WorldWideScience

Sample records for effect gases gei

  1. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  2. Procesos de certificación de proyectos de captura de gases de efecto invernadero (gei) en los mercados internacionales de carbono

    OpenAIRE

    Sabogal Aguilar, Javier; Moreno Castillo, Edgar; Ortega Guerrero, Gustavo Adolfo

    2011-01-01

    En el marco de la mitigación al cambio climático, subyacen dos tipos de mecanismos destinados a disminuir las concentraciones de gases efecto invernadero: en primer lugar, la reducción de emisiones por las fuentes contaminantes; y en segundo lugar, el secuestro o captura de los gases de efecto invernadero (GEI) cuantificados en CO2 equivalente en proyectos forestales (conocidos como LULUCF).Los proyectos de mitigación se abordan en el presente artículo por la comparación de los procesos de ce...

  3. Procesos de certificación de proyectos de captura de gases de efecto invernadero (GEI En los Mercados Internacionales de Carbono

    Directory of Open Access Journals (Sweden)

    Sabogal Aguilar Javier

    2011-11-01

    Full Text Available En el marco de la mitigación al cambio climático, subyacen dos tipos de mecanismos destinados a disminuir las concentraciones de gases efecto invernadero: en primer lugar, la reducción de emisiones por las fuentes contaminantes; y en segundo lugar, el secuestro o captura de los gases de efecto invernadero (GEI cuantificados en CO2 equivalente en proyectos forestales (conocidos como LULUCF.Los proyectos de mitigación se abordan en el presente artículo por la comparación de los procesos de certificación que deben cumplir los proyectos de captura de gases de efecto invernadero, para acceder a los Mercados Internacionales de Carbono, tanto del Mecanismo de Desarrollo Limpio (MDL adoptado por el Protocolo de Kioto, como de los Mercados Voluntarios de Carbono (MVC.Como resultados, se presenta el aporte al desarrollo sustentable "local y regional": social, económico y ambiental en disponibilidad y mantenimiento de bienes y servicios ambientales; se resaltan las críticas a los esquemas de mercado analizados, y la incidencia del aporte a la sustentabilidad regional y local en la aprobación. De acuerdo con a lo anterior, los mercados voluntarios de carbono resultan ser más acordes con proyectos de pequeña y mediana escala mientras que el mecanismo de desarrollo limpio favorece en mayor medida aquellos proyectos de mediana y gran escala.

  4. Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments.

    Science.gov (United States)

    Li, Rongyu; Qiu, Guo Yu; Chai, Minwei; Shen, Xiaoxue; Zan, Qijie

    2018-06-23

    Mangroves are often converted into gei wai ponds for aquaculture, but how such conversion affects the accumulation and behavior of heavy metals in sediments is not clear. The present study aims to quantify the concentration and speciation of heavy metals in sediments in different habitats, including gei wai pond, mangrove marsh dominated by Avicennia marina and bare mudflat, in a mangrove nature reserve in South China. The results showed that gei wai pond acidified the sediment and reduced its electronic conductivity and total organic carbon (TOC) when compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all sediment depths in gei wai pond were lower than the other habitats, indicating gei wai pond reduced the fertility and the ability to retain heavy metals in sediment. Gei wai pond sediment also had a lower heavy metal pollution problem according to multiple evaluation methods, including potential ecological risk coefficient, potential ecological risk index, geo-accumulation index, mean PEL quotients, pollution load index, mean ERM quotients and total toxic unit. Heavy metal speciation analysis showed that gei wai pond increased the transfer of the immobilized fraction of Cd and Cr to the mobilized one. According to the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) analysis, the conversion of mangroves into gei wai pond reduced values of ([SEM] - [AVS])/f oc , and the role of TOC in alleviating heavy metal toxicity in sediment. This study demonstrated the conversion of mangrove marsh into gei wai pond not only reduced the ecological purification capacity on heavy metal contamination, but also enhanced the transfer of heavy metals from gei wai pond sediment to nearby habitats.

  5. Effects of conversion of mangroves into gei wai ponds on sediment heavy metals accumulation in tidal flat estuary, South China

    Science.gov (United States)

    Li, R.; Qiu, G.; Chai, M.; Li, R.

    2017-12-01

    Gei wai ponds act as important component in mangrove ecosystem, but the conversion of mangroves into gei wai ponds and its ecological function on heavy metal accumulation is still not clear. The study quantified the sediment heavy metal concentration and speciation in gei wai pond, Avicennia marina marsh and mudflat in Futian mangrove wetlands, South China. The results showed that gei wai pond acidified the sediment and reduced its fertility due to reduced pH, electronic conductivity (EC) and total organic carbon (TOC) compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all depth in gei wai pond sediment were also lower than other sites, indicating reduced storage function on heavy metals. Multiple analysis implied that heavy metals in all sites could be attributed to anthropogenic sources, with Cr as natural and anthropogenic sources in gei wai pond. Gei wai pond sediment had lower heavy metal pollution based on multiple evaluation methods, including potential ecological risk coefficient (Eir), potential ecological risk index (RI), geo-accumulation index (Igeo), mean PEL quotients (m-PEL-q), pollution load index (PLI), mean ERM quotients (m-ERM-q) and total toxic unit (∑TU). Heavy metal speciation analysis indicated that gei wai pond improved the conversion from the immobilized Cd and Cr to the mobilized fraction. SEM-AVS analysis indicated no adverse toxicity occurred in all sites, and the role of TOC in relieving sediment heavy metal toxicity of gei wai pond is limited.

  6. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  7. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio; Rodriguez M, Humberto

    1999-01-01

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  8. Effects of GeI2 or ZnI2 addition to perovskite CH3NH3PbI3 photovoltaic devices

    Science.gov (United States)

    Tanaka, Hiroki; Ohishi, Yuya; Oku, Takeo

    2018-01-01

    CH3NH3PbI3 added with GeI2 or ZnI2 perovskite photovoltaic devices were fabricated characterized. The surface coverages of the perovskite layers were improved by the addition of GeI2 or ZnI2. Formation of PbI2 observed for the pristine CH3NH3PbI3 was suppressed by the GeI2 or ZnI2 addition, which resulted in the improvement of the conversion efficiencies of the perovskite photovoltaic devices.

  9. Greenhouse gases emissions inventory in 2005 by the Mexican energy sector; Inventario de emisiones en 2005 de gases de efecto invernadero por el sector energetico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, R.; Munoz Lerdo Carranza, R.; Villalba Valle, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rfv@iie.org.mx; rml@iie.org.mx; danviva17@yahoo.com.mx

    2010-01-15

    In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance National de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission source that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sector had the most GHG emissions, and that Mexico as a non-industrialized country had lower per capita emissions that developed countries. [Spanish] En este trabajo se calcularon las emisiones de Gases de Efecto de inventario (GEI's) del 2005 por la seccion de consumo y/o transformacion de energia en Mexico. El documento obtenido no es oficial, y como referencia, se utiliza el consumo de combustible que refiere el Balance Nacional de Energia 2005, publicado por la Secretaria de Energia. Con esto, se estandarizan las fuentes de emision que en algun momento usara el Inventario Nacional de Emisiones de GEI's 2005. Para resolver la falta de factores de emision propios de Mexico, se recurre a los factores globales de emision propuestos como valores por omision por el Panel Intergubernamental de Cambio Climatico. Para la estimacion de las emisiones de GEI's se utilizo el Metodo Sectorial tomando en consideracion el consumo de combustible de cada uno de los subsectores en que se encuentra dividido el sector energetico. Se encontro que los sectores transporte y de la industria de la transformacion de energia son los que

  10. Production of income and energy using cattle excrete. Farming projects MDL; Produciendo ingresos y energia utilizando excretas pecuarias. Proyectos MDL agropecuarios

    Energy Technology Data Exchange (ETDEWEB)

    Hernan, Mateus [AGCERT, Mexico, D.F. (Mexico)

    2005-07-01

    The Mexican Farming Sector has a great potential to help solve the worldwide problems caused by greenhouse effect gases (GEI). The Kyoto Protocol is an instrument created to reduce the greenhouse effect gases (GEI) and it also is the fundament of the AgCert project -which consists in applying own financial resources to develop technological options that contribute to the reduction of greenhouse effect gases in cattle productive facilities and to use the income to economically support the producers. In this document it is described the way in which the biodigestor was installed, demonstrating that the MDL for farming projects is a tool to reduce the discharges of greenhouse effect gases. It also demonstrates that technologies and processes can be applied systematically to reduce the emissions of the GEI, bringing along environmental and economic benefits. [Spanish] El Sector Agropecuario Mexicano tiene un gran potencial para ayudar a resolver los problemas mundiales causados por los gases de efecto invernadero (GEI). El protocolo de Kyoto es un instrumento creado para reducir las emisiones de gases de efecto invernadero (GEI) y tambien es el fundamento del proyecto AgCert, el cual consiste en aplicar recursos financieros propios para desarrollar opciones tecnologicas que contribuyan a la reduccion de gases efecto invernadero en instalaciones productivas pecuarias y emplear los ingresos para apoyar economicamente a los productores. En este documento se describe la manera en que se llevo acabo la instalacion del biodigestor, demostrando que el MDL para proyectos agropecuarios es una herramienta para reducir emisiones de gases efecto invernadero, y que se pueden aplicar sistematicamente tecnologias y procesos que reduzcan las emisiones de los GEI, trayendo consigo beneficios ambientales y economico.

  11. Energy efficiency and the use of renewable energies, how to estimate how much they mitigate the green house effect gases emissions; Eficiencia energetica y uso de energias renovables, como estimar cuanto mitigan las emisiones de gases efecto invernadoro?

    Energy Technology Data Exchange (ETDEWEB)

    Asociacion de Tecnicos y Profesionistas en Aplicacion Energetica, A.C. [Mexico (Mexico)

    2002-06-01

    In the last years much attention has been given to the polluting gas discharges, in special of those that favor the green house effect (GHE), due to the negative sequels that its concentration causes to the atmosphere, particularly as the cause of the increase in the overall temperature of the planet, which has been denominated world-wide climatic change. There are many activities that allow to lessen or to elude the GHE gas emissions, and with the main ones the so-called projects of Energy Efficiency and Renewable Energy (EE/RE) have been structured. In order to carry out a project within the frame of the MDL, it is necessary to evaluate with quality, precision and transparency, the amount of emissions of GHE gases that are reduced or suppressed thanks to their application. For that reason, in our country we tried different methodologies directed to estimate the CO{sub 2} emissions that are attenuated or eliminated by means of the application of EE/RE projects. [Spanish] En los ultimos anos se ha puesto mucha atencion a las emisiones de gases contaminantes, en especial de los que favorecen el efecto invernadero (GEI), debido a las secuelas negativas que su concentracion ocasiona a la atmosfera, particularmente como causante del aumento en la temperatura general del planeta, en lo que se ha denominado cambio climatico mundial. Existen muchas actividades que permiten aminorar o eludir las emisiones de GEI, y con las principales se han estructurado los llamados proyectos de eficiencia energetica y energia renovables (EE/ER). Para llevar a cabo un proyecto dentro del marco del MDL, es necesario evaluar con calidad, precision y transparencia, la cantidad de emisiones de GEI que se reducen o suprimen gracias a su aplicacion. Por ello, en nuestro pais ensayamos diferentes metodologias encaminadas a estimar las emisiones de CO{sub 2} que se atenuan o eliminan mediante la aplicacion de proyectos de EE/ER.

  12. Enteric Disease Surveillance Under the AFHSC-GEIS: Current Efforts, Landscape Analysis and Vision Forward

    Science.gov (United States)

    2011-01-01

    Acronyms: Acute gastroenteritis (AGE), Food and Drug Administration (FDA), trimethoprim -sulfamethoxazole (TMP-SMX), viral gastroenteritis (VGE), World...be seen as overlapping with many AFHSC-GEIS activities. A strategic assessment is needed to determine the future goals of AFHSC-GEIS, given limited

  13. Inventario de emisiones de Gases de Efecto Invernadero: un insumo en la gestión del Instituto Tecnológico de Costa Rica (ITCR

    Directory of Open Access Journals (Sweden)

    María Venegas Vargas

    2015-06-01

    Full Text Available El Instituto Tecnológico de Costa Rica (ITCR tiene el objetivo de ser carbono neutral, para ello está realizando esfuerzos como la medición de sus emisiones de Gases de Efecto Invernadero (GEI y la implementación de medidas de reducción y de remoción de sus emisiones. En este artículo se resumen y analizan las principales actividades responsables de las emisiones de GEI para los campus de Cartago y San Carlos, y del Centro Académico de San José, para los años del 2010 al 2013. Se establece una comparación de los resultados obtenidos en el Inventario de Gases de Efecto Invernadero (InGEI utilizando los factores de emisiones del Panel Intergubernamental en Cambio Climático (IPCC por sus siglas en inglés y los del organismo oficial en Costa Rica, el Instituto Meteorológico Nacional (IMN; adicionalmente se elabora un análisis para identificar las actividades que causan mayores emisiones en el campus de Cartago. Los gases evaluados en los inventarios fueron el dióxido de carbono (CO2, el metano (CH4 y el óxido de nitrógeno (N2O. Las emisiones calculadas son reportadas como dióxido de carbono equivalente (CO2e. Este trabajo determinó que el campus del ITCR que tuvo un mayor aporte en el InGEI de la Universidad fue el de San Carlos, siendo la digestión entérica su principal fuente de emisión. Además, los resultados indican que el uso de los factores propios del país (aportados por el IMN produjeron un aumento en el InGEI, posiblemente por un mayor acercamiento a la realidad de las condiciones climáticas y geográficas de la región.

  14. ¿Crisis económica y mayor eficiencia? Análisis de las emisiones GEI del transporte por carretera en España

    OpenAIRE

    Sobrino Vazquez, Natalia

    2014-01-01

    En las últimas décadas, la actividad de transporte en España ha aumentado significativamente, y muy notablemente el transporte por carretera. Esto ha provocado algunos problemas energéticos y medioambientales tales como las inestabilidades en el suministro del petróleo o las emisiones de gases de efecto invernadero (GEI) precursoras del calentamiento global. Sin embargo, en los últimos años España ha venido marcada por la crisis económica, afectando al transporte por carretera. El presente es...

  15. CONCIENTIZACIÓN AMBIENTAL SOBRE LOS GEI Y EL CAMBIO CLIMÁTICO EN EL INSTITUTO TECNOLÓGICO METROPOLITANO, INSTITUCIÓN UNIVERSITARIA (ITM

    Directory of Open Access Journals (Sweden)

    Sergio E. Arango Osorno

    2014-05-01

    Full Text Available La preocupación actual por las notables evidencias del cambio climático global está llevando a los países a mitigar sus principales causas: los gases efecto invernadero (GEI, a través de diferentes estrategias, entre ellas y haciendo un gran énfasis esta la educación ambiental.  La huella de carbono es un indicador del impacto ambiental sobre la atmósfera, que cuantifica las diferentes emisiones de GEI, que se pueden estimar de manera aproximada haciendo uso de los aplicativos disponibles en la web. Se presentan en el presente artículo las principales campañas de educación ambiental y experiencias desarrolladas por el semillero de cultura, gestión e investigación ambiental “Cuida Tu Huella”, con relación a la Huella de  Carbono en el Instituto Tecnológico Metropolitano (ITM. La estimación de la huella de carbono personal arrojó resultados de 4.22 y 3.87 ton CO2/año para los años 2011 y 2012 respectivamente, siendo aún más importante el impacto que se ha podido lograr en la comunidad académica, que trasciende el espacio geográfico de la Institución, ya que ha permitido lograr la concientización en cuanto a identificar las diferentes actividades que más producen GEI, transformando así los hábitos de vida por otros más ambientalmente sostenibles.

  16. Aprimorando a Gerência e o Desenvolvimento de Software com Metodologias Ágeis

    Directory of Open Access Journals (Sweden)

    Mauricio Andreazza Sganderla

    2016-07-01

    Full Text Available Este artigo aborda a melhoria da gerência e construção de software utilizando as metodologias ágeis eXtreme Programming e Scrum. São aplicadas as melhores práticas de ambas as metodologias em uma equipe de desenvolvimento de software, em um ambiente em que não havia nenhum processo bem definido de desenvolvimento de software. A escolha pelo uso das metodologias ágeis foi definida, pois atende ao dinamismo do cenário atual, requisitos voláteis, ambiente mais colaborativo e menos burocrático, tendo como objetivo principal o software em funcionamento e que realmente traga retorno ao cliente.

  17. High pressure 129I Moessbauer studies of GeI4 molecular crystals

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Taylor, R.D.

    1989-01-01

    The Moessbauer effect in 129 I in conjunction with Diamond-Anvil-Cell high pressure techniques was applied to investigate the high pressure phase(s) of the molecular crystal GeI 4 . The 129 I Quadrupole Interaction was the main probe for characterizing the intermolecular structural transformation with pressure. With increasing pressure, at about 15 GPAa, the onset of a partial molecular-association phase (HP1) is first observed. In HP1 two out of the four iodines strongly overlap to form linear chains of GeI 4 . The HP1 phase coexists with the low pressure (LP) molecular phase, but its population increases with increasing pressure. At P ∼20 GPa a second high pressure phase (HP2) is identified where all four iodines strongly overlap to form a three dimensional, fully molecular-associated structure. With increasing pressure and at P > 20 GPa, HP2 is the only phase up to P = 34 GPa, the highest pressure used. A significant hysteresis of the relative abundances with pressure is observed. The isomer shift of the HP2 and HP1 structures is considerably larger than that of the LP one. 11 refs., 3 figs

  18. High pressure 129I Moessbauer studies of GeI4 molecular crystals

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Los Alamos National Lab.; Taylor, R.D.

    1990-01-01

    The Moessbauer effect in 129 I in cunjunction with Diamond-Anvil-Cell high pressure techniques was applied to investigate the high pressure phase(s) of the molecular crystal GeI 4 . The 129 I Quadrupole Interaction was the main probe for characterizing the intermolecular structural transformation with pressure. With increasing pressure, at about 15 GPa, the onset of a partial molecular-association phase (HP1) is first observed. In HP1 two out of the four iodines strongly overlap to form linear chains of GeI 4 . The HP1 phase coexists with the low pressure (LP) molecular phase, but its population increases with increasing pressure. At P≅20 GPa a second high pressure phase (HP2) is identified where all four iodines strongly overlap to form a three dimensional, fully molecular-associated structure. With increasing pressure and at P>20 GPa, HP2 is the only phase up to P=34 GPa, the highest pressure used. A significant hysteresis of the relative abundances with pressure is observed. The isomer shift of the HP2 and HP1 structures is considerably larger than that of the LP one. (orig.)

  19. GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pavol Mikoláš

    Full Text Available NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

  20. UTILIZAÇÃO DE MÉTODOS ÁGEIS E SUAS IMPLICAÇÕES

    Directory of Open Access Journals (Sweden)

    Deullam Justi dos Santos

    2017-01-01

    Full Text Available Após a crise de software que ocorreu na década de 70, durante a qual nasceu a engenharia de software, pois os sistemas da época estavam com problemas para serem terminados, estourando prazos e orçamentos, e quando eram terminados tinham uma baixa qualidade com bugs e difícil manutenção. Por conta disso,foram criadas metodologias para o desenvolvimento dos sistemas.Este artigo apresenta 17 métodos ágeis como Scrum, Extreme programing, Lean, que foram utilizados por autores, Foi feita uma pesquisa bibliográfica em artigos onde foi feito uma tabela contendo os autores, metodologias utilizadas e quais os resultados de sua utilização, e gráficos de comparações das metodologias ágeis.

  1. Enteric disease surveillance under the AFHSC-GEIS: Current efforts, landscape analysis and vision forward

    Directory of Open Access Journals (Sweden)

    Kasper Matthew R

    2011-03-01

    Full Text Available Abstract The mission of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS is to support global public health and to counter infectious disease threats to the United States Armed Forces, including newly identified agents or those increasing in incidence. Enteric diseases are a growing threat to U.S. forces, which must be ready to deploy to austere environments where the risk of exposure to enteropathogens may be significant and where routine prevention efforts may be impractical. In this report, the authors review the recent activities of AFHSC-GEIS partner laboratories in regards to enteric disease surveillance, prevention and response. Each partner identified recent accomplishments, including support for regional networks. AFHSC/GEIS partners also completed a Strengths, Weaknesses, Opportunities and Threats (SWOT survey as part of a landscape analysis of global enteric surveillance efforts. The current strengths of this network include excellent laboratory infrastructure, equipment and personnel that provide the opportunity for high-quality epidemiological studies and test platforms for point-of-care diagnostics. Weaknesses include inconsistent guidance and a splintered reporting system that hampers the comparison of data across regions or longitudinally. The newly chartered Enterics Surveillance Steering Committee (ESSC is intended to provide clear mission guidance, a structured project review process, and central data management and analysis in support of rationally directed enteric disease surveillance efforts.

  2. Estimación in vitro de gases con efecto invernadero en frutos y follaje de árboles de un bosque seco tropical de Venezuela In vitro estimation of greenhouse gases in tree fruits and foliage from a tropical dry forest of Venezuela

    Directory of Open Access Journals (Sweden)

    R Ramírez¹

    2012-03-01

    Full Text Available Con el objetivo de estimar la producción de gases con efecto invernadero (GEI en el follaje y los frutos de Calliandra cruegeri, Guazuma ulmifolia, Vachellia macracantha, Senna robiniifolia, Samanea saman, Lonchocarpus sp., Fagara sp., Senna espectabilis, Mangifera indica y Oyedaea verbesinoides, de un bosque seco tropical de Venezuela, se evaluaron estas especies a través de la técnica in vitro de producción de gas; se cuantificó la producción de ácidos grasos volátiles (AGV y se estimaron los GEI. Los sustratos que registraron una mayor producción (P<0,05 de metano (CH4 y dióxido de carbono (CO2 correspondieron a los frutos de S. saman (4,0 y 8,5, Fagara sp. (3,2 y 6,9 y G. ulmifolia (2,9 y 7,2, y al follaje de S. saman (3,6 y 8,2, S. robiniifolia (4,0 y 9,9 y V. macracantha (2,8 y 5,8. La menor cantidad (P<0,05 de CH4 y CO2 la produjeron los frutos de S. espectabilis (2,3 y 5,0 y Lonchocarpus sp. (2,3 y 5,9, y el follaje de: Fagara sp. (1,5 y 3,7, G. ulmifolia (1,4 y 3,5, C. cruegeri (1,6 y 4,0, M. indica (1,7 y 4,1, O. verbesinoides (1,8 y 4,2 y Cassia sp. (1,9 y 4,6. La producción de GEI y el tiempo de incubación estuvieron correlacionados con la producción de metano (r= 0,458; P<0,05. Se concluye que, de todas las especies, S. saman registró los mayores valores (P<0,05 de producción de GEI en los frutos y el follaje. Asimismo, entre las tres y ocho horas de incubación de los sustratos, la tasa de producción de GEI fue alta.

  3. Síndrome das unhas frágeis Brittle nail syndrome

    Directory of Open Access Journals (Sweden)

    Izelda Maria Carvalho Costa

    2007-06-01

    Full Text Available A síndrome das unhas frágeis é queixa comum, caracterizada por aumento da fragilidade das lâminas ungueais. Afeta quase 20% da população geral, sendo mais comum em mulheres. Clinicamente se manifesta com onicosquizia e onicorrexe - distúrbios nos fatores de adesão intercelular das unhas se manifestam como a primeira, ao passo que alterações da matriz apresentamse com onicorrexe. Mesmo sendo tão usual e afetando os pacientes de maneira importante em seu cotidiano, o tratamento das unhas frágeis avançou pouco nas últimas décadas e ainda se baseia principalmente no uso da biotina.Brittle nail syndrome is a common condition, characterized by increased fragility of the nail plates. It affects almost 20% of the population, being more usual in women. Clinical manifestations of brittle nails are onychoschizia and onychorexis - disorders of intercellular adhesive factors are expressed as the first, while disorders of the nail matrix manifest as onychorexis. Despite being so common and causing much more than only cosmetic problems to the patient, the treatment of brittle nails has had little improvement over the past decades and is still mainly based on the daily use of biotin.

  4. Emisiones de gases de efecto invernadero en sistemas agrícolas de México

    Directory of Open Access Journals (Sweden)

    Vinisa Saynes Santillán

    2016-01-01

    Full Text Available La agricultura es el sustento para la alimentación de una población mundial creciente. La agricultura es la cuarta causa de emisiones de GEI, y emite grandes cantidades de los llamados “gases que no son CO2” incluyendo al N2O y el CH4 con un poder de calentamiento 265 y 28 veces, respectivamente, mayor en comparación con el CO2. En México la información de las emisiones de GEI se reporta en diversos foros y desde diferentes perspectivas. En este trabajo se recopiló información de las emisiones de GEI de las Comunicaciones Nacionales y el Primer Informe Bienal, de publicaciones arbitradas por pares y de la literatura gris. Las emisiones del sector agrícola reportadas en las diferentes Comunicaciones presentan inconsistencias debido a factores como falta de información y de acceso a esta en las primeras dos Comunicaciones y a cuestiones de tipo metodológico en las Comunicaciones subsecuentes. De acuerdo con las estimaciones más actuales (Informe Bienal, las actividades agropecuarias son la tercera causa de generación de emisiones de GEI con una contribución del 12% a las emisiones nacionales. Dentro de esta categoría la mayor parte de las emisiones se generan por la fermentación entérica, el manejo del estiércol y por el uso de fertilizantes en los suelos agrícolas. Los principales retos para mejorar las estimaciones y reducir su incertidumbre es la generación de factores de emisión nacionales para lo cual es esencial contar con mayor información de las fuentes clave. En este trabajo se encontró que existe información relevante que sería de utilidad pero se encuentra dispersa por lo que falta síntesis y organización de la información sobre todo de la que se encuentra en la literatura gris.

