.

    1981-01-01

    The authors report the results of internal irradiation with labeled chromic phosphate (32P) and gold-198 (198Au) colloid in eight cases of cystic craniopharyngiomas. They used a newly developed dosimetric formula, by which the radiation dose at the cyst wall and at any point far from the radioactive source can be calculated. Ten courses of irradiation in eight patients were carried out by injection of either 32P or 198Au colloid into the cyst through an Ommaya drainage system that had been placed at craniotomy. Follow-up studies ranging from 13 to 156 months revealed that all cysts were effectively treated, with elimination of fluid or collapse of the cyst. This was confirmed by Conray cystography and/or computerized tomography. Not only the dose delivered to the wall but also the thickness of the cyst wall and the location of the cyst are important factors in planning internal irradiation. A safe and adequate dose to the cyst wall could range between 9000 to 30,000 rads for craniopharyngioma. This treatment is suitable for large cysts that are thought to be difficult to remove radically, recurrent cysts resistant to previous treatment, or multiple cysts. Internal irradiation may also be applicable in other cystic intracranial tumors if dosimetry is calculated accurately

  16. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  17. Wholesomeness studies in the International Food Irradiation Project

    Energy Technology Data Exchange (ETDEWEB)

    Elias, P S [International Food Irradiation Project, Federal Research Centre for Nutrition

    1980-01-01

    Despite more than 25 years of history as an effective food preservation method, food irradiation is still subject to strict legislative control in many countries and scientific investigations are required to provide reassurance as to the safety of irradiated food. The International Food Irradiation Project was set up on October 14, 1970 to facilitate the objective evaluation of the wholesomeness of irradiated foodstuffs. Its major activities are; (1) wholesomeness testing of irradiated foods, (2) research on and investigations into the methodology of wholesomeness testing, (3) dissemination of information, and (4) assisting national and international authorities in their consideration of acceptance of irradiated food. In particular, the project over the past nine years had been devoted to the provision of data to national health authorities and international bodies. Up to now, 23 studies were and are being carried out for the project under contract. Subjects for the studies include wheat, wheat flour, potatoes, fish, rice, mango, spices, dried dates, onions and cocoa beans.

  18. Wholesomeness studies in the International Food Irradiation Project

    International Nuclear Information System (INIS)

    Elias, P.S.

    1980-01-01

    Despite more than 25 years history as an effective food preservation method, food irradiation is still subject to strict legislative control in many countries and it is required to carry out scientific investigations to reassure the safety of irradiated food. The International Food Irradiation Project was set up on October 14, 1970 to facilitate the objective evaluation of the wholesomeness of irradiated foodstuffs. Its major activities are; (1) wholesomeness testing of irradiated foods, (2) research on and investigations into the methodology of wholesomeness testing, (3) dissemination of information, and (4) assisting national and international authorities in their consideration of acceptance of irradiated food. In particular, the project over the past nine years had been devoted to the provision of data to national health authorities and international bodies. Up to now, 23 studies were and are being carried out for the project under contract. Subject to the studies include wheat, wheat flour, potatoes, fish, rice, mango, spices, dried dates, onions and cocoa beans. (Kitajima, A.)

  19. Mathematical models in Slowpoke reactor internal irradiation site

    International Nuclear Information System (INIS)

    Raza, J.

    2007-01-01

    non linear accurate regression analyses of the experimental results..Also, we devised a numerical neutron transport model using the discrete ordinates method of S 8 scheme. In both cases, we assumed a thermal neutrons Maxwell energy distribution since thermal neutrons are dominant in internal sites. In addition, both of our models used energy dependant microscopic neutron absorption cross sections. .In order to implement and use these mathematical models, we chose to use computer algebra software instead of the more usual ones. The Slowpoke reactor internal irradiation site neutron transport semi-analytical model results are within 1% of the flux perturbation experimental results which is well within the experimental results error at about 2%. The discrete ordinates numerical method results obtained from a 2-D finite cylinder shows an average error of about 3% and a variance of about 2% as compared to the experimental results. The semi-analytical and numerical models clearly confirm that the results for many different elements are located on a unique flux perturbation curve as a function of the macroscopic absorption cross section for a given sample volume. Both models of a Slowpoke internal irradiation site are in close agreement with the experimental flux perturbation results. We devised a rapid (ms) accurate (ng) measured concentration correction computing algorithm for an internal irradiation site that can be easily implemented in the existing neutron activation laboratory EPAA software. This corrective method accurately compensates the flux perturbation effect. This process allows more accurate concentration measurements for many elements on a wider concentration range. (author)

  20. Effects of Si3+ and H+ Irradiation on Tungsten Evaluated by Internal Friction Method

    International Nuclear Information System (INIS)

    Hu Jing; Wang Xianping; Fang Qianfeng; Liu Changsong; Zhang Yanwen; Zhao Ziqiang

    2013-01-01

    Effects of Si 3+ and H + irradiation on tungsten were investigated by internal friction (IF) technique. Scanning electron microscope (SEM) analysis revealed that sequential dual Si+H irradiation resulted in more serious damage than single Si irradiation. After irradiation, the IF background was significantly enhanced. Besides, two obvious IF peaks were initially found in temperature range of 70∼330 K in the sequential Si+H irradiated tungsten sample. The mechanism of increased IF background for the irradiated samples was suggested to originate from the high density dislocations induced by ion irradiation. On the other hand, the relaxation peak P L and non-relaxation peak P H in the Si+H irradiated sample were ascribed to the interaction process of hydrogen atoms with mobile dislocations and transient processes of hydrogen redistribution, respectively. The obtained experimental results verified the high sensitivity of IF method on the irradiation damage behaviors in nuclear materials

  1. Prospects of international trade in irradiated foods

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1990-01-01

    Irradiation is gaining recognition as a physical process for reducing food losses, enhancing hygienic quality of food and facilitating food trade. At present, 36 countries have approved the use of irradiation for processing collectively over 40 food items either on an unconditional or restricted basis. Commercial use of irradiated foods and food ingredients is being carried out in 22 countries. Technology transfer on food irradiation is being intensified to local industry in different regions. Worldwide, a total of 40 commercial/demonstration irradiators available for treating foods have been or are being constructed. Acceptance and control of international trade in irradiated foods were discussed at the International Conference on the Acceptance, Control of and Trade in Irradiated Food, jointly convened by FAO, IAEA, WHO and ITC-UNCTAD/GATT in Geneva, Switzerland, 12-16 December 1988. An ''International Document on Food Irradiation'' was adopted by consensus at this Conference which will facilitate wider acceptance and control of international trade in irradiated foods. (author)

  2. Internal friction study of neutron-irradiation effects on an amorphous Cu40Ti60 alloy

    International Nuclear Information System (INIS)

    Dong, Y.; Wu, G.; Xiao, K.; Li, X.; He, Y.

    1988-01-01

    Effects of neutron irradiation on the structure of an amorphous Cu 40 Ti 60 alloy have been studied by internal friction measurements. After irradiation, the position of the first internal friction peak remains almost unchanged and the shoulder position shifts towards a higher temperature by about 5 K, which indicates that the Cu 40 Ti 60 glass becomes more stable. These results are finally discussed based on the concept of changes of chemical short-range ordering and geometrical short-range ordering due to radiation damage

  3. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    International Nuclear Information System (INIS)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops' as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems

  4. Food irradiation by low energy electrons

    International Nuclear Information System (INIS)

    Bird, J.R.

    1985-01-01

    For some special cases, the use of low energy electrons has advantages over the use of gamma-rays or higher energy electrons for the direct irradiation of food. These advantages arise from details of the interaction processes which are responsible for the production of physical, chemical and biological effects. Factors involved include depth of penetration, dose distribution, irradiation geometry, the possible production of radioactivity and costs

  5. International standards and agreements in food irradiation

    International Nuclear Information System (INIS)

    Cetinkaya, N.

    2004-01-01

    The economies of both developed and developing countries have been effected by their exported food and agricultural products. Trading policies of food and agricultural products are governed by international agreement as well as national regulations. Trade in food and agricultural commodities may be affected by both principal Agreements within the overall World Trade Organization (WTO) Agreement, though neither specifically refers to irradiation or irradiated foods. The principal Agreements are the Technical Barriers to Trade (TBT) Agreement and the Sanitary and Phyto sanitary (SPS) Agreement. The SPS of the WTO requires governments to harmonize their sanitary and phyto sanitary measures on as wide basis as possible. Related standards, guidelines and recommendations of international standard setting bodies such as the Codex Alimentarius Commission (food safety); the International Plant Protection Convention (IPPC) (plant health and quarantine); and International Office of Epizootic (animal health and zoo noses) should be used in such a harmonization. International Standards for Phyto sanitary Measures (ISPM) no.18 was published under the IPPC by FAO (April 2003, Rome-Italy). ISPM standard provides technical guidance on the specific procedure for the application of ionizing radiation as a phyto sanitary treatment for regulated pests or articles. Moreover, Codex Alimentarius Commission, Codex General Standard for Irradiated Foods (Stand 106-1983) and Recommended International Code of Practice were first published in 1983 and revised in March 2003. Scope of this standard applies to foods processed by ionizing radiation that is used in conjunction with applicable hygienic codes, food standards and transportation codes. It does not apply to foods exposed to doses imparted by measuring instruments used for inspection purposes. Codex documents on Principles and Guidelines for the Import/Export Inspection and Certification of Foods have been prepared to guide international

  6. International status of food irradiation

    International Nuclear Information System (INIS)

    Diehl, J.F.

    1983-01-01

    Radiation processing of foods has been studied for over 30 years. To a considerable extent this research was carried out in the framework of various international projects. After optimistic beginnings in the 1950s and long delays, caused by uncertainty about the health safety of foods so treated, food irradiation has now reached the stage of practical application in several countries. In order to prepare the way for world-wide accceptance of the new process, the Codex Alimentarius Commission has accepted an 'International General Standard for Irradiated Foods' and an 'International Code of Practice for the Operation of Irradiation Facilities Used for the Treatment of Foods'. Psychological barriers to a process associated with the word 'radiation' are still formidable; it appears, however, that acceptance by authorities, food industry and consumers continues to grow

  7. The effect of gamma irradiation on in vitro digestible energy of some agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1993-03-01

    Experiments have been carried out on the effect of gamma irradiation on total energy, dry organic matter digestibility and on digestible energy of organic matter for some agricultural residues (maize straw, lentils straw, cottonwood, residues of apple-tree pruning, olive-cake first and second treatment). Sample were irradiated at 0, 50 and 100 KGy. Total energy was estimated by calorimeter. Digestibility was estimated in vitro by the method of Tilly and Terry (1963). Two sheep with rumen fistula were used as rumen liquor donating animals. Irradiation resulted in increasing the digestion of organic and dry matter and also the digestible energy of organic matter in all residues used except lentils straw and olive-cake first treatment. The increase in digestible energy values of organic matter (kJ) at dose of 100 KGy were: 155, 105, 71 and 25 for residue of apple-tree pruning, maize straw, cottonwood and olive-cake second treatment, respectively. (author).28 refs., 10 figs., 5 tabs

  8. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  9. Present status of ESNIT (energy selective neutron irradiation test facility) program

    International Nuclear Information System (INIS)

    Noda, K.; Ohno, H.; Sugimoto, M.; Kato, Y.; Matsuo, H.; Watanabe, K.; Kikuchi, T.; Sawai, T.; Usui, T.; Oyama, Y.; Kondo, T.

    1994-01-01

    The present status of technical studies of a high energy neutron irradiation facility, ESNIT (energy selective neutron irradiation test facility), is summarized. Technological survey and feasibility studies of ESNIT have continued since 1988. The results of technical studies of the accelerator, the target and the experimental systems in ESNIT program were reviewed by an International Advisory Committee in February 1993. Recommendations for future R and D on ESNIT program are also summarized in this paper. ((orig.))

  10. Energy and food irradiation

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1978-01-01

    The energy used in food systems in the US amounts to about 16.5% of total US energy. An analysis has been made of the energy used in the many steps of the food-irradiation process. It is found that irradiation pasteurization uses only 21kJ/kg and radappertization 157kJ/kg, which is much less than the energy used in the other food processes. A comparison has also been made with other methods of preserving, distributing and preparing the meat for servings. It is found that the food irradiation can save significant amounts of energy. In the case of heat-sterilized and radiation-sterilized meats the largest fraction of the energy is used in the packaging, while in the frozen meats the largest energy consumption is by refrigeration in the distribution channels and in the home. (author)

  11. Effects of High-Energy Proton-Beam Irradiation on the Magnetic Properties of ZnO Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Kue; Kwon, Hyeok-Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are still many problem for the application due to its unstable magnetism state and too small magnetization values. Here we investigate magnetic properties of ZnO nanorods after high-energy proton-beam irradiation. Electron spin resonance (ESR) measurement on temperature was made to identify intrinsic or extrinsic defects as well as to observe magnetic ordering after irradiation. Understanding the effects of proton beam irradiation on magnetic behavior may help to shed light on the mechanism responsible for the magnetic ordering in this material. We have investigated proton-beam irradiation effects on the magnetic properties of ZnO nanorods. After irradiation a broad ESR line is observed, indicating emergence of ferromagnetic ordering up to room temperature. In M-H curve, stronger coercive field is observed after irradiation.

  12. International standards and agreements in food irradiation

    International Nuclear Information System (INIS)

    Cetinkaya, N.

    2004-01-01

    Full text: The economies of both developed and developing countries have been effected by their exported food and agricultural products. Trading policies of food and agricultural products are governed by international agreement as well as national regulations. Trade in food and agricultural commodities may be affected by both principal Agreements within the overall World Trade Organization (WTO) Agreement, though neither specifically refers to irradiation or irradiated foods. The principal Agreements are the Technical Barriers to Trade (TBT) Agreement and the Sanitary and Phyto sanitary (SPS) Agreement. The SPS of the WTO requires governments to harmonize their sanitary and phyto sanitary measures on as wide basis as possible. Related standards, guidelines and recommendations of international standard setting bodies such as the Codex Alimentarius Commission (food safety); the International Plant Protection Convention (IPPC) (plant health and quarantine); and International Office of Epizootic (animal health and zoo noses) should be used in such a harmonization. International Standards for Phyto sanitary Measures (ISPM) no.18 was published under the IPPC by FAO (April 2003, Rome-Italy). ISPM standard provides technical guidance on the specific procedure for the application of ionizing radiation as a phyto sanitary treatment for regulated pests or articles. Moreover, Codex Alimentarius Commission, Codex General Standard for Irradiated Foods (Stand 106-1983) and Recommended International Code of Practice were first published in 1983 and revised in March 2003. Scope of this standard applies to foods processed by ionizing radiation that is used in conjunction with applicable hygienic codes, food standards and transportation codes. It does not apply to foods exposed to doses imparted by measuring instruments used for inspection purposes. Codex documents on Principles and Guidelines for the Import/Export Inspection and Certification of Foods have been prepared to guide

  13. International acceptance of irradiated food. Legal aspects

    International Nuclear Information System (INIS)

    1979-01-01

    The three international organizations competent in the field of irradiation processing for the preservation of food (FAO, WHO, IAEA), convened, at the end of 1977, an Advisory Group to revise and update the recommendations of a similar group which met in early 1972. The Advisory Group considered how national regulations could be harmonized so as to facilitate the international movement of irradiated food. This publication contains the Report of the Advisory Group, which summarizes the considerations of the Group on regulatory control over the irradiation plant and irradiation of foods, and on assurances for comparability of control (international labelling and documentation). Annexes 1 to 6 are included in order to complete the relevant information on the legal aspects of this subject. They include a Draft General Standard for Irradiated Foods, a Draft Code of Practice for the Operation of Radiation Facilities Used for the Treatment of Foods, Recommendations of a Consultation Group on the Legal Aspects of Food Irradiation, a Listing of the Legislation on Food Irradiation Adopted in Member States (1971-1976), and Model Regulations for the Control of and Trade in Irradiated Food

  14. Low energy He+ irradiation effect on graphite surface

    International Nuclear Information System (INIS)

    Asari, E.; Nakamura, K.G.; Kitajima, M.; Kawabe, T.

    1992-01-01

    Study on the lattice disordering and the secondary electron emission under low energy (1-5keV) He + irradiation is reported. Real-time Raman measurements show that difference in the observed Raman spectra for different ion energies is due to the difference of the damage depth. The relation between the observed Raman spectrum and the depth profile of lattice damage is discussed. Energy dependence of the secondary electron emission coefficient are also described. (author)

  15. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    1964-01-01

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  16. International Developments of Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940`s: discovery of principles of food irradiation; 1950`s: initiation of research in advanced countries; 1960`s: research and development were intensified in some advanced and developing countries; 1970`s: proof of wholesomeness of irradiated foods; 1980`s: establishment of national regulations; 1990`s: commercialization and international trade. (Author)

  17. International Developments of Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P [Head, Food Preservation Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1998-12-31

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940`s: discovery of principles of food irradiation; 1950`s: initiation of research in advanced countries; 1960`s: research and development were intensified in some advanced and developing countries; 1970`s: proof of wholesomeness of irradiated foods; 1980`s: establishment of national regulations; 1990`s: commercialization and international trade. (Author)

  18. International Developments of Food Irradiation

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1997-01-01

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940's: discovery of principles of food irradiation; 1950's: initiation of research in advanced countries; 1960's: research and development were intensified in some advanced and developing countries; 1970's: proof of wholesomeness of irradiated foods; 1980's: establishment of national regulations; 1990's: commercialization and international trade. (Author)

  19. International Fusion Materials Irradiation Facility conceptual design activity. Present status and perspective

    International Nuclear Information System (INIS)

    Kondo, Tatsuo; Noda, Kenji; Oyama, Yukio

    1998-01-01

    For developing the materials for nuclear fusion reactors, it is indispensable to study on the neutron irradiation behavior under fusion reactor conditions, but there is not any high energy neutron irradiation facility that can simulate fusion reactor conditions at present. Therefore, the investigation of the IFMIF was begun jointly by Japan, USA, Europe and Russia following the initiative of IEA. The conceptual design activities were completed in 1997. As to the background and the course, the present status of the research on heavy irradiation and the testing means for fusion materials, the requirement and the technical basis of high energy neutron irradiation, and the international joint design activities are reported. The materials for fusion reactors are exposed to the neutron irradiation with the energy spectra up to 14 MeV. The requirements from the users that the IFMIF should satisfy, the demand of the tests for the materials of prototype and demonstration fusion reactors and the evaluation of the neutron field characteristics of the IFMIF are discussed. As to the conceptual design of the IFMIF, the whole constitution, the operational mode, accelerator system and target system are described. (K.I.)

  20. High-energy xenon ion irradiation effects on the electrical properties of yttrium iron garnet

    International Nuclear Information System (INIS)

    Costantini, J.M.; Flament, J.L.; Sinopoli, L.; Trochon, J.; Uzureau, J.L.; Groult, D.; Studer, F.; Toulemonde, M.

    1989-01-01

    Thin monocristalline samples of yttrium iron garnet Y 3 Fe 5 O 12 (YIG) were irradiated at room temperature with 27 MeV/A 132 Xe ions at varying fluences up to 3.5 x 10 12 ions cm -2 . Sample thickness (100 μm) was smaller than the mean projected range of ions (170 μm) so that we were able to study the effects of irradiation damage solely. At such a high ion energy the nuclear energy loss is negligible and damage is mainly due to electronic excitation energy loss. YIG d.c conductivity is found to rise by a factor 40 for the highest dose while the permittivity increases only slightly after irradiation (40% max.). The dielectric losses are also enhanced as the ion fluence increases especially at lower frequencies (by a factor 6 at 10 KHz). No dielectric relaxation peak is observed in the frequency range explored here (10 KHz - 10 MHz)

  1. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  2. New pallet irradiator for Gammaster International

    International Nuclear Information System (INIS)

    Moehlmann, J.H.F.

    1993-01-01

    State of the art technology offers many opportunities to improve production processes with ionizing radiation. Internal and external audits, in particular by regulatory bodies such as the FDA and DHSS/MCA, are necessary and commonplace requirements when operating in the healthcare and pharmaceutical sectors. Efficiency is a major requirement for industry and also for our radiation business. With all the above mentioned items in mind, Gammaster International B.V. has developed and built a new type Pallet Irradiator. For this irradiator Gammaster International designed and built a new process console, incorporating state of the art technology. (author)

  3. High-energy γ-irradiation effect on physical ageing in Ge-Se glasses

    International Nuclear Information System (INIS)

    Golovchak, R.; Kozdras, A.; Kozyukhin, S.; Shpotyuk, O.

    2009-01-01

    Effect of Co 60 γ-irradiation on physical ageing in binary Ge x Se 100-x glasses (5 ≤ x ≤ 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This γ-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 ≤ x ≤ 27 compositions. The effect under consideration is supposed to be associated with γ-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  4. High-energy {gamma}-irradiation effect on physical ageing in Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Kozdras, A. [Department of Physics of Opole University of Technology, 75 Ozimska Str., Opole, PL-45370 (Poland); Department of Economy of Academy of Management and Administration in Opole, 18 Niedzialkowski Str., Opole, PL-45085 (Poland); Kozyukhin, S. [Institute of General and Inorganic Chemistry of RAS, Leninsky Pr. 31, Moscow 199991 (Russian Federation); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, PL-42201 (Poland)], E-mail: shpotyuk@novas.lviv.ua

    2009-09-01

    Effect of Co{sup 60} {gamma}-irradiation on physical ageing in binary Ge{sub x}Se{sub 100-x} glasses (5 {<=} x {<=} 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This {gamma}-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 {<=} x {<=} 27 compositions. The effect under consideration is supposed to be associated with {gamma}-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  5. International status of food irradiation

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1982-09-01

    Recent international moves that are likely to result in an increasing acceptance of irradiated foods are reviewed. Particular attention is given to the activities of the FAO, WHO, Codex Alimentarius and to attitudes in the United States and the Asian-Pacific region. In 1979, the Codex Alimentarius Commission adopted a Recommended General Standard for Irradiated Food. A resume is given of a revised version of the standard that is presently under consideration. However, remaining barriers to trade in irradiated food are briefly discussed, such as legal and regulatory problems, labelling, public acceptance and economic viability

  6. Influence of electron irradiation on internal friction and structure evolution of polymer composites

    International Nuclear Information System (INIS)

    Ismailova, G.A.

    2007-01-01

    Full text: Important qualitative information on structural evolution and radiation alterations in polymer materials under the action of ionizing radiation can be obtained from the analysis of the temperature dependences of internal friction. Changing of internal friction parameters of relax maxima during irradiation is qualitative degree parameter of radiation scission-cross linking of the polymer molecules. In this work, the general phenomenological approach is realized by introduction of the effective 'observed' parameters into the simple kinetic equations. The applicability of such approach is justified by the fact that kinetics of both internal friction and scission-cross linking processes can be characterized by the same effective parameters. Temperature dependences of internal friction are experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses (D=3 MGy, 6 MGy and 9 MGy). Time dependences of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking are analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the arbitrary effective order of radical recombination. It is shown that in the range of doses and dose rates under study radiation-induced scission predominates during polymer irradiation but in a certain period of time after irradiation scission changes to cross-linking. Characteristics of the kinetic curves obtained essentially depend on the dose

  7. Influence of chronic internal and acute external irradiations on the critical tissues of plants

    International Nuclear Information System (INIS)

    Kostyuk, O.P.; Ryasnenko, N.A.; Grodzins'kij, D.M.

    1998-01-01

    Peculiarities of chronic internal and acute external irradiations of the critical (as for irradiation influence) plants part, meristem, are studied. In particular, the investigation has aimed to evaluate the level of doses, accumulated by plant tissues, of the chronic internal irradiation from radiocaesium incorporated by them, and to compare its possible effect to one caused by the acute external irradiation. It is shown that the effects of both chronic and acute irradiations have similar features, and it is assumed that they have the very same mechanisms. We think that such a parameter of the plant ability to accumulate radiocaesium as the ratio of its content in a root tip and in the whole root system is a very sensible and useful criterion to estimate the irradiation influence on plants

  8. Food Preservation by Irradiation. Vol. II. Proceedings of an International Symposium on Food Preservation by Irradiation

    International Nuclear Information System (INIS)

    1978-01-01

    In the task of alleviating the distress caused by the world-wide food shortage it is essential to preserve what has been grown and harvested in the fields. Clearly all suitable methods for preserving agricultural produce and food should be made use of. In this context treatment with ionizing radiation has proved its value as an environmentally clean, physical method of food preservation which is low in its energy requirement, but the volume of food being processed in this way is still low. The introduction of food irradiation on a global basis poses certain economic, legal, regulatory and health-related questions, the solution of which requires close international collaboration. Such collaboration between many international, intergovernmental and national organizations began over a decade ago. The need for dissemination and discussion of information gained through research and development work on this subject became apparent, and a number of inter-regional meetings were held. The last international symposium on the topic was held jointly by FAO and the IAEA in 1972 in Bombay. To review progress made since then, FAO and the IAEA, together with WHO, convened the present Symposium on 21-25 November 1977. It appeared timely to hold this Symposium for the following reasons: (1) Apart from significant scientific work reported in the literature, progress in other directions between 1972 and 1977 had also been made. For example, the number of food items authorized by governments, with or without restriction, had grown from 19 to 26, and the number of countries accepting one or more irradiated foods for human consumption had increased from 11 to 19. (2) Largely on the basis of the work of the International Project in the Field of Food Irradiation (Karlsruhe), already described at the Bombay Symposium, an international expert committee, jointly convened by FAO, the IAEA and WHO in August-September 1976, had made important statements on the philosophy of wholesomeness studies

  9. Food Preservation by Irradiation. Vol. I. Proceedings of an International Symposium on Food Preservation by Irradiation

    International Nuclear Information System (INIS)

    1978-01-01

    In the task of alleviating the distress caused by the world-wide food shortage it is essential to preserve what has been grown and harvested in the fields. Clearly all suitable methods for preserving agricultural produce and food should be made use of. In this context treatment with ionizing radiation has proved its value as an environmentally clean, physical method o f food preservation which is low in its energy requirement, but the volume of food being processed in this way is still low. The introduction o f food irradiation on a global basis poses certain economic, legal, regulatory and health-related questions, the solution o f which requires close international collaboration. Such collaboration between many international, intergovernmental and national organizations began over a decade ago. The need for dissemination and discussion o f information gained through research and development work on this subject became apparent, and a number of inter-regional meetings were held. The last international symposium on the topic was held jointly by FAO and the IAEA in 1972 in Bombay. To review progress made since then, FAO and the IAEA, together with WHO, convened the present Symposium on 21-25 November 1977. It appeared timely to hold this Symposium for the following reasons: (1) Apart from significant scientific work reported in the literature, progress in other directions between 1972 and 1977 had also been made. For example, the number of food items authorized by governments, with or without restriction, had grown from 19 to 26, and the number of countries accepting one or more irradiated foods for human consumption had increased from 11 to 19. (2) Largely on the basis of the work of the International Project in the Field of Food Irradiation (Karlsruhe), already described at the Bombay Symposium, an international expert committee, jointly convened by FAO, the IAEA and WHO in August-September 1976, had made important statements on the philosophy of wholesomeness

  10. New pallet irradiation for Gammaster International

    Science.gov (United States)

    Möhlmann, Mr. J. H. F.

    1993-07-01

    State of the art technology offers many opportunities to improve production process with ionizing radiation. Also the requirements to this process become more and more stringent; who was aware of the ISO-9000 Standards? Now it is a necessary concept? Internal and external audits, in particular by Regulatory Bodies such as the FDA and DHSS/MCA, are necessary and commonplace requirements when operating in the Healthcare and Pharmaceutical sectors. Efficiency is a major requirement for industry and also for our radiation business. With all the above mentioned items in mind, Gammaster International B.V. in close cooperation with Nordion International Inc. has developed and built a new type Pallet Irradiator. In this new concept, our 22 years experience in gamma processing and the expertise gained in 10 years of operation of pallet irradiators was incorporated. For this irradiator Gammaster International designed and built a new process control console, incorporating state of the art technology such as: - A well-balanced safety system - A control panel, with status indication for all essential operating and safety parameters - Advances warning for necessary maintenance work - Automatic timer-setting control in addition to an automatic timer setting modification - Clear indication of the position of the product inside the unit and its status - Fully automatic product information generated when the product leaves the irradiation unit - Visual process control with the help of a color monitor - Incremental dose-control - Fault identification

  11. Study by internal friction of curing low temperature irradiation defects in graphite

    International Nuclear Information System (INIS)

    Rouby, Dominique.

    1974-01-01

    Micromechanical properties and anelastic effects of neutrons irradiated graphites at 300 and 77 0 K are investigated by internal friction analysis and elasticity modulus variations. Defects created by irradiation are studied and evolution versus dose and annealing is followed [fr

  12. IAEA and food irradiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1995-01-01

    IAEA was founded in 1957. 122 countries take part in it. It is operated with the yearly ordinary budget of about 20 billion yen and the technical cooperation budget of about 6 billion yen and by 2200 personnel. Its two important roles are the promotion of the peaceful utilization of atomic energy and the prevention of nuclear proliferation. The activities of IAEA are shown. The cooperation with developing countries and the international research cooperation program are the important activities. The securing of foods is an urgent subject, and the utilization of radiation and isotopes has been promoted, aiming at sustaining agriculture. The necessity of food irradiation is explained, and at present, commercial food irradiation is carried out in 28 countries including Japan. The irradiation less than 10 kGy does not cause poisonous effect in any food, according to JECFI. The new international agreement is expected to be useful for promoting the international trade of irradiated foods. The international cooperation for the spread of food irradiation and the public acceptance of food irradiation are reported. (K.I.)

  13. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  14. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  15. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  16. Effects of high-energy electron irradiation of chicken meat on Salmonella and aerobic plate count

    International Nuclear Information System (INIS)

    Heath, J.L.; Owens, S.L.; Tesch, S.; Hannah, K.W.

    1990-01-01

    Four experiments were used to determine the effects of high-energy irradiation on the number of aerobic microorganisms and Salmonella on broiler breasts and thighs. Irradiation ranging from 100 to 700 kilorads (krads) was provided by a commercial-scale, electron-beam accelerator. Irradiation of broiler breast and thigh pieces with electron beams at levels of 100, 200, 300, 400, 500, and 600 krads showed that levels as low as 100 krads would eliminate Salmonella. When 33 thighs were tested after irradiation at 200 krads, only one thigh tested presumptive positive. The total number of aerobic organisms was reduced by 2 to 3 log10 cycles at irradiation levels of 100, 200, 300, 400, 500, 600, and 700 krads. Increasing the dose above 100 krads gave little if any additional benefit

  17. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    International Nuclear Information System (INIS)

    1981-01-01

    Statistics show that over forty per cent of the human population, a large portion of which come from the Third World, are suffering from hunger and malnutrition. While the solution to these problems depends to a great extent on the food production strategies of the various governments, equally important is the need to preserve existing food supply by reducing food and crop spoilage. It has been reported that estimated losses due to bacterial spoilage are heavy; those of highly perishable commodities such as fish and fishery products have been reported as amounting to thirty per cent of the total catch. An additional loss of five to ten per cent due to insects and microbes during lengthy periods of drying and/or storage has also been reported. After about thirty years of research, treatment with ionizing radiations has been proved to be a valuable potential tool for reducing post-harvest storage losses and for preserving quickly perishable food from deterioration. Since irradiation is a purely physical method of food conservation, it may for many purposes become the preferred method, for it is an environmentally clean process not tainted with the chemical residue problem, it is energy saving, and it can, in many cases, produce effects that cannot be achieved by conventional techniques (e.g. decontamination of frozen food without significant temperature changes, disinfestation and decontamination of food in bulk and packaged). The preservative effects of ionizing radiations can often be advantageously combined with effects of other physical or chemical agents. The resulting ''combination treatments'' may involve synergistic or cumulative action of the combination partners, leading to a decreased treatment requirement for one or both agents. This in turn may result in cost and/or energy savings and may bring about improvements in the sensory properties and bacteriological quality of the food thus treated. To review progress in this field a Symposium on Combination

  18. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-09-15

    Statistics show that over forty per cent of the human population, a large portion of which come from the Third World, are suffering from hunger and malnutrition. While the solution to these problems depends to a great extent on the food production strategies of the various governments, equally important is the need to preserve existing food supply by reducing food and crop spoilage. It has been reported that estimated losses due to bacterial spoilage are heavy; those of highly perishable commodities such as fish and fishery products have been reported as amounting to thirty per cent of the total catch. An additional loss of five to ten per cent due to insects and microbes during lengthy periods of drying and/or storage has also been reported. After about thirty years of research, treatment with ionizing radiations has been proved to be a valuable potential tool for reducing post-harvest storage losses and for preserving quickly perishable food from deterioration. Since irradiation is a purely physical method of food conservation, it may for many purposes become the preferred method, for it is an environmentally clean process not tainted with the chemical residue problem, it is energy saving, and it can, in many cases, produce effects that cannot be achieved by conventional techniques (e.g. decontamination of frozen food without significant temperature changes, disinfestation and decontamination of food in bulk and packaged). The preservative effects of ionizing radiations can often be advantageously combined with effects of other physical or chemical agents. The resulting ''combination treatments'' may involve synergistic or cumulative action of the combination partners, leading to a decreased treatment requirement for one or both agents. This in turn may result in cost and/or energy savings and may bring about improvements in the sensory properties and bacteriological quality of the food thus treated. To review progress in this field a Symposium on Combination

  19. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    International Nuclear Information System (INIS)

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  20. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  1. The prepossession of international institutions for energy. The example International Energy Agency (IEA)

    International Nuclear Information System (INIS)

    Fell, H.J.

    2007-01-01

    In the contribution under consideration, the author reports on the fact that large international energy agencies, which are advisory active in energy questions active, affect the world-wide policy. In particular, these are the International Atomic Energy Authority in Vienna (Austria) and the International Energy Agency in Paris (France). The International Energy Agency is considered world-wide as the most important institution for all energy questions. Nearly annually, it publishes the World Energy Outlook by summarizing the most important current energy data of the world, prognoses the future power supply and makes future energy prices. The reality of the International Energy Agency looks completely differently: It performs no own sciences, but consists of statisticians, who gather only statistical data without scientific analysis. The author of this contribution summarizes the work of the International Energy Agency in three points: (a) Promotion of the interests of companies in mineral oil, natural gas, coal and atomic energy; (b) Hindering the world-wide conversion of renewable energy; (c) Endangerment of the world economy and prevention of an effective climate protection. The International Energy Agency does not justice to its own goal of a reliable, economical and pollution free power supply

  2. International Facility for Food Irradiation Technology

    International Nuclear Information System (INIS)

    Farkas, J.

    1982-01-01

    The International Facility for Food Irradiation Technology (IFFIT) was set up in November 1978 for a period of five years at the Pilot Plant for Food Irradiation, Wageningen, The Netherlands under an Agreement between the FAO, IAEA and the Ministry of Agriculture and Fisheries of the Government of the Netherlands. Under this Agreement, the irradiation facilities, office space and services of the Pilot Plant for Food Irradiation are put at IFFIT's disposal. Also the closely located Research Foundation, ITAL, provides certain facilities and laboratory services within the terms of the Agreement. The FAO and IAEA contribute US-Dollar 25,000. Annually for the duration of IFFIT. (orig.) [de

  3. Legal aspects and international implications of food irradiation

    International Nuclear Information System (INIS)

    Gerard, Alain.

    1977-11-01

    This paper reports on the status of work on food irradiation at international level, namely the IAEA/FAO/WHO Vienna recommendations, the proposed EEC directive, and the Codex alimentarius draft standards. It then deals with the legal aspects of the subject, in particular the problems concerning definitions, controls and instructions, and finally reviews the regulations for international trade in irradiated foodstuffs. (NEA) [fr

  4. Effect of irradiation in design of LMFBR internals

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Cowan, A.; Vries, M. de; Heesen, E.

    1990-01-01

    Internal structures of nuclear power reactors are essentially made with the austenitic stainless steels Types 304L and 316L. In service these structures receive low to moderate neutron doses. In this paper, the work undertaken by the European Fast Breeder Working Group is reviewed. Conclusions drawn to this date are presented and tentative reduction factors to be used in design are discussed in terms of the number of displacements per atom (dpa) and the quantity of helium generated in the steel (appm He). For the lower core structure which operates at about 400 0 C existing design rules can be used for parts which are subjected to less than 2 dpa despite a reduction in ductility and toughness which occurs above about 0.8 dpa. For the above core structure which operates at about 550 0 C interim and rather conservative stress reduction factors are proposed which can become effective at helium levels as low as 10 -4 appm. Particular attention is paid to: - irradiation temperature, - neutron flux and fluence, - steel type and grade, - heat treatment and boron distribution, - weld metal composition and procedure (TIG,MMA,...), to ensure that service conditions are represented as closely as possible

  5. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    International Nuclear Information System (INIS)

    Was, Gary

    2017-01-01

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  6. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-06-02

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  7. On the influence of high energy (250MeV) electron irradiation on the structure and properties of aluminium

    International Nuclear Information System (INIS)

    Gindin, I.A.; Neklyudov, I.M.; Okovit, V.S.; Starolat, M.P.; Dyatlov, V.P.

    1974-01-01

    The results of studies on the amplitude dependence of internal friction and structural changes in technically pure aluminium in the initial state and after irradiation with high-energy electrons are presented. Three stages are observed in the internal friction curves from the amplitude of the waves. If the values of the internal friction remain the same, irradiation considerably widens the amplitude-independent region and shifts the second and third regions toward the high-amplitude direction at first. Starting with the Granate-Luke model, changes in the length of the free dislocation segments in irradiated aluminium were determined. Electron microscope studies showed the presence of numerous radiation defects and changes in the configuration with dislocation lines in irradiated aluminum

  8. Radiation defects in InN irradiated with high-energy electrons

    International Nuclear Information System (INIS)

    Zhivul'ko, V.D.; Mudryj, A.V.; Yakushev, M.V.; Martin, R.; Shaff, V.; Lu, Kh.; Gurskij, A.L.

    2013-01-01

    The influence of high energy (6 MeV, fluencies 10 15 – 10 18 cm -2 ) electron irradiation on the fundamental absorption and luminescence properties of InN thin films which were grown on sapphire substrates by molecular bean epitaxial has been studied. It is found that electron irradiation increases the electron concentration and band gap energy E g of InN. The shift of the band gap energy E g is a manifestation of the Burshtein-Mossa effect. (authors)

  9. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Cui Fengmei; Zhao Jingyong; Hong Chengjiao; Lao Qinhua; Wang Liuyi; Yang Shuqin

    2004-01-01

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  10. High-energy and high-fluence proton irradiation effects in silicon solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Taylor, S.J.; Yang, M.; Matsuda, S.; Kawasaki, O.; Hisamatsu, T.

    1996-01-01

    We have examined proton irradiation damage in high-energy (1 endash 10 MeV) and high-fluence (approx-gt 10 13 cm -2 ) Si n + -p-p + structure space solar cells. Radiation testing has revealed an anomalous increase in short-circuit current I sc followed by an abrupt decrease and cell failure, induced by high-fluence proton irradiation. We propose a model to explain these phenomena by expressing the change in carrier concentration p of the base region as a function of the proton fluence in addition to the well-known model where the short-circuit current is decreased by minority-carrier lifetime reduction after irradiation. The reduction in carrier concentration due to majority-carrier trapping by radiation-induced defects has two effects. First, broadening of the depletion layer increases both the generation endash recombination current and also the contribution of the photocurrent generated in this region to the total photocurrent. Second, the resistivity of the base layer is increased, resulting in the abrupt decrease in the short circuit current and failure of the solar cells. copyright 1996 American Institute of Physics

  11. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  12. Free radical production by high energy shock waves--comparison with ionizing irradiation.

    Science.gov (United States)

    Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R

    1988-01-01

    Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.

  13. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Thomé, Lionel, E-mail: thome@csnsm.in2p3.fr; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Velisa, Gihan [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Miro, Sandrine; Trocellier, Patrick; Serruys, Yves [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  14. Neutron irradiation effects in pressure vessel steels and weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ianko, L [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Power; Davies, L M

    1994-12-31

    This paper deals with the effects of neutron irradiation on the steel and welds used for the pressure vessels which house the reactor cores in light water reactors: irradiation effects on mechanical properties and the shift in ductile-brittle transition temperature, importance of the knowledge of the neutron fluence and of the monitoring and surveillance programmes; empirical and mechanistic modelling of irradiation effects and the necessity of data extension to new operational limits; consequences on the manufacturing and structural design of materials and structures; mitigation of irradiation effects by annealing; international activities and programmes in the field of neutron irradiation effects on PV steels and welds. 37 refs., 22 figs.

  15. The mass effect model of the survival rate's dose effect of organism irradiated with low energy ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Gui Qifu; Yu Zengliang

    1995-01-01

    The main characteristic of the low energy ions mutation is its mass deposition effect. Basing on the theory of 'double strand breaking' and the 'mass deposition effect', the authors suggests that the mass deposition products can repair or further damage the double strand breaking of DNA. According to this consideration the dose effect model of the survival rate of organism irradiated by low energy of N + ion beam is deduced as: S exp{-p[αφ + βφ 2 -Rφ 2 exp(-kφ)-Lφ 3 exp(-kφ)]}, which can be called 'mass effect model'. In the low energy ion beam mutation, the dose effects of many survival rates that can not be imitated by previous models are successfully imitated by this model. The suitable application fields of the model are also discussed

  16. High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications

    Science.gov (United States)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-03-01

    Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol-gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10-3 to 8.725 × 10-4 Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.

  17. Effects of H-implantation energy on the optical stability of implanted usher films under photo-irradiation

    International Nuclear Information System (INIS)

    Awazu, K.; Yasui, H.; Kasamori, M.; Ichikawa, T.; Funada, Y.; Iwaki, M.

    1999-01-01

    A study has been made on the improvement of the optical stability of urushi films under optical irradiation using ion implantation. Ion implantation of hydrogen ions in urushi films was performed with a dose of 10 15 ions/cm 2 at ion energies ranging from 0.2 to 150 keV at room temperature. The photo-irradiation onto the urushi films was carried out at irradiation energies ranging from 40 to 400 MJ/m 2 . H-implantation onto urushi films is useful for improving the optical stability under photo-irradiation when the implantation energy is larger than 60 keV

  18. The significance of neuroendocrine system state in estimation of nonstochastic effects of small doses of internal irradiation. (An experimental study)

    International Nuclear Information System (INIS)

    Dedov, V.I.; Norets, T.A.; Stepanenko, V.F.; Dedenkov, A.N.

    1987-01-01

    Data on long-term complex investigations of nonstochastic effects of low doses of internal irradiation on the level of a whole organism are presented. Experiments have been carried out with mongrel rats of both sexes and different ages up to the moment of introduction of radioactive compounds. Action of relatively and uniformly distributing in the organism radiactive compounds of selenium - 75 and sulfur - 35, which were introduced once intravenously in quantities forming absorbed doses in average on the whole body and ovaries (0.5 Gy), on endocrine glands and critical organs (up to 1.0 Gy) has been used as models of internal radiation. Data, testifying to the fact that the neuroendocrinal system, despite the existing opinion, is sensitive to action of low doses of internal irradiation compared with the recommended one as an ultimate permissible one for nonstochastic effects ( 0.5 Sv), that permits to suggest for using factors of the functional state of the neuroendocrine system as an informative and sensitive criterium of estimation of biological action of low doses of internal radiation, have been obtained. These factors along with doses on critical organs permit to estimate the degree of dangerous action of different radionuclides on the organism level. Dynamic studying of activity factors of the neuroendocrine system with simultaneous analysis of the state of harmonically dependent processes permits to estimate functional possibilities of irradiated organism, its viability, especially under conditions requiring increased stress, as well as to take into account such factors modifying a biological effect as age, animal sex, the character of absorbed dose distribution

  19. International Cooperation to Establish Standard Operating Procedure (SOP) for Quarantine Management of Irradiated Foods in International Trade

    International Nuclear Information System (INIS)

    Lee, J. W.; Byun, M. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Yoon, Y. H.; Kim, D. H.; Kim, W. G.; Kim, K. P.

