WorldWideScience

Sample records for effective charge velocity

  1. Very low velocity ion slowing down in binary ionic mixtures: Charge- and mass-asymmetry effects

    Directory of Open Access Journals (Sweden)

    Patrice Fromy

    2010-10-01

    Full Text Available A binary ionic mixture (BIM in dense and hot plasmas of specific concern for inertial confinement fusion and white dwarf crust is considered as a target for incoming light ions with a velocity smaller than the thermal electron one. The given target stopping power, mostly BIM monitored, is specifically studied in terms of charge and mass asymmetry in its ionic component. The classical plasma target is worked out within a dielectric framework, and scanned with respect to density, temperature, and BIM composition.

  2. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  3. Preliminary investigation of the effect of electric charge on particle-pair relative velocity in isotropic turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Kailu, Tushar; Liang, Zach; Meng, Hui

    2017-11-01

    In many particle-laden turbulent flows including thunderstorm clouds and aerosol sprays, the particles may be electrically charged. How the Coulomb force between charged particles competes with the turbulence forces on particle motion is not yet fully understood. Mean inward particle pair relative velocity (particle RV), a quantity relevant for particle collision in isotropic turbulence, is expected to be affected by charge. We extend our recent particle tracking velocimetry (PTV) study on particle pair relative velocity in fan-driven isotropic turbulence to particles with charge. To accomplish this, we established a method to independently vary particle charge distributions by balancing particle density and size while keeping constant Reλ and St, developed a unique instrument to measure particle charge using in-line holography, and measured particle RV using PTV at three levels of charge under a single flow condition. We present charged particle RV measurements from the experiments at Reλ = 343, St 1.19, and charge of order 10-15 Coulombs, which show that particle RV increases with magnitude of bipolar charge. This study paves the way for a comprehensive exploration of relative motion of charged particle in isotropic turbulence. This work was supported by NSF CBET-0967407.

  4. SR90, strontium shaped-charge critical ionization velocity experiment

    Science.gov (United States)

    Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David

    1990-01-01

    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.

  5. Microscopic theory of longitudinal sound velocity in charge ordered manganites.

    Science.gov (United States)

    Rout, G C; Panda, S

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e(g) band, an exchange interaction between spins of the itinerant e(g) band electrons and the core t(2g) electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  6. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  7. Experimental Exploration of Electrostatic Charge on Particle Pair Relative Velocity in Homogeneous and Isotropic Turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Tripathi, Anjan; Liang, Zach; Meng, Hui

    2015-11-01

    Study of droplet collision and cloud formation should consider the effects of both turbulence and electrostatic charge on particle dynamics. We present the first experimental observation of radial relative velocity (RV) of charged particles in homogeneous and isotropic turbulence (HIT). Charges on particles were generated through triboelectric effect between the inner wall of the chamber and the particles. To measure charge distribution, a particle-laden head-on impinging flow mimicking our HIT chamber conditions was built and holographic particle tracking was applied to quantify particle charges by measuring their displacements in an electric field. Particles were observed to have opposite charges. Next, in our HIT chamber, we measured particle RV by a novel 4-frame particle tracking velocimetry technique with and without charges on particles, wherein charges were neutralized by coating the interior of the HIT chamber with conductive carbon paint. We compared RV under the same turbulence conditions between charged particles and neutral particles and observed that when particles were oppositely charged, their mean inward RV increased at small separation distances. This result is consistent with recent theory and simulations (Lu and Shaw, Physics of Fluids, 2015). This work was supported by the National Science Foundation through a Collaborative Research Grant CBET-0967407.

  8. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova

    2016-01-01

    , we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200 kg/m3). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects......-regions of our reconstructed geometry. Although there was a relatively small impact of inhalation flowrate on the deposition of charged particles for sizes dp

  9. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  10. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  11. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    Science.gov (United States)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the

  12. Numerical Simulation of Pre-heated Confined PBX Charge Under Low Velocity

    Science.gov (United States)

    Hu, Cai; Wu, Yanqing; Huang, Fenglei; Liu, Yan; Explosion; damage Team

    2017-06-01

    Impact sensitivity and thermal safety are very important for explosive safety usage.To investigate the effect of thermal softening on impact sensitivity of HMX-based PBX, a finite element model aiming at pre-heated confined PBX charge sbujected to bullets impact has been established. The predicted ignition starting area of the explosive charge was evaluated based on volume strain and equivalent strain contours. It showed that the ignition starting area moves towards the center of the explosives from the surface with increase of heating temperature. The threshold velocity does not increase monotonically with the pre-heating temperature increases. Instead, the threshold velocity rises till 360 m/s when the cook-off temperature is lower than 75°, then decreases the increased temperature. The results imply that our PBX has the lowest impact sensitivity at about 75°. These numerical results agree very well with the corresponding experiment results conducted by Dai et al. The influence of thermal softening on the impact sensitivity has been analyzed. As the strength decreases, more impact energy will be absorbed. At the same time, shear resistance ability will be weaken and volume compression work may play a more important role to ignition. China National Nature Science Foundation (11572045), ``Science Challenging Program'' (JCKY2016212A501), opening fund from Safety ammunition research and Development Center (RMC2015B03).

  13. Two-stream instability analysis for propagating charged particle beams with a velocity tilt

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2007-03-01

    Full Text Available The linear growth of the two-stream instability for a charged-particle beam that is longitudinally compressing as it propagates through a background plasma (due to an applied velocity tilt is examined. Detailed, 1D particle-in-cell (PIC simulations are carried out to examine the growth of the wave packet produced by a small amplitude density perturbation in the background plasma. Recent analytic and numerical work by Startsev and Davidson [Phys. Plasmas 13, 062108 (2006PHPAEN1070-664X10.1063/1.2212807] predicted reduced linear growth rates, which are indeed observed in the PIC simulations. Here, small-signal asymptotic gain factors are determined in a semianalytic analysis and compared with the simulation results in the appropriate limits. Nonlinear effects in the PIC simulations, including wave breaking and particle trapping, are found to limit the linear growth phase of the instability for both compressing and noncompressing beams.

  14. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    Science.gov (United States)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  15. Induced charge effects on electrokinetic entry flow

    Science.gov (United States)

    Prabhakaran, Rama Aravind; Zhou, Yilong; Zhao, Cunlu; Hu, Guoqing; Song, Yongxin; Wang, Junsheng; Yang, Chun; Xuan, Xiangchun

    2017-06-01

    Electrokinetic flow, due to a nearly plug-like velocity profile, is the preferred mode for transport of fluids (by electroosmosis) and species (by electrophoresis if charged) in microfluidic devices. Thus far there have been numerous studies on electrokinetic flow within a variety of microchannel structures. However, the fluid and species behaviors at the interface of the inlet reservoir (i.e., the well that supplies the fluid and species) and microchannel are still largely unexplored. This work presents a fundamental investigation of the induced charge effects on electrokinetic entry flow due to the polarization of dielectric corners at the inlet reservoir-microchannel junction. We use small tracing particles suspended in a low ionic concentration fluid to visualize the electrokinetic flow pattern in the absence of Joule heating effects. Particles are found to get trapped and concentrated inside a pair of counter-rotating fluid circulations near the corners of the channel entrance. We also develop a depth-averaged numerical model to understand the induced charge on the corner surfaces and simulate the resultant induced charge electroosmosis (ICEO) in the horizontal plane of the microchannel. The particle streaklines predicted from this model are compared with the experimental images of tracing particles, which shows a significantly better agreement than those from a regular two-dimensional model. This study indicates the strong influences of the top/bottom walls on ICEO in shallow microchannels, which have been neglected in previous two-dimensional models.

  16. Fractional Effective Charges and Misner-Wheeler Charge without Charge Effect in Metamaterials

    Directory of Open Access Journals (Sweden)

    Igor Smolyaninov

    2016-07-01

    Full Text Available Transformation optics enables engineering of the effective topology and dimensionality of the optical space in metamaterials. Nonlinear optics of such metamaterials may mimic Kaluza-Klein theories having one or more kinds of effective charges. As a result, novel photon blockade devices may be realized. Here we demonstrate that an electromagnetic wormhole may be designed, which connects two points of such an optical space and changes its effective topological connectivity. Electromagnetic field configurations, which exhibit fractional effective charges, appear as a result of such topology change. Moreover, such effects as Misner-Wheeler “charge without charge” may be replicated.

  17. The velocity dependence of X-ray emission due to Charge Exchange in the Cygnus Loop

    Science.gov (United States)

    Cumbee, Renata; Lyons, David; Mullen, Patrick Dean; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-01-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics for collisions of bare and H-like C to Al ions with H, He, and H2. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31This work was partially supported by NASA grant NNX09AC46G.

  18. Generation and measurement of velocity bunched ultrashort bunch of pC charge

    Directory of Open Access Journals (Sweden)

    X. H. Lu

    2015-03-01

    Full Text Available In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR spectrum method is developed to enable the measurement of ultrashort (sub-50 fs bunches at low bunch energy (5 MeV and low bunch charges (<10  pC. In this method, the ratio of the radiation energy selected by two narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown are corrected.

  19. Cosmic ray velocity and electric charge measurements with the AMS/RICH detector: prototype results

    CERN Document Server

    Arruda, Luisa; Goncalves, Patricia; Pereira, Rui

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will measure charged cosmic ray spectra of elements up to iron, in the rigidity range from 1 GV to 1 TV, for at least three years. AMS is a large angular spectrometer composed of different subdetectors, including a proximity focusing Ring Imaging CHerenkov (RICH) detector. This will be equipped with a mixed radiator made of aerogel and sodium fluoride (NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers coupled to light guides. The RICH detector allows measurements of particle's electric charge up to iron, and particle's velocity. Two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH will be discussed. A RICH prototype consisting of a detection matrix with 96 photomultipliers, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated using ion beam data. Results from the last test beam perf...

  20. Selection effects in Doppler velocity planet searches

    Science.gov (United States)

    O'Toole, Simon; Tinney, Chris; Jones, Hugh

    2008-05-01

    The majority of extra-solar planets have been discovered by measuring the Doppler velocities of the host star. Like all exoplanet detection methods, the Doppler method is rife with observational biases. Before any robust comparison of mass, orbital period and eccentricity distributions can be made with theory, a detailed understanding of these selection effects is required, something which up to now is lacking. We present here a progress report on our analysis of the selection effects present in Anglo-Australian Planet Search data, including the methodology used and some preliminary results.

  1. Amplification of the electroosmotic velocity by induced charges at fluidic interfaces

    Science.gov (United States)

    Steffes, Clarissa; Baier, Tobias; Hardt, Steffen

    2010-11-01

    The performance of microfluidic devices like electroosmotic pumps is strongly limited by drag forces at the channel walls. In order to replace the standard no-slip condition at the wall with a more favorable slip condition, superhydrophobic surfaces are employed. In the Cassie-Baxter state, air is entrapped in the surface cavities, so that a significant fraction of water-air interfaces at which slip does occur is provided. However, such surfaces do not enhance electroosmotic flow. Since no net charge accumulates at the water-air interfaces, the driving force is reduced, and no flow enhancement is obtained. We consider electrodes incorporated in the superhydrophobic structure to induce charges at these interfaces, thereby increasing the driving force. A theoretical model is set up, yielding an understanding of the influence of the surface morphology on the flow, which serves as a basis for ongoing experimental work. While a considerable enhancement of the electroosmotic velocity is already expected for standard superhydrophobic surfaces, greater amplifications of one order of magnitude may be achieved by substituting the air in the surface cavities by oil, reducing the risk for electric breakdown or transition to the unfavorable Wenzel state.

  2. Charge transfer in high velocity C{sub n}{sup +} + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chabot, M [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Martinet, G [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Mezdari, F [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Diaz-Tendero, S [Departamento de Quimica, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Beroff-Wohrer, K [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Desesquelles, P [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Della-Negra, S [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Hamrita, H [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); LePadellec, A [IRSAMC, Universite Paul Sabatier et CNRS, 31062 Toulouse Cedex 4 (France); Tuna, T [Institut de Physique Nucleaire, Universite Paris Sud et CNRS, 91406 Orsay Cedex (France); Montagnon, L [IRSAMC, Universite Paul Sabatier et CNRS, 31062 Toulouse Cedex 4 (France); Barat, M [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France); Simon, M [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, Universite Paris 6 et CNRS, 11 rue P et M Curie, 75231 Paris Cedex 05 (France); Ismail, I [Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud et CNRS, 91405 Orsay Cedex (France)

    2006-06-14

    Dissociative and non-dissociative charge transfer cross sections in high velocity (v = 2.6 au) collisions between ionic carbon clusters C{sub n}{sup +} (n 2-10) and helium atoms have been measured. The sum of the cross sections has been found to increase significantly with n. Measurements of branching ratios for all fragmentation channels of excited C{sub n} clusters are reported. The summed branching ratios associated with a given number of emitted fragments exhibit odd-even alternations reflecting the higher stability of the species having an odd number of atoms. From an analysis of the summed branching ratios within the statistical microcanonical metropolis Monte Carlo model, and knowing the temperature of the incident clusters, deposited energy distributions due to the charge transfer process are deduced (n = 5-9). These distributions, of similar characteristics whatever n, peak around 4-5 eV and exhibit a large percentage of superexcited states situated above the continuum.

  3. Gummel Symmetry Test on charge based drain current expression using modified first-order hyperbolic velocity-field expression

    Science.gov (United States)

    Singh, Kirmender; Bhattacharyya, A. B.

    2017-03-01

    Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth

  4. A new instrument to measure charged and neutral cometary dust particles at low and high impact velocities

    Science.gov (United States)

    Economon, T.; Simpson, J. A.; Tuzzolino, A. J.

    1986-01-01

    A new class of dust particle detector, the PVDF dust detector, was designed for space missions such as the Halley Comet missions where the particle impact velocity is very high. It is demonstrated that this same PVDF detector (operating in a different mode) also has the capability of detecting dust particles having low velocity (approx. 100 m/s). This low velocity detection capability is extremely important in terms of planned missions requiring measurement of low velocity dust particles such as comet rendezvous missions. An additional detecting element (charge induction cylinder) was also developed which, when combined with a PVDF detector, yields a system which will measure the charge (magnitude and sign) carried by a cometary particle as well as the particle velocity and mass for impact velocities in the range 100 to 500 m/s. Since the cylinder-PVDF detector system has a relatively small geometry factors, an array of PVDF detectors was included having a total sensing area of 0.1 sq m for measurements in regions of space where the dust flux is expected to be low. The characteristics of the detectors in this array have been chosen to provide optimum mass sensitivity for both low-velocity cometary dust as well as high-velocity asteroid associated and interplanetary dust.

  5. Phase behavior of charged colloids : many-body effects, charge renormalization and charge regulation

    NARCIS (Netherlands)

    Zoetekouw, Bastiaan

    2006-01-01

    The main topic of this thesis is Poisson–Boltzmann theory for suspensions of charged colloids in two of its approximations: cell-type approximations that explicitly take into account non-linear effects near the colloidal surfaces, such as charge renormalization, at the expense of neglecting any

  6. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  7. Charge diffusion and the butterfly effect in striped holographic matter

    Science.gov (United States)

    Lucas, Andrew; Steinberg, Julia

    2016-10-01

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  8. Surface charge measurement by the Pockels effect

    CERN Document Server

    Sam, Y L

    2001-01-01

    have been observed by applying both impulse and AC voltages to a needle electrode in direct contact with the BSO. AC surface discharge behaviour of polymeric materials bonded to the BSO has also been investigated. The effect of the surrounding environment has been experimentally examined by placing the cell inside a vacuum chamber. Surface charge measurements have been made at various atmospheric pressures. The effect of an electro-negative gas (Sulphur Hexafluoride) on the surface charge distribution has also been investigated. This thesis is concerned with the design and development of a surface charge measurement system using Pockels effect. The measurement of surface charge is important in determining the electrical performance of high voltage insulation materials. The method proposed allows on-line measurement of charge and can generate two-dimensional images that represent the charge behaviour on the surface of the material under test. The measurement system is optical and uses a Pockels crystal as the ...

  9. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories

    Science.gov (United States)

    Blake, Mike

    2016-08-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by Dc=C vB2/(2 π T ), where vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  10. Influence of initial velocity on trajectories of a charged particle in uniform crossed electric and magnetic fields

    Science.gov (United States)

    Nurul Khotimah, Siti; Viridi, Sparisoma; Widayani

    2017-03-01

    Magnetic and electric fields can cause a charged particle to form interesting trajectories. In general, each trajectory is discussed separately in university physics textbooks for undergraduate students. In this work, a solution of a charged particle moving in a uniform electric field at right angles to a uniform magnetic field (uniform crossed electric and magnetic fields) is reported; it is limited to particle motion in a plane. Specific solutions and their trajectories are obtained only by varying the initial particle velocity. The result shows five basic trajectory patterns, i.e., straight line, sinusoid-like, cycloid, cycloid-like with oscillation, and circle-like. The region of each trajectory is also mapped in the initial velocity space of the particle. This paper is intended for undergraduate students and describes further the trajectories of a charged particle through the regions of electric and magnetic fields influenced by initial condition of the particle, where electromagnetic radiation of an accelerated particle is not considered.

  11. Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan; Spix, George J.

    2006-01-01

    We propose a simple relativistic derivation of the electric and the magnetic fields generated by an electric point charge moving with constant velocity. Our approach is based on the radar detection of the point space coordinates where the fields are measured. The same equations were previously derived in a relatively complicated way2 based exclusively on general electromagnetic field equations and without making use of retarded potentials or relativistic equations

  12. Effects of physical variables on settling velocities of calcium and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Effects of physical variables on settling velocities of calcium and strontium phosphates ... Department of Chemistry, Rivers State University of Science & Technology, Port Harcourt, Nigeria .... simplified stoichiometric chemical reactions.

  13. Effective diffusion equation in a random velocity field

    Science.gov (United States)

    Vinals, Jorge; Sekerka, Robert F.

    1992-01-01

    The effects are studied of assumed random velocity fields on diffusion in a binary fluid. Random velocity fields can result, for example, from the high-frequency components of residual accelerations onboard spacecraft (often called g-jitter). An effective diffusion equation is derived for an average concentration which includes spatial and temporal correlations induced by the fluctuating velocity fields assumed to be Gaussianly distributed. The resulting equation becomes nonlocal, and if correlations between different components of the velocity field exist, it is also anisotropic. The simple limiting case of short correlation times is discussed and an effective diffusivity is obtained which reflects the enhanced mixing caused by the velocity fields. The results obtained in the limit of short correlation times are valid even if the probability distribution of the velocity field is not Gaussian.

  14. The velocity dependence of X-ray emission due to Charge Exchange: Applications in the Cygnus Loop

    Science.gov (United States)

    Cumbee, Renata; Lyons, David; Mullen, Patrick; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-04-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate high-energy astrophysical environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities. Collisions of bare and H-like C to Al ions with H, He, and H2 are considered. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31

  15. Charging of heated colloidal particles using the electrolyte Seebeck effect.

    Science.gov (United States)

    Majee, Arghya; Würger, Alois

    2012-03-16

    We propose a novel actuation mechanism for colloids, which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic particle accumulates in its vicinity a net charge Q, which is proportional to the excess temperature at the particle surface. The corresponding long-range thermoelectric field E is proportional to 1/r(2) provides a tool for controlled interactions with nearby beads or with additional molecular solutes. An external field E(ext) drags the thermocharged particle at a velocity that depends on its size and absorption properties; the latter point could be particularly relevant for separating carbon nanotubes according to their electronic band structure.

  16. Moisture content effect on ultrasonic velocity in Goupia glabra

    Directory of Open Access Journals (Sweden)

    Fabiana Goia Rosa de Oliveira

    2005-03-01

    Full Text Available This paper discusses the application of ultrasound waves on a Brazilian hardwood, Goupia glabra, to evaluate the sensitivity of the ultrasonic technique to the moisture content in wood. The velocity of ultrasonic wave is sensitive to the material's quality-determining factors; hence, this technique is an important industrial tool to improve the quality control of processes. The nature of the response of velocity of sound to changes in moisture content led us to conclude that moisture gradients during drying exert a dominating effect. The ultrasonic velocity was measured both parallel and perpendicular to the fibers of Goupia glabra during drying from green to 6% moisture content. The results of this study showed that velocity of ultrasonic waves is sensitive to changes in moisture content of lumber during drying. The velocity under dry conditions was always higher than the velocity under more humid conditions, in both directions of propagation.

  17. Review of the critical ionization velocity effect in space

    Science.gov (United States)

    Newell, P. T.

    1985-01-01

    Laboratory experiments have shown under a variety of conditions that when a neutral gas passes through a magnetized plasma with a relative velocity perpendicular to the magnetic field that is greater than a critical velocity, anomalously high ionization of the neutrals occurs. The conditions under which the same effect is to be expected in space plasmas is still unclear. The experimental evidence for the occurrence of the critical ionization velocity effect in space is summarized, and various areas in which it has been proposed that the effect should be significant are discussed.

  18. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  19. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions....... The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  20. Space charge effect in an accelerated beam

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2008-01-01

    Full Text Available It is usually assumed that the space charge effects in relativistic beams scale with the energy of the beam as γ^{-2}, where γ is the relativistic factor. We show that for a beam accelerated in the longitudinal direction there is an additional space charge effect in free space that scales as E/γ, where E is the accelerating field. This field has the same origin as the “electromagnetic mass of the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic energy of the beam and the energy of the electromagnetic field of the beam. We then consider the effect of this field on a beam generated in an rf gun and calculate the energy spread produced by this field in the beam.

  1. Determination of plasma ion velocity distribution via charge-exchange recombination spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonck, R.J.; Darrow, D.S.; Jaehnig, K.P.

    1983-12-01

    Spectroscopy of line radiation from plasma impurity ions excited by charge-exchange recombination reactions with energetic neutral beam atoms is rapidly becoming recognized as a powerful technique for measuring ion temperature, bulk plasma motion, impurity transport, and more exotic phenomena such as fast alpha particle distributions. In particular, this diagnostic offers the capability of obtaining space- and time-resolved ion temperature and toroidal plasma rotation profiles with relatively simple optical systems. Cascade-corrected excitation rate coefficients for use in both fully stripped impurity density studies and ion temperature measurements have been calculated to the principal ..delta..n = 1 transitions of He+, C/sup 5 +/, and O/sup 7 +/ with neutral beam energies of 5 to 100 keV/amu. A fiber optically coupled spectrometer system has been used on PDX to measure visible He/sup +/ radiation excited by charge exchange. Central ion temperatures up to 2.4 keV and toroidal rotation speeds up to 1.5 x 10/sup 7/ cm/s were observed in diverted discharges with P/sub INJ/ less than or equal to 3.0 MW.

  2. Coupling liquids acoustic velocity effects on elastic metallic bioglass properties

    Science.gov (United States)

    Metiri, W.; Hadjoub, F.; Doghmane, A.; Hadjoub, Z.

    2009-11-01

    The effect of surface acoustic wave, SAW, velocities of coupling liquids on acoustical properties of several bulk metallic glasses, BMG, has been investigated using simulation program based on acoustic microscopy. Thus, we determined variations of critical angles at which the excitation of longitudinal mode, θL and Rayleigh mode, θR occurs as a function of wave velocities in different coupling liquids, Vliq. Linear relations of the form θi =ai0 +βiVliq were deduced. The importance of such formula, used with Snell's law, lies in the direct determination of SAW velocities and consequently mechanical properties of BMGs.

  3. Introduction to Space Charge Effects in Semiconductors

    CERN Document Server

    Böer, Karl W

    2010-01-01

    This book is the most comprehensive one to describe the basics of space-charge effects in semiconductors, starting from basic principles to advanced application in semiconducting devices. It uses detailed analyses of the transport, Poisson, and continuity equations to demonstrate the behavior of the solution curves of the complete set of field and current distributions, along with quantitative descriptions of the relevant band models of typical pn-junction and Schottky barrier devices. It emphasizes the relevance to actual devices and sets these results apart from more simple models of networks of diodes and resistors. The book is especially important for people interested in detail analysis of solar cells and their efficiencies.

  4. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  5. Effects of physical variables on settling velocities of calcium and ...

    African Journals Online (AJOL)

    Settling velocity is an important parameter used in modeling solid-liquid flow operations and for evaluating tank volumes in water treatment technology. In the present study, series of bench-scale batch-wise precipitation and settling tests were performed to evaluate the effect of some physical variables such as precipitate ...

  6. Decorrelation-based blood flow velocity estimation: effect of spread of flow velocity, linear flow velocity gradients, and parabolic flow.

    NARCIS (Netherlands)

    Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de

    2002-01-01

    In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow

  7. Charge renormalization for effective interactions of colloids at water interfaces

    OpenAIRE

    Frydel, D.; Dietrich, S.; Oettel, M.

    2007-01-01

    We analyze theoretically the electrostatic interaction of surface-charged colloids at water interfaces with special attention to the experimentally relevant case of large charge densities on the colloid-water interface. Whereas linear theory predicts an effective dipole potential the strength of which is proportional to the square of the product of charge density and screening length, nonlinear charge renormalization effects change this dependence to a weakly logarithmic one. These results ap...

  8. Charging and plasma effects under ultrashort pulsed laser ablation

    Science.gov (United States)

    Bulgakova, N. M.; Bulgakov, A. V.; Zhukov, V. P.; Marine, W.; Vorobyev, A. Y.; Guo, Chunlei

    2008-05-01

    Based on experiments and a theoretical analysis, we raise questions on two fundamental mechanisms of femtosecond laser desorption/ablation of solids, namely Coulomb explosion (CE) and plasma etching. The effects of laser-induced ionization and surface charging are analyzed which can be responsible for ultrafast ions observed in time-of-flight mass-spectra under ultrashort laser irradiation of solids. The importance of surface charging in formation of velocity distributions of desorbed/ablated species has been revealed for conditions when the CE mechanism is inhibited. The influence of ambient plasma formation on the dynamics of heating of metallic targets by femtosecond laser pulses is studied based on 2D modeling of laser-induced target heating and dynamics of the ambient plasma. The calculations show an intriguing picture of the laser-induced ambient gas motion. We propose a model of laser-induced breakdown of an ambient gas in a region in front of the irradiated target and analyze plasma-chemical processes which can affect laser processing of surfaces in the presence of air or highly reactive media.

  9. The effects of particle charge on the performance of a filtering facepiece.

    Science.gov (United States)

    Chen, C C; Huang, S H

    1998-04-01

    This study quantitatively determined the effect of electrostatic charge on the performance of an electret filtering facepiece. Monodisperse challenge corn oil aerosols with uniform charges were generated using a modified vibrating orifice monodisperse aerosol generator. The aerosol size distributions and concentrations upstream and downstream of an electret filter were measured using an aerodynamic particle sizer, an Aerosizer, and a scanning mobility particle sizer. The aerosol charge was measured by using an aerosol electrometer. The tested electret filter had a packing density of about 0.08, fiber size of 3 microns, and thickness of 0.75 mm. As expected, the primary filtration mechanisms for the micrometer-sized particles are interception and impaction, especially at high face velocities, while electrostatic attraction and diffusion are the filtration mechanisms for submicrometer-sized aerosol particles. The fiber charge density was estimated to be 1.35 x 10(-5) coulomb per square meter. After treatment with isopropanol, most of fiber charges were removed, causing the 0.3-micron aerosol penetration to increase from 36 to 68%. The air resistance of the filter increased slightly after immersion in the isopropanol, probably due to the coating of impurities in isopropanol. The aerosol penetration decreased with increasing aerosol charge. The most penetrating aerosol size became larger as the aerosol charge increased, e.g., from 0.32 to 1.3 microns when the aerosol charge increased from 0 to 500 elementary charges.

  10. Effect of Core Training on Male Handball Players' Throwing Velocity.

    Science.gov (United States)

    Manchado, Carmen; García-Ruiz, José; Cortell-Tormo, Juan Manuel; Tortosa-Martínez, Juan

    2017-02-01

    In handball, throwing velocity is considered to be one of the essential factors in achieving the ultimate aim of scoring a goal. The objective of the present study was to analyze the effect of a core training program on throwing velocity in 30 handball players (age 18.7 ± 3.4 years, body height 179.3 ± 7.0 cm, body mass 78.9 ± 7.7 kg), 16 of whom were in the junior category and 14 of whom were in the senior category. The 30 players were randomly divided into two groups, the control group (n = 15) and the experimental group (n = 15). For a period of ten weeks, both groups attended their regular handball training sessions (four per week), but in addition, the experimental group participated in a program specifically aimed at progressively strengthening the lumbo-pelvic region and consisting of seven exercises performed after the general warm-up in each regular session. Pre- and post-tests were carried out to analyze each player's throwing velocity from different throwing positions and thus assess the effects of this specific training program. Statistically significant differences (p ≤ 0.05) in throwing velocity were observed between the experimental group, which presented a percentage improvement of 4.5%, and the control group, which did not show any improvement. The results seem to indicate that an increase in the strength and stability of the lumbo-pelvic region can contribute to an improvement in the kinetic chain of the specific movement of throwing in handball, thus, increasing throwing velocity.

  11. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  12. The effect of velocity filtering in pressure estimation

    Science.gov (United States)

    Schiavazzi, D. E.; Nemes, A.; Schmitter, S.; Coletti, F.

    2017-05-01

    Velocity field measurements allow, in principle, the evaluation of the pressure field by integrating the equations of fluid motion. Unavoidable experimental uncertainty, however, may result in unreliable estimates. In this study, we use the Poisson pressure equation to estimate the relative pressure from experimental velocities, and investigate how pre-processing with smoothing and solenoidal filters affects this estimate. For diffusion dominated laminar flow or for turbulent flow modeled through an eddy viscosity, measurement noise significantly affects the results. In this case, solenoidal filtering provides superior performance over other smoothing approaches, as it preserves the second spatial derivatives of the velocity field. For laminar flows dominated by advection or acceleration components of the pressure gradient, the choice of the filter appears to have little effect under limited noise, while smoothing produces improved relative pressure estimates for higher noise intensities. The above statements are verified using idealized flow conditions, numerical fluid dynamics simulations, and velocity fields from in-vivo and in-vitro magnetic resonance velocimetry.

  13. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.

    1999-01-01

    The in situ thermal poling processes in germanosilicate fibers for positive and negative poling voltages are significantly different. Thermal poling of silica fibers consists of two processes: the faster linear process of charge migration and the subsequent single exponential process of charge...... ionization. Both the shielding electrical field due to charge migration and the ionization electrical field due to charge ionization are able to be frozen-in at room temperature acid lead to the residual linear electrooptic effects, The observations support that the mechanism of the induced electrooptic...... effects is based on space charge electrical fields instead of dipole/bond orientation....

  14. Counterion Condensation and Effective Charge of PAMAM Dendrimers

    Directory of Open Access Journals (Sweden)

    Ulrich Scheler

    2011-04-01

    Full Text Available PAMAM dendrimers are used as a model system to investigate the effects of counterion condensation and the effective charge for spherical polyelectrolytes. Because of their amino groups, PAMAM dendrimers are weak polyelectrolytes. Lowering the pH results in an increasing protonation of the amino groups which is monitored via the proton chemical shifts of the adjacent CH2 groups. The effective charge is determined from a combination of diffusion and electrophoresis NMR. The fraction of the charges, which are effective for the interaction with an external electric field or other charges, decreases with increasing generation (size of the dendrimers.

  15. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    Science.gov (United States)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  16. The effect of peculiar velocities on supernova cosmology

    DEFF Research Database (Denmark)

    Davis, Tamara Maree; Hui, Lam; Frieman, Joshua A.

    2011-01-01

    We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for (1) our own motion, (2) correlations in galaxy motions, and (3) a possible...... local under- or overdensity. For all of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave background (CMB) dipole slightly overcorrects...

  17. Particulate matter sample deposit geometry and effective filter face velocities.

    Science.gov (United States)

    McDade, Charles E; Dillner, Ann M; Indresand, Hege

    2009-09-01

    Aerosol filter face velocities can be underestimated when the sample deposit area does not cover the entire face of the filter. In many aerosol samplers, Teflon filters are backed with a metal support screen. In these samplers, air flows through the filter only in the small area upstream of each hole in the screen, resulting in a sample deposit that is an array of tiny dots that mimics the array of holes. Thus, the filter deposit area is smaller than the total filter area and the effective face velocity is greater than that calculated from the sample deposit envelope. The Interagency Monitoring of Protected Visual Environments (IMPROVE) network has used filter holders with two different screen hole arrays. The U.S. Environmental Protection Agency's Chemical Speciation Network (CSN) and the Federal Reference Method samplers also use a metal support screen, but with much smaller screen holes than IMPROVE. These networks also use larger filters and lower flow rates than those used in IMPROVE. Filter face velocities for all of these networks that are calculated using the actual deposit array area range from 1.6 to 3.5 times larger than those calculated incorrectly using the entire sample deposit envelope.

  18. Effect of charge imbalance parameter on LEKW in ion-implanted quantum semiconductor plasmas

    Science.gov (United States)

    Chaudhary, Sandhya; Yadav, Nishchhal; Ghosh, S.

    2015-07-01

    In this study we present an analytical investigation on the propagation characteristics of electro-kinetic wave modified through quantum correction term and charge imbalance parameter using quantum hydrodynamic model for an ion-implanted semiconductor plasma. The dispersion relation has been analyzed in two distinct velocity regimes. We found that as the number of negative charges resides on the colloids increases, their role become increasing effective. The present investigation is important for understanding of wave and instability phenomena and can be put to various interesting applications.

  19. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.

  20. Understanding the effect of space charge on instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chao, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Chin, Y. H. [National Lab. for High Energy Physics (KEK), Ibaraki (Japan)

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  1. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  2. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control

  3. Drift velocity of charged particles in magnetic fields and its relation to the direction of the source current

    Science.gov (United States)

    Essén, Hanno; Nordmark, Arne B.

    2016-10-01

    Integrable motion of charged particles in magnetic fields produced by stationary current distributions is investigated. We treat motion in the magnetic field from an infinite flat current sheet, a Harris current sheath, an infinite rectilinear current, and a dipole in its equatorial plane. We find that positively charged particles as a rule will drift in the same direction as the current that is the source of the magnetic field in question. The conclusion is that charged particles moving under the influence of current distributions tend to enhance the current and that this indicates current self-amplification.

  4. Spacecraft environments interactions: Protecting against the effects of spacecraft charging

    Science.gov (United States)

    Herr, J. L.; Mccollum, M. B.

    1994-01-01

    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer, second in the series, describes the interactions between a spacecraft and the natural space plasma. Under certain environmental/spacecraft conditions, these interactions result in the phenomenon known as spacecraft charging. It is the focus of this publication to describe the phenomenon of spacecraft charging and its possible adverse effects on spacecraft and to present the key elements of a Spacecraft Charging Effects Protection Plan.

  5. Dynamics of fluid-conveying pipes: effects of velocity profiles

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    Varying velocity profiles and internal fluid loads on fluid-conveying pipes are investigated. Different geometric layouts of the fluid domain and inflow velocity profiles are considered. It is found that the variation of the velocity profiles along the bended pipe is considerable. A determination...... of the resulting fluid loads on the pipe walls is of interest e.g, for evaluating the dynamical behaviour of lightly damped structures like Coriolis flow meters....

  6. Space Charge Effects in Single Molecular Devices

    Science.gov (United States)

    Dunlap, David H.; Malliaras, George G.

    2002-03-01

    Strong negative differential resistance (NDR) has been recently observed in p-conjugated oligo (phenyleneethynylene) single-molecular devices consisting of two parallel metal (Au) electrodes which are separated by a self-assembled monolayer having a thickness on the order of 2nm [1]. The sudden drop in current suggests that nonlinear feedback associated electron transport through intermediate molecular states may be responsible for the observed NDR. We propose that the transfer of charge from the cathode to the anode takes place via nearest-neighbor hopping between two weakly coupled oligomer states. In such a case, the current is highest when the energies of the two states are coincident, and is suppressed when the voltage drop between them is sufficient to take them far out of resonance. The modification of the voltages within the junction due to accumulated space charge causes the states to become pinned. We show that this collective behavior enhances the abruptness of the NDR, and under appropriate circumstances leads to a triangularly shaped hysteresis loop in the current-voltage relation. [1] M. A. Reed, J. Chen, W. Wang, D. W. Price, A. M. Rawlett, and J. M. Tour, Appl. Phys. Lett 78, 3735 (2001)

  7. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  8. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  9. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  10. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    Science.gov (United States)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  11. Simulation of space charge effects in resistive plate chambers

    CERN Document Server

    Lippmann, Christian

    2003-01-01

    Multigap resistive plate chambers with 0.3-mm gas gaps operated in avalanche mode at atmospheric pressure have reached timing accuracies below 50 ps (standard deviation) with efficiencies above 99% . The avalanches in high homogeneous electric fields of 100 kV/cm are strongly influenced by space charge effects which are the main topic of this paper. We extend a previously discussed Monte Carlo simulation model of avalanches in resistive plate chambers by the dynamic calculation of the electric field in the avalanches. We complete the previously presented results on time resolution and efficiency data with simulated charge spectra. The simulated data shows good agreement with measurements. The detailed simulation of the avalanche saturation due to the space charge fields explains the small observed charges, the shape of the spectra, and the linear increase of average charges with high voltage. (22 refs).

  12. Strong velocity effects in collisions of He+ with fullerenes

    NARCIS (Netherlands)

    Schlatholter, T; Hadjar, O; Hoekstra, R; Morgenstern, R

    1999-01-01

    We have studied fragmentation and ionization of C-60 by He+ impact over a velocity range from 0.1 to 1 a.u. where a transition from vibrational to electronic excitation is predicted. With increasing velocity we observe a strong decrease of evaporative processes (C-60-2m(r+) peaks) and a linearly

  13. Electrophoresis of a charge-regulated soft sphere: importance of effective membrane charge.

    Science.gov (United States)

    Tseng, Shiojenn; Hsieh, Tsung-Hsien; Yeh, Li-Hsien; Wang, Nan; Hsu, Jyh-Ping

    2013-02-01

    The importance of the effective membrane charge on the electrophoretic behavior of a soft spherical particle comprising a rigid core and a charge-regulated membrane layer, mimicking both inorganic and biological colloids, is investigated. The mobility of the particle is simulated under various conditions by varying the double layer thickness, the bulk solution pH, and the charged conditions of the membrane layer. Several interesting electrophoretic behaviors that are of practical significance, are observed. For example, the particle mobility can be controlled by adjusting its properties such as the ratios of (acidic equilibrium constant/basic equilibrium constant) and (concentration of acidic functional groups/that of basic functional groups). Double layer polarization (DLP) is found to render the soft particle having behaviors different from those of the corresponding rigid particle. For instance, DLP can either be intensified or weakened, depending upon the strength of the hydrodynamic force and the electric force acting on the membrane layer. As the bulk electrolyte concentration increases in a certain range, because double layer shrinks into the membrane layer, its effective charge density increases, so is the particle mobility. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effects of superficial gas velocity and fluid property on the ...

    African Journals Online (AJOL)

    In the present study, the influence of superficial gas velocity and fluid properties on gas holdup and liquid circulation velocity in a three-phase external loop airlift column using polystyrene (0.0036 m diameter and 1025.55 kg/m3 density) and nylon-6 (0.0035 m diameter and 1084.24 kg/m3 density) particles with aqueous ...

  15. Image charge effects in the nonequilibrium Anderson-Holstein model

    Science.gov (United States)

    Perfetto, E.; Stefanucci, G.

    2013-12-01

    Image charge effects in nanoscale junctions with strong electron-phonon coupling open the way to unexplored physical scenarios. We propose a simple and still accurate many-body approach to deal with the simultaneous occurrence of the Franck-Condon blockade and the screening-induced enhancement of the polaron mobility. A transparent analytic expression for the polaron decay rate is derived and the dependence on the strength and range of the screening is highlighted. This allows us to interpret and explain several transient and steady-state features of the electrical current. Remarkably, we find that the competition between the charge blocking due to the electron-phonon interaction and the charge deblocking due to the image charges gives rise to a novel mechanism of negative differential conductance. An experimental setup to observe this phenomenon is discussed.

  16. Effect of water velocity on hydroponic phytoremediation of metals.

    Science.gov (United States)

    Weiss, P; Westbrook, A; Weiss, J; Gulliver, J; Biesboer, D

    2014-01-01

    The influence of flow velocity on the uptake of cadmium, copper, lead, and zinc by hydroponically grown soft stem bulrush (Scirpus validus) was investigated. The roots of the plants were exposed to a continually recycled, nutrient enriched, synthetic stormwater. Plants were divided into groups and the roots of each group exposed to different but constant water velocities. The metal concentrations in the roots and stems were compared after three weeks. Metal accumulation in roots was increased for water velocities between 1.3 and 4.0 cm s(-1). In a second experiment, the roots of all plants were exposed to a single velocity and the root and stem metal concentrations were determined as a function of time. Metal concentrations in the roots approached a constant value after three weeks. After this time, accumulation of metals depends upon root growth. The results suggest that long-term accumulation by the roots of hydroponic Scirpus validus can be increased by increasing water velocity, which implies that floating islands with movement will retain more metals from the water column.