  5. Análise de Riscos pelo Uso de Métodos Ágeis na Gestão de Projetos de Desenvolvimento de Software

    Directory of Open Access Journals (Sweden)

    Leonardo Rocha de Oliveira

    2014-12-01

    Full Text Available Métodos Ágeis (MA têm promovido melhorias em diversos aspectos da gestão de projetos de desenvolvimento de software. No entanto, sua aplicação envolve riscos, que podem ser maiores em certas organizações ou contextos de projetos de software. O objetivo deste trabalho é analisar os principais riscos pela utilização de MA em empresas desenvolvedoras de software. O trabalho foi desenvolvido como pesquisa exploratória e qualitativa, com entrevistas abertas e semiestruturadas, com líderes de projetos de software. Resultados do trabalho mostram que diferentes tipos de riscos e impactos podem ocorrer em projetos ágeis. No entanto, as conclusões indicam que são apenas duas as principais causas de riscos: (i engajamento de clientes e (ii experiência e conhecimento com práticas ágeis.

  6. Inventario de gases efecto invernadero en la Universidad de Bogotá Jorge Tadeo Lozano (Utadeo

    Directory of Open Access Journals (Sweden)

    Daniela Manso Piñeros

    2017-09-01

    Full Text Available Las universidades, como instituciones de educación superior, deben asumir compromisos ambientales, y estos compromisos requieren políticas claras y acertadas, así como la adopción de estrategias que involucren la cuantificación de sus impactos. En este estudio se presenta el inventario de gases de efecto invernadero (GEI en la Universidad de Bogotá Jorge Tadeo Lozano (Utadeo, sede Bogotá, correspondiente al año 2015. Mediante la identificación y clasificación de las principales actividades desarrolladas en la institución y la posterior colección de datos de entrada de materia y energía se cuantificaron las emisiones de GEI en CO2 equivalentes, acorde con la norma ISO 14064-1 (2006. En los límites organizacionales de la Utadeo se establecieron diez fuentes de emisión. En el alcance I se calcularon 138.163 t CO2e, atribuido a procesos de combustión de diésel y gas natural en el funcionamiento de plantas eléctricas, cafeterías y laboratorios; en el alcance II, 628.833 t CO2e, que corresponden a las emisiones indirectas por consumo de energía eléctrica en diversas actividades educativas y académicas. Además, en emisiones indirectas del alcance III se cuantificaron 921,368 t CO2e, asociadas a la infraestructura, transporte aéreo, consumo de papel, agua y generación de residuos. El inventario de GEI de la Universidad fue de 1688.36 t CO2e, y las emisiones comprendidas en el alcance III fueron las que hicieron mayor aporte.

  7. The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks.

    Science.gov (United States)

    Witt, Clara J; Richards, Allen L; Masuoka, Penny M; Foley, Desmond H; Buczak, Anna L; Musila, Lillian A; Richardson, Jason H; Colacicco-Mayhugh, Michelle G; Rueda, Leopoldo M; Klein, Terry A; Anyamba, Assaf; Small, Jennifer; Pavlin, Julie A; Fukuda, Mark M; Gaydos, Joel; Russell, Kevin L; Wilkerson, Richard C; Gibbons, Robert V; Jarman, Richard G; Myint, Khin S; Pendergast, Brian; Lewis, Sheri; Pinzon, Jorge E; Collins, Kathrine; Smith, Matthew; Pak, Edwin; Tucker, Compton; Linthicum, Kenneth; Myers, Todd; Mansour, Moustafa; Earhart, Ken; Kim, Heung Chul; Jiang, Ju; Schnabel, Dave; Clark, Jeffrey W; Sang, Rosemary C; Kioko, Elizabeth; Abuom, David C; Grieco, John P; Richards, Erin E; Tobias, Steven; Kasper, Matthew R; Montgomery, Joel M; Florin, Dave; Chretien, Jean-Paul; Philip, Trudy L

    2011-03-04

    The Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System Operations (AFHSC-GEIS) initiated a coordinated, multidisciplinary program to link data sets and information derived from eco-climatic remote sensing activities, ecologic niche modeling, arthropod vector, animal disease-host/reservoir, and human disease surveillance for febrile illnesses, into a predictive surveillance program that generates advisories and alerts on emerging infectious disease outbreaks. The program's ultimate goal is pro-active public health practice through pre-event preparedness, prevention and control, and response decision-making and prioritization. This multidisciplinary program is rooted in over 10 years experience in predictive surveillance for Rift Valley fever outbreaks in Eastern Africa. The AFHSC-GEIS Rift Valley fever project is based on the identification and use of disease-emergence critical detection points as reliable signals for increased outbreak risk. The AFHSC-GEIS predictive surveillance program has formalized the Rift Valley fever project into a structured template for extending predictive surveillance capability to other Department of Defense (DoD)-priority vector- and water-borne, and zoonotic diseases and geographic areas. These include leishmaniasis, malaria, and Crimea-Congo and other viral hemorrhagic fevers in Central Asia and Africa, dengue fever in Asia and the Americas, Japanese encephalitis (JE) and chikungunya fever in Asia, and rickettsial and other tick-borne infections in the U.S., Africa and Asia.

  8. The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks

    Science.gov (United States)

    2011-01-01

    The Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System Operations (AFHSC-GEIS) initiated a coordinated, multidisciplinary program to link data sets and information derived from eco-climatic remote sensing activities, ecologic niche modeling, arthropod vector, animal disease-host/reservoir, and human disease surveillance for febrile illnesses, into a predictive surveillance program that generates advisories and alerts on emerging infectious disease outbreaks. The program’s ultimate goal is pro-active public health practice through pre-event preparedness, prevention and control, and response decision-making and prioritization. This multidisciplinary program is rooted in over 10 years experience in predictive surveillance for Rift Valley fever outbreaks in Eastern Africa. The AFHSC-GEIS Rift Valley fever project is based on the identification and use of disease-emergence critical detection points as reliable signals for increased outbreak risk. The AFHSC-GEIS predictive surveillance program has formalized the Rift Valley fever project into a structured template for extending predictive surveillance capability to other Department of Defense (DoD)-priority vector- and water-borne, and zoonotic diseases and geographic areas. These include leishmaniasis, malaria, and Crimea-Congo and other viral hemorrhagic fevers in Central Asia and Africa, dengue fever in Asia and the Americas, Japanese encephalitis (JE) and chikungunya fever in Asia, and rickettsial and other tick-borne infections in the U.S., Africa and Asia. PMID:21388561

  9. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  10. Use of remote sensing tools for severity analysis and greenhouse gases estimation in large forest fires. Case study of La Rufina forest fire, VI Region of L. G. B. O´Higgins, Chile

    Directory of Open Access Journals (Sweden)

    P. Vidal

    2017-12-01

    Full Text Available Wildfires destroy thousands of hectares of vegetation every year in Chile, a phenomenon that has steadily increased over time, both in terms of the number of fires and the area affected. Since 1985 until 2016 have occurred 1,476 wildfires severe in intensity (> 200 ha, that burned a total of about 1,243,407 ha of vegetation, and an average of 40,000 ha affected per year. Depending on the type and intensity of the fire, there are different levels of severity with which the fire affects the vegetation, a variation that is crucial for the estimation GEI in the event. The purpose of this research was to analyze the burn severity of Rufina wildfires occurred in 1999, in the VI Region of L. G. B. O’Higgins in Chile, south of the capital Santiago, using Landsat 5 TM and Landsat 7 ETM+ imagery, including in the analysis the estimated greenhouse gases emitted in relation to with the vegetation and burn severity. Burn severity was estimated through the Normalized Burn Ratio (dNBR and GEI with the equation proposed by IPCC in 2006, which was adjusted with the combustion efficiency coefficients proposed by De Santis et al. (2010. The results show that around 16,783 ha were affected by fires of different severity and the native forest and tree plantations were affected by high severity. The ton of GEI for each level of burn severity and type of vegetation was estimated, being carbon dioxide (CO2 the main GEI emitted to the atmosphere in the fire. The highest emissions occurred in the areas of grasslands and scrublands, with high severity, with values ranging between 186 and 170 t/ha respectively

  11. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 18. Facility construction feasibility and costs by rock type

    International Nuclear Information System (INIS)

    1978-04-01

    The results of a study that compared the general engineering feasibility and unit costs associated with sinking shafts and mining storage rooms in the four rock types (salt, granite, shale, basalt) are presented in this volume. The report includes a discussion of the general effects of rock characteristics on shaft and mine design, the application of these design considerations to the specific designs developed for the Draft GEIS, shaft and mine construction techniques, and the unit cost comparison. The repository designs upon which this comparison was based are presented in other volumes of this series

  12. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  13. Projeto de cadeia de suprimentos ágeis e verdes: estudos exploratórios em uma empresa de bens de consumo não duráveis

    Directory of Open Access Journals (Sweden)

    Angelica Reis Galdino Takahashi

    2015-12-01

    Full Text Available Resumo Novas tendências em gestão da cadeia de suprimentos têm fomentado grandes discussões na área, incluindo os paradigmas de alinhamento dinâmico e de gestão sustentável de cadeias. O primeiro prega que se deve gerenciar dinamicamente diferentes tipologias de cadeias (e.g. totalmente flexíveis, ágeis, enxutas e de reabastecimento contínuo a fim de responder adequadamente a comportamentos específicos dos clientes. O segundo preconiza que o projeto e a gestão dessas cadeias devem considerar questões ambientais e sociais, em complementação aos aspectos econômicos. Recentemente, alguns autores têm combinado essas tendências em um novo modelo conceitual visando melhor gerenciar trade-offs de sustentabilidade quando do projeto de cadeias de suprimentos. O objetivo deste trabalho é testar algumas das hipóteses levantadas por tal modelo em cadeias ágeis. Por meio de simulações em uma multinacional de bens de consumo não duráveis, foi possível verificar que o modelo proposto possui coerência e potencial para ajudar as empresas a projetar cadeias ágeis e verdes.

  14. Characterization of Greenhouse Gases Emissionsfrom Urban Solid Waste in Baja California: A Proposal to Incorporate TechnicalInput into Decision-Making

    Directory of Open Access Journals (Sweden)

    Gabriela Muñoz Meléndez

    2015-01-01

    Full Text Available este estudio detalla la estimación de emisiones de gases de efecto invernadero (Gei gene-rados por desechos sólidos urbanos en Bajacalifornia usando el métodoPicc1996.losresultados muestran un aumento de 0.604 Gg/año en el período 1990-2010.la proyecciónde emisiones exhibe un aumento continuo para los siguientes 35 años. Fueron construidossiete escenarios de reducción:130 por ciento de disminución,2biodigestor,3una opciónintegral,4bioventanas,5compostaje,6vermicompostaje, y7biocubierta.los resulta-dos revelaron que es posible planear medidas o combinar estrategias inclusive, identificandocomo mejores los escenarios que incluyen aspectos sociales y opciones tecnológicas.

  15. Effective collision frequency of electrons in noble gases

    International Nuclear Information System (INIS)

    Baille, P.; Chang, J.-S.; Claude, A.; Yau, A.W.; Hobson, R.M.; Ogram, G.L.

    1981-01-01

    The electron-neutral collision frequency in the noble gases has been calculated using recent numerical results for momentum transfer cross sections by assuming a Maxwellian distribution of electron velocities. In all these gases, except for argon, good agreement is obtained with most previously published experimental and theoretical data. Mean free path, mobilities and diffusion coefficients are also calculated from the resulting effective collision frequencies. The empirical formulae are presented for an electron temperature dependence of the electron-neutral collision frequency for all noble gases up to Tsub(e) < approximately 25.000 K. (author)

  16. Melting behavior of a model molecular crystalline GeI4

    International Nuclear Information System (INIS)

    Fuchizaki, Kazuhiro; Asano, Yuta

    2015-01-01

    A model molecular crystalline GeI 4 was examined using molecular dynamics simulation. The model was constructed in such a way that rigid tetrahedral molecules interact with each other via Lennard-Jones potentials whose centers are located at the vertices of a tetrahedron. Because no other interaction that can “soften” the intermolecular interaction was introduced, the melting curve of the model crystalline material does not exhibit the anomaly that was found for the real substance. However, the current investigation is useful in that it could settle the upper bound of pressure below which the model can predict properties of the molecular liquid. Moreover, singularity-free nature of the melting curve allowed us to analytically treat the melting curve in the light of the Kumari-Dass-Kechin equation. As a result, we could definitely conclude that the well-known Simon equation for the melting curve is merely an approximate expression. The condition for the validity of Simon’s equation was identified. (author)

  17. The effects of spin in gases

    International Nuclear Information System (INIS)

    Laloee, F.; Freed, J.H.

    1988-01-01

    Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids

  18. Emisiones de gases de efecto invernadero y cambio climático

    Directory of Open Access Journals (Sweden)

    Wilfredo Bulege Gutiérrez

    2013-12-01

    Full Text Available Nuestro clima está sufriendo graves alteraciones desde hace varias décadas, el Panel Intergubernamental de Cambio Climático (IPCC, por sus siglas en inglés sostiene que el calentamiento global que venimos experimentando es inequívoco y que en su mayor parte se debe “muy probablemente” al incremento de las concentraciones de gases de efecto invernadero (GEI generadas por actividades humanas. Las emisiones totales de GEI antropogénicas han seguido aumentando durante 1970 hasta el 2010, con mayores incrementos absolutos de décadas hacia el final de este período. A pesar de un número cada vez mayor de las políticas de mitigación del cambio climático, las emisiones anuales de GEI crecieron en promedio 0,4 giga tonelada de dióxido de carbono equivalente (GtCO2eq (1,3% por año desde 1970 hasta 2000, y en 1,0 GtCO2eq (2,2% por año desde el 2000 hasta el 2010 (1. Las emisiones totales de GEI antropogénicos en el 2000 llegaron de 40 GtCO2eq/año y el 2010 llegó a 49 GtCO2eq/año siendo los valores más altos en la historia humana; en este mismo periodo los GEI antropogénicos han aumentado en 10 GtCO2eq, generado directamente por los sectores de energía (47%, la industria (30%, el transporte (11% y las construcciones (3% (1. Algunas excepciones de las grandes emisiones de dióxido de carbono (CO2 por uso de la energía son por procesos químicos (producción de cemento o cal, metalurgia, etc. (2. Alrededor de la mitad de las emisiones antropogénicas de CO2 acumuladas entre 1750 y 2010 se han producido en los últimos 40 años; asimismo estas emisiones proceden de la quema de combustibles fósiles y procesos industriales que contribuyeron con aproximadamente el 78% del aumento total de las emisiones de GEI entre 1970 y 2010, un porcentaje de contribución similar para el período 2000 al 2010 (1; también el aumento de la concentración mundial de CO2 -en una parte apreciable pero menores causado por los cambios de uso de la tierra y

  19. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  20. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  1. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  2. Electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined

  3. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  4. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  5. Structure of a molecular liquid GeI4

    International Nuclear Information System (INIS)

    Fuchizaki, Kazuhiro; Sakagami, Takahiro; Kohara, Shinji; Mizuno, Akitoshi; Asano, Yuta; Hamaya, Nozomu

    2016-01-01

    A molecular liquid GeI 4 is a candidate that undergoes a pressure-induced liquid-to-liquid phase transition. This study establishes the reference structure of the low-pressure liquid phase. Synchrotron x-ray diffraction measurements were carried out at several temperatures between the melting and the boiling points under ambient pressure. The molecule has regular tetrahedral symmetry, and the intramolecular Ge–I length of 2.51 Å is almost temperature-independent within the measured range. A reverse Monte Carlo (RMC) analysis is employed to find that the distribution of molecular centers remains self-similar against heating, and thus justifying the length-scaling method adopted in determining the density. The RMC analysis also reveals that the vertex-to-face orientation of the nearest molecules are not straightly aligned, but are inclined at about 20 degrees, thereby making the closest intermolecular I–I distance definitely shorter than the intramolecular one. The prepeak observed at  ∼1 Å −1 in the structural factor slightly shifts and increases in height with increasing temperature. The origin of the prepeak is clearly identified to be traces of the 111 diffraction peak in the crystalline state. The prepeak, assuming the residual spatial correlation between germanium sites in the densest direction, thus shifts toward lower wavenumbers with thermal expansion. The aspect that a relative reduction in molecular size associated with the volume expansion is responsible for the increase in the prepeak’s height is confirmed by a simulation, in which the molecular size is changed. (paper)

  6. Technical support for GEIS: radioactive waste isoltaion in geologic formations. Volume 19. Thermal analyses

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/19, ''Thermal Analyses,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the thermal impacts of the isolated high level and spent-fuel wastes in geologic formations. A detailed account of the methodologies employed is given as well as selected results of the analyses

  7. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  8. Does a network structure exist in molecular liquid SnI4 and GeI4?

    Science.gov (United States)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2017-04-01

    The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

  9. Cost-effectiveness in the mitigation of green house gases

    International Nuclear Information System (INIS)

    Rey, Francisco Carlos

    2009-01-01

    This paper analyzes the cost-effectiveness in the mitigation of green house gases from solar, eolic and nuclear energy sources, concluding that nuclear is, not doubt, the mos efficient. On the other hand, nuclear is the unique source that can be installed without limit in magnitude and in the proximity of the demand, and is for all these reasons that several environmental referents in the world have changed their perception on this source and defend it as the unique actual alternative to fight against the emission of green house gases. (author) [es

  10. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  11. Thermal diffusion baro-effect in cluster gases

    International Nuclear Information System (INIS)

    Kurlapov, L.M.; Segeda, T.A.

    2003-01-01

    Thermal diffusion baro-effect as a difference of pressure under which action in the established process in the close device the particles flow of an irreversible nature is counterbalanced by current of gas is considered. For not ideal gases the settlement formula is received, in which no ideality is taken into account through the compressibility factor and also for cluster mixture. (author)

  12. Effect of air-polluting gases on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I

    1972-01-01

    Among the air-polluting gases, SO/sub 2/, ozone, peroxyacetylnitrate (PAN) and fluorine are those whose action is studied most. This review tries to show the connection between the well-known macroscopic symptoms, on the one hand, the the primary point of attack at the enzymatic level, the changes in the plant's metabolism, and the microscopic and electronmicroscopic results, on the other. PAN and ozone, which originate through the action of sunlight on auto-exhausts, cause the strong oxidizing character of this type of smog. Their primary point of attack seems to be their oxidizing effect on protein SH-groups. PAN in special oxidizes the SH-groups of a photoreducible disulfide containing chloroplast protein, thus blocking photosynthesis. SO/sub 2/, which originates from combustion of coal and petroleum as well as from roasting of sulfur-containing ores, causes the reductive character of this type of smog. SO/sub 2/ has a special position among the air-polluting gases because it can be incorporated without damaging effect into the normal sulfur metabolism up to a certain level. After exceeding this limit, it causes a rapid depression of photosynthesis. F/sup -/ is bound as a salt in the cell wall or in the cell vacuole and is thereby prevented from its damaging effect on metabolic processes up to a certain level. Upon exceeding this, it acts mainly on the enzymes of carbohydrate metabolism. In a few examples it is shown in which way the collapse of cell compartmentation causes the loss of regulatory mechanisms of the cell. The influence of internal (genetic conditions, physiological age etc.) and external (light, temperature, humidity etc.) factors on the general metabolism, and, in this way, on the sensitivity of the plant to air-polluting gases, is shown. 195 references.

  13. Options for the reduction of gases emissions of greenhouse effect (GEI), Colombia 1998 -2010

    International Nuclear Information System (INIS)

    Rodriguez M, Humberto; Gonzalez B, Fabio

    1999-01-01

    Taking into account the greenhouse gas emissions for Colombia in year 2010, different options for reduction of GHG emissions were considered. Twenty-four options were evaluated from economical and technical points of view, with a total reduction potential of 31.7 M ton/ year of CO 2 equivalent. About 75% of this potential could be developed in the forestry sector and 25% in energy projects. If the proposed measures can to be implemented, the country's emissions will be 143.5 M ton/year of co2 by 2010: this means that Colombia will have lowered its emissions not only to the 1990 level but down to 14% below this level

  14. The Kyoto Protocol and the Convention of Climatic Change

    International Nuclear Information System (INIS)

    Verano de La Rosa, Eduardo

    1998-02-01

    The climatic change consists on a variation in the climate approved by Colombia by means of the Law 164 of 1994. Attributed direct or indirectly to the human activity Colombia is part of the CMCC from June 20 that it alters the composition of the atmosphere. Their main objective is to achieve the stabilization of it takes place as consequence of the emission of gases the concentrations of GEI in the atmosphere at a level greenhouse effect. These gases catch the radiation that impedes dangerous interferences of the activities lot that it enters to the terrestrial atmosphere, avoiding that it bounces. The increment of the concentration of the GEI is generating an increase in the temperatures and it will be able to cause unforeseeable changes in the global climate. These alterations could have, among other, effects on the composition of the thermal floors, the stations of rains and the level of the sea. Although total scientific certainty doesn't exist on the characteristics of the phenomenon, the best available information that picks up the consent of a majority group from all over the world of scientific is that the human activities and, in particular, the emission of GEI is having a discernible influence on the climate. The biggest uncertainties are presented as for the geographical distribution of the impacts. Some regions could suffer positive impacts: for example, a heating of a centigrade degree in Siberia, it could enable vast earth extensions for the agriculture. On the other hand, that same heating could put an end to the biodiversity of the Colombian moors, among others. The climatic change, supposes a roulette game then to planetarium scale in the one that one doesn't know who it could be the winners and who the losers. This is one of the main reasons for which the international community has united to combat him

  15. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  16. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdeh, Nidal H. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2003-11-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO{sub x}), carbon dioxide (CO{sub 2}) and carbon monoxide (CO). In addition, O{sub 2} concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO{sub x}) and carbon dioxide (CO{sub 2}) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O{sub 2}) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO{sub x} gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO{sub x} but increased the particulate matter concentrations in the exhaust gases. (Author)

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 23. Environmental effluent analyses

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/23, ''Environmental Effluent Analysis,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Drat Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the releases to the environment of radioactive and non-radioactive materials that arise during facility construction and waste handling operations, as well as releases that could occur in the event of an operational accident. The results of the analyses are presented along with a detailed description of the analytical methodologies employed

  18. Methane abatement biotechnologies: Targeting process microbiology, improyement of process perrformance and revalorization

    OpenAIRE

    López Neila, Juan Carlos

    2017-01-01

    Dentro del inventario mundial de gases de efecto invernadero (GEis), el metano es considerado un agente climático de acción a corto plazo con una alta prevalencia en la atmósfera. Las emisiones de este GEI son las más abundantes después de las del dióxido de carbono a nivel mundial, y son en su mayoría de origen antropogénico.Tecnologías de final de proceso tanto físico-químicas como biologías se encuentran disponibles comercialmente para el tratamiento de emisiones de metano, si bien es cier...

  19. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 21. Ground water movement and nuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This volume, TM-36/21 Ground Water Movement and Nuclide Transport, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling of spent fuel and uranium-only recycling. The studies presented in this volume consider the effect of the construction of the repository and the consequent heat generation on the ground water movement. Additionally, the source concentrations and leach rates of selected radionuclides were studied in relation to the estimated ground water inflow rates. Studies were also performed to evaluate the long term migration of radionuclides as affected by the ground water flow. In all these studies, three geologic environments are considered; granite, shale and basalt.

  20. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  1. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    Science.gov (United States)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  2. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  3. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  4. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  5. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  6. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  7. Thickness-dependent magneto-optical effects in hole-doped GaS and GaSe multilayers: a first-principles study

    Science.gov (United States)

    Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui

    2018-04-01

    Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.

  8. Determinación de la Huella de Carbono de productos agrícolas en una finca de agricultura ecológica

    OpenAIRE

    ROIG BENEDITO, MIGUEL

    2017-01-01

    [ES] La necesidad de paliar el cambio climático hace necesario reducir las emisiones absolutas en todos los sectores, incluso en la agricultura. La determinación de la Huella de Carbono en los productos permite estimar las emisiones de GEI (Gases de Efecto Invernadero) durante el ciclo de vida de los productos agrícolas. El objetivo del presente trabajo es identificar los distintos gases de efecto invernadero que se producen en una explotación de agricultura ecológica. Para ello s...

  9. Estimación de las emisiones en bovinos en los sistemas de producción lechera en pequeña escala a través del factor de conversión de metano

    OpenAIRE

    ZUÑIGA GONZÁLEZ, NOÉ

    2016-01-01

    La reducción de los gases de efecto invernadero (GEI) es un requisito internacional en la actualidad. La cría intensiva de ganado representa una fuente importante de gases de efecto invernadero a la atmósfera, siendo la fermentación entérica una de las principales fuentes de metano en esta actividad, con los rumiantes situados en el primer lugar de importancia. La producción de metano depende fundamentalmente de la cantidad y calidad del alimento ingerido, siendo la digestib...