    2010-02-01

    · Development of SOPs through various research activities such as building international cooperation, and analysing current status of food irradiation in domestic and international markets, export and import, international market size, and of R and D - Analysis of examples for quarantine management in agricultural product exporting countries and use of irradiation technology for agricultural product quarantine, and changes in international quarantine management - Analysis of SOPs for food irradiation quarantine in international organization (CODEX, IPPC, WHO). U.S, EU, China, India, and Australia. - Collaborative researches of India/Korea and China/Korea entered into an agreement for market trials · Publishment of irradiation quarantine management SOPs agreed to CODEX standards - Collaborative researches for quarantine management, avoiding Technical Barrier to Trade (TBT), and Sanitary Phytosanitary Measures were conducted, and advanced SOPs agreed with WTO/FTA system were published

  20. Worldwide status of food irradiation and the role of IAEA and other international organizations

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1988-01-01

    While there has been an increasing interest in introducing irradiation for preservation and decontamination of food by national authorities and food industry, this technology has generated wide public debate in view of its perceived association with nuclear technology. The purpose of this paper is twofold: (1) to provide objectivity to the application of irradiation for food processing and (2) to project future trends of this technology. Irradiation appears to offer the most viable alternative to the existing technologies in quarantine treatment, hygienic quality of foods, reduction of food losses, and increase in market demand for fresh foods. Current limitations of food irradiation are discussed in terms of technical aspects, infrastructure and economics, consumer concerns, and harmonization of national regulations. Commercial applications have been reported in 19 countries. It is estimated that the total production of irradiated foods world-wide amounted to approximately 500,000 tons per annum. To ensure an effective implementation of the technology on a global basis, FAO and WHO have collaborated closely with the IAEA. An International Consultative Group on Food Irradiation was established under the aegis of FAO, IAEA, and WHO in May 1984. These organizations play an important role in training, technology transfer, developing guidelines on specific applications of food irradiation, international register of food irradiation facilities, acceptance and international trade in irradiated foods, and public information. (Namekawa, K.)

  1. Worldwide status of food irradiation and the role of IAEA and other international organizations

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P.

    1988-04-01

    While there has been an increasing interest in introducing irradiation for preservation and decontamination of food by national authorities and food industry, this technology has generated wide public debate in view of its perceived association with nuclear technology. The purpose of this paper is twofold: (1) to provide objectivity to the application of irradiation for food processing and (2) to project future trends of this technology. Irradiation appears to offer the most viable alternative to the existing technologies in quarantine treatment, hygienic quality of foods, reduction of food losses, and increase in market demand for fresh foods. Current limitations of food irradiation are discussed in terms of technical aspects, infrastructure and economics, consumer concerns, and harmonization of national regulations. Commercial applications have been reported in 19 countries. It is estimated that the total production of irradiated foods world-wide amounted to approximately 500,000 tons per annum. To ensure an effective implementation of the technology on a global basis, FAO and WHO have collaborated closely with the IAEA. An International Consultative Group on Food Irradiation was established under the aegis of FAO, IAEA, and WHO in May 1984. These organizations play an important role in training, technology transfer, developing guidelines on specific applications of food irradiation, international register of food irradiation facilities, acceptance and international trade in irradiated foods, and public information. (Namekawa, K.).

  2. International training workshop on quality control and management of food irradiation

    International Nuclear Information System (INIS)

    2004-01-01

    The International Training Workshop on Quality Control and Management of Food Indantrione was hold from 28-30, August, 2004 in Beijing, China and organized by Chinese Society of Nuclear Agriculture and China Isotope and Radiation Association. 10 Articles were collected in this symposium including training lectures. The contents included: international developments in food irradiation, Quality control and magement of food irradiation, industrializing development of irradiated food in China, Food irradiator and its quality management, research in setting standard for enterprise about irradiated products and etc.

  3. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  4. International Cooperation to Establish Standard Operating Procedure (SOP) for Quarantine Management of Irradiated Foods in International Trade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Byun, M. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Yoon, Y. H.; Kim, D. H.; Kim, W. G.; Kim, K. P.

    2010-02-15

    {center_dot} Development of SOPs through various research activities such as building international cooperation, and analysing current status of food irradiation in domestic and international markets, export and import, international market size, and of R and D - Analysis of examples for quarantine management in agricultural product exporting countries and use of irradiation technology for agricultural product quarantine, and changes in international quarantine management - Analysis of SOPs for food irradiation quarantine in international organization (CODEX, IPPC, WHO). U.S, EU, China, India, and Australia. - Collaborative researches of India/Korea and China/Korea entered into an agreement for market trials {center_dot} Publishment of irradiation quarantine management SOPs agreed to CODEX standards - Collaborative researches for quarantine management, avoiding Technical Barrier to Trade (TBT), and Sanitary Phytosanitary Measures were conducted, and advanced SOPs agreed with WTO/FTA system were published

  5. Energy uses in combination processes applying irradiation

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1998-01-01

    The costs of energy in the food system are significant and have increased as a result of the growth in population worldwide. This, in turn, demands an increased harvest per area of land, and thus intensive agriculture. The energy used in the food system is not only a drain on limited resources but also has an adverse impact on the environment. It is therefore important to devise methods that reduce energy in all undertakings. The energy used in food irradiation is relatively low compared with other methods and relative to the amount of energy used in producing food. for this reason, food irradiation is an environmentally friendly method and the costs of processing and preserving food do not depend greatly on the fluctuating costs of renewable energy sources such as oil. Irradiation in 60 Co facilities uses a very small amount of energy, about 0.032-0.0465 MJ/kg for radicidation doses of 3 kGy. Irradiation in 5 MV DC electron accelerator facilities uses about twice as much energy; 10 MV travelling wave accelerator facilities use about five times as much and 5 MV X ray facilities about 25 times as much as 60 Co facilities. In practice, X ray facilities are employed only for low dose applications such as sprout inhibition, inactivation of trichina in pork products and disinfestation of fruits, therefore the energy used in low. Frequently, irradiation can be used in combination with other low energy methods such as the sun drying of spices, condiments, vegetables and fish. The overall method of preservation is then particularly environmentally friendly and results in microbiologically safe and wholesome food. (author)

  6. Effects of irradiation with low-energy nitrogen ion injection on root tip cells of broad bean

    International Nuclear Information System (INIS)

    Huang Yaqin; Li Jinzhe; Huang Qunce

    2012-01-01

    In order to study the cytogenetic effects of low-energy nitrogen ion irradiation, broad bean seed embryo was irradiated by different doses of nitrogen ions. Micronucleus rate, mitotic index and chromosome aberration in root-tip cells were analyzed. The results showed that the injection of ions inhibited mitosis of root tip cells, interfered the normal process of mitosis, caused aberrations of chromosome structure, behavior and number. The frequency of micronucleus and chromosomal aberrations increased with the increasing radiation dosage, while mitotic index decreased. (authors)

  7. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se,Te) thin films

    Science.gov (United States)

    Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Grimaldi, G.; Leo, A.; Nigro, A.; Braccini, V.

    2018-05-01

    In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out an experimental investigation with different irradiation fluences up to 7.30 · 1016 cm‑2 and different proton implantation depths, in order to clarify whether and to what extent the critical current is enhanced or suppressed, what are the effects of irradiation on the critical temperature, resistivity, and critical magnetic fields, and finally what is the role played by the substrate in this context. We find that the effect of irradiation on superconducting properties is generally small compared to the case of other iron-based superconductors. The irradiation effect is more evident on the critical current density Jc, while it is minor on the transition temperature Tc, normal state resistivity ρ, and on the upper critical field Hc2 up to the highest fluences explored in this work. In more detail, our analysis shows that when protons implant in the substrate far from the superconducting film, the critical current can be enhanced up to 50% of the pristine value at 7 T and 12 K; meanwhile, there is no appreciable effect on critical temperature and critical fields together with a slight decrease in resistivity. On the contrary, when the implantation layer is closer to the film–substrate interface, both critical current and temperature show a decrease accompanied by an enhancement of the resistivity and lattice strain. This result evidences that possible modifications induced by irradiation in the substrate may affect the superconducting properties of the film via lattice strain. The robustness of the Fe(Se,Te) system to irradiation-induced damage makes it a promising compound for the fabrication of magnets in high-energy accelerators.

  8. Influence of low energy N+ ions pre-treatment on damage effects of UV-B irradiation on M1 rice

    International Nuclear Information System (INIS)

    Zhao Shuaipeng; Huang Qunce; Chen Xueneng

    2011-01-01

    The seedlings of rice (xindao18) were exposed to UV-B (10.08 kJ/(m 2 ·d 1 )) irradiation following the pretreatment with three different implantation dosages of low-energy N + ions. Changes in the levels of the superoxide (POD), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), glutathione (GSH) and soluble sugar were measured. The result showed that the UV-B irradiation on the seedlings of rice pretreated with low-energy ions implantation could lead to increase activities in POD and SOD, and the maximum appeared on the dose of 2.0 x 10 17 ions/cm 2 . Meanwhile, it made the content of GSH increased, and caused the activity of CAT and the content of MDA to be decreased. But there was no obvious change in soluble sugar. It was suggested that the rice pretreated by low energy ion implantation could enhance the antioxidation capacity and defensive ability when irradiated by UV-B, and the antioxidation system could be induced earlier than carbohydrate system. Therefore,the biological effects of UV-B irradiation on rice pretreated by low energy ion implantation were quite obvious. (authors)

  9. Stored energy recovery of irradiated copper

    International Nuclear Information System (INIS)

    Richard, R.T.; Chaplin, R.L.; Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.

    1990-01-01

    The stored energy released in Stage I recovery of reactor neutron irradiated copper was measured by differential thermal analysis calorimetry for three fluences up to a maximum of 3.5 x 10 18 n/cm 2 (E>0.1 MeV) after irradiation at temperatures of less than 10 K. The dependence of the stored energy upon fluence, and a tendency toward saturation, were observed. Theoretical reaction rate processes were compared directly with the experimental rates of stored energy release, and the parameters associated with the theory were compared with results from previous resistivity measurements. Good agreement was found for several parameters, but major differences with previous D + E substage results lead to the conclusion that the point defect model may not describe materials experiencing severe neutron damage. Computer studies of warmup rates were made for first and second order and for correlated recovery processes as a function of defect concentration and of external power input. First and second order processes show definite distortion in their recovery rate curves for high defect concentrations; the correlated recovery process shows a much less pronounced effect. This investigation of stored energy used several new approaches. The use of induced radioactivity within the sample as the heating source, and the use of computer generated theoretical stored energy release curves to analyze the data were unique. (author)

  10. Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors.

    Science.gov (United States)

    Yang, Gwangseok; Jang, Soohwan; Ren, Fan; Pearton, Stephen J; Kim, Jihyun

    2017-11-22

    The robust radiation resistance of wide-band gap materials is advantageous for space applications, where the high-energy particle irradiation deteriorates the performance of electronic devices. We report on the effects of proton irradiation of β-Ga 2 O 3 nanobelts, whose energy band gap is ∼4.85 eV at room temperature. Back-gated field-effect transistor (FET) based on exfoliated quasi-two-dimensional β-Ga 2 O 3 nanobelts were exposed to a 10 MeV proton beam. The proton-dose- and time-dependent characteristics of the radiation-damaged FETs were systematically analyzed. A 73% decrease in the field-effect mobility and a positive shift of the threshold voltage were observed after proton irradiation at a fluence of 2 × 10 15 cm -2 . Greater radiation-induced degradation occurs in the conductive channel of the β-Ga 2 O 3 nanobelt than at the contact between the metal and β-Ga 2 O 3 . The on/off ratio of the exfoliated β-Ga 2 O 3 FETs was maintained even after proton doses up to 2 × 10 15 cm -2 . The radiation-induced damage in the β-Ga 2 O 3 -based FETs was significantly recovered after rapid thermal annealing at 500 °C. The outstanding radiation durability of β-Ga 2 O 3 renders it a promising building block for space applications.

  11. Flux and energy deposition distribution studies inside the irradiation room of the portuguese 60Co irradiation facility

    International Nuclear Information System (INIS)

    Portugal, Luis; Oliveira, Carlos

    2008-01-01

    Full text: In December 2003 the irradiator of the Portuguese 60 Co irradiation facility, UTR, was replenished. Eighteen new sources were loaded and the older ones (156) were rearranged. The result was an irradiator with about 10.2 P Bq of total activity. The active area of the irradiator has also increased. Now it uses twenty five of the thirty tubes of the source rack, nine more than in the previous geometry. This facility was designed mainly for sterilisation of medical devices. However it is also used for the irradiation of other products such as cork stoppers, plastics and a limited number of food and feed. The purpose of this work is to perform dosimetric studies inside the irradiation room of a 60 Co irradiation facility, particularly, the flux and energy deposition distributions. The MCNPX code was used for the simulation of the facility. The track average mesh tally capabilities of MCNPX were used to plot the photon flux and energy deposition distributions. This tool provides a fast way for flux and energy deposition mapping. The absorbed dose distribution near the walls of the irradiation room was also calculated. Instead of using meshtallys as before, the average absorbed dose inside boxes lined with the walls was determined and afterwards a plot of its distribution was made. The absorbed dose rates obtained ranged from 5 to 500 Gy.h -1 depending on material being irradiated in process and the location on the wall. These positions can be useful for fixed irradiation purposes. Both dosimetric studies were done considering two different materials being irradiated in the process: cork stoppers and water, materials with quite different densities (0.102 and 1 g.cm-3, respectively). These studies showed some important characteristics of the radiation fields inside the irradiation room, namely its spatial heterogeneity. Tunnelling and shadow effects were enhanced when the product boxes increases its density. Besides a deeper dosimetric understanding of the

  12. Practical aspects of irradiance and energy in UV curing

    International Nuclear Information System (INIS)

    Stowe, R.W.

    1999-01-01

    The physical properties of UV-cured materials are substantially affected by the lamp systems used to cure them. The development of the intended properties, whether a varnish, an ink, or an adhesive, can depend on how well these lamp factors are designed and managed. The four key factors of UV exposure are: UV irradiance (or intensity), spectral distribution (wavelengths) of UV, effective energy (time-integrated UV irradiance), and infrared radiation. Inks and varnishes will exhibit very different response to peak irradiance or energy, as well as to different UV spectra. The ability to identify the various lamp characteristics and match them to the optical properties of the curable materials, widens the range in which UV curing is a faster, more efficient production process. This paper explores the reasons for clearly identifying these factors for process optimization

  13. Internal friction measurements of Mo after low-temperature proton irradiation

    International Nuclear Information System (INIS)

    Tanimoto, H.; Mizubayashi, H.; Masuda, R.; Okuda, S.; Tagishi, Y.

    1992-01-01

    Internal friction measurements are performed in Mo after 20 MeV proton irradiation in order to clarify the behavior of self-interstitial atoms (SIA's) in Mo. In the low dose range, strong dislocation pinning suggesting the free migration of defects is observed at about 40 K and weak pinning at about 25 K. The features are very similar to those reported after neutron irradiation except that the 25 K pinning is much smaller after proton irradiation. The result suggests that the migration of free SIA's is responsible for the 40 K pinning and that of SIA-defect clusters, probably di-SIA's, formed during irradiation for the 25 K pinning. In the high dose range, the relaxation peaks are observed at about 13 and 41 K, where the close similarities are found between the present peaks and the corresponding peaks reported after neutron irradiation except that the peak height of the 41 K peak per unit concentration of Frenkel pairs (FP) tends to increase strongly with decreasing dose here. The latter fact suggests the strong interaction between SIA's. Then the smallness of the 41 K peak reported after electron irradiation with very high dose could be explained by an increased interaction between SIA's, but not by the two-dimensional migration of SIA's as proposed by Jacques and Robrock. Deformation given prior to irradiation causes a drastic decrease in the modulus defects associated with FP's (so-called bulk effect) and in the 13 K peak height. After neutron irradiation, no such effect of deformation was reported. A possible origin for this difference is discussed. (orig.)

  14. Study about internal friction in deformed - and irradiated pure titanium

    International Nuclear Information System (INIS)

    Miyada, L.T.

    1979-01-01

    Internal friction and modulus are measured in pure Ti at low temperature using an inverted torsion-pendulum at about 1 Hz. The presence of four relaxation peaks P' sub(d)(-140 0 C), P sub(d)(-101 0 C), P' sub(α)(-75 0 C) and P sub(α)(-50 0 C) has been found, and effects of plastic deformation, heat treatment and neutron irradiation on these peaks are investigated in detail. Activation energies and frequency factors of P sub(d) and Pα peaks are consistent with the data in higher frequency range reproted by other workers. The P sub(d) and P' sub(d) peaks grow after deformation and tend to decay after annealing at high temperatures or after neutron irradiation. Both peaks are resonably interpreted in terms of dislocation relaxation mechanisms (Bordoni type) arising from thermally activated motion of dislocations in different slip planes of h.c.f. structure. Peierls stress of dislocations giving rise to each peak have calculated based on Seeger's theory, and found to be consistent with that of f.c.c. metals. On the other hand, P sub(α) and P' sub(α) peaks grow significantly at the expense of P sub(d) and P' sub(d) peaks after neutron irradiation in deformed samples. The behaviour of these peaks as a function of irradiation dose and annealing temperatures strongly indicated that they are due to relaxations resulting from dislocations-point defects interactions (Hasiguti type). It is tentatively suggested that P sub(α) and P' sub(α) peaks are related with interactions of dislocations with divacancies and single vacancies, respectively. Application of Schiller's model showed a consistent result with regard to the P' sub(α) peak experimentally observed. (Author) [pt

  15. Effect of Au irradiation energy on ejection of ZnS nanoparticles from ZnS film

    Science.gov (United States)

    Kuiri, P. K.; Ghatak, J.; Joseph, B.; Lenka, H. P.; Sahu, G.; Mahapatra, D. P.; Tripathi, A.; Kanjilal, D.; Mishra, N. C.

    2007-01-01

    ZnS films deposited on Si have been irradiated with Au ions at 35 keV, 2, and 100 MeV. Sputtered particles, collected on catcher foils during irradiation, were analyzed using transmission electron microscopy. For the case of 35 keV Au irradiation, no nanoparticle (NP) could be observed on the catcher foil. However, NPs 2-7 nm in size, have been observed on the catcher foils for MeV irradiations at room temperature. For particle sizes ≥3 nm, the distributions could be fitted to power law decays with decay exponents varying between 2 and 3.5. At 2 MeV, after correction for cluster breakup effects, the decay exponent has been found to be close to 2, indicating shock waves induced ejection to be the dominant mechanism. The corrected decay exponent for the 100 MeV Au irradiation case has been found to be about 2.6. Coulomb explosion followed by thermal spike induced vaporization of ZnS seems to be the dominant mechanism regarding material removal at such high energy. In such a case the evaporated material can cool down going into the fragmentation region forming clusters.

  16. Dose controlled low energy electron irradiator for biomolecular films.

    Science.gov (United States)

    Kumar, S V K; Tare, Satej T; Upalekar, Yogesh V; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  17. Dose controlled low energy electron irradiator for biomolecular films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.; Tsering, Thupten [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  18. International aspects of the mitigation of the environmental effects of energy production

    International Nuclear Information System (INIS)

    Pfeiffer, H.G.

    1987-01-01

    It is hard to draw a boundary between those impacts on the environment which are specifically related to energy and those which are a general consequence of the concentration of human activities. This survey of international activities on energy and the environment will be restricted to those effects which commonly operate across international boundaries and will not include such problems as the airborne chemical problems at Bhopal, the Rhine spill at Basel or the ozone depletion by chlorofluorocarbons. The major international energy-related concerns are: (1) carbon dioxide and the possible warming of the earth; (2) sulfur oxides, nitrogen oxides and photochemical oxidant effects on lakes, streams, forests, and structures; (3) nuclear radioactive releases from weapons testing and power plants as they affect human health; and (4) the disposal of radioactive waste as a possible threat for the future ground water supplies or oceans

  19. Clinical effects of chronic irradiation in conditions of Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovskij, K.N.; Kostyuchenko, V.G.

    1999-01-01

    Threshold doses for des adaptation syndrome development during chronic external and internal irradiation were found. Effects of small dose accumulation were established. Chronic irradiation is resulted in different dystrophic processes, psychosomatic violations and in increase of stochastic effects

  20. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation.

    Science.gov (United States)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2017-11-01

    We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.

  1. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  2. Ion beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Shukushima, Satoshi; Ueno, Keiji

    1995-01-01

    We studied the optical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H + , H 2 + and He + ions. The examined aromatic polymers were polyetherether ketone(PEEK), polyetherimide(PEI), polyether sulfon(PES), polysulfon(PSF), and polyphenylene sulfide(PPS). The optical densities at 300nm of PES and PSF greatly increased after the irradiation. The optical densities at 400nm of all the examined polymer lineally increased with the irradiation dose. The PEEK film which had been irradiated with 1 MeV H + was not deformed above melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the aromatic polymers for the same absorption energy. (author)

  3. Some biochemical effects of combined action of external irradiation and strontium 89

    International Nuclear Information System (INIS)

    Khadzhirusev, S.; Kiradzhiev, G.; Lalova, Kh.

    1979-01-01

    An attempt was made to assess the influence of strontium 89 on some biochemical effects, induced by external total X-irradiation of the organism in the early terms after treatment. The serum alkaline and acid phosphatase activities and the serum copper and ceruloplasmin content in rats served as indices. Inference is made that in cases, when either of the two radiation actors is alone responsible for obtaining a definite effects, their combination may integrate the biological effect, their combination may integrate the biological effects. Considerations are adduced on the dose span, within which integration of the effect may be expected. The data of this study indicate, that there is integration, when the effective dose external irradiaton effective dose internal irradiation ratio ranks from 1 : 3 to 1 : 1. No integration of effect was found in case when the effective dose of external irradiation eceeds that of internal irradiation. Data are also presented that, in conformity with the parameters studied, the minimal effective radiostrontium dose, generated in the critical organs, is approximately 3 times higher than the minimal effective dose of external irradiation. (author)

  4. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    International Nuclear Information System (INIS)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-01-01

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains

  5. Irradiation as an effective method of food conservation

    International Nuclear Information System (INIS)

    Stachowicz, W.

    1994-01-01

    Irradiation as an effective method for food preservation has been introduced. The worldwide history of radiation methods development has been shown. The state of art of international legislation connected with food irradiation and licensing of that technology in different countries has been reviewed. The list of food products commonly accepted for radiation conservation has also been performed

  6. Internal friction in irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Pajzullakhanov, M.S.; Khajdarov, T.; Ummatov, Kh.

    1999-01-01

    The submicroscopic heterogeneities in mono- and polycrystal silicon and the influence of X-ray radiation on them were investigated using the ultrasound resonance method. Disk-shaped samples of 27.5 mm in diameter and 4 mm in thickness, with the flat surface parallel to crystallographic plane (111), were irradiated by X-ray beam of 1 Wt/cm 2 (50 KeV, Mo K α ) during 10 hours. Relations of internal frictions (Q -1 ) of samples and their relative attitude (ψ) - Q -1 (ψ) show that there is a presence of double-humped configuration for monocrystal silicon with the peaks at ψ=900 and 270 degrees. The relations Q -1 (ψ) remain the same after the irradiation. However, the peak width becomes larger. This data show that the configuration and attitude of the heterogeneities remain the same after the irradiation. The double-humped configuration was not discovered for the relations Q -1 (ψ) of polycrystal silicon. It is explained by the fact that there is an isotropic distribution in the content of many blocks and granules

  7. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  8. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  9. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    International Nuclear Information System (INIS)

    Guillén, G. García; Shaji, S.; Palma, M. I. Mendivil; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2017-01-01

    Highlights: • Highlights • TiO_2 nanomaterials were prepared by PLALM. • Characterized these nanomaterials using TEM, XPS, XRD, optical and luminescence measurements. • Morphology of these nanomaterials were dependent on ablation wavelength, fluence and post-irradiation time. • Laser post irradiation modified the size, morphology and structure of these TiO_2 nanomaterials. - Abstract: Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV–-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  10. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León, México (Mexico); Palma, M. I. Mendivil [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León, México (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); and others

    2017-05-31

    Highlights: • Highlights • TiO{sub 2} nanomaterials were prepared by PLALM. • Characterized these nanomaterials using TEM, XPS, XRD, optical and luminescence measurements. • Morphology of these nanomaterials were dependent on ablation wavelength, fluence and post-irradiation time. • Laser post irradiation modified the size, morphology and structure of these TiO{sub 2} nanomaterials. - Abstract: Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV–-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  11. Food irradiation: fiction and reality

    International Nuclear Information System (INIS)

    1991-01-01

    The International Consultative Group on Food Irradiation (IGCFI), sponsored by World Health Organization (WHO), Food and Agriculture Organization (FAO) and the International Atomic Energy Agency (IAEA), with the intention to provide to governments, especially those of developing countries, scientifically correct information about food irradiation, decided to organize a file and questions of general public interest. The document is composed by descriptive files related with the actual situation and future prospective, technical and scientific terms, food irradiation and the radioactivity, chemical transformations in irradiated food, genetic studies, microbiological safety of irradiated food, irradiation and harmlessness, irradiation and additives, packing, irradiation facilities control, process control, irradiation costs and benefits as well as consumers reaction

  12. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  13. Effect of microwave irradiation on petrophysical characterization of coals

    International Nuclear Information System (INIS)

    Hong, Yi-du; Lin, Bai-quan; Zhu, Chuan-jie; Li, He

    2016-01-01

    Highlights: • Microwave energy increase porosity, pore size and numbers of coals. • Growth rates of porosity decreased at first then increased with microwave energy. • NMR can be reliable to measure coal samples. • Microwave energy may have the potential for degassing of coal seams. - Abstract: The experimental work described in this paper aims to study the effect of microwave irradiation on petrophysical characterization of coals. Twenty coal samples were irradiated at 2.45 GHz with variable power (2, 4, 6 kW). The temperature, mass and specific heat capacity of coal samples were measured and calculated. The effect of microwave irradiation on the porosity of coal samples was evaluated by the gravimetric method and nuclear magnetic resonance (NMR) measurements. The porosity obviously increases after microwave heating. Interestingly, growth rate of the porosity decreases at first then increases with microwave energy. The turning point is approximately 100 kJ. The influence of microwave irradiation on pore size, throat size and pore numbers of coal samples were also evaluated by NMR measurements. It suggest that the pore size, throat size and pore numbers are obviously increase with microwave energy. In a word, it appears likely that microwave energy may have the potential for the degassing coal seams.

  14. The dynamics of immunologic reactions in rats affected by repeated external γ-irradiation and internal irradiation with radionuclides

    International Nuclear Information System (INIS)

    Shubik, V.M.; Livshits, R.E.

    1975-01-01

    Nonspecific factors of immunity and formation of autoantibodies in rats exposed to comparable doses of repeated external γ-irradiation and of internal irradiation with Cs 137 , Sr 90 and I 131 chronically administered to animals have been studied comparatively. No essential variations have been found in changes induced in the immunologic reactions by chronic external and even internal γ-irradiation. Certain peculiarities have been revealed in the character of changes in the immunologic reactions depending on biophysical properties of the radionuclides used in the experiments

  15. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  16. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  17. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  18. N-type doping of InGaN by high energy particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720 (United States)

    2009-06-15

    This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphoteric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E{sub F} approaches the Fermi stabilization energy E{sub FS}. At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E{sub F} and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In{sub x}Ga{sub 1-x}N via native point defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. N-type doping of InGaN by high energy particle irradiation

    International Nuclear Information System (INIS)

    Yu, K.M.

    2009-01-01

    This article reviews our extensive studies of the effects of native defects introduced by high energy particles on the electrical and optical properties of InGaN alloys. We show that the electronic properties of irradiated InGaN can be well described by the amphoteric defect model. Because of the extremely low position of the conduction band edge of InN the formation energy of native donor defects is very low in In-rich InGaN alloys. High energy particle irradiation of InN and In-rich InGaN, will therefore produce donor defects and result in more n-type materials. As the irradiation dose increases, the electron concentration increases until the Fermi energy E F approaches the Fermi stabilization energy E FS . At this point both donor and acceptor-type defects are formed at similar rates, and compensate each other, leading to stabilization of E F and a saturation of the electron concentration. Hence a large increase and then saturation in the Burstein-Moss shift of the optical absorption edge is also observed. Furthermore we also found that mobilities in the irradiated films can be well described by scattering from triply charged defects, providing strong evidence that native defects in InN are triple donors. The excellent agreement between the experimental results and predictions based on the ADM suggests that particle irradiation can be an effective and simple method to control the doping (electron concentration) in In-rich In x Ga 1-x N via native point defects. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  1. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  2. International spillover and rebound effects from increased energy efficiency in Germany

    International Nuclear Information System (INIS)

    Koesler, Simon; Swales, Kim; Turner, Karen

    2016-01-01

    The pollution/energy leakage literature raises the concern that policies implemented in one country, such as a carbon tax or tight energy restrictions, might simply result in the reallocation of energy use to other countries. This paper addresses these concerns in the context of policies to increase energy efficiency, rather than direct action to reduce energy use. Using a global CGE simulation model, we extend the analyses of ‘economy-wide’ rebound from the national focus of previous studies to incorporate international spill-over effects from trade in goods and services. Our focus is to investigate whether these effects have the potential to increase or reduce the overall (global) rebound of local energy efficiency improvements. In the case we consider, increased energy efficiency in German production generates changes in comparative advantage that produce negative leakage effects, thereby actually rendering global rebound less than national rebound. - Highlights: • Offers first CGE analysis of full global spill-over effects of energy efficiency • Derives rebound definitions at sector, all industry, economy-wide and global levels • Extends understanding of how rebound extends from industry to global economy levels • Shows that changes in comparative advantage may constrain global rebound effects

  3. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  4. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  5. Status and possible prospects of an international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cozzani, F.

    1999-01-01

    Structural materials for future DT fusion power reactors will have to operate under intense neutron fields with energies up to 14 MeV and fluences in the order of 2 MW/m 2 per year. As environmental acceptability, safety considerations and economic viability will be ultimately the keys to the widespread introduction of fusion power, the development of radiation-resistant and low activation materials would contribute significantly to fusion development. For this purpose, testing of materials under irradiation conditions close to those expected in a fusion power station would require the availability, in an appropriate time framework, of an intense, high-energy neutron source. Recent advances in linear accelerator technology, in small specimens testing technology, and in the comprehension of damage phenomena, lead to the conclusion that an accelerator-based D-Li neutron source, with beam energy variability, would provide the most realistic option for a fusion materials testing facility. Under the auspices of the IEA, an international effort (EU, Japan, US, RF) to carry out the conceptual design activities (CDA) of an international fusion materials irradiation facility (IFMIF), based on the D-Li concept, have been carried out successfully. A final conceptual design report was produced at the end of 1996. A phase of conceptual design evaluation (CDE), presently underway, is extending and further refining some of the conceptual design details of IFMIF. The results indicate that an IFMIF-class installation would be technically feasible and could meet its mission objectives. However, a suitable phase of Engineering Validation, to carry out some complementary R and D and prototyping, would still be needed to resolve a few key technical uncertainties before the possibility to proceed toward detailed design and construction could be explored. (orig.)

  6. Irradiation effects on c-axis lattice parameter in EuBa{sub 2}Cu{sub 3}O{sub y} irradiated with energetic ions

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Norito; Chimi, Yasuhiro; Iwase, Akihiro; Maeta, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuru, Koji; Michikami, Osamu

    1997-03-01

    We report an irradiation effect on c-axis lattice parameter in EuBa{sub 2}Cu{sub 3}O{sub y} oxide superconductors when irradiated with ions of energy ranging from 0.85 to 200 MeV. For the irradiation with low energy (0.85-2 MeV) ions, the defect production and the resultant c-axis lattice expansion were dominated by elastic collisions. On the other hand, for the irradiation with high energy (120-200 MeV) ions, the change in the c-axis lattice parameter was found to be much greater than that expected from the elastic displacement of target atoms. For high energy ion irradiation we could observe the excessive increase of c-axis lattice parameter reflecting additional production of defects which can be attributed to the electronic excitation. The large increase in c-axis lattice parameter due to high energy ion irradiation should be taken into account for the study on the interaction between vortices and irradiation-induced defects. (author)

  7. Low temperature internal friction on γ-irradiated polyvinylidene fluoride (PVDF)

    International Nuclear Information System (INIS)

    Callens, A.; Eersels, L.; De Batist, R.

    1978-01-01

    A least-squares fitting of the below room temperature part of the internal friction spectra, obtained by the torsion pendulum technique on as-received and γ-irradiated (up to 1 Grad) strips and fibres of polyvinylidene fluoride by a superposition of single Debye functions, reveals that the spectral component features are determined not only by purely amorphous chain characteristics but also by the dose-dependence of crystallinity. A careful analysis of the relaxation spectra confirms that at least one relaxation effect (approximately 236 K) is created upon irradiation. The analysis of the dose dependence of the characteristics of the β (glass transition; approximately 220 K) and βsub(u) (apparent upper glass transition; approximately 270 K) relaxations, suggests the probable influence of crystallinity on the molecular motion in the amorphous phase. The increase of the intensity of the γ relaxation (approximately 190 K) is related to the irradiation-induced crystallite degradation. (author)

  8. Food irradiation 2009

    International Nuclear Information System (INIS)

    Narvaiz, Patricia

    2009-01-01

    Food irradiation principles; its main applications, advantages and limitations; wholesomeness, present activities at Ezeiza Atomic Centre; research coordinated by the International Atomic Energy Agency; capacity building; and some aspects on national and international regulations, standards and commercialization are briefly described. At present 56 countries authorize the consumption of varied irradiated foods; trade is performed in 32 countries, with about 200 irradiation facilities. Argentina pioneered nuclear energy knowledge and applications in Latin America, food irradiation included. A steady growth of food industrial volumes treated in two gamma facilities can be observed. Food industry and producers show interest towards new facilities construction. However, a 15 years standstill in incorporating new approvals in the Argentine Alimentary Code, in spite of consecutive request performed either by CNEA or some food industries restricts, a wider industrial implementation, which constitute a drawback to future regional commercialization in areas such as MERCOSUR, where Brazil since 2000 freely authorize food irradiation. Besides, important chances in international trade with developed countries will be missed, like the high fresh fruits and vegetables requirements United States has in counter-season, leading to convenient sale prices. The Argentine food irradiation facilities have been designed and built in the country. Argentina produces Cobalt-60. These capacities, unusual in the world and particularly in Latin America, should be protected and enhanced. Being the irradiation facilities scarce and concentrated nearby Buenos Aires city, the possibilities of commercial application and even research and development are strongly limited for most of the country regions. (author) [es

  9. Features micro plastic deformation auxetic beryllium irradiated with high-energy electrons

    International Nuclear Information System (INIS)

    Rarans'kij, M.D.; Olyijnich-Lisyuk, A.V.; Tashchuk, O.Yu.

    2016-01-01

    By low-frequency internal friction (LFIF) (1...3 Hz) method, the study of the behavior of the dynamic modulus of torsion (Gef) and by mathematical modeling of dislocation motion studied micro plastic deformation in naturally aged and irradiated with high-energy (18 MeV) electrons auxetic beryllium. With increasing doses of radiation found an increase in IF and speed of movement of dislocations in 2-3 times. Installed stage character micro strain auxetic Be. By mathematical modeling showed that in the irradiated material the deformation occurs due to the accelerated movement of the twin dislocations in the early stages, and anomalous dynamic deceleration of complete dislocations with an increase in the degree of deformation in the second stage. It is shown that theoretically estimated values are in good agreement with the experimentally determined.

  10. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  11. Nuclear techniques in food and agriculture. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1995-04-01

    The catalogue lists all publications of the International Atomic Energy Agency dealing with Food And Agriculture during the period 1980-1994. The major subjects covered include: food irradiation, insect and pest control, mutation plant breeding, plant biotechnology, soil fertility and irrigation, agrochemicals animal production and health

  12. Study of bond-energy variations in molecular systems under irradiation; Etude de la variation de l'energie de liaison dans les systemes moleculaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, G; Passe, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    On the basis of experimental results selected from publications, the evolution of the bond energy of a molecular system under irradiation - leading to a more or less bound state - is studied. This variation of bond energy is then compared to the total bond energy of the initial system and to the energy absorbed in the system during the irradiation. This is done as a function of the nature of molecular system and the radiation spectrum and intensity. Our working method will first be explained, and the results obtained will then be given. (authors) [French] A l'aide de resultats experimentaux, selectionnes dans les publications, nous etudions l'evolution de l'energie de liaison d'un systeme moleculaire sous irradiation (evolution vers un etat plus ou moins lie), et nous comparons cette variation d'energie de liaison a l'energie totale de liaison du systeme initial et a l'energie absorbee dans le systeme au cours de l'irradiation. Ceci est fait en fonction de la nature du systeme moleculaire ainsi que du spectre et de l'intensite du rayonnement. Nous exposons d'abord notre methode de travail, puis les resultats obtenus. (auteurs)

  13. Contribution to the study of the effects produced by irradiation and doping on LiF monocrystals

    International Nuclear Information System (INIS)

    Lima, Luis Filipe C.P. de

    1975-01-01

    The effects of neutron irradiation in pure and Mg doped LiF single crystals have been studied by combining internal friction and ionic thermo conductivity techniques. The main results of internal friction measurements in irradiated samples are: 1)a relaxation peak characteristic of inelastic relaxation processes is detected in pure samples exposed to fast and thermal neutrons in a swimming pool reactor. The nuclear reaction 6 Li (n,alpha)T is taken into account to explain the production of defects responsible for the detected relaxation peak because that process is not observed in experiments with pure sample shielded from thermal neutrons; 2) no Internal Friction relaxation peak is detected in Mg doped samples under the same experimental conditions; 3) It was not possible to determine an activation energy and a fundamental relaxation time for the defects responsible for the relaxation peak mentioned above because it was found that peak is not a Debye peak. Experiments, to determine the influence- of stress in Mg doped LiF crystals in torsion and in torsion-flexion configurations in the Internal Friction apparatus have also been performed. With the second experimental set-up an Internal Friction peak is detected leading to conclude that there is an Interaction between the flexion component with the Mg 2+ cation vacancy -elastic dipoles. Ionic Thermo conductivity measurements in LiF:Mg yielded for the parameters of the Mg 2+ cation vacancy pair the following values: fundamental relaxation, time τ 0 (5 +-2) x 10 -14 s and activation energy E = (0,65 + 0,02) eV. These results are in good agreement with the ones obtained In other laboratories. The effect of neutron irradiation on the concentration of Mg - cation vacancy pairs was to reduce that concentration. Moreover, two new depolarization current peaks are detected for neutron fluences higher than approximately 10 17 n/cm 2 . The relaxation parameters of one of these peaks (the lower temperature one) were

  14. Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data

    International Nuclear Information System (INIS)

    Celik, A.N.

    2003-01-01

    A general methodology is presented to estimate the monthly average daily energy output from photovoltaic energy systems. Energy output is estimated from synthetically generated solar radiation data. The synthetic solar radiation data are generated based on the cumulative frequency distribution of the daily clearness index, given as a function of the monthly clearness index. Two sets of synthetic solar irradiation data are generated: 3- and 4-day months. In the 3-day month, each month is represented by 3 days and in the 4-day month, by 4 days. The 3- and 4-day solar irradiation data are synthetically generated for each month and the corresponding energy outputs are calculated. A total of 8-year long measured hourly solar irradiation data, from five different locations in the world, is used to validate the new model. The monthly energy output values calculated from the synthetic solar irradiation data are compared to those calculated from the measured hour-by-hour data. It is shown that when the measured solar radiation data do not exist for a particular location or reduced data set is advantageous, the energy output from photovoltaic converters could be correctly calculated

  15. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  16. Surface deformation effects on stainless steel, Ni, Cu and Mo produced by medium energy He ions irradiation

    International Nuclear Information System (INIS)

    Constantinescu, B.; Florescu, V.; Sarbu, C.

    1993-01-01

    To investigate dose and energy dependence of surface deformation effects (blistering and flaking), different kinds of candidate CTR first wall materials as 12KH18N10T, W-4541, W-4016 and SS-304 stainless steels, Ni, Cu, Mo were irradiated at room temperature with 3.0, 4.7 and 6.8 MeV He + ions at IAP Cyclotron. The effects were investigated by means of a TEMSCAN 200 CX electron microscope and two metallographic Orthoplan Pol Leitz and Olympus microscopes. We observed two dose dependent main phenomena: blistering and flaking (craters). So, blisters occurrence on the irradiated surface is almost instantaneous when a critical dose (number of He ions accumulated in the region at the end of alpha particles range) is reached. Increasing irradiation dose, we reached flaking stage. So, isolated submicronic fissures along grain boundaries were observed on the blister skin, chronologically followed by large (5-20 μm) deep cracks of hundreds of microns in length, blisters opening and, finally, flaking appearance. (author) 8 figs., 1 tab

  17. Packing for food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2006-07-01

    Joint FAO/IAEA/WHO Expert Committee approved the use of radiation treatment of foods. Nowadays food packaging are mostly made of plastics, natural or synthetic, therefore effect of irradiation on these materials is crucial for packing engineering for food irradiation technology. By selecting the right polymer materials for food packaging it can be ensured that the critical elements of material and product performance are not compromised. When packaging materials are in contact with food at the time of irradiation that regulatory approvals sometimes apply. The review of the R-and-D and technical papers regarding material selection, testing and approval is presented in the report. The most information come from the USA where this subject is well elaborated, the International Atomic Energy Agency (IAEA) reports are reviewed as well. The report can be useful for scientists and food irradiation plants operators. (author)

  18. Packing for food irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2006-01-01

    Joint FAO/IAEA/WHO Expert Committee approved the use of radiation treatment of foods. Nowadays food packaging are mostly made of plastics, natural or synthetic, therefore effect of irradiation on these materials is crucial for packing engineering for food irradiation technology. By selecting the right polymer materials for food packaging it can be ensured that the critical elements of material and product performance are not compromised. When packaging materials are in contact with food at the time of irradiation that regulatory approvals sometimes apply. The review of the R-and-D and technical papers regarding material selection, testing and approval is presented in the report. The most information come from the USA where this subject is well elaborated, the International Atomic Energy Agency (IAEA) reports are reviewed as well. The report can be useful for scientists and food irradiation plants operators. (author)

  19. Hardness enhancement and crosslinking mechanisms in polystyrene irradiated with high energy ion-beams

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Mansur, L.K.

    1996-01-01

    Surface hardness values several times larger than steel were produced using high energy ion beams at several hundred keV to MeV. High LET is important for crosslinking. Crosslinking is studied by analyzing hardness variations in response to irradiation parameter such as ion species, energy, and fluence. Effective crosslinking radii at hardness saturation are derived base on experimental data for 350 keV H + and 1 MeV Ar + irradiation of polystyrene. Saturation value for surface hardness is about 20 GPa

  20. Influence of high energy electron irradiation and gamma irradiation on the osmotic resistance of human erythrocyte membranes

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Moraru, Rodica; Popescu, Alina; Morariu, V. V.

    1998-01-01

    The effects of 5 MeV electrons and of gamma irradiation at 0 deg. C on the osmotic fragility of human erythrocyte membranes are presented. Both electron and gamma radiation in the range 0-400 Gy induced no hemolysis indicating that the membrane modifications due to radiation interaction do not reach a critical point as to cause swelling of the cells and subsequent lysis. The osmotic stress experiments performed after irradiation showed that the gamma irradiated erythrocytes exhibited an almost similar sigmoidal behavior for all irradiation doses, whereas the electron irradiated samples showed a much larger increase in hemolysis degree and, in the case of a given electron dose (100 Gy), the hemolysis was found much smaller than for the control sample (a similar behavior of the erythrocytes was found in the case of microwave irradiation at temperatures under 0 deg. C). Our experimental data suggest that electron radiation and gamma radiation have different impacts on the erythrocyte membrane fluidity, involving, probably, the different rate of energy deposition in the samples and the direct interaction of electrons with the erythrocyte membranes. (authors)

  1. High-temperature irradiation effects on mechnical properties of HTGR graphites

    International Nuclear Information System (INIS)

    Oku, Tatsuo; Eto, Motokuni; Fujisaki, Katsuo

    1978-04-01

    The irradiation effects on stress-strain relation, Young's modulus, tensile strength, bending strength and compressive strength of HTGR graphites were studied in irradiation temperature ranges of 200 - 300 0 C and 800 - 1400 0 C and in neutron fluences up to 7.4 x 10 20 n/cm 2 and 3 x 10 21 n/cm 2 (> 0.18 MeV). Fracture criteria and strain energy to fracture of the unirradiated and the irradiated graphites were also examined. (1) Neutron fluence dependences are similar in Young's modulus, tensile strength and bending strength. (2) The change of compressive strength and of tensile and bending strengths with neutron fluence differ; the former varies with graphite kind. (3) At lower irradiation temperatures the bending fracture strain energy decreases with increasing neutron fluence and at higher irradiation temperatures it increases. (4) The fracture criteria of graphites deviates from the constant strain energy theory (α = 0.5) and the constant strain theory (α = 1), shifting from α asymptotically equals 0.5 to α asymptotically equals 1 with increasing irradiation temperature. (auth.)