  17. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  18. Effects of superficial gas velocity on process dynamics in bioreactors

    Science.gov (United States)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  19. Effects of water velocity on activity of juvenile striped bass

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, R.R.; Griffith, J.S.; Coutant, C.C.

    1976-07-01

    The swimming activity of juvenile striped bass (Morone saxatilis Walbaum) 8 to 80 mm long was investigated in a test chamber simulating, on a small scale, a fixed-screen cooling water intake structure. As water velocity increased from 0 to 30 cm/sec area and distance traveled by juvenile bass 10 to 80 mm long decreased. However, as water velocity increased from 0 to 3 cm/sec the area and distance covered by larval bass increased. The presence of food increased the activity of larval bass, but decreased the activity of juveniles. Area ranged by striped bass at test velocities ranging from 0 to 30 cm/sec increased in proportion to body length. Juvenile striped bass tested at acclimation temperatures between 20 and 5/sup 0/C experienced a 30% reduction of activity. Activity was also reduced as temperature increased from 20 to 30/sup 0/C.

  20. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  1. Coupling of Charged Particles Via Coulombic Interactions: Numerical Simulations and Resultant Kappa-Like Velocity Space Distribution Functions

    Science.gov (United States)

    Randol, Brent M.; Christian, Eric R.

    2016-01-01

    A parametric study is performed using the electrostatic simulations of Randol and Christian (2014) in which the number density, n, and initial thermal speed, theta, are varied. The range of parameters covers an extremely broad plasma regime, all the way from the very weak coupling of space plasmas to the very strong coupling of solid plasmas. The first result is that simulations at the same Lambda(sub D), where Lambda(sub D) is the plasma coupling parameter, but at different combinations of n and theta, behave exactly the same. As a function of Lambda(sub D), the form of p(v), the velocity distribution function of v, the magnitude of v, the velocity vector, is studied. For intermediate to high D, heating is observed in p(v) that obeys conservation of energy, and a suprathermal tail is formed, with a spectral index that depends on Lambda(sub D). For strong coupling (Lambda(sub D) much > 1), the form of the tail is v5, consistent with the findings of Randol and Christian (2014). For weak coupling (Lambda(sub D much <1), no acceleration or heating occurs, as there is no free energy. The dependence on N, the number of particles in the simulation, is also explored. There is a subtle dependence in the index of the tail, such that v5 appears to be the N approaches infinity limit.

  2. Large Seebeck effect by charge-mobility engineering.

    Science.gov (United States)

    Sun, Peijie; Wei, Beipei; Zhang, Jiahao; Tomczak, Jan M; Strydom, A M; Søndergaard, M; Iversen, Bo B; Steglich, Frank

    2015-06-25

    The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.

  3. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  4. Maximal shortening velocity during plantar flexion: effects of preactivity and initial stretching state.

    Science.gov (United States)

    Beaumatin, Nicolas; Hauraix, Hugo; Nordez, Antoine; Hager, Robin; Rabita, Giuseppe; Guilhem, Gaël; Dorel, Sylvain

    2017-12-23

    We investigated the effects of the initial length of the muscle-tendon unit (MTU) and muscle pre-activation on muscle-tendon interactions during plantarflexion performed at maximal velocity. Ultrasound images of gastrocnemius medialis were obtained on 11 participants in three conditions: 1) active plantarflexion performed at maximal velocity from three increasingly stretched positions (10°, 20° and 30° dorsiflexion), 2) passive plantarflexion induced by a quick release of the ankle joint from the same three positions, and 3) pre-activation, which consisted of a maximal isometric con-traction of the plantarflexors at 10° of dorsiflexion followed by a quick release of ankle joint. During the active condition at maximal velocity, initial MTU stretch positively influenced ankle joint velocity (+15.3%) and tendinous tissues shortening velocity (+37.6%) but not the shortening velocity peak value reached by muscle fascicle. The muscle fascicle was shortened during the passive condition, however its shortening velocity never exceeded peak velocity measured in the active condition. Muscle pre-activation resulted in a considerable increase in ankle joint (+114.7%) and tendinous tissues velocities (+239.1%), although we observed a decrease in muscle fascicle shortening velocity. During active plantarflexion at maximal velocity, initial MTU length positively influences ankle joint velocity by increasing the contribution of tendinous tissues. Although greater initial stretch of the plantar-flexors (i.e. 30° dorsiflexion) increased the passive velocity of the fascicle during initial movement, its peak velocity was not affected. As muscle pre-activation prevented reaching the maximal muscle fascicle shortening velocity, this condition should be used to characterize tendinous tissues rather than muscle contractile properties. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. LDV measurements of liquid velocity induced by charge injection in Diesel oil in a blade-plane-slit geometry

    Energy Technology Data Exchange (ETDEWEB)

    Daaboul, Michel; Louste, Christophe; Romat, Hubert [Laboratoire d' Etudes Aerodynamiques - Universite de Poitiers, ENSMA, CNRS SP2MI - Teleport 2 - Boulevard Pierre et Marie Curie - BP 30179 86962 Futuroscope Chasseneuil Cedex (France)], E-mail: michel.daaboul@lea.univ.poitiers.fr, E-mail: christophe.louste@lea.univ-poitiers.fr, E-mail: hubert.romat@lea.univ-poitiers.fr

    2008-12-01

    When applying a high potential to a blade or a pin immerged in an insulating liquid, ions are injected from the electrodes into the liquid. Several researches have been made on blade-plane geometry and important results have been already issued. In this paper, we test a blade-plane geometry with a two-plate system creating a slit in front of the blade and for which the fluid flow produced by the injected ions is modified by the slit. The electric current is also different from the one obtained with a simple blade-plane geometry. We first present the evolution of the injected current as a function of the applied voltage. Then we study the characteristics of the injection of charges and particularly the threshold of both voltage and electric field. We finally present a Laser Doppler Velocimetry (LDV) study of the flow.

  6. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, Bjarne Schmidt; Wang, Xiaoshuai; Zhang, Guoqiang

    to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on different categories of farm animals to determine how the effect of air velocity depends on the air temperature. A new expression to calculate the chilling effect of increased air velocity was suggested. In addition to the parameters air velocity and air temperature this new expression included three......Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...

  7. Wind Velocity Decreasing Effects of Windbreak Fence for Snowfall Measurement

    Directory of Open Access Journals (Sweden)

    Ki-Pyo You

    2014-01-01

    Full Text Available Meteorological observatories use measuring boards on even ground in open areas to measure the amount of snowfall. In order to measure the amount of snowfall, areas unaffected by wind should be found. This study tried to determine the internal wind flow inside a windbreak fence, identifying an area unaffected by wind in order to measure the snowfall. We performed a computational fluid dynamics analysis and wind tunnel test, conducted field measurements of the type and height of the windbreak fence, and analyzed the wind flow inside the fence. The results showed that a double windbreak fence was better than a single windbreak fence for decreasing wind velocity. The double fence (width 4 m, height 60 cm, and fixed on the bottom has the greatest wind velocity decrease rate at the central part of octagonal windbreak.

  8. Effects of soil moisture variations on deposition velocities above vegetation.

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, M. L.; Song, J.; McMillen, R. T.; Meyers, T. P.; Environmental Research; Northern Illinois Univ.; National Oceanic and Atmospheric Administration

    2001-01-01

    The parameterized subgrid-scale surface flux (PASS) model provides a simplified means of using remote sensing data from satellites and limited surface meteorological information to estimate the influence of soil moisture on bulk canopy stomatal resistances to the uptake of gases over extended areas. PASS-generated estimates of bulk canopy stomatal resistance were used in a dry deposition module to compute gas deposition velocities with a horizontal resolution of 200 m for approximately 5000 km{sup 2} of agricultural crops and rangeland. Results were compared with measurements of O{sub 3} flux and concentrations made during April and May 1997 at two surface stations and from an aircraft. The trend in simulated O{sub 3} deposition velocity during soil moisture drydown over a period of a few days matched the trend observed at the two surface stations. For areas under the aircraft flight paths, the variability in simulated O{sub 3} deposition velocity was substantially smaller than the observed variability, while the averages over tens of kilometers were usually in agreement within 0.1 cm s{sup -1}. Model results indicated that soil moisture can have a major role in deposition of O{sub 3} and other substances strongly affected by canopy stomatal resistance.

  9. Doppler effects on velocity spectra observed by MST radars

    Science.gov (United States)

    Scheffler, A. O.; Liu, C. H.

    1986-01-01

    Recently, wind data from mesophere-stratosphere-troposphere (MST) radars have been used to study the spectra of gravity waves in the atmosphere (Scheffler and Liu, 1985; VanZandt et al., 1985). Since MST radar measures the line-of-sight Doppler velocities, it senses the components of the wave-associated velocities along its beam directions. These components are related through the polarization relations which depend on the frequency and wave number of the wave. Therfore, the radar-observed velocity spectrum will be different from the original gravity-wave spectrum. Their relationship depends on the frequency and wave number of the wave as well as the propagation geometry. This relation can be used to interpret the observed data. It can also be used to test the assumption of gravity-wave spectrum (Scheffler and Liu, 1985). In deriving this relation, the background atmosphere has been assumed to be motionless. Obviously, the Doppler shift due to the background wind will change the shape of the gravity-wave power spectrum as well as its relation with the radar-observed spectrum. Here, researcher's investigate these changes.

  10. Design of low energy bunch compressors with space charge effects

    Directory of Open Access Journals (Sweden)

    A. He

    2015-01-01

    Full Text Available In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5–22 MeV linac bunch compressor design to produce short (∼150  fs and small size (∼30  μm bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R_{56} dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31  μm rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL’s very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25  μm rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  11. Response of the waterlouse Asellus aquaticus to multiple stressors : effects of current velocity and mineral substratum

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Camu, J.M.; Beijer, J.A.J.; Scheffer, M.; Gardeniers, J.J.P.

    2002-01-01

    Experiments were performed to study the individual and combined effects of current velocity and substratum composition on the waterlouse Asellus aquaticus (L.). Both factors affected growth, mortality, behavior, and food consumption of A. aquaticus. Short-term effects of increasing current velocity

  12. Electron cloud and space charge effects in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  13. Adaptive cost-effective ambient charges under incomplete information

    NARCIS (Netherlands)

    Ermoliev, Y; Nentjes, A

    Established opinion is that in the face of uncertain information on pollution control costs, environmental agencies cannot set ambient charges that enable the realization of desired concentration levels at multiple receptors in a cost-effective way. Although a trial-and-error procedure could result

  14. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    Effects of acid concentration on excited state intramolecular charge transfer reaction of 4-(azetidinyl) benzonitrile (P4C) in aprotic (acetonitrile and ethyl acetate) and protic (ethanol) solvents have been studied by means of steady state absorption and fluorescence, and time resolved fluorescence spectroscopic techniques.

  15. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  16. Modulation of graphene field effect by heavy charged particle irradiation

    Science.gov (United States)

    Cazalas, Edward; Sarker, Biddut K.; Childres, Isaac; Chen, Yong P.; Jovanovic, Igor

    2016-12-01

    Device architectures based on the two-dimensional material graphene can be used for sensing of electromagnetic and particle radiation. The sensing mechanism may be direct, by absorbance of radiation by the graphene or the immediately adjacent material, and indirect, via the field effect principle, whereby the change in conductivity within a semiconducting absorber substrate induces electric field change at graphene. Here, we report on a graphene field effect transistor (GFET) sensitive to heavy charged particle radiation (α particles) at MeV energies by use of the indirect sensing mechanism. Both the continuous and discrete changes of graphene are observed, and the latter are attributed to single α particle interactions with the GFET. While this study provides the basis for understanding of the irradiation effects, it also opens prospects for the use of GFETs as heavy charged particle detectors.

  17. Spin and charge thermopower effects in the ferromagnetic graphene junction

    Energy Technology Data Exchange (ETDEWEB)

    Vahedi, Javad, E-mail: javahedi@gmail.com [Department of Physics, Sari Branch, Islamic Azad University, Sari (Iran, Islamic Republic of); Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Barimani, Fattaneh [Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon (Korea, Republic of)

    2016-08-28

    Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchange filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.

  18. Effect of Titanium Dioxide Dopping on Charge Trapping in ...

    African Journals Online (AJOL)

    The charge storage properties of corona charged pure and TiO2 doped polystyrene (PS) films have been studied. Thermally stimulated charge decay and open circuit thermally stimulated charges were measured. A half-value charge decay temperature T1/2 ∼ 140oC is optimum at 3 wt % TiO2 doping. This implies that ...

  19. Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking

    Science.gov (United States)

    Buhmann, Jeska; Desmet, Frank; Moens, Bart; Van Dyck, Edith; Leman, Marc

    2016-01-01

    The expressive features of music can influence the velocity of walking. So far, studies used instructed (and intended) synchronization. But is this velocity effect still present with non-instructed (spontaneous) synchronization? To figure that out, participants were instructed to walk in their own comfort tempo on an indoor track, first in silence and then with tempo-matched music. We compared velocities of silence and music conditions. The results show that some music has an activating influence, increasing velocity and motivation, while other music has a relaxing influence, decreasing velocity and motivation. The influence of musical expression on the velocity of self-paced walking can be predicted with a regression model using only three sonic features explaining 56% of the variance. Phase-coherence between footfall and beat did not contribute to the velocity effect, due to its implied fixed pacing. The findings suggest that the velocity effect depends on vigor entrainment that influences both stride length and pacing. Our findings are relevant for preventing injuries, for gait improvement in walking rehabilitation, and for improving performance in sports activities. PMID:27167064

  20. Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking.

    Directory of Open Access Journals (Sweden)

    Jeska Buhmann

    Full Text Available The expressive features of music can influence the velocity of walking. So far, studies used instructed (and intended synchronization. But is this velocity effect still present with non-instructed (spontaneous synchronization? To figure that out, participants were instructed to walk in their own comfort tempo on an indoor track, first in silence and then with tempo-matched music. We compared velocities of silence and music conditions. The results show that some music has an activating influence, increasing velocity and motivation, while other music has a relaxing influence, decreasing velocity and motivation. The influence of musical expression on the velocity of self-paced walking can be predicted with a regression model using only three sonic features explaining 56% of the variance. Phase-coherence between footfall and beat did not contribute to the velocity effect, due to its implied fixed pacing. The findings suggest that the velocity effect depends on vigor entrainment that influences both stride length and pacing. Our findings are relevant for preventing injuries, for gait improvement in walking rehabilitation, and for improving performance in sports activities.

  1. Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking.

    Science.gov (United States)

    Buhmann, Jeska; Desmet, Frank; Moens, Bart; Van Dyck, Edith; Leman, Marc

    2016-01-01

    The expressive features of music can influence the velocity of walking. So far, studies used instructed (and intended) synchronization. But is this velocity effect still present with non-instructed (spontaneous) synchronization? To figure that out, participants were instructed to walk in their own comfort tempo on an indoor track, first in silence and then with tempo-matched music. We compared velocities of silence and music conditions. The results show that some music has an activating influence, increasing velocity and motivation, while other music has a relaxing influence, decreasing velocity and motivation. The influence of musical expression on the velocity of self-paced walking can be predicted with a regression model using only three sonic features explaining 56% of the variance. Phase-coherence between footfall and beat did not contribute to the velocity effect, due to its implied fixed pacing. The findings suggest that the velocity effect depends on vigor entrainment that influences both stride length and pacing. Our findings are relevant for preventing injuries, for gait improvement in walking rehabilitation, and for improving performance in sports activities.

  2. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    Science.gov (United States)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  3. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)

    2011-02-11

    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  4. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    Science.gov (United States)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  5. Program NAJOCSC and space charge effect simulation in C01

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.Y.; Chabert, A.; Baron, E

    1999-03-10

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.) 12 refs.

  6. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Science.gov (United States)

    Melton, Jason; Delobel, Ashley; Puentedura, Emilio J.

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  7. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-01-01

    Full Text Available Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4 with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch, and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  8. A Model for Determining the Effect of the Wind Velocity on 100 M Sprinting Performance

    Directory of Open Access Journals (Sweden)

    Janjic Natasa

    2017-06-01

    Full Text Available This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected.

  9. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance.

    Science.gov (United States)

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-06-01

    This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10(-3) m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10(-2) m/s and cannot be neglected.

  10. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    Science.gov (United States)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  11. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  12. The effect of increasing strength and approach velocity on triple jump performance.

    Science.gov (United States)

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cost-effective electric vehicle charging infrastructure siting for Delhi

    Science.gov (United States)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  14. Sedimentation of a charged porous particle in a charged cavity.

    Science.gov (United States)

    Chang, Ya J; Keh, Huan J

    2013-10-10

    The sedimentation of a charged porous sphere at the center of a charged spherical cavity filled with an electrolyte solution is analyzed. The thickness of the electric double layers around the particle and cavity wall is arbitrary, and their relaxation effect is considered. Through the use of a set of linearized electrokinetic equations and a perturbation method, the ionic electrochemical potential energy, electric potential, and velocity fields in the fluid are solved with the fixed space charge density of the particle and surface charge density of the cavity as the small perturbation parameters, and an explicit formula for the sedimentation velocity is obtained. Due to the electroosmotic enhancement on the fluid recirculation in the cavity caused by the sedimentation-induced electric field, the presence of the surface charges on the cavity wall increases the sedimentation velocity of the porous particle. For the sedimentation of a porous particle in a cavity with their fixed charges of the same sign, the effect of electric interaction between the particle and cavity wall in general increases the sedimentation velocity. For the case of their fixed charges with opposite signs, the sedimentation velocity is increased/reduced if the magnitude of the fixed charge density of the cavity wall is relatively large/small. The effect of the surface charges at the cavity wall on the sedimentation of the porous particle increases with an increase in the permeability for fluid flow within the particle and with a decrease in the particle-to-cavity radius ratio (i.e., an increase in the surface area of the cavity wall relative to a given size of the particle, which enhances the fluid recirculation effect).

  15. Large space-charge effects in a nanostructured proton conductor

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Chan, Wing K.; Mulder, Fokko M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides, and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2010-12-08

    Decreasing the dimensions of heterogeneous mixtures of ionic conductors towards the nanoscale results in ionic conduction enhancements, caused by the increased influence of the interfacial space-charge regions. For a composite of TiO{sub 2} anatase and solid acid CsHSO{sub 4}, the strong enhancement of the ionic conductivity at the nanoscale also can be assigned to this space-charge effect. Surprisingly high hydrogen concentrations in the order of 10{sup 21} cm{sup -3} in TiO{sub 2} are measured, which means that about 10% of the available sites for H{sup +} ions are filled on average. Such high concentrations require a specific elaboration of the space-charge model that is explicitly performed here, by taking account of the large occupation numbers on the exhaustible sites. It is shown that ionic defects with negative formation enthalpy reach extremely high concentrations near the interfaces and throughout the material. By performing first-principles density functional theory calculations, it is found that proton insertion from CsHSO{sub 4} into the TiO{sub 2} particles is preferred compared to neutral hydrogen atom insertion and indeed that the formation enthalpy is negative. Moreover, the average proton fractions in TiO{sub 2}, estimated by the theoretical ionic density profiles, are in good agreement with the experimental observations. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Effect of old age on human skeletal muscle force-velocity and fatigue properties

    Science.gov (United States)

    Callahan, Damien M.

    2011-01-01

    It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s−1 (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect. PMID:21868683

  17. Acceleration bias in visually perceived velocity change and effects of Parkinson's bradykinesia.

    Science.gov (United States)

    Beudel, Martijn; de Geus, Crista M; Leenders, Klaus L; de Jong, Bauke M

    2013-10-02

    In Parkinson's disease (PD), basal ganglia dysfunction leads to disturbed sensorimotor integration and associated timing. Previous functional MRI and behavioural PD studies on timing indicated a specific striatal contribution to assessing spatial displacement in velocity estimation. In this computation, cerebral processing time implies demarcating discrete intervals of spatial change. To quantify these putative intervals, the threshold of perceived velocity change of a moving ball was assessed in healthy volunteers and PD patients. After rebound from the upper side of a monitor screen, the ball's velocity increased or decreased with variable magnitudes while participants indicated whether they noticed this velocity change. The threshold for detecting velocity change was around 0.014 rad/s in both groups. Moreover, velocity was perceived as equal when the ball decelerated; unchanged velocity was perceived as acceleration. This shift was 0.009 rad/s for healthy volunteers and 0.007 rad/s for PD patients, and was negatively correlated with the severity of bradykinesia. As the trajectory length before and after velocity change was the same, velocity change was also expressed as a change in stimulus duration (relative to 1 s initial duration). The temporal equivalent of a threshold for perceived velocity change was around 75 ms in both groups. The perceptual 'acceleration bias' is in line with the 'flash-lag' effect: the position of a moving stimulus is projected ahead compared with a stationary landmark. Such an extrapolation over adjacent past and predicted locations enables 'real-time' visuomotor control, notwithstanding delays because of intrinsic cerebral processing time. In PD, such impaired perceptual feed-forward processing may result in slow movements.

  18. The effects of velocity specific isokinetic training on strength, hypertrophy, and cross education

    OpenAIRE

    Gaines, Rodney P.

    1996-01-01

    This study examined the effects of six weeks of velocity specific isokinetic training on peak torque (PT), and the estimated cross-sectional area of the upper arm (AG) in the trained. Thirty volunteers (M=15, F=15) were randomly assigned to an experimental, slow velocity group (S), 60 degrees-per-second (n=9; 25.4±..6.5yr), a fast velocity group (F), 450 degrees-per-second (n=ll, 23.7 ±..S.4yr), or control group (C) (n=10, 26 ± 3.2yr). One limb was randomly selected for isok...

  19. Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens.

    Science.gov (United States)

    Haïat, Guillaume; Padilla, Frédéric; Cleveland, Robin O; Laugier, Pascal

    2006-01-01

    Numerous studies have shown that ultrasonic velocity measured in bone provides a good assessment of osteoporotic fracture risk. However, a lack of standardization of signal processing techniques used to compute the speed of sound (SOS) complicates the comparison between data obtained with different commercial devices. In this study, 38 intact femurs were tested using a through-transmission technique and SOS determined using different techniques. The resulting difference in measured SOS was determined as functions of the attenuation and the velocity dispersion. A numerical simulation was used to explain how attenuation and dispersion impact two different SOS measurements (group velocity, velocity based on the first zero crossing of the signal). A new method aimed at compensating for attenuation was devised and led to a significant reduction in the difference between SOS obtained with both signal processing techniques. A comparison between SOS and X-ray density measurements indicated that the best correlation was reached for SOS based on the first zero crossing apparently because it used a marker located in the early part of the signal and was less sensitive to multipath interference. The conclusion is that first zero crossing velocity may be preferred to group velocity for ultrasonic assessment at this potential fracture site.

  20. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding.

    Science.gov (United States)

    Schubert, Tilman; Bieri, Oliver; Pansini, Michele; Stippich, Christoph; Santini, Francesco

    2014-04-01

    Blood flow velocity measurement with phase contrast magnetic resonance imaging (PC-MRI) is widely applied in clinical routine imaging. Usually, velocity and volumetric flow measurements are performed using unidirectional encoding of the through-plane velocity with a 2-dimensional (2D) acquisition. Single-slice acquisitions and measurements with unidirectional encoding, however, may lead to significant errors, especially in tortuous vessels, but might benefit from higher signal-to-noise ratios (SNRs). To evaluate the impact of volumetric acquisition and multidirectional velocity encoding, blood velocity measurements were performed at 3 locations in the distal internal carotid artery with a 3-dimensional, 3-directional time-resolved phase contrast (PC) sequence (4-dimensional [4D]) and a 2D acquisition with 3-directional (2D-3dir) and through-plane velocity encoding (2D-tp) derived from the same sequence. Twenty carotid arteries of 10 healthy volunteers (24-37 years) were evaluated. For each volunteer, 1 4D acquisition and 3 2D 3-directional PC measurements were placed according to a time-of-flight angiography. Unidirectionally encoded through-plane velocities were derived from the multidirectionally encoded 2D scan by discarding the in-plane components. Regions of interest were identified on the slab after postprocessing and visualization for the 4D data set as well as directly on the digital imaging and communications in medicine images for the 2D measurement. Blood flow velocity, volumetric flow, and SNRs were measured at carotid segments C4, C5, and C7 on both sides obtaining 20 values per vessel location. The quantities were tested for significant differences between each modality at all 3 locations with paired t tests. At the segments C5 and C7, the highest peak velocities (PVs) were measured with the 4D sequence, followed by 2D-3dir and 2D tp. The PV differences between the sequences were significant (P measured with 2D-tp. The mean PV value of the 4D sequence

  1. Carbonization of polyimide by swift heavy ion irradiations: Effects of stopping power and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, J.-M. [DMN/SRMA, CEA/SACLAY, F-91191 Gif-sur-Yvette Cedex (France)]. E-mail: jean-marc.costantini@cea.fr; Salvetat, J.-P. [CRMD, CNRS, 1B rue de la Ferollerie, F-45071, Orleans Cedex 2 (France); Couvreur, F. [DMN/SEMI, CEA/SACLAY, F-91191 Gif-sur-Yvette Cedex (France); Bouffard, S. [CIRIL, CEA-CNRS-ISMRA, rue Claude Bloch, BP 5133, F-14070 Caen Cedex 5 (France)

    2005-07-01

    We have studied the carbonization of polyimide Kapton-H (pyromellitic dianhydride-oxydialinine, PMDA-ODA) thin films under heavy ion irradiations in the electronic slowing down regime. Irradiations were performed with 650-MeV Ni, 843-MeV Xe, 2.6-GeV Xe, 1.1-GeV Ta, and 707-MeV Pb ions that were transmitted through the polymer films with the electronic stopping power ranging between 3.5 and 17 keV nm{sup -1}. Room-temperature ac/dc electrical conductivity measurements, together with ESR, UV-visible optical absorption, and micro-Raman spectroscopy were used to characterize the irradiated films. These new data are compared to our previous results obtained with heavy ion irradiations in the 1-MeV uma{sup -1} energy range. At the largest fluences near 10{sup 13} cm{sup -2} the resulting carbonaceous material is found to be 8-9 orders of magnitude less conducting than with the slower ions. Such large dc-conductivity deviations are confirmed by the spin-lattice relaxation times deduced from the ESR line saturation measurements that are two orders of magnitude longer with the swift ions than with the slower ions. The evolution of the Raman spectra also shows that the appearance of a conjugated sp{sup 2}-bonded structure is delayed with respect to the slow ion case, and is probably incomplete in the observed fluence range. The yield of paramagnetic centers is found to decrease when the ion energy increases. This is interpreted by an ion-velocity effect on damage due to a dilution of the deposited energy in the ion tracks. We think that this also induces a smaller sp{sup 2} cluster density impeding charge transport in the carbonaceous material.

  2. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion

    NARCIS (Netherlands)

    Veeger, DirkJan (H. E. J.); van der Woude, L H; Rozendal, R H

    To study the effect of tangential speed of the handrims independent of external power output on gross mechanical efficiency (ME), nine able-bodied subjects performed wheelchair exercise tests on a stationary ergometer. The ergometer allowed for measurement of torque and three-dimensional forces on

  3. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for

  4. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  5. Fractal analysis of electroviscous effect in charged porous media

    Science.gov (United States)

    Liang, Mingchao; Yang, Shanshan; Cui, Xiaomin; Li, Yongfeng

    2017-04-01

    An electroviscous effect is an important phenomenon making flow resistance larger in electrically charged capillaries or porous media. Thus, the study of this phenomenon is very meaningful in various scientific and engineering fields. In this work, based on the fractal characteristics of porous media, a theoretical apparent viscosity model is expressed in terms of the solid surface zeta potential, physical properties (viscosity, dielectric constant, and conductivity) of the electrolyte solution, maximum pore radius, pore fractal dimension, and tortuosity fractal dimension of porous media. A reasonably good match is found between the results from the fractal model and the available experimental data reported in the literature.

  6. The Effect of Air Velocity on the Prevention of Heat Stress in Iranian Veiled Females

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-09-01

    Full Text Available Background Some environmental factors such as the ambient temperature, radiant temperature, humidity and air velocity as well as clothing and activity level are effective to induce heat strain on the workers. Objectives The current study aimed to evaluate the effect of air velocity on Iranian veiled females at various exercise intensities and climatic conditions. Methods The current experimental study was conducted on 51 healthy veiled females with Islamic clothing (n = 30 in two hot-dry climatic chambers (wet-bulb globe temperature (WBGT = 32 ± 0.1°C and WBGT = 30 ± 0.1°C, 40% relative humidity (RH without air velocity and (n = 21 with air velocity 0.31 m/s in sitting and light workload conditions, respectively, for 60 minutes. The WBGT, oral temperature and heart rate were measured simultaneously every five minutes during the heat exposure and resting state. Data were analyzed using correlation and line regression by SPSS ver. 16. Results In both groups, oral temperature and heart rate increased during heat exposure. The increase of oral temperature and heart rate were larger in the group with air velocity (sitting position, 37.05 ± 0.20°C, 98.30 ± 7.79 bpm, light workload, 37.34 ± 0.24°C, 124.08 ± 6.09 bpm compared those of the group without air velocity (sitting position, 36.70 ± 0.36°C, 69.74 ± 0.98 bpm, light workload, 36.71 ± 0.27°C, 110.78 ± 17.9 bpm. The difference in physiological strain index (PSI between resting and low workload were higher in with air velocity group than those of the group without air velocity. Conclusions The results showed that the heat stress increased by increasing air velocity and humidity in both groups. The air velocity with high humidity can be considered as a positive factor in the occurrence of heat strain. Therefore, the incidence of heat stress decreases with the increase of humidity and reduction of air velocity or with increase of air velocity and reduction of humidity in Iranian veiled

  7. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  8. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  9. Effect of Wind Velocity on Flame Spread in Microgravity

    Science.gov (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  10. Net electron energy gain induced by superluminal phase velocity and subluminal group velocity of a laser in a plasma channel

    Science.gov (United States)

    Cheng, Li-Hong; Yao, Zheng-Wei; Zhang, Xiao-Bo; Xue, Ju-Kui

    2017-08-01

    We examine electron dynamics induced by laser-plasma interaction in a two-dimensional plasma channel, taking into action the laser phase velocity as well as the group velocity. The coupled effects of phase velocity, group velocity, and plasma channel on electron dynamics are discussed in detail. The superluminal phase velocity and the corresponding subluminal group velocity of the laser result in rich and complex electron dynamics, which are depicted in the plane of the phase velocity and plasma charge density. For weak superluminosity of the phase velocity, the effects of the phase velocity and the group velocity can be neglected. For moderate superluminosity of the phase velocity, a cross-over region can exist, where the highly energetic electron could be found and the net energy gain is several times greater than the energy gain in vacuum. For strong superluminosity of the phase velocity, the dephasing rate increases and thus limits the electron energy gain from the laser. However, the asymmetric laser pulse, attributed by the superluminal phase velocity and the subluminal group velocity, results in the electron getting adjustable net energy gain from the laser. The electron oscillations are no longer limited by the charge density threshold and the electron can always get net energy from the laser. These electron dynamics can also be modified by adjusting the polarization of the laser.

  11. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    Science.gov (United States)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  12. Non-equilibration of topological charge and its effects

    CERN Document Server

    Bernard, Claude

    2016-01-01

    In QCD simulations at small lattice spacings, the topological charge Q evolves very slowly and, if this quantity is not properly equilibrated, we could get incorrect results for physical quantities, or incorrect estimates of their errors. We use the known relation between the dependence of masses and decay constants on the QCD vacuum angle theta and the squared topological charge Q^2 together with chiral perturbation theory results for the dependence of masses and decay constants on theta to estimate the size of these effects and suggest strategies for dealing with them. For the partially quenched case, we sketch an alternative derivation of the known $\\chi$PT results of Aoki and Fukaya, using the nonperturbatively correct chiral theory worked out by Golterman, Sharpe and Singleton, and by Sharpe and Shoresh. With the MILC collaboration's ensembles of lattices with four flavors of HISQ dynamical quarks, we measure the $Q^2$ dependence of masses and decay constants and compare to the $\\chi$PT forms. The observ...

  13. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  14. Distinguishing Field Effects from Charge Effects in the Optoelectronic Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    W. Joshua Kennedy

    2013-01-01

    Full Text Available We have used charge-induced absorption to quantify the influence of injected charges on electroabsorption measurements in single-wall carbon nanotube films. The interpretations of experimental measurements of χ3 processes in nanotubes are simplified by taking into account the change in electron-electron interactions upon charge injection. Electroabsorption spectra that are properly corrected for charge-induced effects show remarkable agreement with a simple Stark shift of the exciton transitions with no notable second-derivative contributions. Thus, distinguishing electric field effects from carrier density effects allows for a more rigorous calculation of exciton polarizability from electroabsorption measurements, even in heterogeneous films. PACS: 78.67.Ch Nanotubes: optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures.

  15. Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow

    Science.gov (United States)

    Nagatani, Takashi

    2017-01-01

    We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.

  16. Effect of Negatively Charged Impurity on Graphene Magnetic Rings

    Science.gov (United States)

    Lee, Chak Man; Sum Chan, Kwok; Ho, Johnny Chung Yin

    2014-03-01

    Using the massless Dirac-Weyl model of monolayer graphene, we study the effect of a negatively charged Coulomb impurity on the low-lying spectra of single-electron magnetic dot and ring systems. The numerical results show that the electron-hole symmetry in the spectra is broken by the Coulomb potential, and the original degenerate energy level lying at zero energy becomes nondegenerate and splits into infinite discrete angular momentum states, which have positive energies and thus are electron-like. For higher LLs, each has a reverse ordering of the energy levels when r022/a2 is larger than its critical value in the positive energy states for magnetic dot systems owing to the competition between the Coulomb potential and the magnetic confinement.

  17. Effect of gas on shear wave velocity of sandy soils densified with explosives

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Vega-Posada

    2017-01-01

    Full Text Available Context: Shear wave velocity tests (Vs are commonly used to estimate the increase in resistance of explosive densified soils. In some historical cases, Vs tests performed after the soil improvement process do not show a significant increase in soil resistance, even though the soil surface sits more than 0.50 m. It is believed that this response is due to the presence of gas on the soil mass. Method: This paper presents the results of monotonic triaxial tests performed on samples of dense gaseous sandy soils to evaluate the effect of occluded gas on the response to the shear wave velocity in densified sands with explosives. For sand sampling, it was collected from a loose sand deposit located in South Carolina, USA. These samples were densified in-situ with explosives, and consolidated to the in-situ effective stress conditions, which are considered representative in the conditions of effort at the moment of the densification with explosives. Results: Triaxial tests were performed under global non-drained conditions. The results of these tests show that gas causes the shear wave velocity values obtained for the gaseous sands to approximate the shear wave velocity values obtained in the saturated samples tested under drained conditions. In addition, behavior tends to be more pronounced as the soil is denser. Conclusions: These response may offer some insights as to why the shear wave velocity does not increase significantly in densified soils with explosives, even though the density increases considerably.

  18. Effects of Polyelectrolyte Microcapsules with Different Surface Charge on Erythrocyte Sedimentation Rate.

    Science.gov (United States)

    Naumov, A A; Dubrovskii, A V; Potselueva, M M; Tikhonenko, S A

    2017-05-01

    Relationship between changes in the erythrocyte sedimentation rate in rats and concentration and charge of polyelectrolyte microcapsules was studied by the Panchenkov method. Positively charged microcapsules reduced erythrocyte sedimentation rate in a concentrationdependent manner. This effect was related to a decrease in the content of high-molecularweight proteins in the plasma due to their adsorption in positively charged microcapsules with polyacrylamide surface layer.

  19. Charge-imaging field-effect transistors for scanned probe microscopy

    Science.gov (United States)

    Chen, Lester Hao-Lin

    This thesis presents experiments on integrating a charge-imaging field-effect transistor onto a scanned probe microscopy cantilever to make a moveable charge-imager. Such an imager would be used for imaging the spatial distribution of electric charge in semiconductor heterostructures and devices. Learning about the spatial distribution of charge yields knowledge about electrical transport at the microscopic level. The information gained from measuring the spatial distribution of charge increases with improvements in the spatial resolution and charge sensitivity of the charge-imaging probes. So, the goal is to devise a charge-imager with sub-micron spatial resolution and single-electron charge sensitivity. To achieve high spatial resolution and excellent charge sensitivity, the charge-imaging field-effect transistors are made with a quantum point contact geometry. The charge response is confined to a disc with full width half-maximum comparable to its channel width, and the charge noise spectrum reaches values "1 e/Hz½ at 30 kHz. Their low power dissipation (deflections of the cantilever to map the sample topography. The strain-sensing field-effect transistors have a white noise value for the deflection noise of 0.5 nm/Hz½ at 10 kHz. This thesis describes the fabrication and characterization of charge-imaging field-effect transistors and scanned microscopy cantilevers with integrated strain-sensing transistors. The transistors and cantilevers were fabricated in a GaAs/AlGaAs heterostructure using electron-beam lithography and were characterized at liquid Helium temperatures. Possible future experiments include demonstrating the charge-imaging FET's sensitivity to single electrons, creating a charge- and topography-imaging cantilever, and directly measuring the electron distributions in nanostructures.

  20. Stability of Positively Charged Nanoemulsion Formulation Containing Steroidal Drug for Effective Transdermal Application

    OpenAIRE

    Stephanie Da Costa; Mahiran Basri; Norashikin Shamsudin; Hamidon Basri

    2014-01-01

    This paper emphasizes the formation of a positively charged nanoemulsion system for steroid drugs (hydrocortisone). It is believed that positively charged nanoemulsion provides more effective penetration of the skin. Therefore in our study we focused on the incorporation of phytosphingosine which serves as a positively charged cosurfactant in the nanoemulsion system. Negatively charged nanoemulsions were formulated mainly for comparison. Freshly prepared formulations were formed with particle...

  1. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  2. Effect of internal recirculation velocity in an anaerobic sequencing batch reactor (ASBR

    Directory of Open Access Journals (Sweden)

    G. Z. Maurina

    2014-12-01

    Full Text Available This paper discusses the effect of different internal recirculation velocities on the mixture and shear stress on the flocs in an anaerobic sequencing batch reactor (ASBR. Thus, simulations are performed using a computational fluid dynamics (CFD tool to evaluate this dependency. The analysis of velocities and turbulent kinetic energy indicates that the highest flow evaluated (0.003 m³/s results in better mixing within the reactor. However, care must be taken with the recycling pipe size, in order to maintain the shear stress inside the range of optimal values.

  3. Effect of simulated forward speed on the jet noise of inverted velocity profile coannular nozzles

    Science.gov (United States)

    Packman, A. B.; Ng, K. W.; Chen, C. Y.

    1977-01-01

    Tests were conducted of inverted velocity profile coannular nozzles and a conical nozzle in an acoustic wind tunnel facility to simulate flight effects on jet noise generation. Coannular model nozzles were tested at fan to core nozzle exit area ratios of .75 and 1.2. Fan stream jet velocity ranged up to 2000 fps at a variety of fan exhaust pressure ratios and temperatures for a core stream of 1000 fps. The wind tunnel airflow was varied from static to 425 fps. The acoustic results indicated that the noise level differences seen previously under static conditions are retained in the flight environment.

  4. Effects of normovolaemic haemodilution on middle cerebral artery blood flow velocity and oxygen delivery.

    Science.gov (United States)

    Karadibak, K; Gökmen, N; Erbayraktar, S; Göktay, Y; Taplu, A; Arkan, A; Erkan, N

    2002-05-01

    Assessment of the effects of normovolaemic haemodilution on middle cerebral artery blood flow velocity with transcranial Doppler ultrasonography, intracranial pressure, cerebral perfusion pressure, arterial oxygen content and cerebral oxygen delivery. Normovolaemic haemodilution was induced in rabbits under general anaesthesia, and the haematocrit was allowed to decrease to 30% in Group 1 (n = 6) and to 20% in Group 2 (n = 6). Peak systolic and diastolic velocities, mean blood flow velocity, and pulsatility and resistance indices of the middle cerebral artery were measured by transcranial Doppler ultrasonography. Changes in intracranial pressure, cerebral perfusion pressure, arterial oxygen content and cerebral oxygen delivery were also assessed. In Group 2, middle cerebral artery blood flow velocity increased from 0.4 +/- 0.01 to 0.51 +/- 0.02 m s(-1) after the induction of normovolaemic haemodilution (P = 0.04), while arterial oxygen content decreased from 16.2 +/- 0.1 to 8.5 +/- 0.1 mLdL(-1) (P = 0.002). The decrease in cerebral oxygen delivery from 6.5 +/- 0.2 to 4.3 +/- 0.2 was also significant (P = 0.02). However, no associated changes in intracranial pressure and cerebral perfusion pressure could be demonstrated. Normovolaemic haemodilution resulted in an increase in the mean blood flow velocity of the middle cerebral artery. However, this increase did not compensate for the consequences of the altered oxygen delivery to the brain when the haematocrit was reduced to 20%.

