WorldWideScience

Sample records for effective connectivity fmri

  1. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    Directory of Open Access Journals (Sweden)

    Zhao Baixiao

    2008-11-01

    Full Text Available Abstract Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation.

  2. Variational Bayesian Causal Connectivity Analysis for fMRI

    Directory of Open Access Journals (Sweden)

    Martin eLuessi

    2014-05-01

    Full Text Available The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions.

  3. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  4. A pooling-LiNGAM algorithm for effective connectivity analysis of fMRI data

    Directory of Open Access Journals (Sweden)

    Lele eXu

    2014-10-01

    Full Text Available The Independent Component Analysis - linear non-Gaussian acyclic model (LiNGAM, an algorithm that can be used to estimate the causal relationship among non-Gaussian distributed data, has the potential value to detect the effective connectivity of human brain areas. Under the assumptions that (a: the data generating process is linear, (b there are no unobserved confounders, and (c data have non-Gaussian distributions, LiNGAM can be used to discover the complete causal structure of data. Previous studies reveal that the algorithm could perform well when the data points being analyzed is relatively long. However, there are too few data points in most neuroimaging recordings, especially functional magnetic resonance imaging (fMRI, to allow the algorithm to converge. Smith’s study speculates a method by pooling data points across subjects may be useful to address this issue (Smith et al., 2011. Thus this study focus on validating Smith’s proposal of pooling data points across subjects for the use of LiNGAM, and this method is named as pooling-LiNGAM (pLiNGAM. Using both simulated and real fMRI data, our current study demonstrates the feasibility and efficiency of the pLiNGAM on the effective connectivity estimation.

  5. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar

    2017-02-15

    Effective connectivity (EC) analysis of neuronal groups using fMRI delivers insights about functional-integration. However, fMRI signal has low-temporal resolution due to down-sampling and indirectly measures underlying neuronal activity. The aim is to address above issues for more reliable EC estimates. This paper proposes use of autoregressive hidden Markov model with missing data (AR-HMM-md) in dynamically multi-linked (DML) framework for learning EC using multiple fMRI time series. In our recent work (Dang et al., 2016), we have shown how AR-HMM-md for modelling single fMRI time series outperforms the existing methods. AR-HMM-md models unobserved neuronal activity and lost data over time as variables and estimates their values by joint optimization given fMRI observation sequence. The effectiveness in learning EC is shown using simulated experiments. Also the effects of sampling and noise are studied on EC. Moreover, classification-experiments are performed for Attention-Deficit/Hyperactivity Disorder subjects and age-matched controls for performance evaluation of real data. Using Bayesian model selection, we see that the proposed model converged to higher log-likelihood and demonstrated that group-classification can be performed with higher cross-validation accuracy of above 94% using distinctive network EC which characterizes patients vs. The full data EC obtained from DML-AR-HMM-md is more consistent with previous literature than the classical multivariate Granger causality method. The proposed architecture leads to reliable estimates of EC than the existing latent models. This framework overcomes the disadvantage of low-temporal resolution and improves cross-validation accuracy significantly due to presence of missing data variables and autoregressive process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    Science.gov (United States)

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: pneurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.

    Science.gov (United States)

    Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.

  8. Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data

    Directory of Open Access Journals (Sweden)

    Maksim eSharaev

    2016-02-01

    Full Text Available The Default Mode Network (DMN is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of BOLD (Blood-oxygen-level dependent activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e. effective connectivity, however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex mPFC, the posterior cingulate cortex PCC, left and right intraparietal cortex LIPC and RIPC. For this purpose fMRI (functional magnetic resonance imaging data from 30 healthy subjects (1000 time points from each one was acquired and spectral dynamic causal modeling (DCM on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p<0.05. Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state.

  9. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar

    2017-06-15

    Determination of effective connectivity (EC) among brain regions using fMRI is helpful in understanding the underlying neural mechanisms. Dynamic Bayesian Networks (DBNs) are an appropriate class of probabilistic graphical temporal-models that have been used in past to model EC from fMRI, specifically order-one. High-order DBNs (HO-DBNs) have still not been explored for fMRI data. A fundamental problem faced in the structure-learning of HO-DBN is high computational-burden and low accuracy by the existing heuristic search techniques used for EC detection from fMRI. In this paper, we propose using dynamic programming (DP) principle along with integration of properties of scoring-function in a way to reduce search space for structure-learning of HO-DBNs and finally, for identifying EC from fMRI which has not been done yet to the best of our knowledge. The proposed exact search-&-score learning approach HO-DBN-DP is an extension of the technique which was originally devised for learning a BN's structure from static data (Singh and Moore, 2005). The effectiveness in structure-learning is shown on synthetic fMRI dataset. The algorithm reaches globally-optimal solution in appreciably reduced time-complexity than the static counterpart due to integration of properties. The proof of optimality is provided. The results demonstrate that HO-DBN-DP is comparably more accurate and faster than currently used structure-learning algorithms used for identifying EC from fMRI. The real data EC from HO-DBN-DP shows consistency with previous literature than the classical Granger Causality method. Hence, the DP algorithm can be employed for reliable EC estimates from experimental fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Resting-state fMRI and social cognition: An opportunity to connect.

    Science.gov (United States)

    Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M

    2017-09-01

    Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The Nuisance of Nuisance Regression: Spectral Misspecification in a Common Approach to Resting-State fMRI Preprocessing Reintroduces Noise and Obscures Functional Connectivity

    OpenAIRE

    Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz

    2013-01-01

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent...

  12. Nonparametric modeling of dynamic functional connectivity in fmri data

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus

    2015-01-01

    dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a nonparametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted...

  13. Quantifying functional connectivity in multi-subject fMRI data using component models

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Churchill, Nathan William; Mørup, Morten

    2017-01-01

    of functional connectivity, evaluated on both simulated and experimental resting-state fMRI data. It was demonstrated that highly flexible subject-specific component subspaces, as well as very constrained average models, are poor predictors of whole-brain functional connectivity, whereas the best...

  14. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.

    Science.gov (United States)

    Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D

    2018-06-08

    Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of

  15. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    Science.gov (United States)

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  16. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models

    KAUST Repository

    Ting, Chee-Ming

    2017-12-06

    We consider the challenges in estimating state-related changes in brain connectivity networks with a large number of nodes. Existing studies use sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms K-means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to resting-state fMRI data, our method successfully identifies modular organization in resting-state networks in consistency with other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.

  17. The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI

    DEFF Research Database (Denmark)

    Churchill, Nathan William; Madsen, Kristoffer Hougaard; Mørup, Morten

    2016-01-01

    flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension......The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize...... brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables....

  18. The mean–variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI

    Science.gov (United States)

    Thompson, William H.; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed. PMID:26236216

  19. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI

    Directory of Open Access Journals (Sweden)

    Castellano Gabriela

    2010-06-01

    Full Text Available Abstract Background Mesial temporal lobe epilepsy (MTLE, the most common type of focal epilepsy in adults, is often caused by hippocampal sclerosis (HS. Patients with HS usually present memory dysfunction, which is material-specific according to the hemisphere involved and has been correlated to the degree of HS as measured by postoperative histopathology as well as by the degree of hippocampal atrophy on magnetic resonance imaging (MRI. Verbal memory is mostly affected by left-sided HS, whereas visuo-spatial memory is more affected by right HS. Some of these impairments may be related to abnormalities of the network in which individual hippocampus takes part. Functional connectivity can play an important role to understand how the hippocampi interact with other brain areas. It can be estimated via functional Magnetic Resonance Imaging (fMRI resting state experiments by evaluating patterns of functional networks. In this study, we investigated the functional connectivity patterns of 9 control subjects, 9 patients with right MTLE and 9 patients with left MTLE. Results We detected differences in functional connectivity within and between hippocampi in patients with unilateral MTLE associated with ipsilateral HS by resting state fMRI. Functional connectivity resulted to be more impaired ipsilateral to the seizure focus in both patient groups when compared to control subjects. This effect was even more pronounced for the left MTLE group. Conclusions The findings presented here suggest that left HS causes more reduction of functional connectivity than right HS in subjects with left hemisphere dominance for language.

  20. Functional connectivity analysis of fMRI data using parameterized regions-of-interest.

    NARCIS (Netherlands)

    Weeda, W.D.; Waldorp, L.J.; Grasman, R.P.P.P.; van Gaal, S.; Huizenga, H.M.

    2011-01-01

    Connectivity analysis of fMRI data requires correct specification of regions-of-interest (ROIs). Selection of ROIs based on outcomes of a GLM analysis may be hindered by conservativeness of the multiple comparison correction, while selection based on brain anatomy may be biased due to inconsistent

  1. Replicability of time-varying connectivity patterns in large resting state fMRI samples.

    Science.gov (United States)

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D

    2017-12-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Paluš, Milan; Vejmelka, Martin; Mantini, D.; Corbetta, M.

    2011-01-01

    Roč. 54, č. 3 (2011), s. 2218-2225 ISSN 1053-8119 R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : fMRI * functional connectivity * Gaussianity * nonlinearity * correlation * mutual information Subject RIV: FH - Neurology Impact factor: 5.895, year: 2011

  3. Acquisition, Analyses and Interpretation of fMRI Data: A Study on the Effective Connectivity in Human Primary Auditory Cortices

    International Nuclear Information System (INIS)

    Ahmad Nazlim Yusoff; Mazlyfarina Mohamad; Khairiah Abdul Hamid

    2011-01-01

    A study on the effective connectivity characteristics in auditory cortices was conducted on five healthy Malay male subjects with the age of 20 to 40 years old using functional magnetic resonance imaging (fMRI), statistical parametric mapping (SPM5) and dynamic causal modelling (DCM). A silent imaging paradigm was used to reduce the scanner sound artefacts on functional images. The subjects were instructed to pay attention to the white noise stimulus binaurally given at intensity level of 70 dB higher than the hearing level for normal people. Functional specialisation was studied using Matlab-based SPM5 software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicate asymmetrical bilateral activation between the left and right auditory cortices in Brodmann areas (BA)22, 41 and 42 involving the primary and secondary auditory cortices. The three auditory areas in the right and left auditory cortices are selected for the determination of the effective connectivity by constructing 9 network models. The effective connectivity is determined on four out of five subjects with the exception of one subject who has the BA22 coordinates located too far from BA22 coordinates obtained from group analysis. DCM results showed the existence of effective connectivity between the three selected auditory areas in both auditory cortices. In the right auditory cortex, BA42 is identified as input centre with unidirectional parallel effective connectivities of BA42→BA41and BA42→BA22. However, for the left auditory cortex, the input is BA41 with unidirectional parallel effective connectivities of BA41→BA42 and BA41→BA22. The connectivity between the activated auditory areas suggests the existence of signal pathway in the auditory cortices even when the subject is listening to noise. (author)

  4. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    Science.gov (United States)

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Changes in thalamus connectivity in mild cognitive impairment: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Wang Zhiqun; Jia Xiuqin; Liang Peipeng; Qi Zhigang; Yang Yanhui; Zhou Weidong; Li Kuncheng

    2012-01-01

    Purpose: The subcortical region such as thalamus was believed to have close relationship with many cerebral cortexes which made it especially interesting in the study of functional connectivity. Here, we used resting state functional MRI (fMRI) to examine changes in thalamus connectivity in mild cognitive impairment (MCI), which presented a neuro-disconnection syndrome. Materials and methods: Data from 14 patients and 14 healthy age-matched controls were analyzed. Thalamus connectivity was investigated by examination of the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Results: We found that functional connectivity between the left thalamus and a set of regions was decreased in MCI; these regions are: bilateral cuneus, middle occipital gyrus (MOG), superior frontal gyrus (SFG), medial prefrontal cortex (MPFC), precuneus, inferior frontal gyrus (IFG) and precentral gyrus (PreCG). There are also some regions showed reduced connectivity to right thalamus; these regions are bilateral cuneus, MOG, fusiform gyrus (FG), MPFC, paracentral lobe (PCL), precuneus, superior parietal lobe (SPL) and IFG. We also found increased functional connectivity between the left thalamus and the right thalamus in MCI. Conclusion: The decreased connectivity between the thalamus and the other brain regions might indicate reduced integrity of thalamus-related cortical networks in MCI. Furthermore, the increased connectivity between the left and right thalamus suggest compensation for the loss of cognitive function. Briefly, impairment and compensation of thalamus connectivity coexist in the MCI patients.

  6. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.

    Science.gov (United States)

    Hallquist, Michael N; Hwang, Kai; Luna, Beatriz

    2013-11-15

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n=117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r=.10-.35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    Science.gov (United States)

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  8. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations.

    Science.gov (United States)

    Demertzi, Athena; Gómez, Francisco; Crone, Julia Sophia; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Noirhomme, Quentin; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Soddu, Andrea

    2014-03-01

    In healthy conditions, group-level fMRI resting state analyses identify ten resting state networks (RSNs) of cognitive relevance. Here, we aim to assess the ten-network model in severely brain-injured patients suffering from disorders of consciousness and to identify those networks which will be most relevant to discriminate between patients and healthy subjects. 300 fMRI volumes were obtained in 27 healthy controls and 53 patients in minimally conscious state (MCS), vegetative state/unresponsive wakefulness syndrome (VS/UWS) and coma. Independent component analysis (ICA) reduced data dimensionality. The ten networks were identified by means of a multiple template-matching procedure and were tested on neuronality properties (neuronal vs non-neuronal) in a data-driven way. Univariate analyses detected between-group differences in networks' neuronal properties and estimated voxel-wise functional connectivity in the networks, which were significantly less identifiable in patients. A nearest-neighbor "clinical" classifier was used to determine the networks with high between-group discriminative accuracy. Healthy controls were characterized by more neuronal components compared to patients in VS/UWS and in coma. Compared to healthy controls, fewer patients in MCS and VS/UWS showed components of neuronal origin for the left executive control network, default mode network (DMN), auditory, and right executive control network. The "clinical" classifier indicated the DMN and auditory network with the highest accuracy (85.3%) in discriminating patients from healthy subjects. FMRI multiple-network resting state connectivity is disrupted in severely brain-injured patients suffering from disorders of consciousness. When performing ICA, multiple-network testing and control for neuronal properties of the identified RSNs can advance fMRI system-level characterization. Automatic data-driven patient classification is the first step towards future single-subject objective diagnostics

  9. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Science.gov (United States)

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  10. Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM

    Science.gov (United States)

    Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid

    2012-02-01

    Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.

  11. Personality modulates amygdala and insula connectivity during humor appreciation: An event-related fMRI study.

    Science.gov (United States)

    Berger, Philipp; Bitsch, Florian; Nagels, Arne; Straube, Benjamin; Falkenberg, Irina

    2017-11-12

    Previous research and theory implicate that personality traits, such as extraversion and neuroticism, influence the processing of humor, as indicated by alterations in the activation of fronto-temporal and mesocorticolimbic brain regions during humor processing. In the current study, we sought to complement these findings by testing whether inter-individual differences in functional connectivity of humor-related brain regions are modulated by stable personality characteristics during humor processing. Using fMRI techniques, we studied 19 healthy subjects during the processing of standardized humorous and neutral cartoons. In order to isolate the specific effects of humor appreciation, subjective funniness ratings, collected during the scanning procedure, were implemented in the analysis as parametric modulation. Two distinct clusters in the right amygdala and the left insula were identified. Seed-to-voxel connectivity analysis investigating the effects of personality on inter-individual differences in functional connectivity revealed that amygdala and insula connectivity with brain areas previously related to humor comprehension (e.g. middle temporal gyrus) and appreciation (e.g. caudate nucleus) were significantly modulated by personality dimensions. These results underscore the sensitivity of humor processing to moderating influences, such as personality, and call attention to the importance of brain connectivity measures for the investigation of inter-individual differences in the processing of humor.

  12. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: Evidence from resting-state fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: will.zhang.1111@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Liu, Xianjun, E-mail: xianjun6.liu@gmail.com [Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Zhang, Yi, E-mail: yi.zhang.0833@gmail.com [Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Song, Lingheng, E-mail: songlh1023@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Hou, Jingming, E-mail: jingminghou@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Chen, Bing, E-mail: chenbing3@medmail.com.cn [Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); He, Mei, E-mail: sunnusunny0105@gmail.com [Department of Clinical Psychology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cai, Ping, E-mail: pingc_ddd@sina.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Lii, Haitao, E-mail: haitaolii023@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2014-10-15

    Objective: The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Methods: Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Results: Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Conclusion: Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism.

  13. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: Evidence from resting-state fMRI

    International Nuclear Information System (INIS)

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-01-01

    Objective: The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Methods: Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Results: Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Conclusion: Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism

  14. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    Science.gov (United States)

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Large-scale DCMs for resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Adeel Razi

    2017-01-01

    Full Text Available This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI. We use spectral dynamic causal modeling (DCM to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model from a parent (e.g., fully connected graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.

  16. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli.

    Science.gov (United States)

    Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan

    2011-04-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    Science.gov (United States)

    Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  18. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    Directory of Open Access Journals (Sweden)

    T.L. Richards

    2015-01-01

    Full Text Available Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years were diagnosed with dysgraphia (persisting handwriting impairment or dyslexia (persisting word spelling/reading impairment or as typical writers and readers (controls. The dysgraphia group (n = 14 and dyslexia group (n = 17 were each compared to the control group (n = 9 and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher. For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity, correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling by seed points. Analyses, controlled for multiple comparisons, showed that (a the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  19. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Science.gov (United States)

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys.

    Science.gov (United States)

    Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min

    2017-11-15

    This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened

  1. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    Science.gov (United States)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  2. Global Functional Connectivity Differences between Sleep-Like States in Urethane Anesthetized Rats Measured by fMRI.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zhurakovskaya

    Full Text Available Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM and non-REM (NREM sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state and corticothalamic connectivity (increased in REM-like state. Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.

  3. Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer’s disease risk

    OpenAIRE

    Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.

    2010-01-01

    Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally s...

  4. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    Science.gov (United States)

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  5. Meta-Analysis of the Structural Equation Models' Parameters for the Estimation of Brain Connectivity with fMRI

    Directory of Open Access Journals (Sweden)

    Joan Guàrdia-Olmos

    2018-02-01

    Full Text Available Structural Equation Models (SEM is among of the most extensively applied statistical techniques in the study of human behavior in the fields of Neuroscience and Cognitive Neuroscience. This paper reviews the application of SEM to estimate functional and effective connectivity models in work published since 2001. The articles analyzed were compiled from Journal Citation Reports, PsycInfo, Pubmed, and Scopus, after searching with the following keywords: fMRI, SEMs, and Connectivity.Results: A 100 papers were found, of which 25 were rejected due to a lack of sufficient data on basic aspects of the construction of SEM. The other 75 were included and contained a total of 160 models to analyze, since most papers included more than one model. The analysis of the explained variance (R2 of each model yields an effect of the type of design used, the type of population studied, the type of study, the existence of recursive effects in the model, and the number of paths defined in the model. Along with these comments, a series of recommendations are included for the use of SEM to estimate of functional and effective connectivity models.

  6. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    Science.gov (United States)

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  7. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study

    NARCIS (Netherlands)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard Jack Anton; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F.

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state

  8. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    Science.gov (United States)

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  9. Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder.

    Science.gov (United States)

    Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2018-01-01

    We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback

  10. Resting-state FMRI confounds and cleanup

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  11. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Akinwunmi Oni-Orisan

    Full Text Available Functional magnetic resonance imaging (fMRI studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity. However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (>2 years post injury and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system.

  12. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Clustering

    Directory of Open Access Journals (Sweden)

    Klaudius eKalcher

    2015-12-01

    Full Text Available Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels. A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6 ± 5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remainingdifferences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needingany additional data beyond what is usually acquired (and exported in standard fMRI experiments.

  13. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    OpenAIRE

    Tingting Xu; Kathryn R. Cullen; Bryon Mueller; Mindy W. Schreiner; Kelvin O. Lim; S. Charles Schulz; Keshab K. Parhi

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and construc...

  14. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    Science.gov (United States)

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  15. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study

  16. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Science.gov (United States)

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  17. Network modelling methods for FMRI.

    Science.gov (United States)

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI.

    Science.gov (United States)

    Oya, Hiroyuki; Howard, Matthew A; Magnotta, Vincent A; Kruger, Anton; Griffiths, Timothy D; Lemieux, Louis; Carmichael, David W; Petkov, Christopher I; Kawasaki, Hiroto; Kovach, Christopher K; Sutterer, Matthew J; Adolphs, Ralph

    2017-02-01

    Understanding brain function requires knowledge of how one brain region causally influences another. This information is difficult to obtain directly in the human brain, and is instead typically inferred from resting-state fMRI. Here, we demonstrate the safety and scientific promise of a novel and complementary approach: concurrent electrical stimulation and fMRI (es-fMRI) at 3T in awake neurosurgical patients with implanted depth electrodes. We document the results of safety testing, actual experimental setup, and stimulation parameters, that safely and reliably evoke activation in distal structures through stimulation of amygdala, cingulate, or prefrontal cortex. We compare connectivity inferred from the evoked patterns of activation with that estimated from standard resting-state fMRI in the same patients: while connectivity patterns obtained with each approach are correlated, each method produces unique results. Response patterns were stable over the course of 11min of es-fMRI runs. COMPARISON WITH EXISTING METHOD: es-fMRI in awake humans yields unique information about effective connectivity, complementing resting-state fMRI. Although our stimulations were below the level of inducing any apparent behavioral or perceptual effects, a next step would be to use es-fMRI to modulate task performances. This would reveal the acute network-level changes induced by the stimulation that mediate the behavioral and cognitive effects seen with brain stimulation. es-fMRI provides a novel and safe approach for mapping effective connectivity in the human brain in a clinical setting, and will inform treatments for psychiatric and neurodegenerative disorders that use deep brain stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    Science.gov (United States)

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  20. Modafinil alters intrinsic functional connectivity of the right posterior insula: a pharmacological resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Nicoletta Cera

    Full Text Available Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC and Dorsal Attention (DAN networks. No changes were found in the Salience Network (SN, a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions.Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC of insular subregions.Analysis of FC with resting state fMRI (rs-FMRI revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group.Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action.ClinicalTrials.gov NCT01684306.

  1. Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Robert E. Kelly

    2010-01-01

    Full Text Available Brain functional connectivity (FC is often assessed from fMRI data using seed-based methods, such as those of detecting temporal correlation between a predefined region (seed and all other regions in the brain; or using multivariate methods, such as independent component analysis (ICA. ICA is a useful data-driven tool, but reproducibility issues complicate group inferences based on FC maps derived with ICA. These reproducibility issues can be circumvented with hybrid methods that use information from ICA-derived spatial maps as seeds to produce seed-based FC maps. We report results from five experiments to demonstrate the potential advantages of hybrid ICA-seed-based FC methods, comparing results from regressing fMRI data against task-related a priori time courses, with “back-reconstruction” from a group ICA, and with five hybrid ICA-seed-based FC methods: ROI-based with (1 single-voxel, (2 few-voxel, and (3 many-voxel seed; and dual-regression-based with (4 single ICA map and (5 multiple ICA map seed.

  2. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data

    KAUST Repository

    Castruccio, Stefano

    2018-01-23

    Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)—coarser or larger spatial units—rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs). The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke.

  3. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    Science.gov (United States)

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to

  4. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  5. Sex differences in effective fronto-limbic connectivity during negative emotion processing.

    Science.gov (United States)

    Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2015-12-01

    In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Advances in fMRI Real-Time Neurofeedback.

    Science.gov (United States)

    Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo

    2017-12-01

    Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Infinite Relational Modeling of Functional Connectivity in Resting State fMRI

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer H.; Dogonowski, Anne Marie

    2010-01-01

    Functional magnetic resonance imaging (fMRI) can be applied to study the functional connectivity of the neural elements which form complex network at a whole brain level. Most analyses of functional resting state networks (RSN) have been based on the analysis of correlation between the temporal...... dynamics of various regions of the brain. While these models can identify coherently behaving groups in terms of correlation they give little insight into how these groups interact. In this paper we take a different view on the analysis of functional resting state networks. Starting from the definition...... of resting state as functional coherent groups we search for functional units of the brain that communicate with other parts of the brain in a coherent manner as measured by mutual information. We use the infinite relational model (IRM) to quantify functional coherent groups of resting state networks...

  8. Altered effective connectivity within default mode network in major depression disorder

    Science.gov (United States)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  9. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  10. Mixed-effects and fMRI studies

    DEFF Research Database (Denmark)

    Friston, K.J; Stephan, K.E; Ellegaard Lund, Torben

    2005-01-01

    This note concerns mixed-effect (MFX) analyses in multisession functional magnetic resonance imaging (fMRI) studies. It clarifies the relationship between mixed-effect analyses and the two-stage 'summary statistics' procedure (Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects...

  11. Characterizing Signals within Lesions and Mapping Brain Network Connectivity After Traumatic Axonal Injury: A 7 Tesla Resting-State FMRI Study.

    Science.gov (United States)

    Lee, Seul; Polimeni, Jonathan R; Price, Collin M; Edlow, Brian L; McNab, Jennifer A

    2018-04-18

    Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. Here we characterize RS-FMRI signal time-course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of: 1) temporal signal-to-noise ratio (tSNR); 2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF) and gray matter (GM); and 3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared to the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Further, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hemorrhagic traumatic axonal injury.

  12. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A computational study of whole-brain connectivity in resting state and task fMRI

    Science.gov (United States)

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  14. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    International Nuclear Information System (INIS)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van; Smits, Marion; Lugt, Aad van der; Groot, Marius de; Vrooman, Henri A.; Mattace Raso, Francesco U.; Niessen, Wiro J.; Veen, Frederik M. van der; Prins, Niels D.

    2017-01-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  15. Effect of Integrated Cognitive Therapy on Hippocampal Functional Connectivity Patterns in Stroke Patients with Cognitive Dysfunction: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Shanli Yang

    2014-01-01

    Full Text Available Objective. This study aimed to identify abnormal hippocampal functional connectivity (FC following ischemic stroke using resting-state fMRI. We also explored whether abnormal hippocampal FC could be modulated by integrated cognitive therapy and tested whether these alterations were associated with cognitive performance. Methods. 18 right-handed cognitively impaired ischemic stroke patients and 18 healty control (HC subjects were included in this study. Stroke subjects were scanned at baseline and after integrated cognitive therapy, while HCs were only scanned at baseline, to identify regions that show significant correlations with the seed region. Behavioral and cognitive assessments were obtained before each scan. Results. During the resting state, we found abnormal hippocampal FC associated with temporal regions, insular cortex, cerebellum, and prefrontal cortex in stroke patients compared to HCs. After integrated cognitive therapy, however, the stroke group showed increased hippocampal FC mainly located in the prefrontal gyrus and the default mode network (DMN. Altered hippocampal FC was associated with cognitive improvement. Conclusion. Resting-state fMRI may provide novel insight into the study of functional networks in the brain after stroke. Furthermore, altered hippocampal FC may be a compensatory mechanism for cognitive recovery after ischemic stroke.

  16. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van [Erasmus MC - University Medical Center Rotterdam, Department of Neurology, Rotterdam (Netherlands); Smits, Marion; Lugt, Aad van der [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Groot, Marius de; Vrooman, Henri A. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Mattace Raso, Francesco U. [Erasmus MC - University Medical Center Rotterdam, Department of Geriatrics, Rotterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Veen, Frederik M. van der [Erasmus University Rotterdam, Institute of Psychology, Rotterdam (Netherlands); Prins, Niels D. [VU University Medical Center, Alzheimer Center, Department of Neurology, Amsterdam (Netherlands)

    2017-09-15

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  17. Empirical validation of directed functional connectivity.

    Science.gov (United States)

    Mill, Ravi D; Bagic, Anto; Bostan, Andreea; Schneider, Walter; Cole, Michael W

    2017-02-01

    Mapping directions of influence in the human brain connectome represents the next phase in understanding its functional architecture. However, a host of methodological uncertainties have impeded the application of directed connectivity methods, which have primarily been validated via "ground truth" connectivity patterns embedded in simulated functional MRI (fMRI) and magneto-/electro-encephalography (MEG/EEG) datasets. Such simulations rely on many generative assumptions, and we hence utilized a different strategy involving empirical data in which a ground truth directed connectivity pattern could be anticipated with confidence. Specifically, we exploited the established "sensory reactivation" effect in episodic memory, in which retrieval of sensory information reactivates regions involved in perceiving that sensory modality. Subjects performed a paired associate task in separate fMRI and MEG sessions, in which a ground truth reversal in directed connectivity between auditory and visual sensory regions was instantiated across task conditions. This directed connectivity reversal was successfully recovered across different algorithms, including Granger causality and Bayes network (IMAGES) approaches, and across fMRI ("raw" and deconvolved) and source-modeled MEG. These results extend simulation studies of directed connectivity, and offer practical guidelines for the use of such methods in clarifying causal mechanisms of neural processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of Field-Map Distortion Correction on Resting State Functional Connectivity MRI

    Directory of Open Access Journals (Sweden)

    Hiroki Togo

    2017-12-01

    Full Text Available Magnetic field inhomogeneities cause geometric distortions of echo planar images used for functional magnetic resonance imaging (fMRI. To reduce this problem, distortion correction (DC with field map is widely used for both task and resting-state fMRI (rs-fMRI. Although DC with field map has been reported to improve the quality of task fMRI, little is known about its effects on rs-fMRI. Here, we tested the influence of field-map DC on rs-fMRI results using two rs-fMRI datasets derived from 40 healthy subjects: one with DC (DC+ and the other without correction (DC−. Independent component analysis followed by the dual regression approach was used for evaluation of resting-state functional connectivity networks (RSN. We also obtained the ratio of low-frequency to high-frequency signal power (0.01–0.1 Hz and above 0.1 Hz, respectively; LFHF ratio to assess the quality of rs-fMRI signals. For comparison of RSN between DC+ and DC− datasets, the default mode network showed more robust functional connectivity in the DC+ dataset than the DC− dataset. Basal ganglia RSN showed some decreases in functional connectivity primarily in white matter, indicating imperfect registration/normalization without DC. Supplementary seed-based and simulation analyses supported the utility of DC. Furthermore, we found a higher LFHF ratio after field map correction in the anterior cingulate cortex, posterior cingulate cortex, ventral striatum, and cerebellum. In conclusion, field map DC improved detection of functional connectivity derived from low-frequency rs-fMRI signals. We encourage researchers to include a DC step in the preprocessing pipeline of rs-fMRI analysis.

  19. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS

    OpenAIRE

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, a...

  20. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting state fMRI study

    Directory of Open Access Journals (Sweden)

    SuPing eCai

    2015-08-01

    Full Text Available Visual cognition such as face recognition requires a high level of functional interaction between distributed regions of a network. It has been reported that the fusiform gyrus (FG is an important brain area involved in facial cognition; altered connectivity of FG to some other regions may lead to a deficit in visual cognition especially face recognition. However, whether functional connectivity between the FG and other brain regions changes remains unclear during the resting state in amnestic mild cognitive impairment (aMCI subjects. Here, we employed a resting state functional MRI (fMRI to examine changes in functional connectivity of left/right FG comparing aMCI patients with age-matched control subjects. Forty-eight aMCI and thirty-eight control subjects from the Alzheimer’s disease Neuroimaging Initiative (ADNI were analyzed. We focused on the correlation between low frequency fMRI signal fluctuations in the FG and those in all other brain regions. Compared to the control group, we found some discrepant regions in the aMCI group which presented increased or decreased connectivity with the left/right FG including the left precuneus, left lingual gyrus, right thalamus, supramarginal gyrus, left supplementary motor area, left inferior temporal gyrus, and left parahippocampus. More importantly, we also obtained that both left and right FG have increased functional connections with the left middle occipital gyrus (MOG and right anterior cingulate gyrus (ACC in aMCI patients. That was not a coincidence and might imply that the MOG and ACC also play a critical role in visual cognition, especially face recognition. These findings in a large part supported our hypothesis and provided a new insight in understanding the important subtype of MCI.