  2. Neutronics analysis of International Fusion Material Irradiation Facility (IFMIF). Japanese contributions

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji; Kosako, Kazuaki.

    1997-10-01

    In fusion reactor development for demonstration reactor, i.e., DEMO, materials tolerable for D-T neutron irradiation are absolutely required for both mechanical and safety point of views. For this requirement, several kinds of low activation materials were proposed. However, experimental data by actual D-T fusion neutron irradiation have not existed so far because of lack of fusion neutron irradiation facility, except fundamental radiation damage studies at very low neutron fluence. Therefore such a facility has been strongly requested. According to agreement of need for such a facility among the international parties, a conceptual design activity (CDA) of International Fusion Material Irradiation Facility (IFMIF) has been carried out under the frame work of the IEA-Implementing Agreement. In the activity, a neutronics analysis on irradiation field optimization in the IFMIF test cell was performed in three parties, Japan, US and EU. As the Japanese contribution, the present paper describes a neutron source term as well as incident deuteron beam angle optimization of two beam geometry, beam shape (foot print) optimization, and dpa, gas production and heating estimation inside various material loading Module, including a sensitivity analysis of source term uncertainty to the estimated irradiation parameters. (author)

  3. Effects of low energy helium plasma irradiation on potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xiaoyan [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang (China); Huang, Bo [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Liu, Dongping; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Ning [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Tang, Jun, E-mail: tangjun@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China)

    2017-04-15

    Effects of helium plasma irradiation on spark plasma sintering (SPS) W-K, pure W and traditionally sintered commercial W-K have been studied, concerning the density, grain size and potassium content as the influence factors. Pinholes are formed under 120 eV He ions at 600 °C and 1 × 10{sup 23} m{sup −2} fluence on the surface of all samples. It is found that SPS-sintered W-K shows the best irradiation resistance among the present samples, and SPS-sintered pure W exhibits higher irradiation tolerance than commercial W-K. Different He-plasma tolerance was observed among the SPS-sintered W-K samples due to varied potassium content and grain size. In addition, the microstructure evolution under helium irradiation, the growth-migration of helium bubbles and their interactions of potassium bubbles have also been discussed.

  4. UV-irradiation effects on polyester nuclear track detector

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Kalsi, P.C.

    2010-01-01

    The effects of UV irradiation (λ=254 nm) on polyester nuclear track detector have been investigated employing bulk-etch technique, UV-visible spectrophotometry and infra-red spectrometry (FTIR). The activation energy values for bulk-etching were found to decrease with the UV-irradiation time indicating the scission of the polymer. Not much shift in the absorption edge due to UV irradiation was seen in the UV-visible spectra. FTIR studies also indicate the scission of the chemical bonds, thereby further validating the bulk-etch rate results.

  5. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  6. Measurements of the reverse current of highly irradiated silicon sensors to determine the effective energy and current related damage rate

    Science.gov (United States)

    Wiehe, Moritz; Wonsak, S.; Kuehn, S.; Parzefall, U.; Casse, G.

    2018-01-01

    The reverse current of irradiated silicon sensors leads to self heating of the sensor and degrades the signal to noise ratio of a detector. Precise knowledge of the expected reverse current during detector operation is crucial for planning and running experiments in High Energy Physics. The dependence of the reverse current on sensor temperature and irradiation fluence is parametrized by the effective energy and the current related damage rate, respectively. In this study 18 n-in-p mini silicon strip sensors from companies Hamamatsu Photonics and Micron Semiconductor Ltd. were deployed. Measurements of the reverse current for different bias voltages were performed at temperatures of -32 ° C, -27 ° C and -23 ° C. The sensors were irradiated with reactor neutrons in Ljubljana to fluences ranging from 2 × 1014neq /cm2 to 2 × 1016neq /cm2. The measurements were performed directly after irradiation and after 10 and 30 days of room temperature annealing. The aim of the study presented in this paper is to investigate the reverse current of silicon sensors for high fluences of up to 2 × 1016neq /cm2 and compare the measurements to the parametrization models.

  7. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Yongqiang; Liu, Juan [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhang, Chonghong, E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Chen, Jiachao [Paul Scherrer Institute, Villigen PSI (Switzerland); Yang, Yitao; Zhang, Liqing; Song, Yin [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2015-06-15

    Highlights: • Fractal dimensions of fracture surfaces of steels before and after irradiation were calculated. • Fractal dimension can effectively describe change of fracture surfaces induced by irradiation. • Correlation of change of fractal dimension with embrittlement of irradiated steels is discussed. - Abstract: A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.

  8. International energy outlook, 2010

    Science.gov (United States)

    2010-07-01

    This report presents international energy projections through 2035, : prepared by the U.S. Energy Information Administration, including outlooks : for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2010 (...

  9. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    2001-01-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  10. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  11. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  12. Electron irradiation effect on single crystal of niobium

    International Nuclear Information System (INIS)

    Otero, M.P.; Lucki, G.

    1984-01-01

    The effect of electron irradiation (900 KeV) on gliding dislocations of single crystal Nb with its tensile axe in the [941] orientation was observed for the in-situ deformation in a high voltage electron microscope (HVEM) at Argonne National Laboratory. The experimental was carried out by the 1 hour-electron irradiation with no stress applied. Straight dislocations actuating as sinks for the electron produced defects became helicoidal as the irradiation proceeded. Frenkel pairs were created in Nb for electron energies > = 650 KeV and, as the single vacancies do not undergo long-range migration in Nb at temperatures much below 620 K, the defects that are entrapped by the dislocations are self-interstitials produced by electron displacement. Applying the stress it was possible to observe that modified dislocations did not glide while the dislocations not affected by the irradiation are visibly in movement. This important result explains the neutron and electron-irradiation induced work-hardening effect for Nb that was previously observed. (Author) [pt

  13. Effect of the track potential on the motion and energy flow of secondary electrons created from heavy-ion irradiation

    Science.gov (United States)

    Moribayashi, Kengo

    2018-05-01

    Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.

  14. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  15. Transfer of energy from irradiated crystals to redox reactions: iodide/bromate and nitrite/bromate systems

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Madhava Rao, B.S.; Bedekar, M.J.

    1978-01-01

    Earlier it had been shown by the authors that some of the redox reactions, which do not take place at room temperature can be induced by γ radiation. The yields are proportional to the dose. Results reported here show that instead of direct irradiation, the energy stored in irradiated crystals in the form of F and hole centres can be available, in part, in effecting redox reactions. The mechanism of such an energy transfer is discussed with reference to reactions in the I - +BrO 3 - and NO 2 - +BrO 3 - systems due to the addition of irradiated NaCl. (author)

  16. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Shah, Alok; Nanjappa, C.; Chauhan, O.P.

    2014-01-01

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  17. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  18. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100 and 150 kGy) on gross energy (GE), in vitro apparent organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs and maize cobs. The results indicate that, there were significant (P<0.05) increases in IVOMD and IVDE values, especially, at the dose of 150 kGy. The increases in IVOMD were 22, 21 and 23% for barley straw, sorghum straw and wheat chaffs, respectively; whereas, such an increase was 12% for maize cobs. Digestible energy values increased over the control by 1165, 1621, 1540 and 1130 kJ/kg dry matter for barley straw, sorghum straw, wheat chaffs and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues

  19. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1997-07-01

    The effects of different doses of gamma irradiation (0, 5, 20, 50, 100, 150 kGy) on gross energy (GE), in vitro organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs, and maize cobs. The results indicate that , there were significant increase in IVOMD and IVDE values, especially, at the dose of 150 kGy. compared with the control, the increase in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, the increase was only 12% for maize cobs. Digestible energy values increased by 1165, 1621, 1540, and 1130 MJ/kg dry matter, for barley straw, sorghum straw, wheat chaffs, and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (author)

  20. Changes in digestible energy values of some agricultural residues treated with gamma irradiation

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1999-01-01

    The effects of different doses of gamma irradiation (0, 5, 100 and 150 kGy) on gross energy (GE), in vitro apparent organic matter digestibility (IVOMD) and digestible energy (IVDE), have been evaluated in barley straw, sorghum straw, wheat chaffs and maize cobs. The results indicate that, there were significant increases in IVOMD and IVDE values, especially, at the dose of 150 kGy. The increases in IVOMD were 22, 21 and 23% for barley straw, sorghum straw, and wheat chaffs, respectively; whereas, such an increase was 12% for maize cobs. Digestible energy values increased over the control by 1165, 1621, 1540 and 1130 kJ/kg dry matter for barley straw, sorghum straw, wheat chaffs and maize cobs, respectively. There was no significant effect of gamma irradiation on GE values for the studied agricultural residues. (authors)

  1. Some physical methods for study of irradiation effects in graphite; Quelques procedes physiques pour etudier les effets de l'irradiation du graphite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, G; Lecomte, M; Mattmuller, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A calibration method for a classical apparatus for differential thermal analysis is described in detail. This method achieves a relative precision of 5 per cent in the measurement of the internal energy release accompanying the annealing of irradiated graphites. Elastic constants of graphites are obtained from the frequencies of the longitudinal modes of vibration; procedures for excitation and detection of these vibrations at any temperature between -190 deg. C and +1500 deg. C are described. A procedure for obtaining easily measured deformations of graphites after relatively little irradiation with thermal neutrons is discussed. An application of this method to the study of the thermal annealing of elongation caused by displaced atoms is indicated. (author) [French] On decrit en detail une methode d'etalonnage pour un appareil classique d'analyse thermique differentielle. Cette methode permet de mesurer avec une precision relative de 5% la liberation d'energie interne qui accompagne le 'recuit' des graphites irradies. On deduit les constantes elastiques des graphites des frequences des vibrations longitudinales et on decrit les procedes pour exciter et detecter ces vibrations a toutes les temperatures comprises entre -190 deg. C et + 1500 deg. C. On discute un procede pour obtenir une des deformations de graphites facilement mesurables apres une irradiation relativement faible a l'aide de neutrons thermiques. Une application de cette methode a l'etude du 'recuit' thermique de l'elongation causee par les atomes deplaces est indiquee. (auteur)

  2. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanzhang@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Li, Meimei [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  3. Characterisation of irradiation effect on geo-polymers

    International Nuclear Information System (INIS)

    Chupin, Frederic

    2015-01-01

    This study aims to improve knowledge about the radiation effect on geo-polymer behavior in terms of dihydrogen release and general strength in order to consider them as an alternative to usual nuclear waste cementitious coating matrices. Using various characterization techniques (nitrogen adsorption, low temperature DSC, FTIR and 1 H NMR spectroscopy) and by means of simulation irradiations (gamma, heavy ions), it has been shown that all the water present in the geo-polymer could be radiolyzed and that there was a confinement effect on the water radiolysis under low LET irradiation, probably due to efficient energy transfers from the solid matrix to the interstitial solution. Three dihydrogen production rates have been identified with the absorbed dose, depending on the concentration of dissolved dioxygen and the dihydrogen accumulation in the geo-polymer matrix. The good mechanical strength of the geo-polymer has been shown up to 9 MGy under gamma irradiation and is due to its high stability under irradiation. This could be explained by the fast recombination of the defects observed by EPR spectroscopy. However, phase crystallization was revealed during irradiation with heavy ions, which may induce some weakening of the geo-polymer network under alpha irradiation. The overall results helped to understand the phenomenology in a waste package under storage conditions. (author) [fr

  4. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  5. Swedish studies on irradiation effect in structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M; Myers, H P

    1962-12-15

    A brief description of work in hand at AB Atomenergi concerning the effects of neutron irradiation on structural materials is given. Some recent data is listed for the following pressure vessel steels 2103/R3 as used in the Aagesta reactor, SIS 142103, NO345, Fortiweld and weld metal OK 54 P. Zircaloy-2 has been studied regarding the combined effects of neutron irradiation and hydrogen content on tensile properties. The difficulties associated with determination of neutron dose and the correlation of damage with dose and neutron energy spectrum are discussed.

  6. Swedish studies on irradiation effect in structural materials

    International Nuclear Information System (INIS)

    Grounes, M.; Myers, H.P.

    1962-12-01

    A brief description of work in hand at AB Atomenergi concerning the effects of neutron irradiation on structural materials is given. Some recent data is listed for the following pressure vessel steels 2103/R3 as used in the Aagesta reactor, SIS 142103, NO345, Fortiweld and weld metal OK 54 P. Zircaloy-2 has been studied regarding the combined effects of neutron irradiation and hydrogen content on tensile properties. The difficulties associated with determination of neutron dose and the correlation of damage with dose and neutron energy spectrum are discussed

  7. Effect of electron irradiation on hatchability and broiler performance of hatching eggs

    International Nuclear Information System (INIS)

    Castaneda, S.M.P.; Tellez, I.G.; Sanchez, R.E.; Quintana, L.J.A.; Bustos, R.E.

    1996-01-01

    The irradiation of foods employs the electromagnetic ionizing energy, and the gamma ray, the X ray and the electrons are used. The electrons are reduced mass particles and have negative electric charge. The difference between the gamma rays, X-ray and electron is the penetration level. The effective range on penetration of electron accelerator depends on the energy level, in practice the penetation of an electron beam in the foods is 5 mm for MeV. The objectives of this work were to evaluate the effects of electron irradiation on the hatchability, and to evaluate the productive parameters of chicken hatching from egg irradiated with electrons. (author). 15 refs., 6 tabs

  8. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    Science.gov (United States)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  9. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    International Nuclear Information System (INIS)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-01-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  10. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Science.gov (United States)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-12-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  11. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Hee-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Kwang-Won [Department of Orthopaedic Surgery, Eulji University School of Medicine, Daejeon 302-799 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2008-12-15

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  12. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  13. International energy annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  14. Irradiation effects on perfluorinated polymers

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Pompe, G.; Scheler, U.; Lunkwitz, K.

    2002-01-01

    Complete text of publication follows. High-energy radiation affects the properties of polymers by chain scission and crosslinking reactions. Both types of reaction occur simultaneously in irradiated polymers. However, one process will usually predominate, depending on the chemical structure of the polymer and the irradiation conditions such as temperature and atmosphere. Polytetrafluoroethylene (PTFE) undergoes predominantly chain scission, if the irradiation is performed at room temperature. This shortcoming is exploited by converting PTFE into low molecular weight micropowders. The use of PTFE micropowders functionalized with COOH groups as additive in polyamides to improve the sliding properties of the materials has been studied. During the compounding process in a twin screw extruder the COOH groups of the irradiated PTFE react with the polyamides. For these studies, it became necessary to investigate the content of end groups in irradiated PTFE by FTIR and 19 F solid-state NMR. These date were used to calculate number-average molecular weights. The ratios of COOH groups to CF 3 groups are discussed in terms of the mechanism of PTFE degradation. If PTFE is irradiated at temperatures above its crystalline melting point in an oxygen-free atmosphere, branching and crosslinking occur. The dependence of radiation effects on perfluorinated copolymers (FEP, PFA) on temperature has been studied. Melt flow index measurements have shown that branching and crosslinking predominate over chain scission with increasing irradiation temperature both in FEP and in PFA. Quantitative analysis of 19 F solid-state NMR data has shown that the content of branching groups (>CF-) exceeds the content of end groups in the case of PFA irradiated above its crystalline melting point. The formation of COF and COOH groups in the irradiated PFA is interpreted as a result of partial degradation of perfluorovinyl ether comonomer units

  15. Conceptual proposals for measuring the impact of international regimes on energy security

    International Nuclear Information System (INIS)

    Sander, Michael

    2013-01-01

    The paper proposes two concepts to assess the effect of international regimes on energy security. Existing indicators focus mainly on state-level factors, excluding international influences. International relation scholars on the other hand see a clear connection between international regimes and stable energy relations. International regimes stabilise energy relations by providing frameworks for negotiations, defining, controlling and sanctioning compliance and allowing the actors to engage in package deals. The researcher needs to include these factors in a complete assessment of political energy security risks. As first step, the paper uses the effectiveness of control mechanisms as basis for such consideration. It refers specifically to international arbitration as the most important control mechanism in international energy relations. The simplest measurement option is the share of a county's energy imports covered by a certain regime. The paper applies the Oslo-Potsdam-Solution to account for outcome effectiveness. It applies a variant of the International Regimes Data Base protocol to account for effective regime structures. In a last section, the paper proposes some possible paths for future research. - Highlights: • International regimes mitigate political risks for energy supply and must be considered. • The paper proposes two concepts to measure energy regime effectiveness. • The OPS-variant measures output, the IRDB-variant measures structure effectiveness. • The paper offers a preliminary feasibility test for the concepts. • Finally, it suggests further roads for research

  16. Energy stored in irradiated NaCl

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1979-01-01

    Recently reported measurements of the energy stored in heavily irradiated NaCl are reviewed in the light of recent understanding of radiation-damage processes in this material. It is shown that, in the ranges of temperatures and dose rates of these experiments, the F-centres produced by the irradiation are retained principally in the form of colloids: the stored energy is thus a direct measure of the number of F-centres retained in this form. Comparison of these results with the prediction of the recently proposed theory of colloid growth shows that the predictions of the dependence of colloid growth rates upon temperature and dose rate are qualitatively correct. The dependence of stored energy dose, however, appears to require the inclusion of a thermally activated back-reaction and possible modifications to the theory are briefly discussed. However, further experiments in this range of temperatures and dose rates are necessary for more quantitative tests of the theory. This reconsideration of the data does not alter the broad conclusion as to the relative insignificance of stored energy in a natural salt formation used as a radioactive waste repository, although more extensive measurements permitting a more exact test of theory would allow better predictions to be made for such applications. (author)

  17. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rosseel, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  18. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    International Nuclear Information System (INIS)

    Le Pape, Yann; Rosseel, Thomas M.

    2015-01-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program Material Pathway Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  19. Impact of irradiations by protons with different energies on silicon sensors

    International Nuclear Information System (INIS)

    Neubueser, Coralie

    2013-06-01

    In the frame of the CMS tracker upgrade campaign the radiation damage of oxygenrich n-type silicon pad diodes induced by 23 MeV and 23 GeV protons was investigated. The diodes were manufactured by Hamamatsu Photonics. After irradiation with 1 MeV neutron equivalent fluences between 1 x 10 11 cm -2 and 1.5 x 10 15 cm -2 , the sensors were electrically characterized by means of capacitance-voltage (CV) and current-voltage (IV) measurements. Current pulses recorded by the Transient Current Technique (TCT) and Charge Collection Efficiency (CCE) measurements show a dependence of the bulk damage on the proton energy. At a fluence of Φ eq ∼3 x 10 14 cm -2 oxygen-rich n-type diodes demonstrate clear Space Charge Sign Inversion (SCSI) after 23 MeV proton irradiation. This effect does not appear after the irradiation with 23 GeV protons. Moreover, RD50 pad diodes were irradiated with 23 MeV protons, electrically characterized and compared to results obtained after 23 GeV irradiations. Our previous observation on the energy dependence of the radiation damage could be confirmed. In order to get a deeper understanding of the differences of the radiation induced defects, the Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current Technique (TSC) were utilized. Defects with impact on the space charge could be identified and characterized and it was possible to find some hints for the reason of the SCSI after 23 MeV proton irradiation. Moreover, a dependence on the oxygen concentration of the sensors could be observed.

  20. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  1. Food irradiation: technology transfer in Asia, practical experiences

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1993-01-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the successful conclusion of the world's first complete food irradiation technology transfer project. (Author)

  2. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  3. Irradiation Effects of Electron Beam on Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of); Choi, Hong Gu; Oh, Kyung Hwan [Yonsei University, Seoul (Korea, Republic of); Cho, Ho Jin [Nucron Co. Ltd., Seoul (Korea, Republic of)

    2009-10-15

    The surveillance or monitoring systems used in space station, nuclear power plant and nuclear waste repository, are often equipped with optical fibers to remotely locating expensive camera systems so as to protect them from direct irradiation. Especially in nuclear power plant and nuclear waste repository, irradiation by gamma-ray and beta-ray are most concerned. The effective life-time of such surveillance system may depend on the soundness of the optical fiber because it is the component to be exposed the high intensity of radiation field by purpose. Though the degradation of mechanical properties such as hardness and elasticity may occur but the degradation of the optical property such as spectral transmittance is the most possible cause of the effective life-time limitation. Generally 30 % reduction of light signal transmittance is considered as the life-time threshold point of such optical systems. In this paper, we studied irradiation effects on spectral transparency of various commonly-used optical fibers with high energy electron beam to conveniently simulate the both gamma-ray and beta-ray irradiation situation.

  4. Heavy ion irradiation effects of polymer film on absorption of light

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Noboru; Seguchi, Tadao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Arakawa, Tetsuhito

    1997-03-01

    Ion irradiation effects on the absorption of light for three types of polymer films; polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN), and polyether-ether-ketone (PEEK) were investigated by irradiation of heavy ions with Ni{sup 4+}(15MeV), O{sup 6+}(160MeV), and Ar{sup 8+}(175MeV), and compared with electron beams(EB) irradiation. The change of absorption at 400nm by a photometer was almost proportional to total dose for ions and EB. The absorption per absorbed dose was much high in Ni{sup 4+}, but rather small in O{sup 6+} and Ar{sup 8+} irradiation, and the absorption by EB irradiation was accelerated by the temperature of polymer film during irradiation. The beam heating of materials during ion irradiation was assumed, especially for Ni ion irradiation. The heavy ion irradiation effect of polymers was thought to be much affected by the ion beam heating than the linear energy transfer(LET) of radiation source. (author)

  5. Effect of the High-Energy Electron Beam Irradiation on the Morphology and Mechanical Properties of PE/EVA Blends

    International Nuclear Information System (INIS)

    Razavi Aghjeh, M. K.

    2006-01-01

    The main objective of the present work was to study the effect of electron beam irradiation on the morphology and mechanical properties of PE/EVA blends. The melt compounding of the blends were carried out in an internal mixer. The small amount of the prepared blend samples were rapidly quenched in liquid nitrogen and the remained were compression molded into sheets. Sheets and quenched samples were then irradiated by a 10 MeV electron beam accelerator using different dose levels. The morphological studies for both, sheeted and quenched blends were performed on cryogenically fractured surfaces by using SEM technique. The mechanical properties of the sheeted samples were evaluated according to ASTM D638. The results of mechanical properties showed that, increasing in irradiation dose increases the tensile strength and decreases the elongation at break in all blend compositions. On the other hand, it was found that, for PE/EVA blends the extent of tensile strength increase, and elongation at break decrease, are more appreciable in compare to the neat PE and EVA. These results suggest that, the blend interface is more susceptible for irradiation induced crosslinking. This is because of more affinity of PE and EVA macroradicals to termination with together in compare to own macroradicals.The results of morphological studies showed that, irradiation can stabilize the blend morphology especially in co-continues regions, where the morphology is more unstable due to the heat coarsening

  6. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  7. Trigger effect of infrared femtosecond laser irradiation on neoplasm in experimental cervical cancer

    Science.gov (United States)

    Gening, Tatyana; Voronova, Olga; Zolotovskii, Igor; Sysoliatin, Alexey; Dolgova, Dinara; Abakumova, Tatyana

    2013-02-01

    The present work discusses effect of infrared (IR) femtosecond laser irradiation on neoplasm of white mice with experimental cervical cancer- 5 (CC-5 on the 20th and 30th days after tumor transplantation). Tumor tissue was irradiated by femtosecond erbium doped fiber laser: the wavelength is 1.55 μm, average and peak powers are1,25 mW and 6kW, respectively, irradiation trials n=10. The average energy density (energy dose) on a tissue for two groups of animals was 0,24 J/cm2 and 0,36 J/cm2 for a single trial. Irradiation was followed by biochemical determination of LPO AOS parameters ("Lipid peroxidation-antioxidants" system): malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase and glutathione-reductase (GR), glutathione-S-transferase (GST). A subsequent morphological study of tumor tissue was performed. Mathematical analysis of data demonstrates a weak dependence of the studied parameters on energy dose. The latter implies the trigger effect of IR femtosecond laser irradiation on redox-dependent processes in neoplasm at experimental cervical cancer.

  8. EDF energy generation UK transport of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [EDF Energy, London, (United Kingdom)

    2015-07-01

    This paper give an overview of irradiated fuel transport in the UK. It describes the design of irradiated fuel flask used by EDF Energy; operational experience and good practices learnt from over 50 years of irradiated fuel transport. The AGRs can store approximately 9 months generation of spent fuel, hence the ability to transport irradiated fuel is vital. Movements are by road to the nearest railhead, typically less than 2 miles and then by rail to Sellafield, up to 400 miles, for reprocessing or long term storage. Road and rail vehicles are covered. To date in the UK: over 30,000 Magnox flask journeys and over 15,000 AGR A2 flask journeys have been carried out.

  9. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  10. Electron beam irradiation: novel technology for phytosanitary purposes

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Dwivedi, J.; Gautam, S.; Sharma, Arun

    2015-01-01

    In the WTO regime, flow of agricultural commodities has increased, posing risk of inadvertent introduction of exotic pests. This can be minimized by undertaking quarantine measures. Quarantine/phytosanitary disinfestation treatments demand a very high level of security as the pest tolerance in quarantine is zero. Methyl bromide, a potent fumigant has been restricted in its use due to ozone depleting effect. Also, the conventional chemicals/fumigants being used world over are being restricted globally because of the various associated problems. Therefore, there is a need for an alternative ecofriendly strategy for controlling the pests. Irradiation, an approved technology by International Plant Protection Convention, appears to be a viable, nonchemical, residue-free strategy. Disinfestation of pulses with low energy electron irradiation potentially will have less deleterious effects on commodity quality than irradiation with other sources. Internationally, new radiation generating sources as Electron beam (EB) are being explored to meet import standards of quality and quarantine. The EB has a machine source and can be simply switched on or off. Irradiation of legume seeds viz., blackgram, greengram and soybean infested with pulse beetles (Callosobruchus maculatus and C. chinensis) at different doses at an energy level of 500 keV using the Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore revealed the dose-dependent effects on the insect growth parameters. Adult emergence from seeds infested with different stages was negligible and eggs laid by beetles that survived treatment did not develop into adults at higher doses. The lower doses viz., 170, 340 and 510 Gy on the other hand caused sterility effect on the insect but showed stimulatory effect on the physiological seed parameters . viz., seedling vigour and vigour index. Electron beam irradiation has a great potential for use in the disinfestation for phytosanitary purposes. Nevertheless

  11. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  12. Na,K-ATPase biostimulation by low-energy laser irradiation: comparative effects in membrane, solubilized and proteoliposomes enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Rigos, C.F.; Tedesco, A.C.; Ciancaglini, P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Quimica; Santos, H.L. [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil)

    2008-07-01

    Full text: The mechanism of laser irradiation action on living cells is not yet understood. The role of membrane ATPases as possible targets has been analyzed. In our group we have been working with Na,K-ATPase. This enzyme is a member of the P-type family of active cation transport proteins. Thus, the aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of different forms of the Na,K-ATPase. Membrane-bound and solubilized (ab)2 form of Na,K-ATPase was obtained from the rabbit kidney and DPPC:DPPE-proteoliposomes were prepared by the co-solubilization method. Irradiations were carried out at 685 nm. The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/c m2. With irradiation doses ranging from 32 to 40 J/c m2, a 28% increase on the ATPase activity was observed while when using up to 50 J/c m2 no additional enhancement was observed. When bio stimulation was done using the purified or the reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/c m2. With irradiation above these values (24 J/c m2) no additional increase in the activity appeared. These studies revealed that the bio stimulation of ATPase activity from different forms of the Na,K -ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes.

  13. Na,K-ATPase biostimulation by low-energy laser irradiation: comparative effects in membrane, solubilized and proteoliposomes enzyme

    International Nuclear Information System (INIS)

    Rigos, C.F.; Tedesco, A.C.; Ciancaglini, P.

    2008-01-01

    Full text: The mechanism of laser irradiation action on living cells is not yet understood. The role of membrane ATPases as possible targets has been analyzed. In our group we have been working with Na,K-ATPase. This enzyme is a member of the P-type family of active cation transport proteins. Thus, the aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of different forms of the Na,K-ATPase. Membrane-bound and solubilized (ab)2 form of Na,K-ATPase was obtained from the rabbit kidney and DPPC:DPPE-proteoliposomes were prepared by the co-solubilization method. Irradiations were carried out at 685 nm. The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/c m2. With irradiation doses ranging from 32 to 40 J/c m2, a 28% increase on the ATPase activity was observed while when using up to 50 J/c m2 no additional enhancement was observed. When bio stimulation was done using the purified or the reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/c m2. With irradiation above these values (24 J/c m2) no additional increase in the activity appeared. These studies revealed that the bio stimulation of ATPase activity from different forms of the Na,K -ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes

  14. Multiple relaxation processes in high-energy ion irradiated kapton-H polyimide: Thermally stimulated depolarization current study

    International Nuclear Information System (INIS)

    Garg, Maneesha; Quamara, J.K.

    2006-01-01

    High-energy ion irradiation effects on the thermally stimulated depolarization current (Tdc) behaviour of kapton-H samples (12.5 μm) irradiated with 50 MeV Li ion (fluence 5 x 10 4 , 10 5 and 5 x 10 5 ions/cm 2 ) have been investigated. The TSDC spectra of the irradiated samples reveal that the β-peak (appearing around 80-110 deg. C) associated with dipolar relaxation has been significantly affected owing to the demerization of carbonyl groups due to irradiation. The TSDC spectra also reveal a new relaxation process (termed as γ-relaxation) around 30 deg. C, due to increased water absorptivity in irradiated samples. The peak around 200 deg. C (α-peak) associated with space charge relaxation process also shows a behavioural change with ion irradiation. The peak not only shifts towards the higher temperature with increasing fluence but also show an increase in its activation energy (0.33-0.99 eV) with increasing polarizing field. The creation of new deep energy trap centers due to the formation of conjugated bonds after irradiation is responsible for this modification. The Cole-Cole distribution curves show the formation of new sub-polar group with different characteristic relaxation time

  15. Measurements of the angular distribution of diffuse irradiance

    DEFF Research Database (Denmark)

    Andersen, Elsa; Nielsen, Kristian Pagh; Dragsted, Janne

    2015-01-01

    Advanced solar resource assessment and forecasting is necessary for optimal solar energy utilization. In order to investigate the short-term resource variability, for instance caused by clouds it is necessary to investigate how clouds affect the solar irradiance, including the angular distribution...... of the solar irradiance. The investigation is part of the Danish contribution to the taskforce 46 within the International Energy Agency and financed by the Danish Energy Agency. The investigation focuses on the distribution of the diffuse solar irradiance and is based on horizontal measurements of the solar...

  16. Time-dose relationship of erythema in high energy photon irradiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hidetoshi (Gifu Prefectural Tajimi Hospital (Japan)); Sakuma, Sadayuki

    1992-01-01

    Skin doses of 100 patients who were treated with high energy ionizing irradiation during conventional irradiation therapy were measured by thermoluminescence dosimeter (TLD). In 87 of the 100 patients, acute hyperemic change of the skin (erythema) of the irradiated region was observed. In the other 13 patients, alopetia of the scalp was observed. The following conclusions were reached. The time-dose relationship was linear when erythema tolerance was used as an index, but not when alopecia was used. The tolerance dose for erythema was lower than previously reported. The slope of the isoeffect curve on the log-log plot of total absorbed skin dose against total number of days after the first irradiation was 0.68 when erythema was used as an index. This number is larger than previously reported results. We considered that erythema is significantly influenced by fraction size and that hyperfractionation is a promising method of irradiation, especially in Japan. Combined use of chemotherapeutic agents, such as 5-FU, accelerated erythema. The slope of combined treatment was 0.86. Observing acute hyperemic change of skin is considered to be a useful method of investigating the combined effects of chemotherapeutic agents on irradiation. (author).

  17. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrehim, N; El-Samahy, A E; Kassem, M E [Physics Department, Faculty of Science, Alexandria University. (Egypt); Abou-Taleb, W M [Physics and Chemistry Department, Faculty of Education, Alexandria University. (Egypt)

    1996-03-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E{sub op}, absorption coefficient {alpha} , absorption index K, mobility energy gap E{sub g}, absorption band edge {lambda}{sub g} and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E{sub p}, is dose dependent. 7 figs.

  18. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    International Nuclear Information System (INIS)

    Abd-Elrehim, N.; El-Samahy, A.E.; Kassem, M.E.; Abou-Taleb, W.M.

    1996-01-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E op , absorption coefficient α , absorption index K, mobility energy gap E g , absorption band edge λ g and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E p , is dose dependent. 7 figs

  19. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  20. Proceedings of V International Conference of Renewable Energy, Energy Saving and Energy Education. CIER 2007. International Workshop of Eolic Energy

    International Nuclear Information System (INIS)

    2007-05-01

    The CD-ROM presents papers submitted to the International Conference of Renewable Energy, Energy Saving and Energy Education. CIER 2007, held in Havana, Cuba, on May 22-25, 2007. The purpose of the CIER 2007 are to offer an opportunity to engineers, investigators, academic, makers and specialists in the energy topic from all over the world to exchange experiences, to share their successes and to discuss their focuses to future in the topic of the energy renewable, the energy saving, the energy efficiency and the energy education. The objective of the International Workshop of Eolic Energy is in advancing in the dialogue international on the systems in question and their applications around the world, you they analyzed the perspectives of possible programs of cooperation in this field and their use in Cuba

  1. Effects of ion irradiation on the mechanical properties of several polymers

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Kawanishi, Shunichi; Nishi, Masanobu; Seguchi, Tadao

    1991-01-01

    The effects of high-energy ion irradiation on the tensile properties of polymers were studied under conditions in which ions should pass completely through the specimen and the results were compared with 2 MeV electron irradiation effects. Experiments were carried out on polymers having various constituents and molecular structures, i.e. eight aliphatic polymers and four aromatic polymers. In the aliphatic polymers studied there was scarcely any difference in the dose dependence of the tensile strength and ultimate elongation between proton and electron irradiation. In the aromatic polymers, however, the decrements in the tensile strength and ultimate elongation vs proton dose were less than those for electron irradiation. In heavy-ion irradiation, the radiation damage of PE (an aliphatic polymer) decreased with increase of LET, but no obvious LET effects were observed in PES (an aromatic polymer). (author)

  2. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  3. Safety factors influencing the acceptance of food irradiation technology

    International Nuclear Information System (INIS)

    1989-01-01

    The International Consultative Group on Food Irradiation convened a Task Force Meeting on Public Information of Food Irradiation at the French Commissariat a l'Energie Atomique (CEA), Cadarache from 18 to 21 April 1988. A compilation of scientific papers on subjects of public interest on food irradiation was made by internationally-recognized experts. The report of the meeting and the review papers presented at the meeting are included in this publication. Refs, figs and tabs

  4. Food preservation by irradiation

    International Nuclear Information System (INIS)

    Gottschalk, M.

    1978-01-01

    In November, 1977, an International Symposium on Food Preservation by Irradiation was held at Wageningen, the Netherlands. About 200 participants attended the Symposium which was organised by the International Atomic Energy Agency, the Food and Agriculture Organization of the United Nations and the World Health Organization; a reflection of the active interest which is being shown in food irradiation processing, particularly among developing countries. The 75 papers presented provided an excellent review of the current status of food irradiation on a wide range of different topics, and the Symposium also afforded the valuable opportunity for informal discussion among the participants and for developing personal contacts. A brief survey of the salient aspects discussed during the course of the meeting are reported on. (orig.) [de

  5. International energy outlook 1996

    International Nuclear Information System (INIS)

    1996-05-01

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA's projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA's World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts' knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs

  6. International energy outlook 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

  7. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  8. Study of irradiation effects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Material Department, University of California, Santa Barbara (United States); Pareige, P.; Radiguet, B. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Cunningham, N.J.; Odette, G.O. [Material Department, University of California, Santa Barbara (United States); Pokor, C. [EDF RD, departement MMC, site des Renardieres, Moret-sur-Loing (France)

    2011-07-01

    Chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after seventeen years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A very high number density (6.10{sup 23} m{sup -3}) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. In order to bring complementary experimental results and to determine the mechanism of formation of these Ni-Si nano-clusters, Fe{sup 5+} ion irradiations have been performed on a 316 austenitic stainless steel. As after neutron irradiation, the formation of solute enriched features is observed. Linear features and two kinds of clusters, rounded and torus shaped, are present. Considering that solute enriched features are probably formed by radiation induced segregation on point defect sinks, these different shapes are due to the nature of the sinks where segregation occurs. (authors)

  9. Electron irradiation effects on lithium peroxide

    Science.gov (United States)

    Kikkawa, Jun; Shiotsuki, Taishi; Shimo, Yusuke; Koshiya, Shogo; Nagai, Takuro; Nito, Takehiro; Kimoto, Koji

    2018-03-01

    In this study, electron irradiation effects on lithium peroxide (Li2O2), which is an important discharge product of Li-air (or Li-O2) batteries, were investigated using selected-area electron diffraction (SAED) and high-energy resolution electron energy-loss spectroscopy (EELS). The results obtained show that Li2O2 to Li2O transformation occurs with 80 and 300 keV incident electrons under high electron dose rates at 20 and -183 °C. The Li2O2 to Li2O transformation rate for 300 keV was 1/5 of that for 80 keV with the irradiation taking place at -183 °C. We also present a series of the EELS spectra that can be used as a criterion to judge the molar ratio of Li2O to Li2O2 in the general systems where Li2O2 and Li2O coexist.

  10. Impact of irradiations by protons with different energies on silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Neubueser, Coralie

    2013-06-15

    In the frame of the CMS tracker upgrade campaign the radiation damage of oxygenrich n-type silicon pad diodes induced by 23 MeV and 23 GeV protons was investigated. The diodes were manufactured by Hamamatsu Photonics. After irradiation with 1 MeV neutron equivalent fluences between 1 x 10{sup 11} cm{sup -2} and 1.5 x 10{sup 15} cm{sup -2}, the sensors were electrically characterized by means of capacitance-voltage (CV) and current-voltage (IV) measurements. Current pulses recorded by the Transient Current Technique (TCT) and Charge Collection Efficiency (CCE) measurements show a dependence of the bulk damage on the proton energy. At a fluence of {Phi}{sub eq}{approx}3 x 10{sup 14} cm{sup -2} oxygen-rich n-type diodes demonstrate clear Space Charge Sign Inversion (SCSI) after 23 MeV proton irradiation. This effect does not appear after the irradiation with 23 GeV protons. Moreover, RD50 pad diodes were irradiated with 23 MeV protons, electrically characterized and compared to results obtained after 23 GeV irradiations. Our previous observation on the energy dependence of the radiation damage could be confirmed. In order to get a deeper understanding of the differences of the radiation induced defects, the Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current Technique (TSC) were utilized. Defects with impact on the space charge could be identified and characterized and it was possible to find some hints for the reason of the SCSI after 23 MeV proton irradiation. Moreover, a dependence on the oxygen concentration of the sensors could be observed.

  11. International energy outlook, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents the current Energy Information Administration (EIA) assessment of the long-term outlook for international energy markets. This and other EIA reports are provided as a statistical service for use by managers and international energy analysts, not as a Government energy plan. Current US Government policies and foreign government policies are assumed to hold over the projection interval, which extends to the year 2010

  12. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  13. Effects of the neutronic irradiation on the impact tests

    International Nuclear Information System (INIS)

    Lapena, J.; Perosanz, F.J.; Hernandez, M.T.

    1993-01-01

    The changes that the Charpy curves suffer when steel is exposed to neutronic fluence are studied. Three steels with different chemical composition were chosen, two of them (JPF and JPJ) being treated at only one neutronic fluence, while the last one (JRQ) was irradiated at three fluences. In this way, it was possible to compare the effect of increasing the neutronic dose, and to study the experimental results as a function of the steel chemical composition. Two characteristic facts have been observed: the displacement of the curve at higher temperatures, and decrease of the upper shelf energy (USE). The mechanical recovery of the materials after two different thermal treatments is also described, and a comparation between the experimental results obtained and the damage prediction formulas given by different regulatory international organisms in the nuclear field is established. Author. 11 refs

  14. Facts about food irradiation. A series of fact sheets from the International Consultative Group on Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-01

    The safety and benefits of foods processed by ionizing radiation are well documented. In an effort to provide governments, especially those of developing countries, with scientifically accurate information on issues of general interest to the public, the International Consultative Group on Food Irradiation (ICGFI), which was established under the aegis of the Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO), and the IAEA, decided at its 7th Annual Meeting in Rome, Italy, on October 1990, to issue a series of ''Fact Sheets'' on the subject. ICGFI, an inter-governmental body with a membership of 37 governments, has as one of its mandates the function to provide information to Member States of the FAO, WHO, and IAEA and to the three organizations themselves on the safe and proper use of food irradiation technology. The Fact Sheets included here cover issues relating to: status and trends; scientific and technical terms; food irradiation and radioactivity; chemical changes in irradiated food; nutritional quality of irradiated foods; genetic studies; microbiological safety of irradiated food; irradiation and food safety; irradiation and food additives and residues; packaging of irradiated foods; safety of irradiation facilities; controlling the process; food irradiation costs; and irradiated foods and the consumer. The Fact Sheets have been separately indexed and included in the INIS Database under Reference Numbers 23011206-23011217, 23011319 and 23012743. The Fact Sheets were first issued by the ICGFI Secretariat (Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria) in May 1991.

  15. Facts about food irradiation. A series of fact sheets from the International Consultative Group on Food Irradiation

    International Nuclear Information System (INIS)

    1991-12-01

    The safety and benefits of foods processed by ionizing radiation are well documented. In an effort to provide governments, especially those of developing countries, with scientifically accurate information on issues of general interest to the public, the International Consultative Group on Food Irradiation (ICGFI), which was established under the aegis of the Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO), and the IAEA, decided at its 7th Annual Meeting in Rome, Italy, on October 1990, to issue a series of ''Fact Sheets'' on the subject. ICGFI, an inter-governmental body with a membership of 37 governments, has as one of its mandates the function to provide information to Member States of the FAO, WHO, and IAEA and to the three organizations themselves on the safe and proper use of food irradiation technology. The Fact Sheets included here cover issues relating to: status and trends; scientific and technical terms; food irradiation and radioactivity; chemical changes in irradiated food; nutritional quality of irradiated foods; genetic studies; microbiological safety of irradiated food; irradiation and food safety; irradiation and food additives and residues; packaging of irradiated foods; safety of irradiation facilities; controlling the process; food irradiation costs; and irradiated foods and the consumer. The Fact Sheets have been separately indexed and included in the INIS Database under Reference Numbers 23011206-23011217, 23011319 and 23012743. The Fact Sheets were first issued by the ICGFI Secretariat (Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria) in May 1991

  16. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  17. Postirradiation examination results for the Irradiation Effects Test IE-5

    International Nuclear Information System (INIS)

    Cook, T.F.; Ploger, S.A.; Hobbins, R.R.