  10. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  11. The program of environmental improvement of the Tlalpan delegation; El programa de mejoramiento ambiental de la Delegacion Tlalpan

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, C [Instituto de Ingenieria de la UNAM (Mexico); Oven, M; Vazquez, O [Hagler Bailly Services, Mexico, D.F. (Mexico); Roman, G [Centro para la Produccion mas Limpia, IPN, Mexico, D. F. (Mexico)

    1999-07-01

    Mexico contributes with nearly 2% of the world-wide greenhouse effect gas emissions (GEG), it is the thirteenth country with greater carbon dioxide emissions in the world. In this document the initiative of the program of environmental improvement of the Tlalpan Delegation of Mexico City is presented, as a pilot example within the national efforts in the matter of possible diminution of GEG emissions. The premise of the Tlalpan Program is the following one: The projects that will be successful in the global scope will be those that entail local benefits. With base in this, one has focused in activities that simultaneously offer local economic benefits and global results of GEG reduction. [Spanish] Mexico contribuye con cerca del 2% de las emisiones mundiales de gases de efecto invernadero (GEI), es el decimotercer pais con mayores emisiones de bioxido de carbono en el mundo. En este documento se presenta la iniciativa del programa de mejoramiento ambiental de la Delegacion Tlalpan, de Mexico D. F. como un ejemplo piloto dentro de los esfuerzos nacionales en materia de posible disminucion de emisiones de GEI. La premisa del Programa Tlalpan es la siguiente: Los proyectos que tendran exito en el ambito global seran los que conllevan beneficios locales. Con base en esto, se ha enfocado en actividades que simultaneamente ofrecen beneficios economicos locales y resultados globales de reduccion de GEI.

  12. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  13. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  14. Effect of specific industrial gases on the growth of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, V G

    1963-01-01

    Variations in the growth increment of annual rings can serve as index of the injuries effect of various industrial gases on plants. For such an objective, young trees are preferable because they are more responsive to changes of surrounding conditions and recover more rapidly after being affected by gas. The older trees react more slowly, take longer to recover, and as a rule eventually dry up. These differences may be related to the prevalence of different kinds of gas resistance (N.P. Krasinskiy, 1950) at definite ages; in the case of old trees the nature of resistant being anatomical, morphological, and physiological (less oxidation of the cell content), whereas in young trees the biological resistance to gases is greater.

  15. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  16. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 22. Nuclear considerations for repository design

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/22, ''Nuclear Considerations for Repository Design,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. Included in this volume are baseline design considerations such as characteristics of canisters, drums, casks, overpacks, and shipping containers; maximum allowable and actual decay-heat levels; and canister radiation levels. Other topics include safeguard and protection considerations; occupational radiation exposure including ALARA programs; shielding of canisters, transporters and forklift trucks; monitoring considerations; mine water treatment; canister integrity; and criticality calculations

  17. A research program on radiative, chemical, and dynamical feedback progresses influencing the carbon dioxide and trace gases climate effects

    International Nuclear Information System (INIS)

    1989-07-01

    This report summarizes the up-to-date progress. The program includes two tasks: atmospheric radiation and climatic effects and their objective is to link quantitatively the radiation forcing changes and the climate responses caused by increasing greenhouse gases. Here, the objective and approach are described. We investigate the combined atmospheric radiation characteristics of the greenhouse gases (H 2 O, CO 2 , CH 4 , N 2 O, CFCs, and O 3 ), aerosols and clouds. Since the climatic effect of increasing atmospheric greenhouse gases is initiated by perturabtion to the longwave thermal radiation, it is critical to understand better the radiation characteristics of the greenhouse gases and their relationship to radiatively-important aerosols and clouds; the latter reflect solar radiation (a cooling of the surface) and provide a greenhouse effect (a warming to the surface). Therefore, aerosol and cloud particles are an integral part of the radiation field in the atmosphere. 9 refs

  18. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  19. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  20. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  1. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  2. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  3. Kovacs-Like Memory Effect in Driven Granular Gases

    Science.gov (United States)

    Prados, A.; Trizac, E.

    2014-05-01

    While memory effects have been reported for dense enough disordered systems such as glasses, we show here by a combination of analytical and simulation techniques that they are also intrinsic to the dynamics of dilute granular gases. By means of a certain driving protocol, we prepare the gas in a state where the granular temperature T coincides with its long time limit. However, T does not subsequently remain constant but exhibits a nonmonotonic evolution before reaching its nonequilibrium steady value. The corresponding so-called Kovacs hump displays a normal behavior for weak dissipation (as observed in molecular systems) but is reversed under strong dissipation, where it, thus, becomes anomalous.

  4. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  5. EVALUACIÓN AMBIENTAL PARA PROCESOS QUE USAN RESIDUOS DE LA INDUSTRIA DE LOS BIOCOMBUSTIBLES COMO MATERIAS PRIMAS

    Directory of Open Access Journals (Sweden)

    Mónica Julieth Valencia Botero

    Full Text Available La industria creciente de los biocombustibles genera grandes cantidades de residuos que tienen alto potencial para la obtención de productos con alto valor agregado. En el presente documento se lleva a cabo el análisis de ciclo de vida (ACV para el glicerol y el bagazo de caña de azúcar durante su producción y para su uso como materia prima en cuatro procesos diferentes. El objetivo fue determinar el impacto ambiental de los cuatro procesos, por medio de la cuantificación de gases de efecto invernadero (GEI asociados al ciclo de vida. Los resultados indican que las emisiones de GEI asociadas a los procesos que utilizan el glicerol como materia prima son mayores que las emisiones de GEI para los procesos que involucran bagazo de caña de azúcar, pero que el aprovechamiento del glicerol podría considerarse más eficiente, ya que las emisiones por unidad de masa en el uso del glicerol son 75% inferiores a las emisiones calculadas para los procedimientos utilizando bagazo de caña como materia prima.

  6. Small mammal taxonomy, taphonomy, and the paleoenvironmental record during the Middle and Upper Paleolithic at Geißenklösterle Cave (Ach Valley, southwestern Germany)

    Science.gov (United States)

    Rhodes, Sara E.; Ziegler, Reinhard; Starkovich, Britt M.; Conard, Nicholas J.

    2018-04-01

    Geißenklösterle Cave, located in the Ach Valley of the Swabian Alb and one of six Swabian cave sites recently named as a UNESCO World Heritage site, has a long history of archaeological research resulting in a detailed record of human occupation. Sometime around 45,000 years ago Neanderthals seemingly vanished from the Swabian landscape, and after a period of mostly geogenic deposit at Geißenklösterle Cave we find deposits containing characteristically Aurignacian artifacts dating to as early as 42,500 years ago. These Aurignacian groups brought with them complex symbolic expression and communication including bone and ivory beads, musical instruments, and animal and human figurines. This study examines the climatic context of this depopulation through a taxonomic and taphonomic analysis of the rodent and insectivore remains associated with these periods and provides a relatively unbiased climatic record for the period of ∼45,000-36,000 years ago in this region. Taphonomic analysis indicates that primarily the European eagle owl (Bubo bubo) and the kestrel (Falco tinnunculus) were responsible for accumulating the material, and allows us to quantify the potential taxonomic bias resulting from predator behaviour which includes a preference for voles, particularly the water vole (Arvicola terrestris). Additionally, rare taxa (which include species of murids and soricids) may have been present in greater quantities than our sample implies. The assemblage from Geißenklösterle Cave is dominated by the field and common vole (Microtus arvalis/agrestis), the narrow-headed vole (Microtus gregalis), and the root/tundra vole (Microtus oeconomus). Overall, the Middle Paleolithic landscape included significant woodland and forested areas while a high proportion of species restricted to cold tundra environments likely indicate punctuated cold and arid periods. The signal from the nearly geogenic layer overlying the Middle Paleolithic material includes a moderate shift in

  7. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  8. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  9. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  10. The mixing effects for real gases and their mixtures

    Science.gov (United States)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  11. Climate-chemical interactions and effects of changing atmospheric trace gases

    International Nuclear Information System (INIS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  12. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  13. [Gases in vitreoretinal surgery].

    Science.gov (United States)

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.

  14. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  15. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  16. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 5. Baseline rock properties-granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/5, Baseline Rock Properties--Granite, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report, on the rock properties of typical granites, includes an evaluation of the various test results reported in the literature. Firstly, a literature survey was made in order to obtain a feel for the range of rock properties encountered. Then, granites representative of different geologic ages and from different parts of the United States were selected and studied in further detail. Some of the special characteristics of granite, such as anisotropy, creep and weathering were also investigated. Lastly, intact properties for a typical granite were selected and rock mass properties were derived using appropriate correction factors

  18. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  19. Properties of gases, liquids, and solutions principles and methods

    CERN Document Server

    Mason, Warren P

    2013-01-01

    Physical Acoustics: Principles and Methods, Volume ll-Part A: Properties of Gases, Liquids, and Solutions ponders on high frequency sound waves in gases, liquids, and solids that have been proven as effective tools in examining the molecular, domain wall, and other types of motions. The selection first offers information on the transmission of sound waves in gases at very low pressures and the phenomenological theory of the relaxation phenomena in gases. Topics include free molecule propagation, phenomenological thermodynamics of irreversible processes, and simultaneous multiple relaxation pro

  20. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  1. The effect of system boundaries on the mean free path for confined gases

    Directory of Open Access Journals (Sweden)

    Sooraj K. Prabha

    2013-10-01

    Full Text Available The mean free path of rarefied gases is accurately determined using Molecular Dynamics simulations. The simulations are carried out on isothermal argon gas (Lennard-Jones fluid over a range of rarefaction levels under various confinements (unbounded gas, parallel reflective wall and explicit solid platinum wall bounded gas in a nanoscale domain. The system is also analyzed independently in constitutive sub-systems to calculate the corresponding local mean free paths. Our studies which predominate in the transition regime substantiate the boundary limiting effect on mean free paths owing to the sharp diminution in molecular free paths near the planar boundaries. These studies provide insight to the transport phenomena of rarefied gases through nanochannels which have established their potential in microscale and nanoscale heat transfer applications.

  2. Which climate gases is it the most important to reduce?

    International Nuclear Information System (INIS)

    Godal, Odd; Fuglestvedt, Jan

    2002-01-01

    If the Kyoto Protocol had used another method for comparing the various climate gases, Norway might have had to implement more and more expensive measures. The selection of methods may be important for the making of new agreements after Kyoto. Calculations show the importance of the comparison methods for the various climate gases in negotiating new climate agreements. The Kyoto Protocol regulates the total emission of climate gases carbon dioxide (CO 2 ), methane (CH 4 ), laughing gas (N 2 O) and sulphur hexafluoride (SF 6 ), and halo fluoro carbons and perfluoro carbon. It is up to each country to choose which of these gases to concentrate on, and a tool is therefore needed to compare the effects of the various gases. In the Kyoto agreement, this is done by means of the global warming potential (GWP) of each gas over a period of 100 years. But different climate gases have different atmospheric residence times and it is not evident how the gases must be compared. Reducing the emission of methane has a strong and short-term effect while reducing the emission of carbon dioxide has a weaker but more lasting effect. Researchers have suggested other ways of comparison than the one used in the Kyoto Protocol. Among other things one may calculate the global warming potential for another time horizon than 100 years. Researchers at Cicero have investigated the consequences of two other ways of weighing climate gases: GWP(20) with time horizon of 20 years gives more weight to short-lived gases like methane, while GWP(500) with a time horizon of 500 years is more favourable to the long-lived gases. To see how much the selection of comparing method means in practice, the consequences for Norway using GWP(20) or GWP(500), have been calculated

  3. Gases and carbon in metals. Pt. 14

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Hehn, W.; Fromm, E.; Hoerz, G.

    1981-01-01

    This issue is part of a series of data on 'Gases and Carbon in Metals' which supplements the data compilation in the book 'Gase und Kohlenstoff in Metallen' (Gases and Carbon in Metals), edited by E. Fromm and E. Gebhardt, Springer-Verlag, Berlin 1976. The present survey includes results from papers published after the copy deadline and recommends critically selected data. Furthermore, it comprises a bibliography of relevant literature. For each element, firstly data on binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility, solubility limit, dissociation pressure of compounds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas absorption and gas desorption kinetics, compound formation kinetics, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. (orig./GE)

  4. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  5. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com [Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, 50229 Semarang, 8508101 (Indonesia); Zainal, Z. A., E-mail: mezainal@usm.my [School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  6. Economic Hazardous Gases Management for SOX Removal from Flue Gases

    International Nuclear Information System (INIS)

    Isaack, S.L.; Mohi, M.A.; Mohamed, S.T.

    1995-01-01

    Hazardous gases emerging from industries accumulate as pollutants in air and falls as acid rains resulting also in water and soil pollution. To minimize environmental pollution, the present process is suggested in order to desulfurize flue gases resulting from burning fuel oil in a 100/MWh steam power plant. The process makes use of the cheap Ca C O 3 powder as the alkaline material to sequistre the sulphur oxide gases. The resulting sulphur compounds, namely calcium sulphate and gypsum have a great market demand as reducing and sulphiting agents in paper industry and as an important building material. About 44000 ton of gypsum could be produced yearly when treating flue gases resulting from a 100 MWh unit burning fuel oil. Feasibility study shows that a great return on investment could be achieved when applying the process. 1 fig

  7. Diffusion layer modeling for condensation with multi-component noncondensable gases

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    Many condensation problems involving noncondensable gases have multiple noncondensable species, for example air (with nitrogen, oxygen, and other gases); and other problems where light gases like hydrogen may mix with heavier gases like nitrogen. Particularly when the binary mass diffusion coefficients of the noncondensable species are substantially different, the noncondensable species tend to segregate in the condensation boundary layer. This paper presents a fundamental analysis of the mass transport with multiple noncondensable species, identifying a simple method to calculate an effective mass diffusion coefficient that can be used with the simple diffusion layer model, and discusses in detail the effects of using mass and mole based quantities, and various simplifying approximations, on predicted condensation rates. The results are illustrated with quantitative examples to demonstrate the potential importance of multi-component noncondensable gas effects

  8. Emission of greenhouse gases from the use of fossil fuels in Ibague, Tolima (Colombia

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2017-01-01

    Full Text Available Climate change is caused by the increase of concen-trations of greenhouse gases (ghg, especially CO2, caused by the proliferation of fossil fuels use. Forest systems can capture carbon in biomass and mitigate the climate change problem. The aim of this research was to estimate the emission of ghg from the sale of fossil fuels in the city of Ibague and propose options of mitigation with productive systems in Tolima. Throughout a review, the total number of service stations in the city urban area was determined. Carrying on interviews to employers that attend public, the sales of fossil fuels (gasoline, diesel and ResumoA mudança climática é causada pelo aumento das concentrações dos gases de efeito estufa (gei, especialmente, pelo CO2 produzido pela prolife-ração do uso de combustíveis fósseis. Os sistemas forestais podem absorver carbono na biomassa e mitigar o problema da mudança climática. O objetivo do estudo foi estimar a emissão de geide acordo com a venda de combustíveis fósseis em Ibagué e plantear opções de mitigação com sistemas de produção no Tolima. Mediante revisão de literatura, determinou-se o número de postos de gasolina no perímetro urbano de Ibagué. Através de enquetes a empregados que atendem ao público, natural gas vehicle-ngv, were determined and based on the total number of stations and emission factors, it was estimated the total emission from each fuel in the city. Some mitigation options, such as coffee, cocoa and teak plantations have been proposed. It was estimated an emission of 368 Gg CO2/year (1 Gg = 10⁹ g from sales of fuels, equivalent to 718 kg CO2/person/year. These ghgemissions should be mitigated with reduction in the use of fossil fuels or throughout establishment of agricultural and forestry production systems which allows fixating CO2

  9. Effect of photocurrent amplification in In sub 2 O sub 3 -GaSe heterostructure

    CERN Document Server

    Drapak, S I

    2001-01-01

    The experimentally determined effects of originating the photocurrent amplification in the In sub 2 O sub 3 -GaSe heterostructure with localization of the barrier plane perpendicular to the semiconductor layers are described. The value of the amplification coefficient by the reverse displacement U = 10 V reached M approx = 82 and the absolute value of the current sensitivity - 30-32 A/W. The mechanism of the current transfer through the dielectric, inevitable originating on the gallium monoselenide surface, is determined on the basis of the volt-ampere characteristics study. The supposition is made on the change in the conductivity mechanisms by transferring the barrier plane from the parallel to the perpendicular one to the GaSe layers

  10. Climate-chemical interactions and effects of changing atmospheric trace gases

    Science.gov (United States)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  11. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  12. Gases emissions of Green house Effect in Colombia

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio

    1999-01-01

    Colombia when signing the agreement mark of the united nations for the global change in 1992 and to ratify it in 1996 committed, together with the other signatory countries, to elaborate and to publish national inventories of anthropogenic emissions of green house gases and plans for its reduction and control. In this reference mark a group of professionals inside the Colombian academy of exact, physical and natural sciences, began in July of 1995, the national inventory of greenhouse gases for Colombia, having the approval of the ministry of the environment, the financial support of the organization of German technical cooperation GTZ and the technical consultantship of the work group that it is carrying out the study in the case of Venezuela. This article presents a summary of the results of the project, making emphasis in the main anthropogenic activities responsible for these emissions, especially those related with the energetic sector

  13. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  14. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  15. Density Fluctuations in Uniform Quantum Gases

    International Nuclear Information System (INIS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2011-01-01

    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.

  16. Estimación de huella de carbono del sistema de producción de caña de azúcar (Saccharum officinarum en Palmira, Valle del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Hernán J. Andrade

    2015-03-01

    Full Text Available El vínculo entre el cambio climático actual y la producción agrícola ha dispuesto que la huella de carbono sea usada como indicador mundial para evaluar la cantidad de gases de efecto invernadero (GEI emitidos por unidad de producto. El sector azucarero en Colombia es privilegiado gracias a los climas de sus regiones, y al contrario de lo que sucede en el resto del mundo con excepciónde Hawái y el norte de Perú, se puede sembrar y cosechar caña durante todos los meses del año, no obstante es un sistema productivo netamente emisor de GEI. El objetivo de este estudio fue estimar la huella de carbono producida por la caña de azúcar en el municipio de Palmira, Valle del Cauca, a partir de las emisiones de gases de efecto invernadero durante el proceso de cultivo de caña de azúcar y la molienda. El uso de combustibles fósiles, químicos y fertilizantes orgánicos y los datos de biomasa de caña de azúcar durante el cultivo se obtuvieron a partir de estudios de campo, cuestionarios y entrevistas. Los resultados muestran que la producción de azúcar tiene una huella de carbono que emite aproximadamente 947 ± 1381 kg CO2e/ha/ciclo. Los fertilizantes nitrogenados fueron los que más aportaron a las emisiones de GEI, en un 73% del total, en contraste con el uso de combustibles fósiles y energía, cuya contribución está en 17% y 10%, respectivamente.

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults

  18. Effect of temperature on the uniform field breakdown strength of electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Mathis, R.A.; Hunter, S.R.; Carter, J.G.

    1987-03-01

    In general, the electron attachment rate constant, k/sub a/ ( ,Υ), as a function of the mean electron energy and temperature Υ for electronegative gases which attach electrons nondissociatively decreases greatly with Υ from room temperature to Υ ≤ 600K, while that for electronegative gases which attach electrons dissociatively increases with increasing Υ. Based on recent studies in our laboratory on k/sub a/ ( ,Υ), we investigated the variation with Υ (∼295-575K) of the uniform field breakdown strength, (E/N)/sub lim/, for three classes of electronegative gases: (a) gases such as c-C 4 F 8 (and c-C 4 F 6 , 1-C 3 F 6 ) which attach strongly low-energy (≤ 1 eV) electrons nondissociatively and for which k/sub a/ ( ,Υ), decreases precipitously with Υ above ambient; (b) gases such as C 2 F 6 and CF 3 Cl which attach electrons exclusively dissociatively and whose k/sub a/ ( ,Υ) increases with Υ; and (c) gases such as C 3 F 8 and n-C 4 F 10 which attach electrons both nondissociatively and dissociatively over a common low-energy range and whose k/sub a/ ( ,Υ) first decreases and then increases with Υ above ambient. The (E/N)/sub lim/(Υ) has been found to decrease significantly with Υ for (a), to decrease slowly with Υ for (c), and to increase slightly with Υ for (b). These changes in (E/N)/sub lim/ follow those in k/sub a/ ( ,Υ). A similar behavior is expected for other electronegative gaseous dielectrics in the respective three groups

  19. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  20. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  1. Effect of van der Waals interactions on the structural and binding properties of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation); Shandakov, Sergey D. [Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation)

    2015-12-15

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Se bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.

  2. Radioactive gases monitor system: tritium, radon, noble gases

    International Nuclear Information System (INIS)

    Egey, J.Z.; Matatagui, E.

    2015-01-01

    A system for monitoring the radioactive gases tritium, radon and noble gases is described. We present the description of the sensor and the associated electronics that have been developed to monitor the presence of radioactive gases in air or other gaseous effluents. The system has a high sensitivity and a wide range of operation. The sensor is an ionization chamber, featuring the internal circulation of the gas to monitor and the associated electronics has a resolution better than 10 E-15A (fA). It allows the detection of the individual pulses that are produced during the alpha decay of radon and its daughter elements. The measurement system is made up of a commercial data acquisition system connected to a computer. The acquired data is presented on a graphical display and it is stored for later processing and analysis. We have a system that is of simple construction and versatile. Here we present the experimental results. (authors) [es

  3. Process of radioactive waste gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.; Schroter, H.J.

    1975-01-01

    A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)

  4. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  5. Long Term Effects of Tear Gases on Respiratory System: Analysis of 93 Cases

    Directory of Open Access Journals (Sweden)

    Peri Arbak

    2014-01-01

    Full Text Available Aim. This study aimed to assess the long-term respiratory effects of tear gases among the subjects with history of frequent exposure. Materials and Methods. A questionnaire by NIOSH and pulmonary function tests was performed in 93 males exposed to the tear gases frequently and 55 nonexposed subjects. Results. The mean numbers of total exposure and last 2 years exposure were 8.4±6.4 times, 5.6±5.8 times, respectively. Tear gas exposed subjects were presented with a higher rate for cough and phlegm more than 3 months (24.7% versus 11.3%, P>0.05. Mean FEV1/FVC and % predicted MMFR in smoker exposed subjects are significantly lower than those in smoker controls (81.7% versus 84.1%, P=0.046 and 89.9% versus 109.6%, P=0.0004, resp.. % predicted MMFR in nonsmoker exposed subjects is significantly lower than that in nonsmoker controls (99.4% versus 113.1%, P=0.05. Odds ratios for chest tightness, exercise dyspnea, dyspnea on level ground, winter morning cough, phlegm, and daily phlegm were increased almost 2 to 2.5 folds among tear gas exposed subjects. Conclusion. The rates for respiratory complaints were high in the case of the exposure to the tear gases previously. Tears gas exposed subjects were found to be under the risk for chronic bronchitis.

  6. Electrical properties of carbon nanotubes modified GaSe glassy system

    Science.gov (United States)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  7. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    Science.gov (United States)

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Amide-linked Ethanolamine Conjugate of Gemfibrozil as a Profound HDL Enhancer: Design, Synthesis, Pharmacological Screening and Docking Study.

    Science.gov (United States)

    Rai, Himanshu; Dhaneshwar, Suneela S

    2015-01-01

    Elevated concentration of any or all types of lipids in the plasma including hypertriglyceridemia and hypercholesterolemia leads to atherosclerotic cardiovascular disease. Effective medication needs multiple drug therapy as recommended cholesterol and triglyceride levels are difficult to achieve by monotherapy and frequently require the use of more than one lipid-lowering medication. Gemfibrozil lowers plasma triglyceride-rich lipoproteins mainly VLDL and increases HDL. It is associated with short plasma half-life (1.5h) and GIT distress on long term use. In a study it was found that ethanolamine decreases serum cholesterol, especially VLDL cholesterol and LDL cholesterol in rats fed an HF/HC diet. In the present work, we thought of exploring the effect of co-drug of gemfibrozil with ethanolamine (GE-I) as a potential combination therapy for the management of mixed hyperlipidemia. Synthesis of GE-I was effected by CDI coupling. Structure was confirmed spectrally. Interestingly kinetic studies revealed that GE-I resisted chemical and enzymatic hydrolysis. In tritoninduced hyperlipidemia, significant lowering of serum lipid levels was observed. The hallmark of GEI was its profound effect on HDL level which was raised above the normal level by 15%. Docking study also supported modulatory effect of GE-I (docking score -7.012) on PPAR-α which was comparable to docking score of gemfibrozil (-9.432). These preliminary observations prompt us to consider GE-I as a novel, serendipitous, hybrid anti-hyperlipidemic new chemical entity which needs be studied extensively to prove it as an HDL enhancing anti-hyperlipidemic agent.

  9. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    Science.gov (United States)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  10. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  11. Bonos de carbono: financiarización del medioambiente en México

    Directory of Open Access Journals (Sweden)

    Vania López-Toache

    2016-01-01

    Full Text Available El trabajo tiene como objetivo analizar las medidas de mitigación para la emisión de gases efecto invernadero ( GEI al medioambiente –bonos de carbono– establecidos en el Protocolo de Kyoto. Estos parten del estudio del Teorema de Coase, el cual plantea que el mercado asignará de manera adecuada los derechos de propiedad de las externalidades provocadas por los distintos agentes económicos. Por los resultados se puede afirmar que los bonos de carbono son una forma de financiarización del medioambiente, lo cual está creando en la práctica derechos de contaminación, lo que permite que los países industrializados y empresas contaminantes reduzcan sus emisiones de GEI en países subdesarrollados como México a través de proyectos de energía renovables donde les resulta más económico y rentable.

  12. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  13. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  14. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  15. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  16. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  17. Method for storing radioactive rare gases

    International Nuclear Information System (INIS)

    Watabe, Atsushi; Nagao, Hiroyuki; Takiguchi, Yukio; Kanazawa, Toshio; Soya, Masataka.