  1. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

    Science.gov (United States)

    Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod

    2017-07-15

    There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal

  2. fMRI in Parkinson’s Disease

    DEFF Research Database (Denmark)

    Siebner, Hartwig R.; Herz, Damian

    2013-01-01

    and reward-related behavior have shown that dopamine replacement can have detrimental effects on non-motor brain functions by altering physiological patterns of dopaminergic signaling. Neuroimaging can also be used to assess preclinical compensation of striatal dopaminergic denervation by studying......In this chapter we review recent advances in functional magnetic resonance imaging (fMRI) in Parkinson’s disease (PD). Covariance patterns of regional resting-state activity in functional brain networks can be used to distinguish Parkinson patients from healthy controls and might play an important...... role as a biomarker in the future. Analyses of motor activity and connectivity have revealed compensatory mechanisms for impaired function of cortico-subcortical feedback loops and have shown how attentional mechanisms modulate the activity in motor loops. Other fMRI studies probing cognitive functions...

  3. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain.

    Directory of Open Access Journals (Sweden)

    Gabriele Lohmann

    Full Text Available Functional magnetic resonance data acquired in a task-absent condition ("resting state" require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google's PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular "betweenness centrality" - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level.

  4. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    Science.gov (United States)

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  5. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia

    Directory of Open Access Journals (Sweden)

    Dana Mastrovito

    Full Text Available Autism and schizophrenia share overlapping genetic etiology, common changes in brain structure and common cognitive deficits. A number of studies using resting state fMRI have shown that machine learning algorithms can distinguish between healthy controls and individuals diagnosed with either autism spectrum disorder or schizophrenia. However, it has not yet been determined whether machine learning algorithms can be used to distinguish between the two disorders. Using a linear support vector machine, we identify features that are most diagnostic for each disorder and successfully use them to classify an independent cohort of subjects. We find both common and divergent connectivity differences largely in the default mode network as well as in salience, and motor networks. Using divergent connectivity differences, we are able to distinguish autistic subjects from those with schizophrenia. Understanding the common and divergent connectivity changes associated with these disorders may provide a framework for understanding their shared cognitive deficits. Keywords: Schizophrenia, Autism, Resting state, Classification, Connectivity, fMRI, Default mode network

  6. Identifying abnormal connectivity in patients using Dynamic Causal Modelling of fMRI responses.

    Directory of Open Access Journals (Sweden)

    Mohamed L Seghier

    2010-08-01

    Full Text Available Functional imaging studies of brain damaged patients offer a unique opportunity to understand how sensori-motor and cognitive tasks can be carried out when parts of the neural system that support normal performance are no longer available. In addition to knowing which regions a patient activates, we also need to know how these regions interact with one another, and how these inter-regional interactions deviate from normal. Dynamic Causal Modelling (DCM offers the opportunity to assess task-dependent interactions within a set of regions. Here we review its use in patients when the question of interest concerns the characterisation of abnormal connectivity for a given pathology. We describe the currently available implementations of DCM for fMRI responses, varying from the deterministic bilinear models with one-state equation to the stochastic nonlinear models with two-state equations. We also highlight the importance of the new Bayesian model selection and averaging tools that allow different plausible models to be compared at the single subject and group level. These procedures allow inferences to be made at different levels of model selection, from features (model families to connectivity parameters. Following a critical review of previous DCM studies that investigated abnormal connectivity we propose a systematic procedure that will ensure more flexibility and efficiency when using DCM in patients. Finally, some practical and methodological issues crucial for interpreting or generalising DCM findings in patients are discussed.

  7. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity.

    Science.gov (United States)

    Chan, Russell W; Leong, Alex T L; Ho, Leon C; Gao, Patrick P; Wong, Eddie C; Dong, Celia M; Wang, Xunda; He, Jufang; Chan, Ying-Shing; Lim, Lee Wei; Wu, Ed X

    2017-08-15

    The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.

  8. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment.

    Science.gov (United States)

    Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D

    2017-09-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.

  9. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All

  10. The effect of motivation on working memory: an fMRI and SEM study.

    Science.gov (United States)

    Szatkowska, Iwona; Bogorodzki, Piotr; Wolak, Tomasz; Marchewka, Artur; Szeszkowski, Wojciech

    2008-09-01

    This study investigated the effective connectivity between prefrontal regions of human brain supporting motivational influence on working memory. Functional magnetic resonance imaging (fMRI) and structural equation modeling (SEM) were used to examine the interaction between the lateral orbitofrontal (OFC), medial OFC, and dorsolateral prefrontal (DLPFC) regions in the left and right hemisphere during performance of the verbal 2-back working memory task under two reinforcement conditions. The "low-motivation" condition was not associated with monetary reinforcement, while the "high-motivation" condition involved the probability of winning a certain amount of money. In the "low-motivation" condition, the OFC regions in both hemispheres positively influenced the left DLPFC activity. In the "high-motivation" condition, the connectivity in the network including the right OFC regions and left DLPFC changed from positive to negative, whereas the positive connectivity in the network composed of the left OFC and left DLPFC became slightly enhanced compared with the "low-motivation" condition. However, only the connection between the right lateral OFC and left DLPFC showed a significant condition-dependent change in the strength of influence conveyed through the pathway. This change appears to be the functional correlate of motivational influence on verbal working memory.

  11. Regional homogeneity of fMRI time series in autism spectrum disorders.

    Science.gov (United States)

    Shukla, Dinesh K; Keehn, Brandon; Müller, Ralph Axel

    2010-05-26

    Functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) studies of autism spectrum disorders (ASD) have suggested atypical patterns of activation and long-distance connectivity for diverse tasks and networks in ASD. We explored the regional homogeneity (ReHo) approach in ASD, which is analogous to conventional fcMRI, but focuses on local connectivity. FMRI data of 26 children with ASD and 29 typically developing (TD) children were acquired during continuous task performance (visual search). Effects of motion and task were removed and Kendall's coefficient of concordance (KCC) was computed, based on the correlation of the blood oxygen level dependent (BOLD) time series for each voxel and its six nearest neighbors. ReHo was lower in the ASD than the TD group in superior parietal and anterior prefrontal regions. Inverse effects of greater ReHo in the ASD group were detected in lateral and medial temporal regions, predominantly in the right hemisphere. Our findings suggest that ReHo is a sensitive measure for detecting cortical abnormalities in autism. However, impact of methodological factors (such as spatial resolution) on ReHo require further investigation. Published by Elsevier Ireland Ltd.

  12. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.

    Science.gov (United States)

    Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J

    2017-02-15

    Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed

  13. A SVM-based quantitative fMRI method for resting-state functional network detection.

    Science.gov (United States)

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  15. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series

    Science.gov (United States)

    Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.

    2014-01-01

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  16. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  17. The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.

    Science.gov (United States)

    Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong

    2018-01-01

    Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.

  18. Altered Insula Connectivity under MDMA.

    Science.gov (United States)

    Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2017-10-01

    Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.

  19. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).

    Science.gov (United States)

    Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy

    2016-04-01

    Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average

  20. Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ludovica eGriffanti

    2015-08-01

    Full Text Available Artefact removal from resting state fMRI data is an essential step for a better identification of the resting state networks and the evaluation of their functional connectivity (FC, especially in pathological conditions. There is growing interest in the development of cleaning procedures, especially those not requiring external recordings (data-driven, which are able to remove multiple sources of artefacts. It is important that only inter-subject variability due to the artefacts is removed, preserving the between-subject variability of interest - crucial in clinical applications using clinical scanners to discriminate different pathologies and monitor their staging. In Alzheimer’s disease (AD patients, decreased FC is usually observed in the posterior cingulate cortex within the default mode network (DMN, and this is becoming a possible biomarker for AD. The aim of this study was to compare four different data-driven cleaning procedures (regression of motion parameters; regression of motion parameters, mean white matter and cerebrospinal fluid signal; FMRIB's ICA-based X-noiseifier –FIX- cleanup with soft and aggressive options on data acquired at 1.5T. The approaches were compared using data from 20 elderly healthy subjects and 21 AD patients in a mild stage, in terms of their impact on within-group consistency in FC and ability to detect the typical FC alteration of the DMN in AD patients. Despite an increased within-group consistency across subjects after applying any of the cleaning approaches, only after cleaning with FIX the expected DMN FC alteration in AD was detectable. Our study validates the efficacy of artefact removal even in a relatively small clinical population, and supports the importance of cleaning fMRI data for sensitive detection of FC alterations in a clinical environment.

  1. Heritability of the Effective Connectivity in the Resting-State Default Mode Network.

    Science.gov (United States)

    Xu, Junhai; Yin, Xuntao; Ge, Haitao; Han, Yan; Pang, Zengchang; Liu, Baolin; Liu, Shuwei; Friston, Karl

    2017-12-01

    The default mode network (DMN) is thought to reflect endogenous neural activity, which is considered as one of the most intriguing phenomena in cognitive neuroscience. Previous studies have found that key regions within the DMN are highly interconnected. Here, we characterized the genetic influences on causal or directed information flow within the DMN during the resting state. In this study, we recruited 46 pairs of twins and collected fMRI imaging data using a 3.0 T scanner. Dynamic causal modeling was conducted for each participant, and a structural equation model was used to calculate the heritability of DMN in terms of its effective connectivity. Model comparison favored a full-connected model. Structural equal modeling was used to estimate the additive genetics (A), common environment (C) and unique environment (E) contributions to variance for the DMN effective connectivity. The ACE model was preferred in the comparison of structural equation models. Heritability of DMN effective connectivity was 0.54, suggesting that the genetic made a greater contribution to the effective connectivity within DMN. Establishing the heritability of default-mode effective connectivity endorses the use of resting-state networks as endophenotypes or intermediate phenotypes in the search for the genetic basis of psychiatric or neurological illnesses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); Yang, Hong; Wang, Hao [Third Military Medical University, Ophthalmology Research Center, Southwest Eye Hospital/Southwest Hospital, Chongqing (China); Yu, Longhua [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); 401st Hospital of PLA, Department of Radiology, Qingdao (China); He, Sheng [University of Minnesota Twin Cities, Department of Psychology, Minneapolis, MN (United States)

    2017-05-15

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  3. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian; Yang, Hong; Wang, Hao; Yu, Longhua; He, Sheng

    2017-01-01

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  4. Decoding the different states of visual attention using functional and effective connectivity features in fMRI data.

    Science.gov (United States)

    Parhizi, Behdad; Daliri, Mohammad Reza; Behroozi, Mehdi

    2018-04-01

    The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.

  5. Resting-State Seed-Based Analysis: An Alternative to Task-Based Language fMRI and Its Laterality Index.

    Science.gov (United States)

    Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C

    2017-06-01

    Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.

  6. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  7. Effect of scanner acoustic background noise on strict resting-state fMRI

    Directory of Open Access Journals (Sweden)

    C. Rondinoni

    2013-04-01

    Full Text Available Functional MRI (fMRI resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs. Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal, while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  8. Effect of scanner acoustic background noise on strict resting-state fMRI.

    Science.gov (United States)

    Rondinoni, C; Amaro, E; Cendes, F; dos Santos, A C; Salmon, C E G

    2013-04-01

    Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a 'resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced "silent" pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  9. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  10. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    Science.gov (United States)

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  11. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    Science.gov (United States)

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  12. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    Science.gov (United States)

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  13. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  14. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    Science.gov (United States)

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  15. Functional Connectivity Estimated from Resting-State fMRI Reveals Selective Alterations in Male Adolescents with Pure Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Feng-Mei Lu

    Full Text Available Conduct disorder (CD is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD individuals. Independent component analysis (ICA was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus, which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus, the lateral visual network (left superior occipital gyrus, and the medial visual network (right fusiform, left lingual gyrus and right calcarine, which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network and a high-order cognitive network (the default mode network. Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD.

  16. Effective connectivity between superior temporal gyrus and Heschl's gyrus during white noise listening: linear versus non-linear models.

    Science.gov (United States)

    Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia

    2012-04-01

    This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with

  17. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults

    Science.gov (United States)

    Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.

    2015-01-01

    Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects

  18. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  19. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie; Wang, Shufeng; Xue, Yunhao; Li, Wenjun

    2017-01-01

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  20. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    OpenAIRE

    Vasiliki eFolia; Vasiliki eFolia; Karl Magnus ePetersson; Karl Magnus ePetersson; Karl Magnus ePetersson

    2014-01-01

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results ...

  1. Sexually dimorphic functional connectivity in response to high vs. low energy-dense food cues in obese humans: an fMRI study.

    Science.gov (United States)

    Atalayer, Deniz; Pantazatos, Spiro P; Gibson, Charlisa D; McOuatt, Haley; Puma, Lauren; Astbury, Nerys M; Geliebter, Allan

    2014-10-15

    Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interaction (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women. Published by Elsevier Inc.

  2. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    Science.gov (United States)

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the

  3. Effects of hypoglycemia on human brain activation measured with fMRI.

    Science.gov (United States)

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  4. Effects of aging on neural connectivity underlying selective memory for emotional scenes.

    Science.gov (United States)

    Waring, Jill D; Addis, Donna Rose; Kensinger, Elizabeth A

    2013-02-01

    Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults' encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults' connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. Published by Elsevier Inc.

  5. Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K

    2018-05-01

    Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.

  6. FUNCTIONAL AND EFFECTIVE CONNECTIVITY OF VISUAL WORD RECOGNITION AND HOMOPHONE ORTHOGRAPHIC ERRORS.

    Directory of Open Access Journals (Sweden)

    JOAN eGUÀRDIA-OLMOS

    2015-05-01

    Full Text Available The study of orthographic errors in a transparent language like Spanish is an important topic in relation to writing acquisition. The development of neuroimaging techniques, particularly functional Magnetic Resonance Imaging (fMRI, has enabled the study of such relationships between brain areas. The main objective of the present study was to explore the patterns of effective connectivity by processing pseudohomophone orthographic errors among subjects with high and low spelling skills. Two groups of 12 Mexican subjects each, matched by age, were formed based on their results in a series of ad-hoc spelling-related out-scanner tests: a High Spelling Skills group (HSS and a Low Spelling Skills group (LSS. During the fMRI session, two experimental tasks were applied (spelling recognition task and visuoperceptual recognition task. Regions of Interest (ROIs and their signal values were obtained for both tasks. Based on these values, SEMs (Structural Equation Models were obtained for each group of spelling competence (HSS and LSS and task through ML (Maximum Likelihood estimation, and the model with the best fit was chosen in each case. Likewise, DCM (Dynamic Causal Models were estimated for all the conditions across tasks and groups. The HSS group’s SEM results suggest that, in the spelling recognition task, the right middle temporal gyrus, and, to a lesser extent, the left parahippocampal gyrus receive most of the significant effects, whereas the DCM results in the visuoperceptual recognition task show less complex effects, but still congruent with the previous results, with an important role in several areas. In general, these results are consistent with the major findings in partial studies about linguistic activities but they are the first analyses of statistical effective brain connectivity in transparent languages.

  7. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    Science.gov (United States)

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain, the...

  9. Attentional control underlies the perceptual load effect: Evidence from voxel-wise degree centrality and resting-state functional connectivity.

    Science.gov (United States)

    Yin, Shouhang; Liu, Lu; Tan, Jinfeng; Ding, Cody; Yao, Dezhong; Chen, Antao

    2017-10-24

    The fact that interference from peripheral distracting information can be reduced in high perceptual load tasks has been widely demonstrated in previous research. The modulation from the perceptual load is known as perceptual load effect (PLE). Previous functional magnetic resonance imaging (fMRI) studies on perceptual load have reported the brain areas implicated in attentional control. To date, the contribution of attentional control to PLE and the relationship between the organization of functional connectivity and PLE are still poorly understood. In the present study, we used resting-state fMRI to explore the association between the voxel-wise degree centrality (DC) and PLE in an individual differences design and further investigated the potential resting-state functional connectivity (RSFC) contributing to individual's PLE. DC-PLE correlation analysis revealed that PLE was positively associated with the right middle temporal visual area (MT)-one of dorsal attention network (DAN) nodes. Furthermore, the right MT functionally connected to the conventional DAN and the RSFCs between right MT and DAN nodes were also positively associated with individual difference in PLE. The results suggest an important role of attentional control in perceptual load tasks and provide novel insights into the understanding of the neural correlates underlying PLE. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Pregenual Anterior Cingulate Dysfunction Associated with Depression in OCD: An Integrated Multimodal fMRI/1H MRS Study.

    Science.gov (United States)

    Tadayonnejad, Reza; Deshpande, Rangaprakash; Ajilore, Olusola; Moody, Teena; Morfini, Francesca; Ly, Ronald; O'Neill, Joseph; Feusner, Jamie D

    2018-04-01

    Depression is a commonly occurring symptom in obsessive-compulsive disorder (OCD), and is associated with worse functional impairment, poorer quality of life, and poorer treatment response. Understanding the underlying neurochemical and connectivity-based brain mechanisms of this important symptom domain in OCD is necessary for development of novel, more globally effective treatments. To investigate biopsychological mechanisms of comorbid depression in OCD, we examined effective connectivity and neurochemical signatures in the pregenual anterior cingulate cortex (pACC), a structure known to be involved in both OCD and depression. Resting-state functional magnetic resonance imaging (fMRI) and 1 H magnetic resonance spectroscopy (MRS) data were obtained from participants with OCD (n=49) and healthy individuals of equivalent age and sex (n=25). Granger causality-based effective (directed) connectivity was used to define causal networks involving the right and left pACC. The interplay between fMRI connectivity, 1 H MRS and clinical data was explored by applying moderation and mediation analyses. We found that the causal influence of the right dorsal anterior midcingulate cortex (daMCC) on the right pACC was significantly lower in the OCD group and showed significant correlation with depressive symptom severity in the OCD group. Lower and moderate levels of glutamate (Glu) in the right pACC significantly moderated the interaction between right daMCC-pACC connectivity and depression severity. Our results suggest a biochemical-connectivity-psychological model of pACC dysfunction contributing to depression in OCD, particularly involving intracingulate connectivity and glutamate levels in the pACC. These findings have implications for potential molecular and network targets for treatment of this multi-faceted psychiatric condition.

  11. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  12. Interhemispheric functional connectivity and its relationships with clinical characteristics in major depressive disorder: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available BACKGROUND: Abnormalities in large-scale, structural and functional brain connectivity have been increasingly reported in patients with major depressive disorder (MDD. However, MDD-related alterations in functional interaction between the cerebral hemispheres are still not well understood. Resting state fMRI, which reveals spontaneous neural fluctuations in blood oxygen level dependent signals, provides a means to detect interhemispheric functional coherence. We examined the resting state functional connectivity (RSFC between the two hemispheres and its relationships with clinical characteristics in MDD patients using a recently proposed measurement named "voxel-mirrored homotopic connectivity (VMHC". METHODOLOGY/PRINCIPAL FINDINGS: We compared the interhemispheric RSFC, computed using the VMHC approach, of seventeen first-episode drug-naive patients with MDD and seventeen healthy controls. Compared to the controls, MDD patients showed significant VMHC decreases in the medial orbitofrontal gyrus, parahippocampal gyrus, fusiform gyrus, and occipital regions including the middle occipital gyrus and cuneus. In MDD patients, a negative correlation was found between VMHC of the fusiform gyrus and illness duration. Moreover, there were several regions whose VMHC showed significant negative correlations with the severity of cognitive disturbance, including the prefrontal regions, such as middle and inferior frontal gyri, and two regions in the cereballar crus. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the functional coordination between homotopic brain regions is impaired in MDD patients, thereby providing new evidence supporting the interhemispheric connectivity deficits of MDD. The significant correlations between the VMHC and clinical characteristics in MDD patients suggest potential clinical implication of VMHC measures for MDD. Interhemispheric RSFC may serve as a useful screening method for evaluating MDD where neural connectivity is

  13. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bidhan eLamichhane

    2015-09-01

    Full Text Available Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI experiments involving thirty-three participants. The behavioral performance error and response time (RT were correlated with noise in face-house images. We then built dynamical causal models (DCM of fMRI blood-oxygenation level dependent (BOLD signals from the face and house category-specific regions in ventral temporal cortex, the fusiform face area (FFA and parahippocampal place area (PPA, and the dorsolateral prefrontal cortex (dlPFC. We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity from FFA and PPA to the dlPFC all increased with noise level. These results suggest that the FFA-PPA-dlPFC network plays an important role for relaying and integrating competing sensory information to arrive at perceptual decisions.

  14. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    Directory of Open Access Journals (Sweden)

    Vasiliki eFolia

    2014-02-01

    Full Text Available In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45 and the medial prefrontal regions (centered on BA 8/32. Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax in unsupervised AGL paradigms with proper learning designs.

  15. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    Science.gov (United States)

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (pcaffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  16. Phase-synchronization-based parcellation of resting state fMRI signals reveals topographically organized clusters in early visual cortex

    NARCIS (Netherlands)

    Gravel, Nicolás G; Harvey, Ben M; Renken, Remco K; Dumoulin, Serge O; Cornelissen, Frans W

    2018-01-01

    Resting-state fMRI is widely used to study brain function and connectivity. However, interpreting patterns of resting state (RS) fMRI activity remains challenging as they may arise from different neuronal mechanisms than those triggered by exogenous events. Currently, this limits the use of RS-fMRI

  17. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed

  18. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline.

    Science.gov (United States)

    Adhikari, Bhim M; Jahanshad, Neda; Shukla, Dinesh; Glahn, David C; Blangero, John; Reynolds, Richard C; Cox, Robert W; Fieremans, Els; Veraart, Jelle; Novikov, Dmitry S; Nichols, Thomas E; Hong, L Elliot; Thompson, Paul M; Kochunov, Peter

    2018-01-01

    Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.

  19. Advice taking from humans and machines: an fMRI and effective connectivity study

    Directory of Open Access Journals (Sweden)

    Kimberly Goodyear

    2016-11-01

    Full Text Available With new technological advances, advice can come from different sources such as machines or humans, but how individuals respond to such advice and the neural correlates involved need to be better understood. We combined functional MRI and multivariate Granger causality analysis with an X-ray luggage-screening task to investigate the neural basis and corresponding effective connectivity involved with advice utilization from agents framed as experts. Participants were asked to accept or reject good or bad advice from a human or machine agent with low reliability (high false alarm rate. We showed that unreliable advice decreased performance overall and participants interacting with the human agent had a greater depreciation of advice utilization during bad advice compared to the machine agent. These differences in advice utilization can be perceivably due to reevaluation of expectations arising from association of dispositional credibility for each agent. We demonstrated that differences in advice utilization engaged brain regions that may be associated with evaluation of personal characteristics and traits (precuneus, posterior cingulate cortex, temporoparietal junction and interoception (posterior insula. We found that the right posterior insula and left precuneus were the drivers of the advice utilization network that were reciprocally connected to each other and also projected to all other regions. Our behavioral and neuroimaging results have significant implications for society because of progressions in technology and increased interactions with machines.

  20. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    Science.gov (United States)

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  1. Hormone effects on fMRI and cognitive measures of encoding: importance of hormone preparation.

    Science.gov (United States)

    Gleason, C E; Schmitz, T W; Hess, T; Koscik, R L; Trivedi, M A; Ries, M L; Carlsson, C M; Sager, M A; Asthana, S; Johnson, S C

    2006-12-12

    We compared fMRI and cognitive data from nine hormone therapy (HT)-naive women with data from women exposed to either opposed conjugated equine estrogens (CEE) (n = 10) or opposed estradiol (n = 4). Exposure to either form of HT was associated with healthier fMRI response; however, CEE-exposed women exhibited poorer memory performance than either HT-naive or estradiol-exposed subjects. These preliminary findings emphasize the need to characterize differential neural effects of various HTs.

  2. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  3. A method for independent component graph analysis of resting-state fMRI

    DEFF Research Database (Denmark)

    de Paula, Demetrius Ribeiro; Ziegler, Erik; Abeyasinghe, Pubuditha M.

    2017-01-01

    Introduction Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguou......Introduction Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non......-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Objective Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. Methods First, ICA was performed at the single-subject level in 15 healthy...... parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Results Network graph comparison between the classically constructed network...

  4. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Science.gov (United States)

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  5. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    Science.gov (United States)

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.

  6. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    Science.gov (United States)

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Sparse dictionary learning of resting state fMRI networks.

    Science.gov (United States)

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  8. OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis.

    Science.gov (United States)

    Koush, Yury; Ashburner, John; Prilepin, Evgeny; Sladky, Ronald; Zeidman, Peter; Bibikov, Sergei; Scharnowski, Frank; Nikonorov, Artem; De Ville, Dimitri Van

    2017-08-01

    Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Identifying individuals with antisocial personality disorder using resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Yan Tang

    Full Text Available Antisocial personality disorder (ASPD is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint.

  10. The UCLA Multimodal Connectivity Database: A web-based platform for brain connectivity matrix sharing and analysis

    Directory of Open Access Journals (Sweden)

    Jesse A. Brown

    2012-11-01

    Full Text Available Brain connectomics research has rapidly expanded using functional MRI (fMRI and diffusion-weighted MRI (dwMRI. A common product of these varied analyses is a connectivity matrix (CM. A CM stores the connection strength between any two regions (nodes in a brain network. This format is useful for several reasons: 1 it is highly distilled, with minimal data size and complexity, 2 graph theory can be applied to characterize the network’s topology, and 3 it retains sufficient information to capture individual differences such as age, gender, intelligence quotient, or disease state. Here we introduce the UCLA Multimodal Connectivity Database (http://umcd.humanconnectomeproject.org, an openly available website for brain network analysis and data sharing. The site is a repository for researchers to publicly share CMs derived from their data. The site also allows users to select any CM shared by another user, compute graph theoretical metrics on the site, visualize a report of results, or download the raw CM. To date, users have contributed over 2000 individual CMs, spanning different imaging modalities (fMRI, dwMRI and disorders (Alzheimer’s, autism, Attention Deficit Hyperactive Disorder. To demonstrate the site’s functionality, whole brain functional and structural connectivity matrices are derived from 60 subjects’ (ages 26-45 resting state fMRI (rs-fMRI and dwMRI data and uploaded to the site. The site is utilized to derive graph theory global and regional measures for the rs-fMRI and dwMRI networks. Global and nodal graph theoretical measures between functional and structural networks exhibit low correspondence. This example demonstrates how this tool can enhance the comparability of brain networks from different imaging modalities and studies. The existence of this connectivity-based repository should foster broader data sharing and enable larger-scale meta analyses comparing networks across imaging modality, age group, and disease state.

  11. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion

    Directory of Open Access Journals (Sweden)

    Daiming eXiu

    2015-04-01

    Full Text Available This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive (‘happy’, neutral and negative (‘angry’ or ‘fearful’ faces. Dynamic Causal Modeling (DCM was applied on the fMRI data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala and orbitofrontal cortex. The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

  12. Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington's disease: A proof of concept study.

    Science.gov (United States)

    Papoutsi, Marina; Weiskopf, Nikolaus; Langbehn, Douglas; Reilmann, Ralf; Rees, Geraint; Tabrizi, Sarah J

    2018-03-01

    Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback training is feasible in Huntington's disease (HD), and assess any factors that contribute to its effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed behavioral and neuroimaging data before and after training to examine changes of brain function and structure, and cognitive and motor performance. We found that patients overall learned to increase activity of the target region during training with variable effects on cognitive and motor behavior. Improved cognitive and motor performance after training predicted increases in pre-SMA grey matter volume, fMRI activity in the left putamen, and increased SMA-left putamen functional connectivity. Although we did not directly target the putamen and corticostriatal connectivity during neurofeedback training, our results suggest that training the SMA can lead to regulation of associated networks with beneficial effects in behavior. We conclude that neurofeedback training can induce plasticity in patients with Huntington's disease despite the presence of neurodegeneration, and the effects of training a single region may engage other regions and circuits implicated in disease pathology. © 2017 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. Decoding Complex Cognitive States Online by Manifold Regularization in Real-Time fMRI

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    2011-01-01

    Human decision making is complex and influenced by many factors on multiple time scales, reflected in the numerous brain networks and connectivity patterns involved as revealed by fMRI. We address mislabeling issues in paradigms involving complex cognition, by considering a manifold regularizing...

  14. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    Science.gov (United States)

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  15. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    OpenAIRE

    Rosenberg, Monica D.; Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained...

  16. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    Science.gov (United States)

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. An FMRI-compatible Symbol Search task.

    Science.gov (United States)

    Liebel, Spencer W; Clark, Uraina S; Xu, Xiaomeng; Riskin-Jones, Hannah H; Hawkshead, Brittany E; Schwarz, Nicolette F; Labbe, Donald; Jerskey, Beth A; Sweet, Lawrence H

    2015-03-01

    Our objective was to determine whether a Symbol Search paradigm developed for functional magnetic resonance imaging (FMRI) is a reliable and valid measure of cognitive processing speed (CPS) in healthy older adults. As all older adults are expected to experience cognitive declines due to aging, and CPS is one of the domains most affected by age, establishing a reliable and valid measure of CPS that can be administered inside an MR scanner may prove invaluable in future clinical and research settings. We evaluated the reliability and construct validity of a newly developed FMRI Symbol Search task by comparing participants' performance in and outside of the scanner and to the widely used and standardized Symbol Search subtest of the Wechsler Adult Intelligence Scale (WAIS). A brief battery of neuropsychological measures was also administered to assess the convergent and discriminant validity of the FMRI Symbol Search task. The FMRI Symbol Search task demonstrated high test-retest reliability when compared to performance on the same task administered out of the scanner (r=.791; pSymbol Search (r=.717; pSymbol Search task were also observed. The FMRI Symbol Search task is a reliable and valid measure of CPS in healthy older adults and exhibits expected sensitivity to the effects of age on CPS performance.

  18. Reading in dyslexia across literacy development: A longitudinal study of effective connectivity.

    Science.gov (United States)

    Morken, Frøydis; Helland, Turid; Hugdahl, Kenneth; Specht, Karsten

    2017-01-01

    Dyslexia is a literacy disorder affecting the efficient acquisition of reading and writing skills. The disorder is neurobiological in origin. Due to its developmental nature, longitudinal studies of dyslexia are of essence. They are, however, relatively scarce. The present study took a longitudinal approach to cortical connectivity of brain imaging data in reading tasks in children with dyslexia and children with typical reading development. The participants were followed with repeated measurements through Pre-literacy (6 years old), Emergent Literacy (8 years old) and Literacy (12 years old) stages, using Dynamic Causal Modelling (DCM) when analysing functional magnetic resonance imaging (fMRI) data. Even though there are a few longitudinal studies on effective connectivity in typical reading, to our knowledge, no studies have previously investigated these issues in relation to dyslexia. We set up a model of a brain reading network involving five cortical regions (inferior frontal gyrus, precentral gyrus, superior temporal gyrus, inferior parietal lobule, and occipito-temporal cortex). Using DCM, connectivity measures were calculated for each connection in the model. These measures were further analysed using factorial ANOVA. The results showed that the difference between groups centred on connections going to and from the inferior frontal gyrus (two connections) and the occipito-temporal cortex (three connections). For all five connections, the typical group showed stable or decreasing connectivity measures. The dyslexia group, on the other hand, showed a marked up-regulation (occipito-temporal connections) or down-regulation (inferior frontal gyrus connections) from 6 years to 8 years, followed by normalization from 8 years to 12 years. We interpret this as a delay in the dyslexia group in developing into the Pre-literacy and Emergent literacy stages. This delay could possibly be detrimental to literacy development. By age 12, there was no statistically

  19. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  20. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    Science.gov (United States)

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  1. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.

    Science.gov (United States)

    Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z

    2015-11-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Generative embedding for model-based classification of fMRI data.

    Directory of Open Access Journals (Sweden)

    Kay H Brodersen

    2011-06-01

    Full Text Available Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI. The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs rarely afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting discriminative information encoded in 'hidden' physiological quantities such as synaptic connection strengths; and it affords mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a combination of dynamic causal models (DCMs and SVMs. We propose a general procedure of DCM-based generative embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and significantly outperforms conventional activation-based and

  3. How art changes your brain: differential effects of visual art production and cognitive art evaluation on functional brain connectivity.

    Science.gov (United States)

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood.

  4. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  6. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Science.gov (United States)

    Ding, Wei-na; Sun, Jin-hua; Sun, Ya-wen; Zhou, Yan; Li, Lei; Xu, Jian-rong; Du, Ya-song

    2013-01-01

    Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week. There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (paddiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.

  7. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study

    Directory of Open Access Journals (Sweden)

    Natasha E. Wade, M.S.