    1978-03-01

    The results are presented of the postirradiation examination of four pressurized water reactor type fuel rods which were tested in-pile under a fast power ramp and film boiling operation during Irradiation Effects (IE) Test 5. The major objectives of this test were to evaluate the effects of simulated fission products on fuel rod behavior during a fast power ramp, to determine the effects of high initial internal pressure on a fuel rod during film boiling, and to assess fuel rod property changes that occur during film boiling in a fuel rod with previously irradiated cladding. The overall condition of the rods and changes that occurred in fuel and cladding as a result of the power ramp and film boiling operation, as determined from the postirradiation examination, are reported and analyzed. Effects of the simulated fission products on fuel rod behavior during a power ramp are discussed. The effect of high internal pressure on rod behavior during film boiling is evaluated. Cladding temperatures are estimated at various axial and circumferential locations. Cladding embrittlement by oxidation is also assessed

  18. Low energy proton irradiation effects on InP/InGaAs DHBTs and InP-base frequency dividers

    Science.gov (United States)

    Zhang, Xingyao; Li, Yudong; Guo, Qi; Feng, Jie

    2018-03-01

    InP/InGaAs DHBTs and frequency dividers are irradiated by low energy proton, and displacement damage effect of the devices are analyzed. InP/InGaAs DHBTs has been made DC characteristics measurements, and the function measurement for frequency dividers has been done both before and after proton irradiation. The breakdown voltage of InP DHBTs drop to 3.7V When the fluence up to 5x1013 protons/cm2. Meanwhile, the function of frequency dividers get out of order. Degradation of DC characteristics of DHBTs are due to the radiation-induced defects in the quasi neutral base and the space charge region of base-collector and base-emitter junctions. The performance deterioration of DHBTs induce the fault of frequency dividers, and prescaler may be the most sensitive circuit.

  19. Northeast International Committee on Energy. Comite international du nord-est sur l'energie

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The annual Conference of the New England Governors and Eastern Canadian Premiers was established in 1973 to deal with such common questions as energy, agriculture, transportation, tourism, economic development, and the environment. As a result of this conference, the Northeast International Committee on Energy was established in 1978. This annual report gives a summary of the year's activities, which included an international roundtable on energy choices and the environment, energy education, and a compendium of biomass facilities. New activities to be undertaken in the coming year include the convening of an international roundtable on energy in the spring of 1990 in Halifax, Nova Scotia; a review of recycling efforts in the region; and a review of regulatory procedures at the national, state and provincial levels for across-the-border energy transactions.

  20. Age dependent effects of combined irradiation on lipid peroxidation in rat blood

    International Nuclear Information System (INIS)

    Mazhul', L.M.; Volykhina, V.E.; Gatsko, G.G.

    2000-01-01

    It was studied the effects of combined action of external acute gamma-irradiation in dose 1.0 Gy and chronic internal irradiation of cesium 137 (0.8 MBq/kg) on lipid peroxidation system in rat blood. Animals of two aged groups (2 and 6 months old) was investigated. The experiments were conducted on 10, 30, 90 and 180 days after the cessation of cesium 137 injection. Internal irradiation didn't exert influence on lipid peroxidation system in blood. Antioxidant system was activated on 10 days after acute irradiation at 2-months old animals and by 180 days at 6-months ones. In the case of combined irradiation activation of the antioxidant system in blood serum of 2-months old rats in early terms (10 days) possibly supports the invariable level of lipid peroxidation products. At 6-months old rats, on the contrary, the activation of the antioxidant system was not registered, however the content of malonic dialdehyde was increased. Possibly, at 2-months old rats the combined irradiation in early terms stimulates the protective systems of the organism in higher degree than at 6-months old ones

  1. Effect of whole body neutron irradiation on certain enzyme activities in different brain areas in mice

    International Nuclear Information System (INIS)

    Kotb, M.A.; Ashour, A.M.; El-Bassiouni, E.A.

    1994-01-01

    Male swiss albino mice were exposed to whole-body irradiation by fast neutrons of 14 MeV average energy. Two single doses of 0.08 sievert and 0.16 sievert were used, corresponding to fluences of 1.27 X 10 8 and 2.54 X 10 8 n/cm 2 respectively. Two enzymes were assessed in different layers of the cerebrum and cerebellum of mouse brain. Changes in the activities of acid phosphatase (ACP) and succinic dehydrogenase (SDH) were taken to measure alterations in lysosomal and mitochondrial functions respectively. The degrees of lysosomal affection in different layers of the cerebrum were not uniform, while changes in A activity were very prominent in certain layers (e.g. external pyramidal layer, polymorphous cells layer and white matter), they were practically absent in others (e.g. internal pyramidal layer). Stronger effect was noted in the tissue layers of the cerebellum. The activity of SDH decreased as result of fast neutron irradiation. The response was more apparent for this enzyme than for ACP. This indicates more liability for a decrease in energy metabolism with consequent effect on behavioural and physiological functions under central nervous system control. 4 figs., 4 tabs

  2. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents the recommendations of an international group of experts convened by the World Health Organization, in association with the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency, to consider the implications of food irradiated to doses higher than those recommended in 1980 by the Joint Expert Committee on the Wholesomeness of Irradiated Food. Irradiation ensures the hygienic quality of food and extends shelf-life. The public perception of the safety of food irradiation has generally precluded its widespread use. However, current applications of food irradiation to doses over 10 kGy have been in the development of high-quality shelf-stable convenience foods for specific target groups such as immunosuppressed individuals and those under medical care, astronauts and outdoor enthusiasts. The Study Group reviewed data relating to the toxicological, nutritional, radiation chemical and physical aspects of food irradiated to doses above 10kGy from a wide range and number of studies carried out over the last forty years. This report presents a comprehensive summary, along with references, of the effectiveness and safety of the irradiation process. It concludes that foods treated with doses greater than 10kGy can be considered safe and nutritionally adequate when produced under established Good Manufacturing Practice

  3. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  4. International energy annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

  5. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  6. Teratogenic effect of Californium-252 irradiation in rats

    International Nuclear Information System (INIS)

    Satow, Yukio; Lee, Juing-Yi; Hori, Hiroshi; Okuda, Hiroe; Tsuchimoto, Shigeo; Sawada, Shozo; Yokoro, Kenjiro

    1989-01-01

    The teratogenicity of Californium-252 (Cf-252) irradiation which generates approximately 70% 2.3 MeV fast neutron and 30% gamma rays was evaluated. A single whole body exposure of Cf-252 at various doses was given to pregnant rats on day 8 or 9 of pregnancy, followed by microscopic autopsy of the fetuses at the terminal stage of pregnancy to search for external and internal malformations. For comparison, pregnant rats were irradiated with various doses of Cobalt-60 (Co-60) standard gamma rays at the same dose rate (1 rad/min.). The doses were 20-120 rad of Cf-252 and 80-220 rad of Co-60. Using frequency of radiation induced malformations observed on day 8 of pregnancy as an index, relative biological effectiveness (RBE) of 2.3-2.7 was obtained from the straight line obtained by modifying by the least squares method the frequency curves of malformed fetuses in total implants and in surviving fetuses. The types of malformations induced by Cf-252 and Co-60 irradiation were alike. Using fetal LD 50 as an index, 2.4 was obtained as RBE when irradiated on day 8 of pregnancy and 3.1 as that when irradiated on day 9. The results showed that Cf-252 had stronger a teratogenic effect than Co-60 gamma rays. (author)

  7. Food irradiation technology

    International Nuclear Information System (INIS)

    Cetinkaya, N.

    1999-01-01

    Trade in food and agricultural products is important to all countries, the economies of many developing countries would be significantly improved if they were able to export more food and agricultural products. Unfortunately, many products can not be traded because they are infested with, or hosts to, harmful pests, contaminated with microorganisms, or spoil quickly. Foods contaminated with microorganisms cause economic losses, widespread illness and death. Several technologies and products have been developed to resolve problems in trading food and to improve food safety, but none can provide all the solutions. Irradiation is an effective technology to resolve technical problems in trade of many food and agricultural products, either as a stand- alone technology or in combination with others. As a disinfestation treatment it allows different levels of quarantine security to be targeted and it is one of few methods to control internal pests. The ability of irradiation virtually to eliminate key pathogenic organisms from meat, poultry, and spices is an important public health advantage. In addition to controlling pests and eliminating harmful bacteria, irradiation also extends the storage life of many foods. In the laboratories of Turkish Atomic Energy Authority, many research projects were completed on the effects of gamma irradiation to the storage life of chicken meat, anchovy, Turkish fermented sausage, dried and fresh fruits and vegetables and also research projects were conducted on the effects of gamma irradiation on microorganisms (Salmonella, Campylo-bacteria, E.coli and S.aureus in white and red meat) and parasites (food-borne, trichostrongylus spp. and Nematodes spp.)

  8. Internal friction of Fe-B alloys neutron irradiated at low temperature

    International Nuclear Information System (INIS)

    Kitajima, Kazunori; Futagami, Koji; Abe, Hironobu; Yoshida, Hiroyuki.

    1975-01-01

    Measurements were made on the internal friction of Fe-B alloys irradiated by neutron at 16 0 K to the dose of 3x10 16 nvt (>1 MeV) and 6x10 17 nvt (thermal). Boron was used to enhance the production of defects by the nuclear transformation B 10 (n,α)Li 7 . Relaxation peaks were found in specimens containing dispersed fine precipitates of NbB 2 in range of B 500--7200 wt ppm and Nb 2000--30000 wt ppm. The most prominent peak is the one with the peak temperature of 169 0 K at the frequency of 264 c/sec. Activation energy determined from the peak shift is 0.28+-0.01 eV, which is nearly equal to that of migration of self-interstitial reported on pure iron. However activation energy of the decay of peaks by annealing is about 0.7 eV. Interpretation was presented that the peak may be attributed to re-orientation of self-interstitials loosely bound to a boron atom. (auth.)

  9. Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Tanuj [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 1123029 (India); Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Manish, E-mail: manishbharadwaj@gmail.com [Department of Physics, Central University of Rajasthan, Kishangarh 305801 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Sahoo, P.K. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-12-01

    Highlights: • A new process for controlling the near-surface amorphization of ripples on Si surfaces. • Ripples generation by 100 KeV Ar{sup +} and amorphization control by 60 KeV Ar{sup +} irradiation. • Advantage of energy-separated irradiation demonstrated by detailed RBS and AFM studies. • Relevant mechanism is presented on the basis of DAMAGE and SIMNRA simulations. • Key role of solid flow towards the amorphous/crystalline interface is demonstrated. - Abstract: Nanoscale ripples on semiconductor surfaces have potential application in biosensing and optoelectronics, but suffer from uncontrolled surface-amorphization when prepared by conventional ion-irradiation methods. A two-step, energy-separated sequential-irradiation enables simultaneous control of surface-amorphization and ripple-dimensions on Si(1 0 0). The evolution of ripples using 100 keV Ar{sup +} bombardment and further tuning of the patterns using a sequential-irradiation by 60 keV Ar{sup +} at different fluences are demonstrated. The advantage of this approach as opposed to increased fluence at the same energy is clarified by atomic force microscopy and Rutherford backscattering spectroscopy investigations. The explanation of our findings is presented through DAMAGE simulation.

  10. The fourth international energy agency international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-01-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts

  11. The fourth international energy agency international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-05-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts.

  12. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  13. Influence of e-Beam Irradiation on the Performance of Energy Storage and Conversion Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baeok, Sung Hyeon; Jo, Won Jun; Lee, Duwon; Lee, Myung An [Inha Univ., Incheon (Korea, Republic of); Shin, Joong Hyeok; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Electron beam irradiation was known as an effective method to improve the stability and performance of electrodes by varying the chemical and physical properties. It has been reported that surface morphology, oxidation state, optical properties, and electrochemical properties can be modified by e-beam irradiation. In this work, influence of electron beam irradiation on the performance of electrode was studied for the applications in energy storage and conversion, such as secondary battery, supercapacitor, and fuel cell. Changes in physical and chemical properties of electrodes before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states were determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. Crystallinity, surface morphology, and oxidation state were significantly changed by electron beam irradiation, and were found to be strongly dependent on irradiation time.

  14. Heavy-quark free energies, internal-energy and entropy contributions

    International Nuclear Information System (INIS)

    Kaczmarek, O.

    2009-01-01

    We present lattice QCD results on heavy-quark free energies, extract from its temperature dependence the entropy and internal-energy contributions, and discuss the onset of medium effects that lead to screening of static quark-antiquark sources in a thermal medium. The detailed analysis of the temperature and distance dependence of the different contributions indicate the complex non-perturbative nature of strongly interacting matter. We shall discuss the necessity to include those effects in studies on the behavior of heavy quarks, heavy-quark bound states and their dissociation in the quark-gluon plasma phase. (orig.)

  15. Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials

    CERN Document Server

    Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V

    2004-01-01

    The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.

  16. 5th International Congress on Energy Fluxes and Radiation Effects 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Special Issue of the Materials of the V International Congress on Energy Fluxes and Radiation Effects (Tomsk, Russia, 2016)Maksim Trigub, Georgiy Osokin, Alexander KonovodNational Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russiaemail: geosokin@tpu.ruThe present issue of the journal is based on the materials of the V International Congress on Energy Fluxes and Radiation Effects 2016 (EFRE 2016) that was held on October 2 to 7, 2016 in Tomsk (Russia). This large scientific forum gathers together scientists, developers and representatives of knowledge-intensive enterprises that have relevance to physics and technology. This year, the Congress was dedicated to the 120 th anniversary of the National Research Tomsk Polytechnic University.The history of the Congress as a joint scientific event dates back to 2000; it traditionally includes three conferences: International Symposium on High-Current Electronics (SHCE), International Conference on Radiation Physics and Chemistry of Condensed Matter (RPC) and International Conference on Modification of Materials with Particle Beams and Plasma Flows (CMM). However, each of these large conferences has its own lasting history.In 2016, the International Symposium on High-Current Electronics was arranged for the 19 th time. The participants have presented the results of fundamental studies and applied outcomes in the fields of high-power pulsed energy engineering and electronics (Pulsed Power), physics and application of high-power electron and ion beams, high- and low-temperature gas discharge plasma, physics of high-energy treatment and extreme states of matter, electric pulsed technologies. Noteworthy, the symposium took place in the year of the 40 th anniversary of USSR scientific discovery of explosive electron emission. This physical phenomenon—being one of the basics of high-current electronics—determines the processes in pulsed vacuum discharge, enables the operation of high-current electron

  17. Use of the SPIRAL 2 facility for material irradiations with 14 MeV energy neutrons

    International Nuclear Information System (INIS)

    Mosnier, A.; Ridikas, D.; Ledoux, X.; Pellemoine, F.; Anne, R.; Huguet, Y.; Lipa, M.; Magaud, P.; Marbach, G.; Saint-Laurent, M.G.; Villari, A.C.C.

    2005-01-01

    The primary goal of an irradiation facility for fusion applications will be to generate a material irradiation database for the design, construction, licensing and safe operation of a fusion demonstration power station (e.g., DEMO). This will be achieved through testing and qualifying material performance under neutron irradiation that simulates service up to the full lifetime anticipated in the power plant. Preliminary investigations of 14 MeV neutron effects on different kinds of fusion material could be assessed by the SPIRAL 2 Project at GANIL (Caen, France), aiming at rare isotope beams production for nuclear physics research with first beams expected by 2009. In SPIRAL 2, a deuteron beam of 5 mA and 40 MeV interacts with a rotating carbon disk producing high-energy neutrons (in the range between 1 and 40 MeV) via C (d, xn) reactions. Then, the facility could be used for 3-4 months y -1 for material irradiation purposes. This would correspond to damage rates in the order of 1-2 dpa y -1 (in Fe) in a volume of ∼10 cm 3 . Therefore, the use of miniaturized specimens will be essential in order to effectively utilize the available irradiation volume in SPIRAL 2. Sample package irradiation temperature would be in the range of 250-1000 deg. C. The irradiation level of 1-2 dpa y -1 with 14 MeV neutrons (average energy) may be interesting for micro-structural and metallurgical investigations (e.g., mini-traction, small punch tests, etc.) and possibly for the understanding of specimen size/geometric effects of critical material properties. Due to the small test cell volume, sample in situ experiments are not foreseen. However, sample packages would be, if required, available each month after transfer in a special hot cell on-site

  18. International energy outlook 1995, May 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The International Energy Outlook 1995 (IEO95) presents an assessment by the Energy Information Administration (EIA) of the international energy market outlook through 2010. The report is an extension of the EIA`s Annual Energy Outlook 1995 (AEO95), which was prepared using the National Energy Modeling System (NEMS). US projections appearing in the IEO95 are consistent with those published in the AEO95. IEO95 is provided as a statistical service to energy managers and analysts, both in government and in the private sector. The projects are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of energy Organization Act of 1977 (Public Law 95-91), Section 295(c). The IEO95 projections are based on US and foreign government policies in effect on October 1, 1994. IEO95 displays projections according to six basic country groupings. The regionalization has changed since last year`s report. Mexico has been added to the Organization for Economic Cooperation and Development (OECD), and a more detailed regionalization has been incorporated for the remainder of the world, including the following subgroups: non-OECD Asia, Africa, Middle East, and Central and South America. China is included in non-OECD Asia. Eastern Europe and the former Soviet Union are combined in the EE/FSU subgroup.

  19. Irradiated fuel examination using the Cerenkov technique

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.

    1981-03-01

    A technique for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed and demonstrated. This technique provides sufficient qualitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors. Measurements have been made on the Cerenkov glow light intensity from irradiated fuel that show the intensity of this light to be proportional to the cooling time. Fieldable instruments used in several tests confirm that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds. The Cerenkov technique and instrumentation have been shown to be of potential use to operators of reactor spent fuel facilities and away from reactor storage facilities, and to the International Atomic Energy Agency inspectors who provide surveillance of the irradiated fuel stored in these facilities

  20. Mutagenic effects of heavy ion irradiation on rice seeds

    International Nuclear Information System (INIS)

    Xu Xue; Liu Binmei; Zhang Lili; Wu Yuejin

    2012-01-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M 2 plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29–spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  1. Mutagenic effects of heavy ion irradiation on rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xue [School of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 (China); Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Liu Binmei; Zhang Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Wu Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China)

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M{sub 2} plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  2. International Energy: Subject Thesaurus. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

  3. Effect of the irradiation temperature and relative humidity on PVG dosifilm

    International Nuclear Information System (INIS)

    Jia Haishun; Chen Wenxiu; Shen Yuxin

    1999-01-01

    The effect of environmental factors, such as irradiation temperature and relative humidity, on the PVG dosifilm irradiated by EB was tested. Experiments show that the temperature coefficient of irradiated PVG dosifilm was 0.008 deg. C -1 from 20 deg. C to 55 deg. C, and the humidity coefficient was 0.006 per r.h. (%) from r.h. 0% to 76%. The PVG dosifilm can be used as a routine dosimeter for dose measurement for low-energy EB processing. The absorbed dose values for various irradiation temperature and humidity can be corrected based on experimental data. (author)

  4. Effect of swift heavy ion-irradiation on Cr/Fe/Ni multilayers

    International Nuclear Information System (INIS)

    Gupta, Ratnesh; Gupta, Ajay; Avasthi, D.K.; Principi, G.; Tosello, C.

    1999-01-01

    A multilayer film having overall composition Fe 50 Cr 25 Ni 25 , was irradiated successively by 80 MeV Si ions and Ag ions of 150 and 200 MeV energy. The energy deposited in the multilayer in the form of electronic excitations results in significant modification at the interfaces. The interfacial roughness increases in the system after the irradiations as revealed by X-ray reflectivity measurement. Moessbauer measurements provide evidence of intermixing after the irradiation by 200 MeV Ag ions. Comparison of heavy ion irradiated multilayer has been done with annealed and low energy ion irradiated samples. Results suggest that the phases formed at the interfaces of iron as a result of electronic energy loss are similar to those in the cases of thermal diffusion and keV energy ion beam irradiation

  5. Effects of non-implantation factors on survival rate of microbe irradiated by low-energy N+

    International Nuclear Information System (INIS)

    Yang Tianyou; Chen Linhai; Qin Guangyong; Li Zongwei; Su Mingjie; Wang Yanping; Chang Shenghe; Huo Yuping; Li Zongyi

    2006-01-01

    The effects of non-implantation factors, such as drying, vacuum and the staying time of the E.coli LE392 culture, on survival rate of E.coli LE392 were studied when E.coli LE392 was irradiated by the low-energy N + . The results show that the survival rate of E.coli LE392 does not reduce steadily all the time but rapidly drops sometime during drying. The survival rate of E.coli LE392 declines sharply as the samples are placed in vacuum, then falls in distinctively with increasing of time. the tolerance of E.coli LE392 towards vacuum increasingly strengthens when the E.coli LE392 culture is placed at room temperature. Preparing the culture in batchs can ensure the consistency of the irradiated samples and avoid errors caused by the inconsistent samples. When the non-implantation factors are controlled, E.coli is implanted by 30 kev N + of 1 x 10 14 cm -2 and 3 x 10 15 cm -2 , respectively. And the results show no difference in the E.coli's survival rates between batchs at the same dose. (authors)

  6. Apraclonidine effects on ocular responses to YAG laser irradiation to the rabbit iris

    International Nuclear Information System (INIS)

    Sugiyama, K.; Kitazawa, Y.; Kawai, K.

    1990-01-01

    Apraclonidine (p-aminoclonidine) ophthalmic solution effectively reduces the rise in intraocular pressure (IOP) following anterior segment laser surgery. We tested the effect of topical 0.5% apraclonidine on intraocular pressure and on protein and prostaglandin (PG) E2 concentrations in aqueous humor following Q-switched Nd:YAG laser irradiation to the iris of albino rabbits, at an energy level of 2 to 200 mJ. IOP was measured prior to and for 24 hr after irradiation. Aqueous humor was withdrawn before and 1 hr after laser irradiation for determining protein (Lowry method) and PGE2 (radioimmunoassay). Four to seven rabbits were used for each experiment. The increase in IOP and protein concentration following laser irradiation was demonstrated to be dependent on the amount of laser energy. Apraclonidine completely abolished the IOP rise, and significantly reduced the elevation of protein content. Apraclonidine failed to affect the increase in PGE2

  7. Self irradiation effects on the thorium phosphate diphosphate dissolution (TPD): simulation by external irradiations

    International Nuclear Information System (INIS)

    Tamain, C.; Ozgumus, A.; Dacheux, N.; Garrido, F.; Thome, L.; Corbel, C.; Genet, M.

    2004-01-01

    The Thorium Phosphate Diphosphate (TPD), proposed as a ceramic for the long term immobilization of actinides, was externally irradiated with several ions and energies (but also with gamma rays) in order to simulate the self-irradiation. The influence of the electronic energy loss was first investigated. Thus, the XRD measurements have shown a complete amorphization of the material under 10 13 ions of Kr.cm -2 , while no significant structural change occurred after 5.10 13 S.cm -2 , 2.10 16 He.cm -2 or 320 kGy of dose of gamma rays. The dissolution of the raw and irradiated pellets was studied versus several parameters such as amorphized fraction, energy loss of incident ions, radiolytic species produced in situ in the leachate during irradiation (such as H 2 O 2 ), temperature and acidity. The results reveal an important increase of the dissolution kinetics for amorphized pellets compared to raw ceramic. (authors)

  8. DTU International Energy Report 2015

    DEFF Research Database (Denmark)

    to solve some of the challenges introduced by the broader integration of renewable sources. Closer integration and coordination of energy infrastructures might also lead to a more cost-effective energy system with a lower impact on the environment and climate. The DTU International Energy Report 2015......One of the challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources is to secure a well-functioning and stable electricity infrastructure. Today, conventional generation is responsible for providing many of the power system services needed...... for stable and reliable electricity infrastructure operation. When fluctuating renewable energy sources are taking over, the heating, cooling, gas, and transport infrastructures may be able to provide some of the flexibility needed. Closer integration of the various energy infrastructures is thus a means...

  9. Effects of gamma irradiation and sodium hydroxide of cell wall constituents and digestibility energy of some agricultural residues. Final report

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1996-06-01

    The effect of various doses of gamma irradiation (0,100,150,200 KGy) and different concentrations of sodium hydroxide on crude fibre (CF), Cell-wall constituents (NDF, ADF, ADL), in vitro organic matter digestibility (IVOMD), gross energy (GE), in vitro digestible energy (IVDE) of wheat straw (W.S) cotton seed shall (C.S.S), peanut shell (P.S), soybean shell (SB.S), extracted olive cake (O.C.E) and extracted sunflower of unpeeled seeds (S.U.E) were investigated. Results indicated that HaOH in the concentrations at (4 and 6%) had significant effects on the CF content of W.S and P.S, E.U.E, SB.S, C.S.S, O.C.E; respectively. Treating S.U.E, W.S and all other residues with NaoH (2,4 and 6%) respectively, decreased the NDF level. Irradiation dose of 200 KGy decreased CF for all residues, and it reduced the NDF for S.U.E and SB.S. However, lower irradiation dose (150 KGy) was good enough to reduce the NDF for W.S, C.S.S, P.S and O.C.E. Combined treatment resulted in better effects in reducing the concentrations of the cell-wall constituents. The digestible energy values (kJ/Kg DM) increased by 1120,1 220, 2110 (W.S); 620, 830, 1000 for P.S; 240, 500, 580 for O.C.E; 500, 850, 870 for S.U.E; 550, 1060, 1200 for SB.S and 1260, 1710, 2070 for C.S.S using 100, 150, 200, KGy respectively, in comparison to unirradiated controls. Also, the IVDE values (Kj/Kg DM) increased by 560, 1050, 1590 for W.S; 310, 460, 650 for P.S; 170, 760, 1530 for C.S.S; 450, 990, 1190 for O.C.E using 2%, 4%, 6% NaOH respectively, in comparison to controls. No changes in the IVDE values for S.U.E and SB.S. Combined treatment resulted in an even better increase in the digestible energy, except S.U.E and SB.S. (Author). 37 refs., 22 tabs., 18 figs

  10. DNA biosynthesis content and intensiveness in mice thymus at early periods following fast neutron irradiation with different energy rate

    International Nuclear Information System (INIS)

    Indyk, V.M.; Antonenko, G.I.; Parnovskaya, N.V.

    1988-01-01

    Biosynthesis of dna of the thymic glands of animals irradiated by fast neutrons with different energy values in the early post-irradiation period is investigated. It is shown that the rate of mass recovery in organs, their cellular nature, dna content and indices of their specific activity have the dose and time dependences, as well as they considerably differ at different neutron energies and different quality radiation. With the increase of neutron energy value their biological effectiveness decreases

  11. Influence of ion irradiation on internal residual stress in DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Karaseov, Platon A., E-mail: platon.karaseov@rphf.spbstu.r [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Podsvirov, Oleg A.; Karabeshkin, Konstantin V. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Vinogradov, Andrei Ya. [Ioffe Physicotechnical Institute RAS, Polytechnicheskaya 26, 195252 St. Petersburg (Russian Federation); Azarov, Alexander Yu. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Karasev, Nikita N. [State University of Information Technologies, Mechanics and Optics, Sablinskaya Str. 14, 197101 St. Petersburg (Russian Federation); Titov, Andrei I.; Smirnov, Alexander S. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation)

    2010-10-01

    The dependence of internal residual stress in thin diamond-like carbon films grown on Si substrate by PECVD technique on most important growth parameters, namely RF-power, DC bias voltage and substrate temperature, is described. Results show that compressive stress reaches the highest value of 2.7 GPa at low RF-power and DC bias. Increase of substrate temperature from 250 to 350 {sup o}C leads to nonlinear increase of stress value. Inhomogeneity of residual stress along the film surface disappears when film is deposited at temperatures above 275 {sup o}C. Post-growth film irradiation by P{sup +} and In{sup +} ions cause decrease of compressive stress followed by its inversion to tensile. For all ion energy combinations used residual stress changes linearly with normalized fluence up to 0.2 DPA with slope (8.7 {+-} 1.3) GPa/DPA.

  12. Food Irradiation Newsletter. V.13, no. 1

    International Nuclear Information System (INIS)

    1989-03-01

    The International Conference on the Acceptance, Control of, and Trade in Irradiated Food, jointly sponsored by FAO, IAEA, WHO and ITC-UNCTAD/GATT, Geneva, Switzerland, December 1988, recognized that (1) food irradiation has the potential to reduce the incidence of foodborne diseases; (2) food irradiation can reduce post-harvest food losses and make available a larger quantity and a wider variety of foodstuffs for consumers - It can also be an effective quarantine treatment for certain food and thus contribute to international trade; (3) international trade in irradiated foods would be facilitated by harmonization of national procedures based on internationally recognized standards for the control of food irradiation. The ''International Document on Food Irradiation'' adopted by consensus at the Conference is included in this issue, which also contains excerpts of the 5th Annual Meeting of the International Consultative Group on Food Irradiation (ICGFI), convened in Vienna, September 1988, and reports of two co-ordinated meetings, the second Research Co-ordination Meeting on the Use of Irradiation as a Quarantine Treatment of Food and Agricultural Commodities, and the Second Co-ordination Meeting on Food Irradiation Programme for Developing Countries in Middle East and Europe. 3 tabs

  13. Comparative effectiveness of gamma-rays and electron beams in food irradiation

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1991-01-01

    Ionizing radiations which can be used for the treatment of foods are gamma-rays from Co-60 and Cs-137, accelerated electrons from a machine at an energy of 10 MeV or lower and X-rays from a machine at an energy of 5 MeV or lower. The Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food held in 1980 concluded that the foods irradiated at overall average doses up to 10 kGy with the radiation listed above are wholesome for human consumption. While most of the commercial food irradiations are conducted with gamma-rays from Co-60, accelerated electrons are increasingly utilized for treating foods. An important difference between gamma-rays and accelerated electrons is the penetration capacity in materials. The penetration capacity of gamma-rays is much higher than that of accelerated electrons. Another important difference is the dose rate. The dose rates of gamma-rays from commercial Co-60 sources are 1-100 Gy/min, while those of electron beams from electron accelerators are 10 3 -10 6 Gy/s. Ideally a comparison of the effect of different types of ionizing radiation should be carried out at the same dose rate but this has been difficult due to the design of irradiators. It is very difficult to draw a definite conclusion on the difference in the effectiveness in food irradiation between gamma-rays and electron beams based on published data. This chapter deals with as many reports as possible on the comparative effectiveness of gamma-rays and electron beams and on the effect of dose rate on chemical reactions and living organisms, whether or not they demonstrate any dependency of the effect of irradiation on dose rate and type of radiation. (author)

  14. Effect of neutron irradiation on the density of low-energy excitations in vitreous silica

    International Nuclear Information System (INIS)

    Smith, T.L.

    1979-01-01

    Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity were made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C/sub ex/, the thermal conductivity kappa, and the anomalous temperature dependence of the ultrasound velocity Δv/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that kappa and Δv/v are determined by the same localized excitations responsible for C/sub ex/, but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. A consistent account for the measured C/sub ex/, kappa, and Δv/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model

  15. Peculiarities of intestine injuries in case of internal and external irradiation: a morphometric study

    International Nuclear Information System (INIS)

    Ponomareva, T.V.

    1988-01-01

    It is shown that sterological cell parameters and indexes of their interaction may serve as an important characteristic of tissue postirradiation recovery quality permitting to give a precise quantitative characteristic of cell differentiation and dedifferentiation. It is established that enterocyte maturation is sharphy broken under irradiation. Population delamination into sublines differing in cell size takes place. The number of these cells depends on radiation doses. The most labile cell componenet is cell nucleoli. The cell differentiation breakage is more pronounced in case of internal irradiation (Ce 144 ) and in combined radiation effect. A degree of cell differentiation breakage depends on peroxidation level. The obtained data can be used in developing and evaluating radioprotective substances

  16. Experiences of an international trade action with irradiated onions between GDR and Hungary

    International Nuclear Information System (INIS)

    Zachariev, G.; Kiss, I.; Luther, T.; Huebner, G.; Doellstaedt, R.

    1988-01-01

    Extensive work has been carried out in the field of food irradiation in the GDR and Hungary in recent years. The irradiation of onions for sprout inhibition has reached a commercial stage in the GDR of more than 5,000 tons in 1986. The export of onions is the first example of international trade in irradiated food between socialist countries. Experiences of this trade is presented in the paper. Results of quality control of the bulbs (losses in weight an quality) after an intermediate storage period are discussed. Hungarian consumer reactions to irradiated onions is also evaluated. (author)

  17. Evaluation of internal and external doses from $^{11}C$ produced in the air in high energy proton accelerator tunnels

    CERN Document Server

    Endo, A; Kanda, Y; Oishi, T; Kondo, K

    2001-01-01

    Air has been irradiated with high energy protons at the 12 GeV proton synchrotron to obtain the following parameters essential for the internal dose evaluation from airborne /sup 11/C produced through nuclear spallation reactions: the abundance of gaseous and particulate /sup 11/C, chemical forms, and particle size distribution. It was found that more than 98% of /sup 11/C is present as gas and the rest is aerosol. The gaseous components were only /sup 11/CO and /sup 11/CO/sub 2/ and their proportions were approximately 80% and 20%, respectively. The particulate /sup 11/C was found to be sulphate and/or nitrate aerosols having a log-normal size distribution; the measurement using a diffusion battery showed a geometric mean radius of 0.035 mu m and a geometric standard deviation of 1.8 at a beam intensity of 6.8*10/sup 11/ proton.pulse /sup -1/ and an irradiation time of 9.6 min. By taking the chemical composition and particle size into account, effective doses both from internal and from external exposures pe...

  18. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  19. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki, E-mail: koyanagit@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kumar, N.A.P. Kiran [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hwang, Taehyun [Tohoku University, Sendai, 980-8579 (Japan); Garrison, Lauren M.; Hu, Xunxiang [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-07-15

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  20. The effects of electron beam irradiation on sterilization and preservation of chilled pork

    International Nuclear Information System (INIS)

    Bai Yanhong; Mao Duobin; Zhao Dianbo; Zhang Xiaoyan; Li Quanshun; Yang Gongming

    2009-01-01

    S The effects of electron beam irradiation on the sterilization and preservation of chilled pork were studied. The aim of this investigation was to provide academic and technical basis for application of electron beam irradiation on meat industry. The response surface analysis was used with electron beam energy(X 1 ) and dose(X 2 ) as factors and colony form unit(Y) as responses. The results have been shown that the model of sterilization of chilled pork by electron beam irradiation can be expressed Y=3.78-0.24X 1 -0.13X 2 -0.16X 1 X 2 -0.18X 1 2 +0.15X 1 2 (R 2 =0.9755). It has been found there is a interaction between electron beam energy and absorbed doses, and the significance sequence of factors is absorbed dose>interaction> electron beam energy. When absorbed doses are in range from 3.23 kGy to 4.0 kGy and electron beam energy is in range from 2.3 MeV to 3.8 MeV, the colony form unit would drop 2 logarithm units. The shelf life of samples treated with electron beam irradiation is longer by about 12 d than that of control samples when the samples are stored at 4 degree C. When the samples are stored at 7∼10 degree C, shelf life of samples treated with electron beam irradiation is longer by about 9 d than that of control samples. The results showed that electron beam irradiation has the effects of sterilization and preservation on chilled pork. This study has been confirmed that the application of electron beam irradiation is very useful for meat industry. (authors)

  1. International standardization of instruments for neutron irradiation tests

    International Nuclear Information System (INIS)

    Tanimoto, Masataka; Shibata, Akira; Nakamura, Jinichi; Tsuchiya, Kunihiko; Cho, M.; Lee, C.; Park, S.; Choo, K.

    2012-01-01

    The JMTR in JAEA and HANARO in KAERI are the foremost testing/research reactors in the world and these are expected to contribute to many nuclear fields. As a part of instrument development in irradiation field, information exchange of instruments started from 2010 under the cooperation agreements between KAERI and JAEA. The instruments developed in JMTR and HANARO are introduced and cooperation experiments as future plan are discussed for international standardization. (author)

  2. Radiation effects and damage formation in semiconductors due to high-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kamarou, A.

    2006-11-07

    The object of this thesis was the study of ion-beam induced damage formation and annealing in crystalline and conventionally predamaged Ge, GaAs, and InP. The samples were irradiated either at {approx}80 K or at room temperature with Kr, Xe, or Au ions with specific energy of about 0.3 MeV/u to 3 MeV/u. Thereafter the samples were studied by means of Rutherford backscattering spectroscopy and/or transmission electron microscopy.

  3. Radiation effects and damage formation in semiconductors due to high-energy ion irradiation

    International Nuclear Information System (INIS)

    Kamarou, A.

    2006-01-01

    The object of this thesis was the study of ion-beam induced damage formation and annealing in crystalline and conventionally predamaged Ge, GaAs, and InP. The samples were irradiated either at ∼80 K or at room temperature with Kr, Xe, or Au ions with specific energy of about 0.3 MeV/u to 3 MeV/u. Thereafter the samples were studied by means of Rutherford backscattering spectroscopy and/or transmission electron microscopy

  4. Acceptance, control of and trade in irradiated food

    International Nuclear Information System (INIS)

    1989-01-01

    Proceedings of an International Conference on the Acceptance, Control of and Trade in Irradiated Food jointly organized by the Food and Agriculture Organization of the United Nations, the World Health Organization, the International Atomic Energy Agency and the International Trade Centre-UNCTAD/GATT and held in Geneva, 12-16 December 1988. The Conference was prompted by the lack of acceptance by some governments, which do not see a need for the application of food irradiation technology in their own countries, and as a consequence may hamper its use in other countries where its application could significantly improve consumer health and nutrition, as well as national economic and trading potential. This publication contains discussions on the key issues of the wholesomeness of irradiated food, the contribution of this technology to public health, food security and international trade, the control of the process to ensure its correct application for consumer protection, and the acceptance of irradiated food by industry and consumers. The proceedings include the International Document on Food Irradiation, highlighting the major issues related to the acceptance of irradiated food by consumers, governmental and intergovernmental activities, the control of the process, and trade. A number of Member States formally expressed their views on this International Document, expressing either endorsement or reservation, and their statements are included in these proceedings. Refs, fig and tabs

  5. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    International Nuclear Information System (INIS)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 times 10 14 cm -2 ) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs

  6. Study on effects of gamma-ray irradiation on TlBr semiconductor detectors

    International Nuclear Information System (INIS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    2016-01-01

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60 Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137 Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy. (author)

  7. International energy outlook, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents the current Energy Information Administration (EIA) assessment of the long-term outlook for international energy markets. The historic political and economic changes occurring in Easter Europe and the former Soviet Union will, no doubt, transform regional markets and world trade. This report pays particular attention to energy markets and resources in those countries that were once a part of the Centrally Planned Economies (CPE's) and how prospective changes in these countries might influence the energy outlook for the rest of the world. Several major EIA estimates determine, in large part, the resulting energy projections presented here. These include estimates of the energy intensity of economic activity; oil and natural gas production capacities; nuclear and hydroelectric generation capacities; international coal trade; and the rate of incremental energy requirements met by alternatives to oil

  8. Investigation of the internal electric field distribution under in situ x-ray irradiation and under low temperature conditions by the means of the Pockels effect

    International Nuclear Information System (INIS)

    Prekas, G; Sellin, P J; Veeramani, P; Davies, A W; Lohstroh, A; Oezsan, M E; Veale, M C

    2010-01-01

    The internal electric field distribution in cadmium zinc telluride (CdZnTe) x-ray and γ-ray detectors strongly affects their performance in terms of charge transport and charge collection properties. In CdZnTe detectors the electric field distribution is sensitively dependent on not only the nature of the metal contacts but also on the working conditions of the devices such as the temperature and the rate of external irradiation. Here we present direct measurements of the electric field profiles in CdZnTe detectors obtained using the Pockels electo-optic effect whilst under in situ x-ray irradiation. These data are also compared with alpha particle induced current pulses obtained by the transient current technique, and we discuss the influence of both low temperature and x-ray irradiation on the electric field evolution. Results from these studies reveal strong distortion of the electric field consistent with the build-up of space charge at temperatures below 250 K, even in the absence of external irradiation. Also, in the presence of x-ray irradiation levels a significant distortion in the electric field is observed even at room temperature which matches well the predicted theoretical model.

  9. Effect of medium and post-irradiation storage on rooting of irradiated onions

    International Nuclear Information System (INIS)

    Singh, Rita

    2000-01-01

    Rooting test for detection of irradiation in onion bulbs was studied. Onions were exposed to different dose levels of 30, 60, 90, 120 and 150 Gy. The effects of irradiation dose, cultivar difference, rooting medium and post-irradiation storage on the rooting were investigated. The number and the length of the roots formed in onions were found to decrease on irradiation. The effect was more at higher doses. The effect of irradiation on rooting was also evident after 120 days of storage. (author)

  10. The Next Spaceflight Solar Irradiance Sensor: TSIS

    Science.gov (United States)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  11. Irradiation's potential for preserving food

    International Nuclear Information System (INIS)

    Morrison, R.M.

    1986-01-01

    The first experimental studies on the use of ionizing radiation for the preservation of foods were published over thirty years ago (1, 2) . After a period of high expectations and perhaps exaggerated optimism a series of disappointments occurred in the late '60s .The first company specifically created to operate a food irradiation plant, Newfield Products Inc, ran into financial difficulties and had to close its potato irradiation facility in 1966. The irradiator, designed to process 15,000t of potatoes per month for inhibition of sprouting, was in operation during one season only. In 1968 the US Food an Drug Administration refused approval for radiation-sterilisation of ham and withdrew the approval it had granted in 1963 for irradiated bacon. An International Project on the Irradiation of Fruit and Fruit juices, created in 1965 at Seibersdorf, Austria, with the collaboration or 9 countries, ended with general disappointment after three years. The first commercial grain irradiator, built in the Turkish harbour town of Iskenderun by the International Atomic Energy Agency with funds from the United Nations Development Program, never received the necessary operating licence from the Turkish Government and had to be dismantled in 1968. The US Atomic Energy Commission terminated its financial support to all research programmes on food irradiation in 1970. For a number of years, little chance seemed to remain that the new process would ever be practically used. However, research and development work was continued in a number of laboratories all over the world, and it appears that the temporary setbacks now have been overcome. Growing quantities of irradiated foods are being marketed in several countries and indications are that irradiated foods will eventually be as generally accepted as are frozen, dried or heatsterilised foods

  12. Economic, environmental and international trade effects of the EU Directive on energy tax harmonization

    International Nuclear Information System (INIS)

    Kohlhaas, Michael; Schumacher, Katja; Diekmann, Jochen; Schumacher, Dieter; Carmes, Martin

    2005-01-01

    In October 2003, the European Union introduced a Directive, which widens the scope of the EU's minimum taxation system from mineral oils to all energy products including coal, natural gas and electricity. It aims at reducing distortions that currently exist between Member States as well as between energy products. In addition, it increases previous minimum tax rates and thus the incentive to use energy more efficiently. The Directive will lead to changes in the energy tax schemes in a number of countries, in particular some southern Member Countries (Greece, Spain, Portugal) and most of the new Member States. In this paper, we analyze the effects of the EU energy tax harmonization with GTAP-E, a computable general equilibrium model. Particular focus is placed on the Eastern European countries, which became new members of the EU in May 2004. We investigate the effects of the tax harmonization on overall economic growth and sectoral development. Special attention is paid to international trade in order to analyze if competitiveness concerns, which have been forwarded in the context of energy taxation are valid. Furthermore, the effect on energy consumption and emissions and thus the contribution to the EU's climate change targets is analyzed

  13. Food problems and food irradiation, recent trend

    International Nuclear Information System (INIS)

    1990-01-01

    Food irradiation is to contribute to the stable security of foodstuffs which is the fundamental condition of human survival by improving the preservation of foodstuffs and food sanitation utilizing the biological effect due to irradiation. The research and development have been carried out internationally since 1950s, but after the safety declaration of irradiated foods in 1980 by the international organ concerned, the permission and practical use for foods in various foreign countries, the technology transfer to developing countries and so on have been advanced. At present, food irradiation is permitted in 38 countries, and the practical irradiation is carried out in 24 countries. In Japan, the irradiation of potatoes to prevent germination was permitted in 1972, and the practical irradiation on potatoes of yearly 15,000 t is carried out. In the near future, irradiated foods will appear in international foodstuff market, and Japan which imports foodstuffs must cope with them. Foodstuffs and the safety, food irradiation, the soundness of irradiated foods, food irradiation in various foreign countries and Japan, the trend of international organs and the criticism of food irradiation are reported. (K.I.)