    1975-01-01

    Object: To safely and securely store radioactive rare gases for a long period of time. Structure: The waste gases produced in nuclear power plant are cooled by a cooler and then introduced into a low temperature adsorbing device so that the gases are adsorbed by adsorbents, and then discharged into atmosphere through the purifying gas discharge line. When the radioactive rare gases reach a level of saturation in the amount of adsorption, they are heated and extracted by a suction pump and heated by a heater. The gases are then introduced into an oxygen-impurity removing device and the purified rare gases containing no oxygen and impurities are cooled by a cooler and fed into a gas holder. When the amount of radioactive rare gases stored within the gas holder reaches a given level, they are compressed and sealed by a compressure into a storing cylinder and residual gases in the piping are sucked and recovered into the gas holder, after which the cylinder is removed and stored in a fixed room. (Kamimura, M.)

  18. μ+ thermalization and muonium formation in noble gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.; British Columbia Univ., Vancouver

    1981-01-01

    One energy loss mechanism in μ + thermalization (in gases) is that due to charge exchange, in which muonium is repeatedly formed and lost in a series of charge-exchange cycles μ + +e - reversible Mu, a process which depends on the ionization potential of the moderator gas but one in which no depolarization of the μ + is expected at approx. 1 atm. pressure. However, if the time between collisions in a given energy regime can be made sufficiently long then additional depolarization may occur, which can provide further information on the charge-exchange process itself. Extensive data showing this effect has been found in gases; results for the noble gases are presented. (orig.)

  19. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    Energy Technology Data Exchange (ETDEWEB)

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  20. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Mul, G.; Perez-Ramirez, J.; Xu, Xiaoding; Oonk, H.; Yakovlev, A.

    2001-06-01

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  1. Perfil de utilização de medicamentos por idosos frágeis institucionalizados na Zona da Mata Mineira, Brasil

    Directory of Open Access Journals (Sweden)

    Romário Costa Fochat

    2012-08-01

    Full Text Available O objetivo desse estudo foi identificar o perfil de utilização de medicamentos por idosos frágeis institucionalizados, o uso de fármacos potencialmente inadequados e as possíveis interações medicamentosas. Participaram 122 idosos, os quais tiveram suas fichas pessoais e receituários consultados. Os medicamentos foram classificados segundo o Anatomical Therapeutic Chemical System e, para identificar aqueles potencialmente inadequados, foram utilizados os critérios de Beers-Fick. As possíveis interações foram estabelecidas com o auxílio do Micromedex e outras fontes. Observou-se que 68,0% dos idosos eram mulheres, 55,7% possuíam 80 anos ou mais e 67,2% encontravam-se polimedicados. As doenças do aparelho circulatório (27,0% foram as mais prevalentes, enquanto a maior parte dos medicamentos (38,8% atuava no sistema nervoso. Verificou-se 219 possíveis interações e 58 medicamentos potencialmente inadequados (7,8%. Essas constatações sinalizam algumas falhas na prescrição e evidenciam a necessidade da revisão dos esquemas terapêuticos, visando seu uso racional, seguro e efetivo.

  2. EOSN: A TOUGH2 module for noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Pruess, Karsten

    2003-03-07

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

  3. EOSN: A TOUGH2 module for noble gases

    International Nuclear Information System (INIS)

    Shan, Chao; Pruess, Karsten

    2003-01-01

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations

  4. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  5. Trace gases and other potential perturbations to global climate

    International Nuclear Information System (INIS)

    Wang, W.; Wuebbles, D.J.; Washington, W.M.; Isaacs, R.G.; Molnar, G.

    1986-01-01

    We review the various natural and anthropogenic factors that may affect the climate. The purpose is to summarize our understanding of these factors and their potential future climatic effects so that CO 2 -induced climate change can be viewed in a proper context. The factors we discuss include trace gases, anthropogenic and volcanic aerosols, variation of solar constant, change of surface characteristics, and releases of waste heat. We discuss the origins of the various natural and anthropogenic perturbations, the physical and chemical processes and their interactions, model sensitivity calculations, and model projections of their potential future climatic effects. The discussions center on trace gases because of their potentially large climatic effects. It appears that the increases of atmospheric trace gases of other kinds in addition to CO 2 could have important climatic effects. The model calculations suggest that the combined effect of these other trace gases, and the associated change of atmospheric ozone and water vapor distributions, could potentially warm the climate by an amount comparable in magnitude to the effect of doubling the CO 2 . Aerosols of anthropogenic origins may have substantial effects on regional climate, while the volcanic aerosols may have an effect on large-scale climate for up to a few years after injection. Changes of surface characteristics and releases of waste heat may also have substantial effects on the regional climate, but these effects are most likely to be small when compared with the effect of CO 2 increase. Changes of solar constant could have an effect on the global scale, but the time scale is much longer. There is much more that needs to be learned with regard to the above mentioned natural and anthropogenic factors that may affect the climate. A brief summary of those needs is presented

  6. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  7. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    Science.gov (United States)

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble

  8. Interaction effects on dynamic correlations in noncondensed Bose gases

    NARCIS (Netherlands)

    Bezett, A.; Van Driel, H. J.; Mink, M. P.; Stoof, H. T C; Duine, R. A.

    2014-01-01

    We consider dynamic, i.e., frequency-dependent, correlations in noncondensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and we show how it depends on the

  9. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    Science.gov (United States)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  10. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  11. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  12. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 6. Baseline rock properties-shale

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM36/6 Baseline Rock Properties--Shale, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. The report is a result of a literature survey of the rock properties of shales occurring in the United States. Firstly, data were collected from a wide variety of sources in order to obtain a feel for the range of properties encountered. Secondly, some typical shales were selected for detailed review and these are written up as separate chapters in this report. Owing to the wide variability in lithology and properties of shales occurring in the United States, it became necessary to focus the study on consolidated illite shales. Using the specific information already generated, a consistent set of intact properties for a typical, consolidated illite shale was obtained. Correction factors, largely based on geological considerations, were then applied to the intact data in order to yield typical rock mass properties for this type of shale. Lastly, excavation problems in shale formations were reviewed and three tunnel jobs were written up as case histories

  13. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    present in the sample in question, metaphorically a drop in the bucket. Thus, they are very difficult or impossible to detect and, therefore, in practical terms, attracting little or no interest. When the bucket is empty, or nearly so, however, the "drop" contributed by nuclear transmutations may become observable or even dominant. Traditionally there are two types of (nearly) empty buckets that are most suitable for revealing the effects of nuclear transmutations: short-lived radionuclides (e.g., 10Be and 26Al) which would be entirely absent except for recent nuclear reactions, and the noble gases, renowned for their scarcity.Emphasis on nuclear processes explains what sometimes seems to be an obsession with isotopes in noble-gas geo- and cosmochemistry. Different nuclear processes will produce different isotopes, singly or in suites with well-defined proportions (i.e., "components"), different from one process to another. Much of the traditional agenda of noble-gas geochemistry, and especially cosmochemistry, thus consists of isotopic analysis, and deconvolution of an observed isotopic spectrum into constituent components. (In most geochemical investigations, noble gases are detected by mass spectrometry, a technique that is inherently sensitive to specific isotopes, not just the chemical element. Isotopic data thus emerge naturally in most studies. Noble-gas mass spectrometry can be a much more sensitive technique than other traditional types of mass spectrometry because the gases are "noble," and therefore relatively easy to separate from other elements, and because they are scarce, so that they can be analyzed in "static"-mode (no pumping during analysis) gas-source spectrometers, permitting relatively high detection efficiency without overwhelming blanks.) In realistic terms, it is very difficult to appreciate noble-gas geo-/cosmochemistry without a basic familiarity with noble-gas isotopes: which isotopes occur in nature (i.e., which are stable), in what

  14. Indoor air pollution caused by geothermal gases

    International Nuclear Information System (INIS)

    Durand, Michael

    2006-01-01

    This paper discusses the little-known but potentially serious indoor air quality problems that may occur where buildings are constructed on geothermal ground. The main problems are related to seepage of carbon dioxide, hydrogen sulphide, radon and other gases from soil cavities directly into indoor air through perforations in the structure. These gases present a health hazard, and hydrogen sulphide, which is particularly corrosive, may cause problems electrical and electronic systems. Counter-measures are not always effective, so developments in such areas should only be undertaken with a clear understanding of site-specific issues and their possible solutions. (author)

  15. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Overview of the physical-chemical properties of the noble gases

    International Nuclear Information System (INIS)

    McKinley, C.

    1973-01-01

    This paper lists the concentrations of noble gases in the atmosphere and the relative abundance of the stable isotopes. Selected physical properties are tabulated; solubilities of noble gases in water and other liquids, and liquid-vapor equilibria data for binary systems containing a noble gas are presented. Adsorption data are tabulated for illustrative conventional adsorbents and are also presented by a Polanyi correlation. Clathration, biochemical effects, and chemical reactivity are highlighted. Analytical procedures are briefly described. Other relatively non-reactive gases present in the atmosphere in trace quantities are mentioned: methane, carbon tetrafluoride, and sulfur hexafluoride.

  17. Method of contacting solids and gases

    Energy Technology Data Exchange (ETDEWEB)

    1942-08-06

    A continuous method is described for contacting solids and gases. The process involves passing a confined stream of gases through an extended path including a treating zone and imposing a pressure on the stream of gases at least sufficient to overcome the resistence of said path to the flow of said gases. A solid in finely divided form is then introduced into said stream of gases, maintaining a vertical column of finely divided solid in fluidized state of a height which will produce a pressure at the column bottom at least equal to the gas pressure at the point of entry of the solids into the stream. The solids then pass from the bottom of the column into the stream.

  18. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor...... pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead-rod model for the flexible polymer. In this model, we associate...... the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly...

  19. Análisis de la introducción del vehículo eléctrico en las flotas de transporte de carga leve: estudio de caso de la empresa brasilera Correios®

    OpenAIRE

    Almeida Pereira, Elisa; Gomez, Juan P. E.; Serra de Arruda, Fabiana

    2016-01-01

    [ES] Uno de los desafíos ambientales del mundo consiste el de reducir los problemas causados por las emisiones de las emisiones de Gases de Efecto Invernadero (GEI) provenientes principalmente de los Vehículos de Combustión Interna (VCI) que representan alrededor del 40% del crecimiento del dióxido de carbono (CO2) en el mundo, lo hizo que varios países y por consiguiente algunas empresas, se movilizaran en torno a un compromiso a gran escala para respaldar las contribuciones e...

  20. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  1. Beneficial Effects of Environmental Gases: Health Prospective

    International Nuclear Information System (INIS)

    Hussein, A.Z.; IBrahim, M.S.; Zakaria, Kh.M.

    2009-01-01

    Radioactive radon gas is widely considered to be a health hazard by environmental agencies in the United States and in Europe. Yet despite the warnings of these agencies, thousands of people annually expose themselves to radon for therapeutic purposes, in facilities ranging from rustic old mines, to upscale spas and clinics. The inert natural radioactive gas radon has been used since the beginning of the century in the treatment of rheumatic diseases. In many places in the world, radon is used for therapeutic purposes for various diseases. Radon inhalation is applied in a thermal gallery with atmospheric radon concentrations up to 100 kBq/m3, elevated temperature up to 41 EC , and humidity close to 100%, or in the form of radon baths where Rn is emanated from water with high natural Rn activity. Frequently, a combination of both treatment procedures is applied. Evidence from empirical experience and from clinical observational studies suggests that radon has analgesic, anti inflammatory and immune-stimulating effects. Ozone is one of nature's most powerful oxidants. It increases the effectiveness of the antioxidant enzyme system, which scavenge excess free radicals in the body. It is used in water purification and sewage treatment and is now being applied medically to treat many diseases from wounds and colitis to cancer, stroke and AIDS. According to the dosage and concentration range, medical ozone is a pharmaceutical agent that exerts specific properties and a well-defined range of efficacy. This paper describes the medical application of environmental gases: radon and ozone

  2. Industrial gases

    International Nuclear Information System (INIS)

    Hunter, D.; Jackson, D.; Coeyman, M.

    1993-01-01

    Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements

  3. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  4. A composition for protection the stylobate in high-rise construction from the harmful effects of car exhaust gases

    Science.gov (United States)

    Sokolova, Irina

    2018-03-01

    In large cities, high-rise buildings are usually located along highways with heavy traffic. The study was carried out with the aim of creating a material for protection the stylobate of a high-rise building from the harmful effects of car exhaust gases. A polymer-silicate composition based on schungite and schungisite components is proposed. The composition has the properties of a wall material resistant to the corrosive environment of car exhaust gases. The results of the composition studies are presented. The possibility of increase the durability of exterior slabs for stylobate walls of high-rise buildings is substantiated, provided the proposed material is applied.

  5. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  6. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  7. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  8. Non-Linear MDT Drift Gases like Ar/CO2

    CERN Document Server

    Aleksa, Martin

    1998-01-01

    Detailed measurements and simulations have been performed, investigating the properties of Ar/CO2 mixtures as a MDT drift gas. This note presents these measurements and compares them to other drift gases that have been simulated using GARFIELD, HEED and MAGBOLTZ.This note also describes systematic errors to be considered in the operation of precision drift chambers using such gases. In particular we analyze effects of background rate variations, gas-density changes, variations of the gas composition, autocalibration, magnetic field differences and non-concentricity of the wire. Their impact on the reconstructed muon momentum resolution was simulated with DICE/ATRECON.The different properties of linear and non-linear drift gases and their relative advantages and disadvantages are discussed in detail.

  9. Emissions of exhaust gases and health of the person

    Science.gov (United States)

    Germanova, Tatiana; Kernozhitskaya, Anna

    2017-10-01

    The auto-road complex brings the considerable contribution to pollution and adverse change of environment. Influence of exhaust gases of cars is at the bottom of occurrence and developments of various forms of diseases. Every townsman feels the negative influence rendered by motor transport on himself. The modern city dweller is so accustomed to the smell of exhaust gases that he does not even notice it at all, continues to breathe a poisonous mixture, while neither the car nor the road can be isolated from the habitats of people. The higher the population density, the higher the need for motor transport. The health effects of emissions of exhaust gases and vapors, including regulated and unregulated pollutants, are discussed in this article.

  10. Quantum statistics of ideal gases in confined space

    OpenAIRE

    Dai, Wu-Sheng; Xie, Mi

    2002-01-01

    In this paper, the effects of boundary and connectivity on ideal gases in two-dimensional confined space and three-dimensional tubes are discussed in detail based on the analytical result. The implication of such effects on the mesoscopic system is also revealed.

  11. Quantum statistics of ideal gases in confined space

    International Nuclear Information System (INIS)

    Dai Wusheng; Xie Mi

    2003-01-01

    In this Letter, the effects of boundary and connectivity on ideal gases in two-dimensional confined space and three-dimensional tubes are discussed in detail based on the analytical result. The implication of such effects on the mesoscopic system is also revealed

  12. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  13. Effects of mineral matters on evolution of sulfur-containing gases in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-07-01

    The evolution of sulfur-containing gases were investigated using two Chinese coals with their de-ash and de-pyrite forms in pyrolysis and hydropyrolysis. Mineral matter can not only return H{sub 2}S produced in pyrolysis and hydropyrolysis, but also catalyse hydrodesulfurization and reduce COS formation. Secondary reactions markedly influence COS formation. Mineral matter can reduce CH{sub 3}SH formation, and pyrite shows positive effects on CH{sub 3}SH formation. 7 refs., 6 figs., 1 tab.

  14. The Effects of General and Epidural Anaesthesia in Maternal’s Stress Hormones and Blood Gases in Elective Cesarean Section

    Directory of Open Access Journals (Sweden)

    Meral EZBERCI

    2005-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of general and epidural anaesthesia in maternal’s stress hormones and blood gases in elective cesarean section.\tMATERIALS-METHODS: 50 patients in ASA II (American Society of Anesthesiology class who would undergo elective cesarean section in University of Kahramanmaras Sutcuimam, Department of Anaesthesiology and Reanimation included in the study and randomized into two equal groups (General anaesthesia: Group G and Epidural anaesthesia: Group E. In both groups, maternal stress hormones (TSH, cortisol, and insulin and blood gases were studied. All patients received famotidine and granisetron iv 30 min before operations in premedication room. In the general anaesthesia group; aritmal, propofol, and succinylcholine was used for induction and muscle relaxation. Following the induction, positive pressure ventilation of the lungs was started immediately using a 50% N2O + O2 mixture. After delivery of the baby, anaesthesia and muscle relaxation was maintained by 50% N2O +O2, 0,5-1% MAC isoflurane, and cisatracurium. In the epidural anaesthesia group; epidural anaesthesia was performed with 0,375 % bupivacaine. The epidural needle inserted through L2-3 or L3-4 interspace. After achieving T4-5 neural blockade, the operation was started. In general anaesthesia group; blood samples for maternal stres hormones were taken before induction and after delivery of the baby. In epidural anaesthesia group; blood samples for maternal stres hormones were taken catheter placement and after delivery of the baby. Blood samples for maternal blood gases were taken after the delivery of the baby.\tRESULTS: In both groups; there were statistically significant decrease in maternal TSH and insulin and there were no statistically significant changes in maternal cortisol. In maternal blood gases analyses, only PO2 and SO2 changes were statistically significant between two groups.\tCONCLUSION: With these results

  15. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    Villanueva Z, Loreto

    1998-01-01

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S O x and N O x , respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  16. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Directory of Open Access Journals (Sweden)

    Travis J. Schuyler

    2017-10-01

    Full Text Available The emission of greenhouse gases (GHGs has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1 micro aerial vehicles (MAVs; (2 vertical take-off and landing (VTOL; and, (3 low-altitude short endurance (LASE systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL, which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change.

  17. Adsorption Properties of Typical Lung Cancer Breath Gases on Ni-SWCNTs through Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Qianqian Wan

    2017-01-01

    Full Text Available A lot of useful information is contained in the human breath gases, which makes it an effective way to diagnose diseases by detecting the typical breath gases. This work investigated the adsorption of typical lung cancer breath gases: benzene, styrene, isoprene, and 1-hexene onto the surface of intrinsic and Ni-doped single wall carbon nanotubes through density functional theory. Calculation results show that the typical lung cancer breath gases adsorb on intrinsic single wall carbon nanotubes surface by weak physisorption. Besides, the density of states changes little before and after typical lung cancer breath gases adsorption. Compared with single wall carbon nanotubes adsorption, single Ni atom doping significantly improves its adsorption properties to typical lung cancer breath gases by decreasing adsorption distance and increasing adsorption energy and charge transfer. The density of states presents different degrees of variation during the typical lung cancer breath gases adsorption, resulting in the specific change of conductivity of gas sensing material. Based on the different adsorption properties of Ni-SWCNTs to typical lung cancer breath gases, it provides an effective way to build a portable noninvasive portable device used to evaluate and diagnose lung cancer at early stage in time.

  18. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    1993-01-01

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  19. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  20. [Prospects for Application of Gases and Gas Hydrates to Cryopreservation].

    Science.gov (United States)

    Shishova, N V; Fesenko, E E

    2015-01-01

    In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.

  1. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  2. MEDICION DE LA CAPACIDAD DE CAPTURA DE CARBONO EN BOSQUE DE CHILE Y PROMOCION EN EL MERCADO MUNDIAL DE CARBONO

    OpenAIRE

    Urrutia Reyes, Jorge

    2013-01-01

    La acumulación de gases efecto invernadero (GEI) en la atmósfera por acción antrópica, constituye una amenaza al clima global, aspecto sobre el cual existe consenso mundial tanto científico como político. Esto ha generado una alerta internacional por sus potenciales efectos catastróficas sobre los ecosistemas terrestres y po rende a la humanidad. Tal preocupacion llevó a las Naciones Unidas a crear en 1988 el Paner Intergubernamenatl sobre Cambio Climático (IPCC)compuesto por cerca de 2500 ci...

  3. Estimación del potencial de energías renovables en el estado de Sonora

    OpenAIRE

    Jorge Luis Taddei Bringas; María de los Ángeles Navarrete Hinojosa; Pablo Daniel Taddei Arriola; Rafael Cabanillas López.

    2016-01-01

    La etapa de uso de combustibles fósiles está llegando a su fin, debido principalmente a la escasez y problemas de contaminación que originan. En la actualidad existe una marcada tendencia en aprovechar las fuentes renovables de energía, por su bajo impacto ambiental y menor emisión de gases de efecto invernadero (GEI), lo cual contribuye a independizar las políticas energéticas locales de las del mercado global, basadas en la supremacía petrolera. Para obtener el mayor provecho de las energía...

  4. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  5. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  6. Noble gases as cardioprotectants - translatability and mechanism

    NARCIS (Netherlands)

    Smit, Kirsten F.; Weber, Nina C.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before,

  7. Change in the atmospheric concentration of greenhouse gases

    International Nuclear Information System (INIS)

    GARREC, Jean-Pierre

    2000-01-01

    With the constant increase in industrial and agricultural activities since the beginning of the 20. Century, human societies have altered the chemical composition of the atmosphere both in their immediate vicinity and further afar. The most preoccupying problem today is the increase in the so-called greenhouse gases (CO 2 , CH 4 , N 2 O, CFC, O 3 ). Indeed, these pollutant gases generally have long life cycles and consequently have for the first time produced a change in the composition of the atmosphere on a global scale inducing deferred effects such as a likely change in the earth's climate. (author)

  8. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    International Nuclear Information System (INIS)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-01-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO 2 and CH 4 . In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 o C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH 4 . (author)

  9. Generic environmental impact statement in support of rulemaking on radiological criteria for license termination of NRC-licensed nuclear facilities. Final report, appendices A and B

    International Nuclear Information System (INIS)

    1997-07-01

    The action being considered in this Final Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission''s (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC''s responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the final GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological criteria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as an objective of decommissioning ALARA, reduction to preexisting background, the radiological criterion for unrestricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and alternative analysis for special site-specific situations and groundwater cleanup. In its analyses, the final GEIS includes consideration of comments made on the draft GEIS during the public comment period

  10. Generic environmental impact statement in support of rulemaking on radiological criteria for license termination of NRC-licensed nuclear facilities. Final report, main report

    International Nuclear Information System (INIS)

    1997-07-01

    The action being considered in this Final Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the final GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological criteria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as an objective of decommissioning ALARA, reduction to preexisting background, the radiological criterion for unrestricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and alternative analysis for special site specific situations, and groundwater cleanup. In its analyses, the final GEIS includes consideration of comments made on the draft GEIS during the public comment period

  11. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.

    Science.gov (United States)

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Caceres, Ana I; Escalera, Jasmine; Jordt, Sven-Eric

    2009-04-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca(2+) imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca(2+) influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.

  12. Gases and carbon in metals - thermodynamics, kinetics, and properties. Pt. 11

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Fromm, E.; Hoerz, G.

    1980-01-01

    This issue is part of a series of data on Gases and Carbon in Metals which supplements the data compilation in the book Gase and Kohlenstoff in Metallen (Gases and Carbon in Metals), edited by E.Fromm and E.Gebhardt, Springer-Verlag, Berlin 1976. The present survey includes results from papers published after the copy deadline and recommends critically selected data. Furthermore it comprises a bibliography of relevant literature. For each element the information is given in two parts. In a first section data are listed and in a second section the relevant literature is compiled. For each element, firstly data on binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility, solubility limit, dissociation pressure of compounds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas absorption and gas desorption kinetics, compound formation kinetics, precipitation kinetics, and property changes. (orig./GE)

  13. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    International Nuclear Information System (INIS)

    Pacheco, M; Valdivia, R; Pacheco, J; Rivera, C; Alva, E; Santana, A; Huertas, J; Lefort, B; Estrada, N

    2012-01-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  14. Reale Gase, tiefe Temperaturen

    Science.gov (United States)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  15. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  16. Use of reactive gases with broad-beam radio frequency ion sources for industrial applications

    International Nuclear Information System (INIS)

    Schneider, St.; Jolly, T.W.; Kohlstedt, H.; Waser, R.

    2004-01-01

    Broad-beam ion sources are used for a number of important industrial etching and deposition applications, and the use of inductively coupled plasmas has greatly increased the feasibility of using beams of reactive gases, especially of chlorine and oxygen, but also of CO, CO 2 , CF 4 , CHF 3 , SF 6 , etc. In order to gain more understanding of the factors that affect the composition of beams of these gases, we have used a Hiden energy-dispersive quadrupole mass spectrometer to analyze the flux of ions and energetic particles produced by an Oxford Instruments 15 cm rf ion source. For all of the above gases, we have analyzed the effects of changing the operating conditions on the composition of the ion beam, and the fractional production of multiply charged ions; on the plasma potential (and the consequential divergence of the ion beam) and on the spread in energy of the ion beam. We discuss how these factors influence the correct use of the ion source in etching applications with these gases. It is important that the design of the ion source should be optimized for the process gases that are used. The source was originally optimized for use on argon. We discuss the effect of the design on the source's performance with the different gases, and we consider whether design changes would be appropriate for optimum performance on different gases

  17. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas

    International Nuclear Information System (INIS)

    Esarey, E.; Sprangle, P.; Krall, J.; Ting, A.

    1997-01-01

    The propagation of intense laser pulses in gases and plasmas is relevant to a wide range of applications, including laser-driven accelerators, laser-plasma channeling, harmonic generation, supercontinuum generation, X-ray lasers, and laser-fusion schemes. Here, several features of intense, short-pulse (≤1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self-consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized

  18. Functional renormalization and ultracold quantum gases

    International Nuclear Information System (INIS)

    Floerchinger, Stefan

    2010-01-01

    Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)

  19. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  20. Properties of quantum self-gravitating gases

    International Nuclear Information System (INIS)

    Rumyantseva, E.N.