    2017-12-01

    Full Text Available Background: Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD. We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC. Materials and methods: For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. Results: After controlling for family-wise error (p = 0.05, there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC, temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. Conclusions: This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence. Keywords: Alcohol dependence, fMRI, Stress task, Functional connectivity, Amygdala

  8. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    Directory of Open Access Journals (Sweden)

    Xiaotong Fan

    2016-01-01

    Full Text Available Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients.

  9. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    Science.gov (United States)

    Fan, Xiaotong; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie

    2016-01-01

    Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients. PMID:28018680

  10. Altered effective connectivity network of the basal ganglia in low-grade hepatic encephalopathy: a resting-state fMRI study with Granger causality analysis.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND: The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE. Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI. METHODOLOGY/PRINCIPAL FINDINGS: Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC, cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. CONCLUSIONS/SIGNIFICANCE: Low-grade HE patients had disrupted effective

  11. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data

    KAUST Repository

    Castruccio, Stefano; Ombao, Hernando; Genton, Marc G.

    2018-01-01

    Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow

  12. From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals.

    Science.gov (United States)

    Schiefer, Jonathan; Niederbühl, Alexander; Pernice, Volker; Lennartz, Carolin; Hennig, Jürgen; LeVan, Pierre; Rotter, Stefan

    2018-03-01

    Knowing brain connectivity is of great importance both in basic research and for clinical applications. We are proposing a method to infer directed connectivity from zero-lag covariances of neuronal activity recorded at multiple sites. This allows us to identify causal relations that are reflected in neuronal population activity. To derive our strategy, we assume a generic linear model of interacting continuous variables, the components of which represent the activity of local neuronal populations. The suggested method for inferring connectivity from recorded signals exploits the fact that the covariance matrix derived from the observed activity contains information about the existence, the direction and the sign of connections. Assuming a sparsely coupled network, we disambiguate the underlying causal structure via L1-minimization, which is known to prefer sparse solutions. In general, this method is suited to infer effective connectivity from resting state data of various types. We show that our method is applicable over a broad range of structural parameters regarding network size and connection probability of the network. We also explored parameters affecting its activity dynamics, like the eigenvalue spectrum. Also, based on the simulation of suitable Ornstein-Uhlenbeck processes to model BOLD dynamics, we show that with our method it is possible to estimate directed connectivity from zero-lag covariances derived from such signals. In this study, we consider measurement noise and unobserved nodes as additional confounding factors. Furthermore, we investigate the amount of data required for a reliable estimate. Additionally, we apply the proposed method on full-brain resting-state fast fMRI datasets. The resulting network exhibits a tendency for close-by areas being connected as well as inter-hemispheric connections between corresponding areas. In addition, we found that a surprisingly large fraction of more than one third of all identified connections were of

  13. Glucose and caffeine effects on sustained attention: an exploratory fMRI study.

    Science.gov (United States)

    Serra-Grabulosa, Josep M; Adan, Ana; Falcón, Carles; Bargalló, Núria

    2010-11-01

    Caffeine and glucose can have beneficial effects on cognitive performance. However, neural basis of these effects remain unknown. Our objective was to evaluate the effects of caffeine and glucose on sustained attention, using functional magnetic resonance imaging (fMRI). Forty young right-handed, healthy, low caffeine-consuming subjects participated in the study. In a double-blind, randomised design, subjects received one of the following beverages: vehicle (water, 150 ml); vehicle plus 75 g of glucose; vehicle plus 75 mg of caffeine; vehicle plus 75 g of glucose and 75 mg of caffeine. Participants underwent two scanning fMRI sessions (before and 30 min after of the administration of the beverage). A continuous performance test was used to assess sustained attention. Participants who received combined caffeine and glucose had similar performance to the others but had a decrease in activation in the bilateral parietal and left prefrontal cortex. Since these areas have been related to the sustained attention and working memory processes, results would suggest that combined caffeine and glucose could increase the efficiency of the attentional system. However, more studies using larger samples and different levels of caffeine and glucose are necessary to better understand the combined effects of both substances. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Comparing Intrinsic Connectivity Models for the Primary Auditory Cortices

    Science.gov (United States)

    Hamid, Khairiah Abdul; Yusoff, Ahmad Nazlim; Mohamad, Mazlyfarina; Hamid, Aini Ismafairus Abd; Manan, Hanani Abd

    2010-07-01

    This fMRI study is about modeling the intrinsic connectivity between Heschl' gyrus (HG) and superior temporal gyrus (STG) in human primary auditory cortices. Ten healthy male subjects participated and required to listen to white noise stimulus during the fMRI scans. Two intrinsic connectivity models comprising bilateral HG and STG were constructed using statistical parametric mapping (SPM) and dynamic causal modeling (DCM). Group Bayes factor (GBF), positive evidence ratio (PER) and Bayesian model selection (BMS) for group studies were used in model comparison. Group results indicated significant bilateral asymmetrical activation (puncorr < 0.001) in HG and STG. Comparison results showed strong evidence of Model 2 as the preferred model (STG as the input center) with GBF value of 5.77 × 1073 The model is preferred by 6 out of 10 subjects. The results were supported by BMS results for group studies. One-sample t-test on connection values obtained from Model 2 indicates unidirectional parallel connections from STG to bilateral HG (p<0.05). Model 2 was determined to be the most probable intrinsic connectivity model between bilateral HG and STG when listening to white noise.

  15. Flexible Connectivity in the Aging Brain Revealed by Task Modulations

    NARCIS (Netherlands)

    Geerligs, Linda; Saliasi, Emi; Renken, Remco J.; Maurits, Natasha M.; Lorist, Monicque M.

    Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in

  16. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.

    Science.gov (United States)

    Kundu, Prantik; Inati, Souheil J; Evans, Jennifer W; Luh, Wen-Ming; Bandettini, Peter A

    2012-04-15

    A central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques for removing nuisance effects include modeling of noise time courses based on external measurements followed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in terms of changes in R(2)* and initial signal intensity (S(0)) based on the analysis of echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed for the degree to which their signal changes fit models for R(2)* and S(0) change, and summary scores were developed to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like "functional network" components from non BOLD-like components related to motion, pulsatility, and other nuisance effects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using conventional noise regressors demonstrated the superiority of the proposed technique for both individual and group level seed-based connectivity analysis, especially in mapping subcortical-cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence was highly robust, which allowed for the

  17. How Art Changes Your Brain: Differential Effects of Visual Art Production and Cognitive Art Evaluation on Functional Brain Connectivity

    Science.gov (United States)

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R.; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood. PMID:24983951

  18. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.

    Science.gov (United States)

    Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex

    2018-02-27

    "Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.

  19. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.

    Science.gov (United States)

    Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J

    2012-02-07

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.

  20. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin

    Science.gov (United States)

    Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.

    2012-01-01

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440

  1. Control over the Strength of Connections Between Modules: A Double Dissociation Between Stimulus Format and Task Revealed by Granger Causality Mapping in fMRI

    Directory of Open Access Journals (Sweden)

    Britt eAnderson

    2015-03-01

    Full Text Available Drawing on theoretical and computational work with the localist Dual Route reading model and results from behavioral studies, Besner, Moroz, and O'Malley (2011 proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used fMRI to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger Causality Mapping (GCM. Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words. This frontal region (BA 10 has previously been shown to be involved in goal-directed behaviour and maintenance of a specific task-set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing.

  2. A task-related and resting state realistic fMRI simulator for fMRI data validation

    Science.gov (United States)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  3. Effects of behavioral activation on default mode network connectivity in subthreshold depression: A preliminary resting-state fMRI study.

    Science.gov (United States)

    Yokoyama, Satoshi; Okamoto, Yasumasa; Takagaki, Koki; Okada, Go; Takamura, Masahiro; Mori, Asako; Shiota, Syouichi; Ichikawa, Naho; Jinnin, Ran; Yamawaki, Shigeto

    2018-02-01

    Subthreshold depression is a risk factor for major depressive disorder, and it is known to have a negative impact on quality of life (QOL). Although behavioral activation, which is one type of cognitive behavioral therapy, is an effective psychological intervention for subthreshold depression, neural mechanisms of behavioral activation are unclear. Enhanced functional connectivity between default mode network (DMN) and the other regions has been demonstrated in participants with subthreshold depression. The purpose of this study was to examine the effects of behavioral activation on DMN abnormalities by using resting-state functional MRI (rs-fMRI). Participants with subthreshold depression (N =40) were randomly assigned to either an intervention group or a non-intervention group. They were scanned using rs-fMRI before and after the intervention. Independent component analysis indicated three subnetworks of the DMN. Analyzing intervention effects on functional connectivity of each subnetwork indicated that connectivity of the anterior DMN subnetwork with the dorsal anterior cingulate was reduced after the intervention. Moreover, this reduction was correlated with an increase in health-related QOL. We did not compare the findings with healthy participants. Further research should be conducted by including healthy controls to verify the results of this study. Mechanisms of behavioral activation might be related to enhanced ability to independently use the dACC and the DMN, which increases an attention control to positive external stimuli. This is the first study to investigate neural mechanisms of behavioral activation using rs-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Children with reading disability show brain differences in effective connectivity for visual, but not auditory word comprehension.

    Directory of Open Access Journals (Sweden)

    Li Liu

    2010-10-01

    Full Text Available Previous literature suggests that those with reading disability (RD have more pronounced deficits during semantic processing in reading as compared to listening comprehension. This discrepancy has been supported by recent neuroimaging studies showing abnormal activity in RD during semantic processing in the visual but not in the auditory modality. Whether effective connectivity between brain regions in RD could also show this pattern of discrepancy has not been investigated.Children (8- to 14-year-olds were given a semantic task in the visual and auditory modality that required an association judgment as to whether two sequentially presented words were associated. Effective connectivity was investigated using Dynamic Causal Modeling (DCM on functional magnetic resonance imaging (fMRI data. Bayesian Model Selection (BMS was used separately for each modality to find a winning family of DCM models separately for typically developing (TD and RD children. BMS yielded the same winning family with modulatory effects on bottom-up connections from the input regions to middle temporal gyrus (MTG and inferior frontal gyrus(IFG with inconclusive evidence regarding top-down modulations. Bayesian Model Averaging (BMA was thus conducted across models in this winning family and compared across groups. The bottom-up effect from the fusiform gyrus (FG to MTG rather than the top-down effect from IFG to MTG was stronger in TD compared to RD for the visual modality. The stronger bottom-up influence in TD was only evident for related word pairs but not for unrelated pairs. No group differences were noted in the auditory modality.This study revealed a modality-specific deficit for children with RD in bottom-up effective connectivity from orthographic to semantic processing regions. There were no group differences in connectivity from frontal regions, suggesting that the core deficit in RD is not in top-down modulation.

  5. Neuropsychology and cognitive neuroscience in the fMRI era: A recapitulation of localizationist and connectionist views.

    Science.gov (United States)

    Sutterer, Matthew J; Tranel, Daniel

    2017-11-01

    We highlight the past 25 years of cognitive neuroscience and neuropsychology, focusing on the impact to the field of the introduction in 1992 of functional MRI (fMRI). We reviewed the past 25 years of literature in cognitive neuroscience and neuropsychology, focusing on the relation and interplay of fMRI studies and studies utilizing the "lesion method" in human participants with focal brain damage. Our review highlights the state of localist/connectionist research debates in cognitive neuroscience and neuropsychology circa 1992, and details how the introduction of fMRI into the field at that time catalyzed a new wave of efforts to map complex human behavior to specific brain regions. This, in turn, eventually evolved into many studies that focused on networks and connections between brain areas, culminating in recent years with large-scale investigations such as the Human Connectome Project. We argue that throughout the past 25 years, neuropsychology-and more precisely, the "lesion method" in humans-has continued to play a critical role in arbitrating conclusions and theories derived from inferred patterns of local brain activity or wide-spread connectivity from functional imaging approaches. We conclude by highlighting the future for neuropsychology in the context of an increasingly complex methodological armamentarium. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Adaptation of a haptic robot in a 3T fMRI.

    Science.gov (United States)

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  7. Effects of taurine on resting-state fMRI activity in spontaneously hypertensive rats.

    Science.gov (United States)

    Chen, Vincent Chin-Hung; Hsu, Tsai-Ching; Chen, Li-Jeng; Chou, Hong-Chun; Weng, Jun-Cheng; Tzang, Bor-Show

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is a global behavior illness among children and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a spontaneously hypertensive rat (SHR) animal model was adopted. Significantly decreased serum C-reactive protein (CRP) was detected in rats of Wistar Kyoto (WKY) high-taurine group and significantly decreased interleukin (IL)-1β and CRP were detected in rats of SHR low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of controls. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR high-taurine group than in those of the SHR control group. Additionally, significantly lower functional connectivity (FC) and mean amplitude of low-frequency fluctuation (mALFF) in the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was significantly lower than in those of the SHR control group. These findings suggest that the administration of a high-dose taurine probably improves hyperactive behavior in SHR rats by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR rats.

  8. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach

    Directory of Open Access Journals (Sweden)

    Nan Xu

    2017-05-01

    Full Text Available Resting-state functional MRI (rs-fMRI is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD signal from different regions of interest (ROIs. However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1 Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2 On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3 On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.

  9. Activation Detection in fMRI Using Jeffrey Divergence

    Science.gov (United States)

    Seghouane, Abd-Krim

    2009-12-01

    A statistical test for detecting activated pixels in functional MRI (fMRI) data is proposed. For the derivation of this test, the fMRI time series measured at each voxel is modeled as the sum of a response signal which arises due to the experimentally controlled activation-baseline pattern, a nuisance component representing effects of no interest, and Gaussian white noise. The test is based on comparing the dimension of the voxels fMRI time series fitted data models with and without controlled activation-baseline pattern. The Jeffrey divergence is used for this comparison. The test has the advantage of not requiring a level of significance or a threshold to be provided.

  10. Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.

    Science.gov (United States)

    Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng

    2012-06-01

    Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Abnormal amygdala connectivity in patients with primary insomnia: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Huang Zhaoyang; Liang Peipeng; Jia Xiuqin; Zhan Shuqin; Li Ning; Ding Yan; Lu Jie; Wang Yuping; Li Kuncheng

    2012-01-01

    Background: Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Methods: Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. Results: We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). Conclusions: The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients.

  12. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    DEFF Research Database (Denmark)

    Garza-Villarreal, Eduardo A; Jiang, Zhiguo; Vuust, Peter

    2015-01-01

    , correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the lAnG showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex (rdlPFC), the left caudate (lCau), and decreased connectivity with right anterior cingulate cortex (r......Music reduces pain in fibromyalgia (FM), a chronic pain disease, but the functional neural correlates of music-induced analgesia (MIA) are still largely unknown. We recruited FM patients (n = 22) who listened to their preferred relaxing music and an auditory control (pink noise) for 5 min without...... external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus (lAnG) after listening to music, which in turn...

  13. Effects of Early and Late Bilingualism on Resting-State Functional Connectivity.

    Science.gov (United States)

    Berken, Jonathan A; Chai, Xiaoqian; Chen, Jen-Kai; Gracco, Vincent L; Klein, Denise

    2016-01-27

    Of current interest is how variations in early language experience shape patterns of functional connectivity in the human brain. In the present study, we compared simultaneous (two languages from birth) and sequential (second language learned after age 5 years) bilinguals using a seed-based resting-state MRI approach. We focused on the inferior frontal gyrus (IFG) as our ROI, as recent studies have demonstrated both neurofunctional and neurostructural changes related to age of second language acquisition in bilinguals in this cortical area. Stronger functional connectivity was observed for simultaneous bilinguals between the left and right IFG, as well as between the inferior frontal gyrus and brain areas involved in language control, including the dorsolateral prefrontal cortex, inferior parietal lobule, and cerebellum. Functional connectivity between the left IFG and the right IFG and right inferior parietal lobule was also significantly correlated with age of acquisition for sequential bilinguals; the earlier the second language was acquired, the stronger was the functional connectivity. In addition, greater functional connectivity between homologous regions of the inferior frontal gyrus was associated with reduced neural activation in the left IFG during speech production. The increased connectivity at rest and reduced neural activation during task performance suggests enhanced neural efficiency in this important brain area involved in both speech production and domain-general cognitive processing. Together, our findings highlight how the brain's intrinsic functional patterns are influenced by the developmental timeline in which second language acquisition occurs. Of current interest is how early life experience leaves its footprint on brain structure and function. In this regard, bilingualism provides an optimal way to determine the effects of the timing of language learning because a second language can be learned from birth or later in life. We used resting

  14. Effective connectivity of visual word recognition and homophone orthographic errors

    Science.gov (United States)

    Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel; Zarabozo-Hurtado, Daniel; González-Garrido, Andrés A.; Gudayol-Ferré, Esteve

    2015-01-01

    The study of orthographic errors in a transparent language like Spanish is an important topic in relation to writing acquisition. The development of neuroimaging techniques, particularly functional magnetic resonance imaging (fMRI), has enabled the study of such relationships between brain areas. The main objective of the present study was to explore the patterns of effective connectivity by processing pseudohomophone orthographic errors among subjects with high and low spelling skills. Two groups of 12 Mexican subjects each, matched by age, were formed based on their results in a series of ad hoc spelling-related out-scanner tests: a high spelling skills (HSSs) group and a low spelling skills (LSSs) group. During the f MRI session, two experimental tasks were applied (spelling recognition task and visuoperceptual recognition task). Regions of Interest and their signal values were obtained for both tasks. Based on these values, structural equation models (SEMs) were obtained for each group of spelling competence (HSS and LSS) and task through maximum likelihood estimation, and the model with the best fit was chosen in each case. Likewise, dynamic causal models (DCMs) were estimated for all the conditions across tasks and groups. The HSS group’s SEM results suggest that, in the spelling recognition task, the right middle temporal gyrus, and, to a lesser extent, the left parahippocampal gyrus receive most of the significant effects, whereas the DCM results in the visuoperceptual recognition task show less complex effects, but still congruent with the previous results, with an important role in several areas. In general, these results are consistent with the major findings in partial studies about linguistic activities but they are the first analyses of statistical effective brain connectivity in transparent languages. PMID:26042070

  15. Brain response pattern identification of fMRI data using a particle swarm optimization-based approach.

    Science.gov (United States)

    Ma, Xinpei; Chou, Chun-An; Sayama, Hiroki; Chaovalitwongse, Wanpracha Art

    2016-09-01

    Many neuroscience studies have been devoted to understand brain neural responses correlating to cognition using functional magnetic resonance imaging (fMRI). In contrast to univariate analysis to identify response patterns, it is shown that multi-voxel pattern analysis (MVPA) of fMRI data becomes a relatively effective approach using machine learning techniques in the recent literature. MVPA can be considered as a multi-objective pattern classification problem with the aim to optimize response patterns, in which informative voxels interacting with each other are selected, achieving high classification accuracy associated with cognitive stimulus conditions. To solve the problem, we propose a feature interaction detection framework, integrating hierarchical heterogeneous particle swarm optimization and support vector machines, for voxel selection in MVPA. In the proposed approach, we first select the most informative voxels and then identify a response pattern based on the connectivity of the selected voxels. The effectiveness of the proposed approach was examined for the Haxby's dataset of object-level representations. The computational results demonstrated higher classification accuracy by the extracted response patterns, compared to state-of-the-art feature selection algorithms, such as forward selection and backward selection.

  16. A Multimodal Approach for Determining Brain Networks by Jointly Modeling Functional and Structural Connectivity

    Directory of Open Access Journals (Sweden)

    Wenqiong eXue

    2015-02-01

    Full Text Available Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al.(2006a that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI data. Our structural connectivity (SC information is drawn from diffusion tensor imaging (DTI data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  17. Cortical connective field estimates from resting state fMRI activity

    NARCIS (Netherlands)

    Gravel, Nicolas; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V.; Dumoulin, Serge O.; Renken, Remco; Curcic-Blake, Branisalava; Cornelissen, Frans W.

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective

  18. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  19. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Neural activation and functional connectivity during motor imagery of bimanual everyday actions.

    Directory of Open Access Journals (Sweden)

    André J Szameitat

    Full Text Available Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI of everyday actions using functional magnetic resonance imaging (fMRI. For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI, however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.

  1. The effectiveness of the computerized visual perceptual training program on individuals with Down syndrome: An fMRI study.

    Science.gov (United States)

    Wan, Yi-Ting; Chiang, Ching-Sui; Chen, Sharon Chia-Ju; Wuang, Yee-Pay

    2017-07-01

    This study investigated the effectiveness of the Computerized Visual Perception Training (CVPT) program on individuals with Down syndrome (DS, mean age=13.17±4.35years, age range: 6.54-20.75 years). All participants have mild intellectual disability classified by the standard IQ measures (mean=61.2, ranges from 55 to 68). Both the Test of Visual Perceptual Skill- Third Edition (TVPS-3) and functional magnetic resonance imaging (fMRI) were used to evaluate the training outcomes. Results of TVPS-3 and fMRI showed that DS group had visual perceptual deficits and abnormal neural networks related to visual organization. The results showed that DS intervention group had significant improvements on TVPS-3 after intervention. The fMRI results indicated more activation in superior and inferior parietal lobes (spatial manipulation), as well as precentral gyrus and dorsal premotor cortex (motor imagery) in DS intervention group. The CVPT program was effective in improving visual perceptual functions and enhancing associated cortical activations in DS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness.

    Science.gov (United States)

    Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven

    2016-01-01

    The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.

  3. Oscillations, networks, and their development: MEG connectivity changes with age.

    Science.gov (United States)

    Schäfer, Carmen B; Morgan, Benjamin R; Ye, Annette X; Taylor, Margot J; Doesburg, Sam M

    2014-10-01

    Magnetoencephalographic (MEG) investigations of inter-regional amplitude correlations have yielded new insights into the organization and neurophysiology of resting-state networks (RSNs) first identified using fMRI. Inter-regional MEG amplitude correlations in adult RSNs have been shown to be most prominent in alpha and beta frequency ranges and to express strong congruence with RSN topologies found using fMRI. Despite such advances, little is known about how oscillatory connectivity in RSNs develops throughout childhood and adolescence. This study used a novel fMRI-guided MEG approach to investigate the maturation of resting-state amplitude correlations in physiologically relevant frequency ranges within and among six RSNs in 59 participants, aged 6-34 years. We report age-related increases in inter-regional amplitude correlations that were largest in alpha and beta frequency bands. In contrast to fMRI reports, these changes were observed both within and between the various RSNs analyzed. Our results provide the first evidence of developmental changes in spontaneous neurophysiological connectivity in source-resolved RSNs, which indicate increasing integration within and among intrinsic functional brain networks throughout childhood, adolescence, and early adulthood. Copyright © 2014 Wiley Periodicals, Inc.

  4. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.

    Science.gov (United States)

    Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis

    2017-12-01

    Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The neural correlates of risk propensity in males and females using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-01-01

    Full Text Available Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity.

  6. Findings in resting-state fMRI by differences from K-means clustering.

    Science.gov (United States)

    Chyzhyk, Darya; Graña, Manuel

    2014-01-01

    Resting state fMRI has growing number of studies with diverse aims, always centered on some kind of functional connectivity biomarker obtained from correlation regarding seed regions, or by analytical decomposition of the signal towards the localization of the spatial distribution of functional connectivity patterns. In general, studies are computationally costly and very sensitive to noise and preprocessing of data. In this paper we consider clustering by K-means as a exploratory procedure which can provide some results with little computational effort, due to efficient implementations that are readily available. We demonstrate the approach on a dataset of schizophrenia patients, finding differences between patients with and without auditory hallucinations.

  7. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    OpenAIRE

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI dat...

  8. Multimodal mapping of the brain's functional connectivity and the adult outcome of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sudre, Gustavo; Szekely, Eszter; Sharp, Wendy; Kasparek, Steven; Shaw, Philip

    2017-10-31

    We have a limited understanding of why many children with attention deficit hyperactivity disorder do not outgrow the disorder by adulthood. Around 20-30% retain the full syndrome as young adults, and about 50% show partial, rather than complete, remission. Here, to delineate the neurobiology of this variable outcome, we ask if the persistence of childhood symptoms into adulthood impacts on the brain's functional connectivity. We studied 205 participants followed clinically since childhood. In early adulthood, participants underwent magnetoencephalography (MEG) to measure neuronal activity directly and functional MRI (fMRI) to measure hemodynamic activity during a task-free period (the "resting state"). We found that symptoms of inattention persisting into adulthood were associated with disrupted patterns of typical functional connectivity in both MEG and fMRI. Specifically, those with persistent inattention lost the typical balance of connections within the default mode network (DMN; prominent during introspective thought) and connections between this network and those supporting attention and cognitive control. By contrast, adults whose childhood inattentive symptoms had resolved did not differ significantly from their never-affected peers, both hemodynamically and electrophysiologically. The anomalies in functional connectivity tied to clinically significant inattention centered on midline regions of the DMN in both MEG and fMRI, boosting confidence in a possible pathophysiological role. The findings suggest that the clinical course of this common childhood onset disorder impacts the functional connectivity of the adult brain. Published under the PNAS license.

  9. High field FMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei.

    Science.gov (United States)

    Metzger, C D; Eckert, U; Steiner, J; Sartorius, A; Buchmann, J E; Stadler, J; Tempelmann, C; Speck, O; Bogerts, B; Abler, B; Walter, M

    2010-01-01

    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing.

  10. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers.

    Science.gov (United States)

    Huang, Xiaojun; Pu, Weidan; Liu, Haihong; Li, Xinmin; Greenshaw, Andrew J; Dursun, Serdar M; Xue, Zhimin; Liu, Zhening

    2017-01-01

    Betel quid (BQ) is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) was obtained from 24 betel quid-dependent (BQD) male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA) to determine components that represent the brain's functional networks and their spatial aspects of functional connectivity. Two sample t -tests were used to identify the functional connectivity differences in each network between these two groups. Seventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t -tests, p  betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal ( r  = 0.39, p  = 0.03) while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks ( r  = -0.35, p  = 0.02). Our findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  11. Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review

    Science.gov (United States)

    Gudayol-Ferré, Esteve; Peró-Cebollero, Maribel; González-Garrido, Andrés A.; Guàrdia-Olmos, Joan

    2015-01-01

    Depression is a mental illness that presents alterations in brain connectivity in the Default Mode Network (DMN), the Affective Network (AN) and other cortical-limbic networks, and the Cognitive Control Network (CCN), among others. In recent years the interest in the possible effect of the different antidepressant treatments on functional connectivity has increased substantially. The goal of this paper is to conduct a systematic review of the studies on the relationship between the treatment of depression and brain connectivity. Nineteen studies were found in a systematic review on this topic. In all of them, there was improvement of the clinical symptoms after antidepressant treatment. In 18 out of the 19 studies, clinical improvement was associated to changes in brain connectivity. It seems that both DMN and the connectivity between cortical and limbic structures consistently changes after antidepressant treatment. However, the current evidence does not allow us to assure that the treatment of depression leads to changes in the CCN. In this regard, some papers report a positive correlation between changes in brain connectivity and improvement of depressive symptomatology, particularly when they measure cortical-limbic connectivity, whereas the changes in DMN do not significantly correlate with clinical improvement. Finally, some papers suggest that changes in connectivity after antidepressant treatment might be partly related to the mechanisms of action of the treatment administered. This effect has been observed in two studies with stimulation treatment (one with rTMS and one with ECT), and in two papers that administered three different pharmacological treatments. Our review allows us to make a series of recommendations that might guide future researchers exploring the effect of anti-depression treatments on brain connectivity. PMID:26578927

  12. Laterality effects in functional connectivity of the angular gyrus during rest and episodic retrieval.

    Science.gov (United States)

    Bellana, Buddhika; Liu, Zhongxu; Anderson, John A E; Moscovitch, Morris; Grady, Cheryl L

    2016-01-08

    The angular gyrus (AG) is consistently reported in neuroimaging studies of episodic memory retrieval and is a fundamental node within the default mode network (DMN). Its specific contribution to episodic memory is debated, with some suggesting it is important for the subjective experience of episodic recollection, rather than retrieval of objective episodic details. Across studies of episodic retrieval, the left AG is recruited more reliably than the right. We explored functional connectivity of the right and left AG with the DMN during rest and retrieval to assess whether connectivity could provide insight into the nature of this laterality effect. Using data from the publically available 1000 Functional Connectome Project, 8min of resting fMRI data from 180 healthy young adults were analysed. Whole-brain functional connectivity at rest was measured using a seed-based Partial Least Squares (seed-PLS) approach (McIntosh and Lobaugh, 2004) with bilateral AG seeds. A subsequent analysis used 6-min of rest and 6-min of unconstrained, silent retrieval of autobiographical events from a new sample of 20 younger adults. Analysis of this dataset took a more targeted approach to functional connectivity analysis, consisting of univariate pairwise correlations restricted to nodes of the DMN. The seed-PLS analysis resulted in two Latent Variables that together explained ~86% of the shared cross-block covariance. The first LV revealed a common network consistent with the DMN and engaging the AG bilaterally, whereas the second LV revealed a less robust, yet significant, laterality effect in connectivity - the left AG was more strongly connected to the DMN. Univariate analyses of the second sample again revealed better connectivity between the left AG and the DMN at rest. However, during retrieval the left AG was more strongly connected than the right to non-medial temporal (MTL) nodes of the DMN, and MTL nodes were more strongly connected to the right AG. The multivariate

  13. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  14. Detecting altered connectivity patterns in HIV associated neurocognitive impairment using mutual connectivity analysis

    Science.gov (United States)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.

  15. Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox

    Directory of Open Access Journals (Sweden)

    Andre Santos Ribeiro

    2015-07-01

    Full Text Available Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity.Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI and positron emission tomography (PET. It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19–73 years old with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also.Results. It was observed both a high inter

  16. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    Science.gov (United States)

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  17. A receptor-based model for dopamine-induced fMRI signal

    Science.gov (United States)

    Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.

    2013-01-01

    This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936

  18. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    Science.gov (United States)

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  19. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Eduardo A. Garza-Villarreal

    2015-07-01

    Full Text Available Music reduces pain in fibromyalgia (FM, a chronic pain disease, but the functional neural correlates of music-induced analgesia are still largely unknown. We recruited FM patients (n = 22 who listened to their preferred relaxing music and an auditory control (pink noise for 5 minutes without external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus after listening to music, which in turn, correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the left angular gyrus showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex, the left caudate, and decreased connectivity with right anterior cingulate cortex, right supplementary motor area, precuneus and right precentral gyrus. Pain intensity analgesia was correlated (r = .61 to the connectivity of the left angular gyrus with the right precentral gyrus. Our results show that music-induced analgesia in FM is related to top-down regulation of the pain modulatory network by the default-mode network.

  20. Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks.

    Science.gov (United States)

    Kasabov, Nikola K; Doborjeh, Maryam Gholami; Doborjeh, Zohreh Gholami

    2017-04-01

    This paper introduces a new methodology for dynamic learning, visualization, and classification of functional magnetic resonance imaging (fMRI) as spatiotemporal brain data. The method is based on an evolving spatiotemporal data machine of evolving spiking neural networks (SNNs) exemplified by the NeuCube architecture [1]. The method consists of several steps: mapping spatial coordinates of fMRI data into a 3-D SNN cube (SNNc) that represents a brain template; input data transformation into trains of spikes; deep, unsupervised learning in the 3-D SNNc of spatiotemporal patterns from data; supervised learning in an evolving SNN classifier; parameter optimization; and 3-D visualization and model interpretation. Two benchmark case study problems and data are used to illustrate the proposed methodology-fMRI data collected from subjects when reading affirmative or negative sentences and another one-on reading a sentence or seeing a picture. The learned connections in the SNNc represent dynamic spatiotemporal relationships derived from the fMRI data. They can reveal new information about the brain functions under different conditions. The proposed methodology allows for the first time to analyze dynamic functional and structural connectivity of a learned SNN model from fMRI data. This can be used for a better understanding of brain activities and also for online generation of appropriate neurofeedback to subjects for improved brain functions. For example, in this paper, tracing the 3-D SNN model connectivity enabled us for the first time to capture prominent brain functional pathways evoked in language comprehension. We found stronger spatiotemporal interaction between left dorsolateral prefrontal cortex and left temporal while reading a negated sentence. This observation is obviously distinguishable from the patterns generated by either reading affirmative sentences or seeing pictures. The proposed NeuCube-based methodology offers also a superior classification accuracy

  1. Repetition Enhancement of Amygdala and Visual Cortex Functional Connectivity Reflects Nonconscious Memory for Negative Visual Stimuli.