  14. Effective interactions approach to phase stability in alloys under irradiation

    International Nuclear Information System (INIS)

    Enrique, R.A.; Bellon, P.

    1999-01-01

    Phase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results form two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges. The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram

  15. Effective interactions approach to phase stability in alloys under irradiation

    International Nuclear Information System (INIS)

    Enrique, R.A.; Bellon, P.

    1999-01-01

    Phase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results from two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram

  16. Effect of pulse electron beam characteristics on internal friction and structural alterations in epoxy

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Ismailova, G.A.; Al-Sheikhly, M.

    2007-01-01

    Temperature dependence of internal friction is experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses. Time dependence of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking is analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the pulse irradiation mode and an arbitrary effective order of radical recombination

  17. The post-irradiated examination of CANDU type fuel irradiated in the Institute for Nuclear Research TRIGA reactor

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Parvan, M.; Dobrin, R.; Popov, M.; Radulescu, R.; Toma, V.

    1995-01-01

    This post-irradiation examination work has been done under the Research Contract No. 7756/RB, concluded between the International Atomic Energy Agency and the Institute for Nuclear Research. The paper contains a general description of the INR post-irradiation facility and methods and the relevant post-irradiation examination results obtained from an irradiated experimental CANDU type fuel element designed, manufactured and tested by INR in a power ramp test in the 100 kW Pressurised Water Irradiation Loop of the TRIGA 14 MW(th) Reactor. The irradiation experiment consisted in testing an assembly of six fuel elements, designed to reach a bumup of ∼ 200 MWh/kgU, with typical CANDU linear power and ramp rate. (author)

  18. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    International Nuclear Information System (INIS)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-01-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The

  19. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  20. Preliminary results of the International Fusion Materials Irradiation Facility deuteron injector

    Energy Technology Data Exchange (ETDEWEB)

    Gobin, R.; Adroit, G.; Bogard, D.; Bourdelle, G.; Chauvin, N.; Delferriere, O.; Gauthier, Y.; Girardot, P.; Guiho, P.; Harrault, F.; Jannin, J. L.; Loiseau, D.; Mattei, P.; Roger, A.; Sauce, Y.; Senee, F.; Vacher, T. [Commissariat a l' Energie Atomique et aux Energie Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)

    2012-02-15

    In the framework of the IFMIF-EVEDA project (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities), CEA/IRFU is in charge of the design, construction, and characterization of the 140 mA continuous deuteron injector, including the source and the low energy beam line. The electron cyclotron resonance ion source which operates at 2.45 GHz is associated with a 4-electrode extraction system in order to minimize beam divergence at the source exit. Krypton gas injection is foreseen in the 2-solenoid low energy beam line. Such Kr injection will allow reaching a high level of space charge compensation in order to improve the beam matching at the radio frequency quadrupole (RFQ) entrance. The injector construction is now completed on the Saclay site and the first plasma and beam production has been produced in May 2011. This installation will be tested with proton and deuteron beams either in pulsed or continuous mode at Saclay before shipping to Japan. In this paper, after a brief description of the installation, the preliminary results obtained with hydrogen gas injection into the plasma chamber will be reported.

  1. Strong field-matching effects in superconducting YBa2Cu3O7-δ films with vortex energy landscapes engineered via masked ion irradiation

    Science.gov (United States)

    Swiecicki, I.; Ulysse, C.; Wolf, T.; Bernard, R.; Bergeal, N.; Briatico, J.; Faini, G.; Lesueur, J.; Villegas, Javier E.

    2012-06-01

    We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adjust the depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an unusually wide range of temperatures and applied fields for high-temperature superconducting films.

  2. Simulation of gamma-ray irradiation of lettuce leaves in a 137Cs irradiator using MCNP

    International Nuclear Information System (INIS)

    Kim, Jongsoon; Moreira, Rosana G.; Braby, Leslie A.

    2010-01-01

    Ionizing radiation effectively reduces the number of common microbial pathogens in fresh produce. However, the efficacy of the process for pathogens internalized into produce tissue is unknown. The objective of this study was to understand gamma irradiation of lettuce leaf structure exposed in a 137 Cs irradiator using MCNP. The simulated 137 Cs irradiator is a self-shielded device, and its geometry and sources are described in the MCNP input file. When the irradiation chamber is filled with water, lower doses are found at the center of the irradiation volume and the dose uniformity ratio (maximum dose/minimum dose) is 1.76. For randomly oriented rectangular lettuce leaf segments in the irradiation chamber, the dose uniformity ratio is 1.25. It shows that dose uniformity in the Cs irradiator is strongly dependent of the density of the sample. To understand dose distribution inside the leaf, we divided a lettuce leaf into a low density (flat) region (0.72 g/cm 3 ) and high density (rib) region (0.86 g/cm 3 ). Calculated doses to the rib are 61% higher than doses to the flat region of the leaf. This indicates that internalized microorganisms can be inactivated more easily than organisms on the surface. This study shows that irradiation can effectively reduce viable microorganism internalized in lettuce. (author)

  3. Grain size effect on the mechanical properties of neutron irradiated niobium

    International Nuclear Information System (INIS)

    Gusev, M. N.; Maksimkin, O.P.

    2000-01-01

    Samples for mechanical tests were prepared from niobium of technical purity and have form of plates (10·3.5 ·0.3mm) with grain size from 2 to 100 mcm. Neutron irradiation was carried out at the reactor WWR-K to the fluence of 2·10 22 n/m 2 ( Angstroem >0.1 MeV). Tests on uniaxial tension at 293K were performed at the facility, evolving Calvet's microcalorimeter and miniature rapture machine. The developed technique enabled to record heat effects just during the deformation process. As experimental results the characteristics of strength and ductility were defined, as well as values of the latent energy E s , accumulated in material in the process of its deformation up to the moment of destruction. It was found that irradiation of niobium with large-grain structure by neutrons leads to increasing of strength characteristics (yield strength σ 0 .2 changes from 130 to 210 MPa, time-resistance σ b from 200 to 230 MPa) and decreasing of ductility from 36 to 28%. As this takes place the capability of the material to accumulate and dissipate energy of plastic deformation suffers substantial change. There were revealed some additional effects, for instance, the radiation annealing hardening (RAH) (i.e. additional change of properties of irradiated material at annealing), whose maximum takes place at 473K. Its temperature and kinetic parameters were determined in this work. Decreasing of grain size usually leads to decreasing of strengthening under irradiation and to decreasing of RAH effect intensity at subsequent annealing. At the same time decreasing of radiation embrittlement is observed. Consequently, creation of fine-grain structure for some cases can favored the stability of material's properties under irradiation. The obtained results are discussed in context of views on grain boundaries as a defect sink. The relation 'grain boundary volume - grain matrix volume', its influence on RAH-effect and value of latent energy are considered

  4. Effect of laser-plasma X-ray irradiation on crystallization of amorphous silicon film by excimer laser annealing

    International Nuclear Information System (INIS)

    Matsuo, Naoto; Uejukkoku, Kazuya; Heya, Akira; Takanashi, Yasuyuki; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-01-01

    The effect of laser plasma soft X-ray (LPX) irradiation on crystallization by excimer laser annealing (ELA) was investigated at low ELA energy densities. The crystalline fraction at energy densities of 50 and 60 mJ/cm 2 for LPX followed by ELA is nearly equal to that at 80 to 100 mJ/cm 2 for the ELA method with non-LPX irradiation. The results obtained indicate that LPX irradiation before ELA reduces the critical energy density for the start of crystallization. The combined method of LPX irradiation and ELA will enable us to realize a low-temperature process for ELA crystallization. (author)

  5. 15 years of existence of the International Consultative Group on Food Irradiation (ICGFI)

    International Nuclear Information System (INIS)

    Ehlermann, D.A.E.

    1999-01-01

    The ICGFI essentially contributed to international dissemination of unbiased information about the advantages and risks of food irradiation. The body has issued ICGFI publications containing codes of good practice for a variety of purposes, as eg. for operation of irradiation facilities for the treatment of food (GIP), or guidelines for due handling of irradiated food (GMP). Training courses have been offered to scientists, especially from developing countries, as well as for inspectors of national supervisory authorities. The activities of the advisory group as well as the conditions governing future activities are discussed. (orig./CB) [de

  6. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  7. Nutritional and other implications of irradiating meat

    International Nuclear Information System (INIS)

    Stevenson, M.H.

    1994-01-01

    Different methods have been developed to extend the shelf-life of meat and its products ranging from the traditional use of salt to canning, freezing and modified-atmosphere packaging. As well as these more conventional approaches to meat preservation, the use of ionizing radiation has also been extensively studied over many years. The irradiation sources which are permitted for use with food are gamma photons from 6o Co or 137 Cs, high-energy electrons generated by machines, maximum energy 10 MeV and X-rays with a maximum energy of 5 MeV (Codex Alimentarius Commission, 1984). At doses of about 25-50 kGy, irradiation can be used to achieve sterilization and in the 1960s shelf-stable radiation-sterilized meat products were developed to substitute for canned or frozen military rations. Currently, sterile meals are produced for immunocompromized patients using irradiation. With doses below 10 kGy, the process is effective in enhancing food safety through the inactivation of pathogenic microorganisms such as Salmonella and Campylobacter and extending shelf-life by eliminating the micro-organisms responsible for normal spoilage. Following the report of the Food and Agriculture Organization/International Atomic Energy Agency/World Health Organization Joint Expert Committee on the Wholesomeness of Irradiated Food (1981) which concluded that 'irradiation of food up to an overall average dose of 10 kGy produced no toxicological hazard and introduced no special nutritional or microbiological problems', there has been renewed interest in the use of lower doses of irradiation for the preservation of food. In 1991, the UK government introduced new regulations permitting the irradiation of seven categories of food, including chicken, under strictly controlled conditions (UK Government Regulations, 1990) .Currently, thirty-seven countries have approval for the irradiation treatment of a range of foods or food items and of these countries, twenty-six are using the process on a

  8. Proceedings of the sixth IEA international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi [Japan Atomic Energy Research Inst., Kashiwa, Chiba (Japan); Tanaka, Satoru [Tokyo Univ., Tokyo (Japan); Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2004-03-01

    This report is the Proceedings of the Sixth International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on December 2-5, 2003, at SEAGAIA in Miyazaki City, Japan with 69 participants who attended from Europe, the Russian Federation, Kazakhstan, Ukraine, China, the United States and Japan. The topics for papers were arranged into nine sessions; Status of beryllium study, Plasma and tritium interactions, ITER oriented issues, Neutron irradiation effects, Beryllide application, Disposal and recycling, Molten salt, Health and safety issues and Panel discussion. In the Panel discussion, the international collaboration for three topics, i.e., Neutron irradiation effects, Beryllide application, Recycling and Disposal, were discussed, and necessary items for the international collaboration were proposed. The 46 of the presented papers are indexed individually. (J.P.N.)

  9. Nonthermal effects in thermal treatment applications of nonionizing irradiation

    Science.gov (United States)

    Thomsen, Sharon

    2005-04-01

    Several non-thermal factors influence the primary and secondary effects of interstitial thermal treatments using various types of non-ionizing irradiation. Recognition and understanding of the influences of these various factors are important in choice of energy source, the configuration of the application instrument and the design of treatments.

  10. Low-energy electron irradiation assisted diffusion of gold nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Deore, Avinash V.; Bhoraskar, V.N.; Dhole, S.D.

    2014-01-01

    A simple and controllable method to synthesize nanoparticles in the surface region of polymers was used by low energy electron irradiation. Using this method, gold nanoparticles have been synthesized by irradiating gold coated PVA (Polyvinyl Alcohol) sheets. This method was easy in operation and even period of few minutes was sufficient to obtain the nanoparticles. The coatings (∼10 μm) made from a mixture of ethanol and HAuCl 4 on PVA sheets (∼150 μm) by simple drop cast method were irradiated with 30 keV electrons, at room temperature and 10 −6 mbar vacuum level. The electron fluence was varied from coating to coating in the range of 0 to 24×10 15 e/cm 2 . The irradiated samples were characterized by the UV–Vis, XRD, SEM and RBS techniques. The plasmon absorption peak at ∼539 nm in UV–Vis spectra was an evidence for the initiation of the growth of gold nanoparticles. The X-ray diffraction results and the blue shift in the plasmon absorption peak reveal that the size of nanoparticles could be tailored in the range from 58 to 40 nm by varying the electron fluence. The diffusion of gold in the PVA was confirmed by the Rutherford backscattering spectroscopy and scanning electron microscopy techniques. This method of synthesis of metal nanoparticles by low energy electron beam irradiation has the key importance in the development of new fabrication techniques for nanomaterials. - Highlights: • The results indicate that low energy electrons can effectively be used for the synthesis of nanoparticles of different sizes. • This study leads to a definite conclusion that gold nanoparticles have been synthesized in surface region of the PVA sheet. • The size of nanoparticles decreases with increasing electron fluence. • The depth of diffusion of Au atoms at maximum fluence was found to be ∼1.5 μm

  11. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  12. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons

    International Nuclear Information System (INIS)

    Veinot, K.G.; Eckerman, K.F.; Hertel, N.E.

    2016-01-01

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater. (authors)

  13. Energy - politics - history. National and international energy politics since 1945

    International Nuclear Information System (INIS)

    Hohensee, J.; Salewski, M.

    1993-01-01

    All articles focus on historical aspects of the development of energy politics in the Federal Republic of Germany (energy enconomy and industry, hard coal, nuclear energy). Some articles also look at international developments (oil boycott, Saudia Arabias's oil policies, International Energy Agency). (UA) [de

  14. A study on the proton irradiation effect of reactor materials using cyclotron

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Park, Jong Man; Park, Deuk Keun; Lee, Bong Sang; Oh, Jong Myung

    1993-02-01

    Understanding on radiation damage of important structural materials is important for safe operation and radiation damage evaluation of new reactor structural materials. This study was performed to simulate and evaluate 14 MeV neutron irradiation effects on mechanical properties of candidate structural materials (HT-9/SS316) of next generation reactors (FBR, Fusion) irradiated by Cyclotron(MC-50) using SP test technique. After qualification of SP test techniques from J IC and ε qf correlation, SP tests were performed to evaluate 16MeV proton irradiation effects on mechanical properties of irradiated and unirradiated HT-9/SS316 steels. Test results were evaluated for ε qf , energy and displacement up to failure and J IC change. In addition, damaged zone and dpa upon depth after irradiation were calculated using TRIM code and Doppler broadening line shapes were measured to evaluate defects for 15% cold worked HT-9 steel using PAS. (Author)

  15. Prediction of irradiation damage effects by multi-scale modelling: EURATOM 3 Framework integrated project perfect

    International Nuclear Information System (INIS)

    Massoud, J.P.; Bugat, St.; Marini, B.; Lidbury, D.; Van Dyck, St.; Debarberis, L.

    2008-01-01

    Full text of publication follows. In nuclear PWRs, materials undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities operating these reactors must quantify the aging and the potential degradations of reactor pressure vessels and also of internal structures to ensure safe and reliable plant operation. The EURATOM 6. Framework Integrated Project PERFECT (Prediction of Irradiation Damage Effects in Reactor Components) addresses irradiation damage in RPV materials and components by multi-scale modelling. This state-of-the-art approach offers potential advantages over the conventional empirical methods used in current practice of nuclear plant lifetime management. Launched in January 2004, this 48-month project is focusing on two main components of nuclear power plants which are subject to irradiation damage: the ferritic steel reactor pressure vessel and the austenitic steel internals. This project is also an opportunity to integrate the fragmented research and experience that currently exists within Europe in the field of numerical simulation of radiation damage and creates the links with international organisations involved in similar projects throughout the world. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences make possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. The consequences of irradiation on mechanical and corrosion properties of materials are also tentatively modelled using such multi-scale modelling. But it requires to develop different mechanistic models at different levels of physics and engineering and to extend the state of knowledge in several scientific fields. And the links between these different kinds of models are particularly delicate to deal with and need specific works. Practically the main objective of PERFECT is to build

  16. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovski, V.V. [St. Petersburg State Polytechnic University, St. Petersburg 195251 (Russian Federation); Lebedev, A.A., E-mail: shura.lebe@mail.ioffe.ru [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg 197101 (Russian Federation); Emtsev, V.V.; Oganesyan, G.A. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6–9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the “source” of silicon ions generating these ions uniformly across the sample thickness.

  17. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  18. Effect of gamma irradiation on sulfur-cured chlorobutyl rubber

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Ono, Lilian S.; Lugao, Ademar B.

    2011-01-01

    Chlorobutyl rubber (CIIR) is similarly manufactured to butyl rubber (IIR). The insertion of chlorine atom in isoprene group represents an improvement in its properties, such as: high vulcanizing speed, low permanent stress and compatibility with other types of rubber. The presence of reactive chlorine in butyl chlorate allows a variety of vulcanizing techniques, being the cure via sulfur, the most conventional. In these compounds carbon-halogen bonds are weaker than carbon-carbon and carbon-hydrogen bonds, and the main effect of radiation is to break the carbon-halogen bond to give an organic free radical. Irradiations of certain alkyl chlorides can bring about isomerism in which the location of the halogen atom is changed, the carbon skeleton of molecule remaining unaltered. Irradiation of n-butyl chlorides gives high yields of tertiary carbon. The major effect of high energy photon, such as gamma rays, in organic polymers is the generation of free radicals, along changes in mechanical properties. This work aims to the study of irradiation effect on mechanical properties of a sulfur cured chlorobutyl rubber compound, gamma irradiated within 25, 50, 100, 150 e 200 kGy doses range. The techniques used in their characterization were: strength - stress analysis and elasticity modulus. Results obtained were investigated, demonstrated and discussed. (author)

  19. Effect of gamma irradiation on sulfur-cured chlorobutyl rubber

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Ono, Lilian S.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Chlorobutyl rubber (CIIR) is similarly manufactured to butyl rubber (IIR). The insertion of chlorine atom in isoprene group represents an improvement in its properties, such as: high vulcanizing speed, low permanent stress and compatibility with other types of rubber. The presence of reactive chlorine in butyl chlorate allows a variety of vulcanizing techniques, being the cure via sulfur, the most conventional. In these compounds carbon-halogen bonds are weaker than carbon-carbon and carbon-hydrogen bonds, and the main effect of radiation is to break the carbon-halogen bond to give an organic free radical. Irradiations of certain alkyl chlorides can bring about isomerism in which the location of the halogen atom is changed, the carbon skeleton of molecule remaining unaltered. Irradiation of n-butyl chlorides gives high yields of tertiary carbon. The major effect of high energy photon, such as gamma rays, in organic polymers is the generation of free radicals, along changes in mechanical properties. This work aims to the study of irradiation effect on mechanical properties of a sulfur cured chlorobutyl rubber compound, gamma irradiated within 25, 50, 100, 150 e 200 kGy doses range. The techniques used in their characterization were: strength - stress analysis and elasticity modulus. Results obtained were investigated, demonstrated and discussed. (author)

  20. Food irradiation for phytosanitary and quarantine treatment

    Science.gov (United States)

    Irradiation at doses less than 1 kGy is an effective phytosanitary measure with minimal adverse effects on the quality of most fresh produce. There are internationally recognized guidelines for the use of irradiation as a phytosanitary measure and for the conduct of trade in irradiated fresh produce...

  1. Early radiation changes of normal dog brain following internal and external brain irradiation: A preliminary report

    International Nuclear Information System (INIS)

    Chin, H.; Maruyama, Y.; Markesbery, W.; Goldstein, S.; Wang, P.; Tibbs, P.; Young, B.; Feola, J.; Beach, L.

    1984-01-01

    To examine radiation-induced changes in the normal brain, internal or external radiation was given to normal dog brain. Seven medium-sized dogs were used in this study. Two dogs were controls and an ice-pick (plastic implant applicator) was placed in the right frontal lobe for about 5 hours but no irradiation. Two dogs underwent Cs-137 brain implantation for 4 and 5 hours, respectively using an ice-pick technique. Two dogs were given internal neutron irradiation using the same technique of intracerebral ice-pick brachytherapy. One dog received an external photon irradiation using 6-Mev Linear Accelerator. Postmortem microscopic examination was made to study the early cerebral changes to irradiation in three dogs: one control with no irradiation; one received intracerebral Cesium implantation; and one external photon irradiation. Vascular change was the most prominent microscopic finding. There were hemorrhage, endothelial proliferation and fibrinoid changes of small vessel wall. Most of the changes were localized in the white matter and the cortex remained intact. Details (CT, NMR and histological studies) are discussed

  2. International energy-promotion-activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Comprehensive promotion of energy and environmental measures are demanded in order to realize improvement in energy demand/supply structures in developing countries where increase in energy demand is anticipated. To achieve this goal, technical transfer related to energy saving technologies and clean coal as well as international energy promotion activities are implemented in China and Indonesia since fiscal 1993. In the field of energy saving, model operations are performed to improve efficiency in such energy consuming fields as steel making, power generation, and oil refining, in addition to cooperation in structuring databases and establishing master plans. In the clean coal field, model operations are conducted to reduce environmental load in coal utilizing areas, in addition to cooperation in establishing master plans for coal utilization. This paper describes feasibility studies on environmentally harmonious coal utilization systems in developing countries, assistance to introduction thereof, and joint verification operations. To rationalize international energy usage, basic surveys on energy utilization efficiency improvement and model operations are carried out mainly in the Asia-Pacific countries.

  3. Irradiation effects of hydrogen and helium plasma on different grade tungsten materials

    Directory of Open Access Journals (Sweden)

    X. Liu

    2017-08-01

    Full Text Available Fine-grain tungsten alloys could be one of the solutions for the plasma facing materials of future DEMO reactors. In order to evaluate the service performances of the newly developed W alloys under edge plasma irradiation and the synergetic effect of fusion plasma together with high heat flux, both low energy He ions and high energy H, H/He mixed neutral beam irradiation on W-ZrC, W-K, W-Y2O3, W-La2O3 and CVD-W coating were performed respectively at a liner plasma facility (Dalian Nationality University, China and the neutral beam facility GLADIS (IPP, Germany. Surface damages were characterized, and the crack formation and extension behaviors under ELM-like transient loading after H and H/He mixed beam irradiation were also investigated in the 60kW EMS-60 facility (Electron beam Materials testing Scenario at SWIP (Southwestern Institute of Physics, China. The experimental results indicated that surface damages induced by low or high energy H/He ion/neutral beam didn't closely correlate with the type of tungsten materials. However, H/He (6at% He concentration neutral beam induced more significant surface damages of the tested W materials than only H neutral beam irradiation under the similar irradiation conditions. Similarly, the mixed H/He pre-exposure remarkably reduced the critical power of crack initiation compared with the un-irradiated samples under 100 repetitive loads of 1ms pulse, while no significant degeneration for the case of only H beam irradiation was observed.

  4. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors; Caracterisation microstructurale et modelisation du durcissement des aciers austenitiques irradies des structures internes des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Pokor, C

    2003-07-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  5. Single particle irradiation effect of digital signal processor

    International Nuclear Information System (INIS)

    Fan Si'an; Chen Kenan

    2010-01-01

    The single particle irradiation effect of high energy neutron on digital signal processor TMS320P25 in dynamic working condition has been studied. The influence of the single particle on the device has been explored through the acquired waveform and working current of TMS320P25. Analysis results, test data and test methods have also been presented. (authors)

  6. Microstructure and damage behavior of W-Cr alloy under He irradiation

    Science.gov (United States)

    Huang, Ke; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Liu, Dong-Guang; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-04-01

    In this study, a large-power inductively coupled plasma source was designed to perform the continuous helium ion irradiations of W-Cr binary alloy (W-20 wt%Cr) under relevant conditions of the International Thermonuclear Experimental Reactor. Surface damages and microstructures of irradiated W-20Cr were observed by using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The addition of Cr dramatically enhanced the micro-hardness of the obtained bulk materials, and the interface between the W matrix and the second phase Cr-O is a semi-coherent interface. After irradiation, the doping of Cr element effectively reduces the damage of the W matrix during the irradiation process. The semi-coherent interface between the second phase and the W matrix improves the anti-irradiation performance of the W-20Cr alloy.

  7. Policy plan for the early approval for irradiated meat products and the promotion of irradiated meats in market

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Wang Geun [Ministry of Education, Science and Technology, Seoul (Korea, Republic of); Kim, Kyong Su [Dept. of Food and Nutrition, Chosun University, Gwangju (Korea, Republic of); Yook, Hong Sun [Dept. of Food and Nutrition, Chungnam National University, Daejeon (Korea, Republic of); Kim, Cheon Jei [Division of Animal Life Science, Konkuk University, Seoul (Korea, Republic of)

    2008-11-15

    The consumption of meat products is gradually being increased by the development of livestock raising technology, industrialized farm management and international trade. This increased consumption also created new market for ready-to-eat and ready-to-cook meat products. However, these convenience meat products can be easily contaminated during the processing and storage by pathogens, and there have been many reported cases of food borne illness by meats. One of the most effective methods for the decontamination of meat products is the radiation technology. Food irradiation was the established, well-recognized and safe sterilization method. Many other countries researched the effect of irradiation on the meat products and approved the irradiation. In this article, the effectiveness, the international acceptance, the economics and the research trend of irradiation on meat products have been reviewed. Also, the policy plans for the early approval of the irradiated meat products in Korea and the promotion policy of irradiated meats in market were discussed.

  8. Policy plan for the early approval for irradiated meat products and the promotion of irradiated meats in market

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Wang Geun; Kim, Kyong Su; Yook, Hong Sun; Kim, Cheon Jei

    2008-01-01

    The consumption of meat products is gradually being increased by the development of livestock raising technology, industrialized farm management and international trade. This increased consumption also created new market for ready-to-eat and ready-to-cook meat products. However, these convenience meat products can be easily contaminated during the processing and storage by pathogens, and there have been many reported cases of food borne illness by meats. One of the most effective methods for the decontamination of meat products is the radiation technology. Food irradiation was the established, well-recognized and safe sterilization method. Many other countries researched the effect of irradiation on the meat products and approved the irradiation. In this article, the effectiveness, the international acceptance, the economics and the research trend of irradiation on meat products have been reviewed. Also, the policy plans for the early approval of the irradiated meat products in Korea and the promotion policy of irradiated meats in market were discussed

  9. Fruit irradiation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Food spoilage is a common problem when marketing agricultural products. Promising results have already been obtained on a number of food irradiating applications. A process is described in this paper where irradiation of sub-tropical fruits, especially mangoes and papayas, combined with conventional heat treatment results in effective insect and fungal control, delays ripening and greatly improves the quality of fruit at both export and internal markets

  10. Simulation for evaluation of the multi-ion-irradiation Laboratory of TechnoFusion facility and its relevance for fusion applications

    International Nuclear Information System (INIS)

    Jimenez-Rey, D.; Mota, F.; Vila, R.; Ibarra, A.; Ortiz, Christophe J.; Martinez-Albertos, J.L.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, J.M.

    2011-01-01

    Thermonuclear fusion requires the development of several research facilities, in addition to ITER, needed to advance the technologies for future fusion reactors. TechnoFusion will focus in some of the priority areas identified by international fusion programmes. Specifically, the TechnoFusion Area of Irradiation of Materials aims at surrogating experimentally the effects of neutron irradiation on materials using a combination of ion beams. This paper justifies this approach using computer simulations to validate the multi-ion-irradiation Laboratory. The planned irradiation facility will investigate the effects of high energetic radiations on reactor-relevant materials. In a second stage, it will also be used to analyze the performance of such materials and evaluate newly designed materials. The multi-ion-irradiation Laboratory, both triple irradiation and high-energy proton irradiation, can provide valid experimental techniques to reproduce the effect of neutron damage in fusion environment.

  11. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  12. Challenges in validating radiation sterilization with low energy electron irradiation

    International Nuclear Information System (INIS)

    Miller, A.; Helt-Hansen, J.

    2011-01-01

    Complete text of publication follows. Low energy electron irradiation (80-300 keV) is used increasingly for sterilization or decontamination in connection with isolators for aseptic filling lines in the pharmaceutical industry. It is not defined how validation for this process shall be carried out. A method can be derived from the medical device standard for radiation sterilization, ISO 11137, because the principles described in this standard can be applied to almost any industrial irradiation process. The validations elements are: Process definition, concerning specification of the dose required for the process and the maximum acceptable dose for the product. Installation qualification, concerning acceptance the irradiation facility. Operational qualification, concerning characterization of the facility. Performance qualification, concerning setting up the process. Process control, concerning routine monitoring. The limited penetration of the low energy electrons leads to problems with respect to executing these validation steps. This paper discusses these problems, and shows with examples how they can be solved.

  13. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A

    1978-09-01

    Whereas the ultimate world supply of energy minerals--defined as fossil fuels and fissile materials--is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. Genuine shortages of energy minerals are now of a very long-term nature, whereas artificial ones may occur at any time and have a serious effect on the world economy due to the dependence of most OECD countries on imports of energy minerals. This paper argues that events over the last decade will progressively lead to a major, long-lasting transformation of the energy scene worldwide. This transformation will encompass demand, in terms of conservation and efficiency, the supply mix of the various energy minerals, the supply system and the structure of the different energy industries. It is already affecting the role of governments and reaching into the question of national sovereignty, thereby making energy minerals a key area of international relations. In all these respects, this paper concludes that we have entered an era that is quite different from those we have experienced in the past. As well as requiring many new technological innovations, more importantly, attention must be focused on the development of new approaches to meeting the energy industries' capital requirements in the decades ahead--first, because of the changing character of the energy industries and the magnitude of their financial requirements; secondly, because of the nature of the uncertainties with which they are faced; and thirdly, because of the constantly shifting and increasingly complex world capital market conditions.

  14. Effects of irradiation on preservation of some foods

    International Nuclear Information System (INIS)

    Mohammed, H.M.B.

    1994-01-01

    The aim of this investigation was to study the possibility of using some different high doses of gamma rays for producing a sterile canned beef in comparison with commercially thermal sterilized canned beef. The effect of irradiation treatments (11.25, 22.5 and KGy) and the commercial heat sterilization on chemical composition, microbiological aspects and organoleptic properties of treated cans during 12 months of storage at ambient temperature were studied. Attention was focussed on the changes occurred in chemical constituents of canned beef, lipid characteristics, fatty acid composition and the un saponifiable matter composition as a result of either irradiation or heat treatments. In addition, the effects of these treatments on microbiological properties by the determinations of total counts of anaerobic, aerobic and thermophilic bacteria as well as detection of Clostridium perfringens were studied. Moreover, the effects of these treatments on the organoleptic properties of these products by the evaluation of sensory scores for external and internal appearance of cans, colour and odor of meat at zero time and during storage at ambient temperature for 12 months were also studied

  15. Some effects of irradiation of mice in utero with tritiated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, B E; Phipps, M L [Radiobiology Department, The Medical College of Bartholomew' s Hospital, London, UK

    1978-01-01

    Mice have been exposed continuously, in utero, to tritiated water (via the maternal drinking water) or to tritiated thymidine (infused continuously into the mother). In both cases the patterns of labeling and subsequent loss of tritium over an extended period have been studied. The technique of infusion in unrestrained mice and its application in the production of fully tritium-labeled offspring is described in some detail. These fully labeled mice are being used to study a number of early and late effects, in particular, gonad cell effects and carcinogenesis, following this form of internal irradiation. Some preliminary results are presented. Similar results produced by homogeneous irradiation from tritiated water are also reported.

  16. Some effects of irradiation of mice in utero with tritiated compounds

    International Nuclear Information System (INIS)

    Lambert, B.E.; Phipps, M.L.

    1978-01-01

    Mice have been exposed continuously, in utero, to tritiated water (via the maternal drinking water) or to tritiated thymidine (infused continuously into the mother). In both cases the patterns of labeling and subsequent loss of tritium over an extended period have been studied. The technique of infusion in unrestrained mice and its application in the production of fully tritium-labeled offspring is described in some detail. These fully labeled mice are being used to study a number of early and late effects, in particular, gonad cell effects and carcinogenesis, following this form of internal irradiation. Some preliminary results are presented. Similar results produced by homogeneous irradiation from tritiated water are also reported. (Auth.)

  17. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    Lou Yinhong; Guo Hongxia; Zhang Keying; Wang Yuanming; Zhang Fengqi

    2011-01-01

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  18. Effect of irradiation on carbohydrates content

    International Nuclear Information System (INIS)

    Chantharasakul, S.

    1971-01-01

    Effect of gamma radiation on vitamin C and total acidity contents of Hom Tong banana was described. There was a slight decrease in vitamin C contents in both irradiated and non-irradiated banana during storage. No difference was detected in term of vitamin C contents between irradiated and non-irradiated banana at any storage time. The total acidity of the banana increased with increasing time of storage owing to the ripening effect of the fruit. Higher total acidity content of non-irradiated banana during storage indicated the faster rate of ripening of the fruit

  19. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  20. Altered energy metabolism in an irradiated population of lizards at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nagy, K.A.; Medica, P.A.

    1985-01-01

    Field metabolic rates (via doubly labeled water), body compartmentalization of energy stores, and energy assimilation efficiencies were measured to assess all avenues of energy utilization in Uta stansburiana living in a low-level γ-irradiated plot in Rock Valley, Nevada. Comparison of energy budgets for radiation-sterilized females with those of nonirradiated control lizards revealed several substantial differences. Sterile females were heavier, mainly because they had extraordinarily large energy (fat) storage depots. Sterile females had much lower rates of energy expenditure via respiration and lower rates of energy intake by feeding. These differences are interpreted as indirect responses to radiation-induced sterility. There is little evidence of direct radiation effects on physiological functions other than reproduction

  1. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  2. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  3. International dose assurance service programme of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Nam, J.W.

    1988-01-01

    In order to execute normalization of high-doses on an international scale and to further promote dosimetry as quality control measures in radiation processing, the International Dose Assurance Service (IDAS) has recently been initiated in the framework of a high-dose standardization programme. IDAS is being provided on the basis of an ''Agreement Concerning the Provision of a Dose Assurance Service by the IAEA to Irradiation Facilities in its Member States''. The aim of the IDAS programme will be to meet stringent requirements for standardization of dosimetry, and to achieve concerted international efforts for quality assurance of radiation processing. Details of the programme and the achievements made to date are discussed. (author). 5 refs

  4. Post-irradiation degradation of DNA in electron and neutron-irradiated E. coli B/r; the effect of the radiation sensitizer metronidazole

    Energy Technology Data Exchange (ETDEWEB)

    Cramp, W A; George, A M; Howlett, J [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1976-04-01

    Suspensions of E.coli B/r were irradiated under aerobic and anoxic conditions with electrons (7 to 8 MeV, 2 and 20 krad/min, MRC linear accelerator), or with neutrons (average energy 7.5 MeV, 2 krad/min, MRC cyclotron) in an investigation of the effects of the radiosensitizer, metronidazole (Flagyl, 5 or 10 mM) on survival and DNA degradation. These results are compared with those for another electron affinic radiosensitizer, indane trione. Survival studies yielded enhancement ratios, for anoxic irradiation only, of 1.7 (5mM) and 1.9 (10mM) for electrons, and 1.2 (5mM and 10mM) for neutrons. Unlike indane trione, metronidazole had no pronounced inhibitory effect on post-irradiation DNA degradation, either when incubated with the bacteria before irradiation or when present during irradiation. When present under anoxic conditions of irradiation with electrons, some enhancement of degradation was observed. DNA degradation was reduced at higher doses, with a pronounced maxiumum effect, for neutrons as well as for electrons. Metronidazole allowed this degradation to continue and showed some sensitizing action, but did not prevent the decrease in total degradation at high doses. It is therefore difficult to correlate DNA degradation with cell-depth.

  5. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  6. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  7. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  8. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  9. Effect of millimeter-wave irradiation on cation interdiffusion in the calcium titanate/strontium titanate ceramic couple

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Kamakura, Yukari; Teranishi, Takashi; Hayashi, Hidetaka

    2013-01-01

    Interdiffusion between the perovskite CaTiO 3 and SrTiO 3 diffusion couple was investigated in an annealing method using 24-GHz MMW irradiation as the heating source. Interdiffusion was enhanced by MMW irradiation, and the apparent activation energy for interdiffusion decreased 54%, compared with conventional furnace heating. The intrinsic diffusions for both Ca 2+ and Sr 2+ were also enhanced, although their relative degrees of enhancement differed, partly as a result of differences in MMW absorptivity between the two ceramics. The observed isothermal diffusion enhancement could be ascribed to a nonthermal effect, apart from the differential degree of enhancement between the transport species. - Highlights: ► Interdiffusion was enhanced by MMW (millimeter-wave) irradiation. ► At the same time the apparent activation energy decreased. ► The enhancement degrees were different between the transport species. ► The observed diffusion enhancement can be ascribed to a nonthermal effect. ► MMW irradiation could be an effective means of preparing novel complex oxides

  10. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-01-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR's were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10 15 p/cm 2 produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result

  11. High-energy irradiation in the management of chondrosarcoma

    International Nuclear Information System (INIS)

    Kim, R.Y.; Salter, M.M.; Brascho, D.J.

    1983-01-01

    We present a retrospective analysis of seven patients with chondrosarcoma of the bone treated by high-energy irradiation between 1961 and 1976. Its major role in this series was prevention of local recurrence in cases with inadequate resection. In three of the five cases in which radiation therapy was adjuvant rather than primary treatment, long-term local control was obtained in a dose of 5,000 to 6,500 rads in five to six weeks. Although primary treatment of chondrosarcoma is surgical, high-dose radiation therapy is indicated when surgical resection is not possible. Chondrosarcoma can respond to high doses of irradiation even though the response is slow

  12. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  13. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  14. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2011-02-15

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  15. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    International Nuclear Information System (INIS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.

    2011-01-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  16. AGC-2 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the

  17. Electron irradiation effect on the reverse phase transformation temperatures in TiNi shape memory alloy thin films

    International Nuclear Information System (INIS)

    Wang, Z.G.; Zu, X.T.; Fu, Y.Q.; Zhu, S.; Wang, L.M.

    2005-01-01

    In this work, Ti-Ni shape memory alloy thin films were irradiated by 1.7 MeV electron with three types of fluences: 4 x 10 20 , 7 x 10 20 and 1 x 10 21 /m 2 . The influence of electron irradiation on the transformation behavior of the TiNi thin films were investigated by differential scanning calorimetry. The transformation temperatures A s and A f shifted to higher temperature after electron irradiation, the martensite was stabilized. The electron irradiation effect can be easily eliminated by one thermal cycle. The shifts of the transformation temperatures can be explained from the change of potential energy barrier and coherency energy between parent phase and martensite after irradiation

  18. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Sandip S. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan); Dhole, Sanjay D. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); More, Mahendra A., E-mail: mam@physics.unipune.ac.i [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.j [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan)

    2011-04-15

    The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of {approx}1x10{sup -8} mbar. The values of the threshold field, required to draw an emission current density of {approx}1 {mu}A/cm{sup 2}, are found to be {approx}0.52, 1.9, 1.3 and 0.8 V/{mu}m for untreated, irradiated with fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.

  19. Ion irradiation of {sup 37}Cl implanted nuclear graphite: Effect of the energy deposition on the chlorine behavior and consequences for the mobility of {sup 36}Cl in irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Moncoffre, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Sainsot, P. [Université de Lyon, Université Lyon 1, LaMCoS, INSA-Lyon, CNRS UMR5259 (France); Rouzaud, J.-N.; Deldicque, D. [Laboratoire de Géologie de l’Ecole Normale Supérieure (ENS), Paris, UMR CNRS-ENS 8538 (France)

    2015-09-15

    Graphite is used in many types of nuclear reactors due to its ability to slow down fast neutrons without capturing them. Whatever the reactor design, the irradiated graphite waste management has to be faced sooner or later regarding the production of long lived or dose determining radioactive species such as {sup 14}C, {sup 3}H or {sup 36}Cl. The first carbon dioxide cooled, graphite moderated nuclear reactors resulted in a huge quantity of irradiated graphite waste for which the management needs a previous assessment of the radioactive inventory and the radionuclide’s location and speciation. As the detection limits of usual spectroscopic methods are generally not adequate to detect the low concentration levels (<1 ppm) of the radionuclides, we used an indirect approach based on the implantation of {sup 37}Cl, to simulate the presence of {sup 36}Cl. Our previous studies show that temperature is one of the main factors to be considered regarding the structural evolution of nuclear graphite and chlorine mobility during reactor operation. However, thermal release of chlorine cannot be solely responsible for the depletion of the {sup 36}Cl inventory. We propose in this paper to study the impact of irradiation and its synergetic effects with temperature on chlorine release. Indeed, the collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic collisions. However, a small part of the recoil carbon atom energy is also transferred to the lattice through electronic excitation. This paper aims at elucidating the effects of the different irradiation regimes (ballistic and electronic) using ion irradiation, on the mobility of implanted {sup 37}Cl, taking into account the initial disorder level of the nuclear graphite.

  20. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    International Nuclear Information System (INIS)

    Clayton, J.C.

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated

  1. Effect of antioxidants on the quality of irradiated sausages prepared with turkey thigh meat.

    Science.gov (United States)

    Du, M; Ahn, D U

    2002-08-01

    The effects of antioxidants on the flavor and color of electron-beam-irradiated turkey sausages were studied. Sausages were prepared from turkey thigh meat, NaCl (2.0%), phosphate (0.5%), water (10%), and one of five antioxidant treatments (none, vitamin E, sesamol, rosemary extract, or gallic acid at 0.02%). Sausages were stuffed and cooked in an 85 C smokehouse to an internal temperature of 74 C, then chilled and sliced to 1.5-cm thickness, and vacuum-packaged. Packaged sausages were randomly divided into three groups and irradiated at 0, 1.5 or 3.0 kGy, using an electron beam. Volatiles, color, 2-TBA-reactive substances values, and sensory characteristics were analyzed. The antioxidant effect of sesamol was the highest, followed by vitamin E and gallic acid; rosemary extract had the weakest antioxidant effect. Irradiation induced red color in sausages, but addition of gallic acid, rosemary extract, or sesamol reduced it. Gallic acid was very effective in lowering the redness of irradiated and nonirradiated sausages. The redness (a*) values of sausages with added gallic acid that were irradiated at 0, 1.5, and 3.0 kGy were 1.49,2.03, and 2.29, respectively, whereas those of control sausages under the same irradiation conditions were 2.58, 2.81, and 3.25, respectively. The reduction of redness in irradiated sausages by antioxidants was not related to CO, because antioxidants had no effect on CO production by irradiation. The amount of total volatiles was decreased significantly by antioxidants, but antioxidants had minimal effect on the off-flavor of turkey sausages induced by irradiation.

  2. Effect of irradiation-induced defects on fusion reactor ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Structural, thermal, and electrical properties critical to performance of ceramics in a fusion environment can be profoundly altered by irradiation effects. Neutron damage may cause swelling, reduction of thermal conductivity, increase in dielectric loss, and either reduction or enhancement of strength depending on the crystal structure and defect content of the material. Absorption of ionizing energy inevitably leads to degradation of insulating properties, but these changes can be reduced by alterations in structural or compositional makeup. Assessment of the irradiation response of candidate ceramics Al 2 O 3 , MgAl 2 O 4 , SiC and Si 3 N 4 shows that each may find use in advanced fusion devices. The present understanding of irradiation-induced defects in ceramics, while far from complete, nevertheless points the way to methods for developing improved materials for fusion applications

  3. Effect of periodic deuterium ion irradiation on deuterium retention and blistering in Tungsten

    Directory of Open Access Journals (Sweden)

    M. Oya

    2017-08-01

    Full Text Available The effect of periodic irradiation on Deuterium (D retention and blistering in Tungsten (W was investigated. W samples were exposed to D plasma at a fixed fluence while varying the irradiation cycle number (1-shot, 2-shots and 3-shots. Exposure energy and flux were ∼50eV and ∼1 ×1022 D m−2 s−1, respectively. Sample temperatures were 537K and 643K. At 573K, D retention and blister density decreased with increasing number of irradiation cycle. In contrast at 643K, D retention showed no dependence on number of irradiation cycle. Therefore, sample temperature during irradiation is an important parameter in comparing the results of continuous and periodic irradiation, especially in studies involving extremely-high-flux (>1024 D m−2 s−1 irradiation and fluence dependency of D retention.