  5. The effect of isolated left bundle branch block on the myocardial velocities and myocardial performance index.

    Science.gov (United States)

    Duzenli, Mehmet Akif; Ozdemir, Kurtulus; Soylu, Ahmet; Aygul, Nazif; Yazici, Mehmet; Tokac, Mehmet

    2008-03-01

    This study was planned in order to investigate the effect of left bundle branch block (LBBB) on myocardial velocities obtained by tissue Doppler echocardiography (TDE) and myocardial performance index (MPI). Subjects with LBBB (n = 61) and age-matched healthy subjects (n = 60) were enrolled in the study. Left ventricular (LV) ejection fraction (EF), mitral inflow velocities (E-wave and A-wave), isovolumetric contraction and relaxation time (ICT and IRT), ejection time (ET), and flow propagation velocity (Vp) were measured by conventional echocardiography. Systolic velocity (Sm), early and late diastolic velocities (Em and Am) and time intervals were measured by TDE. MPI was calculated by the formula (ICT + IRT)/ET. LVEF and mitral E/A ratio were similar in both groups. Vp was lower in the LBBB group than in the control group, whereas the E/Em and the E/Vp ratio was higher. LV Sm and Em/Am ratio were lower in LBBB group. Right ventricular Sm and Em/Am ratio were similar in both groups. LV mean and RV MPI were significantly increased in LBBB group. These findings obtained by TDE show that isolated LBBB impairs the ventricular functions. Both of the LV and RV dysfunctions shown by the new parameters may contribute to increased morbidity and mortality in cases with isolated LBBB.

  6. Effect of labetalol on cerebral blood flow and middle cerebral arterial flow velocity in healthy volunteers

    DEFF Research Database (Denmark)

    Schroeder, T; Schierbeck, Jens; Howardy, P

    1991-01-01

    The effect of labetalol, a combined alpha- and beta-adrenoceptor antagonist, on the cerebral circulation was investigated in 7 normotensive subjects. Cerebral blood flow (CBF) was measured with the intravenous 133Xe method and mean flow velocity (Vmean) in the middle cerebral artery was determined...

  7. On the pressure velocity and temperature factors and the effect of ...

    African Journals Online (AJOL)

    In this paper, we examine the effects of viscosity on the blood pressure, velocity and temperature distributions in the arterial blood flow in the absence of outflows. The governing continuity, momentum and energy equations are solved analytically by method of characteristics. Using the wavefront expansions, an equation of ...

  8. Effect of the fluid in the inclusions of cement paste on the ultrasonic velocity.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Ullate, L G; Ibañez, A

    2004-04-01

    The durability of cement composites significantly depends on the movement of the fluids into the material through the porous system. The aqueous phase contained in the pores can cause irreversible damage from the dimensional stability viewpoint. In this sense, methods for non-destructive characterization of both, the porous structure and water content should be investigated. In this work, the effect of the fluid in the inclusions of the cement paste on the ultrasonic velocity is studied. Firstly, a theoretical analysis based on the micromechanical model, considering the microstructural information of the matrix and the fluid filling the pores, is presented. Some experimental work is made later using cement paste samples, whose porous structure is maintained dry or saturate with water. In both cases, the ultrasonic velocity is measured and compared to the one predicted by the micromechanical model. Using this technique, the ultrasonic velocity can be predicted with errors below 2% in the cases of dry or water saturated cement paste.

  9. Effect of Cutting Velocity / Stem Size on the Efficiency of NRCRI Cassave Stem Cutting Machine

    Science.gov (United States)

    Ikejiofor, M. C.

    2012-11-01

    The developed NRCRI (National Root Crops Research Institute) cassava stem cutting machine was evaluated. The cassava stems from the variety TME 419 were used. The sizes of the stem used were 1.8, 2.0, 2.3 and 2.6cm. Also, different cutting velocities of 1.20, 1.23 and 1.32m/s were used. The stakes produced has length of 2.5cm. Analysis of variance in RCBD was used to evaluate the effect of the cutting velocity and the stem size on the efficiency of the cutting machine. The result of the analysis showed that the cutting velocity had very highly significant effect, while the stem size had no significant effect at 5% level on the efficiency of the cutting machine. The data obtained also showed that the highest and least cutting efficiencies of 99.42 and 94.71% were obtained with the machine cutting velocities of 1.2 and 1.32m/s respectively.

  10. Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.

    1994-01-01

    The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of

  11. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  12. Analytical estimation of effective charges at saturation in Poisson-Boltzmann cell models

    CERN Document Server

    Trizac, E; Bocquet, L

    2003-01-01

    We propose a simple approximation scheme for computing the effective charges of highly charged colloids (spherical or cylindrical with infinite length). Within non-linear Poisson-Boltzmann theory, we start from an expression for the effective charge in the infinite-dilution limit which is asymptotically valid for large salt concentrations; this result is then extended to finite colloidal concentration, approximating the salt partitioning effect which relates the salt content in the suspension to that of a dialysing reservoir. This leads to an analytical expression for the effective charge as a function of colloid volume fraction and salt concentration. These results compare favourably with the effective charges at saturation (i.e. in the limit of large bare charge) computed numerically following the standard prescription proposed by Alexander et al within the cell model.

  13. Effect of Pore-scale Velocity on the Biodegradation of Contaminants during Transport in Porous Media

    Science.gov (United States)

    Mendoza-Sanchez, I.; Autenrieth, R. L.; McDonald, T. J.; Cunningham, J. A.

    2007-12-01

    Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis- dichloroethene (cis-DCE) during transport in porous media. The columns were filled with homogeneous glass beads and inoculated with the KB-1 culture (provided by SiREM, Guelph, Ontario, Canada), which is capable of complete dechlorination of perchloroethene to ethene. The columns were fed continuously with a synthetic groundwater containing a constant concentration of cis-DCE. Three different pore flow velocities (0.03, 0.08, and 0.51 m/day) were tested in duplicate, subjecting each column to a constant velocity for the entire experiment. Dechlorination of cis-DCE to vinyl chloride and ethene was monitored over time and space within the columns. Protein concentrations, also measured over time and space, were used to relate cell growth to biodegradation efficiency. At the end of the experiment, microbial DNA was harvested from the columns, and denaturing gradient gel electrophoresis (DGGE) was used to determine differences in the microbial communities that had developed in the columns subjected to different flow rates. The results show that the pore velocity has a strong influence on the microbial population and the degree of dechlorination. At high flow velocity (0.51 m/day), the degradation of cis-DCE to ethene was complete, and the organism capable of cis-DCE dechlorination ({Dehalococcoides sp.}) was present at the end of the experiment. In contrast, at medium and low flow velocities (0.08 and 0.03 m/day), incomplete dechlorination was observed with an absence or low concentration of {Dehalococcoides sp}. These results suggest that it is important for field-scale groundwater remediation to understand the interaction between physical and biological processes on the scale of single pores.

  14. Performance Investigation of Air Velocity Effects on PV Modules under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2017-01-01

    Full Text Available Junction temperature of PV modules is one of the key parameters on which the performance of PV modules depends. In the present work, an experimental investigation was carried out to analyze the effects of air velocity on the performance of two PV modules, that is, monocrystalline silicon and polycrystalline silicon under the controlled conditions of a wind tunnel in the presence of an artificial solar simulator. The parameters investigated include the surface temperature variation, power output, and efficiency of PV modules under varying air velocity from near zero (indoor lab. conditions to 15 m/s. Additionally, the results were also determined at two different module angular positions: at 0° angle, that is, parallel to air direction and at 10° angle with the direction of coming air to consider the effects of tilt angles. Afterwards, the thermal analysis of the modules was performed using Ansys-Fluent in which junction temperature and heat flux of modules were determined by applying appropriate boundary conditions, such as air velocity, heat flux, and solar radiation. Finally, the numerical results are compared with the experiment in terms of junction temperatures of modules and good agreement was found. Additionally, the results showed that the maximum module temperature drops by 17.2°C and the module efficiency and power output increased from 10 to 12% with increasing air velocity.

  15. Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles.

    Science.gov (United States)

    Dubey, Awadhesh Kumar; Bodrova, Anna; Puri, Sanjay; Brilliantov, Nikolai

    2013-06-01

    We perform large-scale event-driven molecular dynamics (MD) simulations for granular gases of particles interacting with the impact-velocity-dependent restitution coefficient ε(v(imp)). We use ε(v(imp)) as it follows from the simplest first-principles collision model of viscoelastic spheres. Both cases of force-free and uniformly heated gases are studied. We formulate a simplified model of an effective constant restitution coefficient ε(eff), which depends on a current granular temperature, and we compute ε(eff) using the kinetic theory. We develop a theory of the velocity distribution function for driven gases of viscoelastic particles and analyze the evolution of granular temperature and of the Sonine coefficients, which characterize the form of the velocity distribution function. We observe that for not large dissipation the simulation results are in an excellent agreement with the theory for both the homogeneous cooling state and uniformly heated gases. At the same time, a noticeable discrepancy between the theory and MD results for the Sonine coefficients is detected for large dissipation. We analyze the accuracy of the simplified model based on the effective restitution coefficient ε(eff), and we conclude that this model can accurately describe granular temperature. It provides also an acceptable accuracy for the velocity distribution function for small dissipation, but it fails when dissipation is large.

  16. The effect of temperature on charge movement repriming in amphibian skeletal muscle fibers.

    Science.gov (United States)

    Gonzalez, A; Caputo, C

    1996-03-01

    Cut twitch muscle fibers, mounted in a triple Vaseline-gap chamber, were used to study the effects of temperature on intramembranous charge movement and, in particular, on the repriming of charge 1 (the intramembranous charge that normally moves in the potential range between -100 and +40 mV). Changing the holding potential from -90 to 0 mV modified the voltage distribution of charge movement but not the maximum movable charge. Temperature changes between 16 and 5 degrees C did not modify the fiber linear capacitance, the maximum nonlinear intramembranous charge, or the voltage distribution of charge 1 and charge 2 (the intramembranous charge moving in the membrane potential range between approximately -4 and -160 mV). We used a pulse protocol designed to study the repriming time course of charge 1, with little contamination from charge 2. The time course of charge movement repriming at 15 degrees C is described by a double exponential with time constants of 4.2 and 25 s. Repriming kinetics were found to be highly temperature dependent, with two rate-limiting steps having Q10 (increase in rate of a process by raising temperature 10 degrees C) values of 1.7 and 7.1 above and below 11.5 degrees C, respectively. This is characteristic of processes with a high energy of activation and could be associated with a conformational change of the voltage sensor or with the interaction between the voltage sensor and the calcium release channel.

  17. Importance of polaron effects for charge carrier mobility above and ...

    Indian Academy of Sciences (India)

    HTSCs) have been investigated theoretically. The appropriate Boltzmann transport equations under relaxation time approximation were used to calculate the mobility of polaronic charge carriers and bosonic Cooper pairs above and below the ...

  18. Intramolecular charge transfer effects on 3-aminobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, T. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India); Rajendiran, N. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India)], E-mail: drrajendiran@rediffmail.com

    2006-03-20

    Effect of solvents, buffer solutions of different pH and {beta}-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with {beta}-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, {sup 1}H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters ({delta}H, {delta}G and {delta}S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S{sub 1} state. Solvent, {beta}-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S{sub 0} and S{sub 1} states are calculated. {beta}-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with {beta}-CD. {beta}-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the {beta}-CD cavity. A mechanism is proposed to explain the inclusion process.

  19. Effect of charging on silicene with alkali metal atom adsorption

    Science.gov (United States)

    Li, Manman; Li, Zhongyao; Gong, Shi-Jing

    2018-02-01

    Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM–Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as  +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM–Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.

  20. Mechano-chemical effects in weakly charged porous media.

    Science.gov (United States)

    Zholkovskij, Emiliy K; Yaroshchuk, Andriy E; Koval'chuk, Volodymyr I; Bondarenko, Mykola P

    2015-08-01

    The paper is concerned with mechano-chemical effects, namely, osmosis and pressure-driven separation of ions that can be observed when a charged porous medium is placed between two electrolyte solutions. The study is focused on porous systems with low equilibrium interfacial potentials (about 30 mV or lower). At such low potentials, osmosis and pressure-driven separation of ions noticeably manifest themselves provided that the ions in the electrolyte solutions have different diffusion coefficients. The analysis is conducted by combining the irreversible thermodynamic approach and the linearized (in terms of the normalized equilibrium interfacial potential) version of the Standard Electrokinetic Model. Osmosis and the pressure-driven separation of ions are considered for an arbitrary mixed electrolyte solution and various porous space geometries. It is shown that the effects under consideration are proportional to a geometrical factor which, for all the considered geometries of porous space, can be expressed as a function of porosity and the Λ- parameter of porous medium normalized by the Debye length. For all the studied geometries, this function turns out to be weakly dependent on both the porosity and the geometry type. The latter allows for a rough evaluation of the geometrical factor from experimental data on electric conductivity and hydraulic permeability without previous knowledge of the porous space geometry. The obtained results are used to illustrate how the composition of electrolyte solution affects the mechano-chemical effects. For various examples of electrolyte solution compositions, the obtained results are capable of describing positive, negative and anomalous osmosis, positive and negative rejection of binary electrolytes, and pressure-driven separation of binary electrolyte mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Group velocity effect on resonant, long-range wake-fields in slow wave structures

    CERN Document Server

    Smirnov, A V

    2002-01-01

    Synchronous wake-fields in a dispersive waveguide are derived in a general explicit form on the basis of a rigorous electro-dynamical approach using Fourier transformations. The fundamental role of group velocity in wake-field propagation, calculation of attenuation, amplitudes, form-factors and loss-factors is analyzed for single bunch radiation. Adiabatic tapering of the waveguide and bunch density variation is taken into account analytically for the time-domain fields. Effects of field 'compression/expansion' and group delays are demonstrated. The role of these effects is discussed for single bunch wake-fields, transient beam loading, BBU and HOMs. A novel waveguide structure with central rf coupling and both positive and negative velocities is proposed. It can be used effectively in both high-energy accelerators and single-section linacs.

  2. The electromagnetic effect on the critical ionization velocity process. [in earth atmosphere

    Science.gov (United States)

    Machida, S.; Goertz, C. K.

    1988-01-01

    Electromagnetic effects on the critical ionization velocity (CIV) process become important when the neutral gas velocity V(n) exceeds the local Alfven speed V(A). The electron heating due to unstable lower hybrid waves necessary for CIV still occurs, but the efficiency of the electron heating is significantly reduced when the electromagnetic effect comes into play. This is verified by a series of simulation runs using two-dimensional electromagnetic particle code combined with PANIC. The significance of the electromagnetic effects for the occurrence of CIV in the comet-solar wind interaction and other space phenomena is briefly discussed. It is found that the comet environment is marginal for the excitation of CIV.

  3. Effect of core stability training on throwing velocity in female handball players.

    Science.gov (United States)

    Saeterbakken, Atle H; van den Tillaar, Roland; Seiler, Stephen

    2011-03-01

    The purpose was to study the effect of a sling exercise training (SET)-based core stability program on maximal throwing velocity among female handball players. Twenty-four female high-school handball players (16.6 ± 0.3 years, 63 ± 6 kg, and 169 ± 7 cm) participated and were initially divided into a SET training group (n = 14) and a control group (CON, n = 10). Both groups performed their regular handball training for 6 weeks. In addition, twice a week, the SET group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises. Maximal throwing velocity was measured before and after the training period using photocells. Maximal throwing velocity significantly increased 4.9% from 17.9 ± 0.5 to 18.8 ± 0.4 m·s in the SET group after the training period (p < 0.01), but was unchanged in the control group (17.1 ± 0.4 vs. 16.9 ± 0.4 m·s). These results suggest that core stability training using unstable, closed kinetic chain movements can significantly improve maximal throwing velocity. A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements. Strength coaches can incorporate exercises exposing the joints for destabilization force during training in closed kinetic chain exercises. This may encourage an effective neuromuscular pattern and increase force production and can improve a highly specific performance task such as throwing.

  4. Investigations into the Effect of Current Velocity on Amidoxime-Based Polymeric Uranium Adsorbent Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-12-01

    The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a location for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.

  5. Space Charge Effects for the ERL Prototype Injector Line at Daresbury Laboratory

    CERN Document Server

    Muratori, Bruno; Owen, Hywel; de Loos, Marieke; van der Geer, Bas

    2005-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the space charge effects on the beam dynamics in the ERLP injector line. A Gaussian particle distribution is tracked with GPT (General Particle Tracer) through the injection line to the main linac to calculate the effect of 3Dspace charge in the dipoles. The nominal beam energy in the injection line is 8.3 MeV and the bunch charge 80 pC. The effects of space charge on the transverse and longitudinal emittance are studied for various electron beam parameter settings.

  6. Velocity effects on fullerene and oxide nanoparticle deposition in porous media.

    Science.gov (United States)

    Lecoanet, Hélène F; Wiesner, Mark R

    2004-08-15

    Products of nanochemistry have been proposed in a number of applications ranging from soil stabilization and cosmetics to groundwater remediation. A fundamental understanding of the transport properties of these materials is essential to assess their efficacy and environmental impact in such applications. In this work, we consider the effect of flow on nanoparticle transport and deposition in porous media. The transport of three aqueous suspensions of fullerenes in a well-characterized porous medium is compared with that of two oxide nanomaterials at two flow rates. Despite significant differences in surface chemistry and size, the fullerenes exhibited an unexpected and similar breakthrough behavior at the higher flow rate. A striking characteristic of the fullerene breakthrough curves obtained at the higher Darcy velocity was an initial enhancement in nanoparticle deposition shortly after the passage of the first pore volume of suspension, followed by an increase in passage. This velocity-sensitive "affinity transition" in the initial deposition of nanoparticles in the porous medium was observed for fullerene-based materials only at the higher velocity and was in no case observed for silica or titania nanoparticles. The removal of fullerene-based nanoparticles was observed to converge to a level that was independent of flow velocity, suggesting that under these conditions time scales for attachment or reorganization on the surface are greater than the time scale for transport to collector surfaces.

  7. Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels

    KAUST Repository

    Radu, Andrea I.

    2012-04-01

    A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid. © 2012 Elsevier B.V.

  8. Sediment deposit thickness and its effect on critical velocity for incipient motion.

    Science.gov (United States)

    Bong, C H J; Lau, T L; Ab Ghani, A; Chan, N W

    2016-10-01

    The understanding of how the sediment deposit thickness influences the incipient motion characteristic is still lacking in the literature. Hence, the current study aims to determine the effect of sediment deposition thickness on the critical velocity for incipient motion. An incipient motion experiment was conducted in a rigid boundary rectangular flume of 0.6 m width with varying sediment deposition thickness. Findings from the experiment revealed that the densimetric Froude number has a logarithmic relationship with both the thickness ratios ts/d and ts/y0 (ts: sediment deposit thickness; d: grain size; y0: normal flow depth). Multiple linear regression analysis was performed using the data from the current study to develop a new critical velocity equation by incorporating thickness ratios into the equation. The new equation can be used to predict critical velocity for incipient motion for both loose and rigid boundary conditions. The new critical velocity equation is an attempt toward unifying the equations for both rigid and loose boundary conditions.

  9. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.

    Science.gov (United States)

    Han, Yong; Yang, Jikuang; Mizuno, Koji; Matsui, Yasuhiro

    2012-09-01

    This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165 cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50 km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30 km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape

  10. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    Science.gov (United States)

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. Copyright 2002 Wiley Periodicals, Inc.

  11. The effective time of centrifugation for the analysis of boundary spreading in sedimentation velocity experiments.

    Science.gov (United States)

    Besong, Tabot M D; Harding, Stephen E; Winzor, Donald J

    2012-02-15

    This investigation establishes a likely order of magnitude for the zero-time correction factor governing the effective time of centrifugation that is pertinent in the analysis of boundary spreading in sedimentation velocity experiments. This correction is shown to be too small to unduly affect the magnitudes of sedimentation and diffusion coefficients deduced from the application of computer software incorporating the printout value of ω²t and an effective position of the air-solution meniscus that is obtained as an additional parameter in the analysis involving nonlinear least-squares curve-fitting of sedimentation velocity distributions to the Lamm equation. Although this procedure slightly underestimates the actual meniscus position (r(a)), uncertainty about its exact location precludes adoption of the alternative approach with r(a) fixed and the correction to ω²t regarded as the additional curve-fitting parameter. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effects of Mechanical Pumping on the Arterial Pulse Wave Velocity: Peripheral Artery and Micro-Vessels

    Science.gov (United States)

    2001-10-25

    EFFECTS OF MECHANICAL PUMPING ON THE ARTERIAL PULSE WAVE VELOCITY : PERIPHERAL ARTERY AND MICRO -VESSELS Shu-Mei Wu*†, Yio-Wha Shau**, Bor-Shyh...was contributed from the results of BA-RA, the PWV for the micro -vessels (BA-finger) on the contrary was increased. Keywords- Mechanical Pumping ...arterial conduit (brachial artery-radial artery; BA-RA) and the micro -vessels (RA-ring finger) to mechanical pumping was evaluated. II

  13. Effects of unsteady free stream velocity and free stream turbulence on stagnation point heat transfer

    Science.gov (United States)

    Gorla, R. S. R.

    1984-01-01

    The combined effects of transient free stream velocity and free stream turbulence on heat transfer at a stagnation point over a cylinder situated in a crossflow are studied. An eddy diffusivity model was formulated and the governing momentum and energy equations are integrated by means of the steepest descent method. The numerical results for the wall shear stress and heat transfer rate are correlated by a turbulence parameter. The wall friction and heat transfer rate increase with increasing free stream turbulence intensity.

  14. Anomalous effect of ion velocity on track formation in GeS

    Energy Technology Data Exchange (ETDEWEB)

    Szenes, G., E-mail: szenesgyorgy@caesar.elte.hu [Department of Materials Physics, Eötvös University, P.O. Box 32, H-1518 Budapest (Hungary); Pécz, B. [Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, 1525 Budapest, P.O. Box 49 (Hungary)

    2016-12-15

    Systematic experiments were performed for studying the effect of the projectile velocity (velocity effect, VE) in GeS which has a highly anisotropic conductivity. The prethinned specimens were irradiated by Bi, Au, W, Xe, Ag, Kr, Ni and Fe ions of about E ≈ 1 MeV/nucleon energy. Track radii were measured by transmission electron microscopy. Compared to previous experiments performed with high velocity projectile, there is a marked VE for S{sub e} > 20 keV/nm (S{sub e} – electronic stopping power). However, the VE is gradually reduced and finally disappears as S{sub e} decreases. This effect is described for the first time. The predictions according to the Analytical Thermal Spike Model are in excellent quantitative agreement with the experiments in the range S{sub e} > 20 keV/nm. The anomalous behavior of track evolution at lower values of S{sub e} is attributed to the combination of semiconducting and insulating properties. An explanation of the VE is given based on the Coulomb explosion model.

  15. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and CdTe...... pixel detector samples. The results are used for the development of the large area X-ray and Gamma ray detector for the Atmosphere-Space Interactions Monitor (ASIM) planned for the ISS ESA Columbus module. Charge sharing measurements on detector samples with identical size and pixel geometry...

  16. Analysis of effective pulse current charging method for lithium ion battery

    Science.gov (United States)

    Majid, N.; Hafiz, S.; Arianto, S.; Yuono, R. Y.; Astuti, E. T.; Prihandoko, B.

    2017-04-01

    Pulse charging methods has been developed as one of the fast charging methods for Lithium ion battery. This technique applies the continuous constant current pulse with certain pulse width until the battery fully charged. In this research, four Lithium polymer batteries of same type and capacity were used and subjected by several current pulses as a variable. The phenomenon of capacity loss as an effect of charging method was analysed every ten charge-discharge cycles. Four batteries were charged using constant current (1C) for 30 minutes to fill half of the total capacity, which then continued by pulse current of different pulse width in order to reach full capacity of each battery. Constant current charging for one hour was also applied to each battery as a comparison with that of pulse current charging data. The similar degradation patterns on battery capacity were observed. Nevertheless, the percentage of capacity loss is different. In conclusion, this method can be considered as one of the effective charging method, owing to the smallest capacity loss and shorter charging time.

  17. Simulations of Relativistic Effects, Relativistic Time, and the Constancy of Light Velocity

    Science.gov (United States)

    Matveev, Vadim N.; Matvejev, Oleg V.

    2013-09-01

    Based on pre-Einstein classical mechanics, a theoretical model is constructed that describes the behavior of objects in a liquid environment that conduct themselves in accordance with the formal laws of the special theory of relativity. This model reproduces Lorentz contraction, time dilation, the relativity of simultaneity, the Doppler effect in its symmetrical relativistic form, the twin paradox effects, Bell effect, the relativistic addition of velocities. The model makes it possible to obtain Lorentz transforms and to simulate Minkowski four-dimensional space-time.

  18. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  19. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Science.gov (United States)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-01

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  20. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    Science.gov (United States)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  1. The Effect of Molar Mass and Charge Density on the Formation of Complexes between Oppositely Charged Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Feriel Meriem Lounis

    2017-02-01

    Full Text Available The interactions between model polyanions and polycations have been studied using frontal continuous capillary electrophoresis (FACCE which allows the determination of binding stoichiometry and binding constant of the formed polyelectrolyte complex (PEC. In this work, the effect of the poly(l-lysine (PLL molar mass on the interaction with statistical copolymers of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate (PAMAMPS has been systematically investigated for different PAMAMPS chemical charge densities (15% and 100% and different ionic strengths. The study of the ionic strength dependence of the binding constant allowed the determination of the total number of released counter-ions during the formation of the PEC, which can be compared to the total number of counter-ions initially condensed on the individual polyelectrolyte partners before the association. Interestingly, this fraction of released counter-ions, which was strongly dependent on the PLL molar mass, was almost independent of the PAMAMPS charge density. These findings are useful to predict the binding constant according to the molar mass and charge density of the polyelectrolyte partners.

  2. An Integrated Data Analysis model to determine ion effective charge from beam attenuation and charge exchange emission measurements

    Science.gov (United States)

    Nornberg, M. D.; den Hartog, D. J.; Reusch, L. M.

    2017-10-01

    We have created a forward model for charge-exchange impurity density measurements that incorporates neutral beam attenuation measurements self-consistently for determining the ion effective charge Zeff in MST PPCD plasmas. Detailed knowledge of Zeff is critical to determining the resistive dissipation of hot plasmas and requires knowledge of the impurity content and dynamics. Previously, Zeff profiles were determined from soft-x-ray brightness measurements by using charge-exchange impurity density measurements as prior information using an Integrated Data Analysis (IDA) method. The model is extended to include a self-consistent calculation of the neutral beam attenuation and includes measurements of the beam Doppler-shift spectrum and shine-through particle flux. Methods of experimental design are employed to calculate the information gained from different diagnostic combinations. The analysis shows that while attenuation measurements alone do not provide a unique impurity density measurement in the case of a multi-species inhomogeneous plasmas, they do provide a valuable measurement of the Zeff profile and constrain the range of contributing impurity densities. Supported by US DOE.

  3. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    Science.gov (United States)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-02-01

    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson–Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.

  4. Effects of Velocity on Electromyographic, Mechanomyographic, and Torque Responses to Repeated Eccentric Muscle Actions.

    Science.gov (United States)

    Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O

    2016-06-01

    The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions.

  5. Preferred Air Velocity and Local Cooling Effect of desk fans in warm environments

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2013-01-01

    , and the possibility to keep comfortable conditions for the occupants in warm environments were evaluated in studies with human subjects. In an office-like climatic chamber, the effect of higher air velocity was investigated at room temperatures between 26°C to 34°C and at constant absolute humidity of 12.2 g......Common experiences, standards, and laboratory studies show that increased air velocity helps to offset warm sensation due to high environmental temperatures. In warm climate regions the opening of windows and the use of desk or ceiling fans are the most common systems to generate increased airflows....../kg. By a thermal manikin the effect of direct air movement generated by a personal desk fan at 26 °C, 28 °C, or 30 °C room temperatures and the achievable thermal comfort was also analyzed. Results show that it is possible to offset warm sensation within a range of indoor conditions using increased air velocity...

  6. Thermal stability effects on the structure of the velocity field above an air-water interface

    Science.gov (United States)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  7. Linear and nonlinear optical response of crystals using length and velocity gauges: Effect of basis truncation

    Science.gov (United States)

    Taghizadeh, Alireza; Hipolito, F.; Pedersen, T. G.

    2017-11-01

    We study the effects of a truncated band structure on the linear and nonlinear optical response of crystals using four methods. These are constructed by (i) choosing either the length or velocity gauge for the perturbation and (ii) computing the current density either directly or via the time derivative of the polarization density. In the infinite-band limit, the results of all four methods are identical, but basis truncation breaks their equivalence. In particular, certain response functions vanish identically and unphysical low-frequency divergences are observed for few-band models in the velocity gauge. Using a hexagonal boron nitride (hBN) monolayer as a case study, we analyze the problems associated with all methods and identify the optimal one. Our results show that the length-gauge calculations provide the fastest convergence rates as well as the most accurate spectra for any basis size and, moreover, that low-frequency divergences are eliminated.

  8. Effects of Flow Velocity and Particle Size on Transport of Ultrafine Bubbles in Porous Media

    Science.gov (United States)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Nishimura, T.

    2015-12-01

    Potential applications of ultrafine bubbles (UFBs) have drawn more attention, especially in environmental engineering fields such as soil/groundwater remediation. Understanding a transport mechanism of UFBs in soils is essential to optimize remediation techniques using UFBs. In this study, column transport experiments using glass beads with different size fraction were conducted, where UFBs created by either air or oxygen were injected to the column with different flow conditions. Effects of particle size and flow velocities on transport characteristics of UFBs were investigated based on the column experiments. The results showed that attachments of UFBs were enhanced under lower water velocity condition, exhibiting more than 50% of UFBs injected were attached inside the column. The mobility of O2-UFBs which have lower zeta potential was higher than that of Air-UFBs. A convection-dispersion model including bubble attachment and detachment terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data.

  9. Velocity selective optical pumping effects on 85 Rb atoms from various coupling beam polarization configurations

    Science.gov (United States)

    Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2017-11-01

    We have investigated velocity selective spectral profile variations of probe beam transmittance at Fg = 3 →Fe = 2 , 3, and 4 hyperfine manifolds of 85 Rb atoms along with coherence effects at the Fg = 3 →Fe = 4 transition with various coupling laser polarization configurations and a fixed probe polarization (σ+). Laser linewidth, atomic velocity distributions, frequency mixing of the coupling and probe laser beams between degenerate magnetic sublevels, and polarization variations of the coupling beam with the probe beam fixed at the Fg = 3 →Fe = 4 transition were used to simulate the line profiles. The calculated transmittance signals are in good agreement with observed signals for each coupling laser polarization configuration.

  10. Directed percolation process in the presence of velocity fluctuations: Effect of compressibility and finite correlation time

    Science.gov (United States)

    Antonov, N. V.; Hnatič, M.; Kapustin, A. S.; Lučivjanský, T.; Mižišin, L.

    2016-01-01

    The direct bond percolation process (Gribov process) is studied in the presence of random velocity fluctuations generated by the Gaussian self-similar ensemble with finite correlation time. We employ the renormalization group in order to analyze a combined effect of the compressibility and finite correlation time on the long-time behavior of the phase transition between an active and an absorbing state. The renormalization procedure is performed to the one-loop order. Stable fixed points of the renormalization group and their regions of stability are calculated in the one-loop approximation within the three-parameter (ɛ ,y ,η ) expansion. Different regimes corresponding to the rapid-change limit and frozen velocity field are discussed, and their fixed points' structure is determined in numerical fashion.

  11. Effects of solid inertial particles on the velocity and temperature statistics of wall bounded turbulent flow

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Lessani, B.

    2016-01-01

    The effect of solid inertial particles on the velocity and temperature statistics of a non-isothermal turbulentchannel flow is studied using direct numerical simulation. The particles inertia is varied by changingthe particles diameter. The density of particles is kept constant. A two-way coupled...... Eulerian–Lagrangianapproach is adopted to solve the carrier flow field and the motion of dispersed particles. Three differentparticle Stokes numbers of St = 24, 60, 192, at a constant particle mass loading of φm = 0:54, are considered.The mean and rms profiles of velocity and temperature for fluid...... and particles, and the scatter plotsof fluid-particle temperature differences are presented. In addition, the variations of different budgetterms for the turbulent kinetic energy equation and fluctuating temperature variance equation in thepresence of particles are reported. The fluid turbulent heat flux...

  12. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  13. History of the Shaped Charge Effect: The First 100 Years

    Science.gov (United States)

    1990-03-22

    in fig. I, and the tube is charged with mercury fulminate and fired by an electrically heated e whire. It seemed probable that the solid pellet...developed by the detonation or the fulminate . I accordingly suspended one about 2 feet above a larg: earthenware jar holding about five gallons of water

  14. Simulation of the perpendicular recording process including image charge effects

    NARCIS (Netherlands)

    Beusekamp, M.F.; Fluitman, J.H.J.

    1986-01-01

    This paper presents a complete model for the perpendicular recording process in single-pole-head keeper-layer configurations. It includes the influence of the image-charge distributions in the head and the keeper layer. Based on calculations of magnetization distributions in standstill situations,

  15. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  16. Fragmentation of multiply charged hydrocarbon molecules C{sub n}H{sup q+} (n{<=} 4, q{<=} 9) produced in high-velocity collisions: Branching ratios and kinetic energy release of the H{sup +} fragment

    Energy Technology Data Exchange (ETDEWEB)

    Beroff, K.; Pino, T.; Carpentier, Y. [Institut des Sciences Moleculaires d' Orsay (ISMO), UMR CNRS 8214, Universite Paris Sud 11, bat.210, F-91405 Orsay Cedex (France); Van-Oanh, N. T. [Laboratoire de Chimie Physique (LCP), UMR CNRS 8000, Universite Paris Sud 11, Bat.349, F-91405 Orsay Cedex (France); Chabot, M.; Tuna, T.; Martinet, G. [Institut de Physique Nucleaire d' Orsay (IPNO), IN2P3- CNRS, Universite Paris Sud 11, F-91406 Orsay Cedex (France); Le Padellec, A. [Institut de Recherche en Astrophysique et Planetologie (IRAP), UMR CNRS 5187, Universite de Toulouse, 9 avenue du Colonel Roche, F-31028 Toulouse Cedex 9 (France); Lavergne, L. [Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE) UPMC, UPD, CNRS-IN2P3, 4 Place Jussieu, F-75005 Paris (France)

    2011-09-15

    Fragmentation branching ratios for channels involving H{sup +} emission and associated kinetic energy release of the H{sup +} fragment [KER(H{sup +})] have been measured for multicharged C{sub n}H{sup q+} molecules produced in high velocity (3.6 a.u.) collisions between C{sub n}H{sup +} projectiles and helium atoms. For CH{sup q+} (q{<=} 4) molecules, measured KER(H{sup +}) were found well below predictions of the simple point charge Coulomb model (PCCM) for all q values. Multireference configuration interaction (MRCI) calculations for ground as well as electronic excited states were performed which allowed a perfect interpretation of the CH{sup q+} experimental results for low charges (q = 2-3) as well as for the highest charge (q = 4). In this last case we could show, on the basis of ionization cross sections calculations and experimental measurements performed on the same systems at slightly higher velocity (4.5 a.u.), the prominent role played by inner-shell ionization followed by Auger relaxation and could extract the lifetime of this Auger relaxation giving rise to the best agreement between the experiment and the calculations. For dissociation of C{sub 2}H{sup q+} and C{sub 3}H{sup q+} with the highest charges (q{>=} 5), inner-shell ionization contributed in a prominent way to the ion production. In these two cases it was shown that measured KER(H{sup +}) were in good agreement with PCCM predictions when those were corrected for Auger relaxation with the same Auger lifetime value as in CH{sup 3+}.

  17. Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field.

    Science.gov (United States)

    Nayak, Pabitra K; Narasimhan, K L; Cahen, David

    2013-05-16

    Charge separation at organic-organic (O-O) interfaces is crucial to how many organic-based optoelectronic devices function. However, the mechanism of formation of spatially separated charge carriers and the role of geminate recombination remain topics of discussion and research. We review critically the contributions of the various factors, including electric fields, long-range order, and excess energy (beyond the minimum needed for photoexcitation), to the probability that photogenerated charge carriers will be separated. Understanding the processes occurring at the O/O interface and their relative importance for effective charge separation is crucial to design efficient solar cells and photodetectors. We stress that electron and hole delocalization after photoinduced charge transfer at the interface is important for efficient free carrier generation. Fewer defects at the interface and long-range order in the materials also improve overall current efficiency in solar cells. In efficient organic cells, external electric fields play only a small role for charge separation.

  18. Effect of Layer Charge on CO2and H2O Intercalations in Swelling Clays.

    Science.gov (United States)

    Rao, Qi; Leng, Yongsheng

    2016-11-08

    The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.

  19. Short-term effects of a standardized glucose load on region-specific aortic pulse wave velocity assessed by MRI

    NARCIS (Netherlands)

    Jonker, Jacqueline T.; Tjeerdema, Nathanja; Hensen, Liselotte C. R.; Lamb, Hildo J.; Romijn, Johannes A.; Smit, Johannes W. A.; Westenberg, Jos J. M.; de Roos, Albert

    2014-01-01

    Purpose To assess the short-term effects of a standardized oral glucose load on regional aortic pulse wave velocity (PWV) using two-directional in-plane velocity encoded MRI. Materials and Methods A randomized, controlled intervention was performed in 16 male subjects (mean +/- standard deviation:

  20. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  1. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  2. Effect of ion excape velocity and conversion surface material on H- production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kenneth F [Los Alamos National Laboratory; Tarvainen, Olli A [Los Alamos National Laboratory; Geros, E. [Los Alamos National Laboratory; Stelzer, J. [Los Alamos National Laboratory; Rouleau, G. [Los Alamos National Laboratory; Kalvas, T. [UNIV OF JYVASKYLA; Komppula, J. [UNIV OF JYASKYLA; Carmichael, J. [ORNL

    2010-10-05

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  3. Investigation on Effect of Air Velocity in Turbulent Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Namazian Zafar

    2016-09-01

    Full Text Available In this study, the turbulent non-premixed methane-air flame is simulated to determine the effect of air velocity on the length of flame, temperature distribution and mole fraction of species. The computational fluid dynamics (CFD technique is used to perform this simulation. To solve the turbulence flow, k-ε model is used. In contrast to the previous works, in this study, in each one of simulations the properties of materials are taken variable and then the results are compared. The results show that at a certain flow rate of fuel, by increasing the air velocity, similar to when the properties are constant, the width of the flame becomes thinner and the maximum temperature is higher; the penetration of oxygen into the fuel as well as fuel consumption is also increased. It is noteworthy that most of the pollutants produced are NOx, which are strongly temperature dependent. The amount of these pollutants rises when the temperature is increased. As a solution, decreasing the air velocity can decrease the amount of these pollutants. Finally, comparing the result of this study and the other work, which considers constant properties, shows that the variable properties assumption leads to obtaining more exact solution but the trends of both results are similar.

  4. Critical velocity experiments in space

    Science.gov (United States)

    Torbert, R. B.

    1988-01-01

    Published data from active space experiments designed to demonstrate the Alfven critical-velocity effect are compiled in graphs and compared with the predictions of numerical simulations. It is found that the discrepancies in the ionization yields obtained in shaped-charge releases of alkali metals are related to the macroscopic limits of time and energy in such releases. It is argued that the total ionization yield is an inadequate measure of the critical-velocity effect, and a new criterion based on eta, the efficiency of energy transfer from the recently ionized neutrals to a heated electron population, is proposed: the effect would be verified if eta values of 10 percent or greater were observed.