    1981-01-01

    Ways of development of the quantum field theory in the general relativity theory are under consideration. A direction, where consideration of quantum fields in strong nonstatic gravitational fields leads to such effects as particle production, is found out. Authors managed to explain properties of quantum self-gravitating gases on the base of an expansion the fugacity in power series for bose- and fermi gases. Expressions for fluctuations in statistical models of the Fridmann universe are presented. The spectrum density of relict neutrinos in Fridmann models is calculated. A characteristic low boundary of the neutrino energy spectrum constitutes 1 MeV. A number of neutrinos with such energies practically is equal to zero. A great number of neutrinos has energies 0 . It is precisely these neurinos, which are responsible for the closed state of the universe according to the built up model

  1. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  2. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    Science.gov (United States)

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  3. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  4. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    Science.gov (United States)

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  5. A route to ultrathin quantum gases at polar perovskite heterointerfaces

    KAUST Repository

    Nazir, Safdar

    2012-09-07

    Oxide interfaces are attracting interest in recent years due to special functionalities of two-dimensional quantum gases. However, with typical thicknesses of at least 10-12 Å the gases still extend considerably in the third dimension, which compromises the size of quantum effects. To overcome this limitation, we propose incorporation of highly electronegative cations, such as Ag. By ab initio calculations, we demonstrate the formation of a mobile two-dimensional hole gas in AgNbO 3/SrTiO 3 that is confined to an ultrathin slab of only 5.6 Å thickness. Electronegative cations therefore are a promising way to enhance the quantum nature of hole gases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gases in uranium exploration

    International Nuclear Information System (INIS)

    Wright, R.J.; Pacer, J.C.

    1981-01-01

    Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)

  7. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  8. Sputtering gases and pressure effects on the microstructure, magnetic properties and recording performance of TbFeCo films

    International Nuclear Information System (INIS)

    Murakami, Motoyoshi; Birukawa, Masahiro

    2008-01-01

    The MsHc value is considered to be a key factor in high-density recording, and controlling the microstructure on the magnetic underlayer was found to be an effective way of increasing the MsHc of the amorphous TbFeCo magneto-optical (MO) medium. In this paper, we investigate the TbFeCo film's magnetic properties and the effects on the microcolumnar structure, which depends on the sputtering conditions of using various sputtering gases including Ar, Kr, and Xe, and the recording characteristics of TbFeCo memory layers. With heavy sputtering gases such as Kr or Xe, the columnar structure can be prepared in a TbFeCo film at a pressure lower than 1.0 Pa. The columnar structure of a recording layer can be effectively formed thanks to the effects of the magnetic underlayer, which has a fine surface even in the sputtering process in which Xe gas is used. The above applies to the sputtering process in which Ar gas is used. Also, when Xe gas is used in the sputtering process, coercivity Hc is increased through the formation of a well-segregated microcolumnar structure built on domain wall pinning sites, and we obtain a large MsHc and a high squareness ratio of the Kerr-hysteresis loop. Our results indicate that processing a TbFeCo film with heavy sputtering gases is suitable for tiny mark stability because the temperature gradient of Hc is increased. The objective of the low-pressure sputtering process using Xe gas to produce the columnar structure is to achieve ultra-high-density recording with tiny mark stability in the TbFeCo medium. This has been confirmed with magnetic force microscope (MFM) images of stable tiny marks recorded on TbFeCo film

  9. Fluorinated Greenhouse Gases in Photovoltaic Module Manufacturing: Potential Emissions and Abatement Strategies

    NARCIS (Netherlands)

    Alsema, E.A.|info:eu-repo/dai/nl/073416258; de Wild-Schoten, M.J.; Fthenakis, V.M.; Agostinelli, G.; Dekkers, H.; Roth, K.; Kinzig, V.

    2007-01-01

    Some fluorinated gases (F-gases) which are used, or considered to be used, in crystalline silicon photovoltaic solar cell and film silicon module manufacturing have a very high global warming effect. CF4, C2F6, SF6 and NF3 have global warming potentials 7390, 12200, 22800 and 17200 times higher than

  10. Effects of General and Epidural Anaesthesia in Newborn’s Stres Hormones, Blood Gases, and Apgar Scores in Elective Cesarean Section

    Directory of Open Access Journals (Sweden)

    Meral Ezberci

    2005-12-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of general and epidural anaesthesia in newborn’s stres hormones, blood gases, and Apgar scores in elective cesarean section. MATERIALS-METHODS: 50 patients in ASA II (American Society of Anesthesiology class who would undergo elective cesarean section in University of Kahramanmaras Sutcuimam, Department of Anaesthesiology and Reanimation included in the study and randomized into two equal groups (General anaesthesia: Group G and Epidural anaesthesia: Group E. In both groups, newborn stres hormones (TSH, cortisol, and insulin, blood gases, and Apgar scores were studued. All patients received famotidine and granisetron iv 30 min before operations in premedication room. In the general anaesthesia group; aritmal, propofol, and succinylcholine was used for induction and muscle relaxation. Following the induction, positive pressure ventilation of the lungs was started immediately using a 50% N2O + O2 mixture. After delivery of the baby, anaesthesia and muscle relaxation was maintained by 50% N2O +O2, 0,5-1% MAC isoflurane, and cisatracurium. In the epidural anaesthesia group; epidural anaesthesia was performed with 0,375% bupivacaine. The epidural needle inserted through L2-3 or L3-4 interspace. After achieving T4-5 neural blockade, the operation was started. Blood samples for newborn stres hormones and blood gases were taken from umblical vein. The Apgar scores were recorded at 1 min and again at 5 min after the delivery by same person. RESULTS: There were no differences in newborn stress hormones between two groups. In newborn blood gases analyses, only SO2 changes were statistically significant between two groups. There were no differences in newborn Apgar scores between two groups. CONCLUSION: With these results, we concluded that each of the general and epidural anaesthesia techniques have similar effects on newborn blood gases, stress hormones and Apgar scores and can be acceptable

  11. Generic environmental impact statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Main report; Draft report for comment: Volume 1

    International Nuclear Information System (INIS)

    1994-08-01

    The action being considered in this draft Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, preliminary recommendations were provided. Contained in the GEIS are recommendations related to the definition of decommissioning, the scope of rulemaking, the radiological criteria, restrictions on use, citizen participation, use of the GEIS in site-specific cases, and minimization of contamination

  12. Generic environmental impact statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Appendices; Draft report for comment -- Volume 2

    International Nuclear Information System (INIS)

    1994-08-01

    The action being considered in this draft Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, preliminary recommendations were provided. Contained in the GEIS are recommendations related to the definition of decommissioning, the scope of rulemaking, the radiological criteria, restrictions on use, citizen participation, use of the GEIS in site-specific cases, and minimization of contamination

  13. Kinetic theory of nonideal gases and nonideal plasmas

    CERN Document Server

    Klimontovich, Yu L

    2013-01-01

    Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor

  14. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-07-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO{sub 2} and CH{sub 4}. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 {sup o}C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH{sub 4}. (author)

  15. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  16. Determining air distribution during outbursts of gases and rocks

    Energy Technology Data Exchange (ETDEWEB)

    Struminski, A; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses use of the KPW-1 iterative and autocorrelation method developed by A. Struminski for forecasting effects of rock bursts on ventilation systems of underground coal mines with increased content of methane or carbon dioxide in coal seams and adjacent rock strata. The method is used for prediction of air flow changes caused by a rock burst accompanied by violent outburst of gases. Directions of air flow, flow rate and concentration of gases emitted from surrounding strata to mine workings are predicted. On the basis of this prediction concentration of gases from a coal outburst is determined for any point in a ventilation network. The prediction method is used for assessing hazards for coal mines during and after a rock burst. Use of the method is explained on the example of the Thorez and Walbrzych coal mines. Computer programs developed for ODRA and IBM/XT computers are discussed. 6 refs.

  17. Theoretical Assessment of Compressibility Factor of Gases by Using Second Virial Coefficient

    Science.gov (United States)

    Mamedov, Bahtiyar A.; Somuncu, Elif; Askerov, Iskender M.

    2018-01-01

    We present a new analytical approximation for determining the compressibility factor of real gases at various temperature values. This algorithm is suitable for the accurate evaluation of the compressibility factor using the second virial coefficient with a Lennard-Jones (12-6) potential. Numerical examples are presented for the gases H2, N2, He, CO2, CH4 and air, and the results are compared with other studies in the literature. Our results showed good agreement with the data in the literature. The consistency of the results demonstrates the effectiveness of our analytical approximation for real gases.

  18. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Science.gov (United States)

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  19. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO 2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO 2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO 2 gases, is likely to become the determining factor. (UK)

  20. The Effect of Firearm Muzzle Gases on the Backspatter of Blood

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.C.; Laber, T.L.; Epstein, B.P.; Zamzow, D.S.; Baldwin, D.P.

    2010-05-12

    Injuries caused by gunshots can produce what bloodstain pattern analysts know as 'backspatter.' Observations about the presence or absence of backspatter on an individual may be used in court as evidence of guilt or innocence. The discharge of three firearms (.22 caliber revolver, .38 caliber revolver, and .308 caliber rifle) and the resulting impact of bullets on a blood source were recorded using high-speed digital video imaging. Blood droplets, firearm muzzle gases, and ballistic shock waves were visualized using standard reflected light and shadowgraphy imaging techniques. A significant interaction between air currents, muzzle gases, and particulate material emanating from the firearms upon discharge with backspattered blood was observed. Blood droplets, initially spattered back toward the firearm and the shooter, were observed to change direction under the influence of firearm-induced air currents and were blown forward toward and beyond their original source location. Implications for experts testifying in court and for bloodstain pattern instructors are discussed.

  1. The effect of firearm muzzle gases on the backspatter of blood.

    Science.gov (United States)

    Taylor, Michael C; Laber, Terry L; Epstein, Barton P; Zamzow, Dan S; Baldwin, David P

    2011-09-01

    Injuries caused by gunshots can produce what bloodstain pattern analysts know as "backspatter." Observations about the presence or absence of backspatter on an individual may be used in court as evidence of guilt or innocence. The discharge of three firearms (.22 caliber revolver, .38 caliber revolver, and .308 caliber rifle) and the resulting impact of bullets on a blood source were recorded using high-speed digital video imaging. Blood droplets, firearm muzzle gases, and ballistic shock waves were visualized using standard reflected light and shadowgraphy imaging techniques. A significant interaction between air currents, muzzle gases, and particulate material emanating from the firearms upon discharge with backspattered blood was observed. Blood droplets, initially spattered back toward the firearm and the shooter, were observed to change direction under the influence of firearm-induced air currents and were blown forward toward and beyond their original source location. Implications for experts testifying in court and for bloodstain pattern instructors are discussed.

  2. Profile of student’s understanding in Kinetic Theory of Gases

    Science.gov (United States)

    Putri, E. E. R.; Sukarmin; Cari

    2018-04-01

    Students in eleven grade had a different style for answering the physics problems. They could do anything to solve the problem. The way they thought and revealed it into the answer in many styles could be used as a data to know their conception. One of the sub-chapter in physics was the effective velocity of gases. It included in Kinetic Theory of Gases. It was one of the most difficult scientific theories to accept. This research aimed to identify student’s understanding in effective velocity of gases problem. The research was qualitative research. It was taken place at MAN Yogyakarta I in semester two on grade eleven. The obtained datas were collected by test sheet that contained of essay form. The respondents were all of the students in XI MIA 3. The data was analyzed by quantitative analysis using rubric of scoring in essay test and it contained of two problems. The results were the students had resolved the test and it was divided into three categories which are high 10,42%, medium 29,17%, and low 50,00%.

  3. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  4. BIOSIGNATURE GASES IN H{sub 2}-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Seager, S.; Bains, W.; Hu, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H{sub 2}-dominated atmospheres. We study biosignature gases on exoplanets with thin H{sub 2} atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H{sub 2} atmospheres. In atmospheres with high CO{sub 2} levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H{sub 2} atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH{sub 3}Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH{sub 3} and N{sub 2}O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH{sub 4} and H{sub 2}S, are not effective signs of life in an H{sub 2}-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H{sub 2}-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission

  5. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  6. Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy

    Directory of Open Access Journals (Sweden)

    Sandra Lage

    2018-03-01

    Full Text Available Algae are without doubt the most productive photosynthetic organisms on Earth; they are highly efficient in converting CO2 and nutrients into biomass. These abilities can be exploited by culturing microalgae from wastewater and flue gases for effective wastewater reclamation. Algae are known to remove nitrogen and phosphorus as well as several organic contaminants including pharmaceuticals from wastewater. Biomass production can even be enhanced by the addition of CO2 originating from flue gases. The algal biomass can then be used as a raw material to produce bioenergy; depending on its composition, various types of biofuels such as biodiesel, biogas, bioethanol, biobutanol or biohydrogen can be obtained. However, algal biomass generated in wastewater and flue gases also contains contaminants which, if not degraded, will end up in the ashes. In this review, the current knowledge on algal biomass production in wastewater and flue gases is summarized; special focus is given to the algal capacity to remove contaminants from wastewater and flue gases, and the consequences when converting this biomass into different types of biofuels.

  7. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  8. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  9. Impact Delivery of Reduced Greenhouse Gases on Early Mars

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K. J.; Barlow, N. G.

    2017-12-01

    Reducing greenhouse gases are the latest trend in finding solutions to the early Mars climate dilemma. In thick CO2 atmospheres with modest concentrations of H2 and/or CH4, collision induced absorptions can reduce the outgoing long wave radiation enough to provide a significant greenhouse effect. To raise surface temperatures significantly by this process, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Volcanism, serpentinization, and impacts are possible sources for reduced gases. Here we investigate the delivery of such gases by impact degassing from comets and asteroids. We use a time-marching stochastic impactor model that reproduces the observed crater size frequency distribution of Noachian surfaces. Following each impact, reduced gases are added to the atmosphere from a production function based on gas equilibrium calculations for several classes of meteorites and comets at typical post-impact temperatures. Escape and photochemistry then remove the reduced greenhouse gases continuously in time throughout each simulation. We then conduct an ensemble of simulations with this simple model varying the surface pressure, impact history, reduced gas production and escape functions, and mix of impactor types, to determine if this could be a potentially important part of the early Mars story. Our goal is to determine the duration of impact events that elevate reduced gas concentrations to significant levels and the total time of such events throughout the Noachian. Our initial simulations indicate that large impactors can raise H2 concentrations above the 10% level - a level high enough for a very strong greenhouse effect in a 1 bar CO2 atmosphere - for millions of years, and that the total time spent at or above that level can be in the 10's of millions of years range. These are interesting results that we plan to explore more thoroughly for the meeting.

  10. Study on kinetics of description of gases and their mixtures through the interface

    International Nuclear Information System (INIS)

    Ermashkevich, V.N.; Kachalov, A.B.; Shlejfer, A.A.; Redin, Yu.A.

    1986-01-01

    The velocity of release of gases into a bubble and a cavity from liquid has been described. It is shown that at simultaneous desorption of several gases dissolved in liquid, into emerging bubble the contribution of each gas is proportional to its coefficient of solubility and is independent of concentration of these gases in liquid. For gases with solubility coefficients above 1000 kg/(m 3 xMPa), partial pressure readily reaches equilibrium. Nitric oxide dissolved in nitrogen tetroxide ranks among them. Alternatively, for gases with low solubility coefficients (for example, nitrogen in N 2 O 4 ), partial pressure in the cavity (bubble) increases slowly. An effect of any gas on the desorption rate of another gas has not been observed. The study allows to evaluate some parameters in formed cavities or in moving gaseous bubbles in multicomponent mixtures (in particular, in dissociating nitrogen tetroxide and in solutions on the basis of nitrogen tetroxide)

  11. Acidic gases (CO_2, NO_2 and SO_2) capture and dissociation on metal decorated phosphorene

    International Nuclear Information System (INIS)

    Kuang, Anlong; Kuang, Minquan; Yuan, Hongkuan; Wang, Guangzhao; Chen, Hong; Yang, Xiaolan

    2017-01-01

    Highlights: • The light metal decorated phosphorene sheets are very effective for capture of CO_2, NO_2 and SO_2 because of large adsorption energies. • The adsorption energy is obviously dependent on the amount of electrons transferred between acidic gases and metal decorated phosphorene. • Pt-decorated phosphorene can effectively catalyze the dissociation of acidic gas. - Abstract: Density functional theory is employed to investigate the adsorption and dissociation of several acidic gases (CO_2, NO_2 and SO_2) on metal (Li, Al, Ni and Pt) decorated phosphorene. The results show that light metal (Li, Al) decorated phosphorene exhibits a strong adsorption of acidic gases, i.e., the adsorption energy of CO_2 on Li decorated phosphorene is 0.376 eV which is the largest in all adsorption of CO_2 on metal decorated phosphorene and Al decorated phosphorene is most effective for capture of NO_2 and SO_2 due to large adsorption energies of 3.951 and 3.608 eV, respectively. Moreover, Li and Al light metals have stronger economic effectiveness and more friendly environment compared with the transition metals, the strong adsorption ability of acidic gases and low price suggest that Li, Al decorated phosphorene may be useful and promising for collection and filtration of exhaust gases. The reaction energy barriers of acidic gases dissociated process on Pt decorated phosphorene are relatively low and the reaction processes are significantly exothermic, indicating that the dissociation process is favorable.

  12. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-11-29

    ... Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register / Vol. 76, No. 229 / Tuesday... 98 [EPA-HQ-OAR-2011-0147; FRL-9493-9] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial errors...

  13. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-08-04

    ... Mandatory Reporting of Greenhouse Gases; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 150 / Thursday...-HQ-OAR-2011-0147; FRL-9443-1] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... provisions in the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial...

  14. Quantum Fluctuations of Vortex Lattices in Ultracold Gases

    OpenAIRE

    Kwasigroch, M. P.; Cooper, N. R.

    2012-01-01

    We discuss the effects of quantum fluctuations on the properties of vortex lattices in rapidly rotating ultracold atomic gases. We develop a variational method that goes beyond the Bogoliubov theory by including the effects of interactions between the quasiparticle excitations. These interactions are found to have significant quantitative effects on physical properties even at relatively large filling factors. We use our theory to predict the expected experimental signatures of quantum fluctu...

  15. Properties of noble gases and binary mixtures for closed Brayton Cycle applications

    International Nuclear Information System (INIS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    A review is conducted of the properties of the noble gases, helium, neon, argon, krypton and xenon, and their binary mixtures at pressures from 0.1 to 20 MPa and temperatures up to 1400 K. An extensive database of experimental measurements is compiled and used to develop semi-empirical properties correlations. The correlations accurately account for the effects of pressure and temperature on the thermodynamic and transport properties of these gases for potential uses in space (∼2 MPa and up to 1400 K) and terrestrial (∼7.0 MPa and up to 1200 K) applications of Closed Brayton Cycle (CBC). The developed correlations are based on the Chapman-Enskog kinetic theory for dilute gases, and on the application of the law of corresponding states to account for the dependence of properties on pressure. The correlations use the critical temperature and density of the gases as scaling parameters, and their predictions are compared with the compiled database. At temperatures ≥400 K and pressures ≤2 MPa in CBC space power systems, He and Ne, and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole behave essentially like a perfect gas, and the error of neglecting the effect of pressure on their compressibility factor, specific heats and transport properties is ≤1%. At a typical operating pressure of 7.0 MPa and up to 1200 K in terrestrial CBC power plants, neglecting the effect of pressure can result in ∼4% error in the properties of noble gases and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole, and as much as 20% error for pure argon. Therefore, when operating at pressures >2.0 MPa and/or using noble gases or binary mixtures with molecular weights > 40 g/mole, the present correlations should be used to accurately predict the thermodynamic and transport properties

  16. Effect of pressure on the structural properties and electronic band structure of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, U.; Olguin, D.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Cantarero, A. [Department of Materials Sciences, University of Valencia, 46000 Burjasot (Spain); Hanfland, M. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2007-01-15

    The structural properties of GaSe have been investigated up to 38 GPa by monochromatic X-ray diffraction. The onset of the phase transition from the {epsilon}-GaSe to a disordered NaCl-type structural motif is observed near 21 GPa. Using the experimentally determined lattice parameters of the layered {epsilon}-phase as input, constrained ab-initio total energy calculations were performed in order to optimize the internal structural parameters at different pressures. The results obtained for the nearest-neighbor Ga-Se distance agree with those derived from recent EXAFS measurements. In addition, information is obtained on the changes of Ga-Ga and Se-Se bond lengths which were not accessible to a direct experimental determination yet. Based on the optimized structural parameters, we report calculations of band gap changes of {epsilon}-GaSe under pressure. The optical response and electronic band structure of the metallic high-pressure phase of GaSe are discussed briefly. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. HUELLA DE CARBONO EN CADENAS PRODUCTIVAS DE CAFÉ (Coffea arabica L.) CON DIFERENTES ESTÁNDARES DE CERTIFICACIÓN EN COSTA RICA

    OpenAIRE

    SEGURA, MILENA A; ANDRADE, HERNÁN J

    2012-01-01

    Se estudió el impacto en la producción de café con diferentes estándares de certificación (producción convencional, producción orgánica -NOP y Unión Europea-, UTZ Kapeh, Comercio Justo, Rainforest Alliance y CAFE Practices) sobre la huella de carbono en Costa Rica. Las emisiones de gases de efecto invernadero (GEI) se estimaron en nueve fincas y ocho empresas procesadoras del grano. Se estimó la fijación de carbono en biomasa total, en árboles de sombra y cafetos, midiendo las plantas, emplea...

  18. Comparación de distintos escenarios de tratamiento de residuos urbanos en la ciudad de Madrid mediante la metodología de la huella de carbono

    OpenAIRE

    Montejano Nares, Elena

    2018-01-01

    El objeto del proyecto es el análisis de la huella de carbono (HC) de los distintos tratamientos de valorización y eliminación de los residuos municipales de la ciudad de Madrid, con el fin de determinar el impacto sobre el cambio climático (CC). A través de la metodología de Análisis de Ciclo de Vida (ACV) se cuantifican las emisiones de los gases de efecto invernadero (GEI) correspondientes a cada uno de los tratamientos de gestión de residuos que se realizan actualmente en el Parque Tecnol...

  19. El acuerdo de París: entre lo posible y lo necesario

    OpenAIRE

    Heras Hernández, Francisco

    2017-01-01

    El 12 de Diciembre de 2015 en el seno de Naciones Unidas 195 países adoptaron el denominado Acuerdo de París, comprometiéndose a limitar las emisiones de gases de efecto invernadero(GEI), que son el motor del cambio climático. Una vez pasadas las primeras reacciones de satisfaccióno de decepción, el desarrollo del Acuerdo suscita una serie de interrogantes: ¿Qué retos plantea a las partes firmantes? ¿Qué repercusiones tendrá en el corto y en el medio plazo? Y lo más importante: ¿Será un i...

  20. Recapitulación de la metodología y resultados de los escenarios climáticos futuros y su impacto en los recursos hídricos: el caso de la Comunidad Valenciana (España)

    OpenAIRE

    Chirivella, Vicente; Capilla, José E.

    2010-01-01

    En los últimos años la comunidad científica internacional parece haber alcanzado un consenso respecto a la existencia de un Cambio Climático debido, en parte, a la emisión de gases de efecto invernadero (GEIs). Según la mayoría de los escenarios climáticos desarrollados, este Cambio Climático, en el ámbito geográfico de la Comunidad Valenciana, se caracterizará, en las próximas décadas, por un incremento de las temperaturas, una disminución de las precipitaciones, y un aumento de ...

  1. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  2. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  3. Deviation from the Knudsen law on quantum gases

    International Nuclear Information System (INIS)

    Babac, Gulru

    2014-01-01

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases

  4. Estimación anual de la emisión de CO2 asociada a la transportación de los docentes de la ULVR

    Directory of Open Access Journals (Sweden)

    Julio Barzola

    2016-02-01

    Full Text Available La huella de carbono es un indicador de sustentabilidad que mide las emisiones de Gases de Efecto Invernadero (GEI atribuibles a un producto manufacturado, organización o individuo; es decir, mide directa e indirectamente el impacto o marca en el medio ambiente debido a las emisiones que el hombre deja durante todas sus actividades cotidianas. Este artículo determina la cantidad estimada de emisiones GEI producidos por parte de la población de docentes de la Universidad Laica VICENTE ROCAFUERTE de Guayaquil durante un año (agosto 2013-julio, 2014. Para este fin se consideró una muestra significativa con un nivel de confianza del 95%, a la cual se le aplicó una encuesta. Luego, con la información recopilada se hicieron estimaciones de la masa de CO2 equivalentes por medio de dos métodos: Conservación de la masa y el de Factores de Emisiones. Los resultados vislumbran un bajo porcentaje de error entre ambos métodos. En consecuencia, se estima que cada docente de la ULVR durante un año produce 882,94 kg de CO2 equivalentes.

  5. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  6. Detecting and Identifying Industrial Gases by a Method Based on Olfactory Machine at Different Concentrations

    OpenAIRE

    Sun, Yunlong; Luo, Dehan; Li, Hui; Zhu, Chuchu; Xu, Ou; Gholam Hosseini, Hamid

    2018-01-01

    Gas sensors have been widely reported for industrial gas detection and monitoring. However, the rapid detection and identification of industrial gases are still a challenge. In this work, we measure four typical industrial gases including CO2, CH4, NH3, and volatile organic compounds (VOCs) based on electronic nose (EN) at different concentrations. To solve the problem of effective classification and identification of different industrial gases, we propose an algorithm based on the selective ...