  4. Formation of amorphous layers by irradiation

    International Nuclear Information System (INIS)

    Bourgoin, J.C.

    1979-01-01

    When an ordered solid is irradiated with heavy energy particles, disorder is produced. When the irradiation dose exceeds a so-called critical dose, the irradiated area of the solid becomes uniformly disordered. Mention is first made of the nature, concentration and distribution of the defects created by a heavy energy particle. The description is then given -solely with respect to semiconductors- of the effect of the various parameters on the critical dose energy and nature of the ion, nature and temperature of the solid, irradiation flux. The physical properties (electronic and thermodynamic types) and the uniformly disordered areas are briefly discussed and these properties are compared with those of amorphous semiconductor layers fabricated by evaporation. It is concluded that the evaporated and irradiated layers are similar in nature. It is suggested that the transformation of an irradiated crystalline area into an amorphous one occurs when the Gibbs energy of the crystal become greater than the Gibbs energy of the amorphous one [fr

  5. Blood irradiation

    International Nuclear Information System (INIS)

    Chandy, Mammen

    1998-01-01

    Viable lymphocytes are present in blood and cellular blood components used for transfusion. If the patient who receives a blood transfusion is immunocompetent these lymphocytes are destroyed immediately. However if the patient is immunodefficient or immunosuppressed the transfused lymphocytes survive, recognize the recipient as foreign and react producing a devastating and most often fatal syndrome of transfusion graft versus host disease [T-GVHD]. Even immunocompetent individuals can develop T-GVHD if the donor is a first degree relative since like the Trojan horse the transfused lymphocytes escape detection by the recipient's immune system, multiply and attack recipient tissues. T-GVHD can be prevented by irradiating the blood and different centers use doses ranging from 1.5 to 4.5 Gy. All transfusions where the donor is a first degree relative and transfusions to neonates, immunosuppressed patients and bone marrow transplant recipients need to be irradiated. Commercial irradiators specifically designed for irradiation of blood and cellular blood components are available: however they are expensive. India needs to have blood irradiation facilities available in all large tertiary institutions where immunosuppressed patients are treated. The Atomic Energy Commission of India needs to develop a blood irradiator which meets international standards for use in tertiary medical institutions in the country. (author)

  6. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  7. Asymmetric impacts of international energy shocks on macroeconomic activities

    International Nuclear Information System (INIS)

    Yeh, Fang-Yu; Hu, Jin-Li; Lin, Cheng-Hsun

    2012-01-01

    While limited by its scarcity of natural resources, the impacts of energy price changes on Taiwan's economic activities have been an important issue for social public and government authorities. This study applies the multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. By separating energy price changes into the so-called decrease and increase regimes, we can realize different impacts of energy price changes and their shocks on economic output. The results confirm that there is an asymmetric threshold effect for the energy-output nexus. The optimal threshold levels are exactly where the oil price change is at 2.48%, the natural gas price change is at 0.66%, and the coal price change is at 0.25%. The impulse response analysis suggests that oil price and natural gas shocks have a delayed negative impact on macroeconomic activities. - Highlights: ► This study applies multivariate threshold model to investigate the effects of various international energy price shocks on Taiwan's macroeconomic activity. ► The results confirm that there is an asymmetric threshold effect for energy-output nexus. ► The optimal threshold levels are exactly found where oil price change is at 2.48%, natural gas price change is at 0.66%, and coal price change is at 0.25%.

  8. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  9. Surface oxidation in glassy arsenic trisulphide induced by high-energy γ-irradiation

    International Nuclear Information System (INIS)

    Shpotyuk, M.; Shpotyuk, O.; Serkiz, R.; Demchenko, P.; Kozhyukhin, S.

    2014-01-01

    Influence of high-energy γ-irradiation with ∼3 MGy dose on glassy g-As 2 S 3 was investigated by a complex of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction methods. A white layer composed of separate 1–2 μm rhombohedral arsenolite As 2 O 3 crystallites was observed at the surface of γ-irradiated samples. These As 2 O 3 extractions along with crystallised S allotropes are responsible for expansion of the first sharp diffraction peaks in the XRD patterns of g-As 2 S 3 . - Highlights: • As 2 O 3 crystallites are observed at the surface of γ-irradiated As 2 S 3 samples. • Observed crystallites can be removed from the surface after washing and polishing. • γ-Irradiation broadens the FSDP due to satellite lines located on its both sides. • As 2 O 3 and S phases extracted at the surface are responsible for satellite lines

  10. Radiation blistering of niobium in sequence irradiated by helium ions with different energy

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminskij, M.S.; Guseva, M.I.; Gusev, V.M.; Krasulin, Yu.L.; Martynenko, Yu.V.; Rozina, I.A.

    1977-01-01

    The results of the investigation of the blistering of the surface of polycrystalline niobium foils subjected to successive irradiation by helium ions of energies of 3 to 50 keV are reported. The critical doses of irradiation, the types of blisters and the rate of erosion were determined. A comparative analysis of the formation of blisters on cold-rolled and annealed niobium has been made. On cold-rolled niobium the blistering is mainly due to ions with energies of 3 to 80 keV, on annealed niobium of 100 to 500 keV. The erosion of cold-rolled niobium takes place through blisters formed by the action of helium ions with energies of the order of 45 keV, and that of annealed niobium, through helium ions with energies of 100 to 500 keV. The observed differences in the formation of blisters on niobium irradiated with helium ions of a wide range of energies are explained by the change in the diffusion kinetics of implanted ions having a uniform distribution across the thickness of the target

  11. Emulation of neutron irradiation effects with protons: validation of principle

    International Nuclear Information System (INIS)

    Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andreson, P.L.

    2002-01-01

    denuded zones were only observed in neutron-irradiated samples. No cavities were observed for either irradiating particle. For both irradiating particles, hardening increased with dose for both heats, showing a more rapid increase and approach to saturation for heat B. In normal oxygenated water chemistry (NWC) at 288 deg. C, stress corrosion cracking in the 304 alloy was first observed at about 1.0 dpa and increased with dose. The 316 alloy was remarkably resistant to IASCC for both particle types. In hydrogen treated, de-oxygenated water (HWC), proton-irradiated samples of the 304 alloy exhibited IG cracking at 1.0 dpa compared to about 3.0 dpa for neutron-irradiated samples, although differences in specimen geometry, test condition and test duration can account for this difference. Cracking in heat P in HWC occurred at about 5.0 dpa for both irradiating particles. Thus, in all aspects of radiation effects, including grain boundary microchemistry, dislocation loop microstructure, radiation hardening and SCC behavior, proton-irradiation results were in good agreement with neutron-irradiation results, providing validation of the premise that the totality of neutron-irradiation effects can be emulated by proton irradiation of appropriate energy

  12. A Preliminary Study of the Application of a Model Animal-Caenorhabidity elegans' Exposure to a Low-Energy Ion Irradiation System

    International Nuclear Information System (INIS)

    Liu Xuelan; Cai Kezhou; Feng Huiyun; Xu An; Yuan Hang; Yu Zengliang

    2007-01-01

    Because of the lack of suitable animal models adapted to high vacuum stress in the low-energy ion implantation system, the bio-effects ion irradiation with an energy less than 50 keV on multi-cellular animal individuals have never been investigated so far. The nematode Caenorhabditis elegans has proved to be an excellent animal model used for the study of a broad spectrum of biological issues. The purpose of this work was to investigate the viability of this animal under ion irradiation. We studied the protection effects of glycerol and trehalose on the enhancement of nematodes' ability to bear the vacuum stress. The results showed that the survival of the nematodes was enhanced remarkably under long and slow desiccation, even without glycerol and trehalose. 15% glycerol showed a better anti-vacuum stress effect on the nematodes than trehalose did under short-time desiccation. Low-temperature pre-treatment or post-treatment of the samples had no obvious effect on the survival scored after argon ion irradiation. Moreover, little effect was induced by 15% glycerol- and vacuum-exposure on germ cell apoptosis, compared to the untreated control sample. It issuggested that such treatment would provide relatively low background for genotoxic evaluations with ion irradiation

  13. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  14. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  15. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  16. Nuclear energy and international organizations

    International Nuclear Information System (INIS)

    Lindemann, B.

    1975-01-01

    The historical perspectives of the international organizations' role concerning the development and spreading of the peaceful uses of nuclear energy, taking into account the national interests within and towards these organizations, are portrayed. The difference in political status between the so-called nuclear and non-nuclear States, lodged in Articles I and II of the Non-Proliferation Treaty is an important factor. The effects so far of these differences in status on the interest of nuclear States to participate in organizations and on factors which might possibly lead to conflict between these two groups are presented. The author skirts the cooperation between organizations (international bureaucracies, group-formation of states). (HP/LN) [de

  17. Accumulated energy determination in salts rocks irradiated by means of thermoluminescence techniques: application to the high level radioactive wastes repositories analysis

    International Nuclear Information System (INIS)

    Dies, J.; Ortega. J.; Tarrasa. F.; Cuevas, C.

    1995-01-01

    The report summarizes the study carried out to develop the radiation effects on salt rocks in order to repository the high level radioactive wastes. The study is structured into 3 main aspects: 1.- Analysis of irradiation experiences in Haw project of Pet ten reactor. 2.- Irradiation of salt sample of CESAR industrial irradiator. 3.- Correlation study between the accumulated energy, termoluminescence answer and the defect concentration

  18. Chalcogenide glasses for device application modified by high-energy irradiation

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.

    2006-01-01

    Full text: Chalcogenide glasses (ChG) or chemical compounds of chalcogen atoms (S, Se or Te, but not O) with some elements from IV-th and V-th groups of the Periodic Table (typically As, Ge, Sb, Bi, etc. ) obtained by melt quenching, are a perspective for application in modern optoelectronics, photonics, telecommunications, acoustic-optics, xerography, lithography, etc. This uniqueness is due to extremely high sensitivity of ChG to external influences, associated, presumably, with high steric flexibility proper to glassy-like network with low average atomic coordination (chalcogen atoms are typically two-fold coordinated in a glassy-like network), relatively large internal free volume and specific lp-character of electronic states localized at a valence-band top. However, at present, the further possibilities for conventional chemical/technological methods to prepare ChG are fully exhausted. One of the steps to resolve this problem is post-technological modification of ChG using possibilities of high-energy irradiation. This work is focused on new advanced radiation-modified ChG for device application in optoelectronics. The attractive practical use of these non-crystalline materials is tightly connected with radiation-induced defect formation processes. For the first time, we consider the possibilities of Raman scattering along with X-ray diffraction and positron annihilation lifetime spectroscopy to characterize microstructural mechanisms of radiation-induced effects in ChG. (authors)

  19. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F

    1999-01-01

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  20. Investigation of high flux test module for the international fusion materials irradiation facilities (IFMIF)

    International Nuclear Information System (INIS)

    Miyashita, Makoto; Sugimoto, Masayoshi; Yutani, Toshiaki

    2007-03-01

    This report describes investigation on structure of a high neutron flux test module (HFTM) for the International Fusion Materials Irradiation Facilities (IFMIF). The HFTM is aimed for neutron irradiation of a specimen in a high neutron flux domain of the test cell for irradiation ground of IFMIF. We investigated the overall structure of the HFTM that was able to include specimens in a rig and thermocouple arrangement, an interface of control signal and support structure. Moreover, pressure and the amount of the bend in the module vessel (a rectangular section pressure vessel) were calculated. The module vessel did a rectangular section from limitation of a high neutron flux domain. Also, we investigated damage of thermocouples under neutron irradiation, which was a temperature sensor of irradiation materials temperature control demanded high precision. Based on these results, drawings on the HTFM structure. (author)

  1. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  2. MONJU AS AN INTERNATIONAL ASSET: INTERNATIONAL ASSISTANCE AND COOPERATION

    International Nuclear Information System (INIS)

    Rodriguez, G.; Wisner, R.S.; Stuart, R.

    2004-01-01

    The role of the fast breeder reactor prototype Monju has expanded to meet the challenges of the 21st century. Today instead of being merely a demonstration of an economical, safe, environmentally responsible source of energy, as originally designed, it has also the capability to be transformed into a unique International Irradiations Test Facility. The potential for Monju's role in the Generation IV nuclear energy systems development, and fast reactor research and development area is clear. Its incomparable fast neutron spectrum density will be a major interest not only for Sodium Fast Reactor but for all the Generation IV concepts. As Monju's potential future role is laid out, plans for future tests can be made. Tests of advanced fuels and materials in support of the Advanced Fuel Cycle Initiative, as well as Minor Actinide Burning can be envisaged. Tests planned on transmutation of minor actinides have the objectives of an industrial demonstration of the reduction of toxic wastes and the stewardship burden of the long-lived wastes. Tests and demonstrations carried out at Monju will provide a bridge from existing Generation III fast reactor systems, now in the later stages of their projected operational lifetimes, to Generation IV nuclear energy systems. The JNC founded the International Cooperation and Technology Development Center and the International Research Fellowship program to facilitate this international effort. The Center exists specifically to formulate and perform projects ensuring the maximum technical benefit from Monju. The staff includes physicists, engineers and nuclear industry leaders from around the world. Research Fellowships center is based on several technical areas: advanced instrumentation, inspection techniques, plant reliability and safety, nucleonics, sodium handling technologies, irradiation and experiment management and coordination and advanced post-irradiation examination capabilities and techniques. This paper describes the recent

  3. Gold wetting effects on sapphire irradiated with GeV uranium ions

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1997-01-01

    Single crystals of α-Al 2 O 3 were irradiated with 238 U ions using two different energies: 3.4 MeV/u and 1.7 MeV/u. The irradiations were performed at a temperature of ∼80 K, with fluences ranging from 1.2 x 10 12 to 2.5 x 10 12 ions cm -2 . After irradiation, thin gold films were deposited on the sapphire surfaces by using a sputtering method. Subsequent annealing in air at a temperature of 723 and 923 K were applied to investigate the influence of the pre-damage on the adhesion of the gold layer on the sapphire surface. Rutherford backscattering analysis and scanning electron microscopy performed in both virgin and irradiated areas, show that the pre-irradiation damage inhibits the gold film of breaking up into islands after annealing. A wetting effect, which could depend on the damage morphology, is clearly observed. (orig.)

  4. Gamma irradiation effects on the thermal, optical and structural properties of Cr-39 nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.; Said, A.F.; Atta, M.R.; EL-Mellegy, W.M.; EL-Meniawi, S.

    2006-01-01

    A study of the effect of gamma irradiation on the thermal, optical and structural properties of CR-39 diglycol carbonate solid state nuclear track detector (SSNTD) has been carried out. Samples from CR-39 polymer were irradiated with gamma doses at levels between 20 and 300 KGy. Non-isothermal studies were carried out using thermo-gravimetry (TG), differential thermo-gravimetry (DTG) and differential thermal analysis (DTA) to obtain the activation energy of decomposition and the transition temperatures for the non-irradiated and irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. The variation of onset temperature of decomposition (To) thermal activation energy of decomposition (Ea) melting temperature (Tm) refractive index (n) and the mass fraction of the amorphous phase with the gamma dose were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via the degradation and cross linking mechanisms. Also, the gamma dose gave an advantage for increasing the correlation between the thermal stability of CR-39 polymer and the bond formation created by the ionizing effect of gamma radiation

  5. Silicon passivation study under low energy electron irradiation conditions

    International Nuclear Information System (INIS)

    Cluzel, R.

    2010-01-01

    Backside illuminated thinned CMOS (Complementary Metal Oxide Semiconductor) imaging system is a technology developed to increase the signal to noise ratio and the sensibility of such sensors. This configuration is adapted to the electrons detection from the energy range of [1 - 12 keV]. The impinging electron creates by multiplication several hundreds of secondary electrons close to the surface. A P ++ highly-doped passivation layer of the rear face is required to reduce the secondary electron surface recombination rate. Thanks to the potential barrier induced by the P ++ layer, the passivation layer increases the collected charges number and so the sensor collection gain. The goal of this study is to develop some experimental methods in order to determine the effect of six different passivation processes on the collection gain. Beforehand, the energy profile deposited by an incident electron is studied with the combination of Monte-Carlo simulations and some analytical calculations. The final collection gain model shows that the mirror effect from the passivation layer is a key factor at high energies whereas the passivation layer has to be as thin as possible at low energies. A first experimental setup which consists in irradiating P ++ /N large diodes allows to study the passivation process impacts on the surface recombinations. Thanks to a second setup based on a single event upset directly on thinned CMOS sensor, passivation techniques are discriminated in term of mirror effect and the implied spreading charges. The doping atoms activation laser annealing is turn out to be a multiplication gain inhomogeneity source impacting directly the matrix uniformity. (author)

  6. Internal friction in Al alloys after neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Takamura, S.; Kobiyama, M.

    1985-01-01

    Internal friction and elastic modulus of dilute Al alloys have been measured after fast neutron irradiation at about 5 K. The internal friction spectra in Al-Pb, Al-Si, Al-Zn, Al-Ag, Al-Sn and Al-In are very similar. This result suggests that the configuration of the interstitial-solute atom complex in these alloys is very similar. In Al-Mg, the main complexes have the configuration with nearly symmetry, but its internal friction spectrum is different from that of the above-mentioned alloys. The internal friction spectra and their annealing behavior in Al-Be, Al-Mn, Al-Fe and Al-Cu demonstrate that the configuration of their interstitial-solute atom complex seems to be different from each other and the main complex in these alloys is immobile until stage III. (author)

  7. International bilateral and multilateral arrangements in energy technologies

    International Nuclear Information System (INIS)

    1978-07-01

    This document, the second report in the series, outlines current DOE international commitments under bilateral and multilateral arrangements, as of January 1, 1978. Included are bilateral agreements for cooperation in the civil uses of atomic energy with countries and international organizations, bilateral and multilateral technical exchanges in all energy technology areas, and multilateral agreements under the auspices of the International Energy Agency (IEA). In addition to outlining the terms, scope, and status of these agreements, this document describes DOE's participation in the work of the major international energy organizations. IEA, the International Atomic Energy Agency (IAEA), and the Nuclear Energy Agency (NEA). Future reports will update the status of ongoing cooperative projects and provide information on new energy R and D activities

  8. Effect of gamma irradiation on nutrient digestibility in SPF mini-pig

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeob [College of Animal Life Sciences , Kangwon National University, 192-1 Kangwon Avenue 1, Chuncheon, Gangwon-do 200-701 (Korea, Republic of); Cho, Sung-Back [Swine Science Division, National Institute of Animal Science, Cheonan, Chungcheongnam-do 330-801 (Korea, Republic of); Kim, Yoo-Yong [College of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Ohh, Sang-Jip, E-mail: sjohh@kangwon.ac.k [College of Animal Life Sciences , Kangwon National University, 192-1 Kangwon Avenue 1, Chuncheon, Gangwon-do 200-701 (Korea, Republic of)

    2011-01-15

    This study was carried out to evaluate the effect of gamma irradiation on nutrient digestibility of either soy-based or milk-based diet for specific pathogen-free (SPF) mini-pigs. Gamma irradiation of the diets was done at dosage of 10 kGy with {sup 60}Co whereas autoclaving was executed at 121 {sup o}C for 20 min. Apparent crude protein digestibilities of gamma irradiated diets were higher (p<0.05) than those of autoclaved diets regardless of diet type. Digestibilities of dry matter, gross energy and total carbohydrate in the irradiated diet were higher than those of the autoclaved diet. From the results of nutrient digestibility of mini-pig diets in this study, 10 kGy gamma radiation was suggested as a convenient diet radicidation method that can minimize the decrease in nutrient digestibility on feeding to SPF mini-pigs.

  9. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  10. Effects of cavitation on damage calculations in ion-irradiated P7 alloy

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Farrens, S.N.; Kulcinski, G.L.

    1985-01-01

    The purpose of this study is to investigate the effect of voids on the depth-dependent damage energy in ion-irradiated metals. Corrections to the dose at the swelling peak will be used to obtain the swelling rate of ion-irradiated 316-type stainless steels. Samples of the P7 alloy were ion-irradiated to four fluence levels up to a peak dose level of 100 dpa at 650 0 C. The depth-dependent void parameters extracted in cross section were used to model the effect of voids on the depth-dependent damage produced during 14 MeV nickel ion irradiation. An increase in the range of damage produced from the original foil surface for the target containing voids was modeled as a first-order correction to the damage profile. A second-order effect, void straggling, was shown to cause a time-dependent decrease in the damage rate at the peak swelling depth. Corrections applied to the dose at the peak swelling depth yield swelling rates approaching 0.7%/dpa

  11. Effect of impurities on vacancy migration energy in Fe-based alloys

    International Nuclear Information System (INIS)

    Hashimoto, N.; Sakuraya, S.; Tanimoto, J.; Ohnuki, S.

    2014-01-01

    Effects of impurities, such as carbon, nitrogen, helium and hydrogen, on microstructural evolution in pure iron were investigated by means of a multi-beam electron microscope. Growth rate of dislocation loops were measured to calculate vacancy migration energies. In all irradiation temperature conditions, both the size and the number density of dislocation loops were increased as a function of dose. Irradiation with more impurities showed an increase in the temperature dependence of the dislocation loop growth rate compared to irradiation with little impurities. The in situ experiment indicated that the net migration energy of vacancies could be increased due to trapping by impurities, and the effect of C and N on the migration energy of vacancy would be larger than that of W, V, Ta. Furthermore, H and He would increase vacancy migration energy greater than C and N, as well as W, V, Ta. The density functional theory (DFT), applied to the atomic models of BCC iron, indicated an increase in vacancy migration energy by the trapping of impurity atoms, that is a good agreement with this in situ experiment

  12. On possibility of high energy electron irradiation usage for material alloying

    International Nuclear Information System (INIS)

    Vladimirskij, R.A.; Livshits, V.B.; Payuk, V.A.; Plotnikov, S.V.; Kuz'minykh, V.A.

    1988-01-01

    Review of papers concerning over 2.5 MeV fast electron beam (FEB) irradiation of metals and semiconductors is made. It makes possible to transform physical and mechanical properties ofsurface layers due to their alloyage with different elements or due to redistribution of alloy impurities at the essential depth. It is shown, that electron beam irradiation of materials results in the formation of essential temperature gradient in the sample near the surface and defect nonequilibrium concentration. Along with the increase of diffusion effective ratio the heterogeneous distribution of temperature and defects results in the formation of atom nucompensated fluxes within the sample, which result in element redistribution. Drift of one element through the layer of the second one occurs as a result. Gradient of temperature and defects, amfient temperature and correlation of migration activation energies of element atoms are considered as determining factors at anomalous mass transfer

  13. Kraft cooking of gamma irradiated wood, (1). Effect of alcohol additives on pre-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, M; Meshitsuka, G; Nakano, J [Tokyo Univ. (Japan). Faculty of Agriculture

    1979-12-01

    Studies have been made of kraft cooking of gamma irradiated wood. Beech (Fagus crenata Blume) wood meal suspended in aqueous alkaline alcohol was irradiated up to 1.5 KGy (0.15 Mrad) with gamma rays from a Co-60 source in the presence or absence of oxygen. The irradiated wood meals were washed thoroughly with fresh water, air dried and cooked under the ordinary cooking conditions. The results are summarized as follows: (1) Pre-irradiation in aqueous alkali have negligible effect on kraft cooking. (2) In the case of ethanol addition (50 g/l), pre-irradiation in vacuo shows acceleration of delignification and stabilization of carbohydrates during kraft cooking. Cooked yield gain by pre-irradiation was about 1.2 in all, over the range of delignification from 80 to 90%. Aqueous ethanol without alkali also shows positive but smaller effect than that with alkali. (3) Propanol, iso-propanol and butanol show positive but smaller effects than ethanol. However, methanol does not show any positive effect. (4) Irradiation in the presence of oxygen does not show any attractive effect on kraft cooking.

  14. Effect of ion irradiation on the structure and the surface topography of carbon fiber

    International Nuclear Information System (INIS)

    Ligacheva, E.A.; Galyaeva, L.V.; Gavrilov, N.V.; Belykh, T.A.; Ligachev, A.E.; Sokhoreva, V.V.

    2006-01-01

    The effect of C + ion irradiation (40 keV, 10 15 - 10 19 cm -2 ) on the structure and surface topography of high-module carbon fibers is investigated. Interplanar distance and internal stress values are found to be minimal at a radiation dose of 10 17 cm -2 , the height of a layer pack being practically unchanged. The relief of ion irradiated carbon fiber surface constitutes regularly repetitive valleys and ridges spaced parallel with the fiber axis [ru

  15. Innovative approaches to the Management of Irradiated Nuclear Graphite Wastes: Addressing the Challenges through International Collaboration with Project 'GRAPA'

    International Nuclear Information System (INIS)

    Wickham, A.J.; Ojovan, M.; O'Sullivan, P.; )

    2017-01-01

    There exists more than 250.000 tonnes of irradiated (and therefore radioactive) nuclear graphite (i-graphite) in the world, primarily as a result of the development of graphite-moderated power-reactor systems, initially for defence and subsequently for commercial purposes. Only a very small number of such plants have been dismantled and, for most cases, the final destiny of the irradiated graphite remains unresolved. Future high-temperature reactor programmes, such as the Chinese HTR-PM development, will produce more graphite and carbonaceous wastes from both structural components and the fuel pebbles (which are approximately 96% carbonaceous), the latter producing a continuous stream of so-called 'operational waste'. The problem of dismantling irradiated graphite reactor stacks, possibly distorted through neutron damage and in some cases degraded further by radiation-chemical attack by gaseous coolants, and then finding the appropriate treatments and final destiny of the material, has exercised both the European Union and the International Atomic Energy Agency for more than 25 years, seeking to address the different issues and available disposal solutions in different IAEA Member States. An IAEA collaborative research programme on treatment options has recently been completed, and an active group of international specialists in this area has now been established as part of the IAEA International Decommissioning Network under the envelope of Project 'GRAPA' (Irradiated Graphite Processing Approaches), which includes representatives from Belgium, China, France, Germany, India, Italy, Lithuania, Rep. of Korea, Romania, Spain, Switzerland, Ukraine and the Russian Federation with direct responsibilities for various parts of the decommissioning and graphite-disposal process in a variety of reactor designs. Interest has also been expressed by colleagues from Sweden and Japan. Work is in progress on a number of topic areas where weaknesses in the

  16. International Energy Outlook 2016 With Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    Conti, John [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Petroleum, Natural Gas, and Biofuels Analysis; Holtberg, Paul [USDOE Energy Information Administration (EIA), Washington, DC (United States). Analysis Integration Team; Diefenderfer, Jim [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Electricity, Coal, Nuclear, and Renewables Analysis; LaRose, Angelina [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Integrated and International Energy Analysis; Turnure, James T. [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Consumption and Efficiency Analysis; Westfall, Lynn [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Markets and Financial Analysis

    2016-05-01

    The International Energy Outlook 2016 (IEO2016) presents an assessment by the U.S. Energy Information Administration (EIA) of the outlook for international energy markets through 2040. U.S. projections appearing in IEO2016 are consistent with those published in EIA’s Annual Energy Outlook 2015 (AEO2015). IEO2016 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, federal and state governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2016 energy consumption projections are divided according to Organization for Economic Cooperation and Development members (OECD) and nonmembers (non-OECD). OECD members are divided into three basic country groupings: OECD Americas (United States, Canada, and Mexico/Chile), OECD Europe, and OECD Asia (Japan, South Korea, and Australia/New Zealand). Non-OECD countries are divided into five separate regional subgroups: non-OECD Europe and Eurasia (which includes Russia); non-OECD Asia (which includes China and India); Middle East; Africa; and non-OECD Americas (which includes Brazil). In some instances, the IEO2016 energy production models have different regional aggregations to reflect important production sources (for example, Middle East OPEC is a key region in the projections for liquids production). Complete regional definitions are listed in Appendix M. IEO2016 focuses exclusively on marketed energy. Nonmarketed energy sources, which continue to play an important role in some developing countries, are not included in the estimates. The IEO2016 projections are based on existing U.S. and foreign government laws and regulations. In general, IEO2016 reflects the effects of current policies—often stated through regulations—within the projections. EIA analysts attempt to interpret the

  17. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Rela, P.R.; Napolitano, C.M.; Kodama, Y.; Omi, N.M.; Costa, F.E. da; Andradee Silva, L.G. de

    2009-01-01

    The Radiation Technology Center from IPEN-CNEN/SP, Brazil, developed a revolutionary design and national technology, a small-sized continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of a continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotating door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m 2 of floor area, the irradiator design is a product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 PBq. The performed qualification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process qualification. The initial load of the multipurpose irradiator was 3.4 PBq with 13 cobalt-60 sources model C-188, supplied by MDS Nordion - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The polymethylmetacrylate (PMMA) dosimeter system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning with dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma irradiators available on the market. (authors)

  18. The response of peripheral blood and bone marrow to combined irradiation

    International Nuclear Information System (INIS)

    Yakovleva, N.G.; Zhorno, L.Ya.

    1975-01-01

    Biological effects were examined in rats after X irradiation, oral administration of 90 Sr and 144 Ce as well as combined exposure to X radiation and internal contamination with both radionuclides. Morphological changes of the peripheral blood and the frequency of aberrant mitoses in bone marrow cells were used as criteria. In the case of combined radiation exposure three periods were observed with regard to blood changes. The first period was characterized by changes caused by external irradiation, the second one was a short-term period of normalization, and during the last period additive effects of external and internal irradiation were observed. Considering the changes of the frequency of aberrant mitoses only two periods could be detected according to the effects of external and internal irradiation. It is pointed out that in the case of combined irradiation the acute radiation syndrome caused by external irradiation gradually changes into a chronic stage associated with the long-term retention of radionuclides. (author)

  19. The biological effectiveness of antiproton irradiation

    International Nuclear Information System (INIS)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde; Beyer, Gerd; Blackmore, Ewart; DeMarco, John J.; Doser, Michael; Durand, Ralph E.; Hartley, Oliver; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Moller, Soren Pape; Petersen, Jorgen; Skarsgard, Lloyd D.; Smathers, James B.; Solberg, Timothy D.; Uggerhoj, Ulrik I.; Vranjes, Sanja; Withers, H. Rodney; Wong, Michelle; Wouters, Bradly G.

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 6 Co γ-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which compares the response in a minimally spread out Bragg peak (SOBP) to that in the plateau as a function of particle fluence. This value was ∼3.75 times larger for antiprotons than for protons. This increase arises due to the increased dose deposited in the Bragg peak by annihilation and because this dose has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest antiprotons warrant further investigation

  20. Effect of Ge nanocluster assembly self-organization at pulsed irradiation by low-energy ions during heteroepitaxy on Si

    CERN Document Server

    Dvurechenskij, A V; Smagina, Z V

    2001-01-01

    Using the method of scanning microscopy one studied experimentally size distribution of Ge clusters formed in course of experiments of two types at Ge heteroepitaxy on Si(111): regular process of molecular-beam epitaxy (MBE); pulse irradiation by approx = 200 eV energy Ge ions. The experiments were conducted at 350 deg C temperature. Pulse irradiation by an ion beam during heteroepitaxy was detected to result in reduction of the average size of Ge clusters, in compacting of their density and in reduction of mean square deviation from the average value in contrast to similar values in experiments devoted to regular MBE

  1. Progress on untargeted effects of ionizing irradiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Li Wenjian

    2010-01-01

    The side effect of ionizing irradiation has been paid more attention with its widely using in tumor treating and mutation breeding. In recent years, untargeted effects induced by ionizing irradiation have become a hotspot of radiobiology. Here, according to reported results, we reviewed the types (genomic instability, bystander effect and adaptive response) and mechanisms of untargeted effects of ionizing irradiation in this paper. (authors)

  2. Proceedings of VIII International Conference for Renewable Energy, Energy Saving and Energy Education (CIER 2015)

    International Nuclear Information System (INIS)

    2015-01-01

    Several workshops were carried out within the framework of the conference for example 4th International Wind Energy Workshop, 2nd International Workshop of Hydrogen as an alternative fuel, 1st International Workshop of Photovoltaic Solar Energy. It was an excellent occasion to share experiences and promote synergies oriented towards the challenge of achieving a sustainable energy culture.

  3. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E.

    1995-01-01

    The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab

  4. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  5. Effect of irradiation temperature on microstructural changes in self-ion irradiated austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun

    2017-09-01

    We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.

  6. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E.

    2001-01-01

    It has previously been shown that graphite can be transformed into diamond by MeV electron and ion irradiation at temperatures above approximately 600 deg. C. However, there exists geological evidence suggesting that carbonaceous materials can be transformed to diamond by irradiation at substantially lower temperatures. For example, submicron-size diamond aggregates have been found in uranium-rich, Precambrian carbonaceous deposits that never experienced high temperature or pressure. To test if diamonds can be formed at lower irradiation temperatures, sheets of fine-grain polycrystalline graphite were bombarded at 20 deg. C with 350±50 MeV Kr ions to fluences of 6x10 12 cm -2 using the Argonne tandem linear accelerator system (ATLAS). Ion-irradiated (and unirradiated control) graphite specimens were then subjected to acid dissolution treatments to remove untransformed graphite and isolate diamonds that were produced; these acid residues were subsequently characterized by high-resolution and analytical electron microscopy. The acid residue of the ion-irradiated graphite was found to contain nanodiamonds, demonstrating that ion irradiation of graphite at ambient temperature can produce diamond. The diamond yield under our irradiation conditions is low, ∼0.01 diamonds/ion. An important observation that emerges from comparing the present result with previous observations of diamond formation during irradiation is that nanodiamonds form under a surprisingly wide range of irradiation conditions. This propensity may be related to the very small difference in the graphite and diamond free-energies coupled with surface-energy considerations that may alter the relative stability of diamond and graphite at nanometer sizes

  7. Proton irradiation effects on gallium nitride-based devices

    Science.gov (United States)

    Karmarkar, Aditya P.

    Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.

  8. Food irradiation development in Japan

    International Nuclear Information System (INIS)

    Kawabata, T.

    1981-01-01

    In Japan, the first food irradiation research was carried out on the preservation of fish and fishery products. In 1966, the Atomic Energy Commission of the Japanese Government (JAEC) decided to promote the National Project on Food Irradiation and, in 1967, the Steering Committee on food irradiation research in the Atomic Energy Bureau, Science and Technology Agency, selected the following food items as of economic importance to the country, i.e., potatoes, onions, rice, wheat, ''Vienna'' sausage, ''kamaboko'' (fish meat jelly products) and mandarin oranges. The National Project is expected to finish at the end of the 1981 fiscal year. Based on the studies by the National Project, irradiated potatoes were given ''unconditional acceptance'' for human consumption in 1972. Already in 1973, a commercial potato irradiator was built at Shihoro, Hokkaido. In 1980, the Steering Committee submitted a final report on the effectiveness and wholesomeness studies on irradiated onions to the JAEC. This paper gives a brief explanation of the legal aspects of food irradiation in Japan, and the present status of wholesomeness studies on the seven items of irradiated foods. In addition, topics concerning food irradiation research on ''kamaboko'', especially on the effectiveness and a new detecting method for the irradiation treatment of these products, are outlined. (author)

  9. Effects of mediastinal irradiation on oesophageal function

    Energy Technology Data Exchange (ETDEWEB)

    Yeoh, E.; Holloway, R.H.; Russo, A.; Tippett, M.; Bermingham, H.; Chatterton, B.; Horowitz, M. [Royal Adelaide Hospital, SA (Australia)

    1996-02-01

    Although it is well recognised that oesophageal symptoms are common during therapeutic irradiation of intrathoracic malignant diseases, the effects of mediastinal irradiation on oesophageal function are poorly defined. To clarify the pathogenesis of these sequelae a prospective study was performed to document comprehensively the effects of mediastinal irradiation on oesophageal function. Oesophageal symptoms, barium swallow, endoscopy, and combined radionuclide scintigraphy and oesophageal manometry were evaluated in eight patients with potentially curable intrathoracic malignant disease before treatment, during the last week of mediastinal irradiation, and six to eight weeks after its completion. Before irradiation, structural abnormalities were excluded by barium swallow and endoscopy. All but one patient experienced odynophagia or dysphagia, or both, during mediastinal irradiation (p<0.001) but endoscopic abnormalities were observed in only three patients and there was no correlation between oesophageal symptoms and endoscopic changes. Irradiation, however, had no significant effect on oesophageal motility or transit. It is concluded that oesophageal symptoms which develop during mediastinal irradiation are not a result of altered oesophageal motility or transit and may reflect increased mucosal sensitivity. (author).

  10. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. E-mail: esposito@frascati.enea.it; Bertalot, L.; Maruccia, G.; Petrizzi, L.; Bignan, G.; Blandin, C.; Chauffriat, S.; Lebrun, A.; Recroix, H.; Trapp, J.P.; Kaschuck, Y

    2000-11-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties. The analysis has been carried out using the LSL-M2 code, which optimizes the neutron spectrum by means of a least-squares technique taking into account the variance and covariance files. In the second part of the activity, the possibility of extending to IFMIF the use of existing on-line in-core neutron/gamma monitors (to be located at several positions inside the IFMIF test cell for beam control, safety and diagnostic purposes) has been studied. A feasibility analysis of the modifications required to adapt sub-miniature fission chambers (recently developed by CEA-Cadarache) to the high flux test module of the test cell has been carried out. The verification of this application pertinence and a gross definition of the in-core detector characteristics are described. The option of using self-powered neutron detectors (SPNDs) is also discussed.

  11. Radiation stability of nanocrystalline ZrN coatings irradiated with high energy Xe and Bi ions

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Sokhatsky, A.S.; Uglov, V.V.; Zlotski, S.V.; Van Vuuren, A.J.; Neethling, Jan; O'Connell, J.

    2011-01-01

    Swift Xe and Bi ion irradiation effects in nanocrystalline ZrN coatings as a function of ion fluence are reported. Zirconium nitride films of different thickness (0.1, 3, 10 and 20 micrometers) synthesized by vacuum arc-vapour deposition in nanocrystalline state (average size of crystallites is ∼4 nm) were irradiated with 167 MeV Xe and 695 MeV Bi ions to fluences in the range 3x10 12 ÷2.6x10 15 cm -2 (Xe) and 10 12 x10 13 cm -2 (Bi) and studied using XRD and TEM techniques. No evidence of amorphization due to high level ionizing energy losses has been found. The measurements of lattice parameter have revealed nonmonotonic dependence of the stress level in irradiated samples on ion fluence. (authors)

  12. International responsibility of using nuclear energy for peaceful purposes

    International Nuclear Information System (INIS)

    Ouenat, N.

    2008-01-01

    Although the stability of the idea of international responsibility in public international law, the international jurisprudence has not settled on a definition. The concept of international responsibility is no longer limited to the legal effects or consequences under international law to violate its provisions. The states recognized that the customary principles governing the international responsibility in public international law does not take into account the specificities of nuclear dangers, this sought to conclude a number of international conventions include a special system of nuclear liability not based on the wrongful act, but on the principle of keeping things, and it requires the existence of an international regime for nuclear liability in order to establish measures and procedures to achieve the implementation of the provisions for compensation unhindered by national legal systems. There is no doubt that the use of nuclear energy in time of peace falls within the scope of internationally prohibited acts. Atomic activities undertaken by the State within its borders for peaceful purposes are considered legitimate activities as long as they have taken necessary measures to avoid damage to neighboring countries. States has tended to conclude international agreements under which disputes that may result from the use of nuclear energy can be solved. The existing international legal framework on Civil Liability for Nuclear Damage consists of three major interrelated agreements: Paris Convention on civil liability in the field of nuclear energy, Vienna Convention on Civil Liability for civil damages and the Brussels Convention on Civil Liability in the Field of Maritime Carriage of Nuclear Materials.

  13. International energy financing

    International Nuclear Information System (INIS)

    Vedavalli, Rangaswamy

    1994-01-01

    Some of the innovative financing options being considered by developing countries and economies in transition as ways of mobilizing international energy financing are discussed. Build-Own-Operate (BOO) and Transfer (BOOT) is the most commonly adopted approach. This involves limited resource financing of a project on the basis of the associated cash flow and risks and not on the credit of the project owners. The World Bank has set up the Multilateral Investment Guarantee Agency to provide, on a fee basis, guarantees against certain non-commercial forms of risk in order to promote international capital flow to developing countries. In 1989, the World Bank introduced the Expanded Co-financing Operations (ECO) programme as an instrument to catalyze the flow of private finance into developing countries and to improve their access to international financial markets. Other financial instruments currently being established include: leasing of equipment or whole plants by foreign investors; private ownership or operation of generation and distribution facilities; exchange of specific export goods for energy imports; developing instruments to finance local costs; revenue bonds; tax-exempt bonds; sale of electricity futures to those seeking more stable, longer term electricity price contracts. (UK)

  14. International energy: Research organizations, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, P.; Jordan, S. (eds.) (USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA))

    1991-03-01

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  15. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  16. Effect of electron irradiation in hatching eggs experimentally inoculated with salmonella enteriditis, on hatch ability and broiler performance

    International Nuclear Information System (INIS)

    Castaneda S, M.P.

    1995-01-01

    The effect of four doses of electrons irradaition on bacteriologic population in hatching egg following experimental shell contamination with Salmonella enteriditis phage type 13 was investigated. Fresh, whole, intact raw eggs were inoculated with 10 9 Colony-Forming Units of Salmonella enteriditis, eggs were irradiated with a beam electron source at either: 0.5, 1, 2 and 3 KGy. The bacteriologic evaluation was made with Gentry's and Williams' technic. After the irradiation the groups were taken to commercial hatchery and were incubated in satndards conditions. The bacteriologic evaluation of the shell showed a significant 2.8 log reduction on the group of eggs that were irradiated with 1 KGy as compared with 0.5 KGy doses group and control group (P<0.05). A negative correlation (r=-0.93) between irradiation doses and CFU (P<0.05) was also observed. Bacteriologic evaluation of the internal shell membrane exhibited a highly significant inactivation (P<0.01) of S. enteriditis of 100% in the group of eggs irradiated at 2 and 3 kGy. A high negative correlation (r=-0.90) between irradiation doses and samples of internal structures (P<0.05) was observed. The results obtained suggested that the electrons irradiation may be use like a control system of salmonelosis on egg and like desinfection system on hatching eggs because it did not cause any effect on hatchability and broiler performance. (Author)

  17. Time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Salar Elahi, A; Ghoranneviss, M

    2010-01-01

    An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].

  18. An international overview on the development of radurization

    International Nuclear Information System (INIS)

    Farkas, Jozsef

    1983-01-01

    A brief summary on the characteristics, applicability and limiting factors of food preservation by irradiation is given. Economic, energy and hygienic aspects of the process are outlined and the legal procedures for food irradiation process and plant licensing are treated including international aspects. Finally, the international cooperation programs and projects in the hygienic investigations, technical execution and education issues and the main trends of future development are outlined. (author)

  19. Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse

    International Nuclear Information System (INIS)

    Gus'kov, S. Yu.; Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Pisarczyk, P.

    2007-01-01

    The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 10 14 W/cm 2 . It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2-3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed

  20. Literature study of the radiobiological parameters of Caesium-137 required for evaluating internal irradiation doses as a function of age; Etude bibliographique des parametres radiobiologiques du cesium-137 necessaires a l'evaluation des doses d'irradiation interne en fonction de l'age

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, A [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    This document reassembles information published in scientific literature on radiobiological parameters of Cs-137, necessary for the estimate of the internal irradiation dose of man according to his age (during growth). The data are completed by a commented review of the mathematical models, proposed in order to value the irradiation doses from ingested cesium and the biological parameters. (author) [French] Ce document rassemble les informations publiees dans la litterature scientifique, concernant les parametres radiobiologiqueo du cesium-137, necessaires a l'evaluation des doses d'irradiation interne de l'homme en fonction de l'age. Ces donnees sont completees par une revue commentee des modeles mathematiques proposes en vue de l'evaluation des doses d'irradiation a partir des quantites de cesium ingerees et des parametres biologiques. (auteur)

  1. Energy supply, nuclear power, and the international energy situation

    International Nuclear Information System (INIS)

    Pierer, H. von

    1991-01-01

    The Chernobyl accident has greatly intensified the readiness for international cooperation on problems of reactor safety and for exchanges of operating experience. That accident was more than a regional event. If all psychological and political consequences are taken into account, its international significance is apparent. In principle, it demonstrated not the lack of safety of nuclear power plants generally, but rather that of the Soviet RBMK reactor line, which would not have been licensed in any Western country because of its inherent unsafety. In the long run, the worldwide acceptance of nuclear power can be regained and stabilized only by an open dialog and by international exchanges of experience. The pronounced growth of the world's population requires energy policy to think beyond national frontiers. The rising energy requirement permits of no other decision than to exploit all technically feasible and economically viable as well as ecologically tolerable sources of energy. This includes nuclear power as well as solar energy. (orig.) [de

  2. Assessment of necessary regularity of internal irradiation monitoring on the basis of direct and indirect methods of dosimetry

    International Nuclear Information System (INIS)

    Malykhin, V.M.; Ivanova, N.I.