  5. EFFECTS OF A 6-WEEK JUNIOR TENNIS CONDITIONING PROGRAM ON SERVICE VELOCITY

    Directory of Open Access Journals (Sweden)

    Jaime Fernandez-Fernandez

    2013-06-01

    Full Text Available This study examined the effects of a 6-week strength-training program on serve velocity in youth tennis players. Thirty competitive healthy and nationally ranked male junior tennis players (13 years of age were randomly and equally divided into control and training groups. The training group performed 3 sessions (60-70 min weekly for 6 weeks, comprising core strength, elastic resistance and medicine ball exercises. Both groups (control and training also performed a supervised stretching routine at the end of each training session, during the 6 week intervention. Service velocity, service accuracy and shoulder internal/external rotation were assessed initially and at the end of the 6-week conditioning program for both, control and training groups. There was a significant improvement in the serve velocity for the training group (p = 0. 0001 after the intervention, whereas in the control group there were no differences between pre and post-tests (p = 0.29. Serve accuracy was not affected in the training group (p = 0.10, nor in the control group (p = 0.15. Shoulder internal/external rotation ROM significantly improved in both groups, training (p = 0.001 and control (p = 0.0001. The present results showed that a short- term training program for young tennis players, using minimum equipment and effort, can result in improved tennis performance (i.e., serve velocity and a reduction in the risk of a possible overuse injury, reflected by an improvement in shoulder external/internal range of motion

  6. Direct Simulation Monte Carlo exploration of charge effects on aerosol evolution

    Science.gov (United States)

    Palsmeier, John F.

    Aerosols are potentially generated both during normal operations in a gas cooled Generation IV nuclear reactor and in all nuclear reactors during accident scenarios. These aerosols can become charged due to aerosol generation processes, radioactive decay of associated fission products, and ionizing atmospheres. Thus the role of charge on aerosol evolution, and hence on the nuclear source term, has been an issue of interest. There is a need for both measurements and modeling to quantify this role as these effects are not currently accounted for in nuclear reactor modeling and simulation codes. In this study the role of charge effects on the evolution of a spatially homogenous aerosol was explored via the application of the Direct Simulation Monte Carlo (DSMC) technique. The primary mechanisms explored were those of coagulation and electrostatic dispersion. This technique was first benchmarked by comparing the results obtained from both monodisperse and polydisperse DSMC evolution of charged aerosols with the results obtained by respectively deterministic and sectional techniques. This was followed by simulation of several polydisperse charged aerosols. Additional comparisons were made between the evolutions of charged and uncharged aerosols. The results obtained using DSMC in simple cases were comparable to those obtained from other techniques, without the limitations associated with more complex cases. Multicomponent aerosols of different component densities were also evaluated to determine the charge effects on their evolution. Charge effects can be significant and further explorations are warranted.

  7. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria

    NARCIS (Netherlands)

    Gottenbos, B; Grijpma, DW; van der Mei, HC; Feijen, J; Busscher, HJ

    The infection of biomaterials is determined by an interplay of adhesion and surface growth of the infecting organisms. In this study, the antimicrobial effects on adhering bacteria of a positively charged poly(methacrylate) surface ( potential +12 mV) were compared with those of negatively charged

  8. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  9. Incoherent Effect of Space Charge and Electron Cloud

    CERN Document Server

    Franchetti, G; Fischer, W; Zimmermann, F

    2009-01-01

    Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.

  10. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how...... the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...... that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels....

  11. Effects of oncoming target velocities on rapid force production and accuracy of force production intensity and timing.

    Science.gov (United States)

    Ohta, Yoichi

    2017-12-01

    The present study aimed to clarify the effects of oncoming target velocities on the ability of rapid force production and accuracy and variability of simultaneous control of both force production intensity and timing. Twenty male participants (age: 21.0 ± 1.4 years) performed rapid gripping with a handgrip dynamometer to coincide with the arrival of an oncoming target by using a horizontal electronic trackway. The oncoming target velocities were 4, 8, and 12 m · s -1 , which were randomly produced. The grip force required was 30% of the maximal voluntary contraction. Although the peak force (Pf) and rate of force development (RFD) increased with increasing target velocity, the value of the RFD to Pf ratio was constant across the 3 target velocities. The accuracy of both force production intensity and timing decreased at higher target velocities. Moreover, the intrapersonal variability in temporal parameters was lower in the fast target velocity condition, but constant variability in 3 target velocities was observed in force intensity parameters. These results suggest that oncoming target velocity does not intrinsically affect the ability for rapid force production. However, the oncoming target velocity affects accuracy and variability of force production intensity and timing during rapid force production.

  12. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  14. Kicking velocity and effect on match performance when using a smaller, lighter ball in women's football

    DEFF Research Database (Denmark)

    Andersen, Thomas B.; Krustrup, Peter; Bendiksen, Mads

    2016-01-01

    The present study evaluated the effect of a smaller, lighter ball on kicking speed and technical-tactical and physical match performance in high-level adult female footballers. In the laboratory test setting, the peak ball velocity was 6% higher with the new ball (NB) than the standard ball (SB...... in passing success rate (NB: 68±1% and SB: 68±1%, p>0.05). In conclusion, high-level adult female footballers had a higher kicking speed when using a smaller, lighter ball, but no differences were observed during match-play with the 2 ball types in respect of technical-tactical and physical match performance...

  15. Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy

    Science.gov (United States)

    Yoshizawa, Akira; Liou, Meng-Sing

    1992-01-01

    The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.

  16. Effects of unsteady free-stream velocity and free-stream turbulence at a stagnation point

    Science.gov (United States)

    Gorla, R. S. R.

    1982-01-01

    The combined effects of transient free stream velocity and turbulence at a stagnation point on a cylinder situated in a crossflow is investigated analytically, and a model is formulated for the eddy diffusivity induced by free-stream turbulence. The steepest descent method is used to integrate the governing momentum expression, and numerical solutions are given for the unsteady wall shear stress function for specific free-stream transients. It is found after correlation of the results by means of a new turbulence parameter that wall friction increases with increasing free-stream turbulence intensity, and that the friction factor increases with increasing reduced frequency of oscillation values.

  17. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Offshore wind turbines on floating platforms will experience larger motions than comparable bottom fixed wind turbines—for which the majority of industry standard design codes have been developed and validated. In this paper, the effect of a periodic surge motion on the integrated loads and induced...... will be inherently included in the solution of the associated fluid dynamic problem. Through analysis of integrated rotor loads, induced velocities and aerodynamic damping, it is concluded that typical surge motions are sufficiently slow to not affect the wake dynamics predicted by engineering models significantly...

  18. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    Science.gov (United States)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  19. Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors

    Science.gov (United States)

    Ahn, Jae-Hyuk; Choi, Sung-Jin; Im, Maesoon; Kim, Sungho; Kim, Chang-Hoon; Kim, Jee-Yeon; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu

    2017-09-01

    The sensing mechanism of nanowire field effect transistor (NWFET) biosensors is investigated by taking into consideration both the charge and dielectric effects of biomolecules. The dielectric effect of the biomolecules is dominantly reflected in the linear regime, whereas the charge property is manifested in the subthreshold regime. The findings are supported by bio-experiments and numerical simulations. This study provides a rudimentary means of understanding interactions between biomolecules and NWFET biosensors.

  20. Effects of Instability Versus Traditional Resistance Training on Strength, Power and Velocity in Untrained Men

    Directory of Open Access Journals (Sweden)

    José Luis Maté-Muñoz

    2014-09-01

    Full Text Available The purpose of this study was compare the effects of a traditional and an instability resistance circuit training program on upper and lower limb strength, power, movement velocity and jumping ability. Thirty-six healthy untrained men were assigned to two experimental groups and a control group. Subjects in the experimental groups performed a resistance circuit training program consisting of traditional exercises (TRT, n = 10 or exercises executed in conditions of instability (using BOSU® and TRX® (IRT, n = 12. Both programs involved three days per week of training for a total of seven weeks. The following variables were determined before and after training: maximal strength (1RM, average (AV and peak velocity (PV, average (AP and peak power (PP, all during bench press (BP and back squat (BS exercises, along with squat jump (SJ height and counter movement jump (CMJ height. All variables were found to significantly improve (p <0.05 in response to both training programs. Major improvements were observed in SJ height (IRT = 22.1%, TRT = 20.1%, CMJ height (IRT = 17.7%, TRT = 15.2%, 1RM in BS (IRT = 13.03%, TRT = 12.6%, 1RM in BP (IRT = 4.7%, TRT = 4.4%, AP in BS (IRT = 10.5%, TRT = 9.3%, AP in BP (IRT = 2.4%, TRT = 8.1%, PP in BS (IRT=19.42%, TRT = 22.3%, PP in BP (IRT = 7.6%, TRT = 11.5%, AV in BS (IRT = 10.5%, TRT = 9.4%, and PV in BS (IRT = 8.6%, TRT = 4.5%. Despite such improvements no significant differences were detected in the posttraining variables recorded for the two experimental groups. These data indicate that a circuit training program using two instability training devices is as effective in untrained men as a program executed under stable conditions for improving strength (1RM, power, movement velocity and jumping ability.

  1. Numerical simulation of the effect of wind removing the corona space charge over grounded structures under thunderstorm conditions

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Holbøll, Joachim

    2015-01-01

    agrounded object under thunderstorm conditions. The electric fieldcreated by the charge distribution in the thundercloud above theobject, which is in first place enhanced by its geometry, leadsto the generation and secondly upward propagation of chargefrom the object. Recent investigations underline...... that the effectof the removal of the corona space charge by the wind leadsto a higher field strength at the grounded object and, therefore,it becomes easier for it to initiate an upward connecting leadercompared to a situation where the space charge is present. Inthis work, a simplified space charge drift model...... quantifies thedifference between static towers and rotating wind turbines whichare influenced by different resultant wind velocities. The voltagedistribution and ion drift velocities in the vicinity of the groundedstructures are illustrated. The results show a higher voltagegradient at the side of the object...

  2. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    Science.gov (United States)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  3. Nonperturbative evaluation of the physical classical velocity in the lattice heavy quark effective theory

    Science.gov (United States)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1998-02-01

    In the lattice formulation of heavy quark effective theory, the value of the ``classical velocity'' v, as defined through the separation of the four-momentum of a heavy quark into a part proportional to the heavy quark mass and a residual part that remains finite in the heavy quark limit (P=Mv+p), is different from its value as it appears in the bare heavy quark propagator [S-1(p)=v.p]. The origin of the difference, which is effectively a lattice-induced renormalization, is the reduction of Lorentz [or O(4)] invariance to (hyper)cubic invariance. The renormalization is finite and depends specifically on the form of the discretization of the reduced heavy quark Dirac equation. For the forward time, centered space discretization, we compute this renormalization nonperturbatively, using an ensemble of lattices at β=6.1 provided by the Fermilab ACP-MAPS Collaboration. The calculation makes crucial use of a variationally optimized smeared operator for creating composite heavy-light mesons. It has the property that its propagator achieves an asymptotic plateau in just a few Euclidean time steps. For comparison, we also compute the shift perturbatively, to one loop in lattice perturbation theory. The nonperturbative calculation of the leading multiplicative shift in the classical velocity is considerably different from the one-loop estimate and indicates that for the above parameters v--> is reduced by about 10-13 %.

  4. The effect of superluminal phase velocity on electron acceleration in a powerful electromagnetic wave

    Science.gov (United States)

    Robinson, A. P. L.; Arefiev, A. V.; Khudik, V. N.

    2015-08-01

    In this paper, we examine the effect that electromagnetic dispersion has on the motion of an electron in a relativistically strong plane wave. We obtain an analytic solution for the electron momentum and check this solution against direct numerical integration of the equations of motion. The solution shows that even a relatively small difference between the phase velocity of the wave, vp, and the speed of light, c, can significantly alter the electron dynamics if the normalized wave amplitude a0 exceeds √{2 c /(vp-c ) } . At this amplitude, the maximum longitudinal electron momentum scales only linearly with a0, as opposed to a02 . We also show that at this amplitude the impact of an accelerating longitudinal electric field and electron pre-acceleration is negated by the superluminous phase velocity of the wave. This has implications for the potential of Direct Laser Acceleration of electrons. We point out that electromagnetic dispersion can arise from both propagation in a plasma and from propagating the laser in what is effectively a wave-guiding structure, and that this latter source of dispersion is likely to be more significant.

  5. Effect of microbubble contrast on intracranial blood flow velocity assessed by transcranial Doppler.

    Science.gov (United States)

    Logallo, Nicola; Fromm, Annette; Waje-Andreassen, Ulrike; Thomassen, Lars; Matre, Knut

    2014-03-01

    Ultrasound contrast agents (UCA) salvage a considerable number of transcranial Doppler (TCD) exams which would have failed because of poor bone window. UCA bolus injection causes an undesirable increase in measured blood flow velocity (BFV). The effect of UCA continuous infusion on measured BFV has not been investigated, and some in vitro experiments suggest that gain reduction during UCA administration may also influence measured BFV. This study aimed to investigate the effect of UCA continuous infusion on BFV measured by TCD and the influence of gain reduction on these measurements in a clinical setting. The right middle cerebral artery of ten patients with optimal bone window was insonated using a 2 MHz probe. UCA were administered using an infusion pump. BFV was measured (1) at baseline, (2) during UCA infusion, (3) during UCA infusion with gain reduction, and (4) after UCA wash-out phase. Gain reduction was based on the agreement between two neurosonographers on the degree of gain reduction necessary to restore baseline Doppler signal intensity (DSI). Actual DSI was estimated offline by analysis of raw data. BFV measured during UCA infusion with no gain adjustment was significantly higher than baseline BFV [peak systolic velocity (PSV): 85.1 ± 19.7 vs. 74.4 ± 19.7 cm/s, p Doppler gain thus restoring pre-contrast DSI.

  6. Rate effects on timing, key velocity, and finger kinematics in piano performance.

    Directory of Open Access Journals (Sweden)

    Simone Dalla Bella

    Full Text Available We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound.

  7. Space-charge effects in ultrahigh current electron bunches generated by laser-plasma accelerators

    National Research Council Canada - National Science Library

    Grüner, F. J; Schroeder, C. B; Maier, A. R; Becker, S; Mikhailova, J. M

    2009-01-01

    ...) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process...

  8. Effect of Kinesiotape Applications on Ball Velocity and Accuracy in Amateur Soccer and Handball

    Directory of Open Access Journals (Sweden)

    Müller Carsten

    2015-12-01

    Full Text Available Evidence supporting performance enhancing effects of kinesiotape in sports is missing. The aims of this study were to evaluate effects of kinesiotape applications with regard to shooting and throwing performance in 26 amateur soccer and 32 handball players, and to further investigate if these effects were influenced by the players’ level of performance. Ball speed as the primary outcome and accuracy of soccer kicks and handball throws were analyzed with and without kinesiotape by means of radar units and video recordings. The application of kinesiotapes significantly increased ball speed in soccer by 1.4 km/h (p=0.047 and accuracy with a lesser distance from the target by -6.9 cm (p=0.039. Ball velocity in handball throws also significantly increased by 1.2 km/h (p=0.013, while accuracy was deteriorated with a greater distance from the target by 3.4 cm (p=0.005. Larger effects with respect to ball speed were found in players with a lower performance level in kicking (1.7 km/h, p=0.028 and throwing (1.8 km/h, p=0.001 compared with higher level soccer and handball players (1.2 km/h, p=0.346 and 0.5 km/h, p=0.511, respectively. In conclusion, the applications of kinesiotape used in this study might have beneficial effects on performance in amateur soccer, but the gain in ball speed in handball is counteracted by a significant deterioration of accuracy. Subgroup analyses indicate that kinesiotape may yield larger effects on ball velocity in athletes with lower kicking and throwing skills.

  9. Effect of Kinesiotape Applications on Ball Velocity and Accuracy in Amateur Soccer and Handball.

    Science.gov (United States)

    Müller, Carsten; Brandes, Mirko

    2015-12-22

    Evidence supporting performance enhancing effects of kinesiotape in sports is missing. The aims of this study were to evaluate effects of kinesiotape applications with regard to shooting and throwing performance in 26 amateur soccer and 32 handball players, and to further investigate if these effects were influenced by the players' level of performance. Ball speed as the primary outcome and accuracy of soccer kicks and handball throws were analyzed with and without kinesiotape by means of radar units and video recordings. The application of kinesiotapes significantly increased ball speed in soccer by 1.4 km/h (p=0.047) and accuracy with a lesser distance from the target by -6.9 cm (p=0.039). Ball velocity in handball throws also significantly increased by 1.2 km/h (p=0.013), while accuracy was deteriorated with a greater distance from the target by 3.4 cm (p=0.005). Larger effects with respect to ball speed were found in players with a lower performance level in kicking (1.7 km/h, p=0.028) and throwing (1.8 km/h, p=0.001) compared with higher level soccer and handball players (1.2 km/h, p=0.346 and 0.5 km/h, p=0.511, respectively). In conclusion, the applications of kinesiotape used in this study might have beneficial effects on performance in amateur soccer, but the gain in ball speed in handball is counteracted by a significant deterioration of accuracy. Subgroup analyses indicate that kinesiotape may yield larger effects on ball velocity in athletes with lower kicking and throwing skills.

  10. Effect of Kinesiotape Applications on Ball Velocity and Accuracy in Amateur Soccer and Handball

    Science.gov (United States)

    Müller, Carsten; Brandes, Mirko

    2015-01-01

    Evidence supporting performance enhancing effects of kinesiotape in sports is missing. The aims of this study were to evaluate effects of kinesiotape applications with regard to shooting and throwing performance in 26 amateur soccer and 32 handball players, and to further investigate if these effects were influenced by the players’ level of performance. Ball speed as the primary outcome and accuracy of soccer kicks and handball throws were analyzed with and without kinesiotape by means of radar units and video recordings. The application of kinesiotapes significantly increased ball speed in soccer by 1.4 km/h (p=0.047) and accuracy with a lesser distance from the target by −6.9 cm (p=0.039). Ball velocity in handball throws also significantly increased by 1.2 km/h (p=0.013), while accuracy was deteriorated with a greater distance from the target by 3.4 cm (p=0.005). Larger effects with respect to ball speed were found in players with a lower performance level in kicking (1.7 km/h, p=0.028) and throwing (1.8 km/h, p=0.001) compared with higher level soccer and handball players (1.2 km/h, p=0.346 and 0.5 km/h, p=0.511, respectively). In conclusion, the applications of kinesiotape used in this study might have beneficial effects on performance in amateur soccer, but the gain in ball speed in handball is counteracted by a significant deterioration of accuracy. Subgroup analyses indicate that kinesiotape may yield larger effects on ball velocity in athletes with lower kicking and throwing skills. PMID:26839612

  11. Memory and nonlinear transport effects in charging-discharging of a supercapacitor

    Science.gov (United States)

    Uchaikin, V. V.; Ambrozevich, A. S.; Sibatov, R. T.; Ambrozevich, S. A.; Morozova, E. V.

    2016-02-01

    We report on the results of analysis of the kinetics of charge-discharge current of Panasonic supercapacitors in a wide range of time from 10-1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper-oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.

  12. Effects of gallopamil on calcium release and intramembrane charge movements in frog skeletal muscle fibres.

    Science.gov (United States)

    Feldmeyer, D; Melzer, W; Pohl, B

    1990-02-01

    1. Intramembrane charge movements and changes in intracellular Ca2+ concentration were studied in voltage clamp experiments on cut twitch muscle fibres of the frog. The restoration from inactivation caused by steady depolarization and its modification by the phenylalkylamine Ca2+ channel antagonist gallopamil (D600, 10-30 microM) were investigated. 2. D600 prevented the restoration from inactivation of Ca2+ release which normally occurred at -80 mV. In D600 Ca2+ release recovered from inactivation at -120 mV. 3. D600 did not alter the characteristics of intramembrane charge movements in the depolarized fibre (charge 2) but the increase in the amount of mobile charge in the test voltage range above -60 mV, which normally occurs after changing the holding potential to -80 mV, was suppressed. The charge movement characteristics of D600-paralysed fibres, which were held at -80 mV, equalled those of normal depolarized and inactivated fibres. 4. Control records for the charge movement analysis were always obtained by voltage steps above 0 mV. Using the 'conventional' control in the potential range between -80 and -160 mV led to an underestimation and a kinetic deformation of charge movements in D600-treated fibres, which was due to various amounts of nonlinear charge in the control. 5. Like the restoration of Ca2+ release at -80 mV in normal fibres the recovery from paralysis at -120 mV in D600-treated fibres was accompanied by a significant increase in mobile charge in the potential range positive of -60 mV. Both Ca2+ release and charge movement at test potentials above -60 mV recovered with almost identical time course. 6. Restoration of Ca2+ release at a holding potential of -80 mV in normal fibres or at -120 mV in D600-treated fibres could not be clearly correlated to charge movement changes in the voltage range negative of -60 mV (charge 2). 7. Our results are consistent with a voltage-dependent inhibitory effect of D600 on the charge displacement that controls Ca2

  13. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    Science.gov (United States)

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  14. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  15. Effect of relative humidity on the electrostatic charge properties of dry powder inhaler aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Chan, Hak-Kim

    2008-02-01

    At present, there is no published data examining the effect of relative humidity on the electrostatic charges of dry powder inhaler aerosols. The charging behaviour of two commercial products, Pulmicort and Bricanyl Turbuhalers, were investigated using an electrical low pressure impactor (ELPI). ELPI was successfully modified to disperse the aerosols at 60 l/min. Four doses from each new inhaler were sampled at 15, 40, 65, and 90% RH. Particles deposited on the impactor stages according to their aerodynamic diameters and their charges were measured simultaneously by the electrometers. The drug in each size fraction was quantified using HPLC. Both products generated bipolar charges. The charging behaviour of the two types of inhaler showed different humidity dependence although the mass output was not significantly affected. The absolute specific charge of budesonide fine particles from Pulmicort was the lowest at 40% RH but increased at lower and higher RHs. In contrast, the terbutaline sulfate fine particles from Bricanyl followed the expected trend of charge reduction with increasing RH. The distinct trends of charging of aerosols from Pulmicort and Bricanyl Turbuhalers was explained by differences in hygroscopicity and other physicochemical factors between the two drugs.

  16. Self-interaction effects on charge-transfer collisions

    CERN Document Server

    Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A

    2016-01-01

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.

  17. Effect of Coulomb correlation on charge transport in disordered organic semiconductors

    Science.gov (United States)

    Liu, Feilong; van Eersel, Harm; Xu, Bojian; Wilbers, Janine G. E.; de Jong, Michel P.; van der Wiel, Wilfred G.; Bobbert, Peter A.; Coehoorn, Reinder

    2017-11-01

    Charge transport in disordered organic semiconductors, which is governed by incoherent hopping between localized molecular states, is frequently studied using a mean-field approach. However, such an approach only considers the time-averaged occupation of sites and neglects the correlation effect resulting from the Coulomb interaction between charge carriers. Here, we study the charge transport in unipolar organic devices using kinetic Monte Carlo simulations and show that the effect of Coulomb correlation is already important when the charge-carrier concentration is above 10-3 per molecular site and the electric field is smaller than 108 V/m. The mean-field approach is then no longer valid, and neglecting the effect can result in significant errors in device modeling. This finding is supported by experimental current density-voltage characteristics of ultrathin sandwich-type unipolar poly(3-hexylthiophene) (P3HT) devices, where high carrier concentrations are reached.

  18. Effects of dielectric charging on the output voltage of a capacitive accelerometer

    Science.gov (United States)

    Qu, Hao; Yu, Huijun; Zhou, Wu; Peng, Bei; Peng, Peng; He, Xiaoping

    2016-11-01

    Output voltage drifting observed in one typical capacitive microelectromechanical system (MEMS) accelerometer is discussed in this paper. Dielectric charging effect is located as one of the major determinants of this phenomenon through a combination of experimental and theoretical studies. A theoretical model for the electromechanical effects of the dielectric surface charges within the electrode gap is established to analyze the dielectric charge effect on the output voltage. Observations of output voltage drift against time are fitted to this model in order to estimate the possible dielectric layer thickness. Meanwhile, Auger electron spectroscopy is carried out to analyze the electrode surface material composition and confirms a mixture layer of dielectric SiO2 and Si with a thickness about 5 nm, which is very close to the model estimation. In addition, observation of time-varing output drift in the variable bias voltage experiment indicates the movement of dielectric charge can be controlled by the applied electric field.

  19. Stochastic Coulomb interactions in space charge limited electron emission

    NARCIS (Netherlands)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    A Monte Carlo simulation tool, which was used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics, was discussed. It was found that interactions in the space charge cloud affect the electron trajectories such that the velocity

  20. Frequency, delay and velocity analysis for intrinsic channel region of carbon nanotube field effect transistors

    Directory of Open Access Journals (Sweden)

    P. Geetha

    2014-03-01

    Full Text Available Gate wrap around field effect transistor is preferred for its good channel control. To study the high frequency behaviour of the device, parameters like cut-off frequency, transit or delay time, velocity are calculated and plotted. Double-walled and array of channels are considered in this work for enhanced output and impedance matching of the device with the measuring equipment terminal respectively. The perfomance of double-walledcarbon nanotube is compared with single-walled carbon nanotube and found that the device with double-wall shows appreciable improvement in its characteristics. Analysis of these parameters are done with various values of source/drain length, gate length, tube diameters and channel densities. The maximum cut-off frequency is found to be 72.3 THz with corresponding velocity as 5x106 m/s for channel density as 3 and gate length as 11nm. The number of channel is varied from 3 to 21 and found that the perfromance of the device containing double-walled carbon nano tube is better for channel number lesser than or equal to 12. The proposed modelling can be used for designing devices to handle high speed applications of future generation.

  1. Effects of gamma-ray and high energy carbon ion irradiation on swimming velocity of Euglena gracilis

    Science.gov (United States)

    Sakashita, T.; Doi, M.; Yasuda, H.; Fuma, S.; Häder, D.-P.

    The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34±4 Gy (gamma-rays) and 13±1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6±0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity.

  2. Influence of the charge of chromite-magnesite dust on the effectiveness of its removal in a bag filter

    Energy Technology Data Exchange (ETDEWEB)

    Saranchuk, V.I.; Maslov, A.E.; Rekun, V.V.

    1986-03-01

    This paper presents results of work on determination of the effectiveness of filtering of chromite-magnesite dust with similar and different charging of the particles and the surface of the filter cloth. On the basis of investigations of the contact interactions of mineral dusts with polymer materials a device was developed for charging of a dust aerosol which makes it possible to charge neutral and recharge positively charged particles to a negative polarity. The results presented show an increase in the effectiveness of removal of the dust from 97.33 to 98.49% as the result of the change in its charge with the use of the charging device.

  3. Escape Velocity

    Directory of Open Access Journals (Sweden)

    Nikola Vlacic

    2010-01-01

    Full Text Available In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.

  4. The effects of squat exercises in postures for toilet use on blood flow velocity of the leg vein.

    Science.gov (United States)

    Eom, Jun Ho; Chung, Sin Ho; Shim, Jae Hun

    2014-09-01

    [Purpose] The purpose of this study was to identify the effects of squat exercises performed in toilet-using postures on the blood flow velocity of the lower extremities for the prevention of deep vein thrombosis. [Subjects] The subjects were 28 students who were attending B University in Cheonan. They were divided into a group of 14 subjects of sitting toilet users and a group of 14 subjects of squat toilet users. [Methods] The subjects performed squat exercises in different toilet-using postures and we investigated the changes in blood flow velocity. [Results] The variations in blood flow velocities before and after the exercises showed significant differences in both groups but the differences between the two groups were not significant. [Conclusion] Based on the results of this study, we consider squat exercises are effective at improving the variation in lower-extremity blood flow velocity when using a toilet.

  5. An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation

    Science.gov (United States)

    Chen, Dongyang; Zhao, Jiuxuan; Wang, Yinshen; Xie, Jin

    2017-06-01

    A resonant electrostatic charge sensor with high sensitivity based on micro electromechanical systems (MEMS) technology is proposed to measure electric charge. Input charge produces lateral electrostatic force to change effective stiffness of double-ended tuning forks resonator, and leads to a resonant frequency shift. The sensitivity of the charge sensor is 4.4  ×  10-4 Hz fC-2. The proposed sensing scheme of effective stiffness perturbation has higher sensitivity than the traditional axial strain sensing methods. Experimental results show that the frequency modulation has better resolution and stability than the amplitude modulation. The proposed sensing scheme also creates additional energy transmission paths inside the device to improve quality factor and stabilize frequency fluctuation. The instability of resonant frequency induced by mechanical nonlinearity are investigated.

  6. Maxwell–Wagner Effect in Multi-Layered Dielectrics: Interfacial Charge Measurement and Modelling

    Directory of Open Access Journals (Sweden)

    Thi Thu Nga Vu

    2017-05-01

    Full Text Available The development of high voltage direct current (HVDC technologies generates new paradigms in research. In particular and contrary to the AC case, investigation of electrical conduction is not only needed for understanding the dielectric breakdown but also to describe the field distribution inside the insulation. Here, we revisit the so-called Maxwell–Wagner effect in multi-layered dielectrics by considering on the one hand a non-linear field dependent model of conductivity and on the other hand by performing space charge measurements giving access to the interfacial charge accumulated between different dielectrics. We show that space charge measurements give access to the amount of interfacial charge built-up by the Maxwell–Wagner effect between two dielectrics of different natures. Measurements also demonstrate that the field distribution undergoes a transition from a capacitive distribution to a resistive one, under long lasting stress.

  7. Effect of dielectric interface on charge aggregation in the voltage-gated K+ ion channel

    Science.gov (United States)

    Adhya, Lipika; Mapder, Tarunendu; Adhya, Samit

    2015-01-01

    Background: There is experimental evidence of many cases of stable macromolecular conformations with charged amino-acids facing lipid, an arrangement thought to be energetically unfavourable. Methods and Objectives: Employing classical electrostatics, we show that, this is not necessarily the case and studied the physical basis of the specific role of proximity of charges to the dielectric interface between two different environments. We illustrate how self and induced energies due to the dielectric medium polarization, on either side of the interface, contribute differentially to the stability of a pair of charges and hence the mutual conformation of the S3b-S4 α-helix pair of the voltage-gated K+ channel. Results and Conclusion: We show that (1) a pair of opposite charges on either side of lipid-protein interface confers significant stability; (2) hydrophobic media has an important role in holding together two similar repelling charges; (3) dielectric interface has stabilizing effect on a pair of charges, when an ion is closer to its interface than its neighboring charge; (4) in spite of the presence of dielectric interface, there is a nonexistence of any dielectric effect, when an ion is equidistant from its image and neighboring charge. We also demonstrate that, variation in dielectric media of the surrounding environment confers new mutual conformations to S3b-S4 α-helices of voltage sensor domain at zero potential, especially lipid environment on the helix side, which improved stability to the configuration by lowering the potential energy. Our results provide an answer to the long standing question of why charges face hydrophobic lipid membranes in the stable conformation of a protein. PMID:25810659

  8. Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density

    DEFF Research Database (Denmark)

    Schutt, Derek; Lesher, Charles

    2010-01-01

    We examine the modes and compositions of garnet-bearing peridotite xenoliths from the Kaapvaal Craton to quantify factors governing density and seismic velocity variations within metasomatically altered cratonic mantle. Three distinct compositional trends are resolved by principal component...... analysis. The first reflects differences in residue composition resulting from partial melting. The second is associated with orthopyroxene (opx) enrichment, possibly due to silica addition by subduction zone fluids in the source region of the xenoliths. The third principal component reflects garnet...... and clinopyroxene enrichment possibly as a consequence of melt infiltration. More than half of the mineral mode variance among Kaapvaal Craton xenoliths can be accounted for by opx enrichment. Melt depletion effects can account for as much as 30% of the variance, while less than 20% of the variance is associated...

  9. Effects of discrete stochastic charging of dust grains in protoplanetary disks

    Science.gov (United States)

    Ashrafi, K. S.; Esparza, S.; Xiang, C.; Matthews, L.; Carballido, A.; Hyde, T.; Shotorban, B.

    2017-10-01

    The stochastic nature of grain charging can play a significant role in the development of dust aggregate structure when the grains have a small charge. In this work, we use a model of discrete stochastic charging to calculate time-dependent electric charging of dust aggregates. We compare the electron and ion currents to micron and submicron aggregate grains, which consist of spherical monomers, to the currents to spherical grains of equivalent mass. The average charge and charge distribution are compared for aggregates composed of different monomer sizes. The aggregate morphology (whether the grain is compact or porous) affects the amount of charge collected and the available surface area for recombination on dust grains. Thus, the aggregate morphology as well as the dust fraction can affect the overall ionization balance in a plasma. The implications of our results for non-ideal magnetohydrodynamics in protoplanetary disks are briefly discussed in terms of the effect of disk ionization fraction and chemical networks. This work was supported by the National Science Foundation under Grant PHY-1414523.

  10. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xian Kai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  11. The effect of dust charge fluctuations in the near-Enceladus plasma

    Science.gov (United States)

    Yaroshenko, Victoria; Luehr, Hermann

    The geologically active moon Enceladus feeds the most extended, Saturns’ E ring by dust particles and creates a specific multispecies plasma environment -the Enceladus plasma torus. The key process of dust-plasma interactions is dust charging. The grain electrostatic potential in space is usually calculated from the so called orbit-motion limited (OML) model [1]. It is valid for a single particle immersed into collisionless plasmas with Maxwellian electron and ion distributions. Such a parameter regime cannot be directly applied to the conditions relevant for the Enceladus plasma environment and especially, for the dense plume region, where the dust density is high, sometimes even exceeding the plasma number density. Generalizing the OML formalism, we examine several new factors that can significantly affect the equilibrium grain charging: (a) multispecies composition of the core plasma, including hot electrons and newborn cold ions; (b) effect of high dust number density (c) the role of dust size distributions. We also focus on such a specific peculiarity of dust charging as charge fluctuations. Since the grain charges are not fixed and can fluctuate, this introduces the crucial difference between ordinary plasma species (electrons and ions) and charged dust particles. There are two reasons for such fluctuations. The charging of the grains depends on the local plasma characteristics, and thus some temporal or spatial variations in the plasma parameters ultimately modify numbers of charges acquired by a grain. Some of these effects related to the near-Enceladus plasma environment have recently been discussed [2]. A second reason for charge fluctuations is the discrete nature of the charge carriers. Electrons and ions are absorbed or emitted by the grain surface randomly thus leading to stochastic fluctuations of the dust net charge. These fluctuations exist always even in a steady-state uniform plasma, and we discuss the statistical characteristics of random dust

  12. Effects of D-600 on intramembrane charge movement of polarized and depolarized frog muscle fibers.

    Science.gov (United States)

    Caputo, C; Bolaños, P

    1989-07-01

    Intramembrane charge movement has been measured in frog cut skeletal muscle fibers using the triple vaseline gap voltage-clamp technique. Ionic currents were reduced using an external solution prepared with tetraethylammonium to block potassium currents, and O sodium + tetrodotoxin to abolish sodium currents. The internal solution contained 10 mM EGTA to prevent contractions. Both the internal and external solutions were prepared with impermeant anions. Linear capacitive currents were subtracted using the P-P/4 procedure, with the control pulses being subtracted either at very negative potentials, for the case of polarized fibers, or at positive potentials, for the case of depolarized fibers. In 63 polarized fibers dissected from Rana pipiens or Leptodactylus insularis frogs the following values were obtained for charge movement parameters: Qmax = 39 nC/microF, V = 36 mV, k = 18.5 mV. After depolarization we found that the total amount of movable charge was not appreciably reduced, while the voltage sensitivity was much changed. For 10 fibers, in which charge movement was measured at -100 and at 0 mV, Qmax changed from 46 to 41 nC/microF, while V changed from -41 to -103 mV and k changed from 20.5 to 30 mV. Thus membrane depolarization to 0 mV produces a shift of greater than 50 mV in the Q-V relationship and a decrease of the slope. Membrane depolarization to -20 and -30 mV, caused a smaller shift of the Q-V relationship. In normally polarized fibers addition of D-600 at concentrations of 50-100 microM, does not cause important changes in charge movement parameters. However, the drug appears to have a use-dependent effect after depolarization. Thus in depolarized fibers, total charge is reduced by approximately 20%. D-600 causes no further changes in the voltage sensitivity of charge movement in fibers depolarized to 0 mV, while in fibers depolarized to -20 and -30 mV it causes the same effects as that obtained with depolarization to 0 mV. These results are

  13. Magnetic Forces on Moving Charges

    OpenAIRE

    2003-01-01

    sim drag Simulation Drag-and-Drop Exercise Interactive Media Element This interactive tutorial provides the practice to reinforce the concept of magnetic force of moving charges. The key concepts covered include: The direction of the resultant magnetic force is always perpendicular to the plane defined by the velocity vector of the charge and the magnetic field vector., The direction of motion of the charge is also influenced by the sign/polarity of the charge., If the velocity...

  14. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  15. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  17. Effect of cattle temperament as determined by exit velocity on lung respiratory lesions and liver disease

    Science.gov (United States)

    The objective of this trial was to use exit velocity as a means of determining temperament of cattle to evaluate the impact of temperament on animal health. At the time of processing, exit velocity and body weight were recorded on 20 pens of cattle (2,877 head) at a commercial feedlot. Infrared sens...

  18. Doppler echocardiography in the human fetus : normal flow velocities and the effect of fetal variables

    NARCIS (Netherlands)

    K. van der Mooren (Karin)

    1992-01-01

    textabstractThe objectives of this thesis were as follows. 1. To establish the intra-observer variability in the assessment of fetal atrioventricular flow velocity parameters in the second half of pregnancy. The results are discussed in chapter 3 .2. 2. To assess the distribution of flow velocity

  19. The effects of frequency on the elastic wave velocity in rocks at high temperatures under pressure

    Science.gov (United States)

    Matsushima, S.

    1986-04-01

    P- and S-wave velocities in nepheline basalt, Hamada, as well as diabase, Maryland, were measured experimentally to 1000°C and 2.5 GPa. A remarkable frequency dependence of large velocity-decrease was observed for both P- and S-waves at temperatures above 500°C. Remarkable velocity-characteristics, which cannot be explained by the existing theories, were: (1) Velocities were decreased considerably at 1-3 MHz. Above 3 MHz, samples showed elastic behavior like that of a perfect solid, and below 1 MHz, velocity-decrease decayed gradually. (2) Both P- and S-wave velocities decreased in the same way and almost to the same degree. (3) The higher the temperature, the more remarkably velocities decreased, at least up to the experimental limit temperature. A hypothesis of the relaxation of stress waves by the fluid-flow in the inclusions is proposed. Examples of geophysical applications are given for the attenuation and travel-time anomalies in the volcanic region and the P- and S-wave velocity-decrease in the upper mantle beneath continents.

  20. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    Science.gov (United States)

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  1. Effect of Moisture Content on Mechanical Properties and Terminal Velocity of Berberis

    Directory of Open Access Journals (Sweden)

    E Velayati

    2011-09-01

    Full Text Available The study of mechanical properties of Berberis not only is useful for design and optimization of transportation, processing and packaging equipment but also can prevent mechanical injuries and losses. In this study force, deformation, energy and toughness were measured at different moisture content levels including 70-76, 45-50, 25-30 and 7-10 percent (w.b.. The decrease of moisture content caused increasing rupture force from 1.387 to 2.679 N, decreasing shape deformation from 3.387 to 2.413mm, increasing toughness from 4.297 to 8.220 J/cm3 and decreasing rupture energy from 0.921 to 0.661mJ. Effects of loading speed, force orientation and their interaction were investigated on just fresh Berberis fruit. It was indicated that only force orientation was effective on all investigated properties except toughness. The moisture content was identified as an effective parameter on terminal velocity. It decreased from 9 to 4.5 m/s with decrease of moisture content from 76 to 7 percent (w.b..

  2. Dexmedetomidine augments the effect of lidocaine: power spectrum and nerve conduction velocity distribution study.

    Science.gov (United States)

    Dalkilic, Nizamettin; Tuncer, Seckin; Burat, Ilksen

    2015-01-01

    In this study, the individual and combined inhibitory effects of dexmedetomidine and lidocaine on the conduction group of isolated nerve were investigated by determining conduction velocity distribution (CVD) and power spectrum. Electrophysiological compound action potential (CAP) recordings were conducted on isolated rat sciatic nerve before (Con) and 20 minutes after exposure to 1 mM lidocaine (Lido), 21pM dexmedetomidine (Dex) and their combination (Lido + Dex). Then for CVD, mathematical model and for power spectrum Fast Fourier analysis were conducted. Dexmedetomidine alone made no significant difference in shape and duration of CAPs as compared to Con, on the other hand lidocaine depresses amplitude and prolongs the duration of CAPs, but not more than combination of dexmedetomidine and lidocaine can do. Lidocaine caused a shift in the CVD histogram to relatively slower conducting group significantly while dexmedetomidine did not cause any significant change as compared to Control. Lidocaine, when combined with dexmedetomidine revealed a remarkable effect on the whole CVD histogram by causing almost complete blockage of fast conducting nerve fibers. The relative number of fibers in CVD is conserved for separate applications of anesthetics, but not for their combination. As in CVD, power spectrum shifted from higher to lower frequency region by lidocaine and significantly for lidocaine combined with dexmedetomidine application. Shifts for dexmedetomidine applied group were seen beggarly. We have concluded that dexmedetomidine alone did not influence nerve conduction, but when it is used with lidocaine it augments neural conduction blockage effect, especially on fast conducting nerve fibers.