  7. Genotype by environment interaction in different birth seasons for weight at 240, 365 and 450 days of age in Tabapuã cattle

    Directory of Open Access Journals (Sweden)

    Severino Cavalcante de Sousa Júnior

    2012-10-01

    Full Text Available The objective of this study was to evaluate the effect of genotype by environment interaction (GEI on the weight of Tabapuã cattle at 240 (W240, 365 (W365 and 450 (W450 days of age. In total, 35,732 records of 8,458 Tabapuã animals which were born in the state of Bahia, Brazil, from 1975 to 2001, from 167 sires and 3,707 dams, were used. Two birth seasons were tested as for the environment effect: the dry (D and rainy (R ones. The covariance components were obtained by a multiple-trait analysis using Bayesian inference, in which each trait was considered as being different in each season. Covariance components were estimated by software gibbs2f90. As for W240, the model was comprised of contemporary groups and cow age (in classes as fixed effects; animal and maternal genetic additive, maternal permanent environmental and residual were considered as random effects. Concerning W365 and W450, the model included only the contemporary aged cow groups as fixed effects and the genetic additive and residual effects of the animal as the random ones. The GEI was assessed considering the genetic correlation, in which values below 0.80 indicated the presence of GEI. Regarding W365 and W450, the GEI was found in both seasons. As for post-weaning weight (W240, the effect of such interaction was not observed.

  8. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  9. 40 CFR 89.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... determined to calibration gas tolerances by chromatographic analysis of total hydrocarbons plus impurities or.... (2) Mixtures of gases having the following chemical compositions shall be available: (i) C3H8 and... check gases shall contain propane with 350 ppmC ±75 ppmC hydrocarbon. The three oxygen interference...

  10. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  11. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  12. Use of gases in dairy manufacturing: A review.

    Science.gov (United States)

    Adhikari, Bhaskar Mani; Truong, Tuyen; Bansal, Nidhi; Bhandari, Bhesh

    2017-06-13

    Use of gases (air, carbon dioxide and nitrogen) has been practiced in the manufacture of dairy products (i.e., ice cream, whipped cream and butter) to improve their texture, mouthfeel and shelf-life extension. Many attempts have also been made to incorporate other gases such as hydrogen, nitrous oxide, argon, xenon, and helium into the dairy systems for various product functionalities such as whipping, foaming, texture, aroma enhancement, and therapeutic properties. The gases can be dissolved in aqueous and fat phases or remain in the form of bubbles stabilized by protein or fat particles. The gas addition or infusion processes are typically simple and have been used commercially. This review focuses on the use of various gases in relation to their individually physical properties along with their specific roles in manufacturing and controlling quality of dairy products. It also recaps on how gases are included in the dairy systems. The information is important in understanding of addition of specific gas(es) into food systems, particularly dairy products, that potentially provide intervention opportunities for modifying and/or creating innovative food structures and functionalities.

  13. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  14. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  15. Quantifying non-ergodic dynamics of force-free granular gases.

    Science.gov (United States)

    Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf

    2015-09-14

    Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.

  16. Minimum requirements on implementation of the greenhouse gases ordinance. EU ordinance on fluorinated greenhouse gases; Mindestanforderungen zur Implementierung der F-Gase-Verordnung. Die EG-Verordnung zu fluorierten Treibhausgasen

    Energy Technology Data Exchange (ETDEWEB)

    Preisegger, E. [Solvay Fluor GmbH, Hannover (Germany). Environmental and Public Affairs Fluorochemicals

    2008-04-15

    On 4 July 2006, the EU ordinance 842/2006 on fluorinated greenhouse gases came into force. Since 4 July 2007, it has been in effect with the exception of article 9 and appendix II both of which had been effective since 4 July 2006. However, some articles of the ordinance necessitate the definition of minimum requirements resp. of form and contents by the EU commission. The minimum requirements for training and certification will provide a basis for national implementation of these measures in the EU member states. (orig.)

  17. Plant for removing radioactive rare gases

    International Nuclear Information System (INIS)

    An, Buzai; Kanazawa, Toshio

    1977-01-01

    The outline of the pilot plant to remove and recover radioactive rare gases generated from nuclear power plants, reprocessing installations for nuclear fuel, nuclear research installations, etc. is described below. Among the studies of various processes such as liquefaction and distillation, absorption into solvents, active carbon adsorption, diaphragm method, etc., the liquefaction and distillation process by rectification at low temperature has been positively developed. It is in the stage of practical application for removing rare gases in waste gases from reprocessing and nuclear power plants. This is the process with high safety and excellent rare gas removing capability. Further research and development have been also made for selective adsorption and desorption method at low temperature which is very efficient as there is no release of long life nuclides such as Krypton-85. Rare gases recovered by the above mentioned removal systems must be stored safely for a long time as their half lives are long and specific radioactivities are high. The study has been made continuously on the storage methods including adsorption in cylinders and remotely automatically sealing storing system. (Kobatake, H.)

  18. Short-term effects of humidification devices on respiratory pattern and arterial blood gases during noninvasive ventilation.

    Science.gov (United States)

    Lellouche, François; Pignataro, Claudia; Maggiore, Salvatore Maurizio; Girou, Emmanuelle; Deye, Nicolas; Taillé, Solenne; Fischler, Marc; Brochard, Laurent

    2012-11-01

    The impact of humidification devices on ventilatory and arterial blood gases parameters during noninvasive ventilation (NIV) remains controversial. The aim of the study was to compare the short-term impact of heat and moisture exchangers (HMEs) and heated humidifiers (HHs) during NIV for either hypercapnic or hypoxemic acute respiratory failure. Consecutive subjects receiving NIV were successively treated with HME and HH in randomized order for 30 min each. At the end of each period, arterial blood gases were measured and ventilatory parameters were recorded. Eighty-one subjects were enrolled, of whom 52 were hypercapnic (with or without acidosis) and 29 hypoxemic. Minute ventilation was greater with the HME, in comparison with the HH (15 [12-18] vs 12 [10-16] median [interquartile range], P < .001), while P(aCO(2)) was increased when using HME, indicating a dead space effect. This effect was observed in all subjects, but was more pronounced in hypercapnic subjects (P(aCO(2)) 62 ± 17 mm Hg with HME vs 57 ± 14 with HH, P < .001). In a subgroup of 19 subjects with respiratory acidosis, alveolar hypoventilation improved only with the HH. The amplitude of the dead space impact was a function of the degree of hypercapnia. Use of an HME decreased CO(2) elimination during NIV, despite increased minute ventilation, especially in hypercapnic subjects.

  19. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  20. Emissions of greenhouse gases in the United States 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  1. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao

    2014-01-01

    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  2. Shale gases, a windfall for France?

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-11-01

    After having recalled the definition and origin of shale gases, the different non conventional gases and their exploitation techniques (hydraulic fracturing and horizontal drilling) this report examines whether these gases are an opportunity for France. Some characteristics and data of the fossil and gas markets are presented and commented: world primary energy consumption, proved reserves of non conventional gases and their locations, European regions which may possess reserves of shale gases and coal-bed methane, origins of gas imports in France. The second part addresses shale gas deposits and their exploitation: discussion of the influence of the various rock parameters, evolution of production. The third part discusses the exploitation techniques and specific drilling tools. The issue of exploitation safety and security is addressed as well as the associated controversies: about the pollution of underground waters, about the fact that deep drillings result in pollution, about the risks associated with hydraulic fracturing and injections of chemical products, about the hold on ground and site degradation, about water consumption, about pollution due to gas pipeline leakage, about seismic risk, about noise drawbacks, about risks for health, about exploration and production authorization and license, and about air pollution and climate. The last part addresses the French situation and its future: status of the energy bill, recommendations made by a previous government, cancellation of authorizations, etc. Other information are provided in appendix about non conventional hydrocarbons, about shale gas exploitation in the USA, and about the Lacq gas

  3. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  4. Effective atomic numbers, electron densities, and tissue equivalence of some gases and mixtures for dosimetry of radiation detectors

    Directory of Open Access Journals (Sweden)

    Singh Vishwanath P.

    2012-01-01

    Full Text Available Total mass attenuation coefficients, µm, effective atomic number, Zeff, and effective electron density, Neff, of different gases - carbon dioxide, methane, acetylene, propane, butane, and pentane used in radiation detectors, have been calculated for the photon energy of 1 keV to 100 GeV. Each gas has constant Zeff values between 0.10 to 10 MeV photon energies; however, these values are way far away from ICRU tissue. Carbon dioxide gas shows the closest tissue equivalence in the entire photon energy spectrum. Relative tissue equivalences of the mixtures of gases with respect to ICRU tissue are in the range of 0.998-1.041 for air, argon (4.5% + methane (95.5%, argon (0.5% + carbon dioxide (99.5%, and nitrogen (5% + methane (7% + carbon dioxide (88%. The gas composition of xenon (0.5% + carbon dioxide (99.5% shows 1.605 times higher tissue equivalence compared to the ICRU tissue. The investigated photon interaction parameters are useful for exposure and energy absorption buildup factors calculation and design, and fabrication of gaseous detectors for ambient radiation measurement by the Geiger-Muller detector, ionization chambers and proportional counters.

  5. Holographic detection of hydrocarbon gases and other volatile organic compounds.

    Science.gov (United States)

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R

    2010-10-05

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  6. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  7. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  8. Solubility of gases in water at high temperature

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, R.J.; Japas, M.L.

    1981-01-01

    In the primary circuits of the PWR, it is usual to find apolar gases such as the noble gases like, nitrogen, hydrogen (deuterium) and oxygen. These gases enter into the circuit partly due to failures in the fuel elements, accidental entries of air into the system and corrosion processes and radiolisis in the coolant media. For the operation of several auxiliary systems in the primary circuit, it is important to know the solubility of these gases in the flux of the circuit and the evaluation of physicochemical processes that take place. A cell has been built that allows to carry out determinations of solubility in the range of 350 deg C and 100 Mega Pascal. Three alternative experimental techniques have been developed to determine the solubility of the gases which are compared to each other. Measures of solubility of argon in H2O and D2O have been made in a wide range of temperatures. (V.B.) [es

  9. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  10. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  11. 30 CFR 75.322 - Harmful quantities of noxious gases.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Harmful quantities of noxious gases. 75.322... quantities of noxious gases. Concentrations of noxious or poisonous gases, other than carbon dioxide, shall... Governmental Industrial Hygienists in “Threshold Limit Values for Substance in Workroom Air” (1972). Detectors...

  12. Fuel gases in Algeria

    International Nuclear Information System (INIS)

    Arachiche, B.; Elandaloussi, H.

    1996-01-01

    For a country like Algeria, fuel gases represent an important economical challenge. To answer the increasing energy demand in the transportation sector, the use of fuel gases allows to preserve the petroleum reserves and to create specific industrial structures devoted to LPG-f (liquefied petroleum gas-fuel) and NGV (natural gas for vehicles). This paper presents the energy policy of Algeria, its reserves, production, and exportations of hydrocarbons and the internal rational use of energy sources according to its economic and environmental policy and to its internal needs. The energy consumption of Algeria in the transportation sector represents 2/3 of the petroleum products consumed in the internal market and follows a rapid increase necessary to the socio-economic development of the country. The Algerian experience in fuel gases is analysed according to the results of two successive experimentation periods for the development of NGV before and after 1994, and the resulting transportation and distribution network is described. The development of LPG-f has followed also an experimental phase for the preparation of regulation texts and a first statement of the vehicles conversion to LPG-f is drawn with its perspectives of development according to future market and prices evolutions. (J.S.)

  13. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    2015-06-09

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  14. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  15. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    Science.gov (United States)

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    Science.gov (United States)

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  17. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Zhu, Xueqin; Van Ierland, Ekko

    2006-01-01

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  18. Gases for an SSC muon detector

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Carter, J.G.; Tennessee Univ., Knoxville, TN

    1990-01-01

    Recent measurements of electron drift velocities as a function of the density-reduced electric field E/N are reported for a number of unitary gases and the mixtures CO 2 /CH 4 and NH 3 /CF 4 /Ar. Calculated values of the mean electron energy as a function of E/N are also reported for unitary gases and mixtures of CO 2 /CH 4 . 7 refs., 5 figs

  19. Method and apparatus for removing radioactive gases from a nuclear reactor

    International Nuclear Information System (INIS)

    Frumerman, R.; Brown, W.W.

    1975-01-01

    A description is given of a method for removing radioactive gases from a nuclear reactor including the steps of draining coolant from a nuclear reactor to a level just below the coolant inlet and outlet nozzles to form a vapor space and then charging the space with an inert gas, circulating coolant through the reactor to assist the release of radioactive gases from the coolant into the vapor space, withdrawing the radioactive gases from the vapor space by a vacuum pump which then condenses and separates water from gases carried forward by the vacuum pump, discharging the water to a storage tank and supplying the separated gases to a gas compressor which pumps the gases to gas decay tanks. After the gases in the decay tanks lose their radioactive characteristics, the gases may be discharged to the atmosphere or returned to the reactor for further use

  20. Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Gibbs Method and Statistical Physics of Electron Gases

    CERN Document Server

    Askerov, Bahram M

    2010-01-01

    This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.

  1. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  2. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  3. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  4. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  5. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  6. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  7. Method of processing radioactive rare gase

    International Nuclear Information System (INIS)

    Tagusagawa, Atsushi; Tuda, Kazuaki.

    1988-01-01

    Purpose: To obtain a safety processing method without using mechanical pumps or pressure-proof containers and, accordingly, with no risk for the leakage of radioactive rare gas. Method: A container filled with zeolige is inserted with a cover being opened into an autoclave. Meanwhile, krypton-containing gases are supplied to an adsorption tower filled with adsorbents, cooled, adsorbed and then heated to desorb adsorbed krypton. The krypton-containing gases are introduced due to the pressure difference to the autoclave thereby causing krypton to adsorb at ambient temperature to zeolite. Then, the inside of the autoclave is heated to desorb krypton and adsorbed moistures from zeolite and the pressure is elevated. After sending the gases under pressure to the adsorption tower, the zeolite-filled container is taken out from the autoclave, tightly closed and then transferred to a predetermined site. (Takahashi, M.)

  8. Biogás y gestión de deyecciones ganaderas

    OpenAIRE

    Flotats Ripoll, Xavier

    2010-01-01

    El proceso de digestión anaerobia y producción de biogás es uno de los más idóneos para el aprovechamiento energético de las deyecciones ganaderas, la reducción de emisiones de gases de efecto invernadero (GEI) por el sector ganadero, la mejora del valor fertilizante de los productos tratados y la reducción de malos olores. También permite combinar con sistemas de tratamiento conducentes a la recuperación de nutrientes. La promoción e implantación de sistemas de producción de biogás colect...

  9. Process for the removal of acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  10. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  11. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yongjun [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)], E-mail: lclei@zju.edu.cn; Zhang Xingwang; Zhou Minghua; Zhang Yi [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  12. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    Science.gov (United States)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  13. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed

  14. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  15. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  16. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  17. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    Science.gov (United States)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  18. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    International Nuclear Information System (INIS)

    Bahauddin, Shah Mohammad; Faruk, Mir Mehedi

    2016-01-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas. (paper)

  19. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    Science.gov (United States)

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  20. Isotopic studies of rare gases in terrestrial samples and natural nucleosynthesis

    International Nuclear Information System (INIS)

    1990-07-01

    This project is concerned with research in rare gas mass spectrometry. We read the natural record that isotopes of the rare gases provide. We study fluids using a system (RARGA) that is sometimes deployed in the field. In 1990 there was a strong effort to reduce the backlog of RARGA samples on hand, so that it was a year of intensive data gathering. Samples from five different areas in the western United States and samples from Guatemala and Australia were analyzed. In a collaborative study we also began analyzing noble gases from rocks associated with the fluids. An important objective, continuing in 1991, is to understand better the reasons for somewhat elevated 3 He/ 4 He ratios in regions where there is no contemporary volcanism which could produce the effect by addition of mantle helium. Our helium data have given us and our collaborators some insights, which are to be followed up, into gold mineralization in geothermal regions. Our DOE work in calibrating a sensitive laser microprobe mass spectrometer for noble gases in fluid inclusions continues. Having completed a series of papers on noble gases in diamonds, we next will attempt to make precise isotopic measurements on xenon from mantle sources, in search of evidence for terrestrially elusive 244 Pu decay

  1. Isotopic studies of rare gases in terrestrial samples and natural nucleosynthesis

    International Nuclear Information System (INIS)

    Reynolds, J.H.

    1991-01-01

    This project is concerned with research in rare gas mass spectrometry. We read the natural record that isotopes of the rate gases provide. We study fluids using a system (RARGA) that is sometimes deployed in the field. In 1990 there was a strong effort to reduce the backlog of RARGA samples on hand, so that it was a year of intensive data gathering. Samples from five different areas in the Western United States and samples from Guatemala and Australia were analyzed. In a collaborative study we also began analyzing noble gases from rocks associated with the fluids. An important objective, continuing in 1991, is to understand better the reasons for somewhat elevated 3 He/ 4 He ratios in regions where there is no contemporary volcanism which could produce the effect by addition of mantle helium. Our helium data have given us and our collaborators some insights, which are to be followed up, into gold mineralization in geothermal regions. Our DOE work in calibrating a sensitive laser microprobe mass spectrometer for noble gases in fluid inclusions continues. Having completed a series of papers on noble gases in diamonds, we next will attempt to make precise isotopic measurements on xenon from mantle sources in search of evidence for terrestrially elusive 244 Pu decay. 41 refs., 3 figs

  2. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  3. Cryogenic method for measuring nuclides and fission gases

    Science.gov (United States)

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  4. Inventory of greenhouse gases emissions from gasoline and diesel ...

    African Journals Online (AJOL)

    Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs) released into the environment through consumption of fuels (gasoline and diesel) in Nigeria from 1980 to 2014. The fuel consumption data ...

  5. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  6. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  7. Using different drift gases to change separation factors (alpha) in ion mobility spectrometry

    Science.gov (United States)

    Asbury; Hill

    2000-02-01

    The use of different drift gases to alter separation factors (alpha) in ion mobility spectrometry has been demonstrated. The mobility of a series of low molecular weight compounds and three small peptides was determined in four different drift gases. The drift gases chosen were helium, argon, nitrogen, and carbon dioxide. These drift gases provide a range of polarizabilities and molecular weights. In all instances, the compounds showed the greatest mobility in helium and the lowest mobility in carbon dioxide; however the percentage change of mobility for each compound was different, effectively changing the alpha value. The alpha value changes were primarily due to differences in drift gas polarizability but were also influenced by the mass of the drift gas. In addition, gas-phase ion radii were calculated in each of the different drift gases. These radii were then plotted against drift gas polarizability producing linear plots with r2 values greater than 0.99. The intercept of these plots provides the gas-phase radius of an ion in a nonpolarizing environment, whereas the slope is indicative of the magnitude of the ion's mobility change related to polarizability. It therefore, should be possible to separate any two compounds that have different slopes with the appropriate drift gas.

  8. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    Directory of Open Access Journals (Sweden)

    Jia Lu

    2015-06-01

    Full Text Available C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  9. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    Science.gov (United States)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  10. The Emerging Global Education Industry: Analysing Market-Making in Education through Market Sociology

    Science.gov (United States)

    Verger, Antoni; Steiner-Khamsi, Gita; Lubienski, Christopher

    2017-01-01

    This paper addresses the rise and consequences of an emerging global education industry (GEI), which represents new forms of private, for profit involvement in education across the globe. The paper explores the emergence within the GEI of new and varied, largely transnational, markets in education by focusing on three examples of the GEI at work.…

  11. Electron thermalization in rare gases and their mixtures

    International Nuclear Information System (INIS)

    Bronic, I.K.; Kimura, M.

    1996-01-01

    The time evolution and temperature dependence of electron energy distribution functions (EDFs) are studied in pure rare gases (He, Ne, Ar, Kr, Xe) as well as in their mixtures by using solutions of the Boltzmann equation. A clear difference between the gases having the Ramsauer endash Townsend (RT) minimum in the momentum-transfer cross section, (RT gases: Ar, Kr, and Xe), and those without the RT minimum (non-RT gases: He and Ne) is pointed out. The influence of the position and the depth of the RT minimum on the EDF and time evolution is studied for three different initial electron energies. A formula proposed for describing thermalization time in a mixture is tested on (i) a non-RT endash non-RT gas mixture, (ii) a RT endash non-RT mixture and (iii) a RT endash RT gas mixture. The linear combination of the reciprocal thermalization times in gas mixture with the component concentrations as weighting factors is found to be valid for gases with a similar energy dependence of the momentum-transfer cross section, σ m , and also for all rare-gas binary mixtures if the initial electron energy is sufficiently below the RT minimum. Conspicuous deviations from the linear relationship are observed in mixtures of gases whose energy dependence of σ m (or the stopping cross section) are different, and theoretical rationales for these findings are provided. copyright 1996 American Institute of Physics

  12. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  13. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  14. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  15. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  16. Geodesics in thermodynamic state spaces of quantum gases

    International Nuclear Information System (INIS)

    Oshima, H.; Obata, T.; Hara, H.

    2002-01-01

    The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence

  17. Numerical study on the effect of non-condensable gases on the bi-phasic flow in geothermal wells; Estudio numerico del efecto de gases incondensables sobre el flujo bifasico en pozos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo Gutierrez, Edgar; Garcia Gutierrez, Alfonso; Santoyo Gutierrez, Socrates; Morales Rosas, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-09-01

    The objective of this paper is to describe a numerical study to determine the flow characteristics that predominate in geothermal wells and that produces a significant amount of non-condensable gases. It is known that these gases affect the thermodynamic conditions that dominate the fluid transport in the well or inclusively within the proper producing reservoir, therefore, it is extremely important to evaluate this effect. For this purpose the numerical model Geopozo V2.0 was developed. This model considers the carbon dioxide (CO{sub 2}) as the representative gas of the non-condensable gases present in the geothermal fluid. Due to this consideration, Geopozo V2.0 includes a methodology or the estimation of the thermodynamic and transport properties of geothermal fluids, considering these as a mix of two components: H{sub 2}O (vapor and liquid) and CO{sub 2}, under conditions of monophasic and biphasic flow. The application of Geopozo V2.0 for a typical case of flow in geothermal wells with high CO{sub 2} content revealed that the presence of this gas affects significantly the location of the flashing point inside the well and consequently, the amount of steam produced. This is of importance or the design and selection of the surface and generation equipment, aspect that to this date has been ignored (Suwana, 1991). [Espanol] El objetivo de este trabajo es describir un estudio numerico para determinar las caracteristicas del flujo que predominan en pozos geotermicos y que producen una cantidad significante de gases incondensables. Se tiene conocimiento de que estos gases afectan las condiciones termodinamicas que dominan el transporte de fluidos en el pozo o incluso dentro del mismo yacimiento geotermico productor, por lo que es de suma importancia evaluar dicho efecto. Para ello fue desarrollado el modelo numerico Geopozo V2.0. Este modelo considera al dioxido de carbono (CO{sub 2}) como el gas representativo de los incondensables presentes en el fluido geotermico

  18. Numerical and experimental investigation on the performance of safety valves operating with different gases

    International Nuclear Information System (INIS)

    Dossena, V.; Marinoni, F.; Bassi, F.; Franchina, N.; Savini, M.

    2013-01-01

    A detailed analysis of the effect related to the expansion of different gases throughout safety relief valves is carried out both numerically and experimentally. The considered gases are air, argon and ethylene, representative of a wide range of specific heat ratios. A first experimental campaign performed in air and argon on a safety relief valve characterized by connection 1/2″ × 1″ and orifice designation D (diameter 10 mm) according to API 526 showed significant reduction both in disc lift and in exhausted mass flow rate, at the nominal overpressure, when operating with argon. In order to gain a deeper insight into the physics involved and to evaluate the valve behavior with other gases, an extensive numerical testing has been performed by means of an accurate CFD code based on discontinuous Galerkin formulation. Numerical results are at first validated against measurements obtained in air on a 2″ J 3″ safety relief valve proving a remarkable accuracy of the computational method. Then the validated solver is applied on the same computational grid using argon and ethylene as working fluids. The three gases are considered as thermally perfect gases. A critical discussion based on the numerical results allows to clarify the fluid dynamic and physical reasons causing the observed trends both in the opening force and in the discharge coefficient. The main conclusion is that particular care must be taken when a safety valve operates with a fluid characterized by a specific heat ratio greater than the one of the gas used during type testing. -- Highlights: ► Effects of different gases on the discharge capacity and operational characteristics on safety relief valves. ► Influence of different specific heat ratio on safety relief valves discharge coefficient. ► Skilful application of Discontinuous Galerkin CFD solver to safety valves performances prediction

  19. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  20. 1988 Pilot Institute on Global Change on trace gases and the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, J.A.; Moore, B. III

    1998-07-01

    This proposal seeks multi-agency funding to conduct an international, multidisciplinary 1988 Pilot Institute on Global Change to take place from August 7 through 21, 1988, on the topic: Trace Gases and the Biosphere. The institute, to be held in Snowmass, Colorado, is envisioned as a pilot version of a continuing series of institutes on Global Change (IGC). This proposal seeks support for the 1988 pilot institute only. The concept and structure for the continuing series, and the definition of the 1988 pilot institute, were developed at an intensive and multidisciplinary Summer Institute Planning Meeting in Boulder, Colorado, on August 24--25, 1987. The theme for the 1988 PIGC, Trace Gases and the Biosphere, will focus a concerted, high-level multidisciplinary effort on a scientific problem central to the Global Change Program. Dramatic year-to-year increases in the global concentrations of radiatively-active trace gases such as methane and carbon dioxide are now well documented. The predicted climatic effects of these changes lend special urgency to efforts to study the biospheric sources and sinks of these gases and to clarify their interactions and role in the geosphere-biosphere system.