    1981-01-01

    It is shown that when assessing the necessary periodicity of internal irradiation monitoring, it is required to take account of the nature (rhythm) of radionuclide intake to the organism during the monitoring period, the effective period of radionuclide biological half-life, its activity in the organism, sensitivity of the technique applied and the labour-consumig character of the monitoring method [ru

  3. Effect of electron beam irradiation on pollen mother cells of gladiolus 'chaoji'

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Wen Fangping Zhang Xiaoxue

    2008-01-01

    In order to test the effects of various doses of electron beam on M1 generation pollen mother cells (PMC), the corm of gladiolus 'chaoji' was irradiated by electron beam with 3 MeV energy. Some abnormalities of meiosis of pollen mother cells were studied and the bands of protein subunit were analyzed by SDS-PAGE for the irradiated corm. The genetic damage at meiosis of gladiolus is observed, and the types of chromosomal aberrations are laggard chromosomes, chromosomal bridge, chromosome outside nucleus, unequal separation of chromosome, micronuclei and so on. Some trispores and paraspores are viewed at tetraspore period. The shape and size of the microspores vary in some treated materials, and most of microspores display little volume. The statistic of aberrance types and frequencies in PMCs show that aberrance types are chromosome outside nucleus and micronuclei mostly. The SDS-PAGE result shows that protein expression of M1 generation pollen is obviously changed by electron beam irradiation. Low dose of electron beam has obvious effects, and some special proteins subunit bands are found among varieties of irradiation dosage respectively. The protein bands are absent at the dose more than 160 Gy compared to low dose of electron beam. The results indicate that electron beam irradiation is an effective way for gladiolus breeding. (authors)

  4. International nuclear energy law - present and future

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1988-01-01

    International nuclear energy law, as discussed in this article, is the law relating to the global, peaceful uses of nuclear science and technology. The position of nuclear law in the wide realm of law itself as well as the present status of nuclear legislation is assessed. This article also covers the development of international nuclear energy law, from the first nuclear law - the New Zealand Atomic Energy Act of 1945-, the present and the future. National and international organizations concerned with nuclear energy and their contribribution to nuclear law are reviewed

  5. Effective suppression of bystander effects by DMSO treatment of irradiated CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Prise, K.M.; Suzuki, Keiji

    2007-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population via a bystander effect. Here, we examined whether dimethyl sulfoxide (DMSO) is effective in suppressing radiation induced bystander effects in Chinese hamster ovary (CHO) and repair deficient xrs5 cells. When 1 Gy-irradiated CHO cells were treated with 0.5% DMSO for 1 hr before irradiation, the induction of micronuclei in irradiated cells was suppressed to 80% of that in non-treated irradiated cells. The suppressive effect of DMSO on the formation of bystander signals was examined and the results demonstrated that 0.5% DMSO treatment of irradiated cells completely suppressed the induction of micronuclei by the bystander effect in non-irradiated cells. It is suggested that irradiated cells ceased signal formation for bystander effects by the action of DMSO. To determine the involvement of reactive oxygen species on the formation of bystander signals, we examined oxidative stress levels using the 2',7'-dichlorofluorescein (DCFH) staining method in irradiated populations. The results showed that the treatment of irradiated cells with 0.5% DMSO did not suppress oxidative stress levels. These results suggest that the prevention of oxidative stress is independent of the suppressive effect of DMSO on the formation of the bystander signal in irradiated cells. It is suggested that increased reactive oxygen species (ROS) in irradiated cells is not a substantial trigger of a bystander signal. (author)

  6. International entrepreneurship within offshore renewable energy

    International Nuclear Information System (INIS)

    Loevdal, Nicolai S.

    2011-01-01

    The climate is changing, the worlds known fossil energy reserves are limited, and most economies are struggling to get out of a financial crisis. The UNs Intergovernmental Panel on Climate Change calls for new technologies, rapid commercialization, and rapid international diffusion as important tools to mitigate the climate change (IPCC 2007). Nations all over the world have allocated large funds to facilitate the development of renewable energy technologies and markets to secure the future supply of energy and to sustain economic growth (REN21 2009). Use of fossil fuel is the main source of humans contribution to global warming. At the same time, fossil fuel is probably the most important resource for economic development on a global scale (IEA 2009). With this as a backdrop, the objective of this PhD thesis is to investigate how technology-based companies act to commercialize and internationally diffuse technologies that may produce abundant clean, renewable energy. More specifically, I have assessed the emerging offshore renewable energy industries (offshore wind, wave, and tidal energy) as case industries to make the International Entrepreneurship literature more relevant for the current situation. The findings reveal extensive international activities at both the company level and industry level, even in phases in which the firms have yet to commercialize and industries have yet to enter the growth phase. These findings demand significant updates to theoretical models and convey several recommendations to mangers, investors, and policy makers. Managers should be aware of and master the new opportunities/threats identified. For investors, the findings provide implications for their valuation of new ventures. For policy makers, the findings open up a new landscape of political threats and opportunities as the battle to attract promising industries has begun earlier than previously prescribed. Four research questions have resulted in four papers that constitute

  7. International entrepreneurship within offshore renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Loevdal, Nicolai S.

    2011-07-01

    The climate is changing, the worlds known fossil energy reserves are limited, and most economies are struggling to get out of a financial crisis. The UNs Intergovernmental Panel on Climate Change calls for new technologies, rapid commercialization, and rapid international diffusion as important tools to mitigate the climate change (IPCC 2007). Nations all over the world have allocated large funds to facilitate the development of renewable energy technologies and markets to secure the future supply of energy and to sustain economic growth (REN21 2009). Use of fossil fuel is the main source of humans contribution to global warming. At the same time, fossil fuel is probably the most important resource for economic development on a global scale (IEA 2009). With this as a backdrop, the objective of this PhD thesis is to investigate how technology-based companies act to commercialize and internationally diffuse technologies that may produce abundant clean, renewable energy. More specifically, I have assessed the emerging offshore renewable energy industries (offshore wind, wave, and tidal energy) as case industries to make the International Entrepreneurship literature more relevant for the current situation. The findings reveal extensive international activities at both the company level and industry level, even in phases in which the firms have yet to commercialize and industries have yet to enter the growth phase. These findings demand significant updates to theoretical models and convey several recommendations to mangers, investors, and policy makers. Managers should be aware of and master the new opportunities/threats identified. For investors, the findings provide implications for their valuation of new ventures. For policy makers, the findings open up a new landscape of political threats and opportunities as the battle to attract promising industries has begun earlier than previously prescribed. Four research questions have resulted in four papers that constitute

  8. Irradiation effects on transport properties of polyaniline and polyaniline/bentonite composite

    Energy Technology Data Exchange (ETDEWEB)

    Tilki, T., E-mail: tahirtilki@sdu.edu.tr [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Chemistry, 32260 Isparta (Turkey); Karabulut, O. [Pamukkale University, Faculty of Arts and Sciences, Department of Physics, Denizli (Turkey); Yavuz, M. [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Chemistry, 32260 Isparta (Turkey); Kaplan, A. [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Physics, Isparta (Turkey); Cabuk, M. [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Chemistry, 32260 Isparta (Turkey); Mus Alparslan University, Faculty of Arts and Sciences, Department of Chemistry, Mus (Turkey); Takanoglu, D. [Pamukkale University, Faculty of Arts and Sciences, Department of Physics, Denizli (Turkey)

    2012-08-15

    In this study, the effects of irradiation on pure polyaniline and polyaniline/bentonite composites synthesized chemically were investigated by means of thermogravimetric measurements, UV, SEM, XRD, absorption and temperature dependent electrical conductivity in the temperature range of 85-400 K. The irradiation process was carried out in air in a conventional gamma chamber, which uses a {sup 60}Co source and the samples were exposed to dose 40 kGy. The initial decomposition and first degradation temperatures of PAni/Bnt and Irradiated PAni/Bnt composites obtained from thermogravimetric measurements were higher than those of PAni and irradiated PAni. This could have been caused by the treatment with bentonite during aniline polymerization. The XRD patterns revealed that the peak positions of the as-prepared and irradiated samples were the same but the intensities of the peaks decreased with irradiation due to breaking of the polymer chain, which induces more amorphous regions in the polymer structure. It was found from temperature dependent conductivity measurements that the radiation significantly influenced the conductivity of PAni and PAni/Bnt composites. The conductivity results show that the dominant conduction mechanisms were hopping for all samples due to wide range of localized states present near the Fermi level. -- Highlights: Black-Right-Pointing-Pointer The effects of irradiation on PAni and PAni/Bnt composites were investigated. Black-Right-Pointing-Pointer We observed that irradiation increases the homogeneity of the samples. Black-Right-Pointing-Pointer The band edge is shifted toward lower photon energies in the irradiated samples. Black-Right-Pointing-Pointer The conductivity of PAni and PAni/Bnt composites were changed by the irradiation. Black-Right-Pointing-Pointer The dominant conduction mechanism was found to be Mott's variable range hopping.

  9. Influence of irradiation conditions on the gamma irradiation effect in polyethylene

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Gal, O.; Novakovic, L.J.; Secerov, B.

    2002-01-01

    Complete text of publication follows. The radiation cross-linking of polyethylene, due to its high cross-linking yield, has resulted in the radiation technology that has found application in radiation production of heat shrinkable structures and in improvement of mechanical and thermo-physical properties of oriented polyethylene objects. It is observed that the cross-linking efficiency decreases when the irradiation is carried out in the presence of oxygen. In order to estimate the conditions that improve cross-linking efficiency, gamma irradiation effect in two types of polyethylene, irradiated in water and air was investigated. The polyethylene samples used were the low density (LDPE) Lotrene CdF 0302 with 45% crystallinity and the high density (HDPE) Hiplex EHM 6003 with 73% crystallinity. Both kinds of samples, fixed in the Pyrex glass tubes, were simultaneously irradiated with 60 Co gamma rays in distilled water and air, at a doses rate of 9,5 kGy/h (determined by the Fricke dosimeter) at room temperature. Radiation induced oxidative degradation was followed through oxygen containing group formation by the carbonyl group band (1720 cm -1 ) and transvinylene group formation by the band at 966 cm -1 in the infrared spectra. Cross-linking efficiency was determined by gel content using the procedure of the extraction in xylene. The monitored effects of gamma irradiation in water and air point to the conclusion that irradiation in water leads to the lower oxidative degradation and higher cross-linking compared with the effects measured after irradiation in air

  10. Effects of irradiation for cervical cancer on subsequent breast cancer

    International Nuclear Information System (INIS)

    Harlan, L.C.M.

    1985-01-01

    Previous research suggests that cervical cancer patients have a lower risk of breast cancer than women in the general population. Possible explanations include opposing risk factors for cervical cancer and breast cancer, the effect of irradiation used to treat cervical cancer, or both. The purpose of this study was to explore the relationship between irradiation for cervical cancer and the subsequent development of breast cancer. There was no statistically significant relationship between radiation to the ovarian area and the risk of breast cancer in this study. However, the results were consistent with a 19% reduction in risk for women irradiated for cervical cancer when compared to nonirradiated women. In a dose-response analysis, there was a nonsignificant trend of decreased risk of breast cancer with increased radiation up to 1800 rad. There was no consistent pattern for higher doses. The trend, although nonsignificant, differed by age. Women <60 years of age at irradiation were generally at a lower risk of breast cancer than nonirradiated women. Women over 59 years were at an increased risk. There are some potentially important findings from this study which might influence medical care. These should be examined in the larger International Radiation Study

  11. Proceedings of the International Symposium on Renewable Energy: Environment Protection and Energy Solution

    International Nuclear Information System (INIS)

    2006-12-01

    The International Symposium and Exhibition on Renewable Energy 2003 organized by the Malaysian Institute of Energy (INTEM), the Malaysia Energy centre (PTM), Islamic Scientific, Education, and Cultural Organization (ISESCO), World Renewable Energy Network (WREN), Ministry of Energy, Communication and Multimedia, and the Ministry of Education, Malaysia has the following objectives (a) highlighting the role of renewable in meeting the energy demand particularly of developing countries (b) encouraging the effective transfer and efficient application of economic renewable energy technologies (c) assisting in the promotion of the environmental benefits of renewable energy (d) promoting business opportunities for renewable energy projects and their successful implementation (e) enhancing improved information, knowledge and education on renewable energy (f) providing a technical exhibition where manufacturers, suppliers and others can display their products and services and finally (h) providing a focal points for international networking. The topics covered are Solar Materials, Solar Thermal Applications, Photovoltaic technology, Biomass Conversion, Hydrogen and Fuel Cells, Wind Energy, Hydro Energy, Climate and the Environment, Low Energy Architecture, related Topics (Energy Management; Economics, Policy and Financing; Sustainable Energy Business Practices, Carbon tax and trading, Gender and Poverty Reduction). A total of 97 papers have been received from countries such as Malaysia, United States of America, United Kingdom, Azerbaijan, Bangladesh, Armenia, Romania, Denmark, Bahrain, Iraq, Italy, Saudi Arabia, Egypt, Libya, Australia, Brunei, Belgium, New Zealand, Indonesia, Singapore, Thailand, India, Iran, Russia, and Turkey

  12. Irradiation-induced amorphization process in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-04-01

    Effects of the element process of irradiation damage on irradiation-induced amorphization processes of graphite was studied. High orientation thermal decomposed graphite was cut about 100 nm width and used as samples. The irradiation experiments are carried out under the conditions of electronic energy of 100-400 KeV, ion energy of 200-600 KeV, ionic species Xe, Ar, Ne, C and He and the irradiation temperature at from room temperature to 900 K. The critical dose ({phi}a) increases exponentially with increasing irradiation temperature. The displacement threshold energy of graphite on c-axis direction was 27 eV and {phi}a{sup e} = 0.5 dpa. dpa is the average number of displacement to atom. The critical dose of ion irradiation ({phi}a{sup i}) was 0.2 dpa at room temperature, and amorphous graphite was produced by less than half of dose of electronic irradiation. Amorphization of graphite depending upon temperature is discussed. (S.Y.)

  13. Fast neutron irradiation effects on CR-39 nuclear track detector for dosimetric applications

    International Nuclear Information System (INIS)

    Kader, M.H.

    2005-01-01

    The effect of neutron irradiation on the dosimetric properties of CR-39 solid-state nuclear track detector have been investigated. CR-39 samples were irradiated with neutrons of energies follow a Maxwellian distribution centered about 2 MeV. These samples were irradiated with different doses in the range 0.1-1 Sv. The background and track density were measured as a function of etching time. In addition, the dependence of sensitivity of CR-39 detector on the neutrons dose has been investigated. The results show that the Sensitivity started to increase at 0.4 Sv neutrons dose, so this sample were chosen to be a subject for further study to investigate the effect of gamma dose on its properties. The sample irradiated with 0.4 Sv were exposed to different doses of gamma rays at levels between 10 and 80 kGy. The effect of gamma doses on the bulk etching rate VB, the track diameter and the sensitivity of the CR-39 samples was investigated. The results show that the dosimetric properties of CR-39 SSNTD are greatly affected by both neutron and gamma irradiation

  14. The application of an internal state variable model to the viscoplastic behavior of irradiated ASTM 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    McAnulty, Michael J., E-mail: mcanulmj@id.doe.gov [Department of Energy, 1955 Fremont Avenue, Idaho Falls, ID 83402 (United States); Potirniche, Gabriel P. [Mechanical Engineering Department, University of Idaho, Moscow, ID 83844 (United States); Tokuhiro, Akira [Mechanical Engineering Department, University of Idaho, Idaho Falls, ID 83402 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer An internal state variable approach is used to predict the plastic behavior of irradiated metals. Black-Right-Pointing-Pointer The model predicts uniaxial tensile test data for irradiated 304L stainless steel. Black-Right-Pointing-Pointer The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. Black-Right-Pointing-Pointer Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.

  15. International energy outlook 1998

    International Nuclear Information System (INIS)

    1998-04-01

    The International Energy Outlook 1998 (IEO98) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. Projections in IEO98 are displaced according to six basic country groupings. The industrialized region includes projections for four individual countries -- the United States, Canada, Mexico, and Japan -- along with the subgroups Western Europe and Australasia (defined as Australia, New Zealand, and the US Territories). The developing countries are represented by four separate regional subgroups: developing Asia, Africa, Middle East, and Central and South America. China and India are represented in developing Asia. New to this year's report, country-level projections are provided for Brazil -- which is represented in Central and South America. Eastern Europe and the former Soviet Union (EE/FSU) are considered as a separate country grouping. The report begins with a review of world trends in energy demand. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in five fuel chapters, with a review of the current status of each fuel on a worldwide basis. Summary tables of the IEO98 projections for world energy consumption, carbon emissions, oil production, and nuclear power generating capacity are provided in Appendix A. 88 figs., 77 tabs

  16. Prospects of establishing food irradiation facilities in Kenya

    International Nuclear Information System (INIS)

    Mustapha, A.O.; Patel, J.P.; Rathore, I.V.S.; Hashim, N.O.; Kinyua, A.M.

    2001-01-01

    Full text: A national project of food irradiation in the country is being proposed. At present there are no facilities for food irradiation (and food irradiation research) in Kenya. This report is therefore largely comparative between the traditional and the conventional food preservation methods on the one hand and the irradiation technique on the other. The report is also based on information from other countries where food irradiation is practiced (Kawabata, 1981) or is being also contemplated (Diop et al, 1997), as well as on the relevant report of the International Atomic Energy Agency (IAEA) on this topic (IAEA, 1993). The paper presents the statement of the research problem, i.e., in Kenya large quantities of food and other farm produces go to waste annually as a result of the inadequacies of the preservation techniques currently in use. These (other) preservation techniques, although often less controversial than the irradiation techniques, have also been found to be more expensive to run when compared to irradiation techniques. Such techniques, presently employed in Kenya, include the traditional methods (e.g. sun drying, smoke and fire drying, etc.) and modern techniques such as freezing or refrigeration, lyophilization, etc., as well as application of chemicals like insecticides and fumigants. The latter combines the disadvantages of high costs with environmental pollution and associated health risks. In this preliminary research, aimed at studying the prospects of a national food irradiation project, the following food items that are selected for their importance to the economy of the country, include potatoes, rice, maize, coffee, tea, various fruits, fish and meat. The paper also explores the economic feasibility as well as the human and technological requirements of establishing a commercial food irradiation plant, with aim of assessing the applicability of food irradiation as alternative or a complimentary approach for preservation technique in

  17. Effects of electron beam irradiation on tribological and physico-chemical properties of Polyoxymethylene copolymer (POM-C)

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Shahinur; Shaislamov, Ulugbek; Yang, Jong-Keun [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Kim, Jong-Kuk [Plasma Processing Laboratory, Division of Surface Technology, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Kyungnam 641-010 (Korea, Republic of); Yu, Young Hun [Department of Physics, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Choi, Sooseok [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Lee, Heon-Ju, E-mail: hjlee@jejunu.ac.kr [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of)

    2016-11-15

    Highlights: • Electron beam dose irradiation effect on tribology of POM-C was investigated. • Raman and FTIR-ATR spectra confirm the chemical structural modification. • 1 MeV, 100 kGy dose irradiation induced well suited carbonization and hydrophobicity. • Well suited carbonization and hydrophobicity reduced friction coefficient. - Abstract: Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 kGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using pin on disk tribometer, Raman spectroscopy, FTIR-ATR, gel content analysis, SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), surface profiler and contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in decrease of the friction coefficient of POM-C block due to well suited carbonization, cross-linking, free radicals formation and partial physical modification. It also showed the lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation dose at 200 kGy resulted in increase of friction coefficient due to less effective cross-linking, but the irradiation doses at 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The degree of improvement for tribological attribute relies on the electron beam surface dose delivered (energy and dose rate).

  18. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H2S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S.; Nuevo, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M.; Wu, C.-Y. R.; Fung, H.-S.; Ip, W.-H.

    2015-01-01

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H 2 S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H 2 S and CO 2 :H 2 S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS 2 , OCS, SO 2 , etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H 2 S ice mixtures is higher than that of CO 2 :H 2 S ice mixtures; (2) a lower concentration of H 2 S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS 2 differ significantly upon VUV and EUV irradiations. Furthermore, CS 2 was produced only after VUV photoprocessing of CO:H 2 S ices, while the VUV-induced production of SO 2 occurred only in CO 2 :H 2 S ice mixtures. More generally, the production yields of OCS, H 2 S 2 , and CS 2 were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H 2 S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments

  19. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Appajosula S., E-mail: Appajosula.Rao@nrc.gov

    2014-04-01

    Austenitic stainless steels (SSs) are extensively being used in the fabrication of light water reactor (LWR) core internal components. It is because these steels have relatively high ductility, fracture toughness and moderate strength. However, the LWR internal components exposure to neutron irradiation over an extended period of plant operation degrades the materials mechanical properties such as the fracture toughness. This paper summarizes some of the results of the existing open literature data on irradiation assisted stress corrosion cracking (IASCC) of 316 CW steels that have been published by the United States Nuclear Regulatory Commission (USNRC), industry, academia, and other research agencies.

  20. Properties of IGZO thin films irradiated by electron beams with various energies

    International Nuclear Information System (INIS)

    Jeong, So Hyun; Bae, Byung Seong; Yu, Kyeong Min; Yun, Eui Jung; Ryu, Min Ki; Cho, Kyoung Ik

    2012-01-01

    In this study, we investigated the effects of the key parameters of high-energy electron-beam irradiation (HEEBI) on the optical, electrical, and structural properties of indium-gallium-zinc oxide (IGZO) films grown on glass substrates at room temperature by using radio-frequency magnetron sputtering techniques. Hall, photoluminescence, X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectroscopy measurements revealed that p-type conductivity might appear in films HEEBI-treated at high energy and dose, which was attributed to not only the formation of oxygen interstitial and zinc vacancy acceptor defects but also the reduction of hydrogen-related donor defects in the IGZO films due to HEEBI treatment. X-ray diffraction analyses showed an increase in the halo peak intensity at around 34 .deg. with increasing electron-beam energy, indicating that all films prepared in this study were more crystallized at a higher energy despite their amorphous main structure.

  1. Effects of gamma irradiation on the molecular structure and mechanical properties of biodegradable polymer poly(hydroxybutyrate)

    International Nuclear Information System (INIS)

    Oliveira, Leticia M. de; Araujo, Elmo S.

    2005-01-01

    The effects of gamma irradiation ( 60 Co) on the properties of the Brazilian biodegradable polymer, Poly(hydroxybutyrate), PHB, i.e. chemical, mechanical and structural properties were investigated. PHB is a natural polyester biosynthesized by different bacteria as a form to store carbon and energy. This new biopolymer shows a great potential in the medical and pharmaceutical applications due to the biocompatibility and biodegradation capacity, since it is reabsorbed by organism without liberation of toxic substances. As it.s well known, gamma irradiation have been considered the more functional sterilization mechanism applied to medical devices. This way, it is necessary to know the effects caused by energy transfer to the polymer system. The viscosity-average molar mass (Mv) of the irradiated PHB, measured using an Ostwald-type capillary viscometer, significantly decreased. The irradiated samples (test specimens) showed a molecular degradation degree, G (scissions/100 eV) value, in the sterilization dose range (0-25 kGy) about 11.4, and 20.9 to doses above 35 kGy. Other results also indicate that the gamma irradiation significantly affected the mechanical properties of PHB. Tensile strength, impact strength and elongation at break decreased dramatically, indicating increasing on the brittleness, because significant chain scissions take place in the amorphous region of irradiated PHB. On the other hand, Young modulus does not significantly change on irradiated polymer. 13 C NMR spectra of irradiated PHB at dose of 200 kGy did not show arising of new structural groups. (author)

  2. Effect of X-ray irradiation on the physical and chemical quality of ...

    African Journals Online (AJOL)

    The use of irradiation as a phytosanitary treatment has expanded in recent years. It plays important roles in developed and developing countries, facilitating international trade in irradiated fresh fruit. To evaluate the potential of X-ray irradiation as a quarantine treatment for America red globe grapes, we investigated the ...

  3. Energy Prices and Internal Costs in Croatian Energy System Restructuring

    International Nuclear Information System (INIS)

    Potocnik, V. , Magdic, M.

    1995-01-01

    After social and political changes in 1990, energy prices in Croatia have been getting closer to the West European averages, faster than in the most European countries in transition. The energy prices for industry are almost at the West European level, while the energy prices of electricity and natural gas for households and those of the gasoline are well behind. If the population purchasing power parity (PPP) is taken into account, these relations change. While the internalization of external energy costs is under way in the developed world, it has not practically started yet in Croatia. The Croatian energy system restructuring shall require gradual adjustment of energy prices, together with multistage internalization of external energy costs. (author). 6 refs., 3 tabs., 2 figs

  4. Irradiation environment and materials behavior

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1992-01-01

    Irradiation environment is unique for materials used in a nuclear energy system. Material itself as well as irradiation and environmental conditions determine the material behaviour. In this review, general directions of research and development of materials in an irradiation environment together with the role of materials science are discussed first, and then recent materials problems are described for energy systems which are already existing (LWR), under development (FBR) and to be realized in the future (CTR). Topics selected are (1) irradiation embrittlement of pressure vessel steels for LWRs, (2) high fluence performance of cladding and wrapper materials for fuel subassemblies of FBRs and (3) high fluence irradiation effects in the first wall and blanket structural materials of a fusion reactor. Several common topics in those materials issues are selected and discussed. Suggestions are made on some elements of radiation effects which might be purposely utilized in the process of preparing innovative materials. (J.P.N.) 69 refs

  5. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  6. Effect of Ion Beam Irradiation on Silicon Carbide with Different Microstructures

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2006-01-01

    SiC and SiC/SiC composites are one of promising candidates for structural materials of the next generation energy systems such as the gas-cooled reactors and fusion reactors. This anticipation yields many material issues, and radiation effects of silicon carbide are recognized as an important research subject. Silicon carbide has diverse crystal structures (called polytypes), such as α-SiC (hexagonal structure), β-SiC (cubic structure) and amorphous SiC. Among these polytypes, β-SiC has been studied as matrix material in SiC/SiC composites. Near-stoichiometric β-SiC with high crystallinity and purity is considered as suitable material in the next generation energy system and matrix material in SiC/SiC composites because of its excellent radiation resistance. Highly pure and crystalline β-SiC and SiC/SiC composites could be obtained by the chemical vapor deposition (CVD) and Infiltration (CVI) process using a gas mixture of methyltrichlorosilane (CH 3 SiCl 3 , MTS) and purified H 2 . SiC produced by the CVD method has different grain size and microstructural morphology depended on the process conditions such as temperature, pressure and the input gas ratio. In this work, irradiation effects of silicon carbide were investigated using ion beam irradiation with emphasis on the influence of grain size and grain boundary. MeV ion irradiation at low temperature makes amorphous phase in silicon carbide. The microstructures and mechanical property changes of silicon carbide with different structures were analyzed after ion beam irradiation

  7. The International Energy Agency collaboration in wind energy

    International Nuclear Information System (INIS)

    Beurskens, H.J.M.; Pershagen, B.

    1991-07-01

    The International Energy Agency (IEA) wind energy agreements have provided a useful framework for international cooperative efforts during more than thirteen years. Nine comprehensive research Tasks have been successfully completed and three Tasks are currently in progress. The sharing of research and information has clearly contributed to the development of wind technology, has eliminated unnecessary redundancy in national programmes, has encouraged utilization of the most efficient approaches to solve common problems, and has created a cooperative spirit among the professional groups that seems to be unique. After a brief introduction on the activities of the IEA on wind energy an overview is given of the ongoing tasks and other current activities with regard to the subject. 1 fig., 5 tabs., 9 refs

  8. Changes in the DRIFT Spectra of Softwood Materials Irradiated by UV-laser as a Function of Energy

    Directory of Open Access Journals (Sweden)

    BARTA, Edit

    2005-01-01

    Full Text Available We investigated energy dependence of the effect of UV-laser irradiation on the DRIFT spectra of softwood samples. Changes in the spectra of softwoods have been studied with 248.5 nm wavelength of UV-laser radiation. To monitor the energy dependence, different number of laser impulses were directed towards the sample’s surface. The dependence on energy of different bands can be listed into four groups. Broad absorption bands, which belong to the same chemical groups located at various positions, do not show consistent changes due to the absorption of different energy dozes. The intensity of OH bands for the treated samples can be higher or lower depending on the amount of radiation energy. In the CHn and in the band of non-conjugated carbonyl groups only absorption increase can be observed. Bands resulting from only one chemical component, and containing no other absorption maxima around them, uniformly decreased. The regions where the band of a chemical component lies next to another one, showed no consistent changes during the irradiation. The initial decrease was followed by increase.

  9. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    International Nuclear Information System (INIS)

    Calvo, Wilson Aparecido Parejo

    2005-01-01

    The Radiation Technology Center from Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil, developed with a revolutionary design and national technology, a small size continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotate door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m 2 of floor area, the irradiator design is product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 P Bq (1 MCi). The performed quantification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process quantification. The initial load of the multipurpose irradiator was 3.4 P Bq (92.1 k Ci) with 13 cobalt-60 sources model C-188, supplied by MDS Nordion Ion Technologies - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The poly-methylmethacrylate (PMMA) dosimeters system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning to dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma

  10. Ultrastructural analysis of root canal dentine irradiated with 980-nm diode laser energy at different parameters.

    Science.gov (United States)

    Marchesan, Melissa Andréia; Brugnera-Junior, Aldo; Souza-Gabriel, Aline Evangelista; Correa-Silva, Silvio Rocha; Sousa-Neto, Manoel D

    2008-06-01

    The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.

  11. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  12. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Science.gov (United States)

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  13. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2014-01-01

    Full Text Available Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC, thermal behavior (DSC, wettability (contact angle, cell viability (MTT assay, and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial.

  14. Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Zeng, J.; Yao, H.J.; Zhang, S.X.; Zhai, P.F.; Duan, J.L.; Sun, Y.M.; Li, G.P.; Liu, J.

    2014-01-01

    Monolayer graphene and highly oriented pyrolytic graphite (HOPG) were irradiated by swift heavy ions ( 209 Bi and 112 Sn) with the fluence between 10 11 and 10 14 ions/cm 2 . Both pristine and irradiated samples were investigated by Raman spectroscopy. It was found that D and D′ peaks appear after irradiation, which indicated the ion irradiation introduced damage both in the graphene and graphite lattice. Due to the special single atomic layer structure of graphene, the irradiation fluence threshold Φ th of the D band of graphene is significantly lower ( 11 ions/cm 2 ) than that (2.5 × 10 12 ions/cm 2 ) of HOPG. The larger defect density in graphene than in HOPG indicates that the monolayer graphene is much easier to be damaged than bulk graphite by swift heavy ions. Moreover, different defect types in graphene and HOPG were detected by the different values of I D /I D′ . For the irradiation with the same electronic energy loss, the velocity effect was found in HOPG. However, in this experiment, the velocity effect was not observed in graphene samples irradiated by swift heavy ions

  15. Dosimetry of a gamma beam - 650 60Co irradiator. 3. Mapping of the isodose curves in the internal cavity

    International Nuclear Information System (INIS)

    Escobedo, J.F.; Nascimento Filho, V.F. do; Ferraz, E.S.B.

    1981-01-01

    The Gammabeam-650 60 Co irradiator, containing 29,080 curies (April 1 sup(st), 1974), made by Atomic Energy of Canada Limited and in operation at CENA - Piracicaba, Sao Paulo, Brazil, basically has a block of lead for storage and shielding of the radioactive capsules and 12 vertical pneumatic tubes to maintain them in exposure position. These tubes form a cylindrical internal cavity with varying diameter between 10 and 84 cm. The isodose curves were determined for the geometries of 3, 6 and 12 actives tubes and 42 and 84 cm of diameter using the Fricke's chemical dosimeter. (Author) [pt

  16. Effect of deep levels of radiation-induced defects in silicon γ-irradiated Al-V-n-Si structures characteristics

    International Nuclear Information System (INIS)

    Buzaneva, E.V.; Vdovichenko, A.D.; Kuznetsov, G.V.; Muntyan, Yu.G.

    1985-01-01

    The effect of high energy γ-quanta irradiation on the mechanism of current transmission in Al-V-N-Si structures employed in Schottky barrier instruments has been investigated. Before irradiation the structures have been annealed in the nitrogen atmosphere at T=500 deg C. The samples have been γ-irradiated on the side of the metall film at T=20 deg C. The irradiation spectrum is continuous, maximum γ-quanta energy 50 MeV, medium one is 20 MeV. The integral flux of γ-quanta, PHIsub(γ) varied from 10 7 to 10 13 quantum/cm -2 . The volt-ampere and volt-farad characteristics have been measred. It is shown that variation of the main electrophysical characteristics of the Al-V-nSi structures upon γ-irradiation is due to deep levels of radiation defects arising in silicon with the energetic position Esub(c)-E=0.38-0.4 eV and Esub(v)+Esub(2)=0.23-0.25 → β, where Esub(c), Esub(v) are energies for the conduction band bottom and the valence band ceiling. In the 77-293 K temperature range the determining range the determining effect on current mission mechanism in irradiated structures is exerted by resonance electron tunnelling with participation of a level with the Esub(c)-Esub(1)=0.38-0.4 eV

  17. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  18. The Effects of Cells Temperature Increment and Variations of Irradiation for Monocrystalline Photovoltaic

    Science.gov (United States)

    Fuad Rahman Soeharto, Faishal; Hermawan

    2017-04-01

    Photovoltaic cell technology has been developed to meet the target of 17% Renewable Energy in 2025 accordance with Indonesia Government Regulation No. 5 2006. Photovoltaic cells are made of semiconductor materials, namely silicon or germanium (p-n junction). These cells need the light that comes from solar irradiation which brings energy photons to convert light energy into electrical energy. It is different from the solar heater that requires heat energy or thermal of sunlight that is normally used for drying or heating water. Photovoltaic cells requires energy photons to perform the energy conversion process, the photon energy can be derived from sunlight. Energy photon is taken from the sun light along with the advent of heat due to black-body radiation, which can lead to temperature increments of photovoltaic cells. Increment of 1°C can decreased photovoltaic cell voltage of up to 2.3 mV per cell. In this research, it will be discuss the analysis of the effect of rising temperatures and variations of irradiation on the type monocrystalline photovoltaic. Those variation are analyzed, simulated and experiment by using a module of experiment. The test results show that increment temperature from 25° C to 80° C at cell of photovoltaic decrease the output voltage of the photovoltaic cell at 4.21 V, and it also affect the power output of the cell which decreases up to 0.7523 Watt. In addition, the bigger the value of irradiation received by cell at amount of 1000 W / m2, produce more output power cells at the same temperature.

  19. Electronic energy loss of the latent track in heavy ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Liu Jie; Zhang Chonghong; Wang Zhiguang; Jin Yunfan; Duan Jinglai; Song Yin

    2005-01-01

    In the interaction process of a swift heavy ion (SHI) and polymer, a latent track with radius of several nanometers appears near the ion trajectory due to the dense ionization and excitation. To describe the role of electronic energy loss (dE/dX) e , multi-layer stacks (with different dE/dX) of polyimide (PI) films were irradiated by different SHIs (1.158 GeV Fe 56 and 1.755 GeV Xe 136 ) under vacuum at room temperature. Chemical changes of modified PI films were studied by Fourier Transform Infrared (FTIR) spectroscopy. The main feature of SHI irradiation is the degradation of the functional group and creation of alkyne. The chain disruption rate of PI was investigated in the fluence range from 1 x 10 11 to 6 x 10 12 ions/cm 2 and a wider energy stopping power range (2.2 to 5.2 keV/nm for Fe 56 ions and 8.6 to 11.3 keV/nm for Xe 136 ions). Alkyne formation was observed over the electronic energy loss range of interest. Assuming the saturated track model (the damage process only occur in a cylinder of area σ), the mean degradation and alkyne formation radii in tracks were deduced for Fe and Xe ion irradiation, respectively. The results were validated by the thermal spike model and the threshold electronic energy loss of track formation S et in PI was deduced. The analysis of the irradiated PI films shows that the predictions of the thermal spike model are in qualitative agreement with the curve shape of experimental results. (authors)

  20. Food irradiation

    International Nuclear Information System (INIS)

    Paganini, M.C.

    1991-06-01

    Food treatment by means of ionizing energy, or irradiation, is an innovative method for its preservation. In order to treat important volumes of food, it is necessary to have industrial irradiation installations. The effect of radiations on food is analyzed in the present special work and a calculus scheme for an Irradiation Plant is proposed, discussing different aspects related to its project and design: ionizing radiation sources, adequate civil work, security and auxiliary systems to the installations, dosimetric methods and financing evaluation methods of the project. Finally, the conceptual design and calculus of an irradiation industrial plant of tubercles is made, based on the actual needs of a specific agricultural zone of our country. (Author) [es

  1. Effects of irradiation on the vascularity of lung

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K; Takegawa, Y; Nagase, M; Akiyama, H [Tokushima Univ. (Japan). School of Medicine

    1975-06-01

    Effects of irradiation on the intravascular volume of the lung were studied with respect to changes in intravascular volume over a period of time after irradiation, the effect of fractionation of the dose and the influence of the irradiation dose rate. After a single irradiation with 1000 rad or 3000 rad, applied locally to the lung, the intravascular volume decreased significantly in 1 to 3 months after irradiation. The changes in the intravascular volumes of lungs could be lessened by fractionation of the dose or by low dose rate irradiation.

  2. Irradiation effect on animal feeds and feedstuffs

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    1983-10-01

    Aiming to secure the safety of animal feeds and develop the new resources, the effect of γ-irradiation on disinfection and the changes in components were investigated. Salmonellae and coliforms contaminating in animal feeds and feedstuffs were eliminated by 0.5 -- 0.6 Mrad and 0.5 -- 0.8 Mrad, and osmophilic moulds were sterilized by 0.7 -- 0.75 Mrad. From these results, it is concluded that the dose for disinfection of animal feeds is 0.8 Mrad. The main components were hardly changed by irradiation up to 5 Mrad, and the component changes in irradiated samples could be suppressed during storage while the components in unirradiated samples were markedly changed with the growth of osmophilic moulds. Histamine and lysinoalanine, which may cause the feed poisoning, were never accumulated in feedstuffs by irradiation. The nutritional value of chick feeds was not changed by 1.0 Mrad irradiation. From these results, it is considered that no problem for wholesomeness of animal feeds occurs by irradiation. Therefore, the irradiation is effective for disinfection and keeping the nutritional value of animal feeds during storage. Irradiation promotes the recovery of proteins in the wastewater by coagulation of proteins and improves the property of coagulants due to the degradation of polysaccharides. These results indicate that irradiation is effective to develop the new resources for animal feeds. (author)

  3. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  4. Food irradiation and combination processes

    International Nuclear Information System (INIS)

    Campbell-Platt, G.; Grandison, A.S.

    1990-01-01

    International approval of food irradiation is being given for the use of low and medium doses. Uses are being permitted for different categories of foods with maximum levels being set between 1 and 10 kGy. To maximize the effectiveness of these mild irradiation treatments while minimizing any organoleptic quality changes, combination processes of other technologies with irradiation will be useful. Combinations most likely to be exploited in optimal food processing include the use of heat, low temperature, and modified-atmosphere packaging. Because irradiation does not have a residual effect, the food packaging itself becomes an important component of a successful process. These combination processes provide promising alternatives to the use of chemical preservatives or harsher processing techniques. (author)

  5. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    Science.gov (United States)

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  6. Effect of electron irradiation on defect distribution in solar cells for space applications

    International Nuclear Information System (INIS)

    Charles, J.P.; Bruguier, G.; Mialhe, P.; Ruas, R.

    1989-01-01

    The distribution of the recombination centers in the spacecharge region was highly dissymetrical before irradiation. After irradiation by a high density electron beam of 10 15 cm -2 with an energy of 1 MeV, the recombination process predominates in the whole bias range. The irradiation yields both an increase in density of the recombination centers and a more homogeneous distribution of traps in the space charge region with an improvement in the behaviour of cells (via the fill factor). This effect is counterbalanced by poor operation in the base and the emitter with a decrease in the efficiency of the device by 20% [fr

  7. Effect of electron irradiation on gas sensing properties of Al-Zno

    Directory of Open Access Journals (Sweden)

    Sunil C. Vattappalam

    2015-12-01

    Full Text Available Al–ZnO thin films are prepared by Silar method and are annealed at 450°C for 1 h. A selected number of samples are irradiated by high-energy electron beam and all are characterized by XRD, SEM and energy-dispersive X-ray spectroscopy. Both irradiated and non-irradiated samples are then placed independently inside a gas chamber kept at rotary vacuum. The gas chamber is maintained at a pressure of 0.20 mb and at a temperature of 350°C. Ethanol vapour is admitted in a controlled manner into the chamber and the resistance of the film is measured continuously before, during and after the admittance of the ethanol vapour. The experiment is repeated for different dosages of irradiation and different doping concentrations of Al and the resistance of the film getting reduced fast and considerably at the admittance of ethanol has been observed. The response and recovery time of the irradiated samples is compared with that of non-irradiated samples of the same doping concentration. It has been noted that both irradiated and non-irradiated samples show a response time of 1 s and recovery time of the irradiated samples is shorter than that of non-irradiated samples.

  8. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors

    International Nuclear Information System (INIS)

    Pokor, C.

    2003-01-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  9. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    International Nuclear Information System (INIS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-01-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF 2 , SrF 2 , and BaF 2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF 2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ∼2 × 10 3 pA/cm 2 ). In BaF 2 samples, the transformation of BaO into Ba(OH) 2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH) 2 into BaO. In the initial stage of irradiation of all MF 2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF 2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF 2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ∼20 nm in the sample.

  10. International energy outlook 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The International Energy Outlook 1998 (IEO98) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. Projections in IEO98 are displaced according to six basic country groupings. The industrialized region includes projections for four individual countries -- the United States, Canada, Mexico, and Japan -- along with the subgroups Western Europe and Australasia (defined as Australia, New Zealand, and the US Territories). The developing countries are represented by four separate regional subgroups: developing Asia, Africa, Middle East, and Central and South America. China and India are represented in developing Asia. New to this year`s report, country-level projections are provided for Brazil -- which is represented in Central and South America. Eastern Europe and the former Soviet Union (EE/FSU) are considered as a separate country grouping. The report begins with a review of world trends in energy demand. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in five fuel chapters, with a review of the current status of each fuel on a worldwide basis. Summary tables of the IEO98 projections for world energy consumption, carbon emissions, oil production, and nuclear power generating capacity are provided in Appendix A. 88 figs., 77 tabs.

  11. Calibration of dosimeters at 80-120 keV electron irradiation

    DEFF Research Database (Denmark)

    Miller, A.; Helt-Hansen, J.

    to calibrate thin-film dosimeters (Risø B3 and alanine films) by irradiation at the 80–120 keV electron accelerators. This calibration was compared to a 10MeV calibration, and we show that the radiation response of the dosimeter materials (the radiation chemical yield) is constant at these irradiation energies....... However, dose gradients within the dosimeters, when it is irradiated at low electron energies,mean that calibration function here will depend on both irradiation energy and the required effective point of measurement of the dosimeter. These are general effects that apply to any dosimeter that has a non...