    Science.gov (United States)

    Kark, Sarah M; Slotnick, Scott D; Kensinger, Elizabeth A

    2016-12-01

    Most studies using a recognition memory paradigm examine the neural processes that support the ability to consciously recognize past events. However, there can also be nonconscious influences from the prior study episode that reflect repetition suppression effects-a reduction in the magnitude of activity for repeated presentations of stimuli-that are revealed by comparing neural activity associated with forgotten items to correctly rejected novel items. The present fMRI study examined the effect of emotional valence (positive vs. negative) on repetition suppression effects. Using a standard recognition memory task, 24 participants viewed line drawings of previously studied negative, positive, and neutral photos intermixed with novel line drawings. For each item, participants made an old-new recognition judgment and a sure-unsure confidence rating. Collapsed across valence, repetition suppression effects were found in ventral occipital-temporal cortex and frontal regions. Activity levels in the majority of these regions were not modulated by valence. However, repetition enhancement of the amygdala and ventral occipital-temporal cortex functional connectivity reflected nonconscious memory for negative items. In this study, valence had little effect on activation patterns but had a larger effect on functional connectivity patterns that were markers of nonconscious memory. Beyond memory and emotion, these findings are relevant to other cognitive and social neuroscientists that utilize fMRI repetition effects to investigate perception, attention, social cognition, and other forms of learning and memory.

  2. Functional Imaging and Migraine: New Connections?

    Science.gov (United States)

    Schwedt, Todd J.; Chong, Catherine D.

    2015-01-01

    Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764

  3. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    Science.gov (United States)

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Connectivity changes underlying neurofeedback training of visual cortex activity.

    Directory of Open Access Journals (Sweden)

    Frank Scharnowski

    Full Text Available Neurofeedback based on real-time functional magnetic resonance imaging (fMRI is a new approach that allows training of voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback training of visual cortex activity. Using dynamic causal modeling (DCM, we found that training participants to increase visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive strategies used by participants to increase their visual cortex activity.

  5. High Field fMRI Reveals Thalamocortical Integration of Segregated Cognitive and Emotional Processing in Mediodorsal and Intralaminar Thalamic Nuclei

    Science.gov (United States)

    Metzger, C. D.; Eckert, U.; Steiner, J.; Sartorius, A.; Buchmann, J. E.; Stadler, J.; Tempelmann, C.; Speck, O.; Bogerts, B.; Abler, B.; Walter, M.

    2010-01-01

    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing. PMID:21088699

  6. High field fMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei

    Directory of Open Access Journals (Sweden)

    Coraline Danielle Metzger

    2010-11-01

    Full Text Available Thalamocortical loops, connecting functionally segregated, higher order cortical regions and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla.Using an event related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex (CM/PF. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behaviour such as sexual

  7. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India); Sujesh, Sreedharan [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum (India); Ashalata, Radhakrishnan; Radhakrishnan, Kurupath [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum (India); Abraham, Mathew [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurosurgery, Trivandrum (India)

    2007-10-15

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  8. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    International Nuclear Information System (INIS)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun; Sujesh, Sreedharan; Ashalata, Radhakrishnan; Radhakrishnan, Kurupath; Abraham, Mathew

    2007-01-01

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  9. Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder.

    Science.gov (United States)

    Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2015-01-01

    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.

  10. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression

    OpenAIRE

    Figueroa, C.A.; Mocking, R.J.T.; Wingen, G.A. van; Martens, S.J.; Ruhe, H.G.; Schene, A.H.

    2017-01-01

    Abstract Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD v...

  11. Syntactic Priming and the Lexical Boost Effect during Sentence Production and Sentence Comprehension: An fMRI Study

    Science.gov (United States)

    Segaert, Katrien; Kempen, Gerard; Petersson, Karl Magnus; Hagoort, Peter

    2013-01-01

    Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal…

  12. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  13. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    Science.gov (United States)

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  14. Functional network centrality in obesity: A resting-state and task fMRI study.

    Science.gov (United States)

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Increasing fMRI sampling rate improves Granger causality estimates.

    Directory of Open Access Journals (Sweden)

    Fa-Hsuan Lin

    Full Text Available Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI is increased 20-fold. Specifically, healthy volunteers performed a simple visuomotor task during blood oxygenation level dependent (BOLD contrast based whole-head inverse imaging (InI. Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of InI improves the Granger causality connectivity analysis of the human brain.

  16. Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study

    Science.gov (United States)

    Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru

    2006-01-01

    The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…

  17. The brain effects of laser acupuncture in healthy individuals: an FMRI investigation.

    Directory of Open Access Journals (Sweden)

    Im Quah-Smith

    2010-09-01

    Full Text Available As laser acupuncture is being increasingly used to treat mental disorders, we sought to determine whether it has a biologically plausible effect by using functional magnetic resonance imaging (fMRI to investigate the cerebral activation patterns from laser stimulation of relevant acupoints.Ten healthy subjects were randomly stimulated with a fibreoptic infrared laser on 4 acupoints (LR14, CV14, LR8 and HT7 used for depression following the principles of Traditional Chinese Medicine (TCM, and 1 control non-acupoint (sham point in a blocked design (alternating verum laser and placebo laser/rest blocks, while the blood oxygenation level-dependent (BOLD fMRI response was recorded from the whole brain on a 3T scanner. Many of the acupoint laser stimulation conditions resulted in different patterns of neural activity. Regions with significantly increased activation included the limbic cortex (cingulate and the frontal lobe (middle and superior frontal gyrus. Laser acupuncture tended to be associated with ipsilateral brain activation and contralateral deactivation that therefore cannot be simply attributed to somatosensory stimulation.We found that laser stimulation of acupoints lead to activation of frontal-limbic-striatal brain regions, with the pattern of neural activity somewhat different for each acupuncture point. This is the first study to investigate laser acupuncture on a group of acupoints useful in the management of depression. Differing activity patterns depending on the acupoint site were demonstrated, suggesting that neurological effects vary with the site of stimulation. The mechanisms of activation and deactivation and their effects on depression warrant further investigation.

  18. Connectivity analysis is essential to understand neurological disorders

    Directory of Open Access Journals (Sweden)

    James Rowe

    2010-09-01

    Full Text Available Neurological and neuropsychiatric disorders are major causes of morbidity worldwide. A systems level analysis including functional and structural neuroimaging is particularly useful when the pathology leads to disorders of higher order cognitive functions in human patients. However, an analysis that is restricted to regional effects is impoverished and insensitive, compared to the analysis of distributed brain networks. We discuss the issues to consider when choosing an appropriate connectivity method, and compare the results from several different methods that are relevant to fMRI and PET data. These include psychophysiological interactions in general linear models, structural equation modeling, dynamic causal modeling and independent components analysis. The advantages of connectivity analysis are illustrated with a range of structural and neurodegenerative brain disorders. We illustrate the sensitivity of these methods to the presence or severity of disease and/or treatment, even where analyses of voxel-wise activations are insensitive. However, functional and structural connectivity methods should be seen as complementary to, not a substitute for, other imaging and behavioral approaches. The functional relevance of changes in connectivity, to motor or cognitive performance, are considered alongside the complex relationship between structural and functional changes with neuropathology. Finally some of the problems associated with connectivity analysis are discussed. We suggest that the analysis of brain connectivity is an essential complement to the analysis of regionally specific dysfunction, in order to understand neurological and neuropsychiatric disease, and to evaluate the mechanisms of effective therapies.

  19. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2014-01-01

    Full Text Available This study investigated changes in resting-state functional connectivity (rsFC of posterior cingulate cortex (PCC in smokers and nonsmokers with Internet gaming addiction (IGA. Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA.

  20. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  1. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    International Nuclear Information System (INIS)

    Zhang, Jian; Chen, Yu-Chen; Feng, Xu; Yang, Ming; Liu, Bin; Qian, Cheng; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  2. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    Science.gov (United States)

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  3. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging.

    Science.gov (United States)

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M; Sala-Llonch, Roser; Clemente, Imma C; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2014-01-01

    Transcranial magnetic stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. We applied a paradigm of repetitive TMS - intermittent theta-burst stimulation - over left inferior frontal gyrus in healthy elders (n = 24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Resting state FMRI research in child psychiatric disorders

    NARCIS (Netherlands)

    Oldehinkel, Marianne; Francx, Winke; Beckmann, Christian; Buitelaar, Jan K.; Mennes, Maarten

    2013-01-01

    Concurring with the shift from linking functions to specific brain areas towards studying network integration, resting state FMRI (R-FMRI) has become an important tool for delineating the functional network architecture of the brain. Fueled by straightforward data collection, R-FMRI analysis methods

  5. Space-dependent effects of motion on the standard deviation of fMRI signals : a simulation study.

    NARCIS (Netherlands)

    Renken, R; Muresan, L; Duifhuis, H; Roerdink, JBTM; Yaffe, MK; Antonuk, LE

    2003-01-01

    In fMRI, any fluctuation of signal intensity, not recognized as a result of a specific task, is treated as noise. One source for "noise" is subject motion. Normally, motion effects are reduced by applying realignment. We investigate how apt a realignment procedure is in removing motion-related

  6. The resting state fMRI study of patients with Parkinson's disease associated with cognitive dysfunction

    International Nuclear Information System (INIS)

    Feng Jieying; Huang Biao

    2013-01-01

    Parkinson's disease (PD) is the most common neurodegenerative cause of Parkinsonism, but the high morbidity of PD accompanied cognitive dysfunction hasn't drawn enough attention by the clinicians. With the rapid development of the resting state functional MRI (fMRI) technique, the cause of PD patients with cognitive dysfunction may be associated with the damage of functional connectivity of the motor networks and the cognitive networks. The relationship between neuropathologic mechanism of PD patients with cognitive dysfunction and impaired cognitive circuits will be disclosed by building the changes of brain topological structure in patients. The resting state fMRI study can provide the rationale for prevention, diagnosis and treatment of PD. (authors)

  7. Fixing the stimulus-as-fixed-effect fallacy in task fMRI [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Jacob Westfall

    2017-03-01

    Full Text Available Most functional magnetic resonance imaging (fMRI experiments record the brain’s responses to samples of stimulus materials (e.g., faces or words. Yet the statistical modeling approaches used in fMRI research universally fail to model stimulus variability in a manner that affords population generalization, meaning that researchers’ conclusions technically apply only to the precise stimuli used in each study, and cannot be generalized to new stimuli. A direct consequence of this stimulus-as-fixed-effect fallacy is that the majority of published fMRI studies have likely overstated the strength of the statistical evidence they report. Here we develop a Bayesian mixed model (the random stimulus model; RSM that addresses this problem, and apply it to a range of fMRI datasets. Results demonstrate considerable inflation (50-200% in most of the studied datasets of test statistics obtained from standard “summary statistics”-based approaches relative to the corresponding RSM models. We demonstrate how RSMs can be used to improve parameter estimates, properly control false positive rates, and test novel research hypotheses about stimulus-level variability in human brain responses.

  8. Abnormal functional connectivity of the medial cortex in euthymic bipolar II disorder.

    Science.gov (United States)

    Marchand, William R; Lee, James N; Johnson, Susanna; Gale, Phillip; Thatcher, John

    2014-06-03

    This project utilized functional MRI (fMRI) and a motor activation paradigm to investigate neural circuitry in euthymic bipolar II disorder. We hypothesized that circuitry involving the cortical midline structures (CMS) would demonstrate abnormal functional connectivity. Nineteen subjects with recurrent bipolar disorder and 18 controls were studied using fMRI and a motor activation paradigm. We used functional connectivity analyses to identify circuits with aberrant connectivity. We found increased functional connectivity among bipolar subjects compared to healthy controls in two CMS circuits. One circuit included the medial aspect of the left superior frontal gyrus and the dorsolateral region of the left superior frontal gyrus. The other included the medial aspect of the right superior frontal gyrus, the dorsolateral region of the left superior frontal gyrus and the right medial frontal gyrus and surrounding region. Our results indicate that CMS circuit dysfunction persists in the euthymic state and thus may represent trait pathology. Future studies should address whether these circuits contribute to relapse of illness. Our results also suggest the possibility that aberrations of superior frontal circuitry may impact default mode network and cognitive processes. Published by Elsevier Inc.

  9. The effects of background noise on dichotic listening to consonant-vowel syllables: An fMRI study.

    Science.gov (United States)

    Dos Santos Sequeira, Sarah; Specht, Karsten; Moosmann, Matthias; Westerhausen, Rene; Hugdahl, Kenneth

    2010-11-01

    The present fMRI study attempts to identify brain areas that may underlie the effect of different background noises on functional brain asymmetry in a dichotic listening task. Previous studies have shown that the prominent right ear advantage in dichotic listening to consonant-vowel syllables is affected by background noise. To explore the underlying neuronal processes, haemodynamic brain responses using fMRI were recorded while participants performed the dichotic listening task in two different noisy backgrounds (conversational "babble" and traffic noise). The behavioural results showed a reduction of the right ear advantage in the background noise conditions, especially in the traffic noise condition. The behavioural results are discussed in terms of alertness-attentional mechanisms. The effects of background noise on brain activation involved significant activations in a speech-processing network. Specifically the changes in activations in the peri-Sylvian region of the superior temporal gyrus and in the temporo-parietal junction part in the left hemisphere, as well as in the superior temporal gyrus/sulcus area in the right hemisphere may mirror the effects of noise on behavioural performance. The effects of noise on brain activation are discussed with regard to pre-activation mechanisms.

  10. THE PRIMACY EFFECT IN AMNESTIC MILD COGNITIVE IMPAIRMENT: ASSOCIATIONS WITH HIPPOCAMPAL FUNCTIONAL CONNECTIVITY

    Directory of Open Access Journals (Sweden)

    Katharina Brueggen

    2016-10-01

    Full Text Available BackgroundThe primacy effect, i.e., increased memory recall for the first items of a series compared to the following items, is reduced in amnestic mild cognitive impairment (aMCI. Memory task-fMRI studies showed that primacy recall is associated with higher activation of the hippocampus and temporo-parietal and frontal cortical regions in healthy subjects. Functional magnetic resonance imaging (fMRI at resting state showed that hippocampus functional connectivity (FC with neocortical brain areas, including regions of the default mode network (DMN, is altered in aMCI. The present study aimed to investigate whether resting state fMRI FC between the hippocampus and cortical brain regions, especially the DMN, is associated with primacy recall performance in aMCI. MethodsA number of 87 aMCI patients underwent resting state fMRI and verbal episodic memory assessment. FC between the left or right hippocampus, respectively, and all other voxels in grey matter was mapped voxel-wise and used in whole-brain regression analyses, testing whether FC values predicted delayed primacy recall score. The delayed primacy score was defined as the number of the first four words recalled on the California Verbal Learning Test. Additionally, a partial least squares analysis (PLS was performed, using DMN regions as seeds to identify the association of their functional interactions with delayed primacy recall.ResultsVoxel-based analyses showed that delayed primacy recall was mainly (positively associated with higher FC between the left and right hippocampus. Additionally, significant associations were found for higher FC between the left hippocampus and bilateral temporal cortex, frontal cortical regions, and for higher FC between the right hippocampus and right temporal cortex, right frontal cortical regions, left medial frontal cortex and right amygdala (p < 0.01, uncorr.. PLS analysis revealed positive associations of delayed primacy recall with FC between regions of

  11. Left Posterior Orbitofrontal Cortex Is Associated With Odor-Induced Autobiographical Memory: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Keiko Watanabe

    2018-05-01

    Full Text Available Autobiographical odor memory (AM-odor accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC, using functional magnetic resonance imaging (fMRI to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC. Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI. We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC, and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.

  12. Left Posterior Orbitofrontal Cortex Is Associated With Odor-Induced Autobiographical Memory: An fMRI Study.

    Science.gov (United States)

    Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko

    2018-01-01

    Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.

  13. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.

    Science.gov (United States)

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B

    2016-03-16

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population

  14. Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting

    Directory of Open Access Journals (Sweden)

    Todd A Hare

    2014-03-01

    Full Text Available There is widespread interest in identifying computational and neurobiological mechanisms that influence the ability to choose long-term benefits over more proximal and readily available rewards in domains such as dietary and economic choice. We present the results of a human fMRI study that examines how neural activity relates to observed individual differences in the discounting of future rewards during an intertemporal monetary choice task. We found that a region of left dlPFC BA-46 was more active in trials where subjects chose delayed rewards, after controlling for the subjective value of those rewards. We also found that the connectivity from dlPFC BA-46 to a region of vmPFC widely associated with the computational of stimulus values, increased at the time of choice, and especially during trials in which subjects chose delayed rewards. Finally, we found that estimates of effective connectivity between these two regions played a critical role in predicting out-of-sample, between-subject differences in discount rates. Together with previous findings in dietary choice, these results suggest that a common set of computational and neurobiological mechanisms facilitate choices in favor of long- term reward in both settings.

  15. Examining frontotemporal connectivity and rTMS in healthy controls: implications for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Gromann, Paula M; Tracy, Derek K; Giampietro, Vincent; Brammer, Michael J; Krabbendam, Lydia; Shergill, Sukhwinder S

    2012-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been shown to have clinically beneficial effects in altering the perception of auditory hallucinations (AH) in patients with schizophrenia. However, the mode of action is not clear. Recent neuroimaging findings indicate that rTMS has the potential to induce not only local effects but also changes in remote, functionally connected brain regions. Frontotemporal dysconnectivity has been proposed as a mechanism leading to psychotic symptoms in schizophrenia. The current study examines functional connectivity between temporal and frontal brain regions after rTMS and the implications for AH in schizophrenia. A connectivity analysis was conducted on the fMRI data of 11 healthy controls receiving rTMS, compared with 11 matched subjects receiving sham TMS, to the temporoparietal junction, before engaging in a task associated with robust frontotemporal activation. Compared to the control group, the rTMS group showed an altered frontotemporal connectivity with stronger connectivity between the right temporoparietal cortex and the dorsolateral prefrontal cortex and the angular gyrus. This finding provides preliminary evidence for the hypothesis that normalizing the functional connectivity between the temporoparietal and frontal brain regions may underlie the therapeutic effect of rTMS on AH in schizophrenia.

  16. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  17. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA.Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week.There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the

  18. Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data

    Science.gov (United States)

    Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924

  19. Effective connectivity gateways to the Theory of Mind network in processing communicative intention.

    Science.gov (United States)

    Tettamanti, Marco; Vaghi, Matilde M; Bara, Bruno G; Cappa, Stefano F; Enrici, Ivan; Adenzato, Mauro

    2017-07-15

    An Intention Processing Network (IPN), involving the medial prefrontal cortex, precuneus, bilateral posterior superior temporal sulcus, and temporoparietal junctions, plays a fundamental role in comprehending intentions underlying action goals. In a previous fMRI study, we showed that, depending on the linguistic or extralinguistic (gestural) modality used to convey the intention, the IPN is complemented by activation of additional brain areas, reflecting distinct modality-specific input gateways to the IPN. These areas involve, for the linguistic modality, the left inferior frontal gyrus (LIFG), and for the extralinguistic modality, the right inferior frontal gyrus (RIFG). Here, we tested the modality-specific gateway hypothesis, by using DCM to measure inter-regional functional integration dynamics between the IPN and LIFG/RIFG gateways. We found strong evidence of a well-defined effective connectivity architecture mediating the functional integration between the IPN and the inferior frontal cortices. The connectivity dynamics indicate a modality-specific propagation of stimulus information from LIFG to IPN for the linguistic modality, and from RIFG to IPN for the extralinguistic modality. Thus, we suggest a functional model in which the modality-specific gateways mediate the structural and semantic decoding of the stimuli, and allow for the modality-specific communicative information to be integrated in Theory of Mind inferences elaborated through the IPN. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Anne eHafkemeijer

    2015-09-01

    Full Text Available Alzheimer’s disease (AD and behavioral variant frontotemporal dementia (bvFTD are the most common types of early-onset dementia. Here, we apply resting state functional magnetic resonance imaging (fMRI to study functional brain connectivity differences between AD and bvFTD.We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between a lateral visual cortical network and lateral occipital and cuneal cortex, and b auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. We showed that the pathophysiology of functional brain connectivity is different between AD and bvFTD. However, the group differences in functional connectivity are less abundant than has been shown in previous studies.

  1. Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

    Directory of Open Access Journals (Sweden)

    Yinghua Yu

    2018-01-01

    Full Text Available In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII receives projections from the unilateral primary somatosensory cortex (SI, and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI and a delayed match-to-sample (DMS task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left SII activity was greater than ipsilateral (right SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC. Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.

  2. Probing the Interoceptive Network by Listening to Heartbeats: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Nina I Kleint

    Full Text Available Exposure to cues of homeostatic relevance (i.e. heartbeats is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies.

  3. Clinical applications of resting state functional connectivity

    Directory of Open Access Journals (Sweden)

    Michael D Fox

    2010-06-01

    Full Text Available During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level dependent (BOLD signal of fMRI. The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

  4. fMRI. Basics and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Stephan; Jansen, Olav (eds.) [University Hospital of Schleswig-Holstein, Kiel (Germany). Inst. of Neuroradiology, Neurocenter

    2010-07-01

    Functional MRI (fMRI) and the basic method of BOLD imaging were introduced in 1993 by Seiji Ogawa. From very basic experiments, fMRI has evolved into a clinical application for daily routine brain imaging. There have been various improvements in both the imaging technique as such as well as in the statistical analysis. In this volume, experts in the field share their knowledge and point out possible technical barriers and problems explaining how to solve them. Starting from the very basics on the origin of the BOLD signal, the book covers technical issues, anatomical landmarks, presurgical applications, and special issues in various clinical fields. Other modalities for brain mapping such as PET, TMS, and MEG are also compared with fMRI. This book is intended to give a state-of-the-art overview and to serve as a reference and guide for clinical applications of fMRI. (orig.)

  5. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Nathan W. Churchill

    Full Text Available Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70 university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1 a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings; and (2 a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks. Keywords: fMRI, Functional connectivity, Concussion, Brain injury, Symptoms

  6. Resting-state fMRI study of patients with fragile X syndrome

    Science.gov (United States)

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (pright inferior parietal and right angular gyrus in the resting state in patients with FXS. Conclusion: New data of functional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  7. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Chi Wah Wong

    Full Text Available In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment.

  8. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity.

    Science.gov (United States)

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  9. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2016-01-01

    Full Text Available Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  10. Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI.

    Science.gov (United States)

    Haller, Sven; Bartsch, Andreas J; Radue, Ernst W; Klarhöfer, Markus; Seifritz, Erich; Scheffler, Klaus

    2005-11-01

    Conventional blood oxygenation level-dependent (BOLD) based functional magnetic resonance imaging (fMRI) is accompanied by substantial acoustic gradient noise. This noise can influence the performance as well as neuronal activations. Conventional fMRI typically has a pulsed noise component, which is a particularly efficient auditory stimulus. We investigated whether the elimination of this pulsed noise component in a recent modification of continuous-sound fMRI modifies neuronal activations in a cognitively demanding non-auditory working memory task. Sixteen normal subjects performed a letter variant n-back task. Brain activity and psychomotor performance was examined during fMRI with continuous-sound fMRI and conventional fMRI. We found greater BOLD responses in bilateral medial frontal gyrus, left middle frontal gyrus, left middle temporal gyrus, left hippocampus, right superior frontal gyrus, right precuneus and right cingulate gyrus with continuous-sound compared to conventional fMRI. Conversely, BOLD responses were greater in bilateral cingulate gyrus, left middle and superior frontal gyrus and right lingual gyrus with conventional compared to continuous-sound fMRI. There were no differences in psychomotor performance between both scanning protocols. Although behavioral performance was not affected, acoustic gradient noise interferes with neuronal activations in non-auditory cognitive tasks and represents a putative systematic confound.

  11. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  12. Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.

    Science.gov (United States)

    Gilson, Matthieu

    2018-04-01

    Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.

  13. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    Science.gov (United States)

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    Science.gov (United States)

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  15. Assessment of language lateralization with functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Salagierska-Barwinska, A.; Goraj, B.

    2004-01-01

    fMRI offers powerful methods to delineate which brain regions are engaged in language processing in the intact brain. Until now hemisphere dominance for language has been usually assessed by means of the intraoperative methods: the Wada test or electrocortical stimulation mapping. Recently functional MRI becomes the valuable method in determining hemisphere dominance for language. fMRI study was proved to be concordant with invasive measures. fMRI was carried out in 30 healthy selected participants (15 females: 10 strongly right-handed and 5 strongly left-handed; 15 males: 10 strongly right-handed and 5 strongly left-handed). The subject's handedness was assessed by standardized psychological tests inter alia the 'lateralization inventory'. Two different language tasks were used: a verb generation task and a phonological task. Subjects were scanned,while performing experimental block. The block contained alternately 8 active (language task) and 8 control conditions. Statistical analysis of evoked blood oxygenation level-dependent BOLD) responses, measured with echo planar imagining (1.5 T) were used. During a verb generation task in strongly right or left handed subjects the inferior frontal region was activated on the side opposite to the subject's handedness determined by the psychological test. Our fMRI studies demonstrated no gender effects on brain during these language tasks. Our study suggests that fMRI is a good device for the study of the language organization. The advantage of fMRI is its capacity for exact localization of activated areas. fMRI together with adequate neurolinguistic test could be promising routine preoperative tool in identification hemisphere dominance for language. These results encourage to further investigation for evaluating correlation in patients with brain injuries. (author)

  16. Intra-hemispheric intrinsic connectivity asymmetry and its relationships with handedness and language Lateralization.

    Science.gov (United States)

    Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B

    2016-12-01

    Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a

  17. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    Science.gov (United States)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (pgyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  18. Novel MRI methodology to detect human whole-brain connectivity changes after ingestion of fructose or glucose

    Science.gov (United States)

    Tsao, Sinchai; Wilkins, Bryce; Page, Kathleen A.; Singh, Manbir

    2012-03-01

    A novel MRI protocol has been developed to investigate the differential effects of glucose or fructose consumption on whole-brain functional brain connectivity. A previous study has reported a decrease in the fMRI blood oxygen level dependent (BOLD) signal of the hypothalamus following glucose ingestion, but due to technical limitations, was restricted to a single slice covering the hypothalamus, and thus unable to detect whole-brain connectivity. In another previous study, a protocol was devised to acquire whole-brain fMRI data following food intake, but only after restricting image acquisition to an MR sampling or repetition time (TR) of 20s, making the protocol unsuitable to detect functional connectivity above 0.025Hz. We have successfully implemented a continuous 36-min, 40 contiguous slices, whole-brain BOLD acquisition protocol on a 3T scanner with TR=4.5s to ensure detection of up to 0.1Hz frequencies for whole-brain functional connectivity analysis. Human data were acquired first with ingestion of water only, followed by a glucose or fructose drink within the scanner, without interrupting the scanning. Whole-brain connectivity was analyzed using standard correlation methodology in the 0.01-0.1 Hz range. The correlation coefficient differences between fructose and glucose ingestion among targeted regions were converted to t-scores using the water-only correlation coefficients as a null condition. Results show a dramatic increase in the hypothalamic connectivity to the hippocampus, amygdala, insula, caudate and the nucleus accumben for fructose over glucose. As these regions are known to be key components of the feeding and reward brain circuits, these results suggest a preference for fructose ingestion.

  19. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundBetel quid (BQ is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs.MethodsResting-state functional magnetic resonance imaging (fMRI was obtained from 24 betel quid-dependent (BQD male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA to determine components that represent the brain’s functional networks and their spatial aspects of functional connectivity. Two sample t-tests were used to identify the functional connectivity differences in each network between these two groups.ResultsSeventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t-tests, p < 0.001 uncorrected. We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal (r = 0.39, p = 0.03 while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks (r = −0.35, p = 0.02.DiscussionOur findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  20. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    Science.gov (United States)

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This

  1. [Functional connectivity of temporal parietal junction in online game addicts:a resting-state functional magnetic resonance imaging study].

    Science.gov (United States)

    Yuan, Ji; Qian, Ruobing; Lin, Bin; Fu, Xianming; Wei, Xiangpin; Weng, Chuanbo; Niu, Chaoshi; Wang, Yehan

    2014-02-11

    To explore the functions of temporal parietal junction (TPJ) as parts of attention networks in the pathogenesis of online game addiction using resting-state functional magnetic resonance imaging (fMRI). A total of 17 online game addicts (OGA) were recruited as OGA group and 17 healthy controls during the same period were recruited as CON group. The neuropsychological tests were performed for all of them to compare the inter-group differences in the results of Internet Addiction Test (IAT) and attention functions. All fMRI data were preprocessed after resting-state fMRI scanning. Then left and right TPJ were selected as regions of interest (ROIs) to calculate the linear correlation between TPJ and entire brain to compare the inter-group differences. Obvious differences existed between OGA group (71 ± 5 scores) and CON group (19 ± 7 scores) in the IAT results and attention function (P online game addicts showed decreased functional connectivity with bilateral ventromedial prefrontal cortex (VMPFC), bilateral hippocampal gyrus and bilateral amygdaloid nucleus, but increased functional connectivity with right cuneus.However, left TPJ demonstrated decreased functional connectivity with bilateral superior frontal gyrus and bilateral middle frontal gyrus, but increased functional connectivity with bilateral cuneus (P online game addicts.It suggests that TPJ is an important component of attention networks participating in the generation of online game addiction.

  2. Change in functional connectivity in tinnitus and its relation with tinnitus laterality

    Energy Technology Data Exchange (ETDEWEB)

    Song, Eun Jee; Kim, Eui Jong; Choi, Woo Suk [Dept. of Radiology, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Chang Woo; Jahang, Geon Ho; Park, Moon Suh; Byun, Jae Yong; Park, Soon Chan [Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2016-12-15

    To identify potential differences in resting-state networks according to laterality of tinnitus using resting-state functional MRI (fMRI). A total of 83 age-matched subjects consisting of 19 patients with right-sided tinnitus (Rt-T), 22 patients with left-sided tinnitus (Lt-T), 22 patients with bilateral tinnitus (Bil-T), and 20 healthy controls underwent resting-state blood oxygenation-level dependent fMRI scans. Independent component analysis was used to obtain the functional connectivities in the auditory network (AN) and the default mode network (DMN), which were compared between each group using the voxel-wise one-way ANOVA. In addition, lateralization of the auditory cortex was assessed within each group using a region of interest (ROI). Comparisons between tinnitus groups showed unusual clusters with different functional connectivities in the AN and the DMN. The Rt-T group had large clusters with higher functional connectivity in the right middle temporal gyrus and temporopolar area compared with the Lt-/Bil-T and control groups. ROI analysis showed that the Rt-/Lt-T groups had dominant functional connectivity in the right auditory cortex and the Bil-T and control groups had left-dominant auditory connectivity. These results suggest that chronic tinnitus is related to aberrant laterality of the auditory cortex. These findings help clarify the neural mechanism of tinnitus and specify the targets for localization of treatment.

  3. Change in functional connectivity in tinnitus and its relation with tinnitus laterality

    International Nuclear Information System (INIS)

    Song, Eun Jee; Kim, Eui Jong; Choi, Woo Suk; Ryu, Chang Woo; Jahang, Geon Ho; Park, Moon Suh; Byun, Jae Yong; Park, Soon Chan

    2016-01-01

    To identify potential differences in resting-state networks according to laterality of tinnitus using resting-state functional MRI (fMRI). A total of 83 age-matched subjects consisting of 19 patients with right-sided tinnitus (Rt-T), 22 patients with left-sided tinnitus (Lt-T), 22 patients with bilateral tinnitus (Bil-T), and 20 healthy controls underwent resting-state blood oxygenation-level dependent fMRI scans. Independent component analysis was used to obtain the functional connectivities in the auditory network (AN) and the default mode network (DMN), which were compared between each group using the voxel-wise one-way ANOVA. In addition, lateralization of the auditory cortex was assessed within each group using a region of interest (ROI). Comparisons between tinnitus groups showed unusual clusters with different functional connectivities in the AN and the DMN. The Rt-T group had large clusters with higher functional connectivity in the right middle temporal gyrus and temporopolar area compared with the Lt-/Bil-T and control groups. ROI analysis showed that the Rt-/Lt-T groups had dominant functional connectivity in the right auditory cortex and the Bil-T and control groups had left-dominant auditory connectivity. These results suggest that chronic tinnitus is related to aberrant laterality of the auditory cortex. These findings help clarify the neural mechanism of tinnitus and specify the targets for localization of treatment

  4. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  5. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system. Copyright © 2011 Wiley-Liss, Inc.