  1. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  2. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    Science.gov (United States)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  3. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  4. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  5. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  6. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  7. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  8. Device for removing radioactive solids in wet gases

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Miyo, Hiroaki.

    1981-01-01

    Purpose: To enable removal and decontamination of radioactive solids in wet gases simply, easily and securely by removing radioactive solids in gases by filteration and applying microwaves to filters to evaporate condensed moistures. Constitution: Objects to be heated such as solutions, sludges and solids containing radioactive substances are placed in an evaporation vessel and a microwave generator is operated. Microwaves are applied to the objects in the evaporation vessel through a shielding plate and filters. The objects are evaporated and exhausted gases are passed through the filters and sent to an exhaust gas processing system by way of an exhaust gas pipe. Condensed moistures deposited on the filters which would otherwise cause cloggings are evaporated being heated by the microwaves to prevent cloggings. The number of stages for the filters may optionally be adjusted depending on the extent of the contamination in the exhaust gases. (Kawakami, Y.)

  9. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians

    Science.gov (United States)

    Kotarba, M.J.; Curtis, John B.; Lewan, M.D.

    2009-01-01

    This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 ??C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 ??C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. ??13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the ??13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than

  10. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  11. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  12. Emisión de metano entérico por rumiantes y su contribución al calentamiento global y al cambio climático. Revisión

    Directory of Open Access Journals (Sweden)

    Jorge Armando Bonilla Cárdenas

    2012-01-01

    Full Text Available La producción de metano (CH4 por los rumiantes se deriva de manera natural del proceso digestivo en estos, pero constituye una pérdida de energía y contribuye a las emisiones de gases de efecto invernadero (GEI, por lo que ha aumentado el número de investigaciones a fin de reducir la metanogénesis ruminal. Esta última está influenciada por varios factores, entre los que destacan: consumo de alimento, composición y digestibilidad de la dieta y procesamiento previo del alimento. Entre las estrategias para mitigar las emisiones de CH4 que se han propuesto, la manipulación dietética nutricional parece ser la de mayor potencial, simplicidad y factibilidad. En aquellos países que han estimado su inventario de GEI, la cantidad de metano es importante y en Nueva Zelanda, por ejemplo, se percibe como urgente la necesidad de que los ganaderos tengan acceso a tecnologías que les permitan reducir las emisiones de GEI de una manera segura y económicamente efectiva. En México se han encontrado diferencias significativas entre los factores propuestos por distintas fuentes, lo que sugiere desarrollar más estudios en las diferentes condiciones climáticas del país. Para desarrollar estrategias para mitigar las emisiones de CH4 por el ganado, debe ser posible cuantificarlas en una amplia gama de circunstancias, por lo que existen varios métodos tanto para estimarlas como para medirlas. El objetivo de esta revisión es compilar y difundir información sobre la emisión de CH4 por los rumiantes, sus posibles efectos en el calentamiento y en el cambio climático global, así como las alternativas existentes para su mitigación.

  13. Bose-Einstein-condensed gases with arbitrary strong interactions

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2006-01-01

    Bose-condensed gases are considered with an effective interaction strength varying in the whole range of the values between zero and infinity. The consideration is based on the usage of a representative statistical ensemble for Bose systems with broken global gauge symmetry. Practical calculations are illustrated for a uniform Bose gas at zero temperature, employing a self-consistent mean-field theory, which is both conserving and gapless

  14. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  15. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-08-11

    ... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases...-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION... Greenhouse Gas Reporting Rule Hotline at telephone number: (877) 444-1188; or e-mail: [email protected] . To...

  16. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  17. Time-dependent behavior of positrons in noble gases

    International Nuclear Information System (INIS)

    Wadehra, J.M.

    1990-01-01

    Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z eff ) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs

  18. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  19. Diffusion coefficients gases, dissolved in fluid of NPPs circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2000-01-01

    In article is brought analysis of diverse gases diffusion coefficients computation methods, dissolved in liquid. On the basis of this analysis and treatment of being equalizations for concrete gases and certain parameters offers universal diffusion coefficients determination dependence for diverse gases in wide range of parameters, circulation contours typical for work NPP

  20. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  1. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  2. Unexpected impact of RIE gases on lithographic films

    Science.gov (United States)

    Glodde, M.; Bruce, R. L.; Hopstaken, M. J. P.; Saccomanno, M. R.; Felix, N.; Petrillo, K. E.; Price, B.

    2017-03-01

    Successful pattern transfer from the photoresist into the substrate depends on robust layers of lithographic films. Typically, an alternating sequence of inorganic (most often Si containing) and organic hardmask (HM) materials is used. Pattern transfer occurs then by using reactive ion etch (RIE) chemistry that is selective to one particular layer (such as: flurorinated RIE for Si HM). The impact of these RIE gases onto the layers acting as hardmask for the layer to be etched is typically neglected, except for known sputtering effects. We found that components of the RIE gases can penetrate deep into the "inert" layers and significantly modify them. For example, nitrogen used as component to etch spin-on carbon layers was found to travel up to 70 nm deep into Si HM materials and create layers with different material properties within this film. The question is being raised and discussed to which extent this atom implantation may impact the pattern transfer of the ever shrinking features.

  3. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  4. Acidic gases (CO{sub 2}, NO{sub 2} and SO{sub 2}) capture and dissociation on metal decorated phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Anlong, E-mail: alkuang@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Kuang, Minquan; Yuan, Hongkuan; Wang, Guangzhao; Chen, Hong [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Yang, Xiaolan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-07-15

    Highlights: • The light metal decorated phosphorene sheets are very effective for capture of CO{sub 2}, NO{sub 2} and SO{sub 2} because of large adsorption energies. • The adsorption energy is obviously dependent on the amount of electrons transferred between acidic gases and metal decorated phosphorene. • Pt-decorated phosphorene can effectively catalyze the dissociation of acidic gas. - Abstract: Density functional theory is employed to investigate the adsorption and dissociation of several acidic gases (CO{sub 2}, NO{sub 2} and SO{sub 2}) on metal (Li, Al, Ni and Pt) decorated phosphorene. The results show that light metal (Li, Al) decorated phosphorene exhibits a strong adsorption of acidic gases, i.e., the adsorption energy of CO{sub 2} on Li decorated phosphorene is 0.376 eV which is the largest in all adsorption of CO{sub 2} on metal decorated phosphorene and Al decorated phosphorene is most effective for capture of NO{sub 2} and SO{sub 2} due to large adsorption energies of 3.951 and 3.608 eV, respectively. Moreover, Li and Al light metals have stronger economic effectiveness and more friendly environment compared with the transition metals, the strong adsorption ability of acidic gases and low price suggest that Li, Al decorated phosphorene may be useful and promising for collection and filtration of exhaust gases. The reaction energy barriers of acidic gases dissociated process on Pt decorated phosphorene are relatively low and the reaction processes are significantly exothermic, indicating that the dissociation process is favorable.

  5. Pressure shifts and electron scattering in atomic and molecular gases

    International Nuclear Information System (INIS)

    Rupnik, K.; McGlynn, S.P.; Asaf, U.

    1994-01-01

    In this work, the authors focus on one aspect of Rydberg electron scattering, namely number density effects in molecular gases. The recent study of Rydberg states of CH 3 I and C 6 H 6 perturbed by H 2 is the first attempt to investigate number density effects of a molecular perturber on Rydberg electrons. Highly excited Rydberg states, because of their ''large orbital'' nature, are very sensitive to the surrounding medium. Photoabsorption or photoionization spectra of CH 3 I have also been measured as a function of perturber pressure in 11 different binary gas mixtures consisting of CH 3 I and each one of eleven different gaseous perturbers. Five of the perturbers were rare gases (He, Ne, Ar, Kr, Xe) and six were non-dipolar molecules (H 2 , CH 4 , N 2 , C 2 H 6 , C 3 H 8 ). The goal of this work is to underline similarities and differences between atomic and molecular perturbers. The authors first list some results of the molecular study

  6. [Emission and control of gases and odorous substances from animal housing and manure depots].

    Science.gov (United States)

    Hartung, J

    1992-02-01

    Agricultural animal production in increasingly regarded as a source of gases which are both aggravating and ecologically harmful. An overview of the origin, number and quantity of trace gases emitted from animal housing and from manure stores is presented and possible means of preventing or reducing them are discussed. Of the 136 trace gases in the air of animal houses, odorous substances, ammonia and methane are most relevant to the environment. The role played by the remaining gases is largely unknown. Quantitative information is available for 23 gases. The gases are emitted principally from freshly deposited and stored faeces, from animal feed and from the animals themselves. Future work should determine sources and quantities of the gases emitted from animal housing more precisely and should aim to investigate the potential of these gases to cause damage in man, animals and environment. Odorous substances have an effect on the area immediately surrounding the animal housing. They can lead to considerable aggravation in humans. For years, VDI1 guidelines (3471/72), which prescribe distances between residential buildings and animal housing, have been valuable in preventing odour problems of this kind. Coverings are suitable for outside stores. The intensity of the odour from animal housing waste air increases from cattle through to hens and pigs; it is also further affected by the type of housing, the age of the animals and the purpose for which they are being kept. Methods of cleaning waste air (scrubbers/biofilters) are available for problematic cases. The need for guidelines to limit emissions from individual outside manure stores (lagoons) is recognised. Total ammonia emissions from animal production in the Federal Republic of Germany (up to 1989) are estimated at approximately 300,000 to 600,000 t/year. There is a shortage of satisfactory and precise research on the extent of emissions, in particular on those from naturally ventilated housing. It is

  7. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  8. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  9. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  10. Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR

    DEFF Research Database (Denmark)

    Haslam, Andrew J.; von Solms, Nicolas; Adjiman, Claire S.

    2006-01-01

    . For the case of ternary mixtures of two gases with PE, it is predicted that the less-volatile of the two gases acts to enhance the absorption of the more-volatile gas, while the more-volatile gas inhibits the absorption of the less-volatile gas. This general behaviour is also predicted in mixtures containing...... present during ethylene polymerisation in the gas-phase reactor (GPR) process. The two approaches are validated using experimental binary-mixture data for gas absorbed in PE, and predictions are made for mixtures of more components. For most cases studied both SAFT versions perform equally well...... more gases, such as typical reactor mixtures. The magnitude of the effect may vary considerably, depending on the relative proximity of the gas-mixture saturation pressure to the reactor pressure; for example it is predicted that the absorption of ethylene may be approximately doubled if diluent gases...

  11. A recent source modification for noble gases at the Los Alamos on-line mass analysis facility

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1976-01-01

    The Los Alamos on-line mass analysis experiment at the Godiva-IV burst reactor facility has been modified to determine independent fission yields of noble gases. The gases are released from a stearate target and ionization by electron bombardment. The distance traveled by the gases from the target to the ionization chamber is 20 cm. The efficiency of the electron bombardment source is lower than that of the surface ionization source that was employed to measure the yields of Rb and Cs. But this effect is compensated by the larger quantity of target metal that is possible when using a stearate target. (Auth.)

  12. Utilization of the noble gases in studies of underground nuclear detonations

    International Nuclear Information System (INIS)

    Smith, C.F.

    1973-01-01

    The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases, except argon, have been used as tracers, as have xenon-127 and krypton-85. Argon-37 and krypton-85 have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases, and the degree to which the sampled gas truly represents the underground gas mixture, can be studied with the aid of the fission-product gases. Radon-222 and helium are released to the cavity from the surrounding rock, and are, therefore, useful in studies of the interaction of the detonation with the surrounding medium

  13. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  14. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  15. A retrospective analysis of blood gases with two different insulin ...

    African Journals Online (AJOL)

    A retrospective analysis of blood gases with two different insulin infusion protocols in patients undergoing cardiovascular surgery. ... In this study, we aimed to look into the effect of glycemic control on arterial blood gas parameters, serum electrolytes, and hemoglobin (Hb). Materials and Methods: We collected data from ...

  16. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  17. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  18. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  19. THE LAWS OF MOLECULAR AND VISCOUS FLOW OF GASES THROUGH TUBES. Die Gesetze der Molekularstroemung und der inneran Reibungsstroemung der Gase durch Roehren

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, M

    1909-07-01

    Experimental data from studies of the flow of H/sub 2/, O/sub 2/, and CO/ sub 2/ through glass capillary tubes were collected and treated to determine the effect of tube dimensions and physical properties of the gases on molecular flow. Laws governing the transition from viscous to molecular flow were also sought. (T.R.H.)

  20. Thermodynamic properties of rotating trapped ideal Bose gases

    International Nuclear Information System (INIS)

    Li, Yushan; Gu, Qiang

    2014-01-01

    Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.

  1. Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

    CERN Document Server

    Azevedo, C.D.R.

    2016-12-13

    A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed.

  2. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  3. One central heating boiler for all combustible gases; Een CV-ketel voor alle brandbare gassen

    Energy Technology Data Exchange (ETDEWEB)

    Gersen, S.; Darmeveil, H.; Hegge, R. [DNV KEMA Energy and Sustainability, Arnhem (Netherlands)

    2012-06-07

    There is increasing interest in the distribution of sustainable gases (H2, H2/CO, CH4/CO2) and imported gases, such as LNG. The composition of these 'new' gases can differ greatly from the traditional distributed gases. The combustion characteristics may cause undesired effects in household appliances. One of the solutions is to develop equipment that can accept a wide range of gases and mixtures thereof. To this end, within the EDGaR-program (Energy Delta Gas Research) the project 'new gas sensors' is started by the Energy Research Centre of the Netherlands (ECN), Delft University of Technology (TUD) and DNV-KEMA/Gasunie to develop a boiler in which the new gases can be used [Dutch] Er is toenemende interesse in de distributie van duurzame gassen (H2 , H2/CO, CH4/CO2 ) en geimporteerde gassen, zoals LNG. De samenstelling van deze 'nieuwe' gassen kan sterk verschillen van de traditioneel gedistribueerde gassen. De verbrandingseigenschappen kunnen ongewenste effecten veroorzaken in huishoudelijke apparatuur. Een van de oplossingen is het ontwikkelen van apparatuur die een breed scala aan gassamenstellingen kan accepteren. Hiertoe is binnen het EDGaR-programma (Energy Delta Gas Research) een project 'new gas sensors' gestart met ECN, TU Delft en DNV-KEMA/Gasunie voor het ontwikkelen van een CV-ketel die geschikt is voor de nieuwe gassen.

  4. Effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555

    Directory of Open Access Journals (Sweden)

    Ali K. Mohammed

    2018-01-01

    Full Text Available In this research, we studied the effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555 which made by (Radiometer-Copenhagen, by using theories of tribology and Reynolds equation on performance of blood film convergence area, we analyzing the influence of theoretical model for peristaltic pump (consist of steeper motor and 4 cylindrical bearings distributed on circular disc rotating around capillary tube, by using (MATLAB R 2012b programing with numerical solution of finite difference method in 5 nodes element , we fined the blood film thickness and the pressure on contact area grid ( consist from annual and axial lines , then influence of viscosity of blood on pressure generated in limited temperature of ambient and velocity of motor , and flow rate of blood in tube. The important conclusions appear that the rotating sliding movement of motor cause low pressure (positive while the rolling cylindrical rollers of bearings cause high pressure (negative which lead to push the blood in tube, that mean the direction of rotating blood opposite the direction of rotating motor of peristaltic pump, also the viscosity of blood effect on velocity of flow and the speed of motor with bearings, and the effect of blood film thickness effect on pressure generated in tube. DOI: http://dx.doi.org/10.25130/tjes.24.2017.18

  5. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  6. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    Science.gov (United States)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  7. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  8. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  9. Interaction of Se and GaSe with Si(111)

    International Nuclear Information System (INIS)

    Meng, Shuang; Schroeder, B. R.; Olmstead, Marjorie A.

    2000-01-01

    Deposition of Se and GaSe on Si(111)7x7 surfaces was studied with low-energy electron diffraction, x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction to probe initial nucleation and interface structure for GaSe/Si(111) heteroepitaxy. Room-temperature deposition of Se on Si(111)7x7 results in an amorphous film. Subsequent annealing leads to Se evaporation without ordering or interdiffusion. Se deposition at 450 degree sign C saturates at submonolayer coverage with no diffusion of Se into the substrate. There is no clear evidence of ordered sites for the Se. Growth of GaSe on Si(111)7x7 above 500 degree sign C results in a pseudomorphic bilayer, with Si-Ga-Se bonding. Additional GaSe does not stick to the bilayer above 525 degree sign C. The resulting Se lone pair at the surface leads to an ideally passivated surface similar to As/Si(111). This stable surface is similar to the layer termination in bulk GaSe. The single domain bilayer is oriented with the Ga-Se bond parallel to the substrate Si-Si bond. (c) 2000 The American Physical Society

  10. Genotype by environment interaction in sunflower (Helianthus annus L.) to optimize trial network efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barrios, P.; Castro, M.; Pérez, O.; Vilaró, D.; Gutiérrez, L.

    2017-07-01

    Modeling genotype by environment interaction (GEI) is one of the most challenging aspects of plant breeding programs. The use of efficient trial networks is an effective way to evaluate GEI to define selection strategies. Furthermore, the experimental design and the number of locations, replications, and years are crucial aspects of multi-environment trial (MET) network optimization. The objective of this study was to evaluate the efficiency and performance of a MET network of sunflower (Helianthus annuus L.). Specifically, we evaluated GEI in the network by delineating mega-environments, estimating genotypic stability and identifying relevant environmental covariates. Additionally, we optimized the network by comparing experimental design efficiencies. We used the National Evaluation Network of Sunflower Cultivars of Uruguay (NENSU) in a period of 20 years. MET plot yield and flowering time information was used to evaluate GEI. Additionally, meteorological information was studied for each sunflower physiological stage. An optimal network under these conditions should have three replications, two years of evaluation and at least three locations. The use of incomplete randomized block experimental design showed reasonable performance. Three mega-environments were defined, explained mainly by different management of sowing dates. Late sowings dates had the worst performance in grain yield and oil production, associated with higher temperatures before anthesis and fewer days allocated to grain filling. The optimization of MET networks through the analysis of the experimental design efficiency, the presence of GEI, and appropriate management strategies have a positive impact on the expression of yield potential and selection of superior cultivars.

  11. Gravity effects on a gliding arc in four noble gases: from normal to hypergravity

    NARCIS (Netherlands)

    Potocnakova, L.; Sperka, J.; Zikan, P.; van Loon, J.J.W.A.; Beckers, J.; Kudrle, V.

    2015-01-01

    A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artificial gravity, from normal 1 g gravity up to 18 g hypergravity. Significant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general

  12. Editorial

    OpenAIRE

    Claudia Marcela Muñoz Sanguinetti

    2015-01-01

    Esta nueva edición de la Revista Hábitat Sustentable surge pocos días después de la suscripción del nuevo Acuerdo en París sobre Cambio Climático (COP21), que constituye un gran compromiso global por el desarrollo sostenible. En él, los países han establecido metas de mitigación, como la reducción de emisiones de Gases de Efecto Invernadero (GEI); acciones que deberían redundar prontamente en la elaboración de programas nacionales que involucren al sector de la construcción, dada su relevanci...

  13. The Effect of Non-condensable Gases Removal on Air Gap Membrane Distillation: Experimental and Simulation Studies

    KAUST Repository

    Alsaadi, Ahmad S.

    2014-04-01

    In the kingdom of Saudi Arabia (KSA), the current seawater desalination technologies are completely relying on burning unsustainable crude oil as their main energy driver. Saudi authorities have realized that the KSA is not going to be protected from the future global energy crisis and have started to set up a plan to diversify its energy resources. Membrane Distillation (MD) has emerged as an attractive alternative desalination process. It combines advantages from both thermal and membrane-based technologies and holds the potential of being a cost-effective separation process that can utilize low-grade waste heat or renewable energy. MD has four different configurations; among them is Air Gap Membrane Distillation (AGMD) which is the second most commonly tested and the most commercially available pilot-plant design. AGMD has a stagnant thin layer of air between the membrane and the condensation surface. This layer introduces a mass transfer resistance that makes the process require a large membrane surface area if a large quantity of fresh water is desired. This dissertation reports on experimental and theoretical work conducted to enhance the AGMD flux by removing non-condensable gases from the module and replacing it with either vacuum, liquid water or porous materials. At first, a mathematical model for AGMD was developed and validated experimentally to create a baseline for improvements that could be achieved after the removal of non-condensable gases. The mathematical model was then modified to simulate the process under vacuum where it showed a flux enhancement that reached 286%. The Water Gap Membrane Distillation (WGMD) configuration improved the flux by almost the same percentage. Since enhancing the flux is expected to increase temperature polarization effects, a theoretical study was conducted on the effect of temperature polarization in a Vacuum Membrane Distillation (VMD) configuration. The study showed that the effect of temperature polarization at

  14. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  15. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  16. Hazard report. Don't use industrial-grade gases for clinical applications.

    Science.gov (United States)

    2010-01-01

    The use of industrial-grade gases instead of medical-grade gases for clinical applications increases the risk of introducing undesirable and even toxic contaminants into the clinical environment. Hospitals should have policies in place to ensure that gases of the appropriate type and grade are used for the intended application.

  17. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  18. Luminescence yield in irradiating gases by X-rays and alpha particles

    International Nuclear Information System (INIS)

    Combecher, D.

    1973-01-01

    In this paper, the measurable light emission in the irradiation of gases as modle substances has been quantitatively determined. The gases Ar, H 2 , N 2 , air, and C 3 H 8 were irradiated with X-rays and α-particles at a pressure of 730 torr. The emitted light was measured in the spectral range between the short-wave absorption edge of the gases and 6000 A (spectral resolution: 20 A). The spectral light yield was determined from the efficiency of the apparatus and from the total energy absorbed in the gases. (HK) [de

  19. Effect of ''outer'' sources and dissipative processes on abundance of inert gases in atmospheres of the Earth group planets

    International Nuclear Information System (INIS)

    Pavlov, A.K.

    1981-01-01

    The problem of abundance of inert gases in atmospheres of the Earth group planets is discussed. It is shown that introduction of He, Ne and 36 Ar into the Mars and Mercury atmospheres with interplanetary dust and from other external sources require the presence of special mechanisms of losses for these gases. For the Mars atmosphere dissipation on atmosphere interaction with solar wind during the periods of anomalously low temperatures is a probable mechanisms of Ne and 36 Ar losses. For the Mercury thermal dissipation for He and polar wind for other inert gases are possible. For all the planets of the Earth group dissipation on interaction with solar wind and introduction with interplanetary dust could play an important role at the early stages of evolution of planets [ru

  20. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Pederson, L.R.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Meisel, D.; Jonah, C. (Argonne National Lab., IL (United States)); Ashby, E.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

  1. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  2. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    Science.gov (United States)

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  3. Study of reaction between water and exhaust gases from diesel engines used in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Mazukhina, S.I.; Kalabin, G.V.; Romanov, V.S.

    1988-05-01

    A method of mathematical simulation, based on the principle of local equilibrium of the kinetic components, was proposed for formulating and solving problems related to the combustion of fuel and the treatment of exhaust gases from a diesel engine in underground workings. Results of a study of the effects of exhaust gas quantity and composition on the reaction between the gases and water are presented. It is shown that the kinetic model correlates well with the equilibrium model, adequately describes the process, and gives a reliable picture of the changes over a period of time. The proposed method can be used to study the gas emission with different fuel mixtures and liquid neutralizing agents with a view to reducing the toxicity of diesel-engine exhaust gases.

  4. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  5. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  6. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  7. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  8. Teledetección de Gases mediante Sensores Infrarrojo (IR)

    OpenAIRE

    López Martínez, Fernando

    2008-01-01

    El LIR- UC3M, Laboratorio de Sensores IR de la Universidad Carlos III, ha desarrollado técnicas de análisis multi e hiperespectral IR para la teledetección de gases. Ofrece el diseño de sensores específicos para determinar la presencia de gases y su concentración. La práctica totalidad de los gases (CO2, CO, NO2, O3, HC o NH, etc.) implicados en la seguridad industrial, ambiental o militar pueden ser detectados. Se busca empresas o centros interesados en el uso de sensores de aplicación e...

  9. Electrical discharge in gases: a technique for detecting metal anomalies

    International Nuclear Information System (INIS)

    Lord, D.E.

    1979-01-01

    Optical ionization effects in gases appear to be very sensitive indicators of nonuniformities caused by contamination, deformation, and other factors affecting a metal surface. These optical effects are influenced by surface electron emission, which is influenced in turn by the chemical, metallurgical, and mechanical condition of the metal surface. Based on these effects, a general technique for inspection of critical parts that is fast, inexpensive, nondestructive, and not limited by size or geometry is presented. Ionization effects that reveal nonuniformities and were recorded with standard photographic equipment are shown

  10. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Science.gov (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  11. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  12. First-principles calculation of the structural, electronic, elastic, and optical properties of sulfur-doping ε -GaSe crystal

    International Nuclear Information System (INIS)

    Huang Chang-Bao; Wu Hai-Xin; Ni You-Bao; Wang Zhen-You; Qi Ming; Zhang Chun-Li

    2016-01-01

    The structural, electronic, mechanical properties, and frequency-dependent refractive indexes of GaSe 1–x S x (x = 0, 0.25, and 1) are studied by using the first-principles pseudopotential method within density functional theory. The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe 1–x S x (x = 0, 0.25, and 1). Doping of ε -GaSe with S strengthens the Ga– X bonds and increases its elastic moduli of C 11 and C 66 . Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of ε -GaSe with S. The calculated results of band gaps suggest that the distance between intralayer atom and substitution of S Se , rather than interlayer force, is a key factor influencing the electronic exciton energy of the layer semiconductor. The calculated refractive indexes indicate that the doping of ε -GaSe with S reduces its refractive index and increases its birefringence. (paper)

  13. The evolution of minor active and toxic gases in repositories

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.; Davies, A.A.; McGahan, D.J.; Rushbrook, P.E.