  3. The Effect of Ulnar Collateral Ligament Reconstruction on Pitch Velocity in Major League Baseball Pitchers.

    Science.gov (United States)

    Lansdown, Drew A; Feeley, Brian T

    2014-02-01

    The medial ulnar collateral ligament (UCL) is the primary restraint to valgus load, and injury is commonly encountered as a result of overuse in throwing athletes. Reconstruction of this ligament has allowed for a high rate of return to sport for elite pitchers. Public perception of this procedure has resulted in a commonly held belief of increased throwing velocity following UCL reconstruction. Fastball velocity for Major League Baseball (MLB) pitchers is significantly decreased following UCL reconstruction. Case series; Level of evidence, 4. A total of 129 pitchers were identified as undergoing UCL reconstruction from publicly available reports, and a final group of 80 MLB pitchers were included for analysis. Statistics were collected, including pitch velocity, pitch selection, and performance outcomes. Pre- and postoperative statistics were compared using paired t tests to allow for evaluation of each pitcher relative to his baseline velocity and performance. Mean fastball velocity was significantly decreased following UCL reconstruction, with a presurgical mean velocity of 91.3 mph and postoperative velocity of 90.6 mph (P = .003). The greatest observed difference was in pitchers older than 35 years, with fastball velocity decreasing from 91.7 to 88.8 mph (P = .0048). Pitchers threw fewer fastballs after reconstruction. Pitch velocity for curveballs, changeups, and sliders did not change significantly after UCL reconstruction. Additionally, pitchers threw fewer innings and pitches following reconstruction and produced fewer wins above replacement relative to their preinjury state. Contrary to popular opinion, fastball velocity for MLB pitchers is significantly decreased following UCL reconstruction, which should reinforce the importance of preventing overuse injuries.

  4. Renormalization of effective interactions in a negative charge transfer insulator

    Science.gov (United States)

    Seth, Priyanka; Peil, Oleg E.; Pourovskii, Leonid; Betzinger, Markus; Friedrich, Christoph; Parcollet, Olivier; Biermann, Silke; Aryasetiawan, Ferdi; Georges, Antoine

    2017-11-01

    We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO3 involving the partially occupied eg states only. The calculation uses the constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly reduced by screening effects involving the oxygen-p and nickel-t2 g states. The long-range component of the effective low-energy interaction is also found to be sizable. As a result, the effective on-site interaction between parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories of these materials that were proposed earlier. Electronic structure methods combined with dynamical mean-field theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a function of the on-site repulsion and Hund's coupling. For the calculated values of these effective interactions, we find that in agreement with experiments, LuNiO3 is a metal without disproportionation of the eg occupancy when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator.

  5. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  6. The Effects of Steroid Phonophoresis on Clinical Parameters and Nerve Conduction Velocities in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Filiz Dogan-Akcam

    2012-02-01

    Full Text Available Objective: This study was aimed to investigate the effects of steroid phonophoresis on electroneurophysiological and clinical parameters and to compare these effects with ultrasound (US and sham US in carpal tunnel syndrome (CTS. Material-Method: 39 patients with CTS (69 hands were included in the study. Patients were randomized to phonophoresis (n=13 patients, 21 hands, US (n=13 patients, 24 hands and sham US (n=13 patients, 24 hands groups. Steroid phonophoresis, using dexamethasone as conductive agent, was applied at 1.0 W/cm2 to the phonophoresis group. Ultrasound at 1.0 W/cm2 and imitative US at 0.0 W/cm2 were applied to the US and sham US groups respectively. All groups were asked to perform tendon and nerve gliding exercises. Distal motor latency (mMDL and sensory nerve conduction velocity (mSNCV of median nerve, visual analogue scale (VAS and Boston Scale were assessed at the beginning, 2nd week and in the 12th week. Results: All of the variables were significantly improved in the 12th week in steroid phonophoresis group, whereas VAS, symptom severity and functional capacity of Boston scale were improved in US and sham US groups. mSNCV was also improved in sham US group. The differences between 12th week-pre treatment values (delta were used for group comparisons. Delta values of electroneurophysiological parameters of phonophoresis group were found to be significantly different, whereas no significant differences were found between the groups for the other variables. Conclusion: Steroid phonophoresis has favorable effects on electroneurophysiological studies and these effects last longer. Favorable effects on clinical findings and patient based assessments were observed in all groups. The improvements seen in sham US group may suggest the effectiveness of tendon and nerve gliding exercises. [Cukurova Med J 2012; 37(1.000: 17-26

  7. Caffeine effects on velocity selection and physiological responses during RPE production.

    Science.gov (United States)

    Green, James M; Olenick, Alyssa; Eastep, Caroline; Winchester, Lee

    2016-06-30

    Caffeine (CAF) blunts estimated ratings of perceived exertion (RPE) but the effects on RPE production are unclear. This study examined effects of acute caffeine ingestion during treadmill exercise where participants exercised at prescribed RPE 4 and 7. Recreational runners (maximal oxygen consumption = 51.4 ± 9.8 mL·kg(-1)·min(-1)) (n = 16) completed a maximal treadmill test followed by trials where they selected treadmill velocity (VEL) (1% grade) to produce RPE 4 and RPE 7 (10 min each). RPE production trials followed CAF (6 mg·kg(-1)) or placebo (PLA) (counterbalanced) ingestion. Participants were blinded to treadmill VEL but the Omni RPE scale was in full view. Repeated-measures ANOVA showed a main effect (trial) for VEL (CAF ∼5 m·min(-1) faster) for RPE 4 (p = 0.07) and RPE 7 (p = 0.03). Mean heart rate and oxygen consumption responses were consistently higher for CAF but failed to reach statistical significance. Individual responses to CAF were labeled positive using a criterion of 13.4 m·min(-1) faster for CAF (vs. PLA). Ten of 32 trials (31%) were positive responses. In these, systematic increases were observed for heart rate (∼12 beats·min(-1)) and oxygen consumption (∼5.7 mL·kg(-1)·min(-1)). Blunted/stable respiratory exchange ratio values at higher VEL for positive responders suggest increased free fatty acid reliance during CAF. In conlusion, mean results show a mild effect of CAF during RPE production. However, individual responses more clearly indicate whether a true effect is possible. Trainers and individuals should consider individual responses to ensure effectively intensity regulation.

  8. Effect of sodium deprivation on contraction and charge movement in frog skeletal muscle fibres.

    Science.gov (United States)

    Garcia, M C; Diaz, A F; Godinez, R; Sanchez, J A

    1992-06-01

    Measurements of isometric tension were performed in single twitch skeletal muscle fibres and the effect of extracellular Na+ removal on contraction was investigated. Na+ withdrawal brought about an increase in the amplitude of K+ contractures and their time course became faster. The potentiation of K+ contractures depended strongly on extracellular Ca2+ and developed slowly following an exponential time course with a time constant of approximately 8 min. Removal of extracellular Na+ greatly increased the amplitude of caffeine contractures and lowered its threshold: caffeine (0.5 mM) had no effect on resting tension in Ringer's but produced contractures in Na(+)-free solutions. Intramembrane charge movement (charge 1) was monitored in contracting voltage-clamped segments of frog skeletal muscle fibres using the triple-Vaseline-gap technique. Movement of charge 1 did not depend on the presence of extracellular Na+. However, the mechanical threshold decreased by approximately 10 mV at several pulse durations and the charge which produced just detectable contractions decreased by approximately 5 nC microF-1 in the absence of extracellular Na+. Intracellular heparin (40 mg ml-1) increased the mechanical threshold by approximately 20 mV without affecting the movement of charge 1. The effect of Na(+)-free solutions on the mechanical threshold was additive to that of heparin. It is concluded that the effects of Na(+)-withdrawal on contraction take place at a location beyond the voltage sensor of excitation-contraction coupling.

  9. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Colin, E-mail: c.f.dowding@lboro.ac.uk [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Lawrence, Jonathan [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2010-04-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm{sup 2}. This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on

  10. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment.

    Science.gov (United States)

    Saunders, A G; Dugas, J P; Tucker, R; Lambert, M I; Noakes, T D

    2005-03-01

    The purposes of this study were to determine (i) the effects of different facing air velocities on body temperature and heat storage during exercise in hot environmental conditions and (ii) the effects of ingesting fluids at two different rates on thermoregulation during exercise in hot conditions with higher air velocities. On five occasions nine subjects cycled for 2 h at 33.0 +/- 0.4 degrees C with a relative humidity of 59 +/- 3%. Air velocity was maintained at 0.2 km h(-1) (0 WS), 9.9 +/- 0.3 km h(-1) (10 WS), 33.3 +/-2.2 km h(-1) (100 WS) and 50.1 +/- 3.2 km h(-1) (150 WS) while subjects replaced 58.8 +/- 6.8% of sweat losses. In the fifth condition, air velocity was maintained at 33.7 +/- 2.2 km h(-1) and subjects replaced 80.0 +/- 6.8% of sweat losses (100.80 WS). Heat storage, body temperature and rating of perceived exertion were higher in 0 and 10 WS compared with all other conditions. There were no differences in any measured variable between 100 and 150 WS, or between 100 and 100.80 WS. Thus, the evaporative capacity of the environment is increased with higher air velocities, reducing heat storage and body temperature. At higher air velocities, a higher rate of fluid ingestion did not influence heat storage, body temperature or sweat rate. The finding of previous laboratory studies showing a beneficial effect of high rates of fluid ingestion on thermoregulation during exercise in hot, humid, windstill conditions cannot be extrapolated to out-of-doors exercise in which facing air velocities are seldom lower than the athlete's rate of forward progression.

  11. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardia, R. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy); Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Bosin, A.; Serra, G. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Cappellini, G., E-mail: giancarlo.cappellini@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy)

    2016-10-20

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  12. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-04-01

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index κ increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al. [Geophys. Res. Lett. 25, 2025 (1998)].

  13. Stability of Positively Charged Nanoemulsion Formulation Containing Steroidal Drug for Effective Transdermal Application

    Directory of Open Access Journals (Sweden)

    Stephanie Da Costa

    2014-01-01

    Full Text Available This paper emphasizes the formation of a positively charged nanoemulsion system for steroid drugs (hydrocortisone. It is believed that positively charged nanoemulsion provides more effective penetration of the skin. Therefore in our study we focused on the incorporation of phytosphingosine which serves as a positively charged cosurfactant in the nanoemulsion system. Negatively charged nanoemulsions were formulated mainly for comparison. Freshly prepared formulations were formed with particle size less than 300 nm and showed good stability over time. The oil-in-water nanoemulsion also showed good viscosity, conductivity, and pH values. From TEM micrograph, particle size showed consistent results with the measurement using photon correlation spectroscopy. It was concluded that both positively and negatively charged nanoemulsions showed good stability and have great potential in transdermal delivery system. Though, further investigation of the drug release and drug penetration of both positively and negatively charged nanoemulsions will be studied to further prove the efficacy of nanoemulsion with hydrocortisone as a delivery system for dermal application.

  14. Studies of Space Charge Effects in the Proposed CERN PS2

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; /LBL, Berkeley; Ryne, Robert; /LBL, Berkeley; De Maria, Riccardo; /Brookhaven; Macridin, Alexandru; /Fermilab; Spentzouris, Panagiotis; /Fermilab; Papaphilippou, Yannis; /CERN; Wienands, Ulrich; /SLAC

    2012-06-22

    A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.

  15. Gain length fitting formula for free-electron lasers with strong space-charge effects

    Directory of Open Access Journals (Sweden)

    G. Marcus

    2011-08-01

    Full Text Available We present a power-fit formula, obtained from a variational analysis using three-dimensional free-electron laser theory, for the gain length of a high-gain free-electron laser’s fundamental mode in the presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. The approach is inspired by the work of Xie [Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000NIMAER0168-900210.1016/S0168-9002(0000114-5], and provides a useful shortcut for calculating the gain length of the fundamental Gaussian mode of a free-electron laser having strong space-charge effects in the 3D regime. The results derived from analytic theory are in good agreement with detailed numerical particle simulations that also include higher-order space-charge effects, supporting the assumptions made in the theoretical treatment and the variational solutions obtained in the single-mode limit.

  16. On the secondary charging effects and structure of mesospheric dust particles impacting on rocket probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, O.; Naesheim, L.I. [Inst. of Physics, Univ. of Tromso (Norway)

    2007-07-01

    The dust probe DUSTY, first launched during the summer of 1994 (flights ECT-02 and ECT-07) from Andoeya Rocket Range, northern Norway, was the first probe to unambiguously detect heavy charged mesospheric aerosols, from hereon referred to as dust. In ECT-02 the probe detected negatively charged dust particles in the height interval of 83 to 88.5 km. In this flight, the lower grid in the detector (Grid 2) measures both positive and negative currents in various regions, and we find that the relationship between the current measurements of Grid 2 and the bottom plate can only be explained by influence from secondary charge production on Grid 2. In ECT-07, which had a large coning, positive currents reaching the top grid of the probe were interpreted as due to the impact of positively charged dust particles. We have now reanalyzed the data from ECT-07 and arrived at the conclusion that the measured positive currents to this grid must have been mainly due to secondary charging effects from the impacting dust particles. The grid consists of a set of parallel wires crossed with an identical set of wires on top of it, and we find that if the observed currents were created from the direct impact of charged dust particles, then they should be very weakly modulated at four times the rocket spin rate {omega}{sub R}. Observations show, however, that the observed currents are strongly modulated at 2{omega}{sub R}. We cannot reproduce the observed large modulations of the impact currents in the dust layer if the currents are due only to the transfer of the charges on the impacted dust particles. Based on the results of recent ice cluster impact secondary charging experiments by Tomsic (2003), which found that a small fraction of the ice clusters, when impacting with nearly grazing incidence, carried away one negative charge - 1e, we have arrived at the conclusion that similar, but significantly more effective, charging effects must be predominantly responsible for the positive

  17. Effects of cervical high-velocity low-amplitude techniques on range of motion, strength performance, and cardiovascular outcomes

    DEFF Research Database (Denmark)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L.

    2017-01-01

    BACKGROUND: Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. OBJECTIVE: This review aims to describe the effects of cervical HVLA man...... to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions....

  18. Seismic velocity uncertainties and their effect on geothermal predictions: A case study

    Science.gov (United States)

    Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group

    2017-04-01

    Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.

  19. Effect of hospital nutrition support on growth velocity and nutritional status of low birth weight infants.

    Science.gov (United States)

    Azzeh, Firas S; Alazzeh, Awfa Y; Dabbour, Ibrahim R; Jazar, Abdelelah S; Obeidat, Ahmed A

    2014-10-01

    Infants with low birth weights are provided with hospital nutrition support to enhance their survivability and body weights. However, different hospitals have different nutrition support formulas. Therefore, the effectiveness of these nutrition support formulas should be investigated. To assess the effect of hospital nutrition support on growth velocity and nutritional status of low birth weight infants at Al-Noor hospital, Saudi Arabia. A cross-sectional study was conducted between October, 2010 and December, 2012. Three hundred newborns were recruited from Al-Noor Hospital in Makkah city, Saudi Arabia. Infants were selected according to their birth weights and were divided equally into three groups; (i) Low Birth Weight (LBW) infants (1501- 2500 g birth weight), (ii) Very Low Birth Weight (VLBW) infants (1001-1500 g birth weight) and (iii) Extremely Low Birth Weight (ELBW) infants ( 0.05) were observed among groups. Serum calcium, phosphorus and potassium levels at discharge were higher (p Hospital was not sufficient to achieve normal growth rate for low birth weight infants, while biochemical indicators were remarkably improved in all groups. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  1. The role of acid-base effects on particle charging in apolar media.

    Science.gov (United States)

    Gacek, Matthew Michael; Berg, John C

    2015-06-01

    charging in the context of the many other factors that are important to the phenomenon, including the presence of water, of other components (e.g., synergists and contaminants), and of electric field effects. The goal is the construction of a road map describing the anticipated particle charging behavior in a wide variety of systems, assisting in the choice or development of materials for specific applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of radiation on charge-coupled devices

    Science.gov (United States)

    Carnes, J. E.; Cope, A. D.; Rockett, L. R.; Schlesier, K. M.

    1975-01-01

    The effects of 1 MeV electron irradiation upon the performance of two phase, polysilicon aluminum gate CCDs are reported. Both n- and p-surface channel and n-buried channel devices are investigated using 64- and 128-stage line arrays. Characteristics measured as a function of radiation dose include: Transfer inefficiency, threshold voltage, field effect mobility, interface state density, full well signal level and dark current. Surface channel devices are found to degrade considerably at less than 10 to the 5th power rads (Si) due to the large increase in fast interface state density caused by radiation. Buried channel devices maintain efficient operation to the highest dose levels used.

  3. The effect of fatigue and velocity on the relative timing of hamstring activation in relation to quadriceps.

    Science.gov (United States)

    Abbaszadeh-Amirdehi, Maryam; Khademi-Kalantari, Khosro; Talebian, Saeed; Rezasoltani, Asghar; Hadian, Mohammad Reza

    2012-10-01

    Inter-muscular coordination has an important role in proper function and prevention of injuries in the knee joint. The purpose of this study was to characterize the effect of velocity and fatigue on the relative activation onset of hamstring to quadriceps muscles during knee extension. Thirty one healthy and non-athletic volunteers (24 women, 7 men) were recruited for the study. The onset time of vastus medialis, vastus lateralis, rectus femoris, medial and lateral hamstring were measured during maximum voluntary extension of the knee joint at velocities of 45° /s, 150° /s & 300° /s before and after fatigue and the mean delay onset of all pairs of H-Q were measured. A two-way repeated measures ANOVA test was used to compare across the mean delayed onset of hamstring related to quadriceps muscles at various velocities. Hamstring muscle showed a delayed activation related to quadriceps and increasing the velocity of shortening has a prominent effect on the inter-muscular coordination with early activation of hamstring related to quadriceps muscles (F = 6.7, p muscles to over strain and possible injuries. The main effect of fatigue condition and its interaction with velocity however, showed statistically nonsignificant result. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    Thus, numerical picture suggests that most of the radiative effects dominate at large implying condensation and structure formation down to much shorter scales (nearly by a factor of 2) than otherwise possible by purely. Jeans mode (curve 1). Physically, gravitational condensation is inhibited by the 'thermal pressure' (set up ...

  5. Analysing degradation effects in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    Aging-sensitive technology nodes that are resulting in performance degradations in their electronic system implementations require aging simulations in advance for a more dependable design. Simulating time-domain aging effects in these electronic systems, especially in complex analog and

  6. EFFECTIVE ACIDITY CONSTANT BEHAVIOR NEAR ZERO CHARGE CONDITIONS

    Science.gov (United States)

    Surface site (>SOH group) acidity reactions require expressions of the form: Ka = [>SOHn-1(z-1)]aH+EXP(-DG/RT)/[>SOHnz] (where all variables have their usual meaning). One can rearrange this expression to generate an effective acidity constant historically defined as: Qa = Ka...

  7. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.

    Science.gov (United States)

    Gonzalez-Zalba, M Fernando; Shevchenko, Sergey N; Barraud, Sylvain; Johansson, J Robert; Ferguson, Andrew J; Nori, Franco; Betz, Andreas C

    2016-03-09

    Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.

  8. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    Science.gov (United States)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  9. The critical velocity effect as a cause for the H\\alpha emission from the Magellanic stream

    OpenAIRE

    Konz, C.; Lesch, H.; Birk, G. T.; Wiechen, H.

    2000-01-01

    Observations show significant H\\alpha-emissions in the Galactic halo near the edges of cold gas clouds of the Magellanic Stream. The source for the ionization of the cold gas is still a widely open question. In our paper we discuss the critical velocity effect as a possible explanation for the observed H\\alpha-emission. The critical velocity effect can yield a fast ionization of cold gas if this neutral gas passes through a magnetized plasma under suitable conditions. We show that for paramet...

  10. Gas-surface dynamics and charging effects during plasma processing of semiconductors

    Science.gov (United States)

    Hwang, Gyeong Soon

    energy ions and lowering the electron temperature helps decrease the impact of charging. In this numerical work, we found that charging damage is a strong function of the shape of feature profiles evolving during etching as well as the extent of microloading. Charging damage may occur by means of surging currents and steady-state currents. Although the lack of experimental evidence still leaves room for other mechanisms, the experimental observations of the notching behavior suggest strongly that the notching effect is closely connected with pattern-dependent charging. Our charging simulations have demonstrated that the potential difference between the trench bottom and the poly-Si gate is mainly responsible for notching by deflecting incoming ions. The study of the mask charging effect on feature profile evolution during chlorine plasma etching of silicon suggests that differential charging at mask sidewalls could significantly influence the evolution of etch profiles under typical plasma conditions when the mask thickness is large. At moderate mask aspect ratios, the local electric fields created by mask charging cause to the deflection of ions to the trench sidewalls, increasing the flux of energetic particles scattered into the base of the trench sidewalls and thus aggravating microtrenching. On the other hand, at high mask aspect ratios, mask charging results in focusing incoming ions onto the center of the trench bottom, causing a more rounded trench bottom without microtrenching. (Abstract shortened by UMI.)

  11. Resistive Micromegas for sampling calorimetry, a study of charge-up effects

    Energy Technology Data Exchange (ETDEWEB)

    Chefdeville, M., E-mail: chefdevi@lapp.in2p3.fr [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux (France); Karyotakis, Y. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux (France); Geralis, T. [INP, NCSR Demokritos, Athens (Greece); Titov, M. [IRFU, Saclay CEA, Gif-sur-Yvette (France)

    2016-07-11

    Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.

  12. Effects of flapless bur decortications on movement velocity of dogs′ teeth

    Directory of Open Access Journals (Sweden)

    Seyed Mohammadreza Safavi

    2012-01-01

    Conclusion: (1 Corticotomy facilitated orthodontic tooth movement is achievable with flapless bur decortication technique. (2 Velocity of tooth movement decreases in later stages of treatment due to maturation of newly formed bone at decortication sites.

  13. Acceleration bias in visually perceived velocity change and effects of Parkinson's bradykinesia

    NARCIS (Netherlands)

    Beudel, Martijn; de Geus, Crista M.; Leenders, Klaus L.; de Jong, Bauke M.

    2013-01-01

    In Parkinson's disease (PD), basal ganglia dysfunction leads to disturbed sensorimotor integration and associated timing. Previous functional MRI and behavioural PD studies on timing indicated a specific striatal contribution to assessing spatial displacement in velocity estimation. In this

  14. Anomalous doping effects on charge transport in graphene nanoribbons.

    Science.gov (United States)

    Biel, Blanca; Blase, X; Triozon, François; Roche, Stephan

    2009-03-06

    We present first-principles calculations of quantum transport in chemically doped graphene nanoribbons with a width of up to 4 nm. The presence of boron and nitrogen impurities is shown to yield resonant backscattering, whose features are strongly dependent on the symmetry and the width of the ribbon, as well as the position of the dopants. Full suppression of backscattering is obtained on the pi-pi* plateau when the impurity preserves the mirror symmetry of armchair ribbons. Further, an unusual acceptor-donor transition is observed in zigzag ribbons. These unconventional doping effects could be used to design novel types of switching devices.

  15. The Effect of Ulnar Collateral Ligament Reconstruction on Pitch Velocity in Major League Baseball Pitchers

    OpenAIRE

    Lansdown, Drew A.; Feeley, Brian T.

    2014-01-01

    Background: The medial ulnar collateral ligament (UCL) is the primary restraint to valgus load, and injury is commonly encountered as a result of overuse in throwing athletes. Reconstruction of this ligament has allowed for a high rate of return to sport for elite pitchers. Public perception of this procedure has resulted in a commonly held belief of increased throwing velocity following UCL reconstruction. Hypothesis: Fastball velocity for Major League Baseball (MLB) pitchers is significantl...

  16. On the Critical Ionization Velocity Effect in Interstellar Space and Possible Detection of Related Continuum Emission

    OpenAIRE

    Verschuur, Gerrit L.

    2007-01-01

    Interstellar neutral hydrogen (HI) emission spectra manifest several families of linewidths whose numerical values (34, 13 & 6 km/s) appear to be related to the critical ionization velocities (CIVs) of the most abundant interstellar atomic species. Extended new analysis of HI emission profiles shows that the 34 km/s wide component, probably corresponding to the CIV for helium, is pervasive. The 34 km/s wide linewidth family is found in low-velocity (local) neutral hydrogen (HI) profiles as we...

  17. Gold plasmonic effects on charge transport through single molecule junctions

    Science.gov (United States)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  18. Non-targeted effects induced by high LET charged particles

    Science.gov (United States)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  19. The effect of the impactor diameter and temperature on low velocity impact behavior of CFRP laminates

    Science.gov (United States)

    Evci, C.; Uyandıran, I.

    2017-02-01

    Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.

  20. Effect of cavitation on velocity in the near-field of a diesel nozzle

    CERN Document Server

    Purwar, Harsh; Idlahcen, Saïd; Roze, Claude; Blaisot, Jean-Bernard; Meès, Loïc; Michard, Marc

    2016-01-01

    The entire process of atomization of the fuel in an internal combustion engine plays a very important role in determining the overall efficiency of these engines. A good atomization process could help the fuel to mix with the air properly leading to its efficient combustion, thereby reducing the emitted pollutants as well. The recent trend followed by the engineers focused on designing fuel injectors for more efficient atomization is to increase the atomization pressure while decreasing the nozzle orifice diameter. A consequence of this is the development of cavitation (formation of vapor cavities or bubbles in the liquid) inside the injector close to the nozzle. The main reason behind this is the sudden changes in the pressure inside the injector and these cavities or bubbles are usually formed where the pressure is relatively low.This work mainly focuses on studying the formation of cavitation and its effect on the velocity of the spray in the near nozzle region using asymmetrical transparent nozzle equippe...

  1. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    Science.gov (United States)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  2. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  3. Sensitivity analysis of the effect of airflow velocity on the thermal comfort in underground mines

    Directory of Open Access Journals (Sweden)

    Pedram Roghanchi

    2016-01-01

    Full Text Available Displeasure in respect to air volumes and associated airflow velocities are well-documented complaints in underground mines. The complaints often differ in the form that there is too little airflow velocity or too much. In hot and humid climates such as those prevailing in many underground mines, convection heat transfer is the major mode of heat rejection from the human body, through the process of sweat evaporation. Consequently, the motion of the mine air plays a pivotal role in aiding this process. In this paper, a method was developed and adopted in the form of a “comfort model” to predict the optimum airflow velocity required to maintain heat comfort for the underground workforce at different activity levels (e.g. metabolic rates. Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wetness. Tolerable worker heat exposure times were also predicted in order to minimize thermal strain due to dehydration. The results indicate that an airflow velocity in the range of 1–2 m/s is the ideal velocity in order to provide a stress/strain free climate and also guarantee thermal comfort for the workers. Therefore, an optimal airflow velocity of 1.5 m/s for the miners' thermal comfort is suggested.

  4. Effect of flow distributors on uniformity of velocity profile in a baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Jen Chen; Man-Ting Cheng [Tajen Institute of Technology, Ping-Tung Hsien (Taiwan). Department of Environmental Engineering and Science

    2005-07-01

    In recent years, baghouses have been used as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance. 11 refs., 10 figs.

  5. Effect of flow distributors on uniformity of velocity profile in a baghouse.

    Science.gov (United States)

    Chen, Chi-Jen; Cheng, Man-Ting

    2005-07-01

    In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.

  6. Effect of stone content on water flow velocity over Loess slope: Frozen soil

    Science.gov (United States)

    Ban, Yunyun; Lei, Tingwu; Feng, Ren; Qian, Dengfeng

    2017-11-01

    Soils in high-altitude or -latitude regions are commonly rich in stone fragments, which are frequently frozen. The hydrodynamics of water flow over frozen, stony slopes must be investigated to understand soil erosion and sediment transportation. The objective of this laboratory experiments was to measure water flow velocity over frozen slopes with different stone contents by using electrolyte trace method. The experiments were performed under slope gradients of 5°, 10°, 15°, and 20°; flow discharge rates of 1, 2, 4, and 8 L/min; and stone contents of 0%, 10%, 20%, and 50% on mass basis. Nine equidistant sensors were used to measure flow velocity along flume from the top of the slope. Results indicated that stone content significantly affected flow velocity under increasing slope gradient. The increase in stone content rapidly reduced the flow velocity. The flow velocities over frozen slopes were 1.21 to 1.30 times of those over non-frozen slopes under different slope gradients and flow rates. When the stone content increased from 0% to 20%, proportions gradually decreased from 52% to 25% and 13%. Additionally, flow velocities over frozen and non-frozen soil slopes became gradually similar with increasing stone content. This study will help elucidate the hydrodynamics, soil erosion, and sediment transport behaviors of frozen or partially unfrozen hillslopes with different stone contents.

  7. Effects of High Charge Densities in Multi-GEM Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Muller, H.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-01-01

    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.

  8. Motion of particles near a magnetized tidal charged black hole

    Science.gov (United States)

    Sharif, M.; Kousar, Lubna

    2017-07-01

    This paper is devoted to study the effects of tidal charge on the motion of both neutral as well as charged particles around a magnetized tidal charged black hole. We analyze the innermost stable circular orbits and conditions for escape velocity. In order to discuss stability of orbits, we explore Lyapunov exponent and effective force on the particle. The center of mass energy of the interacting particles is studied in the presence/absence of external magnetic field. We conclude that the external magnetic field as well as tidal charge has a great influence on the particle's motion.

  9. Studies of Polyelectrolyte Solutions V. Effects of Counterion Binding by Polyions of Varying Charge Density and Constant Degree of Polymerization

    National Research Council Canada - National Science Library

    Nordmeier, Eckhard

    1994-01-01

    The effect of the charge density on the behaviour of polyelectrolytes in contact with counterions was studied by activity measurements, Donnan dialysis, dye-spectrophotometry, and potentiometric titration...

  10. Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

    DEFF Research Database (Denmark)

    De Vico, L.; Iversen, L.; Sørensen, Martin Hedegård

    2011-01-01

    A single charge screening model of surface charge sensors in liquids (De Vico et al., Nanoscale, 2011, 3, 706-717) is extended to multiple charges to model the effect of the charge distributions of analyte proteins on FET sensor response. With this model we show that counter-intuitive signal...... changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969...

  11. AN INVESTIGATION OF THE EFFECTS OF AIR VELOCITY AND MOVEMENT ON THE THERMAL COMFORT INSIDE AN AUTOMOBILE

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2003-03-01

    Full Text Available In this study, heat loss from various parts of human body, generated sweat mass and skin wetness depends on this are determined and their effect on thermal comfort are investigated. In the model human body is examined as divided into 16 parts and heat and mass transfer from each parts is simulated, as air flow velocity over the surface and thermal and evaporation resistance of clothing are accounted for the model. After checking the validity of the model (in comparison with results as an experimental study heat transfer coefficients, sensible and latent heat loss, skin wetness and variations of predicted percentage of dissatisfied (PPD are investigated for various air velocities, air temperatures and clothing groups. It is included that, average skin wetness decreases with increasing air velocity and sensible and latent heat losses increase due to the increase in heat transfer coefficient with increasing air velocity. However increase in sensible heat loss is more than latent heat loss. The most sensitive parameter to the air velocity is PPD.

  12. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  13. MICROBIAL TRANSPORT THROUGH POROUS MEDIA; THE EFFECTS OF HYDRAULIC CONDUCTIVITY AND INJECTION VELOCITY. (R825513C019)

    Science.gov (United States)

    The effects of hydraulic conductivity and injection velocity on microbial transport through porous media were investigated. Glass chromatography columns were packed separately with clean quartz sand of two diameters (0.368mm or 0.24O mm) and two hydraulic conductivities (1.37&...

  14. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  15. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  16. EFFECT OF ULTRASOUND ACTIVATION OF SHS-CHARGE ON THE FINAL PRODUCT

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2016-01-01

    Full Text Available The paper describes the effect of ultrasound activation of dolomite, which is used for producing refractory material by the SHS method, on the final product. X-ray investigation has demonstrated that ultrasound activation of the initial charge brings about changes in the phase composition of the synthesized product.

  17. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of dust size distribution and dust charge fluctuation on dust ion ...

    Indian Academy of Sciences (India)

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary ...

  19. Within-Individual Variation in Preferences Equity Effects of Congestion Charges

    DEFF Research Database (Denmark)

    Borjesson, Maria; Cherchi, Elisabetta; Bierlaire, Michel

    2013-01-01

    that variation in VTT between observed trips reflects the variation in the average VTT between individuals, which is usually made in equity analyses, will over-state the between-individual variation. The results suggest that if intraindividual variation in preferences is not taken into account, the negative...... equity effects of congestion charges are likely to be overestimated....

  20. Crystal structure and charge distribution of pyrazine: effects of extinction, thermal diffuse scattering and series termination

    NARCIS (Netherlands)

    de With, G.; Harkema, Sybolt; Feil, D.

    1976-01-01

    The crystal structure and electronic charge distribution of pyrazine (1,4-diazabenzene) has been determined at 184 K by X-ray methods. The structural results of Wheatley [Acta Cryst. (1957), 10, 182-187] have been confirmed. A clear indication of bonding effects is obtained. Neither positional and

  1. Gate-bias assisted charge injection in organic field-effect transistors

    NARCIS (Netherlands)

    Brondijk, J. J.; Torricelli, F.; Smits, E. C. P.; Blom, P. W. M.; de Leeuw, D. M.

    The charge injection barriers in organic field-effect transistors (OFETs) seem to be far less critical as compared to organic light-emitting diodes (OLEDs). Counter intuitively, we show that the origin is image-force lowering of the barrier due to the gate bias at the source contact, although the

  2. Gate-bias assisted charge injection in organic field-effect transistors

    NARCIS (Netherlands)

    Brondijk, J.J.; Torricelli, F.; Smits, E.C.P.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The charge injection barriers in organic field-effect transistors (OFETs) seem to be far less critical as compared to organic light-emitting diodes (OLEDs). Counter intuitively, we show that the origin is image-force lowering of the barrier due to the gate bias at the source contact, although the

  3. Charge transport in dual-gate organic field-effect transistors

    NARCIS (Netherlands)

    Brondijk, J.J.; Spijkman, M.; Torricelli, F.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The charge carrier distribution in dual-gate field-effect transistors is investigated as a function of semiconductor thickness. A good agreement with 2-dimensional numerically calculated transfer curves is obtained. For semiconductor thicknesses larger than the accumulation width, two spatially

  4. Effect of current density on electron beam induced charging in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Boughariou, Aicha [LaMaCoP, Universite de Sfax, Faculte des Sciences, 3038 Sfax (Tunisia)]. E-mail: aicha_boughariou@yahoo.fr; Hachicha, Olfa [LaMaCoP, Universite de Sfax, Faculte des Sciences, 3038 Sfax (Tunisia); Kallel, Ali [LaMaCoP, Universite de Sfax, Faculte des Sciences, 3038 Sfax (Tunisia); Blaise, Guy [LPS, Universite Paris-Sud XI, Batiment 510, Orsay 91405 (France)

    2005-11-15

    It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) {sigma} during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime ({sigma} = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.

  5. Carrier polarity engineering in carbon nanotube field-effect transistors by induced charges in polymer insulator

    Science.gov (United States)

    Aikawa, Shinya; Kim, Sungjin; Thurakitseree, Theerapol; Einarsson, Erik; Inoue, Taiki; Chiashi, Shohei; Tsukagoshi, Kazuhito; Maruyama, Shigeo

    2018-01-01

    We present that the electrical conduction type in carbon nanotube field-effect transistors (CNT-FETs) can be converted by induced charges in a polyvinyl alcohol (PVA) insulator. When the CNT channels are covered with pure PVA, the FET characteristics clearly change from unipolar p-type to ambipolar. The addition of ammonium ions (NH4+) in the PVA leads to further conversion to unipolar n-type conduction. The capacitance - voltage characteristics indicate that a high density of positive charges is induced at the PVA/SiO2 interface and within the bulk PVA. Electrons are electrostatically accumulated in the CNT channels due to the presence of the positive charges, and thus, stable n-type conduction of PVA-coated CNT-FETs is observed, even under ambient conditions. The mechanism for conversion of the conduction type is considered to be electrostatic doping due to the large amount of positive charges in the PVA. A blue-shift of the Raman G-band peak was observed for CNTs coated with NH4+-doped PVA, which corresponds to unipolar n-type CNT-FET behavior. These results confirm that carrier polarity engineering in CNT-FETs can be achieved with a charged PVA passivation layer.

  6. STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles

    Directory of Open Access Journals (Sweden)

    Tibor Kudernac

    2011-10-01

    Full Text Available Despite their importance in self-assembly processes, the influence of charged counterions on the geometry of self-assembled organic monolayers and their direct localisation within the monolayers has been given little attention. Recently, various examples of self-assembled monolayers composed of charged molecules on surfaces have been reported, but no effort has been made to prove the presence of counterions within the monolayer. Here we show that visualisation and exact localisation of counterions within self-assembled monolayers can be achieved with scanning tunnelling microscopy (STM. The presence of charges on the studied shape-persistent macrocycles is shown to have a profound effect on the self-assembly process at the liquid–solid interface. Furthermore, preferential adsorption was observed for the uncharged analogue of the macrocycle on a surface.

  7. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors

    Science.gov (United States)

    Ahmed, Sohail; Yi, Jiabao

    2017-10-01

    Two-dimensional (2D) materials have attracted extensive interest due to their excellent electrical, thermal, mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide (TMDC), another kind of 2D material, has a nonzero direct band gap (same charge carrier momentum in valence and conduction band) at monolayer state, promising for the efficient switching devices (e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2D-TMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.

  8. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N. [State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-12-15

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulas are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.

  9. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  10. The effect of cyanotic and acyanotic congenital heart disease on children’s growth velocity

    Directory of Open Access Journals (Sweden)

    Dewi Awaliyah Ulfah

    2017-06-01

    Full Text Available Background Congenital heart disease (CHD can lead to failure to thrive. Decreased energy intake, malabsorption, increased energy requirements, and decreased growth factors (growth hormone/insulin-like growth factor 1 axis are related to malnutrition and growth retardation in children with CHD. Objective Tocompare the impact of cyanotic and acyanotic CHD on children’s growth velocity (using the 2009 WHO growth velocity chart. Methods This study was conducted in patients less than 24 months of age with CHD in the Pediatric Cardiology Specialist Unit Dr. Moewardi Hospital, Surakarta, Central Java, from December 2016 to February 2017. Subjects’ weights were evaluated at the beginning of the study and two months later. Data were compared to the WHO Growth Velocity chart and analyzed by Chi-square test. Results Of 46 patients with CHD (23 cyanotic, 23 acyanotic, 10 patients (21.7% were identified with failure to thrive, i.e., 5th percentile for growth velocity than were children with cyanotic CHD (OR 5.600; 95%CI 1.038 to 30.204; P=0.032. Acute upper respiratory tract infection was not significantly associated with growth velocity (OR 2.273; 95%CI 0.545 to 9.479; P=0.253. Conclusion Children with cyanotic CHD have 5.6 times higher risk of failure to thrive than children with acyanotic CHD.

  11. Effect of the Lifting Velocity and Container Shape on Angle of Repose of Iron Ore Particles

    Directory of Open Access Journals (Sweden)

    Tongqing Li

    2017-01-01

    Full Text Available To investigate the impact of lifting velocity and container shape on angle of repose, the fixed-base cylinder method was performed using three types of container shape. The container shape was lifted a series of lifting velocities. Six size fractions of iron ore particles ranging from coarser to fine particles were used as the test materials. And the sand-pile calibration method was then used to calibrate the contact parameters of iron ore particles. Results show angle of repose decreased exponentially with the lifting velocity, while it appeared approximately to be invariant to particle shape, for all size fractions. The sand pile highly depends on the container shape at a low lifting velocity but appears to be invariant to particle size for a high lifting velocity. And then a predictive equation is established and a very close agreement between the predicted and measured angle of repose is attained. Finally, a series of DEM simulations considering the irregular particle shape are conducted by means of sphere clump method to calibrate the contact parameters and are in good visual agreement with the experimental results, indicating the “tuned” contact parameters as well as the applicability of the predicted equation.

  12. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    Science.gov (United States)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  13. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity.