  6. Cognitive Behavioral Therapy Lowers Elevated Functional Connectivity in Depressed Adolescents

    Directory of Open Access Journals (Sweden)

    Shayanti Chattopadhyay

    2017-03-01

    Full Text Available Imaging studies have implicated altered functional connectivity in adults with major depressive disorder (MDD. Whether similar dysfunction is present in adolescent patients is unclear. The degree of resting-state functional connectivity (rsFC may reflect abnormalities within emotional (‘hot’ and cognitive control (‘cold’ neural systems. Here, we investigate rsFC of these systems in adolescent patients and changes following cognitive behavioral therapy (CBT. Functional Magnetic Resonance Imaging (fMRI was acquired from adolescent patients before CBT, and 24-weeks later following completed therapy. Similar data were obtained from control participants. Cross-sectional Cohort: From 82 patients and 34 controls at baseline, rsFC of the amygdala, anterior cingulate cortex (ACC, and pre-frontal cortex (PFC was calculated for comparison. Longitudinal Cohort: From 17 patients and 30 controls with longitudinal data, treatment effects were tested on rsFC. Patients demonstrated significantly greater rsFC to left amygdala, bilateral supragenual ACC, but not with PFC. Treatment effects were observed in right insula connected to left supragenual ACC, with baseline case-control differences reduced. rsFC changes were significantly correlated with changes in depression severity. Depressed adolescents exhibited heightened connectivity in regions of ‘hot’ emotional processing, known to be associated with depression, where treatment exposure exerted positive effects, without concomitant differences in areas of ‘cold’ cognition.

  7. Functional connectivity of emotional processing in depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-02-01

    OBJECTIVES: The aim of the study is to map a neural network of emotion processing and to identify differences in major depression compared to healthy controls. It is hypothesized that intentional perception of emotional faces activates connections between amygdala (Demir et al.), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) and that frontal-amygdala connections are altered in major depressive disorder (MDD). METHODS: Fifteen medication-free patients with MDD and fifteen healthy controls were enrolled. All subjects were assessed using the same face-matching functional Magnetic Resonance Imaging (fMRI) task, known to involve those areas. Brain activations were obtained using Statistical Parametric Mapping version 5 (SPM5) for data analysis and MARSBAR for extracting of fMRI time series. Then data was analyzed using structural equation modeling (SEM). RESULTS: A valid model was established for the left and the right hemispheres showing a circuit involving ACC, OFC, PFC and AMY. The left hemisphere shows significant lower connectivity strengths in patients than controls, for the pathway that goes from AMY to the OF11, and a trend of higher connectivity in patients for the path that goes from the PF9 to the OF11. In the right hemisphere, patients show lower connectivity coefficients in the paths from the AMY to OF11, from the AMY to ACC, and from the ACC to PF9. By the contrary, controls show lower connectivity strengths for the path that goes from ACC to AMY. CONCLUSIONS: Functional disconnection between limbic and frontal brain regions could be demonstrated using structural equation modeling. The interpretation of these findings could be that there is an emotional processing bias with disconnection bilaterally between amygdala to orbitofrontal cortices and in addition a right disconnection between amygdala and ACC as well as between ACC and prefrontal cortex possibly in line with a more prominent role for the right hemisphere

  8. Increased functional connectivity strength of right inferior temporal gyrus in first-episode, drug-naive somatization disorder.

    Science.gov (United States)

    Su, Qinji; Yao, Dapeng; Jiang, Muliang; Liu, Feng; Jiang, Jiajing; Xu, Chunxing; Dai, Yi; Yu, Miaoyu; Long, Liling; Li, Hongzheng; Liu, Jianrong; Zhang, Zhikun; Zhang, Jian; Xiao, Changqing; Guo, Wenbin

    2015-01-01

    Evidence of brain structural and functional alterations have been implicated in patients with somatization disorder (SD). However, little is known about brain functional connectivity in SD. In the present study, resting-state functional magnetic resonance imaging (fMRI) and graph theory were used to obtain a comprehensive view of whole-brain functional connectivity and to investigate the changes of voxel-wise functional networks in patients with SD. Twenty-five first-episode, medication-naive patients with SD and 28 age-, sex- and education-matched healthy controls (HCs) underwent resting-state fMRI. The graph theory approach was employed to analyze the data. Compared to the HCs, patients with SD showed significantly increased functional connectivity strength in the right inferior temporal gyrus (ITG). There is a significant positive correlation between the z-values of the cluster in the right ITG and Hamilton Anxiety Scale scores. Our findings indicate that there is a disruption of the functional connectivity pattern in the right ITG in first-episode, treatment-naive patients with SD, which bears clinical significance. © The Royal Australian and New Zealand College of Psychiatrists 2014.

  9. Incorporating priors for EEG source imaging and connectivity analysis

    Directory of Open Access Journals (Sweden)

    Xu eLei

    2015-08-01

    Full Text Available Electroencephalography source imaging (ESI is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors from such techniques as magnetic resonance imaging (MRI, functional MRI (fMRI, and positron emission tomography (PET. The modality's specific contribution is analyzed from the perspective of source reconstruction. For spatial priors, such as EEG-correlated fMRI, temporally coherent networks and resting-state fMRI are systematically introduced in the ESI. Moreover, the fiber tracking (diffusion tensor imaging, DTI and neuro-stimulation techniques (transcranial magnetic stimulation, TMS are also introduced as the potential priors, which can help to draw inferences about the neuroelectric connectivity in the source space. We conclude that combining EEG source imaging with other complementary modalities is a promising approach towards the study of brain networks in cognitive and clinical neurosciences.

  10. Individual differences in decision making competence revealed by multivariate fMRI.

    Science.gov (United States)

    Talukdar, Tanveer; Román, Francisco J; Operskalski, Joachim T; Zwilling, Christopher E; Barbey, Aron K

    2018-06-01

    While an extensive literature in decision neuroscience has elucidated the neurobiological foundations of decision making, prior research has focused primarily on group-level effects in a sample population. Due to the presence of inherent differences between individuals' cognitive abilities, it is also important to examine the neural correlates of decision making that explain interindividual variability in cognitive performance. This study therefore investigated how individual differences in decision making competence, as measured by the Adult Decision Making Competence (A-DMC) battery, are related to functional brain connectivity patterns derived from resting-state fMRI data in a sample of 304 healthy participants. We examined connectome-wide associations, identifying regions within frontal, parietal, temporal, and occipital cortex that demonstrated significant associations with decision making competence. We then assessed whether the functional interactions between brain regions sensitive to decision making competence and seven intrinsic connectivity networks (ICNs) were predictive of specific facets of decision making assessed by subtests of the A-DMC battery. Our findings suggest that individual differences in specific facets of decision making competence are mediated by ICNs that support executive, social, and perceptual processes, and motivate an integrative framework for understanding the neural basis of individual differences in decision making competence. © 2018 Wiley Periodicals, Inc.

  11. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    Science.gov (United States)

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  12. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy

    OpenAIRE

    P. Flodin; S. Martinsen; K. Mannerkorpi; M. Löfgren; I. Bileviciute-Ljungar; E. Kosek; P. Fransson

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown ...

  13. Brain connectivity aberrations in anabolic-androgenic steroid users

    Directory of Open Access Journals (Sweden)

    Lars T. Westlye

    2017-01-01

    Full Text Available Sustained anabolic-androgenic steroid (AAS use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN and between the dorsal attention network (DAN and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG and the anterior cingulate cortex (ACC, with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off.

  14. Impaired functional connectivity of brain reward circuitry in patients with schizophrenia and cannabis use disorder: Effects of cannabis and THC.

    Science.gov (United States)

    Fischer, Adina S; Whitfield-Gabrieli, Susan; Roth, Robert M; Brunette, Mary F; Green, Alan I

    2014-09-01

    Cannabis use disorder (CUD) occurs in up to 42% of patients with schizophrenia and substantially worsens disease progression. The basis of CUD in schizophrenia is unclear and available treatments are rarely successful at limiting cannabis use. We have proposed that a dysregulated brain reward circuit (BRC) may underpin cannabis use in these patients. In the present pilot study, we used whole-brain seed-to-voxel resting state functional connectivity (rs-fc) to examine the BRC of patients with schizophrenia and CUD, and to explore the effects of smoked cannabis and orally administered delta-9-tetrahydrocannabinol (THC) on the BRC. 12 patients with schizophrenia and CUD and 12 control subjects each completed two fMRI resting scans, with patients administered either a 3.6% THC cannabis cigarette (n=6) or a 15 mg THC capsule (n=6) prior to their second scan. Results revealed significantly reduced connectivity at baseline in patients relative to controls, with most pronounced hypoconnectivity found between the nucleus accumbens and prefrontal cortical BRC regions (i.e., anterior prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex). Both cannabis and THC administration increased connectivity between these regions, in direct correlation with increases in plasma THC levels. This study is the first to investigate interregional connectivity of the BRC and the effects of cannabis and THC on this circuit in patients with schizophrenia and CUD. The findings from this pilot study support the use of rs-fc as a means of measuring the integrity of the BRC and the effects of pharmacologic agents acting on this circuit in patients with schizophrenia and CUD. Copyright © 2014. Published by Elsevier B.V.

  15. Aberrant whole-brain functional connectivity and intelligence structure in children with primary nocturnal enuresis.

    Directory of Open Access Journals (Sweden)

    Bing Yu

    Full Text Available AIM: To assess the potential relationship between intelligence structure abnormalities and whole-brain functional connectivity in children with primary nocturnal enuresis (PNE with resting-state functional magnetic resonance imaging (fMRI to provide insights into the association between these two seemingly unrelated conditions. METHODS: Intelligence testing and fMRI data were obtained from 133 right-handed children, including 67 PNE children (M/F, 39:28; age, 10.5 ± 1.2 y and 66 age-matched healthy controls (M/F, 37:29; age, 10.1 ± 1.1 y. All intelligence tests were performed using the China-Wechsler Intelligence Scale for Children (C-WISC. Each subject's full intelligence quotient (FIQ, verbal IQ (VIQ, performance IQ (PIQ, and memory/caution (M/C factor was measured and recorded. Resting state fMRI scans were performed on a 3.0-T MR scanner and post-processed using REST software. Comparisons of z-score correlation coefficients between distinct cerebral regions were used to identify altered functional connectivity in PNE children. RESULTS: The PNE group had normal FIQ, VIQ, and PIQ values, indicating no significant variation from the control group. However, the M/C factor was significantly lower in the PNE group. Compared to the control group, PNE children exhibited overall lower levels of functional connectivity that were most apparent in the cerebello-thalamo-frontal pathway. The M/C factor significantly correlated with z-scores representing connectivity between Cerebellum_Crus1_L and Frontal_Mid_R. CONCLUSION: PNE children exhibit intelligence structure imbalance and attention deficits. Our findings suggest that cerebello-thalamo-frontal circuit abnormalities are likely to be involved in the onset and progression of attention impairment in PNE children.

  16. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression

    NARCIS (Netherlands)

    Figueroa, Caroline A.; Mocking, Roel J. T.; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G.; Schene, Aart H.

    2017-01-01

    Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network

  17. Unbiased group-wise image registration: applications in brain fiber tract atlas construction and functional connectivity analysis.

    Science.gov (United States)

    Geng, Xiujuan; Gu, Hong; Shin, Wanyong; Ross, Thomas J; Yang, Yihong

    2011-10-01

    We propose an unbiased implicit-reference group-wise (IRG) image registration method and demonstrate its applications in the construction of a brain white matter fiber tract atlas and the analysis of resting-state functional MRI (fMRI) connectivity. Most image registration techniques pair-wise align images to a selected reference image and group analyses are performed in the reference space, which may produce bias. The proposed method jointly estimates transformations, with an elastic deformation model, registering all images to an implicit reference corresponding to the group average. The unbiased registration is applied to build a fiber tract atlas by registering a group of diffusion tensor images. Compared to reference-based registration, the IRG registration improves the fiber track overlap within the group. After applying the method in the fMRI connectivity analysis, results suggest a general improvement in functional connectivity maps at a group level in terms of larger cluster size and higher average t-scores.

  18. Multimodal frontostriatal connectivity underlies individual differences in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2015-03-01

    A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.

    Science.gov (United States)

    Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E

    2016-08-01

    This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.

  20. Dynamic causal modeling of hippocampal links within the human default mode network: Lateralization and computational stability of effective connections

    Directory of Open Access Journals (Sweden)

    Vadim Leonidovich Ushakov

    2016-10-01

    Full Text Available The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively within the default mode network (DMN as represented by its key structures: the medial prefrontal cortex (MPFC, posterior cingulate cortex (PCC and the inferior parietal cortex of left (LIPC and right (RIPC hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM. Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of

  1. Moral competence and brain connectivity: a resting-state fMRI study

    Science.gov (United States)

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W.; Rao, Hengyi; Robertson, Diana C.

    2016-01-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. PMID:27456537

  2. What impact does an angry context have upon us? The effect of anger on functional connectivity of the right insula and superior temporal gyri

    Directory of Open Access Journals (Sweden)

    Viridiana eMazzola

    2016-06-01

    Full Text Available Being in a social world requires an understanding of other people that is co-determined in its meaning by the situation at hand. Therefore, we investigated the underlying neural activation occurring when we encounter someone acting in angry or joyful situation. We hypothesized a dynamic interplay between the right insula, both involved in mapping visceral states associated with emotional experiences and autonomic control, and the bilateral superior temporal gyri (STG, part of the 'social brain’, when facing angry vs joyful situations. Twenty participants underwent a fMRI scanning session while watching video clips of actors grasping objects in joyful and angry situations. The analyses of functional connectivity, psychophysiological interaction (PPI. and dynamic causal modeling (DCM, all revealed changes in functional connectivity associated with the angry situation. Indeed, the DCM model showed that the modulatory effect of anger increased the ipsilateral forward connection from the right insula to the right STG, while it suppressed the contralateral one. Our findings reveal a critical role played by the right insula when we are engaged in angry situations. In addition, they suggest that facing angry people modulates the effective connectivity between these two nodes associated, respectively, with autonomic responses and bodily movements and human-agent motion recognition. Taken together, these results add knowledge to the current understanding of hierarchical brain network for social cognition.

  3. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  4. Altered network hub connectivity after acute LSD administration

    Directory of Open Access Journals (Sweden)

    Felix Müller

    Full Text Available LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum and cortical (precuneus, anterior cingulate cortex hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model. Keywords: LSD, fMRI, Functional connectivity, Networks, Hubs

  5. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity.

    Science.gov (United States)

    Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko

    2012-01-01

    Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.

  6. A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data

    Science.gov (United States)

    Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming

    2018-01-01

    The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880

  7. A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.

    Science.gov (United States)

    Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming

    2018-01-01

    The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.

  8. Is fMRI ?noise? really noise? Resting state nuisance regressors remove variance with network structure

    OpenAIRE

    Bright, Molly G.; Murphy, Kevin

    2015-01-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed ...

  9. Moral competence and brain connectivity: A resting-state fMRI study.

    Science.gov (United States)

    Jung, Wi Hoon; Prehn, Kristin; Fang, Zhuo; Korczykowski, Marc; Kable, Joseph W; Rao, Hengyi; Robertson, Diana C

    2016-11-01

    Moral competence (MC) refers to the ability to apply certain moral orientations in a consistent and differentiated manner when judging moral issues. People greatly differ in terms of MC, however, little is known about how these differences are implemented in the brain. To investigate this question, we used functional magnetic resonance imaging and examined resting-state functional connectivity (RSFC) in n=31 individuals with MC scores in the highest 15% of the population and n=33 individuals with MC scores in the lowest 15%, selected from a large sample of 730 Master of Business Administration (MBA) students. Compared to individuals with lower MC, individuals with higher MC showed greater amygdala-ventromedial prefrontal connectivity, which may reflect better ability to cope with emotional conflicts elicited by moral dilemmas. Moreover, individuals with higher MC showed less inter-network connectivity between the amygdalar and fronto-parietal networks, suggesting a more independent operation of these networks. Our findings provide novel insights into how individual differences in moral judgment are associated with RSFC in brain circuits related to emotion processing and cognitive control. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package

    Directory of Open Access Journals (Sweden)

    Pierre Lafaye de Micheaux

    2011-10-01

    Full Text Available For statistical analysis of functional magnetic resonance imaging (fMRI data sets, we propose a data-driven approach based on independent component analysis (ICA implemented in a new version of the AnalyzeFMRI R package. For fMRI data sets, spatial dimension being much greater than temporal dimension, spatial ICA is the computationally tractable approach generally proposed. However, for some neuroscientific applications, temporal independence of source signals can be assumed and temporal ICA becomes then an attractive exploratory technique. In this work, we use a classical linear algebra result ensuring the tractability of temporal ICA. We report several experiments on synthetic data and real MRI data sets that demonstrate the potential interest of our R package.

  11. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    OpenAIRE

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the c...

  12. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    Science.gov (United States)

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  13. Multi-modal neuroimaging of adolescents with non-suicidal self-injury: Amygdala functional connectivity.

    Science.gov (United States)

    Westlund Schreiner, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A; Eberly, Lynn E; Reigstad, Kristina M; Carstedt, Patricia A; Thomas, Kathleen M; Hunt, Ruskin H; Lim, Kelvin O; Cullen, Kathryn R

    2017-10-15

    Non-suicidal self-injury (NSSI) is a significant mental health problem among adolescents. Research is needed to clarify the neurobiology of NSSI and identify candidate neurobiological targets for interventions. Based on prior research implicating heightened negative affect and amygdala hyperactivity in NSSI, we pursued a systems approach to characterize amygdala functional connectivity networks during rest (resting-state functional connectivity [RSFC)]) and a task (task functional connectivity [TFC]) in adolescents with NSSI. We examined amygdala networks in female adolescents with NSSI and healthy controls (n = 45) using resting-state fMRI and a negative emotion face-matching fMRI task designed to activate the amygdala. Connectivity analyses included amygdala RSFC, amygdala TFC, and psychophysiological interactions (PPI) between amygdala connectivity and task conditions. Compared to healthy controls, adolescents with NSSI showed atypical amygdala-frontal connectivity during rest and task; greater amygdala RSFC in supplementary motor area (SMA) and dorsal anterior cingulate; and differential amygdala-occipital connectivity between rest and task. After correcting for depression symptoms, amygdala-SMA RSFC abnormalities, among others, remained significant. This study's limitations include its cross-sectional design and its absence of a psychiatric control group. Using a multi-modal approach, we identified widespread amygdala circuitry anomalies in adolescents with NSSI. While deficits in amygdala-frontal connectivity (driven by depression symptoms) replicates prior work in depression, hyperconnectivity between amygdala and SMA (independent of depression symptoms) has not been previously reported. This circuit may represent an important mechanism underlying the link between negative affect and habitual behaviors. These abnormalities may represent intervention targets for adolescents with NSSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Bayesian Double Fusion Model for Resting-State Brain Connectivity Using Joint Functional and Structural Data

    KAUST Repository

    Kang, Hakmook

    2017-03-20

    Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take advantage of the information from DTI that could potentially enhance estimation of resting-state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatiotemporal model that incorporates structural connectivity (SC) into estimating FC. In our proposed approach, SC based on DTI data is used to construct an informative prior for FC based on resting-state fMRI data through the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly reduced mean squared errors compared to the standard approach of separately analyzing the two data from different modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC between the brain regions that were hypothetically important in the origination and spread of temporal lobe epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is much robust to data decimation compared to the conventional approach.

  15. Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution.

    Science.gov (United States)

    Tagliazucchi, Enzo; Roseman, Leor; Kaelen, Mendel; Orban, Csaba; Muthukumaraswamy, Suresh D; Murphy, Kevin; Laufs, Helmut; Leech, Robert; McGonigle, John; Crossley, Nicolas; Bullmore, Edward; Williams, Tim; Bolstridge, Mark; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin

    2016-04-25

    Lysergic acid diethylamide (LSD) is a non-selective serotonin-receptor agonist that was first synthesized in 1938 and identified as (potently) psychoactive in 1943. Psychedelics have been used by indigenous cultures for millennia [1]; however, because of LSD's unique potency and the timing of its discovery (coinciding with a period of major discovery in psychopharmacology), it is generally regarded as the quintessential contemporary psychedelic [2]. LSD has profound modulatory effects on consciousness and was used extensively in psychological research and psychiatric practice in the 1950s and 1960s [3]. In spite of this, however, there have been no modern human imaging studies of its acute effects on the brain. Here we studied the effects of LSD on intrinsic functional connectivity within the human brain using fMRI. High-level association cortices (partially overlapping with the default-mode, salience, and frontoparietal attention networks) and the thalamus showed increased global connectivity under the drug. The cortical areas showing increased global connectivity overlapped significantly with a map of serotonin 2A (5-HT2A) receptor densities (the key site of action of psychedelic drugs [4]). LSD also increased global integration by inflating the level of communication between normally distinct brain networks. The increase in global connectivity observed under LSD correlated with subjective reports of "ego dissolution." The present results provide the first evidence that LSD selectively expands global connectivity in the brain, compromising the brain's modular and "rich-club" organization and, simultaneously, the perceptual boundaries between the self and the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  17. Theta Burst Stimulation Enhances Connectivity of the Dorsal Attention Network in Young Healthy Subjects: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Lubomira Anderkova

    2018-01-01

    Full Text Available We examined effects of theta burst stimulation (TBS applied over two distinct cortical areas (the right inferior frontal gyrus and the left superior parietal lobule on the Stroop task performance in 20 young healthy subjects. Neural underpinnings of the behavioral effect were tested using fMRI. A single session of intermittent TBS of the left superior parietal lobule induced certain cognitive speed enhancement and significantly increased resting-state connectivity of the dorsal attention network. This is an exploratory study that prompts further research with multiple-session TBS in subjects with cognitive impairment.

  18. Dynamic effective connectivity of inter-areal brain circuits.

    Directory of Open Access Journals (Sweden)

    Demian Battaglia

    Full Text Available Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity, related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early

  19. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    Science.gov (United States)

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  20. Structural and effective connectivity in focal epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher S. Parker

    2018-01-01

    Full Text Available Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs, which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread.

  1. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    Science.gov (United States)

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  2. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry

    Science.gov (United States)

    Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim

    2013-01-01

    Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374

  3. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  4. Non-white noise in fMRI: Does modelling have an impact?

    DEFF Research Database (Denmark)

    Lund, Torben Ellegaard; Madsen, Kristoffer Hougaard; Sidaros, Karam

    2006-01-01

    are typically modelled as an autoregressive (AR) process. In this paper, we propose an alternative approach: Nuisance Variable Regression (NVR). By inclusion of confounding effects in a general linear model (GLM), we first confirm that the spatial distribution of the various fMRI noise sources is similar......The sources of non-white noise in Blood Oxygenation Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) are many. Familiar sources include low-frequency drift due to hardware imperfections, oscillatory noise due to respiration and cardiac pulsation and residual movement artefacts...

  5. Considering sex differences clarifies the effects of depression on facial emotion processing during fMRI.

    Science.gov (United States)

    Jenkins, L M; Kendall, A D; Kassel, M T; Patrón, V G; Gowins, J R; Dion, C; Shankman, S A; Weisenbach, S L; Maki, P; Langenecker, S A

    2018-01-01

    Sex differences in emotion processing may play a role in women's increased risk for Major Depressive Disorder (MDD). However, studies of sex differences in brain mechanisms involved in emotion processing in MDD (or interactions of sex and diagnosis) are sparse. We conducted an event-related fMRI study examining the interactive and distinct effects of sex and MDD on neural activity during a facial emotion perception task. To minimize effects of current affective state and cumulative disease burden, we studied participants with remitted MDD (rMDD) who were early in the course of the illness. In total, 88 individuals aged 18-23 participated, including 48 with rMDD (32 female) and 40 healthy controls (HC; 25 female). fMRI revealed an interaction between sex and diagnosis for sad and neutral facial expressions in the superior frontal gyrus and left middle temporal gyrus. Results also revealed an interaction of sex with diagnosis in the amygdala. Data was from two sites, which might increase variability, but it also increases power to examine sex by diagnosis interactions. This study demonstrates the importance of taking sex differences into account when examining potential trait (or scar) mechanisms that could be useful in identifying individuals at-risk for MDD as well as for evaluating potential therapeutic innovations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Network connectivity and individual responses to brain stimulation in the human motor system.

    Science.gov (United States)

    Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-07-01

    The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    Directory of Open Access Journals (Sweden)

    Guillaume Chanel

    2016-01-01

    Full Text Available Multivariate pattern analysis (MVPA has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI, a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based approach that we apply to two different fMRI experiments with social stimuli (faces and bodies. The method, based on Support Vector Machines (SVMs and Recursive Feature Elimination (RFE, is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%. Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations.

  8. Classification of autistic individuals and controls using cross-task characterization of fMRI activity

    Science.gov (United States)

    Chanel, Guillaume; Pichon, Swann; Conty, Laurence; Berthoz, Sylvie; Chevallier, Coralie; Grèzes, Julie

    2015-01-01

    Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from controls. While most studies have focused on brain connectivity during resting state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last decade. This calls for techniques that can leverage information not only from a single dataset, but from several existing datasets that might share some common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each experiment independently and each output is then combined to obtain a final classification output. Second, this RFE output is used to determine which voxels are most often selected for classification to generate maps of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which correlated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by taking advantage of acquired task-based fMRI datasets in psychiatric populations. PMID:26793434

  9. Altered resting-state connectivity within default mode network associated with late chronotype.

    Science.gov (United States)

    Horne, Charlotte Mary; Norbury, Ray

    2018-04-20

    Current evidence suggests late chronotype individuals have an increased risk of developing depression. However, the underlying neural mechanisms of this association are not fully understood. Forty-six healthy, right-handed individuals free of current or previous diagnosis of depression, family history of depression or sleep disorder underwent resting-state functional Magnetic Resonance Imaging (rsFMRI). Using an Independent Component Analysis (ICA) approach, the Default Mode Network (DMN) was identified based on a well validated template. Linear effects of chronotype on DMN connectivity were tested for significance using non-parametric permutation tests (applying 5000 permutations). Sleep quality, age, gender, measures of mood and anxiety, time of scan and cortical grey matter volume were included as covariates in the regression model. A significant positive correlation between chronotype and functional connectivity within nodes of the DMN was observed, including; bilateral PCC and precuneus, such that later chronotype (participants with lower rMEQ scores) was associated with decreased connectivity within these regions. The current results appear consistent with altered DMN connectivity in depressed patients and weighted evidence towards reduced DMN connectivity in other at-risk populations which may, in part, explain the increased vulnerability for depression in late chronotype individuals. The effect may be driven by self-critical thoughts associated with late chronotype although future studies are needed to directly investigate this. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Behavior, neuropsychology and fMRI.

    Science.gov (United States)

    Bennett, Maxwell R; Hatton, Sean; Hermens, Daniel F; Lagopoulos, Jim

    Cognitive neuroscientists in the late 20th century began the task of identifying the part(s) of the brain concerned with normal behavior as manifest in the psychological capacities as affective powers, reasoning, behaving purposively and the pursuit of goals, following introduction of the 'functional magnetic resonance imaging' (fMRI) method for identifying brain activity. For this research program to be successful two questions require satisfactory answers. First, as the fMRI method can currently only be used on stationary subjects, to what extent can neuropsychological tests applicable to such stationary subjects be correlated with normal behavior. Second, to what extent can correlations between the various neuropsychological tests on the one hand, and sites of brain activity determined with fMRI on the other, be regarded as established. The extent to which these questions have yet received satisfactory answers is reviewed, and suggestions made both for improving correlations of neuropsychological tests with behavior as well as with the results of fMRI-based observations. Copyright © 2016. Published by Elsevier Ltd.

  11. Assessment of Functional Characteristics of Amnestic Mild Cognitive Impairment and Alzheimer’s Disease Using Various Methods of Resting-State FMRI Analysis

    Directory of Open Access Journals (Sweden)

    Jungho Cha

    2015-01-01

    Full Text Available Resting-state functional magnetic resonance imaging (RS FMRI has been widely used to analyze functional alterations in amnestic mild cognitive impairment (aMCI and Alzheimer’s disease (AD patients. Although many clinical studies of aMCI and AD patients using RS FMRI have been undertaken, conducting a meta-analysis has not been easy because of seed selection bias by the investigators. The purpose of our study was to investigate the functional differences in aMCI and AD patients compared with healthy subjects in a meta-analysis. Thus, a multimethod approach using regional homogeneity, amplitude of low-frequency fluctuation (ALFF, fractional ALFF (fALFF, and global brain connectivity was used to investigate differences between three groups based on previously published data. According to the choice of RS FMRI approach used, the patterns of functional alteration were slightly different. Nevertheless, patients with aMCI and AD displayed consistently decreased functional characteristics with all approaches. All approaches showed that the functional characteristics in the left parahippocampal gyrus were decreased in AD patients compared with healthy subjects. Although some regions were slightly different according to the different RS FMRI approaches, patients with aMCI and AD showed a consistent pattern of decreased functional characteristics with all approaches.

  12. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations.

    Science.gov (United States)

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S

    2017-12-01

    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT 2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  13. Daily iTBS worsens hand motor training--a combined TMS, fMRI and mirror training study.

    Science.gov (United States)

    Läppchen, C H; Ringer, T; Blessin, J; Schulz, K; Seidel, G; Lange, R; Hamzei, F

    2015-02-15

    Repetitive transcranial magnetic stimulation (rTMS) is used to increase regional excitability to improve motor function in combination with training after neurological diseases or events such as stroke. We investigated whether a daily application of intermittent theta burst stimulation (iTBS; a short-duration rTMS that increases regional excitability) improves the training effect compared with sham stimulation in association with a four-day hand training program using a mirror (mirror training, MT). The right dorsal premotor cortex (dPMC right) was chosen as the target region for iTBS because this region has recently been emphasized as a node within a network related to MT. Healthy subjects were randomized into the iTBS group or sham group (control group CG). In the iTBS group, iTBS was applied daily over dPMC right, which was functionally determined in an initial fMRI session prior to starting MT. MT involved 20 min of hand training daily in a mirror over four days. The hand tests, the intracortical excitability and fMRI were evaluated prior to and at the end of MT. The results of the hand training tests of the iTBS group were surprisingly significantly poorer compared with those from the CG group. Both groups showed a different course of excitability in both M1 and a different course of fMRI activation within the supplementary motor area and M1 left. We suggest the inter-regional functional balance was affected by daily iTBS over dPMC right. Maybe an inter-regional connectivity within a network is differentially balanced. An excitability increase within an inhibitory-balanced network would therefore disturb the underlying network. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. An fMRI study

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 38; Issue 5 ... Alcoholism; brain; fMRI; language processing; lexical; semantic judgment ... alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual ...

  15. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  16. Task activation and functional connectivity show concordant memory laterality in temporal lobe epilepsy.

    Science.gov (United States)

    Sideman, Noah; Chaitanya, Ganne; He, Xiaosong; Doucet, Gaelle; Kim, Na Young; Sperling, Michael R; Sharan, Ashwini D; Tracy, Joseph I

    2018-04-01

    In epilepsy, asymmetries in the organization of mesial temporal lobe (MTL) functions help determine the cognitive risk associated with procedures such as anterior temporal lobectomy. Past studies have investigated the change/shift in a visual episodic memory laterality index (LI) in mesial temporal lobe structures through functional magnetic resonance imaging (fMRI) task activations. Here, we examine whether underlying task-related functional connectivity (FC) is concordant with such standard fMRI laterality measures. A total of 56 patients with temporal lobe epilepsy (TLE) (Left TLE [LTLE]: 31; Right TLE [RTLE]: 25) and 34 matched healthy controls (HC) underwent fMRI scanning during performance of a scene encoding task (SET). We assessed an activation-based LI of the hippocampal gyrus (HG) and parahippocampal gyrus (PHG) during the SET and its correspondence with task-related FC measures. Analyses involving the HG and PHG showed that the patients with LTLE had a consistently higher LI (right-lateralized) than that of the HC and group with RTLE, indicating functional reorganization. The patients with RTLE did not display a reliable contralateral shift away from the pathology, with the mesial structures showing quite distinct laterality patterns (HG, no laterality bias; PHG, no evidence of LI shift). The FC data for the group with LTLE provided confirmation of reorganization effects, revealing that a rightward task LI may be based on underlying connections between several left-sided regions (middle/superior occipital and left medial frontal gyri) and the right PHG. The FCs between the right HG and left anterior cingulate/medial frontal gyri were also observed in LTLE. Importantly, the data demonstrate that the areas involved in the LTLE task activation shift to the right hemisphere showed a corresponding increase in task-related FCs between the hemispheres. Altered laterality patterns based on mesial temporal lobe epilepsy (MTLE) pathology manifest as several

  17. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  18. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  19. EEG-Informed fMRI: A Review of Data Analysis Methods

    Science.gov (United States)

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  20. EEG-Informed fMRI: A Review of Data Analysis Methods

    Directory of Open Access Journals (Sweden)

    Rodolfo Abreu

    2018-02-01

    Full Text Available The simultaneous acquisition of electroencephalography (EEG with functional magnetic resonance imaging (fMRI is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.