  12. Use of electron accelerators in food irradiation

    International Nuclear Information System (INIS)

    Sanyal, Bhaskar

    2013-01-01

    Preservation of food by ionizing radiations involves controlled application of energy of radiation to agricultural commodities, foods and food ingredients, for improving storage life, hygiene and safety. Insects and microbes cause major economic losses to stored crops. Many of our food products are contaminated with diseases causing germs and toxin producing molds. Without improvement in microbial quality and getting properly treated to overcome quarantine barriers our agricultural products cannot get international markets. In this respect electron accelerators have immense potential in commercial radiation processing of foods. Both low and high dose applications with increased process rates can be achieved using accelerators to cover a wide spectrum of food commodities approved for commercial radiation processing as per the recent gazette notification under Atomic Energy (Radiation Processing of Food and Allied Products) Rule, 2012. The effectiveness of processing of food by ionizing radiation depends on proper delivery of absorbed dose and its reliable measurement. For food destined for international trade, it is important that the dosimetry used for dose determination is carried out accurately and that the process is monitored in accordance with the internationally accepted procedures. Experiments using alanine-EPR system were carried out to optimize the process parameters of 10 MeV electron beam for commercial irradiation of food. Different food commodities namely, mango, potato and rawa (semolina) were irradiated to measure the absorbed dose distribution. The actual depth dose profile in food products and useful scan width of the electron beam were determined for commercial radiation processing of food using electron beam. (author)

  13. The Research of Food Preservation by Irradiation and Its Industrialization in Korea

    International Nuclear Information System (INIS)

    Cho, Han Ok

    1987-01-01

    Since the late 1960s, radiation effects on the storage of potatoes, strawberry, grapes and rice have been investigated on an experimental basis in Korea, Based on the research results of batch scale storage for sprouting food (potatoes, onions, chestnuts) and white ginseng powder by the Korea Advanced Energy Research Institute (KAERI) and on the recommendation. Food irradiation is a new process that may provide an alternative to existing food processes. From the extensive research in food irradiation for more than three decades by leading international organizations and advanced countries, the efficacy of a number of applications has been established, including sprout inhibition, disinfestation of insects, sterilization, delay of ripening, and improvement of organoleptic properties in food. Owing to the recommendation on the Wholesomeness of Irradiated Food by the Joint FAO/IAEA/W/o Expert Committee in 1980 and the adaption of the Codex General Standard for Irradiated Food by the Codex Allurements Commission in 1983, as of May 1985, thirty-two countries have officially approved 227 food items in 73 food groups as safe for human consumption. Food irradiation processing is increasingly recognized as a viable technology for reducing the overall quantity of spoiled food, reducing energy used in food storage, and reducing reliance on chemicals currently used

  14. Medical irradiation and the use of the ''effective dose equivalent'' concept

    International Nuclear Information System (INIS)

    Persson, B.R.R.

    1980-01-01

    The aim of this paper is to demonstrate the use of the effective dose for all kinds of medical irradiation. In order to estimate the 'somatic effective dose' the weighting factors recommended by ICRP 26 have been separated into those for somatic effects and for genetic effects. Calculation of the effective dose in diagnostic radiology procedures must consider the various technical parameters which determine the absorbed dose in the various organs, i.e. beam quality, typical entrance dose and the number of films of each view. Knowledge about these parameters is not always well established and therefore the effective dose estimates are very uncertain. The average dose absorbed by various organs in the case of administration of radionuclides to the body depends to a much higher degree on biological parameters than in the case of external irradiation. In contrast to the variability and lack of reliability of biological data, the physical methods for internal dose calculation are quite elaborate. However, these methods have to be extended to involve the target dose from the radioactivity distributed within the remaining parts of the body. An attempt was made to estimate the somatic effective dose for the most common diagnostic X-ray and nuclear medicine procedures. This would make it possible to compare the risk of X-ray and nuclear medicine techniques on a more equitable basis. The collective effective dose from medical irradiation is estimated for various countries on the basis of reported statistical data. (H.K.)

  15. Dielectric parameters of blood plasma in rats at external and internal irradiation with sublethal doses

    International Nuclear Information System (INIS)

    Khadzhidekova, E.; Kiradzhiev, G.

    1991-01-01

    Sexually mature male rats have received external gamma irradiation with 50, 200 or 380 cGy, treated with 89 Sr (333 or 1665 kBq per rat, femur dose 70, resp. 290 cGy), or 144 Ce (370 kBq per rat, liver dose 70 cGy). Dielectric parameters (permittivity and conductivity) have been measured in the frequency range 1.4 - 17 Mhz on different terms (1 to 30th day after the treatment). For all groups and terms the coefficients and equations describing the relationship between the dielectric permittivity ε and the frequency ν of the changing electric field have been calculated. On the basis of dielectric parameters the relaxation time of the plasma protein molecules is determined. It has been shown that the changes in dielectric permittivity are expressed at different frequencies specific for a given dose; the same is established for the conditions of internal irradiation. The frequency dependence of the permittivity is described as an exponential curve analogous to that of the control but with a changed exponent. In applying higher doses or activities the relationship turns from exponential to parabolic. The relaxation time, expressing the changes in conformal state of macromolecules, varies but is in all cases longer than one of the controls for the whole period of study at external irradiation with 50 and 380 cGy. It is lower at irradiation with 200 cGy, as well as at internal irradiation. 3 tabs., 13 refs

  16. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, A.

    2006-01-01

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137 C s) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  17. Food irradiation: an emerging opportunity for African countries

    International Nuclear Information System (INIS)

    Adu-Gyamfi, A.

    2004-01-01

    Full Text. The paper reviews the use of food irradiation technology and its potential in food processing and international trade for economic development of African countries. Provision of infrastructure along with technical expertise, private sector anticipation, effective collaborative ventures and networking with other countries and international agencies are considered crucial for Africa to harness the potential of food irradiation. (author)

  18. Energy metabolism after U.V.-irradiation in a sensitive yeast strain

    International Nuclear Information System (INIS)

    Kiefer, J.

    1976-01-01

    Stationary-phase cells of an excision-repair deficient diploid yeast (strain 2094) were UV-irradiated at exposures of up to 440 erg mm -2 and then resuspended in fresh medium. Measurements of energy metabolism per cell at periods of up to 6 hours after irradiation showed that cellular respiration was increased for all doses tested from about 3 hours after exposure, whereas fermentation did not start before about 2 hours after irradiation, never significantly exceeded control values and was markedly inhibited by the higher doses. The results suggest that respiration is under nuclear control, since a mutation in one gene is thought to be the only difference between this strain and the wild-type. The D 0 value of about 360 erg mm -2 found for the relative cellular fermentation at 2 hours after irradiation was used to give an estimate of the size of the structural gene involved, of about 3000 nucleotides, or a protein with 1000 amino-acid residues, compatible with the molecular weight of alcohol dehydrogenase. Fermentation can therefore be inhibited in this sensitive strain by lesions in the structural gene of a key enzyme. Since respiration was increased even more in repair-deficient than in repair-proficient strains, it must be assumed that higher energy metabolism is not linked to the repair process, but rather reflects a general disturbance in cellular regulation. (U.K.)

  19. Investigation of international energy economics. [Use of econometric model EXPLOR

    Energy Technology Data Exchange (ETDEWEB)

    Deonigi, D.E.; Clement, M.; Foley, T.J.; Rao, S.A.

    1977-03-01

    The Division of International Affairs of the Energy Research and Development Administration is assessing the long-range economic effects of energy research and development programs in the U.S. and other countries, particularly members of the International Energy Agency (IEA). In support of this effort, a program was designed to coordinate the capabilities of five research groups--Rand, Virginia Polytechnic Institute, Brookhaven National Laboratory, Lawrence Livermore Laboratory, and Pacific Northwest Laboratory. The program could evaluate the international economics of proposed or anticipated sources of energy. This program is designed to be general, flexible, and capable of evaluating a diverse collection of potential energy (nuclear and nonnuclear) related problems. For example, the newly developed methodology could evaluate the international and domestic economic impact of nuclear-related energy sources, but also existing nonnuclear and potential energy sources such as solar, geothermal, wind, etc. Major items to be included would be the cost of exploration, cost of production, prices, profit, market penetration, investment requirements and investment goods, economic growth, change in balance of payments, etc. In addition, the changes in cost of producing all goods and services would be identified for each new energy source. PNL developed (1) a means of estimating the demands for major forms of energy by country, and (2) a means of identifying results or impacts on each country. The results for each country were then to be compared to assess relative advantages. PNL relied on its existing general econometric model, EXPLOR, to forecast the demand for energy by country. (MCW)

  20. Proceedings; 4th Tsuruga international energy forum. Energy policy and international cooperation of Japan

    International Nuclear Information System (INIS)

    2004-01-01

    The forum was opened at Tsuruga City in Japan from 26 to 27 in April, 2004. It initially discussed Japan's energy policy with the central focus based on the fundamental law of energy, presenting energy policies of each country and the position and future prospects of nuclear energy from these policies. Considering that the forum took place in Tsuruga City (where the FBR 'Monju' is located), expectations on 'Monju' and demands for its international utilization was discussed by researches from abroad, universities in Japan, and the possibility of its realization with views on firm implementation measures was exchanged. Keynote speech was 'Energy policy in the 21st century', special presentation 'importance of science and technology development and cultivation of improvement'. The forum consisted of three sessions: the session I 'energy policy and the role of each country in the 21st century', session II 'international utilization of Monju for FR development' and III 'regional technology development by utilizing nuclear related technology and facilities in Fukui pref.'. There were three panel discussions. 24 members composed speaker and panelists from USA, Turkey, France, UK, China, Switzerland, Korea, Russia and Japan. (S.Y.)

  1. Energetic Ion and Electron Irradiation of the Icy Galilean Satellites

    Science.gov (United States)

    Cooper, John F.; Johnson, Robert E.; Mauk, Barry H.; Garrett, Henry B.; Gehrels, Neil

    2001-01-01

    Galileo Orbiter measurements of energetic ions (20 keV to 100 MeV) and electrons (20-700 keV) in Jupiter's magnetosphere are used, in conjunction with the JPL electron model (less than 40 MeV), to compute irradiation effects in the surface layers of Europa, Ganymede, and Callisto. Significant elemental modifications are produced on unshielded surfaces to approximately centimeter depths in times of less than or equal to 10(exp 6) years, whereas micrometer depths on Europa are fully processed in approximately 10 years. Most observations of surface composition are limited to optical depths of approximately 1 mm, which are indirect contact with the space environment. Incident flux modeling includes Stormer deflection by the Ganymede dipole magnetic field, likely variable over that satellite's irradiation history. Delivered energy flux of approximately 8 x 10(exp 10) keV/square cm-s at Europa is comparable to total internal heat flux in the same units from tidal and radiogenic sources, while exceeding that for solar UV energies (greater than 6 eV) relevant to ice chemistry. Particle energy fluxes to Ganymede's equator and Callisto are similar at approximately 2-3 x 10(exp 8) keV/square cm-s with 5 x 10(exp 9) at Ganymede's polar cap, the latter being comparable to radiogenic energy input. Rates of change in optical reflectance and molecular composition on Europa, and on Ganymede's polar cap, are strongly driven by energy from irradiation, even in relatively young regions. Irradiation of nonice materials can produce SO2 and CO2, detected on Callisto and Europa, and simple to complex hydrocarbons. Iogenic neutral atoms and meteoroids deliver negligible energy approximately 10(exp 4-5) keV/square cm-s but impacts of the latter are important for burial or removal of irradiation products. Downward transport of radiation produced oxidants and hydrocarbons could deliver significant chemical energy into the satellite interiors for astrobiological evolution in putative sub

  2. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  3. Irradiation effects on organic insulators

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1986-01-01

    The overall objective of this work is to contribute to development of organic insulators having the cryogenic neutron irradiation resistance required for MFE systems utilizing superconducting magnet confinement. The system for producing standard 3.2-mm (0.125-in) diameter rod specimens discussed in previous reports has been further refined to permit the fabrication of both fiber-reinforced and heat-resin specimens from hot-melt resin systems. The method has been successfully used to produce very high quality specimens duplicating the G-11CR system and specimens from a variant of that system eliminating a boron-containing additive. We have also produced specimens from an epoxy system suitable for impregnation or potting operations and from a bismaleimide polyimide system. These materials will be used in the first irradiation program in the National Low Temperature Neutron Irradiation Facility (NLTNIF) reactor at Oak Ridge. We have refined the 4-K torsional shear test method for evaluating radiation degradation of the fiber-matrix interface and have developed a method of quantitatively measuring changes in fracture energy as a function of radiation dose. Cooperative work with laboratories in Japan and England in this area is continuing and plans are being formulated for joint production, irradiation, and testing of specimens

  4. International co-operation in the field of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, J. [VTT Energy, Espoo (Finland)

    1998-10-01

    The use of wind energy is expanding rapidly worldwide. At the end of 1996 over 6000 MW was installed and the annual increase has during the last years exceeded 1000 MW. The development is also reaching more and more countries. In order to maintain technical and commercial development international co-operation is needed to secure cost-effectiveness, reliability and safety of the technology. International recommendations, harmonisation and standardisation is promoted by several international organizations like IEA, IEC and the classification organisations

  5. Effect of pre-irradiation on thermal inactivation of B. pumilus E 601 dry spores irradiated with EB and. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yuhei; Ito, Hitoshi; Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1989-11-01

    The survival fraction of B. pumilus spores irradiated with {gamma} -rays and electron beams in vacuum were increased when the spores were heated or allowed to stand in vacuum for a long time at room temperature. The survival curves of the spores thus treated after irradiation might give apparent radiation sensitivities which were lower than true ones obtained just after irradiation. On the contrary, the radiation sensitivities of the spores irradiated in dry air and then heated or allowed to stand in dry air became high. To elucidate the characteristics of th spores, the effect of heating on the radiation sensitivity of the B. pumilus spores has been studied. By heating the pre-irradiated spores in vacuum, its survival fraction was increased, in other words, the spores inactivated with radiation were recovered. However, the thermal sensitivity of the recovered spores was found to be high compared with that of the original spores. On the other hand, when B. pumilus spores were irradiated in dry air and then heated in dry air, the survival curves of the spores were found to be composed of two exponential curves, suggesting that two kinds of thermal inactivation mechanism existed. From Arrhenius plots of unirradiated B. pumilus spores, the activation energies of the thermal inactivation in the range of 90degC to 120degC in vacuum and in air were found to be about 38 kcal/mol and 29 kcal/mol, respectively. The activation energy of the spores at a temperature of higher than 120degC, however increased to give the same value (about 38 kcal/mol) as found in vacuum. This fact suggests the main mechanism of the thermal inactivation of the spores varies near 120degC. Arrhenius plots of irradiated spores in vacuum was similar to that of unirradiated ones. Thermal inactivation rates of the irradiated spores in the presence of air will also be discussed as compared with those of unirradiated ones. (author).

  6. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  7. Hall effect measurements on proton-irradiated ROSE samples

    International Nuclear Information System (INIS)

    Biggeri, U.; Bruzzi, M.; Borchi, E.

    1997-01-01

    Bulk samples obtained from two wafers of a silicon monocrystal material produced by Float-Zone refinement have been analyzed using the four-point probe method. One of the wafers comes from an oxygenated ingot; two sets of pure and oxygenated samples have been irradiated with 24 GeV/c protons in the fluence range from 10 13 p/cm 2 to 2x10 14 p/cm 2 . Van der Pauw resistivity and Hall coefficient have been measured before and after irradiation as a function of the temperature. A thermal treatment (30 minutes at 100C) has been performed to accelerate the reverse annealing effect in the irradiated silicon. The irradiated samples show the same exponential dependence of the resistivity and of the Hall coefficient on the temperature from 370K to 100K, corresponding to the presence of radiation-induced deep energy levels around 0.6-0.7eV in the silicon gap. The free carrier concentrations (n, p) have been evaluated in the investigated fluence range. The inversion of the conductivity type from n to p occurred respectively at 7x10 13 p/cm 2 and at 4x10 13 p/cm 2 before and after the annealing treatment, for both the two sets. Only slight differences have been detected between the pure and oxygenated samples

  8. Irradiation with x-rays of the energy 18 MV induces radioactivity in transfusion blood: Proposal of a safe method using 6 MV.

    Science.gov (United States)

    Frentzel, Katharina; Badakhshi, Harun

    2016-12-01

    To prevent a fatal transfusion-associated graft-versus-host disease, it is recommended to irradiate transfusion blood and blood components with ionizing radiation. Using x-rays from a linear accelerator of the radiotherapy department is an accepted alternative to gamma irradiation devices of the blood bank and to the orthovoltage units that are replacing the gamma irradiators today. However, the use of high energy x-rays may carry a potential risk of induced radioactivity. The objective of this study was to investigate the effect of two different energy levels, 6 and 18 MV, which are executed in routine clinical settings. The research question was if induced radioactivity occurs at one of these standard energy levels. The authors aimed to give a proposal for a blood irradiation procedure that certainly avoids induced radioactivity. For this study, the authors developed a blood bag phantom, irradiated it with x-ray energies of 6 and 18 MV, and measured the induced radioactivity in a well counter. Thereafter, the same irradiation and measuring procedure was performed with a unit of packed red blood cells. A feasible clinical procedure was developed using 6 MV and an acrylic box. With the irradiation planning system XiO, the authors generated an irradiation protocol for the linear accelerator Siemens ONCOR Anvant-Garde. Both measurement setups showed that there was induced radioactivity for 18 MV but not for 6 MV. The induced radioactivity for 18 MV was up to 190 times the background. This is significant and of clinical relevance especially since there are newborn and fetal blood recipients for whom every radiation exposure has to be strictly avoided. The irradiation of blood with x-rays from a linear accelerator of the radiotherapy department is safe and feasible, but by the current state of scientific knowledge, the authors recommend to use an x-ray energy of 6 MV or less to avoid induced radioactivity in transfusion blood.

  9. Tuning of the optical properties of In-rich InxGa1−xN (x=0.82−0.49) alloys by light-ion irradiation at low energy

    International Nuclear Information System (INIS)

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario; Pettinari, Giorgio; Ciatto, Gianluca; Fonda, Emiliano; Amidani, Lucia; Boscherini, Federico; Filippone, Francesco; Bonapasta, Aldo Amore; Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver; Giubertoni, Damiano; Bersani, Massimo

    2013-01-01

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In x Ga 1−x N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects

  10. Philippines' experience in marketing irradiated foods

    International Nuclear Information System (INIS)

    Lustre, A. O.; Ang, L.; Dianco, A.

    1985-01-01

    The Food Terminal Inc. in Manila, in cooperation with the Philippine Atomic Energy Agency and with funding support from the International Atomic Energy Agency in Vienna has been conducting storage and marketing studies on onions, garlic and mangoes. The objective is to gather loss reduction data and consumer reaction information that can serve as a basis for evaluating the risks and benefits involved in the establishment of a commercial food irradiator in the country. These studies show that irradiation reduces low-temperature storage losses in onions and garlic by 10-40% and post-storage marketing losses at ambient conditions by 16-50% in onions. Post-storage marketing trials not only indicate a significant reduction in losses during shipping and retail sale but a large increase in the marketability of irradiated commodities as measured by the rate of sale of the commodity and the price which it commands during the selling period. No adverse consumer reaction occurred during the sale of irradiated foods labelled as such except for a few comments indicating fear, ignorance and/or curiosity. The importance of irradiation as a substitute quarantine treatment for mangoes and for eliminating Salmonella in frozen foods for export is discussed in relation to the growing importance of these commodities to the Philippines' non-traditional export markets. Other applications of irradiation that could result in a perceptible improvement in the marketability of food commodities in the Philippines are discussed. Marketing studies are invaluable in evaluating the potential benefits of a new technology as food irradiation. In view of this, there is great interest in the completion of a pilot plant for food irradiation by the Philippine Atomic Energy Commission. The design and capacity of this plant are discussed

  11. Structural-morphological variations in pseudo-barrier films of anode aluminium oxide under irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    Comparative study of structural-morphological variations under electron beam effect in pseudo-barrier films of anode aluminium oxide, obtained in seven different solutions and proton or X-rays pre-irradiated to determine structure peculiarities of anode aluminium oxides, is presented. Such study is a matter of interest from the solid-phase transformation theory point of view and for anode aluminium films application under radiation. Stability increase of pseudo-barrier films of anode aluminium oxide to the effect of UEhMV-100 K microscope electron beam at standard modes of operation (75 kV) due to proton or X-rays irradiation is found. Difference in structural-monorphological variations obtained in different solutions of anode aluminium films under high-energy particles irradiation is determined. Strucural-phase microinhomogeneity of amorphous pseudo-barrier films of anode aluminium oxide and its influence on solid-phase transformations character under electron bean of maximal intensity are detected

  12. Primary Damage Characteristics in Metals Under Irradiation in the Cores of Thermal and Fast Reactors

    International Nuclear Information System (INIS)

    Pechenkin, V.A.

    2012-01-01

    For an analysis and forecasting of radiation-induced phenomena in structural materials of WWERs, PWRs and BN reactors the fast neutron fluence is usually used (for structural materials of the reactor cores and internals the fluence of neutrons with energy > 0.1 MeV, for WWER and PWRs vessel steels the fluence of neutrons with energy > 0.5 MeV in Russia and East Europe, and with energy > 1.0 MeV in USA and France). Displacements per atom (dpa) seem to be a more appropriate correlation parameter, because it allows comparing the results of materials irradiation in different neutron energy spectra or with different types of particles (neutrons, ions, fast electrons). Energy spectra of primary knocked atoms (PKA) and 'effective' dpa, which are introduced to take into account the point defect recombination during the relaxation stage of a displacement cascade, can be still better representation of the effect of irradiation on material properties. In this work the results of calculating dose rates (dpa/s, NRT-model), PKA energy spectra and PKA mean energies in metals under irradiation in the cores of Russian reactors WWER-440, WWER-1000 (both power thermal reactors) and BN-600 (power fast reactor) and BR-10 (test fast reactor) are presented. In all the reactors Fe and Zr are considered, with addition of Ti and W in BN-600. 'Effective' dose rates in these metals are calculated. Limitations and uncertainties in the standard dpa formulation (the NRT-dpa) are discussed. IPPE activities in the fields related to the TM subject are considered

  13. Effect of irradiation on the critical currents of alloy and compound superconductors

    International Nuclear Information System (INIS)

    Sekula, S.T.

    1977-06-01

    The effects of energetic-particle irradiation on the critical-current density J/sub c/(H) of several superconducting compounds and Nb-Ti alloys have been examined by a number of workers. The irradiations used in the investigations include electrons, fast neutrons, ions, and fission fragments. The results of these studies are reviewed and summarized. In the alloys, changes in J/sub c/(H) on irradiation depend on the metallurgical history of the material and indicate that radiation defects modify the strength of the interaction between the fluxoid array and the sample microstructure. Radiation defects in alloys can also affect J/sub c/(H) through small decreases in T/sub c/, the transition temperature and rho, the normal-state resistivity. Irradiations of A15 compounds up to moderate fluences (dependent on the type and energy of irradiating particle) lead to decreases in T/sub c/ of approximately 1 0 K and increases in J/sub c/(H) with dose for most of the samples investigated. This result can be qualitatively understood as resulting from radiation-induced changes in rho and the pinning force acting on the fluxoids. At higher dose levels, significant depressions of T/sub c/ and possibly gamma, the electronic specific heat coefficient, lead to drastic reductions in J/sub c/(H). The effect of various energetic particles and irradiation temperature on changes in J/sub c/(H) are discussed

  14. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase task description

    Energy Technology Data Exchange (ETDEWEB)

    Ida, M.; Nakamura, H.; Sugimoto, M.; Yutani, T.; Takeuchi, H. [eds.] [Japan Atomic Energy Research Inst., Tokai Research Establishment, Fusion Neutron Laboratory, Tokai, Ibaraki (Japan)

    2000-08-01

    In 2000, a 3 year Key Element technology Phase (KEP) of the International Fusion Materials Irradiation Facility (IFMIF) has been initiated to reduce the key technology risk factors needed to achieve continuous wave (CW) beam with the desired current and energy and to reach the corresponding power handling capabilities in the liquid lithium target system. In the KEP, the IFMIF team (EU, Japan, Russian Federation, US) will perform required tasks. The contents of the tasks are described in the task description sheet. As the KEP tasks, the IFMIF team have proposed 27 tasks for Test Facilities, 12 tasks for Target, 26 tasks for Accelerator and 18 tasks for Design Integration. The task description by RF is not yet available. The task items and task descriptions may be added or revised with the progress of KEP activities. These task description sheets have been compiled in this report. After 3 years KEP, the results of the KEP tasks will be reviewed. Following the KEP, 3 years Engineering Validation Phase (EVP) will continue for IFMIF construction. (author)

  15. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  16. Effect of irradiation on foodstuffs Pt. 4

    International Nuclear Information System (INIS)

    Kluender, U.; Boegl, W.

    1980-01-01

    In the present study of the relevant literature the results of irradiation experiments with 32 foodstuffs have been compiled and discussed. This study is intented to give a survey on chemical changes in irradiated food, and neither microbiological nor toxicological and physiological aspects were taken into account. The results published by the authors of the original papers have been compiled in form of a dictionary which contains all important data such as radiation source, irradiation conditions, treatment and characteristics of the sample, investigation methods, results of the chemical and organoleptical changes etc. In addition, the effects of irradiation both on individual food substances and individual groups of foodstuffs have been summarized. Furthermore, the effects of irradiation on sensory characteristics and the atmospheric influence during irradiation are given seperately. The last chapter contains a comparison between the chemical changes of food due to irradiation treatment and those caused by conventional methods. The final discussion of the results will be published seperately. (orig./MG) [de

  17. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-01-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He + ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C + ion impurities in He + ion irradiations. For introducing such tiny C + ion impurities, gas mixtures of He and CH 4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He + ion (for Mo fuzz growth due to only He + ions) and 100% H + ion (for confirming the significance of tiny 0.04–2.0% H + ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10 24  ions m −2 ), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He + ion irradiation case. Enhancement of C + ion impurities in He + ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity concentrations. Additionally, no fuzz formation for 100% H + ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H + ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H + ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He + ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C + ion impurities in He + ions. • Almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity in He + ions. • No Mo fuzz formation for 100% H + ion

  18. Effect of front and rear incident proton irradiation on silicon solar cells

    Science.gov (United States)

    Anspaugh, Bruce; Kachare, Ram

    1987-01-01

    Four solar cell types of current manufacture were irradiated through the front and rear surfaces with protons in the energy range between 1 and 10 MeV. The solar cell parameters varied for this study were cell thickness and back surface field (BSF) vs. no BSF. Some cells were irradiated at normal incidence and an equal number were irradiated with simulated isotropic fluences. The solar cell electrical characteristics were measured under simulated AM0 illumination after each fluence. Using the normal incidence data, proton damage coefficients were computed for all four types of cells for both normal and omnidirectional radiation fields. These were found to compare well with the omnidirectional damage coefficients derived directly from the rear-incidence radiation data. Similarly, the rear-incidence omnidirectional radiation data were used to compute appropriate damage coefficients. A method for calculating the effect of a spectrum of energies is derived from these calculations. It is suitable for calculating the degradation of cells in space when they have minimal rear-surface shielding.

  19. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  20. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  1. Irradiation creep models - an overview

    International Nuclear Information System (INIS)

    Matthews, J.R.; Finnis, M.W.

    1988-01-01

    The modelling of irradiation creep is now highly developed but many of the basic processes underlying the models are poorly understood. A brief introduction is given to the theory of cascade interactions, point defect clustering and dislocation climb. The range of simple irradiation creep models is reviewed including: preferred nucleation of interstitial loops; preferred absorption of point defects by dislocations favourably orientated to an applied stress; various climb-enhanced glide and recovery mechanisms, and creep driven by internal stresses produced by irradiation growth. A range of special topics is discussed including: cascade effects; creep transients; structural and induced anisotropy; and the effect of impurities. The interplay between swelling and growth with thermal and irradiation creep is emphasized. A discussion is given on how irradiation creep theory should best be developed to assist the interpretation of irradiation creep observations and the requirements of reactor designers. (orig.)

  2. Environmental protection and international law: the case of nuclear energy

    International Nuclear Information System (INIS)

    Dagicour, F.

    2002-03-01

    Given the very hazardous nature of its activity, the nuclear industry has often been considered to be without a future. Concerns over climate change and increasing international energy needs have, however, shone a new light on the positive aspects of nuclear energy. As the only clean, stable and inexpensive energy source, available, nuclear energy promises a constant supply of electricity while protecting the atmosphere. This new relationship between the environment and nuclear energy calls for an analysis of the international regulation of the risks posed by nuclear energy production. Since the beginning of the nuclear age, the long term, unknown, and large geographic scope of the risks and effects of this activity have led to the adoption of a set of normative rules outside of the scope of international environmental law. The norms that now regulate this new, ultra-hazardous activity resulted in a set of rules aimed at protecting the environment in the face of high risk activities that now form the heart of international environmental law. Unwilling relinquish national sovereignty, States adopted a system of non-binding regulation to protect the environment and promote the nuclear industry. The Chernobyl accident later pointed to the weakness of this approach. Despite this weakness, the adoption of a soft law approach has led to progress in environmental protection in an area where States have been loathe to give up their sovereignty. (author)

  3. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    Science.gov (United States)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  4. Educative campaign about information on irradiated foods

    International Nuclear Information System (INIS)

    Luna C, P.C.

    1991-07-01

    The irradiation of foods is accepted by international agencies (FAO, OMS) like a healthy and effective technology at the moment the irradiated foods are marketed easily in many countries, however in other countries exist several factors that affect the practical application of this process. In this work is planned about an educational campaign about the irradiation process directed to the consumers. (Author)

  5. Prospects of the international energy market

    International Nuclear Information System (INIS)

    Schneider, H.K.

    1977-01-01

    The findings of two studies on the international prospects of energy development are discussed: 1) Energy: Global Prospects 1985-2000. Report of the Workshop on Alternative Energy Strategies (WAES) and 2) World Energy Outlook, a recent OECD energy study which is a supplement to the Energy prospects to 1985 study, which was completed in 1974. (UA) [de

  6. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H{sub 2}S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jiménez-Escobar, A.; Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Fung, H.-S. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ip, W.-H. [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2015-01-10

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H{sub 2}S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H{sub 2}S and CO{sub 2}:H{sub 2}S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS{sub 2}, OCS, SO{sub 2}, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H{sub 2}S ice mixtures is higher than that of CO{sub 2}:H{sub 2}S ice mixtures; (2) a lower concentration of H{sub 2}S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS{sub 2} differ significantly upon VUV and EUV irradiations. Furthermore, CS{sub 2} was produced only after VUV photoprocessing of CO:H{sub 2}S ices, while the VUV-induced production of SO{sub 2} occurred only in CO{sub 2}:H{sub 2}S ice mixtures. More generally, the production yields of OCS, H{sub 2}S{sub 2}, and CS{sub 2} were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H{sub 2}S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.

  7. Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dantelle, G., E-mail: geraldine.dantelle@polytechnique.ed [Laboratoire de Physique Quantique et Moleculaire, ENS Cachan, 94 235 CACHAN Cedex (France); Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, 91128 PALAISEAU Cedex (France); Slablab, A.; Rondin, L. [Laboratoire de Physique Quantique et Moleculaire, ENS Cachan, 94 235 CACHAN Cedex (France); Laine, F.; Carrel, F.; Bergonzo, Ph. [CEA-LIST, CEA/Saclay, 91 191 GIF-SUR-YVETTE Cedex (France); Perruchas, S.; Gacoin, T. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, 91128 PALAISEAU Cedex (France); Treussart, F.; Roch, J.-F. [Laboratoire de Physique Quantique et Moleculaire, ENS Cachan, 94 235 CACHAN Cedex (France)

    2010-09-15

    Nanodiamond powders with an average size of 50 nm have been irradiated using high-energy electron beam. After annealing and chemical treatment, nanodiamond colloidal solutions were obtained and deposited on silica coverslips by spin-coating. The fluorescence of nanodiamonds was studied by confocal microscopy together with atomic force microscopy. We evaluated the proportion of luminescent nanodiamonds as a function of the irradiation duration and showed that large quantities, exceeding hundreds of mg, of luminescent nanodiamonds can be produced within 1 h of electron irradiation.

  8. Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation

    International Nuclear Information System (INIS)

    Dantelle, G.; Slablab, A.; Rondin, L.; Laine, F.; Carrel, F.; Bergonzo, Ph.; Perruchas, S.; Gacoin, T.; Treussart, F.; Roch, J.-F.

    2010-01-01

    Nanodiamond powders with an average size of 50 nm have been irradiated using high-energy electron beam. After annealing and chemical treatment, nanodiamond colloidal solutions were obtained and deposited on silica coverslips by spin-coating. The fluorescence of nanodiamonds was studied by confocal microscopy together with atomic force microscopy. We evaluated the proportion of luminescent nanodiamonds as a function of the irradiation duration and showed that large quantities, exceeding hundreds of mg, of luminescent nanodiamonds can be produced within 1 h of electron irradiation.

  9. 76 FR 69714 - International Energy Agency Meetings

    Science.gov (United States)

    2011-11-09

    ...: Notice of Meetings. SUMMARY: The Industry Advisory Board (IAB) to the International Energy Agency (IEA... Industry Advisory Board (IAB) to the International Energy Agency (IEA) will be held at the headquarters of... of Switzerland --Questionnaire Response of The Netherlands 5. Emergency Response Exercises...

  10. In-vitro digestible energy of some agricultural residues, as influenced by gamma irradiation and sodium hydroxide

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1999-01-01

    The effect of various doses of gamma irradiation (0,100,150,200 KGy) and different concentrations of sodium hydroxide on crude fibre (CF), Cell-wall constituents (NDF, ADF, ADL), in vitro organic matter digestibility (IVOMD), gross energy (GE), in vitro digestible energy (IVDE) of wheat straw (W.S) cotton seed shall (C.S.S), peanut shell (P.S), soybean shell (SB.S), extracted olive cake (O.C.E) and extracted sunflower of unpeeled seeds (S.U.E) were investigated. Results indicated that HaOH in the concentrations at (4 and 6%) had significant effects on the CF content of W.S and P.S, E.U.E, SB.S, C.S.S, O.C.E; respectively. Treating S.U.E, W.S and all other residues with NaoH (2,4 and 6%) respectively, decreased the NDF level. Irradiation dose of 200 KGy decreased CF for all residues, and it reduced the NDF for S.U.E and SB.S. However, lower irradiation dose (150 KGy) was good enough to reduce the NDF for W.S, C.S.S, P.S and O.C.E. Combined treatment resulted in better effects in reducing the concentrations of the cell-wall constituents. The digestible energy values (kJ/Kg DM) increased by 1120,1 220, 2110 (W.S); 620, 830, 1000 for P.S; 240, 500, 580 for O.C.E; 500, 850, 870 for S.U.E; 550, 1060, 1200 for SB.S and 1260, 1710, 2070 for C.S.S using 100, 150, 200, KGy respectively, in comparison to unirradiated controls. Also, the IVDE values (Kj/Kg DM) increased by 560, 1050, 1590 for W.S; 310, 460, 650 for P.S; 170, 760, 1530 for C.S.S; 450, 990, 1190 for O.C.E using 2%, 4%, 6% NaOH respectively, in comparison to controls. No changes in the IVDE values for S.U.E and SB.S. Combined treatment resulted in an even better increase in the digestible energy, except S.U.E and SB.S. (Author)

  11. Effect of Proton Irradiation on the Corrosion Behaviors of Ferritic/Martensitic Steel in Liquid Metal Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeonghyeon; Kim, Tae Yong; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Liquid metal fast breeder reactors (LMFBRs) such as sodium-cooled fast reactor (SFR) and lead-cooled fast reactor (LFR) are the candidates of GEN-IV nuclear energy systems. Among various liquid metals that can be used as primary coolant material, sodium is a world widely used coolant for GEN-IV reactors. In this study, as-received Gr.92 and irradiated Gr.92 specimen in the oxygen-saturated liquid sodium were examined at high temperature for 300h. The microstructure results reveal the information of the effect of irradiation and effect of the chrome concentration in specimen. From the SRIM result, penetration distance of 40 μm in stainless steel and nominal sample thickness of 30 μm was used to avoid the damage peak and any proton implantation and From the microstructural evaluation, chromium-rich zones existed under the surface of the both of non-irradiated and irradiated materials. The irradiated materials showed chromium-rich zones with larger depths than the non-irradiated specimens.

  12. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  13. The effects of laser radiation on the descendants of irradiated rats

    International Nuclear Information System (INIS)

    Hernandez, J.W.R.; Barbosa, C.A.A.; Moderno, L.A.O.; Parizzotto, N.A.

    1991-01-01

    The effects of low energy laser radiation on the descendants of irradiated rats were investigated by comparing natimortality and the frequency of congenital malformations in three experimental and a control group. Natimortality was not significantly different among the groups. However, cardiomegaly, anophtalmia, dilated abdominal viscera, and premature closures of cranial sutures were recorded only in the experimental groups. (author)

  14. Effect of Neutron Irradiation on Beam-Column Interaction of Reinforced Concrete

    International Nuclear Information System (INIS)

    Kwon, Tae-Hyun; Park, Jiho; Kim, Jun Yeon; Kim, HyungTae; Park, Kyoungsoo; Kim, Sang-Ho

    2015-01-01

    Age-related effects on such RC structures have been extensively studied in detail. However, the effect of neutron irradiation requires further studies from its limited database. Most of RC structures have been regarded as sound as the neutron fluence below 1.0x10 19 n/cm 2 . The reduction of strength is not considered in a periodic inspection program at aging NPPs. However, RC structures, such as biological shields and supports for a reactor vessel, could be exposed to see the critical level of neutron fluence at years of operation. In this regard, beam-column interaction of a typical RC member is numerically investigated as a result of neutron irradiation. The effect of neutron irradiation on beam-column interaction is evaluated. ACI318 requires the strength reduction factor, ϕ=0.70, for the compression controlled area and the higher up to 0.9 as the tensile strain in steel reinforcement goes higher. This concept works well with this example. However, this does not take into account the energy dissipation capacity of the member but it only expresses the ultimate strength. Therefore, the current strength evaluation concept may be misleading when the material behavior of steel reinforcement becomes brittle due to the neutron irradiation. In such case, even for the transient and tension controlled area, the strength reduction factor needs to be modified to account for the potential ductility loss

  15. Lifetime radiation effects research in animals: An overview of the status and philosophy of studies at University of California-Davis Laboratory for Energy-Related Health Research

    International Nuclear Information System (INIS)

    Goldman, M.; Rosenblatt, L.S.; Book, S.A.

    1986-01-01

    Studies on the life-shortening and carcinogenic effects of internal emitters and external irradiation have been conducted at the Laboratory for Energy-Related Health Research for over three decades. Our principal animal model has been the beagle dog. The beagle's tissue sensitivity, metabolic and dosimetric characteristics, pathologic responses, and aging changes give it relevance for the assessment of radiation risks in humans. Although our results confirm the existence of an amelioration of effects at low doses and low dose rates (the dose-rate effectiveness factor), the manifestation of the amelioration may vary. For example, with x-irradiation higher exposures appeared to decrease latency but did not alter the incidence of mammary cancer, whereas with the bone-seeking radionuclides, 90 Sr and 226 Ra, higher doses decreased the latency and increased the incidence of osteosarcomas. Radiation-induced leukemias were seen only with high doses at high dose rates but only from 90 Sr and from chronic exposures to 60 Co, mainly in dogs exposed beginning in utero. Most of the radiation-induced life shortening in dogs exposed to internal emitters appears attributable to an increased cancer risk, but this is not necessarily the case for x-irradiated dogs

  16. Irradiation effects in Fe-30%Ni alloy during Ar ion implantation

    International Nuclear Information System (INIS)

    Soukieh, Mohamad; Al-Mohamad, Ali

    1993-12-01

    The use of metallic thin films for studying the processes which take place during ion irradiation has recently increased. For example, ion implantation is widely used to study the structural defects in transition metallic thin films such as (Fe, Ni, Co), because it can simulate the effects occurring in nuclear reactors during neutron irradiation especially the swelling of reactor materials. The swelling of metals and alloys is strongly related to the material structure and to the irradiation conditions. The general feature of formation of structural defects as a function of irradiation dosage and annealing temperature is well known. However, the detailed mechanisms are still not well understood. For example, the swelling of iron alloy with 30-35% nickel is very small in comparison with other Ni concentrations, and there is no clear information on the possibility of phase transitions in fe-Ni alloys during irradiation. The aim of this work is to study the phase-structural changes in Fe-30% Ni implanted by high dose of argon ions. The effect of irradiation with low energy argon ions (40 KeV, and fluences of 10.E15 to 10.E17 ions/cm) on the deposited thin films of Fe-30% Ni alloy was investigated using RBS and TEM techniques. The thicknesses of these films were about 65+-10 nm deposited on ceramic, KBr, and Be fiols substrates. Gas bubble formation and profile distribution of the implanted argon ions were investigated. Formation of an ordered phase Fe 3 Ni during irradiation appears to inhibit gas bubble formations in the film structure. (author). 17 refs., 15 figs., 7 tabs

  17. Postirradiation examination results for the Irradiation Effects Test 2

    International Nuclear Information System (INIS)

    Ploger, S.A.; Kerwin, D.K.; Croucher, D.W.

    1978-01-01

    This report presents the postirradiation examination results of Test IE-2 in the Irradiation Effects Test Series conducted under the Thermal Fuels Behavior Program. The objectives of this test were to evaluate the influence of previous cladding irradiation and fuel-cladding diametral gap on fuel rod behavior during a power ramp and during film boiling operation. Test IE-2, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory, employed two 0.97-m-long pressurized water reactor type fuel rods fabricated from previously irradiated zircaloy-4 cladding and two similar rods fabricated from unirradiated cladding. The four rods were subjected to a preconditioning period, followed by a power ramp to an average peak rod power of 68 kW/m and steady state operation for one hour at an individual rod coolant mass flux of 4880 kg/s . m 2 . After a flow reduction to 2550 kg/s . m 2 , film boiling occurred on three rods. An additional flow reduction to 2245 kg/s . m 2 produced film boiling on the remaining fuel rod. Maximum time in film boiling was 90 s. None of the four fuel rods failed during the test. Damage caused by film boiling, as characterized by oxidation, oxide spalling, and collapse at fuel pellet interfaces, was found on all four rods. Film boiling regions on these rods showed evidence of fuel melting, fuel centerline void formation, and internal cladding oxidation resulting from fuel-cladding reaction. Effects of fuel-cladding diametral gap and cladding irradiation are summarized. Measured temperatures and metallographically estimated temperatures are compared at several axial fuel rod locations

  18. Literature study of the radiobiological parameters of Caesium-137 required for evaluating internal irradiation doses as a function of age; Etude bibliographique des parametres radiobiologiques du cesium-137 necessaires a l'evaluation des doses d'irradiation interne en fonction de l'age

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, A. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    This document reassembles information published in scientific literature on radiobiological parameters of Cs-137, necessary for the estimate of the internal irradiation dose of man according to his age (during growth). The data are completed by a commented review of the mathematical models, proposed in order to value the irradiation doses from ingested cesium and the biological parameters. (author) [French] Ce document rassemble les informations publiees dans la litterature scientifique, concernant les parametres radiobiologiqueo du cesium-137, necessaires a l'evaluation des doses d'irradiation interne de l'homme en fonction de l'age. Ces donnees sont completees par une revue commentee des modeles mathematiques proposes en vue de l'evaluation des doses d'irradiation a partir des quantites de cesium ingerees et des parametres biologiques. (auteur)

  19. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A [Norman White Associates, London (UK)

    1979-06-01

    Whereas the ultimate world supply of energy minerals - defined as fossil fuels and fissile minerals - is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. A brief comparison is also made between energy and non-energy minerals.

  20. International energy annual, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-08

    This document presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 200 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy includes hydroelectric, geothermal, solar and wind electric power and alcohol for fuel. The data were largely derived from published sources and reports from US Embassy personnel in foreign posts. EIA also used data from reputable secondary sources, industry reports, etc.