    Science.gov (United States)

    Laufer, Yocheved; Hausdorff, Jeffrey M; Ring, Haim

    2009-01-01

    Prospective, single group, repeated measures 1-yr follow-up of 16 patients (aged 55 +/- 14.6 yrs) with chronic hemiparesis who used a neuroprosthesis for 1 yr and were available for follow-up. Outcome measures included the Short Version of the Stroke Impact Scale, the Participation domain of the Stroke Impact Scale, and the gait velocity. Significant increases of 18.0% in physical functioning and of 25.2% in participation in community life were attained 2 mos after the application of the neuroprosthesis. The gains were maintained at the 1-yr follow-up. Gait velocity increased significantly by 29.2% by 2 mos, with significant further increases of 22.6% observed at the 1-yr follow-up. Use of the studied neuroprosthesis to correct foot drop significantly enhanced functional abilities, social reintegration, and gait velocity. These results support the prolonged use of the neuroprosthesis in patients with chronic hemiparesis.

  14. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  15. Effect of jet-mainstream velocity ratio on flow characteristics and heat transfer enhancement of jet on flat plate flow

    Science.gov (United States)

    Puzu, N.; Prasertsan, S.; Nuntadusit, C.

    2017-09-01

    The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.

  16. Effects of Particle Surface Charge, Species, Concentration, and Dispersion Method on the Thermal Conductivity of Nanofluids

    Directory of Open Access Journals (Sweden)

    Raghu Gowda

    2010-01-01

    Full Text Available The purpose of this experimental study is to evaluate the effects of particle species, surface charge, concentration, preparation technique, and base fluid on thermal transport capability of nanoparticle suspensions (nanofluids. The surface charge was varied by changing the pH value of the fluids. The alumina (Al2O3 and copper oxide (CuO nanoparticles were dispersed in deionized (DI water and ethylene glycol (EG, respectively. The nanofluids were prepared using both bath-type and probe sonicator under different power inputs. The experimental results were compared with the available experimental data as well as the predicted values obtained from Maxwell effective medium theory. It was found that ethylene glycol is more suitable for nanofluids applications than DI water in terms of thermal conductivity improvement and stability of nanofluids. Surface charge can effectively improve the dispersion of nanoparticles by reducing the (aggregated particle size in base fluids. A nanofluid with high surface charge (low pH has a higher thermal conductivity for a similar particle concentration. The sonication also has a significant impact on thermal conductivity enhancement. All these results suggest that the key to the improvement of thermal conductivity of nanofluids is a uniform and stable dispersion of nanoscale particles in a fluid.

  17. Study of the impurity composition and effective plasma charge in the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Sorokina, N. V., E-mail: n.v.sorokina@inp.nsk.su; Burdakov, A. V.; Ivanov, I. A.; Polosatkin, S. V.; Postupaev, V. V.; Rovenskikh, A. F.; Shoshin, A. A. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-07-15

    Heating and confinement of plasma in a multimirror magnetic configuration have been studied at the GOL-3 facility (Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk). The experiments are aimed at estimating the densities and charge states of the main impurities in the GOL-3 plasma and determining their contribution to the effective plasma charge. Plasma with a density of ∼10{sup 15} cm{sup −3} was heated by a relativistic electron beam (1 MeV, 8 μs, ⩽200 kJ). At the end of electron beam injection, the plasma temperature reached 1 keV. The densities of impurities were determined using VUV and visible spectroscopy, as well as mass spectrometry of the residual vacuum. To determine the effective plasma charge, the experimental data were compared with the results of numerical simulations of the ionization balance of impurities. It is shown that the effective plasma charge calculated with allowance for the contributions from the main impurities does not exceed Z{sub eff} = 1.8, which cannot explain the experimentally observed improved confinement of low-density plasma.

  18. The Effect of Atmospheric Cooling on Vertical Velocity Dispersion and Density Distribution of Brown Dwarfs

    Science.gov (United States)

    Ryan, Russell E., Jr.; Thorman, Paul A.; Schmidt, Sarah J.; Cohen, Seth H.; Hathi, Nimish P.; Holwerda, Benne W.; Lunine, Jonathan I.; Pirzkal, Nor; Windhorst, Rogier A.; Young, Erick

    2017-09-01

    We present a Monte Carlo simulation designed to predict the vertical velocity dispersion of brown dwarfs in the Milky Way. We show that since these stars are constantly cooling, the velocity dispersion has a noticeable trend with the spectral type. With realistic assumptions for the initial mass function, star formation history, and the cooling models, we show that the velocity dispersion is roughly consistent with what is observed for M dwarfs, decreases to cooler spectral types, and increases again for the coolest types in our study (˜T9). We predict a minimum in the velocity dispersions for L/T transition objects, however, the detailed properties of the minimum predominately depend on the star formation history. Since this trend is due to brown dwarf cooling, we expect that the velocity dispersion as a function of spectral type should deviate from the constancy around the hydrogen-burning limit. We convert from velocity dispersion to vertical scale height using standard disk models and present similar trends in disk thickness as a function of spectral type. We suggest that future, wide-field photometric and/or spectroscopic missions may collect sizable samples of distant (˜ 1 kpc) dwarfs that span the hydrogen-burning limit. As such, we speculate that such observations may provide a unique way of constraining the average spectral type of hydrogen burning. Support for program #13266 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.

  19. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    Directory of Open Access Journals (Sweden)

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  20. The effect of spatially varying velocity field on the transport of radioactivity in a porous medium.

    Science.gov (United States)

    Sen, Soubhadra; Srinivas, C V; Baskaran, R; Venkatraman, B

    2016-10-01

    In the event of an accidental leak of the immobilized nuclear waste from an underground repository, it may come in contact of the flow of underground water and start migrating. Depending on the nature of the geological medium, the flow velocity of water may vary spatially. Here, we report a numerical study on the migration of radioactivity due to a space dependent flow field. For a detailed analysis, seven different types of velocity profiles are considered and the corresponding concentrations are compared. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress

    Directory of Open Access Journals (Sweden)

    Philip A. Gillibrand

    2016-10-01

    Full Text Available We apply a three-dimensional hydrodynamic model to consider the potential effects of energy extraction by an array of tidal turbines on the ambient near-bed velocity field and local bed shear stress in a coastal channel with strong tidal currents. Local bed shear stress plays a key role in local sediment dynamics. The model solves the Reynold-averaged Navier-Stokes (RANS equations on an unstructured mesh using mixed finite element and finite volume techniques. Tidal turbines are represented through an additional form drag in the momentum balance equation, with the thrust imparted and power generated by the turbines being velocity dependent with appropriate cut-in and cut-out velocities. Arrays of 1, 4 and 57 tidal turbines, each of 1.5 MW capacity, were simulated. Effects due to a single turbine and an array of four turbines were negligible. The main effect of the array of 57 turbines was to cause a shift in position of the jet through the tidal channel, as the flow was diverted around the tidal array. The net effect of this shift was to increase near-bed velocities and bed shear stress along the northern perimeter of the array by up to 0.8 m·s−1 and 5 Pa respectively. Within the array and directly downstream, near-bed velocities and bed shear stress were reduced by similar amounts. Changes of this magnitude have the potential to modify the known sand and shell banks in the region. Continued monitoring of the sediment distributions in the region will provide a valuable dataset on the impacts of tidal energy extraction on local sediment dynamics. Finally, the mean power generated per turbine is shown to decrease as the turbine array increased in size.

  2. Combined effects of Mass and Velocity on forward displacement and phenomenological ratings: a functional measurement approach to the Momentum metaphor

    Directory of Open Access Journals (Sweden)

    Michel-Ange Amorim

    2010-01-01

    Full Text Available Representational Momentum (RepMo refers to the phenomenon that the vanishing position of a moving target is perceived as displaced ahead in the direction of movement. Originally taken to reflect a strict internalization of physical momentum, the finding that the target implied mass did not have an effect led to its subsequent reinterpretation as a second-order isomorphism between mental representations and principles of the physical world. However, very few studies have addressed the effects of mass on RepMo, and consistent replications of the null effect are lacking. The extent of motor engagement of the observers in RepMo tasks has, on the other hand, been suggested to determine the occurrence of the phenomenon; however, no systematic investigations were made of the degree to which it might modulate the effect of target mass. In the present work, we use Information Integration Theory to study the joint effects of different motor responses, target velocity and target mass on RepMo, and also of velocity and target mass on rating responses. Outcomes point not only to an effect of mass on RepMo, as to a differential effect of response modality on kinematic (e.g., velocity and dynamic (e.g., mass variables. Comparisons of patterns of mislocalisation with phenomenological ratings suggest that simplification of physical principles, rather than strict internalization or isomorphism per se, might underlie RepMo.

  3. Studies of the effect of charged hadrons on lead tungstate crystals

    CERN Document Server

    Nessi-Tedaldi, Francesca

    2008-01-01

    Scintillating crystals are used for calorimetry in several high-energy physics experiments. For some of them, performance has to be ensured in difficult operating conditions, like a high radiation environment, very large particle fluxes and high collision rates. Results are presented here from a thorough series of measurements concerning mainly the effect of charged hadrons on lead tungstate. It is also shown how these results can be used to predict the effect on crystals due to a given flux of particles.

  4. Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters

    DEFF Research Database (Denmark)

    Obersteiner, Veronika; Huhs, Georg; Papior, Nick Rübner

    2017-01-01

    -size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be highly non-linear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge...... effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems....

  5. The effect of altering loading distance on skeleton start performance: Is higher pre-load velocity always beneficial?

    Science.gov (United States)

    Colyer, Steffi L; Stokes, Keith A; Bilzon, James L J; Holdcroft, Danny; Salo, Aki I T

    2018-01-16

    Athletes initiating skeleton runs differ in the number of steps taken before loading the sled. We aimed to understand how experimentally modifying loading distance influenced sled velocity and overall start performance. Ten athletes (five elite, five talent; 67% of all national athletes) underwent two to four sessions, consisting of two dry-land push-starts in each of three conditions (preferred, long and short loading distances). A magnet encoder on the sled wheel provided velocity profiles and the overall performance measure (sled acceleration index). Longer pre-load distances (12% average increase from preferred to long distances) were related to higher pre-load velocity (r = 0.94), but lower load effectiveness (r = -0.75; average reduction 29%). Performance evaluations across conditions revealed that elite athletes' preferred distance push-starts were typically superior to the other conditions. Short loading distances were generally detrimental, whereas pushing the sled further improved some talent-squad athletes' performance. Thus, an important trade-off between generating high pre-load velocity and loading effectively was revealed, which coaches should consider when encouraging athletes to load later. This novel intervention study conducted within a real-world training setting has demonstrated the scope to enhance push-start performance by altering loading distance, particularly in developing athletes with less extensive training experience.

  6. The Microstructure Characteristics of RDX and their Effect on the Detonation Velocity

    Science.gov (United States)

    Bellitto, Victor; Melnik, Mikhail; Sherlock, Mary; Chang, Joseph; O'Connor, John; Mackey, Joseph; Nswc-Iheodtd Collaboration

    2017-06-01

    Numerous methods exist for the theoretical calculation of detonation parameters of explosives. However, thermodynamic-hydrodynamic based theoretical codes seldom take into account particle size as a basis for the computational analysis as they primarily focus on the equation of state of the detonation products, heat of formation and density of the explosive composition. This study utilized regression analysis to model the relationship between the microstructure characteristics and detonation velocity of a heterogeneous high-explosive composition containing RDX. The principal characteristics examined were the average particle size of RDX, impurity within the RDX particles, method of RDX manufacture, and compositional density. Statistical analysis demonstrated the relevancy of the microstructure influence on the detonation velocity of the developed experimental compositions of 73 wt. % solids and 27 wt. % polyurethane binder. The developed statistical model accurately predicts the detonation velocity of the heterogeneous composition used in our experiments. The model underscores the significance of the relationship between the average particle size and detonation velocity. The importance of using statistical models for selecting characteristics that result in optimum explosive performance are addressed.

  7. Effect of slip velocity on oscillatory MHD flow of stretched surface ...

    African Journals Online (AJOL)

    Analytical solution of an oscillatory boundary layer flow bounded by two horizontal flat plates, one of which is oscillating in its own plane and the other at rest, is developed by asymptotic expansion in order of epsilon for velocity, temperature and magnetic fields. The fluid and the plates are in a state of solid body rotation with ...

  8. Effect of grain size and angularity on seismic velocity in unconsolidated sediment

    Science.gov (United States)

    Keshvardoost, R.; Lorenzo, J. M.; Bonal, N.; Patterson, D.

    2016-12-01

    Near surface seismic interpretation of weathering profiles in crystalline rock assumes a seismic response controlled by multiple factors, including mineral grain shape, size distribution, packing, composition, burial depth and pore fluids. In particular, we consider experimentally in the lab, the role particle angularity and grain size may play in the observed P-wave velocity. We estimate P-wave velocity in 'sand' boxes (0.49 × 0.35 × 0.25 m) that contain homogeneous, angular, crushed, quartz sand and silt of 8 different mean grain sizes, ranging from 0.04 to 1.2 mm, as well as a glass-bead reference case. We use an in-house, calibrated, piezo-ceramic stack as a seismic source and a piezo-electric-film as a sensor (1- 5 kHz). In dry conditions, preliminary results imply a power-law relationship between Vp and average angular grain size and a larger transmission velocity for the rounded beads, despite their lower moduli. We consider a modified Biot model as well as the Hertz-Mindlin model to predict seismic velocity in angular quartz of different grain sizes and fluid content.

  9. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...

  10. Effects of respiratory manoeuvres on hepatic vein Doppler waveform and flow velocities in a healthy population

    Energy Technology Data Exchange (ETDEWEB)

    Altinkaya, Naime, E-mail: naimeto@yahoo.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Koc, Zafer, E-mail: koczafer@gmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Ulusan, Serife, E-mail: sulusan@hotmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Demir, Senay, E-mail: drsenaydemir@hotmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey); Gurel, Kamil, E-mail: kamilgurel@hotmail.com [Department of Radiology, Baskent University Medical School, Adana (Turkey); Baskent University, Faculty of Medicine, Department of Radiology, Adana (Turkey)

    2011-07-15

    Objective: This study was performed to determine the variations in Doppler waveforms and flow velocity during respiratory manoeuvres in healthy individuals with no liver disease. Materials and methods: In total, 100 individuals (75 women and 25 men) without known cardiac or liver disease were examined prospectively with duplex Doppler ultrasonography (US). We recorded the Doppler waveforms and peak systolic velocities (V{sub max}) of the middle hepatic vein during normal respiration, during breath-holding after quiet expiration and also during deep inspiration. Doppler waveforms are categorised as triphasic, biphasic or monophasic. Results: During normal respiration, hepatic venous waveforms were triphasic in 93% of subjects, monophasic in 6% and biphasic in 1%. During breath-holding after quiet expiration, the percentages were 91%, 6% and 3%, respectively. During deep inspiration, they were 80%, 18% and 2%, respectively. Although significant differences were noted between rates during deep inspiration and normal respiration, they were quite similar during normal respiration and breath-holding after quiet expiration (P < 0.05). The values of V{sub max} were significantly higher during normal respiration compared to quiet expiration and during quiet expiration compared to deep inspiration (P < 0.05). Conclusion: The velocities and waveforms of hepatic veins varied during respiratory manoeuvres. The status of respiration must be taken into consideration whilst examining the hepatic vein waveforms and velocities with duplex Doppler US.

  11. High-velocity resistance exercise protocols in older women: effects on cardiovascular response.

    Science.gov (United States)

    da Silva, Rodrigo P; Novaes, Jefferson; Oliveira, Ricardo J; Gentil, Paulo; Wagner, Dale; Bottaro, Martim

    2007-01-01

    Acute cardiovascular responses to different high-velocity resistance exercise protocols were compared in untrained older women. Twelve apparently healthy volunteers (62.6 ± 2.9 y) performed three different protocols in the bench press (BP). All protocols involved three sets of 10 repetitions performed with a 10RM load and 2 minutes of rest between sets. The continuous protocol (CP) involved ten repetitions with no pause between repetitions. The discontinuous protocols were performed with a pause of five (DP5) or 15 (DP15) seconds between the fifth and sixth repetitions. Heart rate (HR), systolic blood pressure (SBP), rate pressure product (RPP), Rating of Perceived Exertion (RPE), and blood lactate (BLa) were assessed at baseline and at the end of all exercise sets. Factorial ANOVA was used to compare the cardiovascular response among different protocols. Compared to baseline, HR and RPP were significantly (p exercise. Compared to baseline, RPE increased significantly (p exercise has a lower cardiovascular demand than continuous resistance exercise in older women. Key pointsThe assessment of cardiovascular responses to high-velocity resistance exercise in older individuals is very important for exercise prescription and rehabilitation in elderly population.Discontinuous protocol decrease myocardial oxygen consumption (HR x SBP) during the performance of dynamic high-velocity resistance exercise in older women.The decrease in RPP (~ 8.5%) during the discontinuous protocol has clinical implications when developing high-velocity resistance exercise strategies for elderly individuals.

  12. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.

    Science.gov (United States)

    Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning

    2015-10-01

    The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the

  13. Effect of Energy Drink Consumption on Power and Velocity of Selected Sport Performance Activities.

    Science.gov (United States)

    Jacobson, Bert H; Hester, Garrett M; Palmer, Ty B; Williams, Kathryn; Pope, Zachary K; Sellers, John H; Conchola, Eric C; Woolsey, Conrad; Estrada, Carlos

    2017-07-17

    Energy drinks comprise a multibillion dollar market focused on younger, active and competitive individuals. Marketing includes claims of improved alertness and performance. The purpose of this study was to assess power (W) and velocity (m·s) of a simulated, isolated forehand stroke (FHS) and a counter movement vertical jump (CVJ) before and after ingestion of a commercially available energy shot (ES) or a placebo (PL). Healthy college-aged male and female (N=36) volunteers were randomly placed in the ES or PL. Before and 30 min after ingesting either the ES or PL, participants performed three FHSs and CVJs. Power and velocity of each performance was measured using a linear velocity transducer and the highest value for each measure was used for subsequent analysis. The ES group demonstrated a significant (p=0.05) increase in velocity and power for the FHS, but not for the CVJ. All measures remained unchanged in the PL group for both, the FHS and CVJ. Females demonstrated a significant increase in velocity over males in FHS, but not in CVJ. It was concluded that while the dose of stimulants in the ES was adequate to improve performance of smaller muscle groups, it may not have been sufficient to affect the larger muscle groups of the lower legs which contribute to the CVJ. While the ES used in the present study contained a caffeine dosage within the NCAA limit and did improve performance for the upper-body, it must be noted that there are health risks associated with energy drink consumption.

  14. High-Velocity Resistance Exercise Protocols in Older Women: Effects on Cardiovascular Response

    Science.gov (United States)

    da Silva, Rodrigo P.; Novaes, Jefferson; Oliveira, Ricardo J.; Gentil, Paulo; Wagner, Dale; Bottaro, Martim

    2007-01-01

    Acute cardiovascular responses to different high-velocity resistance exercise protocols were compared in untrained older women. Twelve apparently healthy volunteers (62.6 ± 2.9 y) performed three different protocols in the bench press (BP). All protocols involved three sets of 10 repetitions performed with a 10RM load and 2 minutes of rest between sets. The continuous protocol (CP) involved ten repetitions with no pause between repetitions. The discontinuous protocols were performed with a pause of five (DP5) or 15 (DP15) seconds between the fifth and sixth repetitions. Heart rate (HR), systolic blood pressure (SBP), rate pressure product (RPP), Rating of Perceived Exertion (RPE), and blood lactate (BLa) were assessed at baseline and at the end of all exercise sets. Factorial ANOVA was used to compare the cardiovascular response among different protocols. Compared to baseline, HR and RPP were significantly (p < 0.05) higher after the third set in all protocols. HR and RPP were significantly (p < 0.05) lower in DP5 and DP15 compared with CP for the BP exercise. Compared to baseline, RPE increased significantly (p < 0.05) with each subsequent set in all protocols. Blood lactate concentration during DP5 and DP15 was significantly lower than CP. It appears that discontinuous high-velocity resistance exercise has a lower cardiovascular demand than continuous resistance exercise in older women. Key pointsThe assessment of cardiovascular responses to high-velocity resistance exercise in older individuals is very important for exercise prescription and rehabilitation in elderly population.Discontinuous protocol decrease myocardial oxygen consumption (HR x SBP) during the performance of dynamic high-velocity resistance exercise in older women.The decrease in RPP (~ 8.5%) during the discontinuous protocol has clinical implications when developing high-velocity resistance exercise strategies for elderly individuals. PMID:24149492

  15. Muscle activation during resistance training with no external load - effects of training status, movement velocity, dominance, and visual feedback.

    Science.gov (United States)

    Gentil, Paulo; Bottaro, Martim; Noll, Matias; Werner, Scott; Vasconcelos, Jessica Cabral; Seffrin, Aldo; Campos, Mario Hebling

    2017-10-01

    To explore the acute effects of training status, movement velocity, dominance, and visual feedback on muscle activation and rating of perceived exertion (RPE) during resistance training with no external load (no-load resistance training; NLRT). Thirty-three men (17 untrained and 16 trained), performed elbow flexions in four NLRT sessions: 1) slow velocity with EMG visual feedback, 2) slow velocity without EMG visual feedback, 3) fast velocity with EMG feedback, and 4) fast velocity without EMG feedback. RPE was measured using the Borg Discomfort scale. EMG for the biceps and triceps were recorded for both arms. EMG feedback had no influence on RPE. The peak and mean EMG values were not different for the biceps (93.8±11.5% and 50±13.1%) and triceps (93.7±23.9% and 49.6±16.2%). The results revealed a difference in the training status, with higher peak EMG for untrained than for trained participants (96.9±20% vs. 90.2±15.6%). However the values for mean EMG were not different between the untrained and trained (50.3±15.7% vs. 49.2±13.7%) participants. There was no difference in the peak (92.8±19% vs. 94.7±20.4%) and mean (49.8±15.0% vs. 49.7±14.5%) EMG values for the dominant and non-dominant sides. Peak EMG values were not different between faster and slower velocities (93.6±19.6% and 93.9±17.8%). However, mean EMG was higher for slower (50.5±14.4%) than for faster (48.5±15.4%) velocities. The peak and mean EMG during contractions with (93.3±17.5% and 49.5±14.1%) and without visual feedback (94.2±19.9% and 50±15.4%) were not significantly different. NLRT produces high levels of muscle activation independent of training, status, dominance, movement velocity, and visual feedback. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Chiral vortical effect from the compactified D4-branes with smeared D0-brane charge

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao; Chen, Yidian [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-03-15

    By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical effect from the compactified D4-branes with smeared D0-brane charge. This background corresponds to a strongly coupled, nonconformal relativistic fluid with a conserved vector current. The presence of the chiral vortical effect is induced by the addition of a Chern-Simons term in the bulk action. Except that the non-dissipative anomalous viscous coefficient and the sound speed rely only on the chemical potential, most of the other thermal and hydrodynamical quantities of the first order depend both on the temperature and the chemical potential. According to our result, the way that the chiral vortical effect coefficient depends on the chemical potential seems irrelevant with whether the relativistic fluid is conformal or not. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of the smeared D0-brane charge will slow down the sound speed.

  17. Effect of ventilation velocity on hexavalent chromium and isocyanate exposures in aircraft paint spraying.

    Science.gov (United States)

    Bennett, James; Marlow, David; Nourian, Fariba; Breay, James; Feng, Amy; Methner, Mark

    2017-11-20

    Exposure control system performance was evaluated during aircraft paint spraying at a military facility. Computational fluid dynamics (CFD) modeling, tracer gas testing, and exposure monitoring examined contaminant exposure versus crossflow ventilation velocity. CFD modeling using the RNG k-ϵ turbulence model showed exposures to simulated methyl isobutyl ketone of 294 and 83.6 ppm, as a spatial average of five worker locations, for velocities of 0.508 and 0.381 m/s (100 and 75 fpm) respectively. In tracer gas experiments, observed supply/exhaust velocities of 0.706/0.503 m/s (136/99 fpm) were termed full-flow, and reduced velocities were termed 3/4-flow and half-flow. Half-flow showed higher tracer gas concentrations than 3/4-flow, which had the lowest time-averaged concentration, with difference in log means significant at the 95% confidence level. Half-flow compared to full-flow and 3/4-flow compared to full-flow showed no statistically significant difference. CFD modeling using these ventilation conditions agreed closely with the tracer results for the full-flow and 3/4-flow comparison, yet not for the 3/4-flow and half-flow comparison. Full-flow conditions at the painting facility produced a velocity of 0.528 m/s (104 fpm) midway between supply and exhaust locations, with the supply rate of 94.4 m3/s (200,000 cfm) exceeding the exhaust rate of 68.7 m3/s (146,000 cfm). Ventilation modifications to correct this imbalance created a mid-hangar velocity of 0.406 m/s (80.0 fpm). Personal exposure monitoring for two worker groups-sprayers and sprayer helpers ("hosemen")-compared process duration means for the two velocities. Hexavalent chromium (Cr[VI]) exposures were 500 vs. 360 µg/m3 for sprayers and 120 vs. 170 µg/m3 for hosemen, for 0.528 m/s (104 fpm) and 0.406 m/s (80.0 fpm) respectively. Hexamethylene diisocyanate (HDI) monomer means were 32.2 vs. 13.3 µg/m3 for sprayers and 3.99 vs. 8.42 µg/m3 for hosemen. Crossflow velocities

  18. Effects of the Coastal Park Environment Attributes on Its Admission Fee Charges

    Directory of Open Access Journals (Sweden)

    Wang Erda

    2016-01-01

    Full Text Available In this paper, we investigate the effect of those recognized nature-and-activity-based attributes on the level of park’s admission fee charges using a panel data of 29 coastal recreation parks in Dalian city of China. A total of seven different Hedonic pricing model specifications are used in the estimating process. The results indicate that a numerous attributes have statistically significant effects (α≤ 0.10 on the level of park admission fee charges. In terms of the economic valuation, the marine sightseeing results in the highest value of Marginal Willingness to Pay (MWTP of $6.4 as its quality rank improves to a designated higher level. As expected that the park congestion has a negative effect on the MWTP (-$0.47 and overall park’s rankings have a positive effect ($0.05 on park’s MWTP. However, many recreation activities accommodated by the park sites exhibit a relatively weak effect on the park entrance fee charges. One possible reason is perhaps owing to the single admission package fee policy adopted by the park management..

  19. EFFECT OF WATER CONTENT, TEMPERATURE AND AVERAGE DROPLET SIZE ON THE SETTLING VELOCITY OF WATER-IN-OIL EMULSIONS

    Directory of Open Access Journals (Sweden)

    W. J. Souza

    2015-06-01

    Full Text Available AbstractWater-in-oil (W/O emulsions are complex mixtures generally found in crude oil production in reservoirs and processing equipment. Sedimentation studies of water-oil emulsions enable the analysis of the fluid dynamic behavior concerning separation of this system composed of two immiscible liquids. Gravitational settling was evaluated in this article for a model emulsion system consisting of water and a Brazilian crude oil diluted in a clear mineral oil as organic phase. The effects of water content and temperature were considered in the study of sedimentation velocity of water-oil emulsions. Water contents between 10% and 50 % and temperatures of 25, 40 and 60 ºC were evaluated, and a Richardson-Zaki type correlation was obtained to calculate settling velocities as a function of the process variables investigated. Water contents and average droplet sizes were monitored at different levels in the settling equipment, thus enabling identification of the effect of these variables on the phenomena of sedimentation and coalescence of the emulsions studied. The results showed that the emulsion stability during sedimentation was governed by the emulsion water content, which yielded high settling velocities at low water contents, even when very small droplets were present. A quantitative analysis of the combined effects of drop size and droplet concentration supports the conclusion that a stronger effect is produced by the higher concentration of particles, compared with the relatively smaller effect of increasing the size of the droplets.

  20. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-01-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k- ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  1. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-06-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  2. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  3. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  4. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  5. Effect of curvature and thickness on elastic wave velocity in cornea-like structures by FEM and OCE

    Science.gov (United States)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Vantipalli, Srilatha; Aglyamov, Salavat R.; Wu, Chen; Liu, Chih-hao; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    Wave models, which have been utilized in the past to reconstruct corneal biomechanical properties based on the propagation of an elastic wave, were often developed assuming a thin-plate geometry. However, the curvature and thickness of the cornea are not considered when utilizing these models. In this work, optical coherence elastography (OCE) experiments were conducted on tissue-mimicking agar phantoms and contact lenses along with finite element (FE) modeling of four kinds of cornea-like structures to understand the effects of curvature and thickness on the group velocity of an elastic wave. As the radius of curvature increased from 19.1 to 47.7 mm, the group velocity of the elastic wave obtained by both FE and OCE from a spherical shell section model decreased from ~2.8 m/s to ~2.2 m/s. When the thickness of the agar phantom increased from 1.9 mm to 5.6 mm, the elastic wave velocity increased from ~3.0 m/s to ~4.1 m/s. Both the FE and OCE results show that the group velocity of the elastic wave decreased with radius of curvature but increased with thickness. Therefore, the curvature and thickness must be considered when developing accurate wave models for quantifying biomechanical properties of the cornea.

  6. Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout.

    Science.gov (United States)

    Perez-Ruiz, Fernando; Calabozo, Marcelo; Pijoan, Jose I; Herrero-Beites, Ana M; Ruibal, Ana

    2002-08-01

    The optimal serum urate levels necessary for elimination of tissue deposits of monosodium urate in patients with chronic gout is controversial. This observational, prospective study evaluates the relationship between serum urate levels during therapy and the velocity of reduction of tophi in patients with chronic tophaceous gout. Sixty-three patients with crystal-confirmed tophaceous gout were treated with allopurinol, benzbromarone, or combined therapy to achieve serum uric acid levels less than the threshold for saturation of urate in tissues. The tophi targeted for evaluation during followup were the largest in diameter found during physical examination. Patients taking benzbromarone alone or combined allopurinol and benzbromarone therapy achieved faster velocity of reduction of tophi than patients taking allopurinol alone. The velocity of tophi reduction was linearly related to the mean serum urate level during therapy. The lower the serum urate levels, the faster the velocity of tophi reduction. Serum urate levels should be lowered enough to promote dissolution of urate deposits in patients with tophaceous gout. Allopurinol and benzbromarone are equally effective when optimal serum urate levels are achieved during therapy. Combined therapy may be useful in patients who do not show enough reduction in serum urate levels with single-drug therapy.

  7. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile

    Science.gov (United States)

    Kosuge, Shingo

    2015-07-01

    The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004), 10.1063/1.1690491] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained.

  8. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    Science.gov (United States)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  9. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  10. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  11. Reversed Hall effect and plasma conductivity in the presence of charged impurities

    Science.gov (United States)

    Yaroshenko, V. V.; Lühr, H.

    2018-01-01

    The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.

  12. Microfluidic Investigation of the Effect of Liposome Surface Charge on Drug Delivery in Microcirculation.

    Science.gov (United States)

    D'Apolito, Rosa; Bochicchio, Sabrina; Dalmoro, Annalisa; Barba, Anna Angela; Guido, Stefano; Tomaiuolo, Giovanna

    2017-01-01

    Nano-carrier drug transport in blood microcirculation is one of the hotspots of current research in drug development due to many advantages over traditional therapies, such as reduced sideeffects, target delivery, controlled release, improved pharmacokinetics and therapeutic index. Despite the substantial efforts made in the design of nanotherapeutics, the big majority of the used strategies failed to overcome the biological barriers to drug transport encountered in human microvasculature, such as transport by blood flow via the microcirculatory network and margination, the mechanism according to which particles migrate along vessel radius to the wall. In fact, drug transport efficiency in microvasculature is affected by both the particulate nature of blood and drug carrier properties, such as size, shape and surface charge. In this work, the effect of the surface charge of liposomes on their margination in blood flow in microcapillaries was experimentally evaluated. By high-speed video microscopy and image analysis it was found that the two custom-made liposomes (one neuter and the other positively charged) tend to drift laterally, moving towards the wall and accumulating in the cell-free layer. In particular, neuter and cationic liposomes showed a comparable margination propensity, suggesting that the presence of blood cells governs the flow behavior independently on liposome surface charge. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The Effect of Surface Charge Saturation on Heat-induced Aggregation of Firefly Luciferase.

    Science.gov (United States)

    Gharanlar, Jamileh; Hosseinkhani, Saman; Sajedi, Reza H; Yaghmaei, Parichehr

    2015-01-01

    We present here the effect of firefly luciferase surface charge saturation and the presence of some additives on its thermal-induced aggregation. Three mutants of firefly luciferase prepared by introduction of surface Arg residues named as 2R, 3R and 5R have two, three and five additional arginine residues substituted at their surface compared to native luciferase; respectively. Turbidimetric study of heat-induced aggregation indicates that all three mutants were reproducibly aggregated at higher rates relative to wild type in spite of their higher thermostability. Among them, 2R had most evaluated propensity to heat-induced aggregation. Therefore, the hydrophilization followed by appearing of more substituted arginine residues with positive charge on the firefly luciferase surface was not reduced its thermal aggregation. Nevertheless, at the same condition in the presence of charged amino acids, e.g. Arg, Lys and Glu, as well as a hydrophobic amino acid, e.g. Val, the heat-induced aggregation of wild type and mutants of firefly luciferases was markedly decelerated than those in the absence of additives. On the basis of obtained results it seems, relinquishment of variety in charge of amino acid side chains, they via local interactions with proteins cause to decrease rate and extent of their thermal aggregation. © 2015 The American Society of Photobiology.

  14. Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: effect of surface charge.

    Science.gov (United States)

    Velpula, Ashok; Jukanti, Raju; Janga, Karthik Yadav; Sunkavalli, Sharath; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-12-01

    The primary goal of the present study was to investigate the combined prospective of proliposomes and surface charge for the improved oral delivery of raloxifene hydrochloride (RXH). Keeping this objective, the present systematic study was focused to formulate proliposomes by varying the ratio of hydrogenated soyphosphatidylcholine and cholesterol. Furthermore, to assess the role of surface charge on improved absorption of RXH, anionic and cationic vesicles were prepared using dicetyl phosphate and stearylamine, respectively. The formulations were characterized for size, zeta potential and entrapment efficiency. The improved dissolution characteristics assessed from dissolution efficiency, mean dissolution rate were higher for proliposome formulations. The solid state characterization studies indicate the transformation of native crystalline form of the drug to amorphous and/or molecular state. The higher effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of proliposomes and cationic surface charge for augment in absorption across gastro intestinal barrier. To draw the conclusions, in vivo pharmacokinetic study carried out in rats indicate a threefold enhancement in the rate and extent of absorption of RXH from cationic proliposome formulation which unfurl the potential of proliposomes and role of cationic charge for improved oral delivery of RXH.

  15. Effect of timing of psychiatry consultation on length of pediatric hospitalization and hospital charges.

    Science.gov (United States)

    Bujoreanu, Simona; White, Matthew T; Gerber, Bradley; Ibeziako, Patricia

    2015-05-01

    The purpose of this study was to evaluate the impact of timing of a psychiatry consultation during pediatric hospitalization on length of hospital stay and total hospitalization charges. The charts of 279 pediatric patients (totaling 308 consultations) referred to the psychiatry consultation liaison service at a freestanding tertiary pediatric hospital between January 1, 2010, and June 30, 2010 were retrospectively analyzed. The variables analyzed included the following: patient demographic characteristics; dates of admission, psychiatric consultation, and discharge; psychiatric diagnoses based on the psychiatric diagnostic evaluation; psychiatric treatment disposition; and illness severity and total charges associated with the medical stay. Earlier psychiatry consultation was associated with shorter length of stay and lower hospitalization charges after adjusting for psychiatric functioning, physical illness severity, and psychiatric disposition. Poorer psychiatric functioning and milder physical illness were associated with shorter referral time. Timely involvement of psychiatry consultation services during a medical or surgical hospitalization was associated with reductions in length of stay and total hospital charges in pediatric settings. These findings have important effects on quality of care via decreasing burden on the patient and family and on the medical system resources. Educating pediatric health care providers about the importance of early psychiatry consultation regardless of physical illness severity or psychiatric acuity will likely improve resource management for patients and hospitals. Copyright © 2015 by the American Academy of Pediatrics.

  16. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    Science.gov (United States)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  17. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  18. Effects of fast-velocity eccentric resistance training on early and late rate of force development

    DEFF Research Database (Denmark)

    Oliveira, Anderson S.C.; Corvino, Rogério Bulhões; Caputo, Fabrizio

    2016-01-01

    This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (100 ms) of rising torque. Twenty healthy men were...... assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC......, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL...

  19. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

  20. Generation of electron vortex beams using line charges via the electrostatic Aharonov-Bohm effect.

    Science.gov (United States)

    Pozzi, Giulio; Lu, Peng-Han; Tavabi, Amir H; Duchamp, Martial; Dunin-Borkowski, Rafal E

    2017-10-01

    It has recently been shown that an electron vortex beam can be generated by the magnetic field surrounding the tip of a dipole-like magnet. This approach can be described using the magnetic Aharonov-Bohm effect and is associated with the fact that the end of a long magnetic rod can be treated approximately as a magnetic monopole. However, it is difficult to vary the magnetisation of the rod in such a setup and the electron beam vorticity is fixed for a given tip shape. Here, we show how a similar behaviour, which has the advantage of easy tuneability, can be achieved by making use of the electrostatic Aharonov-Bohm effect associated with an electrostatic dipole line. We highlight the analogies between the magnetic and electrostatic cases and use simulations of in-focus, Fresnel and Fraunhofer images to show that a device based on two parallel, oppositely charged lines that each have a constant charge density can be used to generate a tuneable electron vortex beam. We assess the effect of using a dipole line that has a finite length and show that if the charge densities on the two lines are different then an additional biprism-like effect is superimposed on the electron-optical phase. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. The effect of nonleading foot placement on power and velocity in the fencing lunge.

    Science.gov (United States)

    Gresham-Fiegel, Carolyn N; House, Paul D; Zupan, Michael F

    2013-01-01

    The fencing lunge is a sport-specific movement, which helps the fencer score quickly and accurately. The fencing lunge is executed from a stable guard position, with the toes of the leading foot pointing directly toward the opponent. As a result of coach or fencer preference, however, the angle of the nonleading foot may vary greatly among fencers, from acute (nonleading foot facing forward) to obtuse (nonleading foot facing slightly backward). Studies in other sports suggest that foot placement may affect the efficient use of leg muscles and influence the power produced. Twenty-five experienced fencers from the U.S. Air Force Academy fencing team executed lunges from 3 specific angles of nonleading foot placement and from the natural stance. Foot placements were measured as the angle of the nonleading foot from the line of the leading foot and were delimited to an acute angle (45°), a perpendicular angle (90°), and an obtuse angle (135°). The angle of natural stance was also determined for each participant. Velocity and power were measured with a TENDO Weightlifting Analyzer, and the data were analyzed with repeated measures analysis of variance. Two statistical groups were considered, one containing all participants (N = 25) and a second group of participants with a natural forward-deviated stance (n = 15). Significant differences appeared between the nonleading foot placements in peak power (p < 0.001), average power (p < 0.001), peak velocity (p < 0.001), and average velocity (p < 0.001) in both groups. Pairwise t-test results indicated that, for both statistical groups, a perpendicular placement of the feet produced the greatest power and velocity during lunging.

  2. The Effects of High Velocity Variable Mass Projectiles on the Maxillofacial Complex,

    Science.gov (United States)

    1980-06-01

    injuring missile, but it may be only one of many contributors to the morphology of the wound. High velocity projectiles, striking bone and/or teeth ...This is especially true of hits shattering the hard enamel of teeth . These findings tend to re-emphasize the work of Mcleod who stated that...through controlled studies to determine the morphology of wounds caused by such projectiles and to establish and disseminate treatment data which

  3. Effect of Velocity and Time-Step on the Continuity of a Discrete Moving Sound Image

    Directory of Open Access Journals (Sweden)

    Yoshikazu Seki

    2014-01-01

    Full Text Available As a basic study into 3-D audio display systems, this paper reports the conditions of moving sound image velocity and time-step where a discrete moving sound image is perceived as continuous motion. In this study, the discrete moving sound image was presented through headphones and ran along the ear-axis. The experiments tested the continuity of a discrete moving sound image using various conditions of velocity (0.25, 0.5, 0.75, 1, 2, 3, and 4 m/s and time-step (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, and 0.14 s. As a result, the following were required in order to present the discrete moving sound image as continuous movement. (1 The 3-D audio display system was required to complete the sound image presentation process, including head tracking and HRTF simulation, in a time shorter than 0.02 s, in order to present sound image movement at all velocities. (2 A processing time longer than 0.1 s was not acceptable. (3 If the 3-D audio display system only presented very slow movement (less than about 0.5 m/s, processing times ranging from 0.04 s to 0.06 s were still acceptable.