  1. Systemic inflammation and resting state connectivity of the default mode network.

    Science.gov (United States)

    Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J

    2017-05-01

    The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression

    Directory of Open Access Journals (Sweden)

    Amber M. Leaver

    2018-03-01

    Full Text Available BackgroundElectroconvulsive therapy (ECT is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics. Here, we assessed the ability of aggregated, functional MRI metrics of basal brain activity and connectivity to predict antidepressant response to ECT using machine learning.MethodsA radial support vector machine was trained using arterial spin labeling (ASL and blood-oxygen-level-dependent (BOLD functional magnetic resonance imaging (fMRI metrics from n = 46 (26 female, mean age 42 depressed patients prior to ECT (majority right-unilateral stimulation. Image preprocessing was applied using standard procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, fractional amplitude of low-frequency modulations, and graph theory metrics (strength, local efficiency, and clustering in BOLD data. A 5-repeated 5-fold cross-validation procedure with nested feature-selection validated model performance. Linear regressions were applied post hoc to aid interpretation of discriminative features.ResultsThe range of balanced accuracy in models performing statistically above chance was 58–68%. Here, prediction of non-responders was slightly higher than for responders (maximum performance 74 and 64%, respectively. Several features were consistently selected across cross-validation folds, mostly within frontal and temporal regions. Among these were connectivity strength among: a fronto-parietal network [including left dorsolateral prefrontal cortex (DLPFC], motor and temporal networks (near ECT electrodes, and/or subgenual anterior cingulate cortex (sgACC.ConclusionOur data indicate that pattern classification of multimodal fMRI

  3. Autogenic training alters cerebral activation patterns in fMRI.

    Science.gov (United States)

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  4. Time course based artifact identification for independent components of resting state fMRI

    Directory of Open Access Journals (Sweden)

    Christian eRummel

    2013-05-01

    Full Text Available In functional magnetic resonance imaging (fMRI coherent oscillations of the blood oxygen level dependent (BOLD signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting state networks (RSN. Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82 and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.

  5. Task-related Functional Connectivity Dynamics in a Block-designed Visual Experiment

    Directory of Open Access Journals (Sweden)

    Xin eDi

    2015-09-01

    Full Text Available Studying task modulations of brain connectivity using functional magnetic resonance imaging (fMRI is critical to understand brain functions that support cognitive and affective processes. Existing methods such as psychophysiological interaction (PPI and dynamic causal modelling (DCM usually implicitly assume that the connectivity patterns are stable over a block-designed task with identical stimuli. However, this assumption lacks empirical verification on high-temporal resolution fMRI data with reliable data-driven analysis methods. The present study performed a detailed examination of dynamic changes of functional connectivity (FC in a simple block-designed visual checkerboard experiment with a sub-second sampling rate (TR = 0.645 s by estimating time-varying correlation coefficient (TVCC between BOLD responses of different brain regions. We observed reliable task-related FC changes (i.e., FCs were transiently decreased after task onset and went back to the baseline afterward among several visual regions of the bilateral middle occipital gyrus (MOG and the bilateral fusiform gyrus (FuG. Importantly, only the FCs between higher visual regions (MOG and lower visual regions (FuG exhibited such dynamic patterns. The results suggested that simply assuming a sustained FC during a task block may be insufficient to capture distinct task-related FC changes. The investigation of FC dynamics in tasks could improve our understanding of condition shifts and the coordination between different activated brain regions.

  6. Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: evidence from fMRI in healthy subjects.

    Science.gov (United States)

    Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J

    2012-06-01

    The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.

  7. Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study

    Science.gov (United States)

    Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang

    2014-03-01

    Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.

  8. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  9. Failure to Recover from Proactive Semantic Interference and Abnormal Limbic Connectivity in Asymptomatic, Middle-Aged Offspring of Patients with Late-Onset Alzheimer's Disease.

    Science.gov (United States)

    Sánchez, Stella M; Abulafia, Carolina; Duarte-Abritta, Barbara; de Guevara, M Soledad Ladrón; Castro, Mariana N; Drucaroff, Lucas; Sevlever, Gustavo; Nemeroff, Charles B; Vigo, Daniel E; Loewenstein, David A; Villarreal, Mirta F; Guinjoan, Salvador M

    2017-01-01

    We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.

  10. Application of calibrated fMRI in Alzheimer's disease.

    Science.gov (United States)

    Lajoie, Isabelle; Nugent, Scott; Debacker, Clément; Dyson, Kenneth; Tancredi, Felipe B; Badhwar, AmanPreet; Belleville, Sylvie; Deschaintre, Yan; Bellec, Pierre; Doyon, Julien; Bocti, Christian; Gauthier, Serge; Arnold, Douglas; Kergoat, Marie-Jeanne; Chertkow, Howard; Monchi, Oury; Hoge, Richard D

    2017-01-01

    Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction fraction (OEF), and resting oxidative metabolism (CMRO 2 ). Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD), thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2) in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO 2 values fell within the range from previous studies using positron emission tomography (PET) with 15 O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe), the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO 2 can be imaged with 15 O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function.

  11. Application of calibrated fMRI in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Isabelle Lajoie

    2017-01-01

    Full Text Available Calibrated fMRI based on arterial spin-labeling (ASL and blood oxygen-dependent contrast (BOLD, combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR, resting blood flow (CBF, oxygen extraction fraction (OEF, and resting oxidative metabolism (CMRO2. Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD, thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2 in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO2 values fell within the range from previous studies using positron emission tomography (PET with 15O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe, the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO2 can be imaged with 15O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function.

  12. Vicariously touching products through observing others' hand actions increases purchasing intention, and the effect of visual perspective in this process: An fMRI study.

    Science.gov (United States)

    Liu, Yi; Zang, Xuelian; Chen, Lihan; Assumpção, Leonardo; Li, Hong

    2018-01-01

    The growth of online shopping increases consumers' dependence on vicarious sensory experiences, such as observing others touching products in commercials. However, empirical evidence on whether observing others' sensory experiences increases purchasing intention is still scarce. In the present study, participants observed others interacting with products in the first- or third-person perspective in video clips, and their neural responses were measured with functional magnetic resonance imaging (fMRI). We investigated (1) whether and how vicariously touching certain products affected purchasing intention, and the neural correlates of this process; and (2) how visual perspective interacts with vicarious tactility. Vicarious tactile experiences were manipulated by hand actions touching or not touching the products, while the visual perspective was manipulated by showing the hand actions either in first- or third-person perspective. During the fMRI scanning, participants watched the video clips and rated their purchasing intention for each product. The results showed that, observing others touching (vs. not touching) the products increased purchasing intention, with vicarious neural responses found in mirror neuron systems (MNS) and lateral occipital complex (LOC). Moreover, the stronger neural activities in MNS was associated with higher purchasing intention. The effects of visual perspectives were found in left superior parietal lobule (SPL), while the interaction of tactility and visual perspective was shown in precuneus and precuneus-LOC connectivity. The present study provides the first evidence that vicariously touching a given product increased purchasing intention and the neural activities in bilateral MNS, LOC, left SPL and precuneus are involved in this process. Hum Brain Mapp 39:332-343, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  14. Improving fMRI reliability in presurgical mapping for brain tumours.

    Science.gov (United States)

    Stevens, M Tynan R; Clarke, David B; Stroink, Gerhard; Beyea, Steven D; D'Arcy, Ryan Cn

    2016-03-01

    Functional MRI (fMRI) is becoming increasingly integrated into clinical practice for presurgical mapping. Current efforts are focused on validating data quality, with reliability being a major factor. In this paper, we demonstrate the utility of a recently developed approach that uses receiver operating characteristic-reliability (ROC-r) to: (1) identify reliable versus unreliable data sets; (2) automatically select processing options to enhance data quality; and (3) automatically select individualised thresholds for activation maps. Presurgical fMRI was conducted in 16 patients undergoing surgical treatment for brain tumours. Within-session test-retest fMRI was conducted, and ROC-reliability of the patient group was compared to a previous healthy control cohort. Individually optimised preprocessing pipelines were determined to improve reliability. Spatial correspondence was assessed by comparing the fMRI results to intraoperative cortical stimulation mapping, in terms of the distance to the nearest active fMRI voxel. The average ROC-r reliability for the patients was 0.58±0.03, as compared to 0.72±0.02 in healthy controls. For the patient group, this increased significantly to 0.65±0.02 by adopting optimised preprocessing pipelines. Co-localisation of the fMRI maps with cortical stimulation was significantly better for more reliable versus less reliable data sets (8.3±0.9 vs 29±3 mm, respectively). We demonstrated ROC-r analysis for identifying reliable fMRI data sets, choosing optimal postprocessing pipelines, and selecting patient-specific thresholds. Data sets with higher reliability also showed closer spatial correspondence to cortical stimulation. ROC-r can thus identify poor fMRI data at time of scanning, allowing for repeat scans when necessary. ROC-r analysis provides optimised and automated fMRI processing for improved presurgical mapping. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  15. Connectivity-based parcellation reveals distinct cortico-striatal connectivity fingerprints in Autism Spectrum Disorder.

    Science.gov (United States)

    Balsters, Joshua H; Mantini, Dante; Wenderoth, Nicole

    2018-04-15

    Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    Science.gov (United States)

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  17. fMRI. Basics and clinical applications. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Stephan [Medizinisch Radiologisces Institut (MRI), Zuerich (Switzerland); Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie; Jansen, Olav (eds.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2013-11-01

    State of the art overview of fMRI. Covers technical issues, methods of statistical analysis, and the full range of clinical applications. Revised and expanded edition including discussion of novel aspects of analysis and further important applications. Includes comparisons with other brain mapping techniques and discussion of potential combined uses. Since functional MRI (fMRI) and the basic method of BOLD imaging were introduced in 1993 by Seiji Ogawa, fMRI has evolved into an invaluable clinical tool for routine brain imaging, and there have been substantial improvements in both the imaging technique itself and the associated statistical analysis. This book provides a state of the art overview of fMRI and its use in clinical practice. Experts in the field share their knowledge and explain how to overcome diverse potential technical barriers and problems. Starting from the very basics on the origin of the BOLD signal, the book covers technical issues, anatomical landmarks, the full range of clinical applications, methods of statistical analysis, and special issues in various clinical fields. Comparisons are made with other brain mapping techniques, such as DTI, PET, TMS, EEG, and MEG, and their combined use with fMRI is also discussed. Since the first edition, original chapters have been updated and new chapters added, covering both novel aspects of analysis and further important clinical applications.

  18. Stereoscopic Three-Dimensional Visualization Applied to Multimodal Brain Images: Clinical Applications and a Functional Connectivity Atlas.

    Directory of Open Access Journals (Sweden)

    Gonzalo M Rojas

    2014-11-01

    Full Text Available Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity.

  19. Effects of achievement goals on challenge seeking and feedback processing: behavioral and FMRI evidence.

    Directory of Open Access Journals (Sweden)

    Woogul Lee

    Full Text Available We conducted behavioral and functional magnetic resonance imaging (fMRI research to investigate the effects of two types of achievement goals--mastery goals and performance-approach goals--on challenge seeking and feedback processing. The results of the behavioral experiment indicated that mastery goals were associated with a tendency to seek challenge, both before and after experiencing difficulty during task performance, whereas performance-approach goals were related to a tendency to avoid challenge after encountering difficulty during task performance. The fMRI experiment uncovered a significant decrease in ventral striatal activity when participants received negative feedback for any task type and both forms of achievement goals. During the processing of negative feedback for the rule-finding task, performance-approach-oriented participants showed a substantial reduction in activity in the dorsolateral prefrontal cortex (DLPFC and the frontopolar cortex, whereas mastery-oriented participants showed little change. These results suggest that performance-approach-oriented participants are less likely to either recruit control processes in response to negative feedback or focus on task-relevant information provided alongside the negative feedback. In contrast, mastery-oriented participants are more likely to modulate aversive valuations to negative feedback and focus on the constructive elements of feedback in order to attain their task goals. We conclude that performance-approach goals lead to a reluctant stance towards difficulty, while mastery goals encourage a proactive stance.

  20. In vivo evaluation of the effect of stimulus distribution on FIR statistical efficiency in event-related fMRI.

    Science.gov (United States)

    Jansma, J Martijn; de Zwart, Jacco A; van Gelderen, Peter; Duyn, Jeff H; Drevets, Wayne C; Furey, Maura L

    2013-05-15

    Technical developments in MRI have improved signal to noise, allowing use of analysis methods such as Finite impulse response (FIR) of rapid event related functional MRI (er-fMRI). FIR is one of the most informative analysis methods as it determines onset and full shape of the hemodynamic response function (HRF) without any a priori assumptions. FIR is however vulnerable to multicollinearity, which is directly related to the distribution of stimuli over time. Efficiency can be optimized by simplifying a design, and restricting stimuli distribution to specific sequences, while more design flexibility necessarily reduces efficiency. However, the actual effect of efficiency on fMRI results has never been tested in vivo. Thus, it is currently difficult to make an informed choice between protocol flexibility and statistical efficiency. The main goal of this study was to assign concrete fMRI signal to noise values to the abstract scale of FIR statistical efficiency. Ten subjects repeated a perception task with five random and m-sequence based protocol, with varying but, according to literature, acceptable levels of multicollinearity. Results indicated substantial differences in signal standard deviation, while the level was a function of multicollinearity. Experiment protocols varied up to 55.4% in standard deviation. Results confirm that quality of fMRI in an FIR analysis can significantly and substantially vary with statistical efficiency. Our in vivo measurements can be used to aid in making an informed decision between freedom in protocol design and statistical efficiency. Published by Elsevier B.V.

  1. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  2. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  3. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Directory of Open Access Journals (Sweden)

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  4. High-field fMRI unveils orientation columns in humans.

    Science.gov (United States)

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  5. Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment

    Directory of Open Access Journals (Sweden)

    Tu Peichi

    2010-11-01

    Full Text Available Abstract Background Electroacupuncture (EA is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI, has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA. Results Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode's functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex (PCC, and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between different contrasts of the two expectancy levels. Conclusions Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain

  6. Identification of neural connectivity signatures of autism using machine learning

    Directory of Open Access Journals (Sweden)

    Gopikrishna eDeshpande

    2013-10-01

    Full Text Available Alterations in neural connectivity have been suggested as a signature of the pathobiology of autism. Although disrupted correlation between cortical regions observed from functional MRI is considered to be an explanatory model for autism, the directional causal influence between brain regions is a vital link missing in these studies. The current study focuses on addressing this in an fMRI study of Theory-of-Mind in 15 high-functioning adolescents and adults with autism (ASD and 15 typically developing (TD controls. Participants viewed a series of comic strip vignettes in the MRI scanner and were asked to choose the most logical end to the story from three alternatives, separately for trials involving physical and intentional causality. Causal brain connectivity obtained from a multivariate autoregressive model, along with assessment scores, functional connectivity values, and fractional anisotropy obtained from DTI data for each participant, were submitted to a recursive cluster elimination based support vector machine classifier to determine the accuracy with which the classifier can predict a novel participant’s group membership (ASD or TD. We found a maximum classification accuracy of 95.9 % with 19 features which had the highest discriminative ability between the groups. All of the 19 features were effective connectivity paths, indicating that causal information may be critical in discriminating between ASD and TD groups. These effective connectivity paths were also found to be significantly greater in controls as compared to ASD participants and consisted predominantly of outputs from the fusiform face area and middle temporal gyrus indicating impaired connectivity in ASD participants, particularly in the social brain areas. These findings collectively point towards the fact that alterations in causal brain connectivity in individuals with ASD could serve as a potential non-invasive neuroimaging signature for autism

  7. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial.

    Science.gov (United States)

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa

    2017-12-01

    Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.

  8. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    Science.gov (United States)

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2017-08-01

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  9. A Novel Synchronization-Based Approach for Functional Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Angela Lombardi

    2017-01-01

    Full Text Available Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

  10. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  11. Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.

    Science.gov (United States)

    Sato, João R; Basilio, Rodrigo; Paiva, Fernando F; Garrido, Griselda J; Bramati, Ivanei E; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge

    2013-01-01

    The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.

  12. Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.

    Directory of Open Access Journals (Sweden)

    João R Sato

    Full Text Available The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM, fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.

  13. Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox

    Science.gov (United States)

    Sato, João R.; Basilio, Rodrigo; Paiva, Fernando F.; Garrido, Griselda J.; Bramati, Ivanei E.; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge

    2013-01-01

    The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available. PMID:24312569

  14. Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms

    Directory of Open Access Journals (Sweden)

    Carina H. Fowler

    2017-10-01

    Full Text Available Rumination in response to stress (stress-reactive rumination has been linked to higher levels of depressive symptoms in adolescents. However, no work to date has examined the neural mechanisms connecting stress-reactive rumination and adolescent depressive symptoms. The present work attempted to bridge this gap through an fMRI study of 41 adolescent girls (Mage = 15.42, SD = 0.33 – a population in whom elevated levels of depressive symptoms, rumination, and social stress sensitivity are displayed. During the scan, participants completed two tasks: an emotion regulation task and a social stress task. Using psychophysiological interaction (PPI analyses, we found that positive functional connectivity between the amygdala and ventrolateral prefrontal cortex (VLPFC during the emotion regulation task mediated the association between stress-reactive rumination and depressive symptoms. These results suggest that stress-reactive rumination may interfere with the expression and development of neural connectivity patterns associated with effective emotion regulation, which may contribute, in turn, to heightened depressive symptoms.

  15. Statistical Analysis Methods for the fMRI Data

    Directory of Open Access Journals (Sweden)

    Huseyin Boyaci

    2011-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of brain that are involve in a mechanism, or to determine the changes that occur in brain activities due to a brain lesion. In this study we will have an overview over the methods that are used for the analysis of fMRI data.

  16. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement.

    Science.gov (United States)

    Wei, Pengxu; Zhang, Zuting; Lv, Zeping; Jing, Bin

    2017-01-01

    The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  17. Insight and psychosis: Functional and anatomical brain connectivity and self-reflection in Schizophrenia.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; van der Meer, Lisette; Pijnenborg, Gerdina H M; David, Anthony S; Aleman, André

    2015-12-01

    Impaired insight into illness, associated with worse treatment outcome, is common in schizophrenia. Insight has been related to the self-reflective processing, centred on the medial frontal cortex. We hypothesized that anatomical and functional routes to and from the ventromedial prefrontal cortex (vmPFC) would differ in patients according to their degree of impaired insight. Forty-five schizophrenia patients and 19 healthy subjects performed a self-reflection task during fMRI, and underwent diffusion tensor imaging. Using dynamic causal modelling we observed increased effective connectivity from the posterior cingulate cortex (PCC), inferior parietal lobule (IPL), and dorsal mPFC (dmPFC) towards the vmPFC with poorer insight and decrease from vmPFC to the IPL. Stronger connectivity from the PCC to vmPFC during judgment of traits related to self was associated with poorer insight. We found small-scale significant changes in white matter integrity associated with clinical insight. Self-reflection may be influenced by synaptic changes that lead to the observed alterations in functional connectivity accompanied by the small-scale but measurable alterations in anatomical connections. Our findings may point to a neural compensatory response to an impairment of connectivity between self-processing regions. Similarly, the observed hyper-connectivity might be a primary deficit linked to inefficiency in the component cognitive processes that lead to impaired insight. We suggest that the stronger cognitive demands placed on patients with poor insight is reflected in increased effective connectivity during the task in this study. © 2015 Wiley Periodicals, Inc.

  18. Spatially adaptive mixture modeling for analysis of FMRI time series.

    Science.gov (United States)

    Vincent, Thomas; Risser, Laurent; Ciuciu, Philippe

    2010-04-01

    Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM

  19. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    Science.gov (United States)

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI.

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L

    2016-06-01

    Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.

  1. Flexible modulation of network connectivity related to cognition in Alzheimer’s disease

    Science.gov (United States)

    McLaren, Donald G.; Sperling, Reisa A.; Atria, Alireza

    2014-01-01

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer’s disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54–82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive

  2. Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp

    Directory of Open Access Journals (Sweden)

    Inken Rothkirch

    Full Text Available Writer's cramp (WC is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1, supplementary motor area (SMA, globus pallidus (GP, putamen (PU and ipsilateral cerebellum (CB was investigated using dynamic causal modeling (DCM for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis

  3. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

    Directory of Open Access Journals (Sweden)

    Svenja Diekhoff-Krebs

    2017-01-01

    Full Text Available Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1 excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14 and healthy controls (n = 12 were scanned with functional magnetic resonance imaging (fMRI while performing a simple hand motor task. Dynamic causal modeling (DCM was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that

  4. Acoustic fMRI noise : Linear time-invariant system model

    NARCIS (Netherlands)

    Sierra, Carlos V. Rizzo; Versluis, Maarten J.; Hoogduin, Johannes M.; Duifhuis, Hendrikus (Diek)

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic

  5. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI.

    Directory of Open Access Journals (Sweden)

    Karin Lundengård

    2016-06-01

    Full Text Available Functional magnetic resonance imaging (fMRI measures brain activity by detecting the blood-oxygen-level dependent (BOLD response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new

  6. Self-esteem modulates amygdala-ventrolateral prefrontal cortex connectivity in response to mortality threats.

    Science.gov (United States)

    Yanagisawa, Kuniaki; Abe, Nobuhito; Kashima, Emiko S; Nomura, Michio

    2016-03-01

    Reminders of death often elicit defensive responses in individuals, especially among those with low self-esteem. Although empirical evidence indicates that self-esteem serves as a buffer against mortality threats, the precise neural mechanism underlying this effect remains unknown. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that self-esteem modulates neural responses to death-related stimuli, especially functional connectivity within the limbic-frontal circuitry, thereby affecting subsequent defensive reactions. As predicted, individuals with high self-esteem subjected to a mortality threat exhibited increased amygdala-ventrolateral prefrontal cortex (VLPFC) connectivity during the processing of death-related stimuli compared with individuals who have low self-esteem. Further analysis revealed that stronger functional connectivity between the amygdala and the VLPFC predicted a subsequent decline in responding defensively to those who threaten one's beliefs. These results suggest that the amygdala-VLPFC interaction, which is modulated by self-esteem, can reduce the defensiveness caused by death-related stimuli, thereby providing a neural explanation for why individuals with high self-esteem exhibit less defensive reactions to mortality threats. (c) 2016 APA, all rights reserved).

  7. Effect of nonlinearity of connecting dampers on vibration control of connected building structures

    Directory of Open Access Journals (Sweden)

    Masatoshi eKasagi

    2016-01-01

    Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.

  8. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    Neurosurgical resection of brain lesions aims to maximize excision while minimizing the risk of permanent injury to the surrounding intact brain tissue and resulting neurological deficits. While direct electrical cortical stimulation at the time of surgery allows the precise identification...... of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical......, if the stimulated cortex makes a critical contribution to the brain functions subserving the task. While the relationship between task and functional activation as revealed by fMRI is correlative in nature, the neurodisruptive effect of TMS reflects a causal effect on brain activity.The use of preoperative f...

  9. Decreased middle temporal gyrus connectivity in the language network in schizophrenia patients with auditory verbal hallucinations.

    Science.gov (United States)

    Zhang, Linchuan; Li, Baojuan; Wang, Huaning; Li, Liang; Liao, Qimei; Liu, Yang; Bao, Xianghong; Liu, Wenlei; Yin, Hong; Lu, Hongbing; Tan, Qingrong

    2017-07-13

    As the most common symptoms of schizophrenia, the long-term persistence of obstinate auditory verbal hallucinations (AVHs) brings about great mental pain to patients. Neuroimaging studies of schizophrenia have indicated that AVHs were associated with altered functional and structural connectivity within the language network. However, effective connectivity that could reflect directed information flow within this network and is of great importance to understand the neural mechanisms of the disorder remains largely unknown. In this study, we utilized stochastic dynamic causal modeling (DCM) to investigate directed connections within the language network in schizophrenia patients with and without AVHs. Thirty-six patients with schizophrenia (18 with AVHs and 18 without AVHs), and 37 healthy controls participated in the current resting-state functional magnetic resonance imaging (fMRI) study. The results showed that the connection from the left inferior frontal gyrus (LIFG) to left middle temporal gyrus (LMTG) was significantly decreased in patients with AVHs compared to those without AVHs. Meanwhile, the effective connection from the left inferior parietal lobule (LIPL) to LMTG was significantly decreased compared to the healthy controls. Our findings suggest aberrant pattern of causal interactions within the language network in patients with AVHs, indicating that the hypoconnectivity or disrupted connection from frontal to temporal speech areas might be critical for the pathological basis of AVHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    Science.gov (United States)

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  11. Close relationship between fMRI signals and transient heart rate changes accompanying K-complex. Simultaneous EEG/fMRI study

    International Nuclear Information System (INIS)

    Kan, Shigeyuki; Koike, Takahiko; Miyauchi, Satoru; Misaki, Masaya

    2009-01-01

    Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) allows the investigation of spontaneous activities in the human brain. Recently, by using this technique, increases in fMRI signal accompanying transient EEG activities such as sleep spindles and slow waves were reported. Although these fMRI signal increases appear to arise as a result of the neural activities being reflected in the EEG, when the influence of physiological activities upon fMRI signals are taken into consideration, it is highly controversial that fMRI signal increases accompanying transient EEG activities reflect actual neural activities. In the present study, we conducted simultaneous fMRI and polysomnograph recording of 18 normal adults, to study the effect of transient heart rate changes after a K-complex on fMRI signals. Significant fMRI signal increase was observed in the cerebellum, the ventral thalamus, the dorsal part of the brainstem, the periventricular white matter and the ventricle (quadrigeminal cistern). On the other hand, significant fMRI signal decrease was observed only in the right insula. Moreover, intensities of fMRI signal increase that was accompanied by a K-complex correlated positively with the magnitude of heart rate changes after a K-complex. Previous studies have reported that K-complex is closely related with sympathetic nervous activity and that the attributes of perfusion regulation in the brain differ during wakefulness and sleep. By taking these findings into consideration, our present results indicate that a close relationship exists between a K-complex and the changes in cardio- and neurovascular regulations that are mediated by the autonomic nervous system during sleep; further, these results indicate that transient heart rate changes after a K-complex can affect the fMRI signal generated in certain brain regions. (author)

  12. Glucocorticoid Mechanisms of Functional Connectivity Changes in Stress-Related Neuropsychiatric Disorders.

    Science.gov (United States)

    Hall, Baila S; Moda, Rachel N; Liston, Conor

    2015-01-01

    Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  13. Modelling large motion events in fMRI studies of patients with epilepsy

    DEFF Research Database (Denmark)

    Lemieux, Louis; Salek-Haddadi, Afraim; Lund, Torben E

    2007-01-01

    -positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG-fMRI data acquired in 34 cases with focal epilepsy. Signal changes...... associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include 'scan nulling' regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95......% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential...

  14. An fMRI study of concreteness effects during spoken word recognition in aging. Preservation or attenuation?

    Directory of Open Access Journals (Sweden)

    Tracy eRoxbury

    2016-01-01

    Full Text Available It is unclear whether healthy aging influences concreteness effects (ie. the processing advantage seen for concrete over abstract words and its associated neural mechanisms. We conducted an fMRI study on young and older healthy adults performing auditory lexical decisions on concrete versus abstract words. We found that spoken comprehension of concrete and abstract words appears relatively preserved for healthy older individuals, including the concreteness effect. This preserved performance was supported by altered activity in left hemisphere regions including the inferior and middle frontal gyri, angular gyrus, and fusiform gyrus. This pattern is consistent with age-related compensatory mechanisms supporting spoken word processing.

  15. Functional Subdivision of Group-ICA Results of fMRI Data Collected during Cinema Viewing

    Science.gov (United States)

    Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta

    2012-01-01

    Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film (“At land” by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative. PMID:22860044

  16. Functional subdivision of group-ICA results of fMRI data collected during cinema viewing.

    Directory of Open Access Journals (Sweden)

    Siina Pamilo

    Full Text Available Independent component analysis (ICA can unravel functional brain networks from functional magnetic resonance imaging (fMRI data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren. We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.

  17. Functional subdivision of group-ICA results of fMRI data collected during cinema viewing.

    Science.gov (United States)

    Pamilo, Siina; Malinen, Sanna; Hlushchuk, Yevhen; Seppä, Mika; Tikka, Pia; Hari, Riitta

    2012-01-01

    Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.

  18. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women

    Directory of Open Access Journals (Sweden)

    Natalia García-Casares

    2017-07-01

    Full Text Available Functional magnetic resonance imaging (fMRI in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI (kg/m2 was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02, and body weight (kg was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03. All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001, left posterior cingulate (p < 0.001, and right posterior cingulate (p < 0.03; decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01; decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025; and decreased connectivity between the left and right posterior cingulate (p < 0.04. Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex may be modified by a weight loss program including a Mediterranean diet and physical exercise.

  19. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Liew, Sook-Lei; Rana, Mohit; Cornelsen, Sonja; Fortunato de Barros Filho, Marcos; Birbaumer, Niels; Sitaram, Ranganatha; Cohen, Leonardo G; Soekadar, Surjo R

    2016-08-01

    Two thirds of stroke survivors experience motor impairment resulting in long-term disability. The anatomical substrate is often the disruption of cortico-subcortical pathways. It has been proposed that reestablishment of cortico-subcortical communication relates to functional recovery. In this study, we applied a novel training protocol to augment ipsilesional cortico-subcortical connectivity after stroke. Chronic stroke patients with severe motor impairment were provided online feedback of blood-oxygenation level dependent signal connectivity between cortical and subcortical regions critical for motor function using real-time functional magnetic resonance imaging neurofeedback. In this proof of principle study, 3 out of 4 patients learned to voluntarily modulate cortico-subcortical connectivity as intended. Our results document for the first time the feasibility and safety for patients with chronic stroke and severe motor impairment to self-regulate and augment ipsilesional cortico-subcortical connectivity through neurofeedback using real-time functional magnetic resonance imaging. © The Author(s) 2015.

  20. Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity.

    Science.gov (United States)

    Carnell, Susan; Benson, Leora; Pantazatos, Spiro P; Hirsch, Joy; Geliebter, Allan

    2014-11-01

    The obesogenic environment is pervasive, yet only some people become obese. The aim was to investigate whether obese individuals show differential neural responses to visual and auditory food cues, independent of cue modality. Obese (BMI 29-41, n = 10) and lean (BMI 20-24, n = 10) females underwent fMRI scanning during presentation of auditory (spoken word) and visual (photograph) cues representing high-energy-density (ED) and low-ED foods. The effect of obesity on whole-brain activation, and on functional connectivity with the midbrain/VTA, was examined. Obese compared with lean women showed greater modality-independent activation of the midbrain/VTA and putamen in response to high-ED (vs. low-ED) cues, as well as relatively greater functional connectivity between the midbrain/VTA and cerebellum (P food cues within the midbrain/VTA and putamen, and altered functional connectivity between the midbrain/VTA and cerebellum, could contribute to excessive food intake in obese individuals. © 2014 The Obesity Society.