  4. Nature, Cause and Effect of Students' Intuitive Conceptions Regarding Changes in Velocity

    Science.gov (United States)

    Lemmer, Miriam

    2013-01-01

    Perceptions of observed phenomena play an important role in information processing and are integral to learning. Unfortunately students' perceptions based on their everyday-life observations often do not correlate with the formal science conceptions and explanations of phenomena. This finding of physics education research was studied in this work in the realm of kinematics and students' conceptions regarding changes in velocity. The investigation entailed a questionnaire administered to 797 students and a focus group discussion with 5 students, which were followed by an additional questionnaire answered by 208 students. The first questionnaire indicated the complex nature of the intuitive conception called changes-take-time and its relation to other intuitive conceptions. Possible causes for the occurrence of the changes-take-time perception were qualitatively probed in the focus group discussion. In the discussion, some students relied on their visual observations and perceptions, while others used logical reasoning. The results informed the compilation of an additional short questionnaire to determine whether the qualitative findings of the focus group discussion can be used more generally. Limitations in visual perceptions and differences in perceived and real velocities seem to contribute to the existence and persistence of the changes-take-time and other intuitive conceptions related to changes in velocity. The importance of addressing physics students' misconceptions at root cause level is emphasized.

  5. EFFECTS OF A SAND RUNNING SURFACE ON THE KINEMATICS OF SPRINTING AT MAXIMUM VELOCITY

    Directory of Open Access Journals (Sweden)

    P E Alcaraz

    2011-05-01

    Full Text Available Performing sprints on a sand surface is a common training method for improving sprint-specific strength. For maximum specificity of training the athlete’s movement patterns during the training exercise should closely resemble those used when performing the sport. The aim of this study was to compare the kinematics of sprinting at maximum velocity on a dry sand surface to the kinematics of sprinting on an athletics track. Five men and five women participated in the study, and flying sprints over 30 m were recorded by video and digitized using biomechanical analysis software. We found that sprinting on a sand surface was substantially different to sprinting on an athletics track. When sprinting on sand the athletes tended to ‘sit’ during the ground contact phase of the stride. This action was characterized by a lower centre of mass, a greater forward lean in the trunk, and an incomplete extension of the hip joint at take-off. We conclude that sprinting on a dry sand surface may not be an appropriate method for training the maximum velocity phase in sprinting. Although this training method exerts a substantial overload on the athlete, as indicated by reductions in running velocity and stride length, it also induces detrimental changes to the athlete’s running technique which may transfer to competition sprinting.

  6. Effective Nanoparticle-based Gene Delivery by a Protease Triggered Charge Switch

    DEFF Research Database (Denmark)

    Gjetting, Torben; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2014-01-01

    (ethylene glycol) (PEG) chain is investigated. Utilizing ethanol-mediated nucleic acid encapsulation to prepare lipo-nanoparticles (LNPs), LNPs that are stable in serum are obtained. The LNPs constitute a highly effective gene delivery systems in vitro and possess the right features for further...... in the cleaved peptide moiety. The cationic lipid DOTAP is used mainly to complex DNA and proton titratable DODAP is used to increase endosomal escape and enhance transfection efficiency. The idea of using a mixture of permanently charged and titratable cationic lipids shielded by a protease sensitive negatively...... charged lipo-peptide-PEG coat appears to be a highly efficient solution for achieving effective non-viral gene delivery and the results warrant further investigations....

  7. Polaron effects and electric field dependence of the charge carrier mobility in conjugated polymers.

    Science.gov (United States)

    Jakobsson, Mattias; Stafström, Sven

    2011-10-07

    Charge transport in conjugated polymers has been investigated using Monte Carlo simulations implemented on top of the Marcus theory for donor-acceptor transition rates. In particular, polaron effects and the dependency of the mobility on the temperature and the applied electric field have been studied. The conclusions are that while the qualitative temperature dependence is similar to that predicted by Miller-Abrahams theory in the Gaussian disorder model (GDM), the electric field dependence is characterized by a crossover into the Marcus inverted region, not present in the GDM. Furthermore, available analytical approximations to describe the electric field dependence of the mobility in Marcus theory fail to fit the simulation data and hence cannot be used to directly draw conclusions about the importance of polaron effects for charge transport in conjugated polymers. © 2011 American Institute of Physics

  8. Combined effect of salt concentration and pressure gradients across charged membranes

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    2002-01-01

    The combined effect of both concentration and pressure differences on electrical potential (Deltaphi) for two ion-exchanger membranes, one positively charged (AE) and another negatively charged (CE), measured with the membranes in contact with NaCl solutions was studied. Results show a linear...... to correlate the behaviour of the BP membrane with that corresponding to each sublayer, the same kind of measurements was carried out for both opposite external conditions, this means, applying the pressure on the cation exchanger (CABM) or on the anion exchanger membrane (ACBM), respectively. From values...... obtained at DeltaP = 0, the counter-ion transport number in each ion-exchange membrane was obtained and the contribution of membrane potential on Deltaphi values can be evaluated. Results show clear differences on both the membrane potential and the effect of pressure in the bipolar membrane depending...

  9. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses

    Science.gov (United States)

    Li, Pengfei; Jackson, Glen P.

    2017-07-01

    1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds ( a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.

  10. Longitudinal Space Charge Effects in the JLAB IR FEL SRF Linac

    CERN Document Server

    Hernandez-Garcia, Carlos; Behre, Chris; Benson, S V; Herman-Biallas, George; Boyce, James; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Hardy, David; Jordan, Kevin; Merminga, Lia; Neil, George; Preble, Joe; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Williams, Gwyn; Yunn, Byung; Zhang, Shukui

    2004-01-01

    Observations of energy spread asymmetry when operating the Linac on either side of crest and longitudinal emittance growth have been confirmed by extending PARMELA simulations from the injector to the end of the first SRF Linac module. The asymmetry can be explained by the interaction of the accelerating electric field with that from longitudinal space charge effects within the electron bunch. This can be a major limitation to performance in FEL accelerators.

  11. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: Effects of crossflow velocity, feed spacer and biodegradable nutrient

    KAUST Repository

    Dreszer, C.

    2014-03-01

    Biofilm formation causes performance loss in spiral-wound membrane systems. In this study a microfiltration membrane was used in experiments to simulate fouling in spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules without the influence of concentration polarization. The resistance of a microfiltration membrane is much lower than the intrinsic biofilm resistance, enabling the detection of biofilm accumulation in an early stage. The impact of biofilm accumulation on the transmembrane (biofilm) resistance and feed channel pressure drop as a function of the crossflow velocity (0.05 and 0.20ms-1) and feed spacer presence was studied in transparent membrane biofouling monitors operated at a permeate flux of 20Lm-2h-1. As biodegradable nutrient, acetate was dosed to the feed water (1.0 and 0.25mgL-1 carbon) to enhance biofilm accumulation in the monitors. The studies showed that biofilm formation caused an increased transmembrane resistance and feed channel pressure drop. The effect was strongest at the highest crossflow velocity (0.2ms-1) and in the presence of a feed spacer. Simulating conditions as currently applied in nanofiltration and reverse osmosis installations (crossflow velocity 0.2ms-1 and standard feed spacer) showed that the impact of biofilm formation on performance, in terms of transmembrane and feed channel pressure drop, was strong. This emphasized the importance of hydrodynamics and feed spacer design. Biomass accumulation was related to the nutrient load (nutrient concentration and linear flow velocity). Reducing the nutrient concentration of the feed water enabled the application of higher crossflow velocities. Pretreatment to remove biodegradable nutrient and removal of biomass from the membrane elements played an important part to prevent or restrict biofouling. © 2013 Elsevier Ltd.

  12. Effects of Water Velocity and Specific Surface Area on Filamentous Periphyton Biomass in an Artificial Stream Mesocosm

    Directory of Open Access Journals (Sweden)

    Jin Chul Joo

    2013-10-01

    Full Text Available To evaluate the effects of water velocity and artificial substratum characteristics on the growth rate and biomass accumulation of periphyton, an artificial stream mesocosm experiment was conducted using alternative water sources collected from the Mangwall Stream (MW, the Han River (HR, and bank filtration water (BFW from the Han River in the Republic of Korea. The measured concentrations of organic matter and inorganic nutrients in the MW were higher than in the HR and BFW. The surface of tile is relatively smooth and nonporous, whereas the surfaces of concrete and pebble are rough with numerous isolated pores in which filamentous periphyton become immobilized against hydrodynamic shear stress and mat tensile strength. Compared with the periphyton biomass of the HR and BFW, the peak biomass in the MW was significantly higher due to higher nutrient concentrations in the MW. Reasonable linear relationships (R2 ≥ 0.69 between water velocity and total periphyton biomass/growth rate were obtained, indicating that water velocities above critical values can cause a reduction in biomass accrual. In addition, reasonable relationships (R2 ≥ 0.58 between specific surface area and total periphyton biomass were obtained for the HR and BFW, indicating that an increase in the specific surface area of the substratum can lead to an increase in periphyton biomass in a nutrient-poor water body. Principal components analysis (PCA results indicate that nutrient concentrations were the first dominant limiting factor for the growth and accumulation of periphyton, and water velocity and the specific surface area of the substratum were determined to be potential limiting factors. Consequently, the growth rate and biomass accumulation of periphyton were considered to be a complex function of nutrient concentrations, water velocities, and substratum characteristics.

  13. Photodissociation of van der Waals complexes of iodine X-I2 (X = I2, C2H4) via charge-transfer state: A velocity map imaging investigation

    Science.gov (United States)

    Bogomolov, Alexandr S.; Goldort, Veniamin G.; Kochubei, Sergei A.; Baklanov, Alexey V.

    2017-12-01

    The photodissociation of van der Waals complexes of iodine X-I2 (X = I2, C2H4) excited via Charge-Transfer (CT) band has been studied with the velocity map imaging technique. Photodissociation of both complexes gives rise to translationally "hot" molecular iodine I2 via channels differing by kinetic energy and angular distribution of the recoil directions. These measured characteristics together with the analysis of the model potential energy surface for these complexes allow us to infer the back-electron-transfer (BET) in the CT state to be a source of observed photodissociation channels and to make conclusions on the location of conical intersections where the BET process takes place. The BET process is concluded to provide an I2 molecule in the electronic ground state with moderate vibrational excitation as well as X molecule in the electronic excited state. In the case of X = I2, the BET process converts anion I2- of the CT state into the neutral I2 in the repulsive excited electronic state which then dissociates promptly giving rise to a pair of I atoms in the fine states 2P1/2. In the case of C2H4-I2, the C2H4 molecules appear in the triplet T1 electronic state. Conical intersection for corresponding BET process becomes energetically accessible after partial twisting of C2H4+ frame in the excited CT state of complex. The C2H4(T)-I2 complex gives rise to triplet ethylene as well as singlet ethylene via the T-S conversion.

  14. Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision

    Science.gov (United States)

    Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.

    2007-10-01

    In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.

  15. Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France); Momen, G.; Le Neindre, B.; Hassouni, K. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS UPR 1311-Universite Paris 13, 93430 Villetaneuse (France); Marty, P.H. [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9 (France)

    2007-07-15

    This paper presents an investigation of the thermal effects during high-pressure charging of a packed bed hydrogen storage tank. The studied column is packed with activated IRH3 carbon, which has an average surface area of 2600m{sup 2}g{sup -1} and is fed with hydrogen or helium from an external high-pressure source. The temperature at six locations in the storage tank and the pressure value at the bottom of the tank are recorded during the charging stage. Several experiments were carried out to investigate the effect of the initial flow rate on the temperature field in the reservoir and on the duration of the charging process. A study of the respective contribution of adsorption and mechanical dissipation effects to the thermal phenomena is done in the case of hydrogen. Experimental results are compared to those obtained with the commercial code Fluent. A fair agreement is found when comparing typical pressure and temperature evolutions during the tank filling. (author)

  16. Quantification of the effects of fur, fur color, and velocity on Time-Of-Flight technology in dairy production.

    Science.gov (United States)

    Salau, Jennifer; Bauer, Ulrike; Haas, Jan H; Thaller, Georg; Harms, Jan; Junge, Wolfgang

    2015-01-01

    With increasing herd sizes, camera based monitoring solutions rise in importance. 3D cameras, for example Time-Of-Flight (TOF) cameras, measure depth information. These additional information (3D data) could be beneficial for monitoring in dairy production. In previous studies regarding TOF technology, only standing cows were recorded to avoid motion artifacts. Therefore, necessary conditions for a TOF camera application in dairy cows are examined in this study. For this purpose, two cow models with plaster and fur surface, respectively, were recorded at four controlled velocities to quantify the effects of movement, fur color, and fur. Comparison criteria concerning image usability, pixel-wise deviation, and precision in coordinate determination were defined. Fur and fur color showed large effects (η (2)=0.235 and η (2)=0.472, respectively), which became even more considerable when the models were moving. The velocity of recorded animals must therefore be controlled when using TOF cameras. As another main result, body parts which lie in the middle of the cow model's back can be determined neglecting the effect of velocity or fur. With this in mind, further studies may obtain sound results using TOF technology in dairy production.

  17. Effects of Cylindrical Charge Geometry and Secondary Combustion Reactions on the Internal Blast Loading of Reinforced Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-05-01

    An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.

  18. Cooperative Charging Effects of Fibers From Electrospinning of Electrically Dissimilar Polymers

    National Research Council Canada - National Science Library

    Schreuder-Gibson, H. L; Gibson, P; Tsai, P; Gupta, P; Wilkes, G

    2005-01-01

    Electrical charging and residual charge decay of electrospun nonwoven webs comprised of two electrically dissimilar polymers were studied in an effort to investigate their filtration properties. Polystyrene (PS...

  19. Dynamics of charge carrier trapping in NO2 sensors based on ZnO field-effect transistors

    NARCIS (Netherlands)

    Andringa, Anne-Marije; Vlietstra, Nynke; Smits, Edsger C. P.; Spijkman, Mark-Jan; Gomes, Henrique L.; Klootwijk, Johan H.; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    Nitrogen dioxide (NO2) detection with ZnO field-effect transistors is based on charge carrier trapping. Here we investigate the dynamics of charge trapping and recovery as a function of temperature by monitoring the threshold voltage shift. The threshold voltage shifts follow a stretched-exponential

  20. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    Science.gov (United States)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  1. Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [ODU, JLAB; Deitrick, Kirsten E. [ODU, JLAB; Delayen, Jean R. [ODU, JLAB

    2013-12-01

    Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.

  2. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  3. VELOCITY OF DETONATION OF LOW DENSITY

    Directory of Open Access Journals (Sweden)

    Vinko Škrlec

    2012-12-01

    Full Text Available Blasting operations in built-up areas, at short distances from structures, impose new requirements on blasting techniques and properties of explosives in order to mitigate seismic effect of blasting. Explosives for civil uses are mixtures of different chemical composition of explosive and/or non-explosive substances. Chemical and physical properties, along with means of initiation, environment and the terms of application define detonation and blasting parameters of a particular type of the explosive for civil uses. Velocity of detonation is one of the most important measurable characteristics of detonation parameters which indirectly provide information about the liberated energy, quality of explosives and applicability for certain purposes. The level of shock effect of detonated charge on the rock, and therefore the level of seismic effect in the area, depends on the velocity of detonation. Since the velocity of detonation is proportional to the density of an explosive, the described research is carried out in order to determine the borderline density of the mixture of an emulsion explosive with expanded polystyrene while achieving stable detonation, and to determine the dependency between the velocity of detonation and the density of mixture (the paper is published in Croatian.

  4. Effects of the Charge Ions Strength on the Swelling of Organic-Inorganic Nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qin; Lu, Xiangguo; Wang, Jing; Guo, Qi; Niu, Liwei [Northeast Petroleum University, Daqing (China)

    2016-07-15

    The swelling behavior and swelling mechanism of hydrogels can be greatly affected by the charge strength of ions in them. To investigate such effects, we prepared two gels: a carboxylic acid gel (CAG) and a poly (2-acrylamide–methyl propane sulfonic acid) gel (SAG) based on starchy polyacrylamide (PAM) nanocomposite gels, both with montmorillonite, which underwent in situ intercalation, and used them as probes in swelling experiments. The equilibrium swelling rates (ESRs) of the hydrogels in both salt water and acidic water strongly depended on the charge strength of the ions in the chains. SAG had a higher ESR than CAG at the same mole ratio of polymer/water, which is attributed to the greater electrostatic repulsion between the strong electrolyte ions of SAG. Both water salinity and hydrogen ion contact of the hydrogels weakened ESR with the enhancement of charge ionic strength. The downward trend of ESR with increasing concentration of salt or hydrogen ions became weaker in SAG compared to CAG, which is attributed to the shielding and deprotonation effects of the strong electrolyte ions. Regarding the swelling mechanism, the chain relaxation occurred in neutral and acidic solutions for SAG and in neutral and weak acidic solutions for CAG, but water diffusion dominated in strong acidic solutions for CAG, leading to different swelling behaviors.

  5. The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging.

    Science.gov (United States)

    Kang, Ji Hee; Jang, Woo Young; Ko, Young Tag

    2017-04-01

    Liposomes have been developed as versatile nanocarriers for various pharmacological agents. The effect of surface charges on the cellular uptake of the liposomes has been studied by various methods using mainly fixed cells with inevitable limitations. Live cell imaging has been proposed as an alternative methods to overcome the limitations of the fixed cell-based analysis. In this study, we aimed to investigate the effects of surface charges on cellular association and internalization of the liposomes using live cell imaging. We studied the cellular association and internalization of liposomes with different surface charge using laser scanning confocal microscopy (LSCM) equipped with live cell chamber system. Flow cytometry was also carried out using flow cytometer (FACS) for comparison. All of the cationic, neutral and anionic liposomes showed time-dependent cellular uptake through specific endocytic pathways. In glioblastoma U87MG cells, the cationic and anionic liposomes were mainly taken up via macropinocytosis, while the neutral liposomes mainly via caveolae-mediated endocytosis. In fibroblast NIH/3T3 cells, all of the three liposomes entered into the cell via clathrin-mediated endocytosis. This study provides a better understanding on the cellular uptake mechanisms of the liposomes, which could contribute significantly to development of liposome-based drug delivery systems.

  6. Space-charge effects in ultrahigh current electron bunches generated by laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    F. J. Grüner

    2009-02-01

    Full Text Available Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron laser (FEL. Significant reduction in size of the FEL is facilitated by the expected ultrahigh peak beam currents (10–100 kA generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultracompact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution, which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  7. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    Science.gov (United States)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  8. Environment effect on spectral and charge distribution characteristics of some drugs of folate derivatives

    Science.gov (United States)

    Khadem Sadigh, M.; Zakerhamidi, M. S.; Seyed Ahmadian, S. M.; Johari-Ahar, M.; Zare Haghighi, L.

    2017-01-01

    Molecular surrounding media as an important factor can effect on the operation of wide variety of drugs. For more study in this paper, spectral properties of Methotrexate and Folinic acid have been studied in various solvents. Our results show that the photo-physical of solute molecules depend strongly on solute-solvent interactions and active groups in their chemical structures. In order to investigate the contribution of specific and nonspecific interactions on the various properties of drug molecules, the linear solvation energy relationships concept is used. Moreover, charge distribution characteristics of used samples with various resonance structures in solvent environments were calculated by means of solvatochromic method. The high value of dipole moments in excited state show that local intramolecular charge transfer can occur by excitation. These results about molecular interactions can be extended to biological systems and can indicate completely the behaviors of Methotrexate and Folinic acid in polar solvents such as water in body system.

  9. Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors

    Science.gov (United States)

    Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu

    2012-02-01

    Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.

  10. Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems

    Science.gov (United States)

    Gainullin, I. K.; Sonkin, M. A.

    2015-08-01

    Resonant charge transfer (RCT) between negative ions and a metallic nanosystem was investigated by means of a high-performance ab initio three-dimensional (3D) numerical solver. During RCT, an electron was shown to occupy succesively nanosystem eigenstates along the z , ρ , and φ coordinates. Electron tunneling into a nanosystem is a reversible process, because after some time the electron propagates back to the ion. RCT efficiency in a nanosystem was found to exhibit quantum-size effects as well as lateral ion position dependence. This means that during ion-surface interaction, the nanosystem's size and the ion trajectory strongly influence the final charge state of the ion. In the case of real 3D systems (without cylindrical symmetry), the electron density currents form quantum vortices; this result is rather nontrivial for static systems. In addition, the limits of the adiabatic approximation (rate equation) for the RCT calculation with nanosystems are defined.

  11. Estimation of charge effects of ultrafine channel utilizing junctionless transistor with nanodot-type floating gate

    Science.gov (United States)

    Ban, Takahiko; Migita, Shinji; Uenuma, Mutsunori; Okamoto, Naofumi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yamamoto, Shin-ichi

    2017-03-01

    Metal nanoparticles (NPs) embedded in junctionless field-effect transistors (JL-FETs) with a channel length of about sub-10-nm are fabricated and demonstrated. The anisotropic wet etching of a silicon-on-insulator (SOI) substrate was utilized to form V-grooves and define a nanometer-scale channel. Metal NPs are selectively placed onto the bottom of a V-groove using a bio nano process (BNP). A JL-FET is applied to a floating gate memory and used to study the impacts of charges close to the short channel. Low-voltage operation and memory behavior of broad threshold voltage appear. It is estimated by simulation that positive and negative charges equivalent to approximately 10 electrons are accumulated in one NP. It is expected that the JL-FETs can overcome the scaling limitations of floating gate memories.

  12. Effects of volume averaging on the line spectra of vertical velocity from multiple-Doppler radar observations

    Science.gov (United States)

    Gal-Chen, T.; Wyngaard, J. C.

    1982-01-01

    Calculations of the ratio of the true one-dimensional spectrum of vertical velocity and that measured with multiple-Doppler radar beams are presented. It was assumed that the effects of pulse volume averaging and objective analysis routines is replacement of a point measurement with a volume integral. A u and v estimate was assumed to be feasible when orthogonal radars are not available. Also, the target fluid was configured as having an infinite vertical dimension, zero vertical velocity at the top and bottom, and having homogeneous and isotropic turbulence with a Kolmogorov energy spectrum. The ratio obtained indicated that equal resolutions among radars yields a monotonically decreasing, wavenumber-dependent response function. A gain of 0.95 was demonstrated in an experimental situation with 40 levels. Possible errors introduced when using unequal resolution radars were discussed. Finally, it was found that, for some flows, the extent of attenuation depends on the number of vertical levels resolvable by the radars.

  13. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  14. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction.

    Science.gov (United States)

    Sheikh, Arif D; Munir, Rahim; Haque, Md Azimul; Bera, Ashok; Hu, Weijin; Shaikh, Parvez; Amassian, Aram; Wu, Tom

    2017-10-11

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic (PV) performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After temperature-dependent grazing-incidence wide-angle X-ray scattering, in situ X-ray diffraction, and optical absorption experiments were carried out, the thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10% in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of the crystallinity and p doping in the hole transporter, spiro-OMeTAD, which promotes the efficient extraction of photogenerated carriers. However, further thermal cycles produced a detrimental effect on the PV performance of PSCs, with the short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the PV performance of PSCs degraded at high operation temperatures; both the short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of the fill factor was the opposite. Our impedance spectroscopy analysis revealed a monotonous increase of the charge-transfer resistance and a concurrent decrease of the charge-recombination resistance with increasing temperature, indicating a high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance because of the deteriorated interfacial photocarrier extraction. The present findings suggest that the development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite PVs in harsh

  15. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  16. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Science.gov (United States)

    Rossi, M. J.; Ares, J. O.

    2012-09-01

    Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina) were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers) are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1) overland flow and infiltration parameters were obtained in undisturbed field conditions; (2) field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3) the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying biogeography analysis

  17. Hydrodynamic modeling of NOM transport in UF: effects of charge density and ionic strength on effective size and sieving.

    Science.gov (United States)

    Yuan, Yanxiao; Kilduff, James E

    2009-07-15

    The transport behavior of natural organic matter (NOM) across polyethersulfone (PES) UF membranes having a range of nominal molecularweight cutoffs (MWCOs) was investigated and described with a hydrodynamic transport model. Transport of whole NOM and NOM fractionated on an anion exchange resin (IRA 958) was measured to investigate the impact of NOM size and charge density. It was found that the dominant transport mechanism, characterized by the membrane Peclet number, depended on the membrane MWCO, and transitioned from diffusion to convection at a MWCO of about 10 kDa. Increasing ionic strength significantly decreased the effective solute radius and decreased the observed rejection of charged NOM fractions, whereas no significant change was seen for neutral fractions. Using an available theoretical model for partitioning of charged solutes, the effect of ionic strength on the electrical double layer thickness can account for the observed changes in effective solute radius. These results provide insight into the role of solute charge and electrostatic interactions in NOM transport behavior.

  18. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie

    2016-12-01

    The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Particle size effect on velocity of gold particle embedded laser driven plastic targets

    Directory of Open Access Journals (Sweden)

    Dhareshwar L.J.

    2013-11-01

    Full Text Available A scheme to enhance the target foil velocity has been investigated for a direct drive inertial fusion target. Polymer PVA (polyvinyl alcohol or (C2H4On target foils of thickness 15–20 μm were used in plain form and also embedded with gold in the nano-particle (Au-np or micro-particle (Au-mp form. Nano-particles were of 20–50 nm and micro-particles of 2–3 μm in size. 17% higher target velocity was measured for foils embedded with nano-particle gold (Au-np as compared to targets embedded with micro-particles gold (Au-mp. The weight of gold in both cases was in the range 40–55% of the full target weight (atomic percentage of about 22%. Experiments were performed with the single beam of the Prague Asterix Laser System (PALS at 0.43 μm wavelength (3ω of the fundamental wavelength, 120 Joule energy and 300 psec pulse duration. Laser intensity on the target was about 1015 W/cm2. A simple model has been proposed to explain the experimental results.

  20. HIGH-VELOCITY RESISTANCE EXERCISE PROTOCOLS IN OLDER WOMEN: EFFECTS ON CARDIOVASCULAR RESPONSE

    Directory of Open Access Journals (Sweden)

    Rodrigo P. da Silva

    2007-12-01

    Full Text Available Acute cardiovascular responses to different high-velocity resistance exercise protocols were compared in untrained older women. Twelve apparently healthy volunteers (62.6 ± 2.9 y performed three different protocols in the bench press (BP. All protocols involved three sets of 10 repetitions performed with a 10RM load and 2 minutes of rest between sets. The continuous protocol (CP involved ten repetitions with no pause between repetitions. The discontinuous protocols were performed with a pause of five (DP5 or 15 (DP15 seconds between the fifth and sixth repetitions. Heart rate (HR, systolic blood pressure (SBP, rate pressure product (RPP, Rating of Perceived Exertion (RPE, and blood lactate (BLa were assessed at baseline and at the end of all exercise sets. Factorial ANOVA was used to compare the cardiovascular response among different protocols. Compared to baseline, HR and RPP were significantly (p < 0.05 higher after the third set in all protocols. HR and RPP were significantly (p < 0.05 lower in DP5 and DP15 compared with CP for the BP exercise. Compared to baseline, RPE increased significantly (p < 0.05 with each subsequent set in all protocols. Blood lactate concentration during DP5 and DP15 was significantly lower than CP. It appears that discontinuous high-velocity resistance exercise has a lower cardiovascular demand than continuous resistance exercise in older women

  1. Semi-analytical method for calculating aeroelastic effect of profiled rod flying at high velocity

    Directory of Open Access Journals (Sweden)

    Hui-jun Ning

    2015-03-01

    Full Text Available The key technique of a kinetic energy rod (KER warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method (CFD/FEM, respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.

  2. Space charge

    CERN Document Server

    Schindl, Karlheinz

    2005-01-01

    The Coulomb forces between the charged particles of a high-intensity beam in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes. A beam moving with speed n is accompanied by a magnetic field which partially cancels the electrostatic defocusing effect, with complete cancellation at c, the speed of light. The effect of this 'direct space charge' is evaluated for transport lines and synchrotrons where the number of betatron oscillations per machine turn, Q, is reduced by DQ. In a real accelerator, the beam is also influenced by the environment (beam pipe, magnets, etc.) which generates 'indirect' space charge effects. For a smooth and perfectly conducting wall, they can easily be evaluated by introducing image charges and currents. These 'image effects' do not cancel when n approaches c, thus they become dominant for high-energy synchrotrons. Each particle in the beam has its particular incoherent tune Q and incoherent tune...

  3. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    Science.gov (United States)

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    Three sediment oxygen demand (SOD) measurement chambers were deployed in the Tualatin River near Tigard, Oregon, at river mile 10 in August 2000. SOD rates were calculated for three different circulation velocities during each chamber deployment. The SOD rate at each velocity was calculated from a graph of dissolved oxygen concentration versus elapsed time. An acoustic doppler current profiler (ADCP) was used to measure stream discharge and near-bottom water velocities in the Tualatin at river mile 10 and at two upstream locations. Measured river and chamber velocities were similar, indicating that results from the chambers were representative of instream effects.

  4. The effect of the abolition of user charges on the demand for ambulatory doctor visits

    OpenAIRE

    Žílová, Pavlína; Votápková, Jana

    2012-01-01

    The paper estimates the effect of the abolition of user charges for outpatient care (30 CZK/1.2 EUR) in 2009 on the demand for ambulatory doctor visits in the Czech Republic. The r eform a pplied only to children, which enabled us to take the difference-in-differences approach. Children constitute a treatment group, whereas adults serve as a control group. Besides the treatment effect, we control also for a number of personal characteristics using a micro-level data (EU-SILC). We estimate two...

  5. Embedding effects on charge-transport parameters in molecular organic materials.

    Science.gov (United States)

    Lipparini, Filippo; Mennucci, Benedetta

    2007-10-14

    We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.

  6. Embedding effects on charge-transport parameters in molecular organic materials

    Science.gov (United States)

    Lipparini, Filippo; Mennucci, Benedetta

    2007-10-01

    We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.

  7. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali

    2006-02-23

    Combined ab initio quantum mechanical and molecular mechanical (QM/MM) simulations coupled with the block-localized wave function energy decomposition (BLW-ED) method have been conducted to study the solvation of two prototypical ionic systems, acetate and methylammonium ions in aqueous solution. Calculations reveal that the electronic polarization between the targeted solutes and water is the primary many-body effect, whereas the charge-transfer term only makes a small fraction of the total solute-solvent interaction energy. In particular, the polarization effect is dominated by the solvent (water) polarization.

  8. Effect of the charged-lepton's mass on the quasielastic neutrino cross sections

    Science.gov (United States)

    Ankowski, Artur M.

    2017-09-01

    Martini et al. [Phys. Rev. C 94, 015501 (2016), 10.1103/PhysRevC.94.015501] recently observed that when the produced-lepton's mass plays an important role, the charged-current quasielastic cross section for muon neutrinos can be higher than that for electron neutrinos. Here I argue that this effect appears solely in the theoretical descriptions of nuclear effects in which nucleon knockout requires the energy and momentum transfers to lie in a narrow range of the kinematically allowed values.

  9. FAILURE MECHANISM OF THE SCABBING OF CONCRETE PLATES SUBJECTED TO HIGH VELOCITY IMPACT AND EFFECTS OF FIBER SHEET REINFORCEMENT

    Science.gov (United States)

    Beppu, Masuhiro; Miwa, Koji; Takahashi, Jun

    This paper presents failure mechanism of the scabbing of concrete plates subjected to high velocity impact and effects of fiber sheet reinforcement. Prior to impact tests, strain measurement method using acrylic bar with strain gauges is validated by conducting impact test to concrete bar specimen. Then, impact tests are carried out to examine the failure mechanism of scabbing of concrete plates. In the tests, the strain measurement method is applied and strain behavior inside the concrete plate is discussed. After that, impact tests of fiber sheet reinforced concrete plates are conducted. Based on failure mode and strain behavior, effects of fiber sheet reinforcement on the failure of concrete plates are examined.

  10. Effects of graphene coating and charge injection on water adsorption of solid surfaces.

    Science.gov (United States)

    Guo, Yufeng; Guo, Wanlin

    2013-11-07

    The adhesion and cohesion of water molecules on graphene-coated and bare copper and mica substrates under charge injection have been extensively studied by first-principles calculations. Water adsorption on graphene-coated copper surface is weakened by injecting negative charges into the substrate, while enhanced by positive charges. Both negatively and positively charge injecting on graphene-coated mica strengthen the adsorption between water and the surface. While the adhesive and cohesive energies of water adsorption on charged bare copper and mica exhibit similar trends and much stronger response to charge injection. The charge sensitivity of water adsorbing on positively charged surfaces is significantly weakened by the graphene coating layer, mainly due to lower interfacial charge exchange. Our results suggest a viable way to modify water adsorption on a graphene-coated surface and unveil the role of graphene as a passivation layer for the wetting of a charged substrate.

  11. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.

    Science.gov (United States)

    Godinez, Itzel G; Darnault, Christophe J G

    2011-01-01

    Transport of manufactured nano-TiO(2) in saturated porous media was investigated as a function of morphology characteristics, pH of solutions, flow velocity, and the presence of anionic and non-ionic surfactants in different concentrations. Surfactants enhanced the transport of nano-TiO(2) in saturated porous media while a pH approaching the point of zero charge of nano-TiO(2) limited their transport. The deposition process, a retention mechanism of nano-TiO(2) in saturated porous media was impacted by surfactant and pH. In Dispersion 1 systems (pH 7), the size of the nano-TiO(2) aggregates was directly related to the presence of surfactants. The presence of non-ionic surfactant (Triton X-100) induced a size reduction of nano-TiO(2) aggregates that was dependent on the critical micelle concentration. In Dispersion 2 systems (pH 9), the stability provided by the pH had a significant effect on the size of nano-TiO(2) aggregates; the addition of surfactants did impact the size of the nano-TiO(2) aggregates but in less significance as compared to Dispersion 1 systems. The electrostatic and steric repulsion forces in connection with the size of nano-TiO(2) aggregates and flow velocity impacted the single-collector efficiency and attachment efficiency which dictated the maximum transport distance of nano-TiO(2) for the Dispersion 1 and Dispersion 2 systems. By doubling the flow velocity at pH 9, the No Surfactant, 50% CMC Triton X-100, 100% CMC Triton X-100 and 100% CMC SDBS dispersion systems allowed nano-TiO(2) to attain maximum transport distances of 0.898, 2.17, 2.29 and 1.12 m, respectively. Secondary energy minima played a critical role in the deposition mechanisms of nano-TiO(2). Nano-TiO(2) deposited in the secondary energy wells may be released because of changes in solution chemistry. The deposition of nano-TiO(2) in primary and secondary energy minima, the reversibility of their deposition should be characterized to analyze the transport of nanoparticles in

  12. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Ohmura, Satoshi, E-mail: s.ohmura.m4@cc.it-hiroshima.ac.jp [Research Center for Condensed Matter Physics, Department of Civil Engineering and Urban Design, Hiroshima Institute of Technology, Hiroshima 731-5193 (Japan); Tsuruta, Kenji [Department of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530 (Japan); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 Japan (Japan); Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy, Department of Chemical Engineering & Materials Science, Department of Biological Sciences, University of Southern California, CA90089-024 (United States)

    2016-01-15

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C{sub 60} molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D{sup +} and A{sup -}) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  14. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Science.gov (United States)

    Kassa, M.; Rapp, M.; Hartquist, T. W.; Havnes, O.

    2012-03-01

    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  15. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2012-03-01

    Full Text Available We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  16. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    Science.gov (United States)

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  17. The Effect of Temperature and Nanoclay on the Low Velocity and Ballistic Behavior of Woven Glass-Fiber Reinforced Composites

    Science.gov (United States)

    Patrin, Lauren

    The objective of this research was to study the effect of nanoclay and temperature on the behavior of woven glass-fabric reinforced epoxy composite under low velocity and ballistic impacts. The materials used in manufacturing the composite were S2 (6181) glass-fibers, epoxy resin (EPON 828), hardener (Epikure 3230), nanoclay and Heloxy 61 modifier. The nanoclay addition was 0%, 1%, 3% and 5% by weight, with respect to the resin. All specimens were manufactured at the City College facilities using vacuum infusion. Tensile tests were conducted to characterize the material and obtain the Young's modulus, ultimate stress, failure strain, Poisson's ratio, shear modulus and shear strength and their variation with nanoclay percentage and temperature. The tests were conducted at room temperature (21°C/70°F), -54°C (-65°F), -20°C (-4°F), 49°C (120°F) and 71°C (160°F). Next composite specimens with 0%, 1%, 3% and 5% nanoclay by weight, with respect to the resin, were subjected to low velocity impact at the previously specified temperatures to determine dynamic force, displacement and energy correlations. The extent of damage was studied using the ultrasound technique. Then ballistic tests were conducted on the nanoclay infused specimens at room temperature to obtain the ballistic limit (V50) and the damage behavior of the composite. The dynamic finite element analysis (FEA) software LS-DYNA was used to model and simulate the results of low velocity impact tests. Good agreement was obtained between experimental and numerical (FEA) results. Analytical analyses were undertaken to compare the results from the tensile experiments. The finite element analysis (FEA) allowed for further analytical comparison of the results. The FEA platform used was LS-DYNA due to its proficient dynamic and damage capabilities in composite materials. The FEA was used to model and simulate the low velocity impacts and compare the results to experiments.

  18. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping

    Science.gov (United States)

    Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Morin, Jean-Benoît

    2017-01-01

    Ballistic performances are determined by both the maximal lower limb power output (Pmax) and their individual force-velocity (F-v) mechanical profile, especially the F-v imbalance (FVimb): difference between the athlete's actual and optimal profile. An optimized training should aim to increase Pmax and/or reduce FVimb. The aim of this study was to test whether an individualized training program based on the individual F-v profile would decrease subjects' individual FVimb and in turn improve vertical jump performance. FVimb was used as the reference to assign participants to different training intervention groups. Eighty four subjects were assigned to three groups: an “optimized” group divided into velocity-deficit, force-deficit, and well-balanced sub-groups based on subjects' FVimb, a “non-optimized” group for which the training program was not specifically based on FVimb and a control group. All subjects underwent a 9-week specific resistance training program. The programs were designed to reduce FVimb for the optimized groups (with specific programs for sub-groups based on individual FVimb values), while the non-optimized group followed a classical program exactly similar for all subjects. All subjects in the three optimized training sub-groups (velocity-deficit, force-deficit, and well-balanced) increased their jumping performance (12.7 ± 5.7% ES = 0.93 ± 0.09, 14.2 ± 7.3% ES = 1.00 ± 0.17, and 7.2 ± 4.5% ES = 0.70 ± 0.36, respectively) with jump height improvement for all subjects, whereas the results were much more variable and unclear in the non-optimized group. This greater change in jump height was associated with a markedly reduced FVimb for both force-deficit (57.9 ± 34.7% decrease in FVimb) and velocity-deficit (20.1 ± 4.3%) subjects, and unclear or small changes in Pmax (−0.40 ± 8.4% and +10.5 ± 5.2%, respectively). An individualized training program specifically based on FVimb (gap between the actual and optimal F-v profiles of

  19. Effect of Solvents on the Ultrasonic Velocity and Acoustic Parameters of Polyvinylidene Fluoride Solutions

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni

    2016-01-01

    Full Text Available Ultrasonic studies provide a wealth of information in understanding the molecular behavior and intermolecular interaction of polymer solvent mixtures. Attempts were made to measure ultrasonic velocity, density, and viscosity for the mixture of polyvinylidene fluoride (PVDF in acetone and dimethylformamide (DMF of various stoichiometric ratios at 300 K using crystal controlled ultrasonic interferometer (Mittal make, pyknometer (specific gravity bottle, and Ostwald viscometer, respectively. The acoustic parameters adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ have been estimated using experimental data with well-known techniques. The variation of these acoustic parameters is explained in terms of solute-solvent molecular interaction in a polymer solution.

  20. Effect of lipophilic ions on the intramembrane charge movement and intracellular Ca2+ release in fetal mouse skeletal muscle cells.

    Science.gov (United States)

    Inoue, I; Shimahara, T; Bournaud, R

    1997-12-01

    The effects of lipophilic ions on the intramembrane charge movement and intracellular calcium transient were studied using freshly dissociated skeletal muscle cells from mice fetuses. The lipophilic cations Rhodamine 6G and tetraphenylphosphonium (TPP) immobilized part of the intramembrane charge movement in a dose-dependent manner, and inhibited both calcium transient and contraction evoked by membrane depolarization. In contrast, the lipophilic anion 1-anilinonaphthalene-8-sulfonic acid (ANS) had no effect on intramembrane charge movement. We suggest that the lipophilic cations block the voltage-sensing mechanism for the excitation-contraction (E-C) coupling mechanism.

  1. Influence of Bandstructure Effects on the Single-Charge-Induced Random Telegraphic Noise in Nanoscale FETs

    Science.gov (United States)

    Islam, Sharnali; Ahmed, Shaikh

    2010-03-01

    Numerical simulations have been carried out to study the single-charge-induced random telegraphic noise in nanoscale field-effect transistors. A three-dimensional Monte Carlo device simulator has been developed and used in this work. Quantum effects have been accounted for via a parameter-free effective potential scheme that is based on a perturbation theory around thermodynamic equilibrium where the size of the electron depends upon its energy. For better accuracy, bandstructure parameters (bandgap, effective masses, and density of states) have been computed via a 20-band sp3d5s* tight-binding scheme. To treat full Coulomb interactions properly, two real-space molecular dynamics schemes have been implemented. Also, necessary event-biasing algorithms have been used that, while enhancing the statistics, results in a faster convergence in the channel current. The study confirms that, due to the presence of single channel charges, both the electrostatics (carrier density) and dynamics (mobility) get perturbed and, therefore, play important roles in determining the magnitude of the current fluctuations. The relative impact depends on an intricate interplay of device size, geometry, crystal direction, gate bias, temperature, and energetic and spatial location of the trap.

  2. Predicting the effect of charged particles for instantaneous and protracted irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Lisa; Tommasino, Francesco; Seeger, Adrian; Scholz, Uwe; Friedrich, Thomas; Scholz, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Institut fuer Festkoerperphysik, TU Darmstadt, Darmstadt (Germany)

    2012-07-01

    The local effect model (LEM) predicts the relative biological effectiveness for charged particle radiation based on the dose response of radiation with low linear energy transfer such as X-rays. The induction of DNA double strand breaks after irradiation is simulated according to the track structure of charged particles. The effect of these lesions is then derived from the effect after photon irradiation causing a similar damage pattern. The LEM has been tested thoroughly using in-vitro and in-vivo experiments as well as clinical findings of carbon ion therapy. General properties of dose response curves can be derived from the conceptual basis of the LEM. Furthermore, insight in damage repair kinetics and the response to time dependent dose delivery is gained. In this contribution, the concept of the LEM is reviewed and some examples for its applicability are briefly discussed. General properties of the dose response curves are motivated. Finally, cell survival curves after protracted irradiation as well as the measured time dependence of residual damage after instantaneous irradiation are compared with the model predictions. Here, good agreement is found.

  3. Early-stage effects of residual charges in a metal target on emitted electrons induced by femtosecond laser–metal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Sha [Advanced Optowave Corp., Ronkonkoma, NY 11779 (United States); Wu, Benxin, E-mail: wu65@purdue.edu [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 (United States); Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2017-01-30

    Electron emissions from a metal target surface may be induced due to the irradiation of the target by a femtosecond (fs) laser pulse. The emitted electrons will leave behind residual charges (which are positive) in the metal target near its surface. The residual charges may affect the evolution of the emitted electrons, which is called the “residual charge effect”. An intuitive belief could be that the residual charge effect is insignificant, because the huge number of free electrons in the interior region of the metal may quickly neutralize the residual charges. In this paper, the early-stage (at a time scale of less than ∼1 picosecond) residual charge effect has been investigated. The study shows that contrary to the above intuitive belief, the early-stage residual charge effect is very significant under the studied conditions, which has greatly slowed down the expansion of emitted electrons and enhanced their recombination back into the surface of the target. The study implies that to accurately study the early-stage fs laser-induced electron emission and other closely related processes, the residual charge effect should not be neglected. - Highlights: • Laser-induced electron emission may leave positive residual charges in a metal. • An intuitive belief could be that the residual charge effect is insignificant. • This study shows the residual charge effect is significant during the early stage. • The residual charge effect slows down the expansion of emitted electrons. • The residual charge effect enhances the recombination of emitted electrons.

  4. Enhancing gas induced charge doping in graphene field effect transistors by non-covalent functionalization with polyethyleneimine

    Science.gov (United States)

    Sabri, Shadi S.; Guillemette, Jonathan; Guermoune, Abdelaadim; Siaj, Mohamed; Szkopek, Thomas

    2012-03-01

    We demonstrate that large-area, graphene field effect transistors with a passive parylene substrate and a polyethyleneimine functional layer have enhanced sensitivity to CO2 gas exposure. The electron doping of graphene, caused by protonated amine groups within the polyethyleneimine, is modulated by the formation of negatively charged species generated by CO2 adsorption. The charge doping mechanism is general, and quantitative doping density changes can be determined from the graphene field effect transistor characteristics.

  5. Plasma Effects On Atomic Data For The K-Vacancy States Of Highly Charged Iron Ions

    OpenAIRE

    Deprince, J; Fritzsche, S; Kallman, T. R.; Palmeri, P; Quinet, Pascal

    2017-01-01

    The main goal of the present work is to estimate the effects of plasma environment on the atomic parameters associated with the K-vacancy states in highly charged iron ions within the astrophysical context of accretion disks around black holes. In order to do this, multiconfiguration Dirac-Fock computations have been carried out by considering a time averaged Debye-H\\"uckel potential for both the electron-nucleus and electron-electron interactions. In the present paper, a first sample of resu...

  6. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  7. The effect of interfacial layers on charge transport in organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema, E-mail: mola@ukzn.ac.za

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  8. Effect of spatial charge inhomogeneity on 1/f noise behavior in graphene.

    Science.gov (United States)

    Xu, Guangyu; Torres, Carlos M; Zhang, Yuegang; Liu, Fei; Song, Emil B; Wang, Minsheng; Zhou, Yi; Zeng, Caifu; Wang, Kang L

    2010-09-08

    Scattering mechanisms in graphene are critical to understanding the limits of signal-to-noise ratios of unsuspended graphene devices. Here we present the four-probe low-frequency noise (1/f) characteristics in back-gated single layer graphene (SLG) and bilayer graphene (BLG) samples. Contrary to the expected noise increase with the resistance, the noise for SLG decreases near the Dirac point, possibly due to the effects of the spatial charge inhomogeneity. For BLG, a similar noise reduction near the Dirac point is observed, but with a different gate dependence of its noise behavior. Some possible reasons for the different noise behavior between SLG and BLG are discussed.

  9. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    ” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative......Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static...... indicating transmission via the hydrogen bond. In addition, unusual long range effects are seen. Structures, 1H and 13C NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using density functional theory methods...

  10. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    these analyses. The amplification functions were extracted using the programme SITE_AMP (Boore, 2003), which computes amplifications based on the square root of the effective seismic impedance. Sensitivity indices were obtained by changing two parameters (thickness and shear-wave velocity) of the different layers while keeping the others constant. Additional analyses were carried out by producing various profiles within specified boundaries which are able to fit the experimental data. The analyses also show the important role that the shear-wave velocity profiles play in ground motion simulations. The results obtained highlight the importance of the correct knowledge of both the properties of the Upper Coralline Limestone and the Blue Clay, especially the Blue Clay thickness.

  11. Modeling skin temperature to assess the effect of air velocity to mitigate heat stress among growing pigs

    DEFF Research Database (Denmark)

    Bjerg, Bjarne Schmidt; Pedersen, Poul; Morsing, Svend

    to the skin and from the skin to the surroundings. The latter is modelled as the united resistance for convection, radiation and evaporation. The model considers that the thermal heat load affects the tissue resistance, the body temperature and the evaporation from the skin, which is managed by modeling...... temperature model to generated data for determining the potential effect of air velocity to mitigate heat stress among growing pigs housed in warm environment. The model calculates the skin temperature as function of body temperature, air temperature and the resistances for heat transfer from the body...

  12. Charge Inversion Effects in Electrophoresis of Polyelectrolytes in the Presence of Multivalent Counterions and Transversal Electric Fields

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2014-12-01

    Full Text Available By molecular dynamics simulations we investigate the transport of charged polymers in confinement, under externally applied electric fields, in straight cylinders of uniform diameter and in the presence of monovalent or multivalent counterions. The applied electric field has two components; a longitudinal component along the axis of the cylinder and a transversal component perpendicular to the cylinder axis. The direction of electrophoretic velocity depends on the polyelectrolyte length, valency of the counterions present in solution and transversal electric field value. A statistical model is put forward in order to explain these observations.

  13. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    Science.gov (United States)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  14. Analytical solution for peristaltic flow of conducting nanofluids in an asymmetric channel with slip effect of velocity, temperature and concentration

    Directory of Open Access Journals (Sweden)

    S. Sreenadh

    2016-06-01

    Full Text Available The Peristaltic transport of conducting nanofluids under the effect of slip condition in an asymmetric channel is reported in the present work. The mathematical modelling has been carried out under long wavelength and low Reynolds number approximations. The analytical solutions are obtained for pressure rise, nanoparticle concentration, temperature distribution, velocity profiles and stream function. Influence of various parameters on the flow characteristics has been discussed with the help of graphs. The results showed that the pressure rise increases with increasing magnetic effect and decreases with increasing slip parameter. The effects of thermophoresis parameter and Brownian motion parameter on the nanoparticle concentration and temperature distribution are studied. It is observed that the pressure gradient increases with increasing slip parameter and magnetic effect. The trapping phenomenon for different parameters is presented.

  15. Effects of initial whole mantle 1-D S-velocity and Q structure on waveform inversion for 3-D S-velocity structure: Application to D″ beneath Central America and the Caribbean

    Science.gov (United States)

    Borgeaud, Anselme F. E.; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J.

    2017-04-01

    We previously inverted for the 3-D S-velocity structure in D″ beneath Central-America using PREM S-velocity and anelastic (Q) structure as the initial model (Kawai et al. 2014; Borgeaud et al. 2016, JPGU). We fixed the structure outside the target region (D″) to PREM (Dziewonski and Anderson 1981) and made static corrections for the effects of structure near the source and station by time-shifting the records based on the S-wave arrival times. We then used the ScS waveforms as the data in the inversion for 3-D structure. In this study, we infer the 1-D S-velocity and Q structure in the whole mantle beneath Central America using waveform inversion and use this new 1-D model as the starting model in and inversion for the 3-D S-velocity model in D″. Our dataset consists of 7000 records at USArray broadband stations and 40 intermediate- and deep-focus events in South-America. For the 1-D corridor inversion, we use waveforms cut around minor arc body-wave arrivals (e.g. S, ScS, S, S2, S3), including multiple reverberations at the core-mantle boundary (ScSn), which provide constraints on the difference in Q structure between the upper- and lower-mantle, and may partially account for the effect of strongly heterogeneous crust. For the 3-D inversion in D″, we use waveforms in the time windows before and after the S and ScS arrival times, respectively. We compare the 3-D model obtained using PREM as the starting model to that obtained using the newly inferred 1-D Q and S-velocity model as the starting model to study the effects of the choice of initial model on the 3-D inversion results.

  16. Low Energy Gamma Radiation Induced Effects on Ultrasonic Velocity and Acoustic Parameters in Polyvinylidene Fluoride Solution

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni

    2016-01-01

    Full Text Available The modification of polyvinylidene fluoride (PVDF polymer properties with irradiation is of interest as it possesses unique piezo-, pyro-, and ferroelectric properties. In this paper, we report the results of acoustic parameters of irradiated PVDF mixed with dimethylacetamide (DMAC solution with low energy γ-source (Cs-137. The polymer solution covered with mica film assures only γ-ray passage and the duration was increased from 18 to 50 hours to achieve the higher dose rate. The dose rate was estimated using the strength of the radioactive source and the duration of the exposure. The ultrasonic velocity (v, density (ρ, and viscosity (η of 0.2 wt% and 0.5 wt% PVDF dissolved in pure DMAC solution, irradiated with different dose rate were measured using ultrasonic interferometer (Mittal make, Pyknometer, and Oswald’s viscometer, respectively. It is observed that the values of v, ρ, and η change with dose rate. The acoustic parameters such as adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ are calculated using the experimental data. These results are interpreted in terms of the solute-solvent interaction in a polymer solution and scissoring chain damage.

  17. Effect of head rotation on cerebral blood velocity in the prone position

    DEFF Research Database (Denmark)

    Højlund, Jakob; Sandmand, Marie; Sonne, Morten

    2012-01-01

    for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA V(mean...... MAP (from 78 ± 3 to 80 ± 2 mmHg) as well as bilateral jugular vein diameters, leaving MCA V(mean) unchanged. Positive pressure breathing in the prone position increased MAP (by 3.6 ± 0.8 mmHg) but further reduced SV and CO (by 9.3 ± 1.3 % and 7.2 ± 2.4 % below baseline) while MCA V(mean......) was maintained. The head-rotated prone position with positive pressure breathing augmented MAP further (87 ± 2 mmHg) but not CO, narrowed both jugular vein diameters, and reduced MCA V(mean) (by 8.6 ± 3.2 %). Conclusion. During positive pressure breathing the prone position with sideways rotated head reduces MCA...

  18. Effects of Obesity and Hypertension on Pulse Wave Velocity in Children.

    Science.gov (United States)

    Kulsum-Mecci, Nazia; Goss, Charles; Kozel, Beth A; Garbutt, Jane M; Schechtman, Kenneth B; Dharnidharka, Vikas R

    2017-03-01

    Pulse wave velocity (PWV) is a biomarker of arterial stiffness. Findings from prior studies are conflicting regarding the impact of obesity on PWV in children. The authors measured carotid-femoral PWV in 159 children aged 4 to 18 years, of whom 95 were healthy, 25 were obese, 15 had hypertension (HTN), and 24 were both obese and hypertensive. Mean PWV increased with age but did not differ by race or sex. In adjusted analyses in children 10 years and older (n=102), PWV was significantly higher in children with hypertension (PWV±standard deviation, 4.9±0.7 m/s), obesity (5.0±0.9 m/s), and combined obesity-hypertension (5.2±0.6 m/s) vs healthy children (4.3±0.7 m/s) (each group, Pobesity and HTN both significantly and independently increased PWV, while African American children did not have a higher PWV than Caucasian children. ©2016 Wiley Periodicals, Inc.

  19. Effects of vdW and Electrostatic Interactions on Phonon Velocity and Thermal Transport in Polymers

    Science.gov (United States)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Bulk amorphous polymers typically have a low thermal conductivity ( 0.2 W/mK). This low thermal conductivity is believed to be due to weak inter-chain interactions, e.g., van der Waals and electrostatic. Heat transfer along polymer chains, however, is considered very robust due to strong covalent bonds between the atoms. In this work we show that this explanation does not give a clear picture of precisely what contributes to heat transfer in various polymers with different structures. Here we show that the abundance of vdW and electrostatic interactions can greatly impact heat transfer in polymers at room temperature. Through molecular dynamics calculations, we show that the propagation velocities of acoustic phonons at moderate frequencies ( 1THz), which contribute significantly to heat transfer at room temperature, are much higher when non-bonding interactions are present in the system versus when they are excluded. This relationship has important implications for designing amorphous polymers with high thermal conductivity.

  20. Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy

    Directory of Open Access Journals (Sweden)

    Javidi M

    2014-12-01

    Full Text Available Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties. Methods: In this study, to solve heat transfer equation, we used COMSOL Multiphysics and to verify the model, an experimental setup has been used. To show the accuracy of the model, simulations have been compared with experimental results. In the second part, by using experimental results of nanoparticles distribution inside Agarose gel according to various gel concentration, 0.5%, 1%, 2%, and 4%, as well as the injection velocity, 4 µL/min, 10 µL/min, 20 µL/min, and 40 µL/min, for 0.3 cc magnetite fluid, power dissipation inside gel has been calculated and used for temperature prediction inside of the gel. Results: The Outcomes demonstrated that by increasing the flow rate injection at determined concentrations, mean temperature drops. In addition, 2% concentration has a higher mean temperature than semi spherical nanoparticles distribution. Conclusion: The results may have implications for treatment of the tumor and any kind of cancer diseases.

  1. Removal of pollutants by enhanced coagulation combined PAC with variable charge soils: flocs' properties and effect of pH.

    Science.gov (United States)

    Wang, Yu-Jie; Wu, Chun-De; Duan, Yan; Zhang, Zhi-Lin

    2016-09-01

    This study investigated the properties of flocs and effects of the solution pH on removal of representative pollutants by enhanced coagulation with variable charge soils of South China and polyaluminum chloride (PAC). The results demonstrated that the removal efficiency of turbidity was larger and the aggregated flocs had a faster growth rate, bigger size, denser structure and faster settling rate than those generated by PAC alone, when variable charge soil was used in conjunction with PAC. Additionally, initial solutions pH had meaningful effects on removal of pollutants. With the increase in the pH of the solution, the removal efficiencies of turbidity, algae and heavy metal ions significantly increased. Besides, charge neutralization together with physical entrapment of colloids was the dominant mechanism in enhanced coagulation, and variable charge soil displayed a great adsorption effect.

  2. The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood.

    Science.gov (United States)

    Pribush, Alexander; Meyerstein, Dan; Meyerstein, Naomi

    2011-02-01

    Usually, investigations of erythrocyte aggregation at rest are focused on effects of the strength of erythrocyte-erythrocyte attractive interactions and the volume fraction of the cells, whereas the role of prior flow velocity has not been thoroughly investigated. The aim of this study is to fill this gap. The main conclusions extracted from time records of the complex admittance of blood are as follows: (1) Dispersion of blood in a prior flow into discrete aggregates increases the mesh size of network, which, as has been recently shown, is formed in the quiescent blood. (2) If the energy of the flow field is sufficient to prevent the formation of face-to-side intercellular links, so that the dispersed phase consists of linear rouleaux, changes in the mesh size correlate positively with the length of rouleaux. (3) At slower prior flow velocities, the cells are combined into branched aggregates. As the degree of branching increases, the effect becomes less important. (4) The effects of the length of linear rouleaux and the degree of branching of ramified aggregates on the mesh size are qualitatively similar for suspensions with different aggregating media. (5) Erythrocytes suspended in strongly aggregating media form at low flow conditions a network-like structure. In this case, unlike high and moderate prior flow regimes, the mesh size of RBC network at rest is less than that formed after the stoppage of completely dispersed blood. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  4. Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma.

    Science.gov (United States)

    Lindner, Helmut; Murtazin, Ayrat; Groh, Sebastian; Niemax, Kay; Bogaerts, Annemie

    2011-12-15

    An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., ∼50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule

  5. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.

    Science.gov (United States)

    Li, Yifan; Bhushan, Bharat

    2015-10-14

    The reduction of fluid drag is an important issue in many fluid flow applications at the micro/nanoscale. Boundary slip is believed to affect fluid drag. Slip length has been measured on various surfaces with different degrees of hydrophobicity and oleophobicity immersed in various liquids of scientific interest. Surface charge has been found to affect slip length in water and electrolytes. However, there are no studies on the effect of surface charge on slip at solid-oil interfaces. This study focuses on the effect of surface charge on the boundary slip of superoleophilic, oleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water and hexadecane and ethylene glycol, based on atomic force microscopy (AFM). The surface charge was changed by applying a positive electric field to the solid-liquid interface, and by using liquids with different pH values. The results show that slip length increases with an increase in applied positive electric field voltage. Slip length also increases with a decrease in the pH of the solutions. The change in slip length is dependent on the absolute value of the surface charge, and a larger surface charge density results in a smaller slip length. In addition, the surface charge density at different solid-liquid interfaces is related to the dielectric properties of the surface. The underlying mechanisms are analyzed.

  6. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    Science.gov (United States)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2017-10-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  7. Analysis of capacity fading effect on Lithium Cobalt cells caused by pulse current technique in fast charging methods

    Science.gov (United States)

    Hafiz, S.; Arianto, S.; Yunaningsih, R. Y.; Majid, N.; Prihandoko, B.

    2017-04-01

    Charging a battery in a short time is important for portable devices. Many techniques have been developed to find out the proper method for fast charging. One of those techniques that has been patented in several fast charging methods is pulse current technique. This technique implements pulse current with adjusting pulse wide and voltage threshold in a certain values. In this paper, the capacity fading effects caused by the current pulse in lithium cobalt cells were investigated. The experiment was done by applying pulse current at high-level SOC to charge four cylindrical lithium cobalt cells. The Capacity of each cell was checked every 50 charge-discharge cycles. The experiment result shows that the changing capacity in each cell forms patterns alike. As if there was a slight increament on their capacities at first checking but rapidly decreasing at the next check. Then, their capacities continue to decrease slowly but the more often the charge-discharge cycling, the battery lifetime decreased. This research has provided analysis of pulse current effect on lithium cobalt capacity fading that should be noted as a reference in applying current pulse for fast charging methods.

  8. Testing quantum gravity effects through Dyonic charged AdS black hole

    CERN Document Server

    Sadeghi, J; Rostami, M

    2016-01-01

    In this paper, we consider dyonic charged AdS black hole which is holographic dual of a van der Waals fluid. We use logarithmic corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability also discussed. Logarithmic corrections arises due to thermal fluctuations which are important when size of black hole be small. So, thermal fluctuations interpreted as quantum effect. It means that we can see quantum effect of a black hole which is a gravitational system. Hence, one can use result of this paper to compare with that of van der Waals fluid in the lab and see quantum gravity effects.

  9. Simulation study of the photoemission effects in an electrostatic plasma sheath containing charged nanoparticles

    Science.gov (United States)

    Jalilpour, P.; Foroutan, G.

    2017-06-01

    Numerical simulations of the multi-fluid equations are utilized to investigate the effects of a directed photon flux on the structure of an electrostatic plasma sheath in the presence of nano-sized dust grains. The results revealed that the sheath width decreases with an increase in the photon flux as well as the photoelectric efficiency, and that the effect is prominent at high plasma number densities. With the increase in the incident flux, the absolute dust charge decreases immediately until it changes sign and becomes positive at moderate fluxes and then increases quite slowly. The ion drag is also reduced by the photoemission, while the electric force is enhanced. The net effect is an enhancement of the total force on the dust grains towards the sheath edge, leading to a significantly reduced dust speed and consequently an increased dust number density throughout the sheath.

  10. Effect of electrostatic charge on the contamination of plastic food containers by airborne bacterial spores.

    Science.gov (United States)

    Baribo, L E; Avens, J S; O'neill, R D

    1966-11-01

    Electrostatic charge of approximately -10 kv was produced by friction on polystyrene food container samples. This charge quickly decayed to a lower, more stable, level. Exposure of samples to positively charged red and negatively charged green fluorescent particles resulted in a particle-distribution pattern on the plastic surface. The dynamic attraction of fluorescent particles was illustrated by time-lapse photography. Similar distribution patterns of airborne bacterial spores were shown to develop. In controlled bacterial aerosol exposure tests, an increase in surface contamination of the plastic samples was found to be quantitatively related to an increase in negative electrostatic charge on the plastic. Static charge was found to accumulate on plastic food containers during their manufacture, and to remain indefinitely on many of the finished products. This charge was of the intensity and polarity to attract positively charged bacterial cells if such particles were present in the air.

  11. Photo-excited charge collection spectroscopy probing the traps in field-effect transistors

    CERN Document Server

    Im, Seongil; Kim, Jae Hoon

    2013-01-01

    Solid state field-effect devices such as organic and inorganic-channel thin-film transistors (TFTs) have been expected to promote advances in display and sensor electronics. The operational stabilities of such TFTs are thus important, strongly depending on the nature and density of charge traps present at the channel/dielectric interface or in the thin-film channel itself. This book contains how to characterize these traps, starting from the device physics of field-effect transistor (FET). Unlike conventional analysis techniques which are away from well-resolving spectral results, newly-introduced photo-excited charge-collection spectroscopy (PECCS) utilizes the photo-induced threshold voltage response from any type of working transistor devices with organic-, inorganic-, and even nano-channels, directly probing on the traps. So, our technique PECCS has been discussed through more than ten refereed-journal papers in the fields of device electronics, applied physics, applied chemistry, nano-devices and materia...

  12. Charge is an important determinant of hemodynamic and adverse cardiovascular effects of cationic drugs.

    Science.gov (United States)

    Pugsley, Michael K; Authier, Simon; Curtis, Michael J

    2015-12-01

    Cationic compounds are diverse and atypical therapeutic substances. In the present study we examined whether a prototypical class effect of cationic drugs in the cardiovascular system exists and whether this might be predictable on the basis of chemistry. The dose-dependent effects of cationic compounds of varying molecular weights and charge were examined on the blood pressure (BP), heart rate (HR) and the ECG in anesthetized rats. The compounds examined were protamine, hexadimethrine, tetraethylammonium (TEA), low molecular weight poly-L-lysine (LMW-PLL) and high molecular weight PLL (HMW-PLL). All of the compounds examined except TEA produced a dose-dependent reduction in BP. No changes occurred in HR even when high doses were administered. The ECG effects of these cationic compounds included a dose-dependent prolongation of the QT interval, especially at higher doses. All compounds transiently decreased the size of the P-wave after i.v. bolus administration whereas only protamine and hexadimethrine prolonged the PR and QRS intervals and only at the highest dose (32 mg/kg) administered. All cationic compounds, except TEA and saline, evoked ventricular premature beats (VPB), and protamine and HMW-PLL also evoked brief episodes of ventricular tachycardia (VT). The incidence and frequency of arrhythmias was not dose-dependent and no animals experienced protracted episodes of arrhythmia incidence. These dose dependent effects of the polycationic compounds tested suggest a collective mechanism of action that relates the effect of charge of the compound to the onset and persistence of observed cardiovascular toxicity, and adverse cardiovascular effect risk appears to be predictable on this basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qiong, E-mail: lian24111@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Li, Hongyuan, E-mail: lihongyuan@ncepu.edu.cn [School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 (China); Lu, Daogang, E-mail: ludaogang@ncepu.edu.cn [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Chang, Mu, E-mail: changmu123@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China)

    2017-04-01

    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  14. The Effect of "Pumping" and "Nonpumping" Techniques on Velocity Production and Muscle Activity During Field-Based BMX Cycling.

    Science.gov (United States)

    Rylands, Lee P; Hurst, Howard T; Roberts, Simon J; Graydon, Robert W

    2017-02-01

    Rylands, LP, Hurst, HT, Roberts, SJ, and Graydon, RW. The effect of "pumping" and "nonpumping" techniques on velocity production and muscle activity during field-based BMX cycling. J Strength Cond Res 31(2): 445-450, 2017-The aim of the current study was to determine if a technique called "pumping" had a significant effect on velocity production in Bicycle Motocross (BMX) cycling. Ten National standard male BMX riders fitted with surface electromyography (sEMG) sensors completed a timed lap of an indoor BMX track using the technique of pumping, and a lap without pumping. The lap times were recorded for both trials and their surface sEMG was recorded to ascertain any variation in muscle activation of the biceps brachii, triceps brachii, vastus lateralis, and medial gastrocnemius. The findings revealed no significant differences between any of muscle groups (p > 0.05). However, significant differences (p muscle activity. From a physiological and technical perspective, coaches and riders should prioritize this technique when devising training regimes.

  15. Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor

    Science.gov (United States)

    Chin, C. H.; Li, C. S.; Li, M. H.; Wang, Y. L.; Li, S. S.

    2014-09-01

    A high-frequency charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal-oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology with Q > 1700 and a signal-to-feedthrough ratio greater than 35 dB under a direct two-port measurement configuration. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the large-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET; the theoretical prediction is in good agreement with the experimental results. Thanks to the deep-submicrometer gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains motional impedance less than 10 kΩ, a record-low value among CMOS-MEMS capacitive resonators. To go one step further, the motional signal of the proposed RGFET is greatly enhanced through the FET transduction. Such a strong transmission and a sharp phase transition across 0° pave a way for future RGFET-type oscillators in RF and sensor applications. A time-elapsed characterization of the charge leakage rate for the floating gate is also carried out.

  16. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp [Department of Chemistry, Faculty of Education, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2015-12-31

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.

  17. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for HnA-BHm molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H3C-F, and Li-CH3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH3, -NH2, -OH, and -F have on the resonance energy (bonding atom.

  18. Examination of shaped charge liner shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.J.; Moore, T.W.; Lee, C.G.; Breithaupt, R.; Avara, G.R.

    1996-07-01

    A series of experiments was conducted for the purpose of achieving a more fundamental understanding of the shaped charge liner shock loading environment. The test configuration, representing the middle portion of a shaped charge, consists of a 50 mm deep, 100 mm tall, and 2 mm thick copper plate driven by 50 mm deep, 100 mm tall, tapered thickness wedge of LX-14. An electrically driven 50 mm square flyer is used to surface initiate the base of the LX-14 causing a plane detonation wave to propagate into the explosive wedge along the liner surface. Fabry-Perot laser velocimetry measures the particle velocity time history of the plate. The CTH and DYNA2D hydrocodes are used to simulate the experiments. Calculations of the velocity profiles are compared to the experimental results. The effects of mesh density, copper material failure and strength models, and explosive detonation models are discussed.

  19. Prediction and measurement of the depletion interaction in charged colloidal systems and its effect on stability

    Science.gov (United States)

    Sharma, Amber

    This dissertation was a study of the effect of introducing a nonadsorbing polyelectrolyte to a colloidal dispersion. Nonadsorbing macromolecular species in a colloidal dispersion result in what is termed the depletion effect. These macromolecules can be polymer molecules, micelles or other aggregates, or even other small particles. As two colloidal particles approach each other, such as through Brownian motion, the concentration of macromolecules in the gap region is altered relative to the bulk. At small separations, the macromolecules are excluded from the gap region, producing a depletion layer. This reduced concentration results in a lower osmotic pressure relative to the bulk and the resulting attraction is termed the depletion force. A force-balance model was developed to calculate the interaction force between two spherical particles in the presence of nonadsorbing spherical macromolecules. Both the higher order effects resulting from interactions between the macromolecules and, long range electrostatic repulsion for the macromolecule-macromolecule and particle-macromolecule interaction were included. The depletion interaction energy between a charged colloidal sphere and a charged flat plate in the presence of nonadsorbing silica macromolecules was measured using the optical technique of total internal reflection microscopy (TIRM). Comparisons of the measured energies to those predicted using a force-balance model indicated that the silica particles contribute slightly to the screening of the electrostatic interaction between the polystyrene particle and plate. Adjustment for this screening produces good agreement between theory and experiment. The effect of nonadsorbing silica on the stability of an electrically-stabilized dispersion of polystyrene latex was monitored using optical light scattering. Because of long range attractive depletion forces, reversible secondary flocculation of the particles occurred into a local potential energy minima. As has

  20. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    Science.gov (United States)

    Ciria, HC; Quevedo, MS; Cabrales, LB; Bruzón, RP; Salas, MF; Pena, OG; González, TR; López, DS; Flores, JM

    2004-01-01

    Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups) consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3) and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil infiltration, an acute

  1. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    Directory of Open Access Journals (Sweden)

    González TR

    2004-11-01

    Full Text Available Abstract Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3 and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil

  2. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children

    DEFF Research Database (Denmark)

    Anhøj, J; Bisgaard, H; Lipworth, B J

    1999-01-01

    AIMS: The effect of the electrostatic charge in plastic spacers in vivo on drug delivery to the lung of hydrofluoroalkane (HFA) salbutamol spray was studied in children. METHODS: Five children, aged 7-12 years, were included in a 3-way crossover randomised single-blind trial. Salbutamol HFA spray...... delivered a significantly (Pcharge in plastic spacers reduces lung dose in children by more than two-fold. This is clinically significant and the use of potentially electrostatically charged...

  3. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children

    DEFF Research Database (Denmark)

    Anhøj, J; Bisgaard, H; Lipworth, B J

    1999-01-01

    AIMS: The effect of the electrostatic charge in plastic spacers in vivo on drug delivery to the lung of hydrofluoroalkane (HFA) salbutamol spray was studied in children. METHODS: Five children, aged 7-12 years, were included in a 3-way crossover randomised single-blind trial. Salbutamol HFA spray...... delivered a significantly (Pchildren by more than two-fold. This is clinically significant and the use of potentially electrostatically charged...

  4. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.

  5. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-02-15

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)

  6. Image analysis of single event transient effects on charge coupled devices irradiated by protons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an (China); Xue, Yuanyuan [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an (China); Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Hunan (China); He, Baoping; Yao, Zhibin; Ma, Wuying [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an (China)

    2016-10-21

    The experiments of single event transient (SET) effects on charge coupled devices (CCDs) irradiated by protons are presented. The radiation experiments have been carried out at the accelerator protons with the energy of 200 MeV and 60 MeV.The incident angles of the protons are at 30°and 90° to the plane of the CCDs to obtain the images induced by the perpendicularity and incline incident angles. The experimental results show that the typical characteristics of the SET effects on a CCD induced by protons are the generation of a large number of dark signal spikes (hot pixels) which are randomly distributed in the “pepper” images. The characteristics of SET effects are investigated by observing the same imaging area at different time during proton radiation to verify the transient effects. The experiment results also show that the number of dark signal spikes increases with increasing integration time during proton radiation. The CCDs were tested at on-line and off-line to distinguish the radiation damage induced by the SET effects or DD effects. The mechanisms of the dark signal spike generation induced by the SET effects and the DD effects are demonstrated respectively.

  7. Non-stationary Effects In Space-charge Dominated Electron Beams

    CERN Document Server

    Agafonov, A V; Tarakanov, V P

    2004-01-01

    Problems of non-linear dynamics of space charge dominated electron beams in plane and in coaxial electron guns are discussed from the point of view of non-stationary behaviour of beams. The results of computer simulations of beam formation are presented for several simple plane diode geometries and for the gun with large compression of annular beam. Emphasised is non-stationary behaviour combined with edge and hysteresis effects. Non-stationary effects in crossed electron and magnetic field are considered from the point of view a development of schemes of intense electron beam formation for compact accelerators and RF-devices. The results of computer simulation of beam formation inside coaxial guns are described under condition of secondary self-sustaining emission. Possibilities of electron storage and capture due to transient processes are discussed. Work supported by RFBR under grant 03-02-17301.

  8. The Differential Effects of Position, Velocity, and Acceleration Feedback on Motivation Over Time

    National Research Council Canada - National Science Library

    Watola, Daniel J

    2005-01-01

    .... Simple effects analyses indicated that participants' indicators of task motivation increased over time in the accelerating performance profile, but decreased over time in the decelerating performance profile...

  9. Effect of spatio-energy correlation in PCD due to charge sharing, scatter, and secondary photons

    Science.gov (United States)

    Rajbhandary, Paurakh L.; Hsieh, Scott S.; Pelc, Norbert J.

    2017-03-01

    Charge sharing, scatter and fluorescence events in a photon counting detector (PCD) can result in multiple counting of a single incident photon in neighboring pixels. This causes energy distortion and correlation of data across energy bins in neighboring pixels (spatio-energy correlation). If a "macro-pixel" is formed by combining multiple small pixels, it will exhibit correlations across its energy bins. Charge sharing and fluorescence escape are dependent on pixel size and detector material. Accurately modeling these effects can be crucial for detector design and for model based imaging applications. This study derives a correlation model for the multi-counting events and investigates the effect in virtual non-contrast and effective monoenergetic imaging. Three versions of 1 mm2 square CdTe macro-pixel were compared: a 4×4 grid, 2×2 grid, or 1×1 composed of pixels with side length 250 μm, 500 μm, or 1 mm, respectively. The same flux was applied to each pixel, and pulse pile-up was ignored. The mean and covariance matrix of measured photon counts is derived analytically using pre-computed spatio-energy response functions (SERF) estimated from Monte Carlo simulations. Based on the Cramer-Rao Lower Bound, a macro-pixel with 250×250 μm2 sub-pixels shows 2.2 times worse variance than a single 1 mm2 pixel for spectral imaging, while its penalty for effective monoenergetic imaging is <10% compared to a single 1 mm2 pixel.

  10. Antiproton-proton annihilation into charged light meson pairs within effective meson theory

    Science.gov (United States)

    Wang, Ying; Bystritskiy, Yury M.; Tomasi-Gustafsson, Egle

    2017-04-01

    We revisit antiproton-proton annihilation into light mesons in the energy domain relevant to the antiproton annihilation at Darmstadt (PANDA) experiment at the GSI Facility for Antiproton and Ion Research (FAIR) [2.25 (1.5 ) ≤√{s }(pL) ≤5.47 (15 ) GeV (GeV /c ) where √{s }(pL) is the total energy (the beam momentum in the laboratory frame)]. An effective meson model is developed, with mesonic and baryonic degrees of freedom. Form factors are added to take into account the composite nature of the interacting hadrons. A comparison is made with the existing data for charged pion pair production and predictions for angular distributions and energy dependence in the range 3.362 (5 ) ≤√{s }(pL) ≤4.559 (10.1 ) GeV (GeV /c ). The model is applied to π±p elastic scattering, using crossing symmetry, and to charged kaon pair production, on the basis of SU(3) symmetry. In all cases the results illustrate a nice agreement with the data.

  11. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  12. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  13. Direct space-charge effects on the ILC damping rings: Task ForceReport

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco; Oide, Katsunobu

    2006-02-28

    In 2005 a global effort was initiated to conduct studies for a baseline recommendation for the various components of the International Linear Collider (ILC). Work for the damping rings was subdivided in a number of tasks. This Report contains the contribution to this effort by the Authors as Coordinators of the Task Force on space charge. (A slightly reduced version of this document can also be found as part of the ''Configuration Studies and Recommendations for the ILC Damping Rings'', Edts. A. Wolski, et al., LBNL-59449.) The studies documented in this Report were carried out for several of the reference lattices considered for the baseline recommendation. Space charge effects were found to be quite noticeable in the lattices with the longest circumference. Although it does not appear that they could prevent operation of any machine having such lattices they do favor a choice of a ring design with shorter ({approx}6km) circumference at 5 GeV.

  14. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    Science.gov (United States)

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  15. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge.

    Science.gov (United States)

    Arai, Shunto

    2015-12-07

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body's internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  16. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge

    Directory of Open Access Journals (Sweden)

    Shunto Arai

    2015-12-01

    Full Text Available Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body’s internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  17. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  18. On the effect of neglecting anharmonic nuclear motion in charge density studies.

    Science.gov (United States)

    Meindl, Kathrin; Herbst-Irmer, Regine; Henn, Julian

    2010-05-01

    The effect of neglecting anharmonic nuclear motion when it is definitely present is studied. To ensure the presence of anharmonic nuclear motion a model was used that was previously refined against experimental data including anharmonic nuclear motion, and these calculated structure factors were used as observed data for a multipole refinement. It was then studied how the neglect of anharmonic nuclear motion and noise in the data affects the usual crystallographic quality measure R, the density parameters and the residual density distribution. It is demonstrated that the neglect of anharmonic nuclear motion leads to a characteristic imprint onto the residual density distribution in terms of residual density peaks and holes, in terms of the whole residual density distribution and in terms of the number, location and strength of valence shell charge concentrations (VSCCs). These VSCCs differ from that of the input model in a way which heavily influences and misleads the chemical interpretation of the charge density. This imprint vanishes after taking anharmonic nuclear motion into account. Also the input model VSCCs are restored. The importance of modeling anharmonic nuclear motion is furthermore shown by the characteristic imprint on the residual density distribution, even in the case of a numerically almost unaffected R value.

  19. Experimental study on the effect of alternator speed to the car charging system

    Directory of Open Access Journals (Sweden)

    Mazlan Rozdman K.

    2017-01-01

    Full Text Available In this paper, we present our work, which is doing an energy audit on alternator’s current output and battery’s voltage based on alternator speed. Up until today, the demand for power in automobile is ever increasing. As technology advances, more and more electrical devices were produced and being installed in vehicles. To cope with the demand, alternator has been designed and modified so that it can produce enough power. This research is to study the effect of alternator speed to the charging system. The car used in this experiment is Proton Preve 1.6 Manual. In both ISO 8854 and SAE J 56, alternator testing and labelling standards indicate that the rated output an alternator is the amount of current that it is capable of producing at 6,000 RPM. Three different constant speed of engine which is 750 RPM as idle speed, 1500 RPM and 3000 RPM as cruise speed were taken as parameter. The speed of the alternator was measured using tachometer, digital multi-meter was used to measure battery’s voltage, and AC/DC Clamp was used to measure alternator current output. The result shows that the faster the alternator spin, the more power it can produce. And when there is more power, the faster the charging rate of the battery.

  20. Simulations of charge summing and threshold dispersion effects in Medipix3

    CERN Document Server

    Pennicard, D; Llopart, X; Graafsma, H; Campbell, M

    2011-01-01

    A novel feature of the Medipix3 photon-counting pixel readout chip is inter-pixel communication. By summing together the signals from neighbouring pixels at a series of ``summing nodes{''}, and assigning each hit to the node with the highest signal, the chip can compensate for charge-sharing effects. However, previous experimental tests have demonstrated that the node-to-node variation in the detector's response is very large. Using computer simulations, it is shown that this variation is due to threshold dispersion, which results in many hits being assigned to whichever summing node in the vicinity has the lowest threshold level. A reduction in threshold variation would attenuate but not solve this issue. A new charge summing and hit assignment process is proposed, where the signals in individual pixels are used to determine the hit location, and then signals from neighbouring pixels are summed to determine whether the total photon energy is above threshold. In simulation, this new mode accurately assigns ea...