  1. Altered Functional Connectivity of the Basal Nucleus of Meynert in Mild Cognitive Impairment: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-05-01

    Full Text Available Background: Cholinergic dysfunction plays an important role in mild cognitive impairment (MCI. The basal nucleus of Meynert (BNM provides the main source of cortical cholinergic innervation. Previous studies have characterized structural changes of the cholinergic basal forebrain in individuals at risk of developing Alzheimer’s disease (AD. However, whether and how functional connectivity of the BNM (BNM-FC is altered in MCI remains unknown.Objective: The aim of this study was to identify alterations in BNM-FC in individuals with MCI as compared to healthy controls (HCs, and to examine the relationship between these alterations with neuropsychological measures in individuals with MCI.Method: One-hundred-and-one MCI patients and 103 HCs underwent resting-state functional magnetic resonance imaging (rs-fMRI. Imaging data were processed with SPM8 and CONN software. BNM-FC was examined via correlation in low frequency fMRI signal fluctuations between the BNM and all other brain voxels. Group differences were examined with a covariance analysis with age, gender, education level, mean framewise displacement (FD and global correlation (GCOR as nuisance covariates. Pearson’s correlation was conducted to evaluate the relationship between the BNM-FC and clinical assessments.Result: Compared with HCs, individuals with MCI showed significantly decreased BNM-FC in the left insula extending into claustrum (insula/claustrum. Furthermore, greater decrease in BNM-FC with insula/claustrum was associated with more severe impairment in immediate recall during Auditory Verbal Learning Test (AVLT in MCI patients.Conclusion: MCI is associated with changes in BNM-FC to the insula/claustrum in relation to cognitive impairments. These new findings may advance research of the cholinergic bases of cognitive dysfunction during healthy aging and in individuals at risk of developing AD.

  2. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  4. fMRI of the motor speech center using EPI

    International Nuclear Information System (INIS)

    Yu, In Kyu; Chang, Kee Hyun; Song, In Chan; Kim, Hong Dae; Seong, Su Ok; Jang, Hyun Jung; Han, Moon Hee; Lee, Sang Kun

    1998-01-01

    The purpose of this study is to evaluate the feasibility of functional MR imaging (fMRI) using the echo planar imaging (EPI) technique to map the motor speech center and to provide the basic data for motor speech fMRI during internal word generations. This study involved ten young, healthy, right-handed volunteers (M:F=8:2; age: 21-27); a 1.5T whole body scanner with multislice EPI was used. Brain activation was mapped using gradient echo single shot EPI (TR/TE of 3000/40, slice numbers 6, slice thicknesses mm, no interslice gap, matrix numbers 128 x 128, and FOV 30 x 30). The paradigm consisted of a series of alternating rest and activation tasks, repeated eight times. During the rest task, each of ten Korean nouns composed of two to four syllables was shown continuously every 3 seconds. The subjects were required to see the words but not to generate speech, whereas during the activation task, they were asked to internally generate as many words as possible from each of ten non-concrete one-syllabled Korean letters shown on the screen every 3 seconds. During an eight-minute period, a total of 960 axial images were acquired in each subject. Data were analyzed using the Z-score (p<0.05), and following color processing, the activated signals were overlapped on T1-weighted images. The location of the activated area, mean activated signal intensity were evaluated. The results of this study indicate that in most subjects, fMRI using EPI can effectively map the motor speech center. The data obtained may be useful for the clinical application of fMRI. (author). 34 refs., 3 tabs., 5 figs

  5. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia.

    Science.gov (United States)

    Dodell-Feder, David; Delisi, Lynn E; Hooker, Christine I

    2014-06-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN's hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The role of the DLPFC in inductive reasoning of MCI patients and normal agings: an fMRI study.

    Science.gov (United States)

    Yang, YanHui; Liang, PeiPeng; Lu, ShengFu; Li, KunCheng; Zhong, Ning

    2009-08-01

    Previous studies of young people have revealed that the left dorsolateral prefrontal cortex (DLPFC) plays an important role in inductive reasoning. An fMRI experiment was performed in this study to examine whether the left DLPFC was involved in inductive reasoning of MCI patients and normal aging, and whether the activation pattern of this region was different between MCI patients and normal aging. The fMRI results indicated that MCI patients had no difference from normal aging in behavior performance (reaction time and accuracy) and the activation pattern of DLPFC. However, the BOLD response of the DLPFC region for MCI patients was weaker than that for normal aging, and the functional connectivity between the bilateral DLPFC regions for MCI patients was significantly higher than for normal aging. Taken together, these results indicated that DLPFC plays an important role in inductive reasoning of aging, and the functional abnormity of DLPFC may be an earlier marker of MCI before structural alterations.

  7. Cue-Elicited Craving in Heroin Addicts at Different Abstinent Time: An fMRI Pilot Study

    OpenAIRE

    Lou, Mingwu; Wang, Erlei; Shen, Yunxia; Wang, Jiping

    2012-01-01

    Objective: We evaluated the effect of short-term and long-term heroin abstinence on brain responses to heroin-related cues using functional magnetic resonance imaging (fMRI). Methods: Eighteen male heroin addicts following short-term abstinence and 19 male heroin addicts following long-term abstinence underwent fMRI scanning while viewing heroin-related and neutral images. Cue-elicited craving and withdrawal symptoms in the subjects were measured. Results: Following short-term abstinence, gre...

  8. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models

    KAUST Repository

    Ting, Chee-Ming; Ombao, Hernando; Samdin, S. Balqis; Salleh, Sh-Hussain

    2017-01-01

    successfully identifies modular organization in resting-state networks in consistency with other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.

  9. Functional magnetic resonance imaging (fMRI) of motor deficits in schizophrenia

    International Nuclear Information System (INIS)

    Wenz, F.; Floemer, F.; Kaick, G. van

    1995-01-01

    The purpose of this study was to investigate differences in the cerebral activation pattern in ten schizophrenic patients and ten healthy volunteers using functional MRI. fMRI was performed using a modified FLASH sequence (TR/TE/α=100/60/40 ) and a conventional 1.5 T MR scanner. Colorcoded statistical parametric maps based on Student's t-test were calculated. Activation strength was quantified using a 5x6 grid overlay. The volunteers showed a higher activation strength during left hand movement compared to right hand movement. This lateralization effect was reversed in patients who showed overall reduced activation strength. Disturbed interhemispheric balance in schizophrenic patients during motor task performance can be demonstrated using fMRI. (orig.) [de

  10. Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation.

    Science.gov (United States)

    Babajani-Feremi, Abbas; Narayana, Shalini; Rezaie, Roozbeh; Choudhri, Asim F; Fulton, Stephen P; Boop, Frederick A; Wheless, James W; Papanicolaou, Andrew C

    2016-03-01

    The aim of the present study was to compare localization of the language cortex using cortical stimulation mapping (CSM), high gamma electrocorticography (hgECoG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS). Language mapping using CSM, hgECoG, fMRI, and TMS were compared in nine patients with epilepsy. Considering CSM as reference, we compared language mapping approaches based on hgECoG, fMRI, and TMS using their sensitivity, specificity, and the results of receiver operating characteristic (ROC) analyses. Our results show that areas involved in language processing can be identified by hgECoG, fMRI, and TMS. The average sensitivity/specificity of hgECoG, fMRI, and TMS across all patients was 100%/85%, 50%/80%, and 67%/66%, respectively. The average area under the ROC curve of hgECoG, fMRI, and TMS across CSM-positive patients was 0.98, 0.76, and 0.68, respectively. There is considerable concordance between CSM, hgECoG, fMRI, and TMS language mapping. Our results reveal that hgECoG, fMRI, and TMS are valuable tools for presurgical language mapping. Language mapping on the basis of hgECoG, fMRI, and TMS can provide important additional information, therefore, these methods can be used in conjunction with CSM or as an alternative, when the latter is deemed impractical. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    Science.gov (United States)

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  12. Applying independent component analysis to clinical fMRI at 7 T

    Directory of Open Access Journals (Sweden)

    Simon Daniel Robinson

    2013-09-01

    Full Text Available Increased BOLD sensitivity at 7 T offers the possibility to increase the reliability of fMRI, but ultra-high field is also associated with an increase in artifacts related to head motion, Nyquist ghosting and parallel imaging reconstruction errors. In this study, the ability of Independent Component Analysis (ICA to separate activation from these artifacts was assessed in a 7 T study of neurological patients performing chin and hand motor tasks. ICA was able to isolate primary motor activation with negligible contamination by motion effects. The results of General Linear Model (GLM analysis of these data were, in contrast, heavily contaminated by motion. Secondary motor areas, basal ganglia and thalamus involvement were apparent in ICA results, but there was low capability to isolate activation in the same brain regions in the GLM analysis, indicating that ICA was more sensitive as well as more specific. A method was developed to simplify the assessment of the large number of independent components. Task-related activation components could be automatically identified via intuitive and effective features. These findings demonstrate that ICA is a practical and sensitive analysis approach in high field fMRI studies, particularly where motion is evoked. Promising applications of ICA in clinical fMRI include presurgical planning and the study of pathologies affecting subcortical brain areas.

  13. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    Directory of Open Access Journals (Sweden)

    Ilya M. Veer

    2010-09-01

    Full Text Available Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within six months before inclusion and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxelwise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: 1 decreased bilateral amygdala and left anterior insula connectivity in an affective network, 2 reduced connectivity of the left frontal pole in a network associated with attention and working memory, and 3 decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or grey matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  14. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    Science.gov (United States)

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  16. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  17. Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach

    Directory of Open Access Journals (Sweden)

    Martin M Monti

    2011-03-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a General Linear Model (GLM approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.

  18. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....

  19. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  20. The effect of fMRI task combinations on determining the hemispheric dominance of language functions

    International Nuclear Information System (INIS)

    Niskanen, Eini; Koenoenen, Mervi; Villberg, Ville; Aeikiae, Marja; Nissi, Mikko; Ranta-aho, Perttu; Karjalainen, Pasi; Saeisaenen, Laura; Mervaala, Esa; Kaelviaeinen, Reetta; Vanninen, Ritva

    2012-01-01

    The purpose of this study is to establish the most suitable combination of functional magnetic resonance imaging (fMRI) language tasks for clinical use in determining language dominance and to define the variability in laterality index (LI) and activation power between different combinations of language tasks. Activation patterns of different fMRI analyses of five language tasks (word generation, responsive naming, letter task, sentence comprehension, and word pair) were defined for 20 healthy volunteers (16 right-handed). LIs and sums of T values were calculated for each task separately and for four combinations of tasks in predefined regions of interest. Variability in terms of activation power and lateralization was defined in each analysis. In addition, the visual assessment of lateralization of language functions based on the individual fMRI activation maps was conducted by an experienced neuroradiologist. A combination analysis of word generation, responsive naming, and sentence comprehension was the most suitable in terms of activation power, robustness to detect essential language areas, and scanning time. In general, combination analyses of the tasks provided higher overall activation levels than single tasks and reduced the number of outlier voxels disturbing the calculation of LI. A combination of auditory and visually presented tasks that activate different aspects of language functions with sufficient activation power may be a useful task battery for determining language dominance in patients. (orig.)

  1. The effect of fMRI task combinations on determining the hemispheric dominance of language functions

    Energy Technology Data Exchange (ETDEWEB)

    Niskanen, Eini [University of Eastern Finland, Department of Applied Physics, Kuopio (Finland); Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); Koenoenen, Mervi [Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); Kuopio University Hospital, Department of Clinical Neurophysiology, Kuopio (Finland); Villberg, Ville; Aeikiae, Marja [Kuopio University Hospital, Department of Neurology, Kuopio (Finland); Nissi, Mikko; Ranta-aho, Perttu; Karjalainen, Pasi [University of Eastern Finland, Department of Applied Physics, Kuopio (Finland); Saeisaenen, Laura; Mervaala, Esa [Kuopio University Hospital, Department of Clinical Neurophysiology, Kuopio (Finland); University of Eastern Finland, Institute of Clinical Medicine, Clinical Neurophysiology, Kuopio (Finland); Kaelviaeinen, Reetta [Kuopio University Hospital, Department of Neurology, Kuopio (Finland); University of Eastern Finland, Institute of Clinical Medicine, Neurology, Kuopio (Finland); Vanninen, Ritva [Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); University of Eastern Finland, Institute of Clinical Medicine, Clinical Radiology, Kuopio (Finland)

    2012-04-15

    The purpose of this study is to establish the most suitable combination of functional magnetic resonance imaging (fMRI) language tasks for clinical use in determining language dominance and to define the variability in laterality index (LI) and activation power between different combinations of language tasks. Activation patterns of different fMRI analyses of five language tasks (word generation, responsive naming, letter task, sentence comprehension, and word pair) were defined for 20 healthy volunteers (16 right-handed). LIs and sums of T values were calculated for each task separately and for four combinations of tasks in predefined regions of interest. Variability in terms of activation power and lateralization was defined in each analysis. In addition, the visual assessment of lateralization of language functions based on the individual fMRI activation maps was conducted by an experienced neuroradiologist. A combination analysis of word generation, responsive naming, and sentence comprehension was the most suitable in terms of activation power, robustness to detect essential language areas, and scanning time. In general, combination analyses of the tasks provided higher overall activation levels than single tasks and reduced the number of outlier voxels disturbing the calculation of LI. A combination of auditory and visually presented tasks that activate different aspects of language functions with sufficient activation power may be a useful task battery for determining language dominance in patients. (orig.)

  2. The effect of fMRI task combinations on determining the hemispheric dominance of language functions.

    Science.gov (United States)

    Niskanen, Eini; Könönen, Mervi; Villberg, Ville; Nissi, Mikko; Ranta-Aho, Perttu; Säisänen, Laura; Karjalainen, Pasi; Aikiä, Marja; Kälviäinen, Reetta; Mervaala, Esa; Vanninen, Ritva

    2012-04-01

    The purpose of this study is to establish the most suitable combination of functional magnetic resonance imaging (fMRI) language tasks for clinical use in determining language dominance and to define the variability in laterality index (LI) and activation power between different combinations of language tasks. Activation patterns of different fMRI analyses of five language tasks (word generation, responsive naming, letter task, sentence comprehension, and word pair) were defined for 20 healthy volunteers (16 right-handed). LIs and sums of T values were calculated for each task separately and for four combinations of tasks in predefined regions of interest. Variability in terms of activation power and lateralization was defined in each analysis. In addition, the visual assessment of lateralization of language functions based on the individual fMRI activation maps was conducted by an experienced neuroradiologist. A combination analysis of word generation, responsive naming, and sentence comprehension was the most suitable in terms of activation power, robustness to detect essential language areas, and scanning time. In general, combination analyses of the tasks provided higher overall activation levels than single tasks and reduced the number of outlier voxels disturbing the calculation of LI. A combination of auditory and visually presented tasks that activate different aspects of language functions with sufficient activation power may be a useful task battery for determining language dominance in patients.

  3. Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects.

    Science.gov (United States)

    Feder, Stephan; Sundermann, Benedikt; Wersching, Heike; Teuber, Anja; Kugel, Harald; Teismann, Henning; Heindel, Walter; Berger, Klaus; Pfleiderer, Bettina

    2017-11-01

    Combinations of resting-state fMRI and machine-learning techniques are increasingly employed to develop diagnostic models for mental disorders. However, little is known about the neurobiological heterogeneity of depression and diagnostic machine learning has mainly been tested in homogeneous samples. Our main objective was to explore the inherent structure of a diverse unipolar depression sample. The secondary objective was to assess, if such information can improve diagnostic classification. We analyzed data from 360 patients with unipolar depression and 360 non-depressed population controls, who were subdivided into two independent subsets. Cluster analyses (unsupervised learning) of functional connectivity were used to generate hypotheses about potential patient subgroups from the first subset. The relationship of clusters with demographical and clinical measures was assessed. Subsequently, diagnostic classifiers (supervised learning), which incorporated information about these putative depression subgroups, were trained. Exploratory cluster analyses revealed two weakly separable subgroups of depressed patients. These subgroups differed in the average duration of depression and in the proportion of patients with concurrently severe depression and anxiety symptoms. The diagnostic classification models performed at chance level. It remains unresolved, if subgroups represent distinct biological subtypes, variability of continuous clinical variables or in part an overfitting of sparsely structured data. Functional connectivity in unipolar depression is associated with general disease effects. Cluster analyses provide hypotheses about potential depression subtypes. Diagnostic models did not benefit from this additional information regarding heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Right is not always wrong: DTI and fMRI evidence for the reliance of reading comprehension on language-comprehension networks in the right hemisphere.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Grainger, Molly; DiFrancesco, Mark; Vannest, Jennifer; Holland, Scott K

    2015-03-01

    The Simple View theory suggests that reading comprehension relies on automatic recognition of words combined with language comprehension. The goal of the current study was to examine the structural and functional connectivity in networks supporting reading comprehension and their relationship with language comprehension within 7-9 year old children using Diffusion Tensor Imaging (DTI) and fMRI during a Sentence Picture Matching task. Fractional Anisotropy (FA) values in the left and right Inferior Longitudinal Fasciculus (ILF) and Superior Longitudinal Fasciculus (SLF), known language-related tracts, were correlated from DTI data with scores from the Woodcock-Johnson III (WJ-III) Passage Comprehension sub-test. Brodmann areas most proximal to white-matter regions with significant correlation to Passage Comprehension scores were chosen as Regions-of-Interest (ROIs) and used as seeds in a functional connectivity analysis using the Sentence Picture Matching task. The correlation between percentile scores for the WJ-III Passage Comprehension subtest and the FA values in the right and left ILF and SLF indicated positive correlation in language-related ROIs, with greater distribution in the right hemisphere, which in turn showed strong connectivity in the fMRI data from the Sentence Picture Matching task. These results support the participation of the right hemisphere in reading comprehension and may provide physiologic support for a distinction between different types of reading comprehension deficits vs difficulties in technical reading.

  5. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    Science.gov (United States)

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  6. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement

    Directory of Open Access Journals (Sweden)

    Pengxu Wei

    2017-07-01

    Full Text Available The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top–down and bottom–up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  7. Intersubject synchronisation analysis of brain activity associated with the instant effects of acupuncture: an fMRI study.

    Science.gov (United States)

    Jin, Lingmin; Sun, Jinbo; Xu, Ziliang; Yang, Xuejuan; Liu, Peng; Qin, Wei

    2018-02-01

    To use a promising analytical method, namely intersubject synchronisation (ISS), to evaluate the brain activity associated with the instant effects of acupuncture and compare the findings with traditional general linear model (GLM) methods. 30 healthy volunteers were recruited for this study. Block-designed manual acupuncture stimuli were delivered at SP6, and de qi sensations were measured after acupuncture stimulation. All subjects underwent functional MRI (fMRI) scanning during the acupuncture stimuli. The fMRI data were separately analysed by ISS and traditional GLM methods. All subjects experienced de qi sensations. ISS analysis showed that the regions activated during acupuncture stimulation at SP6 were mainly divided into five clusters based on the time courses. The time courses of clusters 1 and 2 were in line with the acupuncture stimulation pattern, and the active regions were mainly involved in the sensorimotor system and salience network. Clusters 3, 4 and 5 displayed an almost contrary time course relative to the stimulation pattern. The brain regions activated included the default mode network, descending pain modulation pathway and visual cortices. GLM analysis indicated that the brain responses associated with the instant effects of acupuncture were largely implicated in sensory and motor processing and sensory integration. The ISS analysis considered the sustained effect of acupuncture and uncovered additional information not shown by GLM analysis. We suggest that ISS may be a suitable approach to investigate the brain responses associated with the instant effects of acupuncture. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.

    Science.gov (United States)

    Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-09-16

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

  9. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback

    Science.gov (United States)

    Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-01-01

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059

  10. Analyzing the association between functional connectivity of the brain and intellectual performance

    Science.gov (United States)

    Pamplona, Gustavo S. P.; Santos Neto, Gérson S.; Rosset, Sara R. E.; Rogers, Baxter P.; Salmon, Carlos E. G.

    2015-01-01

    Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding. PMID:25713528

  11. Analyzing the association between functional connectivity of the brain and intellectual performance

    Directory of Open Access Journals (Sweden)

    Gustavo Santo Pedro Pamplona

    2015-02-01

    Full Text Available Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  12. Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder.

    Science.gov (United States)

    Du, Yuhui; Pearlson, Godfrey D; Lin, Dongdong; Sui, Jing; Chen, Jiayu; Salman, Mustafa; Tamminga, Carol A; Ivleva, Elena I; Sweeney, John A; Keshavan, Matcheri S; Clementz, Brett A; Bustillo, Juan; Calhoun, Vince D

    2017-05-01

    Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent component analysis procedure to estimate both group-level and subject-specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ patients, we identified measures differentiating groups from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post-central, frontal, and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. Hum Brain Mapp 38:2683-2708, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Differing Time of Onset of Concurrent TMS-fMRI during Associative Memory Encoding: A Measure of Dynamic Connectivity

    Directory of Open Access Journals (Sweden)

    Colin Hawco

    2017-08-01

    Full Text Available There has been a distinct shift in neuroimaging from localization of function into a more network based approach focused on connectivity. While fMRI has proven very fruitful for this, the hemodynamic signal is inherently slow which limits the temporal resolution of fMRI-only connectivity measures. The brain, however, works on a time scale of milliseconds. This study utilized concurrent transcranial magnetic stimulation (TMS-fMRI in a novel way to obtain measures of dynamic connectivity by measuring changes in fMRI signal amplitude in regions distal to the site of stimulation following differing TMS onset times. Seventeen healthy subjects completed an associative memory encoding task known to involve the DLPFC, viewing pairs of objects which could be semantically related or unrelated. Three pulses of 10 Hz repetitive TMS were applied over the left DLPFC starting either at 200, 600, or 1000 ms after stimulus onset. Associations for related pairs were better remembered than unrelated pairs in a post-scan cued recall test. Differences in neural activity were assessed across different TMS onsets, separately for related and unrelated pairs. Time specific TMS effects were observed in several regions, including those associated with higher-level processing (lateral frontal, anterior cingulate, visual areas (occipital, and regions involved in semantic processing (e.g., left mid-temporal and medial frontal. Activity in the frontal cortex was decreased at 200 ms post-stimulus for unrelated pairs, and 1000 ms post-stimulus for related pairs. This suggests differences in the timing across conditions in which the DLFPC interacts with other PFC regions, consistent with the notion that the DLPFC is facilitating extended semantic processing for related items. This study demonstrates that time-varying TMS onset inside the MRI can be used to reliably measure fast dynamic connectivity with a temporal resolution in the hundreds of milliseconds.

  14. Cluster size statistic and cluster mass statistic: two novel methods for identifying changes in functional connectivity between groups or conditions.

    Science.gov (United States)

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.

  15. Mapping cerebrovascular reactivity using concurrent fMRI and near infrared spectroscopy

    Science.gov (United States)

    Tong, Yunjie; Bergethon, Peter R.; Frederick, Blaise d.

    2011-02-01

    Cerebrovascular reactivity (CVR) reflects the compensatory dilatory capacity of cerebral vasculature to a dilatory stimulus and is an important indicator of brain vascular reserve. fMRI has been proven to be an effective imaging technique to obtain the CVR map when the subjects perform CO2 inhalation or the breath holding task (BH). However, the traditional data analysis inaccurately models the BOLD using a boxcar function with fixed time delay. We propose a novel way to process the fMRI data obtained during a blocked BH by using the simultaneously collected near infrared spectroscopy (NIRS) data as regressor1. In this concurrent NIRS and fMRI study, 6 healthy subjects performed a blocked BH (5 breath holds with 20s durations intermitted by 40s of regular breathing). A NIRS probe of two sources and two detectors separated by 3 cm was placed on the right side of prefrontal area of the subjects. The time course of changes in oxy-hemoglobin (Δ[HbO]) was calculated from NIRS data and shifted in time by various amounts, and resampled to the fMRI acquisition rate. Each shifted time course was used as regressor in FEAT (the analysis tool in FSL). The resulting z-statistic maps were concatenated in time and the maximal value was taken along the time for all the voxels to generate a 3-D CVR map. The new method produces more accurate and thorough CVR maps; moreover, it enables us to produce a comparable baseline cerebral vascular map if applied to resting state (RS) data.

  16. Restructuring Reward Mechanisms in Nicotine Addiction: A Pilot fMRI Study of Mindfulness-Oriented Recovery Enhancement for Cigarette Smokers

    Directory of Open Access Journals (Sweden)

    B. Froeliger

    2017-01-01

    Full Text Available The primary goal of this pilot feasibility study was to examine the effects of Mindfulness-Oriented Recovery Enhancement (MORE, a behavioral treatment grounded in dual-process models derived from cognitive science, on frontostriatal reward processes among cigarette smokers. Healthy adult (N=13; mean (SD age 49 ± 12.2 smokers provided informed consent to participate in a 10-week study testing MORE versus a comparison group (CG. All participants underwent two fMRI scans: pre-tx and after 8-weeks of MORE. Emotion regulation (ER, smoking cue reactivity (CR, and resting-state functional connectivity (rsFC were assessed at each fMRI visit; smoking and mood were assessed throughout. As compared to the CG, MORE significantly reduced smoking (d=2.06 and increased positive affect (d=2.02. MORE participants evidenced decreased CR-BOLD response in ventral striatum (VS; d=1.57 and ventral prefrontal cortex (vPFC; d=1.7 and increased positive ER-BOLD in VS (dVS=2.13 and vPFC (dvmPFC=2.66. Importantly, ER was correlated with smoking reduction (r’s = .68 to .91 and increased positive affect (r’s = .52 to .61. These findings provide preliminary evidence that MORE may facilitate the restructuring of reward processes and play a role in treating the pathophysiology of nicotine addiction.

  17. Effects of prior information on decoding degraded speech: an fMRI study.

    Science.gov (United States)

    Clos, Mareike; Langner, Robert; Meyer, Martin; Oechslin, Mathias S; Zilles, Karl; Eickhoff, Simon B

    2014-01-01

    Expectations and prior knowledge are thought to support the perceptual analysis of incoming sensory stimuli, as proposed by the predictive-coding framework. The current fMRI study investigated the effect of prior information on brain activity during the decoding of degraded speech stimuli. When prior information enabled the comprehension of the degraded sentences, the left middle temporal gyrus and the left angular gyrus were activated, highlighting a role of these areas in meaning extraction. In contrast, the activation of the left inferior frontal gyrus (area 44/45) appeared to reflect the search for meaningful information in degraded speech material that could not be decoded because of mismatches with the prior information. Our results show that degraded sentences evoke instantaneously different percepts and activation patterns depending on the type of prior information, in line with prediction-based accounts of perception. Copyright © 2012 Wiley Periodicals, Inc.

  18. Feature-space-based FMRI analysis using the optimal linear transformation.

    Science.gov (United States)

    Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S

    2010-09-01

    The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.

  19. Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer's disease

    OpenAIRE

    Kobeleva, Xenia; Firbank, Michael; Peraza, Luis; Gallagher, Peter; Thomas, Alan; Burn, David J.; O'Brien, John; Taylor, John-Paul

    2017-01-01

    Attention and executive dysfunction are features of Lewy body dementia (LBD) but their neuroanatomical basis is poorly understood. To investigate underlying dysfunctional attention-executive network (EXEC) interactions, we examined functional connectivity (FC) in 30 patients with LBD, 20 patients with Alzheimer's disease (AD), and 21 healthy controls during an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a modified Attention Network Test (ANT),...

  20. Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks.

    Science.gov (United States)

    Richlan, Fabio; Schubert, Juliane; Mayer, Rebecca; Hutzler, Florian; Kronbichler, Martin

    2018-01-01

    In this functional magnetic resonance imaging (fMRI) study, we compared task performance together with brain activation in a visuospatial task (VST) and a letter detection task (LDT) between longtime action video gamers ( N  =   14) and nongamers ( N  =   14) in order to investigate possible effects of gaming on cognitive and brain abilities. Based on previous research, we expected advantages in performance for experienced action video gamers accompanied by less activation (due to higher efficiency) as measured by fMRI in the frontoparietal attention network. Contrary to these expectations, we did not find differences in overall task performance, nor in brain activation during the VST. We identified, however, a significantly different increase in the BOLD signal from a baseline task to the LDT in action video gamers compared with nongamers. This increased activation was evident in a number of frontoparietal regions including the left middle paracingulate cortex, the left superior frontal sulcus, the opercular part of the left inferior frontal gyrus, and the left and right posterior parietal cortex. Furthermore, we found increased activation in the triangular part of the left inferior frontal gyrus in gamers relative to nongamers when activation during the LDT was compared with activation during the VST. In sum, the expected positive relation between action video game experience and cognitive performance could not be confirmed. Despite their comparable task performance, however, gamers and nongamers exhibited clear-cut differences in brain activation patterns presumably reflecting differences in neural engagement, especially during verbal cognitive tasks.

  1. Courant algebroid connections and string effective actions

    OpenAIRE

    Jurčo, B.

    2017-01-01

    Courant algebroids are a natural generalization of quadratic Lie algebras, appearing in various contexts in mathematical physics. A connection on a Courant algebroid gives an analogue of a covariant derivative compatible with a given fiber-wise metric. Imposing further conditions resembling standard Levi-Civita connections, one obtains a class of connections whose curvature tensor in certain cases gives a new geometrical description of equations of motion of low energy effective action of str...

  2. Support vector machine learning-based fMRI data group analysis.

    Science.gov (United States)

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  3. Brain Functional Connectivity in Small Cell Lung Cancer Population after Chemotherapy Treatment: an ICA fMRI Study

    Science.gov (United States)

    Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.

    2017-11-01

    Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.

  4. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  5. Intranasal Oxytocin Normalizes Amygdala Functional Connectivity in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-07-01

    The neuropeptide oxytocin (OT) has been suggested as a promising pharmacological agent for medication-enhanced psychotherapy in posttraumatic stress disorder (PTSD) because of its anxiolytic and prosocial properties. We therefore investigated the behavioral and neurobiological effects of a single intranasal OT administration (40 IU) in PTSD patients. We conducted a randomized, placebo-controlled, cross-over resting-state fMRI study in male and female police officers with (n=37, 21 males) and without PTSD (n=40, 20 males). We investigated OT administration effects on subjective anxiety and functional connectivity of basolateral (BLA) and centromedial (CeM) amygdala subregions with prefrontal and salience processing areas. In PTSD patients, OT administration resulted in decreased subjective anxiety and nervousness. Under placebo, male PTSD patients showed diminished right CeM to left ventromedial prefrontal cortex (vmPFC) connectivity compared with male trauma-exposed controls, which was reinstated after OT administration. Additionally, female PTSD patients showed enhanced right BLA to bilateral dorsal anterior cingulate cortex (dACC) connectivity compared with female trauma-exposed controls, which was dampened after OT administration. Although caution is warranted, our findings tentatively suggest that OT has the potential to diminish anxiety and fear expression of the amygdala in PTSD, either via increased control of the vmPFC over the CeM (males) or via decreased salience processing of the dACC and BLA (females). Our findings add to accumulating evidence that OT administration could potentially enhance treatment response in PTSD.

  6. Intrinsic connectivity of neural networks in the awake rabbit.

    Science.gov (United States)

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei

    2016-04-01

    The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration). Copyright © 2016 Elsevier Inc. All rights reserved.

  7. fMRI activation in relation to sound intensity and loudness

    NARCIS (Netherlands)

    Langers, Dave R. M.; van Dijk, Pirn; Schoemaker, Esther S.; Backes, Walter H.

    2007-01-01

    The aim of this fMRI study was to relate cortical fMRI responses to both physical and perceptual sound level characteristics. Besides subjects with normal hearing, subjects with high-frequency sensorineural hearing loss were included, as distortion of loudness perception is a characteristic of such

  8. Aberrant Dynamic Connectivity for Fear Processing in Anorexia Nervosa and Body Dysmorphic Disorder

    Directory of Open Access Journals (Sweden)

    D. Rangaprakash

    2018-06-01

    Full Text Available Anorexia nervosa (AN and body dysmorphic disorder (BDD share distorted perceptions of appearance with extreme negative emotion, yet the neural phenotypes of emotion processing remain underexplored in them, and they have never been directly compared. We sought to determine if shared and disorder-specific fronto-limbic connectivity patterns characterize these disorders. FMRI data was obtained from three unmedicated groups: BDD (n = 32, weight-restored AN (n = 25, and healthy controls (HC; n = 37, while they viewed fearful faces and rated their own degree of fearfulness in response. We performed dynamic effective connectivity modeling with medial prefrontal cortex (mPFC, rostral anterior cingulate cortex (rACC, and amygdala as regions-of-interest (ROI, and assessed associations between connectivity and clinical variables. HCs exhibited significant within-group bidirectional mPFC-amygdala connectivity, which increased across the blocks, whereas BDD participants exhibited only significant mPFC-to-amygdala connectivity (P < 0.05, family-wise error corrected. In contrast, participants with AN lacked significant prefrontal-amygdala connectivity in either direction. AN showed significantly weaker mPFC-to-amygdala connectivity compared to HCs (P = 0.0015 and BDD (P = 0.0050. The mPFC-to-amygdala connectivity was associated with greater subjective fear ratings (R2 = 0.11, P = 0.0016, eating disorder symptoms (R2 = 0.33, P = 0.0029, and anxiety (R2 = 0.29, P = 0.0055 intensity scores. Our findings, which suggest a complex nosological relationship, have implications for understanding emotion regulation circuitry in these related psychiatric disorders, and may have relevance for current and novel therapeutic approaches.

  9. RETROSPECTIVE DETECTION OF INTERLEAVED SLICE ACQUISITION PARAMETERS FROM FMRI DATA

    Science.gov (United States)

    Parker, David; Rotival, Georges; Laine, Andrew; Razlighi, Qolamreza R.

    2015-01-01

    To minimize slice excitation leakage to adjacent slices, interleaved slice acquisition is nowadays performed regularly in fMRI scanners. In interleaved slice acquisition, the number of slices skipped between two consecutive slice acquisitions is often referred to as the ‘interleave parameter’; the loss of this parameter can be catastrophic for the analysis of fMRI data. In this article we present a method to retrospectively detect the interleave parameter and the axis in which it is applied. Our method relies on the smoothness of the temporal-distance correlation function, which becomes disrupted along the axis on which interleaved slice acquisition is applied. We examined this method on simulated and real data in the presence of fMRI artifacts such as physiological noise, motion, etc. We also examined the reliability of this method in detecting different types of interleave parameters and demonstrated an accuracy of about 94% in more than 1000 real fMRI scans. PMID:26161244

  10. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  11. Aberrant functional network connectivity in psychopathy from a large (N = 985) forensic sample.

    Science.gov (United States)

    Espinoza, Flor A; Vergara, Victor M; Reyes, Daisy; Anderson, Nathaniel E; Harenski, Carla L; Decety, Jean; Rachakonda, Srinivas; Damaraju, Eswar; Rashid, Barnaly; Miller, Robyn L; Koenigs, Michael; Kosson, David S; Harenski, Keith; Kiehl, Kent A; Calhoun, Vince D

    2018-06-01

    Psychopathy is a personality disorder characterized by antisocial behavior, lack of remorse and empathy, and impaired decision making. The disproportionate amount of crime committed by psychopaths has severe emotional and economic impacts on society. Here we examine the neural correlates associated with psychopathy to improve early assessment and perhaps inform treatments for this condition. Previous resting-state functional magnetic resonance imaging (fMRI) studies in psychopathy have primarily focused on regions of interest. This study examines whole-brain functional connectivity and its association to psychopathic traits. Psychopathy was hypothesized to be characterized by aberrant functional network connectivity (FNC) in several limbic/paralimbic networks. Group-independent component and regression analyses were applied to a data set of resting-state fMRI from 985 incarcerated adult males. We identified resting-state networks (RSNs), estimated FNC between RSNs, and tested their association to psychopathy factors and total summary scores (Factor 1, interpersonal/affective; Factor 2, lifestyle/antisocial). Factor 1 scores showed both increased and reduced functional connectivity between RSNs from seven brain domains (sensorimotor, cerebellar, visual, salience, default mode, executive control, and attentional). Consistent with hypotheses, RSNs from the paralimbic system-insula, anterior and posterior cingulate cortex, amygdala, orbital frontal cortex, and superior temporal gyrus-were related to Factor 1 scores. No significant FNC associations were found with Factor 2 and total PCL-R scores. In summary, results suggest that the affective and interpersonal symptoms of psychopathy (Factor 1) are associated with aberrant connectivity in multiple brain networks, including paralimbic regions. © 2018 Wiley Periodicals, Inc.

  12. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Fernández, Guillén; Norris, David G; Hermans, Erno J

    2010-04-20

    The hippocampus is thought to promote gradual incorporation of novel information into long-term memory by binding, reactivating, and strengthening distributed cortical-cortical connections. Recent studies implicate a key role in this process for hippocampally driven crosstalk with the (ventro)medial prefrontal cortex (vmPFC), which is proposed to become a central node in such representational networks over time. The existence of a relevant prior associative network, or schema, may moreover facilitate this process. Thus, hippocampal-vmPFC crosstalk may support integration of new memories, particularly in the absence of a relevant prior schema. To address this issue, we used functional magnetic resonance imaging (fMRI) and prior schema manipulation to track hippocampal-vmPFC connectivity during encoding and postencoding rest. We manipulated prior schema knowledge by exposing 30 participants to the first part of a movie that was temporally scrambled for 15 participants. The next day, participants underwent fMRI while encoding the movie's final 15 min in original order and, subsequently, while resting. Schema knowledge and item recognition performance show that prior schema was successfully and selectively manipulated. Intersubject synchronization (ISS) and interregional partial correlation analyses furthermore show that stronger prior schema was associated with more vmPFC ISS and less hippocampal-vmPFC interregional connectivity during encoding. Notably, this connectivity pattern persisted during postencoding rest. These findings suggest that additional crosstalk between hippocampus and vmPFC is required to compensate for difficulty integrating novel information during encoding and provide tentative support for the notion that functionally relevant hippocampal-neocortical crosstalk persists during off-line periods after learning.

  13. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  14. Functional Connectivity of the Precuneus in Female University Students with Long-Term Musical Training.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    Conceiving concrete mental imagery is critical for skillful musical expression and performance. The precuneus, a core component of the default mode network (DMN), is a hub of mental image processing that participates in functions such as episodic memory retrieval and imagining future events. The precuneus connects with many brain regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study was to examine the effects of long-term musical training on the resting-state functional connectivity of the precuneus. Our hypothesis was that the functional connectivity of the precuneus is altered in musicians. We analyzed the functional connectivity of the precuneus using resting-state functional magnetic resonance imaging (fMRI) data recorded in female university students majoring in music and nonmusic disciplines. The results show that the music students had higher functional connectivity of the precuneus with opercular/insular regions, which are associated with interoceptive and emotional processing; Heschl's gyrus (HG) and the planum temporale (PT), which process complex tonal information; and the lateral occipital cortex (LOC), which processes visual information. Connectivity of the precuneus within the DMN did not differ between the two groups. Our finding suggests that functional connections between the precuneus and the regions outside of the DMN play an important role in musical performance. We propose that a neural network linking the precuneus with these regions contributes to translate mental imagery into information relevant to musical performance.

  15. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.

    Science.gov (United States)

    Smith, David V; Clithero, John A; Boltuck, Sarah E; Huettel, Scott A

    2014-12-01

    According to many studies, the ventromedial prefrontal cortex (VMPFC) encodes the subjective value of disparate rewards on a common scale. Yet, a host of other reward factors-likely represented outside of VMPFC-must be integrated to construct such signals for valuation. Using functional magnetic resonance imaging (fMRI), we tested whether the interactions between posterior VMPFC and functionally connected brain regions predict subjective value. During fMRI scanning, participants rated the attractiveness of unfamiliar faces. We found that activation in dorsal anterior cingulate cortex, anterior VMPFC and caudate increased with higher attractiveness ratings. Using data from a post-scan task in which participants spent money to view attractive faces, we quantified each individual's subjective value for attractiveness. We found that connectivity between posterior VMPFC and regions frequently modulated by social information-including the temporal-parietal junction (TPJ) and middle temporal gyrus-was correlated with individual differences in subjective value. Crucially, these additional regions explained unique variation in subjective value beyond that extracted from value regions alone. These findings indicate not only that posterior VMPFC interacts with additional brain regions during valuation, but also that these additional regions carry information employed to construct the subjective value for social reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Resting-State fMRI in MS: General Concepts and Brief Overview of Its Application

    Directory of Open Access Journals (Sweden)

    Emilia Sbardella

    2015-01-01

    Full Text Available Brain functional connectivity (FC is defined as the coherence in the activity between cerebral areas under a task or in the resting-state (RS. By applying functional magnetic resonance imaging (fMRI, RS FC shows several patterns which define RS brain networks (RSNs involved in specific functions, because brain function is known to depend not only on the activity within individual regions, but also on the functional interaction of different areas across the whole brain. Region-of-interest analysis and independent component analysis are the two most commonly applied methods for RS investigation. Multiple sclerosis (MS is characterized by multiple lesions mainly affecting the white matter, determining both structural and functional disconnection between various areas of the central nervous system. The study of RS FC in MS is mainly aimed at understanding alterations in the intrinsic functional architecture of the brain and their role in disease progression and clinical impairment. In this paper, we will examine the results obtained by the application of RS fMRI in different multiple sclerosis (MS phenotypes and the correlations of FC changes with clinical features in this pathology. The knowledge of RS FC changes may represent a substantial step forward in the MS research field, both for clinical and therapeutic purposes.

  17. Nonlinear complexity analysis of brain FMRI signals in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Moses O Sokunbi

    Full Text Available We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H. 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems.

  18. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.

    Science.gov (United States)

    Carbonell, F; Bellec, P; Shmuel, A

    2014-02-01

    The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their

  19. Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time.

    Directory of Open Access Journals (Sweden)

    Xu Cui

    2009-08-01

    Full Text Available What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI, we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA. Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the "go" signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a "countdown" condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in "no-go" conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals.

  20. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    Science.gov (United States)

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Baila S. Hall

    2015-01-01

    Full Text Available Stress—especially chronic, uncontrollable stress—is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  2. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    Science.gov (United States)

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  3. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    Science.gov (United States)

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  4. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    International Nuclear Information System (INIS)

    Arichi, T.; Edwards, A.D.; Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N.; Allievi, A.G.; Burdet, E.; Chew, A.T.; Martinez-Biarge, M.; Cowan, F.M.

    2014-01-01

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  5. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    Energy Technology Data Exchange (ETDEWEB)

    Arichi, T.; Edwards, A.D. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Allievi, A.G.; Burdet, E. [Imperial College London, Department of Bioengineering, London (United Kingdom); Chew, A.T. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom); Martinez-Biarge, M.; Cowan, F.M. [Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom)

    2014-11-15

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  6. The impact of fMRI on multimodal navigation in surgery of cerebral lesions: four years clinical experience

    International Nuclear Information System (INIS)

    Wurm, Gabriele; Schnizer, Mathilde; Fellner, Claudia

    2008-01-01

    Neuronavigation with display of intraoperative structures, instrument locations, orientation and relationships to nearby structures can increase anatomic precision while enhancing the surgeon's confidence and his/her perception of safety. Combination of neuronavigation with functional imaging provides multimodal guidance for surgery of cerebral lesions. We evaluated the impact of functional MRI (fMRI) on surgical decision making and outcome. A neuronavigational device (StealthStation (tm), Medtronic Inc.) was used as platform to merge fMRI data with anatomic images, and to implement intraoperative multimodal guidance. In a 52-month period, where 977 surgical procedures were performed with the aid of neuronavigation, 88 patients underwent image-guided procedures using multimodal guidance. Patient, surgical and outcome data of this series was prospectively collected. Evaluation of 88 procedures on cerebral lesions in complex regions where fMRI data were integrated using the navigation system demonstrated that the additional information was presented in a user-friendly way. Computer assisted fMRI integration was found to be especially helpful in planning the best approach, in assessing alternative approaches, and in defining the extent of the surgical exposure. Furthermore, the surgeons found it more effective to interpret fMRI information when shown in a navigation system as compared to the traditional display on a light board or monitor. Multimodal navigation enhanced by fMRI was judged useful for optimization of surgery of cerebral lesions, especially in and around eloquent regions by experienced neurosurgeons. (orig.)

  7. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.

    Science.gov (United States)

    Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan

    2017-01-15

    Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the

  8. Conjunction analysis and propositional logic in fMRI data analysis using Bayesian statistics.

    Science.gov (United States)

    Rudert, Thomas; Lohmann, Gabriele

    2008-12-01

    To evaluate logical expressions over different effects in data analyses using the general linear model (GLM) and to evaluate logical expressions over different posterior probability maps (PPMs). In functional magnetic resonance imaging (fMRI) data analysis, the GLM was applied to estimate unknown regression parameters. Based on the GLM, Bayesian statistics can be used to determine the probability of conjunction, disjunction, implication, or any other arbitrary logical expression over different effects or contrast. For second-level inferences, PPMs from individual sessions or subjects are utilized. These PPMs can be combined to a logical expression and its probability can be computed. The methods proposed in this article are applied to data from a STROOP experiment and the methods are compared to conjunction analysis approaches for test-statistics. The combination of Bayesian statistics with propositional logic provides a new approach for data analyses in fMRI. Two different methods are introduced for propositional logic: the first for analyses using the GLM and the second for common inferences about different probability maps. The methods introduced extend the idea of conjunction analysis to a full propositional logic and adapt it from test-statistics to Bayesian statistics. The new approaches allow inferences that are not possible with known standard methods in fMRI. (c) 2008 Wiley-Liss, Inc.

  9. Linear mixed-effects modeling approach to FMRI group analysis.

    Science.gov (United States)

    Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

    2013-06-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity

  10. Resting-state functional connectivity differences in premature children

    Directory of Open Access Journals (Sweden)

    Eswar Damaraju

    2010-06-01

    Full Text Available We examine the coherence in the spontaneous brain activity of sleeping children as measured by the blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI signals. The results are described in terms of resting-state networks (RSN and their properties. More specifically, in this study we examine the effect of severe prematurity on the spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, the temporal response properties of each of these networks, and the functional connectivity between them. Our results suggest that the anatomical locations of the RSNs are well developed by 18 months of age and their spatial locations are not distinguishable between premature and term born infants at 18 months or at 36 months, with the exception of small spatial differences noted in the basal ganglia area and the visual cortex. The two major differences between term and preterm children were present at 36 but not 18 months and include: 1 increased spectral energy in the low frequency range (0.01 – 0.06 Hz for pre-term children in the basal ganglia component, and 2 stronger connectivity between RSNs in term children. We speculate that children born very prematurely are vulnerable to injury resulting in weaker connectivity between resting state networks by 36 months of age. Further work is required to determine whether this could be a clinically useful tool to identify children at risk of developmental delay related to premature birth.

  11. Reliability Correction for Functional Connectivity: Theory and Implementation

    Science.gov (United States)

    Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L.; Liu, Hesheng

    2016-01-01

    Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe’s contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity. PMID:26493163

  12. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning.

    Science.gov (United States)

    Kesler, Shelli R; Rao, Arvind; Blayney, Douglas W; Oakley-Girvan, Ingrid A; Karuturi, Meghan; Palesh, Oxana

    2017-01-01

    We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34-65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy ( p breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment.

  13. Effects of erythropoietin on emotional processing biases in patients with major depression: an exploratory fMRI study

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Favaron, Elisa; Hafizi, Sepehr

    2009-01-01

    and neutral pictures during fMRI followed by picture recall after the scan. Mood and blood parameters were assessed at baseline and on day 3. RESULTS: Epo reduced neural response to negative vs. positive pictures 3 days post-administration in a network of areas including the hippocampus, ventromedial...... prefrontal and parietal cortex. After the scan, Epo-treated patients showed improved memory compared with those that were given placebo. The effects occurred in the absence of changes in mood or haematological parameters, suggesting that they originated from direct neurobiological actions of Epo. CONCLUSIONS......: These findings are similar to the effects of conventional antidepressants and opposite to the negative biases in depression. The central effects of Epo therefore deserve further investigation as a potential antidepressant mechanism....

  14. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation

    International Nuclear Information System (INIS)

    Siegel, Andrew M; Culver, Joseph P; Mandeville, Joseph B; Boas, David A

    2003-01-01

    The time courses of oxyhaemoglobin ([HbO 2 ]), deoxyhaemoglobin ([HbR]) and total haemoglobin ([HbT]) concentration changes following cortical activation in rats by electrical forepaw stimulation were measured using diffuse optical tomography (DOT) and compared to similar measurements performed previously with fMRI at 2.0 T and 4.7 T. We also explored the qualitative effects of varying stimulus parameters on the temporal evolution of the hemodynamic response. DOT images were reconstructed at a depth of 1.5 mm over a 1 cm square area from 2 mm anterior to bregma to 8 mm posterior to bregma. The measurement set included 9 sources and 16 detectors with an imaging frame rate of 10 Hz. Both DOT [HbR] and [HbO 2 ] time courses were compared to the fMRI BOLD time course during stimulation, and the DOT [HbT] time course was compared to the fMRI cerebral plasma volume (CPV) time course. We believe that DOT and fMRI can provide similar temporal information for both blood volume and deoxyhaemoglobin changes, which helps to cross-validate these two techniques and to demonstrate that DOT can be useful as a complementary modality to fMRI for investigating the hemodynamic response to neuronal activity

  15. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Andrew M [Tufts University Bioengineering Center, Medford, MA 02155 (United States); Culver, Joseph P [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 (United States); Mandeville, Joseph B [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 (United States); Boas, David A [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 (United States)

    2003-05-21

    The time courses of oxyhaemoglobin ([HbO{sub 2}]), deoxyhaemoglobin ([HbR]) and total haemoglobin ([HbT]) concentration changes following cortical activation in rats by electrical forepaw stimulation were measured using diffuse optical tomography (DOT) and compared to similar measurements performed previously with fMRI at 2.0 T and 4.7 T. We also explored the qualitative effects of varying stimulus parameters on the temporal evolution of the hemodynamic response. DOT images were reconstructed at a depth of 1.5 mm over a 1 cm square area from 2 mm anterior to bregma to 8 mm posterior to bregma. The measurement set included 9 sources and 16 detectors with an imaging frame rate of 10 Hz. Both DOT [HbR] and [HbO{sub 2}] time courses were compared to the fMRI BOLD time course during stimulation, and the DOT [HbT] time course was compared to the fMRI cerebral plasma volume (CPV) time course. We believe that DOT and fMRI can provide similar temporal information for both blood volume and deoxyhaemoglobin changes, which helps to cross-validate these two techniques and to demonstrate that DOT can be useful as a complementary modality to fMRI for investigating the hemodynamic response to neuronal activity.

  16. The potential of infant fMRI research and the study of early life stress as a promising exemplar

    Directory of Open Access Journals (Sweden)

    Alice M. Graham

    2015-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI research with infants and toddlers has increased rapidly over the past decade, and provided a unique window into early brain development. In the current report, we review the state of the literature, which has established the feasibility and utility of task-based fMRI and resting state functional connectivity MRI (rs-fcMRI during early periods of brain maturation. These methodologies have been successfully applied beginning in the neonatal period to increase understanding of how the brain both responds to environmental stimuli, and becomes organized into large-scale functional systems that support complex behaviors. We discuss the methodological challenges posed by this promising area of research. We also highlight that despite these challenges, early work indicates a strong potential for these methods to influence multiple research domains. As an example, we focus on the study of early life stress and its influence on brain development and mental health outcomes. We illustrate the promise of these methodologies for building on, and making important contributions to, the existing literature in this field.

  17. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  18. Cerebral somatic pain modulation during autogenic training in fMRI.

    Science.gov (United States)

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  19. A Versatile Software Package for Inter-subject Correlation Based Analyses of fMRI

    Directory of Open Access Journals (Sweden)

    Jukka-Pekka eKauppi

    2014-01-01

    Full Text Available In the inter-subject correlation (ISC based analysis of the functional magnetic resonance imaging (fMRI data, the extent of shared processing across subjects during the experiment is determined by calculating correlation coefficients between the fMRI time series of the subjects in the corresponding brain locations. This implies that ISC can be used to analyze fMRI data without explicitly modelling the stimulus and thus ISC is a potential method to analyze fMRI data acquired under complex naturalistic stimuli. Despite of the suitability of ISC based approach to analyze complex fMRI data, no generic software tools have been made available for this purpose, limiting a widespread use of ISC based analysis techniques among neuroimaging community. In this paper, we present a graphical user interface (GUI based software package, ISC Toolbox, implemented in Matlab for computing various ISC based analyses. Many advanced computations such as comparison of ISCs between different stimuli, time window ISC, and inter-subject phase synchronization are supported by the toolbox. The analyses are coupled with re-sampling based statistical inference. The ISC based analyses are data and computation intensive and the ISC toolbox is equipped with mechanisms to execute the parallel computations in a cluster environment automatically and with an automatic detection of the cluster environment in use. Currently, SGE-based (Oracle Grid Engine, Son of a Grid Engine or Open Grid Scheduler and Slurm environments are supported. In this paper, we present a detailed account on the methods behind the ISC Toolbox, the implementation of the toolbox and demonstrate the possible use of the toolbox by summarizing selected example applications. We also report the computation time experiments both using a single desktop computer and two grid environments demonstrating that parallelization effectively reduces the computing time. The ISC Toolbox is available in https://code.google.com/p/isc-toolbox/.

  20. A versatile software package for inter-subject correlation based analyses of fMRI.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Pajula, Juha; Tohka, Jussi

    2014-01-01

    In the inter-subject correlation (ISC) based analysis of the functional magnetic resonance imaging (fMRI) data, the extent of shared processing across subjects during the experiment is determined by calculating correlation coefficients between the fMRI time series of the subjects in the corresponding brain locations. This implies that ISC can be used to analyze fMRI data without explicitly modeling the stimulus and thus ISC is a potential method to analyze fMRI data acquired under complex naturalistic stimuli. Despite of the suitability of ISC based approach to analyze complex fMRI data, no generic software tools have been made available for this purpose, limiting a widespread use of ISC based analysis techniques among neuroimaging community. In this paper, we present a graphical user interface (GUI) based software package, ISC Toolbox, implemented in Matlab for computing various ISC based analyses. Many advanced computations such as comparison of ISCs between different stimuli, time window ISC, and inter-subject phase synchronization are supported by the toolbox. The analyses are coupled with re-sampling based statistical inference. The ISC based analyses are data and computation intensive and the ISC toolbox is equipped with mechanisms to execute the parallel computations in a cluster environment automatically and with an automatic detection of the cluster environment in use. Currently, SGE-based (Oracle Grid Engine, Son of a Grid Engine, or Open Grid Scheduler) and Slurm environments are supported. In this paper, we present a detailed account on the methods behind the ISC Toolbox, the implementation of the toolbox and demonstrate the possible use of the toolbox by summarizing selected example applications. We also report the computation time experiments both using a single desktop computer and two grid environments demonstrating that parallelization effectively reduces the computing time. The ISC Toolbox is available in https://code.google.com/p/isc-toolbox/

  1. Understanding marijuana's effects on functional connectivity of the default mode network in patients with schizophrenia and co-occurring cannabis use disorder: A pilot investigation.

    Science.gov (United States)

    Whitfield-Gabrieli, Susan; Fischer, Adina S; Henricks, Angela M; Khokhar, Jibran Y; Roth, Robert M; Brunette, Mary F; Green, Alan I

    2018-04-01

    Nearly half of patients with schizophrenia (SCZ) have co-occurring cannabis use disorder (CUD), which has been associated with decreased treatment efficacy, increased risk of psychotic relapse, and poor global functioning. While reports on the effects of cannabis on cognitive performance in patients with SCZ have been mixed, study of brain networks related to executive function may clarify the relationship between cannabis use and cognition in these dual-diagnosis patients. In the present pilot study, patients with SCZ and CUD (n=12) and healthy controls (n=12) completed two functional magnetic resonance imaging (fMRI) resting scans. Prior to the second scan, patients smoked a 3.6% tetrahydrocannabinol (THC) cannabis cigarette or ingested a 15mg delta-9-tetrahydrocannabinol (THC) pill. We used resting-state functional connectivity to examine the default mode network (DMN) during both scans, as connectivity/activity within this network is negatively correlated with connectivity of the network involved in executive control and shows reduced activity during task performance in normal individuals. At baseline, relative to controls, patients exhibited DMN hyperconnectivity that correlated with positive symptom severity, and reduced anticorrelation between the DMN and the executive control network (ECN). Cannabinoid administration reduced DMN hyperconnectivity and increased DMN-ECN anticorrelation. Moreover, the magnitude of anticorrelation in the controls, and in the patients after cannabinoid administration, positively correlated with WM performance. The finding that DMN brain connectivity is plastic may have implications for future pharmacotherapeutic development, as treatment efficacy could be assessed through the ability of therapies to normalize underlying circuit-level dysfunction. Copyright © 2017. Published by Elsevier B.V.

  2. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    Science.gov (United States)

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole

  3. Age-Dependent Mesial Temporal Lobe Lateralization in Language FMRI

    Science.gov (United States)

    Sepeta, Leigh N.; Berl, Madison M.; Wilke, Marko; You, Xiaozhen; Mehta, Meera; Xu, Benjamin; Inati, Sara; Dustin, Irene; Khan, Omar; Austermuehle, Alison; Theodore, William H.; Gaillard, William D.

    2015-01-01

    Objective FMRI activation of the mesial temporal lobe (MTL) may be important for epilepsy surgical planning. We examined MTL activation and lateralization during language fMRI in children and adults with focal epilepsy. Methods 142 controls and patients with left hemisphere focal epilepsy (Pediatric: epilepsy, n = 17, mean age = 9.9 ± 2.0; controls, n = 48; mean age = 9.1 ± 2.6; Adult: epilepsy, n = 20, mean age = 26.7 ± 5.8; controls, n = 57, mean age = 26.2 ± 7.5) underwent 3T fMRI using a language task (auditory description decision task). Image processing and analyses were conducted in SPM8; ROIs included MTL, Broca’s area, and Wernicke’s area. We assessed group and individual MTL activation, and examined degree of lateralization. Results Patients and controls (pediatric and adult) demonstrated group and individual MTL activation during language fMRI. MTL activation was left lateralized for adults but less so in children (p’s < 0.005). Patients did not differ from controls in either age group. Stronger left-lateralized MTL activation was related to older age (p = 0.02). Language lateralization (Broca’s and Wernicke’s) predicted 19% of the variance in MTL lateralization for adults (p = 0.001), but not children. Significance Language fMRI may be used to elicit group and individual MTL activation. The developmental difference in MTL lateralization and its association with language lateralization suggests a developmental shift in lateralization of MTL function, with increased left lateralization across the age span. This shift may help explain why children have better memory outcomes following resection compared to adults. PMID:26696589

  4. Multivoxel Pattern Analysis for fMRI Data: A Review

    Directory of Open Access Journals (Sweden)

    Abdelhak Mahmoudi

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI exploits blood-oxygen-level-dependent (BOLD contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs. In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC curves.

  5. Multivoxel Pattern Analysis for fMRI Data: A Review

    Science.gov (United States)

    Takerkart, Sylvain; Regragui, Fakhita; Boussaoud, Driss; Brovelli, Andrea

    2012-01-01

    Functional magnetic resonance imaging (fMRI) exploits blood-oxygen-level-dependent (BOLD) contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM) approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA) represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs). In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC) curves. PMID:23401720

  6. Mobile Device Applications for the Visualization of Functional Connectivity Networks and EEG electrodes: iBraiN and iBraiNEEG.

    Directory of Open Access Journals (Sweden)

    Gonzalo Mauricio Rojas

    2016-10-01

    Full Text Available Multiple fMRI-based functional connectivity networks were obtained by Yeo et al., and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with EEG data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10-20 EEG electrodes with Yeo’s seven functional connectivity networks.

  7. Mobile Device Applications for the Visualization of Functional Connectivity Networks and EEG Electrodes: iBraiN and iBraiNEEG.

    Science.gov (United States)

    Rojas, Gonzalo M; Fuentes, Jorge A; Gálvez, Marcelo

    2016-01-01

    Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by Yeo et al. (2011), and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with electroencephalography (EEG) data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10-20 EEG electrodes with Yeo's seven functional connectivity networks.

  8. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    Science.gov (United States)

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-11-01

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  9. A new paradigm for individual subject language mapping: Movie-watching fMRI

    Science.gov (United States)

    Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.

    2015-01-01

    Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953

  10. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  11. Intersession reliability of fMRI activation for heat pain and motor tasks.

    Science.gov (United States)

    Quiton, Raimi L; Keaser, Michael L; Zhuo, Jiachen; Gullapalli, Rao P; Greenspan, Joel D

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test-retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  12. Intersession reliability of fMRI activation for heat pain and motor tasks

    Science.gov (United States)

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  13. Effects of local and global network connectivity on synergistic epidemics

    Science.gov (United States)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  14. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats

    Science.gov (United States)

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894

  15. An in vivo MRI template set for morphometry, tissue segmentation and fMRI localization in rats

    Directory of Open Access Journals (Sweden)

    Pedro Antonio Valdes Hernandez

    2011-11-01

    Full Text Available Over the last decade, several papers have focused on the construction of highly detailed mouse high field MRI templates via nonlinear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate fMRI localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via nonlinear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g. SPM voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos & Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, we reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation- or voxel-based morphometry, morphological connectivity and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies.

  16. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats.

    Science.gov (United States)

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies.

  17. Connectivity patterns in cognitive control networks predict naturalistic multitasking ability.

    Science.gov (United States)

    Wen, Tanya; Liu, De-Cyuan; Hsieh, Shulan

    2018-06-01

    Multitasking is a fundamental aspect of everyday life activities. To achieve a complex, multi-component goal, the tasks must be subdivided into sub-tasks and component steps, a critical function of prefrontal networks. The prefrontal cortex is considered to be organized in a cascade of executive processes from the sensorimotor to anterior prefrontal cortex, which includes execution of specific goal-directed action, to encoding and maintaining task rules, and finally monitoring distal goals. In the current study, we used a virtual multitasking paradigm to tap into real-world performance and relate it to each individual's resting-state functional connectivity in fMRI. While did not find any correlation between global connectivity of any of the major networks with multitasking ability, global connectivity of the lateral prefrontal cortex (LPFC) was predictive of multitasking ability. Further analysis showed that multivariate connectivity patterns within the sensorimotor network (SMN), and between-network connectivity of the frontoparietal network (FPN) and dorsal attention network (DAN), predicted individual multitasking ability and could be generalized to novel individuals. Together, these results support previous research that prefrontal networks underlie multitasking abilities and show that connectivity patterns in the cascade of prefrontal networks may explain individual differences in performance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI.

    NARCIS (Netherlands)

    Fernandez, G.S.E.; Specht, K.; Weis, S.; Tendolkar, I.; Reuber, M.; Fell, J.; Klaver, P.; Ruhlmann, J.; Reul, J.; Elger, C.E.

    2003-01-01

    BACKGROUND: fMRI is becoming a standard tool for the presurgical lateralization and mapping of brain areas involved in language processing. However, its within-subject reproducibility has yet to be fully explored. OBJECTIVE: To evaluate within-test and test-retest reliability of language fMRI in

  19. The Effects of Audiovisual Inputs on Solving the Cocktail Party Problem in the Human Brain: An fMRI Study.

    Science.gov (United States)

    Li, Yuanqing; Wang, Fangyi; Chen, Yongbin; Cichocki, Andrzej; Sejnowski, Terrence

    2017-09-25

    At cocktail parties, our brains often simultaneously receive visual and auditory information. Although the cocktail party problem has been widely investigated under auditory-only settings, the effects of audiovisual inputs have not. This study explored the effects of audiovisual inputs in a simulated cocktail party. In our fMRI experiment, each congruent audiovisual stimulus was a synthesis of 2 facial movie clips, each of which could be classified into 1 of 2 emotion categories (crying and laughing). Visual-only (faces) and auditory-only stimuli (voices) were created by extracting the visual and auditory contents from the synthesized audiovisual stimuli. Subjects were instructed to selectively attend to 1 of the 2 objects contained in each stimulus and to judge its emotion category in the visual-only, auditory-only, and audiovisual conditions. The neural representations of the emotion features were assessed by calculating decoding accuracy and brain pattern-related reproducibility index based on the fMRI data. We compared the audiovisual condition with the visual-only and auditory-only conditions and found that audiovisual inputs enhanced the neural representations of emotion features of the attended objects instead of the unattended objects. This enhancement might partially explain the benefits of audiovisual inputs for the brain to solve the cocktail party problem. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women.

    Science.gov (United States)

    García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo

    2017-07-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p diet and physical exercise.