    1988-09-01

    This study has considered a number of toxic and active gases which could potentially form in relatively small amounts in a deep repository for radioactive wastes. It has been concluded that many of these would react under repository conditions or be highly soluble in groundwater. The minor amounts of the inert and relatively insoluble gas krypton-85 would dissolve in a small volume of repository water. The wide range of organic gases and vapours that could form in trace amounts has been shortened to a list of 21 by consideration of their toxicity, volatibility and extent of formation at a landfill site for non-radioactive waste. The amounts of the inert and inactive gas helium formed from α-particles and the decay of tritium will have only a very minor effect on the overall rate of gas production. (author)

  14. Experimental study of energy exchanges between two coupled granular gases

    OpenAIRE

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  15. A simple modelling of mass diffusion effects on condensation with noncondensable gases for the CATHARE Code

    Energy Technology Data Exchange (ETDEWEB)

    Coste, P.; Bestion, D. [Commissariat a l Energie Atomique, Grenoble (France)

    1995-09-01

    This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.

  16. Experimental investigation of non-condensable gases effect on operation of VVER steam generator in condensation mode

    International Nuclear Information System (INIS)

    Efanov, A. D.; Kalyakin, S. G.; Morozov, A. V.; Remizov, O. V.; Tsyganok, A. A.; Generalov, V. N.; Berkovich, V. M.; Taranov, G. S.

    2008-01-01

    performed to investigate the effect of non-condensable gases on condensation mode of operation of SG model at the pressure 0.25-0.3 MPa, correspond to WER reactor pressure at the last stage of the beyond design basis accident. (authors)

  17. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  18. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  19. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    Science.gov (United States)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  20. μ+ charge exchange and muonium formation in low pressure gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.

    1982-04-01

    Using the basic muon spin rotation technique, the fractions of energetic positive muons thermalizing in diamagnetic environments (fsub(μ)) or as the paramagnetic muonium atom (fsub(Mu)) have been measured in low pressure pure gases (He, Ne, Ar, Kr, Xe, H 2 , N 2 , NH 3 , and CH 4 ) as well as in several gas mixtures (Ne/Xe, Ne/Ar, Ne/NH 3 , Ne/CH 4 ). In the pure gases, the muonium fractions fsub(Mu) are generally found to be smaller than expected from analogous proton charge exchange studies, particularly in the molecular gases. This is probably due to hot atom reactions of muonium following the charge exchange regime. Comparisons with monium formation in condensed matter as well as positronium formation in gases are also presented. In the gas mixtures, the addition of only a few hundred ppm of a dopant gas, which is exothermic for muonium formation (e.g. Xe), gives rise to an fsub(Mu) characteristic of the pure dopant gas itself, demonstrating the importance of the neutralization process right down to thermal energies. In all cases, the experimental signal amplitudes are found to be strongly pressure dependent, which is interpreted in terms of the time spent by the muon as neutral muonium in the charge exchange regime: tsub(n) < 0.2 ns. This time is generally shorter in the case of molecular gases than in rare gases

  1. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  2. Grüneisen parameter for gases and superfluid helium

    International Nuclear Information System (INIS)

    De Souza, Mariano; Menegasso, Paulo; Paupitz, Ricardo; Seridonio, Antonio; Lagos, Roberto E

    2016-01-01

    The Grüneisen ratio (Γ), i.e. the ratio of the thermal expansivity to the specific heat at constant pressure, quantifies the degree of anharmonicity of the potential governing the physical properties of a system. While Γ has been intensively explored in solid state physics, very little is known about its behavior for gases. This is most likely due to the difficulties posed in carrying out both thermal expansion and specific heat measurements in gases with high accuracy as a function of pressure and temperature. Furthermore, to the best of our knowledge a comprehensive discussion about the peculiarities of the Grüneisen ratio is still lacking in the literature. Here we report on a detailed and comprehensive overview of the Grüneisen ratio. Particular emphasis is placed on the analysis of Γ for gases. The main findings of this work are: (i) for the van der Waals gas Γ depends only on the co-volume b due to interaction effects, it is smaller than that for the ideal gas (Γ = 2/3) and diverges upon approaching the critical volume; (ii) for the Bose–Einstein condensation of an ideal boson gas, assuming the transition as first-order, Γ diverges upon approaching a critical volume, similarly to the van der Waals gas; (iii) for 4 He at the superfluid transition Γ shows a singular behavior. Our results reveal that Γ can be used as an appropriate experimental tool to explore pressure-induced critical points. (paper)

  3. Quantification of the greenhouse effect gases at the territorial scale. Final report; Quantification des emissions de gaz a effet de serre a l'echelle territoriale. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Lacassagne, S

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  4. Absorption of Greenhouse Gases in Liquids : A Molecular Approach

    NARCIS (Netherlands)

    Balaji, S.P.

    2015-01-01

    The increase in concentrations of greenhouse gases is responsible for global warming over the past few years. A major portion of the emitted greenhouse gases contains carbon dioxide (CO2). The capture of carbon dioxide from the effluent sources, its transport, and storage has been identified as the

  5. N and Si Implantation Effect on Structural and Electrical Properties of Bridgman grown GaSe Single Crystal

    International Nuclear Information System (INIS)

    Karabulut, O.

    2004-01-01

    N and Si implantation to GaSe single crystals were carried out parallel to c-axis with ion beam of about 10 1 6 ions/cm 2 dose having energy values 30, 60 and 100 keV. Ion implantation modifications on Bridgman grown GaSe single crystals have been investigated by means of XRD, electrical conductivity, absorption and photoconductivity measurements. XRD measurements revealed that annealing results in a complete recovery of the crystalline nature that was moderately reduced upon implantation. It was observed that both N- and Siimplantation followed by annealing process decreased the resistivity values from 10 7 to 10 3 .-cm. The analysis of temperature dependent conductivity showed that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Absorption and spectral photoconductivity measurements showed that the band edge is shifted in the implanted sample. All these modifications were attributed to the structural modifications and continuous shallow trap levels introduced upon implantation and annealing

  6. 75 FR 70254 - PSD and Title V Permitting Guidance for Greenhouse Gases

    Science.gov (United States)

    2010-11-17

    ... Guidance for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability..., ``PSD and Title V Permitting Guidance for Greenhouse Gases'' on its significant guidance Internet Web... guidance titled, ``PSD and Title V Permitting Guidance for Greenhouse Gases.'' This document has been...

  7. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  8. Soliton Gases and Generalized Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien

    2018-01-01

    We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.

  9. THE USE OF BIOFILTERS FOR DEODORISATION OF THE NOXIOUS GASES

    Directory of Open Access Journals (Sweden)

    Monika Wierzbińska

    2015-01-01

    Full Text Available One of the methods of deodorization of noxious gases is biofiltration. This method consists of pollutants biodegradation by using micro-organisms, what leads to the formation of nontoxic and innoxious compounds. In comparison with conventional techniques, bio-filtration requires lower investments and exploitation costs, moreover it is nature friendly. This technique is still developing. Scientists have carried out research on the optimization of biofiltration process, biofilters and selecting parameters of purified gases or improving the method of efficiency. However, industrial application of biofilters is still difficult for many reasons. In this paper we present the mechanism of biofiltration process, the parameters and conditions which have to be fulfilled by purified gases, installation structure for gases biofiltration, application field of this method and specific example of exploited biofilters, including practical operational guidelines.

  10. Method and apparatus for condensing radioactive rare gases by means of use of ejector and selective adsorption and desorption process including cycles

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Tsuda, Koji; Watanabe, Yukio; Miharada, Hassui; Tani, Akira.

    1975-01-01

    Object: To recover rare gases in waste gases at one stage as high density as possible while effectively utilizing adsorption beds. Structure: The waste gases pass through an ejector and are subject to treatment of dehumidification and decarbonization in a pretreatment station, after which the gases enter a first low temperature adsorption bed through a heat exchanger and a first valve. If breaking should occur in the first adsorption bed, the waste gases would be introduced into a second adsorption bed for adsorption treatment. The first adsorption bed, which has completed adsorption, is heated to a regenerative temperature while adsorption is being performed at the second adsorption bed, and degases containing rare gases are recycled through a second and third valves and are mixed into raw waste gases by the action of the ejector. After the above adsorption and desorption have been repeated several times by alternately using the first and second adsorption bed the adsorption bed is heated to a temperature lower than the regenerative temperature to recycle the desorption gases to feed and then heated to the regenerative temperature, and the desorbed rare gases are fed to the succeeding system through a pump. (Yoshihara, H.)

  11. Portable Filtered Air Suction System for Released Radioactive Gases Prevention under a Severe Accident of NPPs

    International Nuclear Information System (INIS)

    Gu, Beom W.; Choi, Su Y.; Rim, Chun T.

    2013-01-01

    In this paper, the portable filtered air suction system (PoFASS) for released radioactive gases prevention under a severe accident of NPP is proposed. This technology can prevent the release of the radioactive gases to the atmosphere and it can be more economical than FVCS because PoFASS can cover many NPPs with its high mobility. The conceptual design of PoFASS, which has the highest cost effectiveness and robustness to the environment condition such as wind velocity and precipitation, is suggested and the related previous research is introduced in this paper. The portable filtered air suction system (PoFASS) for released radioactive gases prevention can play a key role to mitigate the severe accident of NPP with its high cost effectiveness and robustness to the environment conditions. As further works, the detail design of PoFASS to fabricate a prototype for a demonstration will be proceeded. When released radioactive gases from the broken containment building in the severe accident of nuclear power plants (NPPs) such as the Chernobyl and Fukushima accidents occur, there are no ways to prevent the released radioactive gases spreading in the air. In order to solve this problem, several European NPPs have adopted the filtered vented containment system (FVCS), which can avoid the containment failure through a pressure relief capability to protect the containment building against overpressure. However, the installation cost of FVCS for a NPP is more than $10 million and this system has not been widely welcomed by NPP operating companies due to its high cost

  12. Sampling and analysis methods for geothermal fluids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.C.

    1978-07-01

    The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

  13. Purification of burned gases of domestic wastes; Moderna purificacion de gases quemados de las basuras domesticas

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, J.; Buttman, P.; Johansson, T.

    1997-09-01

    The author presents the technology to reduce the emission from the burned gases purification of domestic wastes combustion. The technology was demonstrated in Hobec, Denmark, and developed in Germany. (Author)

  14. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  15. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  16. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    OpenAIRE

    Pappalardo Gelsomina

    2018-01-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evo...

  17. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  19. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  20. Oxygen partial pressure sensor for gases

    International Nuclear Information System (INIS)

    Barbero, J.A.; Azcona, M.A.; Orce, A.

    1997-01-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10 -6 -1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs

  1. Study and full simulation of ten different gases on sealed Multi-Wire Proportional Counter (MWPC) by using Garfield and Maxwell codes

    International Nuclear Information System (INIS)

    Shohani, M. Ebrahimi; Golgoun, S.M.; Aminipour, M.; Shabani, A.; Mazoochi, A.R.; Akbari, R. Maghsoudi; Mohammadzadeh, M.; Davarpanah, M.R.; Sardari, D.; Sadeghi, M.; Mofrad, F. Babapour; Jafari, A.

    2016-01-01

    In this research gas sealed Multi-Wire Proportional Counter (MWPC) including blades between anode wires and beta particles of "9"0Sr with 196 keV mean energy were considered. Ten different gases such as Noble gases mixtures with methane and several other pure gases were studied. In this type of detector, by using Garfield and Maxwell codes and for each of the gases, variation of different parameters such as first Townsend, electron attachment coefficients with variable electric field and their effects on pulse height or collected charge and in turn on Signal to Noise Ratio (SNR) were studied. Also the effect of anode voltage and its diameter and the pressure of gas on the pulse height were studied. Results show that Garfield and Maxwell codes can be used to study and improve the design of other gaseous detectors. - Highlights: • Simulation of different gases that is applicable for various gas detectors. • Two simulation codes were used and analyzed their results for beta particle. • Different detector parameters were studied (SNR, first Townsend, electron attachment coefficients, anode voltage and etc.). • The effect of blade in the detector were assessed. • The codes are useful for design and improvement of detector.

  2. Quantum size effects on the thermal and potential conductivities of ideal gases

    International Nuclear Information System (INIS)

    Ozturk, Z F; Sisman, A

    2009-01-01

    Thermal and potential conductivities of ideal Maxwellian, Fermi and Bose gases are derived by considering the small corrections due to the wave character of gas particles. Potential conductivity is regarded as conductivity due to any potential gradient like electrical, gravitational or chemical ones. A long rectangular channel is considered as a transport domain. The size of the domain in the transport direction is much longer than the mean free path of particles l while the sizes in transverse directions are shorter than l. On the other hand, all sizes of the domain are assumed to be larger than the thermal de Broglie wavelength of particles. Therefore, quantum size effects (QSE) are weak enough to be considered as small corrections on conventional terms. Corrections on thermal and potential conductivities are examined. It is seen that the size and shape of the transport domain become additional control parameters on both conductivities. Since the size dependencies of thermal and electrical conductivities are different, the Lorenz number becomes size and shape dependent and deviations from the Wiedemann-Franz law may be expected in nanoscale due to QSE. Variations of the corrections with chemical potential are analysed.

  3. Sensitivity of hot-cathode ionization vacuum gages in several gases

    Science.gov (United States)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  4. Evaluation of serum galactomannan enzyme immunoassay at two different cut-offs for the diagnosis of invasive aspergillosis in patients with febrile neutropenia

    Directory of Open Access Journals (Sweden)

    Ritin Mohindra

    2017-01-01

    Full Text Available Background: Invasive aspergillosis (IA is an increasingly common and fatal opportunistic fungal infection in patients with haematological diseases. Early diagnosis is difficult as mycological culture techniques have low sensitivity and the radiological tools have low specificity. Galactomannan enzyme immunoassay (GEI detects galactomannan in the human serum with a reported sensitivity and specificity between 30% and 100%. Aims: The aim of this study was to analyse the role of GEI in diagnosis of IA in patients with febrile neutropenia and to evaluate the role of GEI in the diagnosis of IA as per the revised (2008 European Organization for Research and Treatment of Cancer–Mycoses Study Group (EORTC–MSG criteria at two different optical density (OD cut-offs of 0.5 and 1.0. Setting: This prospective study was conducted in Safdarjung Hospital, New Delhi, India. Methods: GEI testing was performed in adult patients of febrile neutropenia with evidence of IA. Results at two different OD indices (ODIs of 0.5 and 1.0 were analysed. The evaluation of the diagnostic parameter, that is, GEI was measured in terms of sensitivity, specificity and positive and negative predictive value and was validated with the revised (2008 EORTC–MSG diagnostic criteria of IA. Results: One hundred and eleven patients had evidence of IA, of which 79 patients were GEI positive when cut-off ODI was 0.5, whereas with cut-off ODI 1.0, 55 patients were GEI positive. Conclusion: ODI of 1.0 should be considered as positive while in patients with OD between 0.5 and 1.0, repeat sampling from the patient is recommended.

  5. [Contribution of echogradient magnetic resonance imaging in the study of subacromial diseases. Surgical and arthrographic correlations].

    Science.gov (United States)

    Touzard, R C; Pigeau, I; Doursounian, L; Maigne, J Y; Vadrot, D

    1991-01-01

    Fifteen asymptomatic volunteers and 300 patients with suspected lesions of the rotator cuff were examined with T2*- and proton density-weighted gradient echo (T2*-Rho-GEI) MRI sequences (500-700 ms/30 ms/30 degrees) with a 0.5 T (GE-CGR) system and an adapted surface coil. For the patients, the findings were compared with those of arthrography in 130 cases and of surgery in 42 cases. For the operated patients, T2*-Rho-GEI and arthrography allowed correctly diagnosing 31 complete ruptures (CR). However, surgical exploration of the ruptures showed that T2*-Rho-GEI showed the actual extent of the rupture and the degree of tendon retraction better than arthrography. T2*-Rho-GEI also provides information about the thickness and trophicity of the remaining cuff and on local muscle trophicity. T2*-Rho-GEI allows directly evaluating the tendon of the long head of the biceps both in its extra-articular and its intra-articular parts. In 3 cases of complete cuff rupture, MRI allowed detecting 3 associated lesions of the anterior labrum, which had not been suspected on the clinical examination and had not been demonstrated by conventional arthrography. Lastly, out of 12 cases of deep incomplete rupture (n = 12) correctly diagnosed with MRI, 5 had been undetected on arthrography. Similarly, 8 cases of inflammatory alterations suspected with T2*-Rho-GEI and confirmed by surgery had not been recognized with arthrography. For the non-operated patients, T2*-Rho-GEI and arthrography had corresponding results for the diagnosis of CR (8 cases), of DIR (6 cases) and of intact cuff (6 cases).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. THE EFFECT OF IRRADIATION DOSE AND AMMONIA CONCENTRATION ON THE APPLICATION OF ELECTRON BEAM FOR TREATMENT GASES POLLUTION OF SO2AND NOX

    Directory of Open Access Journals (Sweden)

    Erizal Erizal

    2010-06-01

    Full Text Available The application of electron beam for treatment gases pollution of SO2 and NOx has been studied.  The simulated SO2 and NOx gases stream produced from diesel fuel burning boiler were flown into electron beam chamber. Irradiation was conducted using 1000 keV electron beam machine at the dose up to 8.8 kGy, while   water vapour and the ammonia gas with variation concentration flew into the system during irradiation. The concentrations of the gases change were observed during processes. After evaluation, it was found that by increasing irradiation dose, the concentration of SO2 and NOx gases removal increases.  The efficiency of gases removal may reach 98 % for SO2 and 88 % for NOX at a dose of 8.8 kGy. By increasing ammonia concentration, the efficiency gas removal increases. Besides, by-products from the irradiation yield were sulfate and nitrate salt compound which are possible to be used as a fertilizer.      Keywords: radiation, electron beam, gas pollution, SO2, NOx, ammonia

  7. Purification technology for flue/off gases using electron beams

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2004-01-01

    The present paper describes research and development on purification technology using electron beams for flue/off gases containing pollutants: removal of sulfate oxide and nitrogen oxide from flue gases of coal/oil combustion power plants, decomposition of dioxins in waste incineration flue gas, and decomposition/removal of toxic volatile organic compounds from off gas. (author)

  8. Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2011-01-01

    We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases, including the linear and nonlinear waves of the system. A Korteweg de Vries (KdV) solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime, a BCS regime and unitarity. The dependences of the propagation velocity, amplitude and the width of the solitary wave on the dimensionless interaction parameter y = 1/(k F a sc ) are given for the limited cases of BEC and unitarity. (physics of gases, plasmas, and electric discharges)

  9. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  10. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Science.gov (United States)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  11. Stakes and impact of non conventional gases on the market energy

    International Nuclear Information System (INIS)

    2010-04-01

    This article presents the content of a market study which aimed at describing the boom of the market of non conventional gases in the USA (definition, reasons for quick development, competitiveness, growth perspectives), at understanding how and why theses gases are the new playground of oil and gas companies (actors in presence, positions held by independent operators, ambitions of major companies, question of the development of a European sector of non conventional gases), and at anticipating the changes of the energy production market (the emergence of this market in the USA is an acceleration and imbalance factor of the world market of natural gas, and non conventional gases may change the deal on energy markets)

  12. The challenges of the greenhouse gases emissions reduction in buildings

    International Nuclear Information System (INIS)

    Arnaud, E.

    2005-09-01

    The building sector is responsible of 18% of the greenhouse gases emissions in France. This document aims to evaluate the greenhouse gases emissions of the sector and then defines technical and financial avenues worth exploring to reduce them. (A.L.B.)

  13. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: IV. Vascular effects of repeated inhalation exposure to a mixture of five inorganic gases.

    Science.gov (United States)

    Mauderly, J L; Kracko, D; Brower, J; Doyle-Eisele, M; McDonald, J D; Lund, A K; Seilkop, S K

    2014-09-01

    An experiment was conducted to test the hypothesis that a mixture of five inorganic gases could reproduce certain central vascular effects of repeated inhalation exposure of apolipoprotein E-deficient mice to diesel or gasoline engine exhaust. The hypothesis resulted from preceding multiple additive regression tree (MART) analysis of a composition-concentration-response database of mice exposed by inhalation to the exhausts and other complex mixtures. The five gases were the predictors most important to MART models best fitting the vascular responses. Mice on high-fat diet were exposed 6 h/d, 7 d/week for 50 d to clean air or a mixture containing 30.6 ppm CO, 20.5 ppm NO, 1.4 ppm NO₂, 0.5 ppm SO₂, and 2.0 ppm NH₃ in air. The gas concentrations were below the maxima in the preceding studies but in the range of those in exhaust exposure levels that caused significant effects. Five indicators of stress and pro-atherosclerotic responses were measured in aortic tissue. The exposure increased all five response indicators, with the magnitude of effect and statistical significance varying among the indicators and depending on inclusion or exclusion of an apparent outlying control. With the outlier excluded, three responses approximated predicted values and two fell below predictions. The results generally supported evidence that the five gases drove the effects of exhaust, and thus supported the potential of the MART approach for identifying putative causal components of complex mixtures.

  14. Quench gases for xenon- (and krypton-)filled proportional counters

    International Nuclear Information System (INIS)

    Ramsey, B.D.; Agrawal, P.C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. We present results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases. (orig.)

  15. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Cushman, R.M.

    2001-01-01

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO(sub 2)) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO(sub 2) and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO(sub 2) on vegetation; and the vulnerability of coastal areas to rising sea levels

  16. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C. [LOCA Integrated Services I, Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  17. Curiosities of arithmetic gases

    International Nuclear Information System (INIS)

    Bakas, I.; Bowick, M.J.

    1991-01-01

    Statistical mechanical systems with an exponential density of states are considered. The arithmetic analog of parafermions of arbitrary order is constructed and a formula for boson-parafermion equivalence is obtained using properties of the Riemann zeta function. Interactions (nontrivial mixing) among arithmetic gases using the concept of twisted convolutions are also introduced. Examples of exactly solvable models are discussed in detail

  18. Application of information statistical theory to the description of the effect of heat conduction on the chemical reaction rate in gases

    International Nuclear Information System (INIS)

    Fort, J.; Cukrowski, A.S.

    1998-01-01

    The effect of the heat flux on the rate of chemical reaction in dilute gases is shown to be important for reactions characterized by high activation energies and in the presence of very large temperature gradients. This effect, obtained from the second-order terms in the distribution function (similar to those obtained in the Burnett approximation to the solution of the Boltzmann equation), is derived on the basis of information theory. It is shown that the analytical results describing the effect are simpler if the kinetic definition for the nonequilibrium temperature is introduced than if the thermodynamic definition is introduced. The numerical results are nearly the same for both definitions. (author)

  19. Tunneling dynamics of superfluid Fermi gases in an accelerating optical lattice

    International Nuclear Information System (INIS)

    Tie Lu; Xue Jukui

    2010-01-01

    The nonlinear Landau-Zener tunneling and the nonlinear Rabi oscillations of superfluid Fermi gases between Bloch bands in an accelerating optical lattice are discussed. Within the hydrodynamic theory and a two-level model, the tunneling probability of superfluid Fermi gases between Bloch bands is obtained. We find that, as the system crosses from the Bose-Einstein condensation (BEC) side to the BCS side, the tunneling rate is closely related to the particle density: when the density is smaller (larger) than a critical value, the tunneling rate at unitarity is larger (smaller) than that in the BEC limit. This is well explained in terms of an effective interaction and an effective potential. Furthermore, the nonlinear Rabi oscillations of superfluid Fermi gases between the bands are discussed by imposing a periodic modulation on the level bias and the strength of the lattice. Analytical expressions of the critical density for suppressing or enhancing the Rabi oscillations are obtained. It is shown that, as the system crosses from the BEC side to the BCS side, the critical density strongly depends on the modulation parameters (i.e., the modulation amplitude and the modulation frequency). For a fixed density, a high-frequency or low-frequency modulation can suppress or enhance the Rabi oscillations both at unitarity and in the BEC limit. For an intermediate modulation frequency, the Rabi oscillations are chaotic along the entire BEC-BCS crossover, especially, on the BCS side. Interestingly, we find that the modulation of the lattice strength only with an intermediate modulation frequency has significant effect on the Rabi oscillations both in the BEC limit and at unitarity; that is, an intermediate-frequency modulation can enhance the Rabi oscillations, especially on the BCS side.

  20. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Science.gov (United States)

    2010-12-01

    ...-mechanical systems (MEMS) manufacturing facilities. Fluorinated Gas Production....... 325120 Industrial gases... of Industrial Greenhouse Gases. Electrical Equipment Use General Stationary Fuel Combustion. Imports and Exports of Fluorinated Suppliers of Industrial Greenhouse GHGs Inside Pre-charged Equipment Gases...

  1. Gases and carbon in metals (thermodynamics, kinetics, and properties). Pt. 10

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Fromm, E.; Hoerz, G.

    1980-01-01

    This issue is part of a series of data on Gases and Carbon in Metals which supplements the data compilation in the book Gase und Kohlenstoff in Metallen (Gases and Carbon in Metals), edited by E. Fromm and E. Gebhardt, Springer-Verlag, Berlin 1976. The present survey covers chromium and tungsten, includes results from papers published after the copy deadline and recommends critically selected data. Furthermore it comprises a bibliography of relevant literature. (GE) [de

  2. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua presents three major topics, which are the fourth to sixth parts of this volume. These topics are the remarks on units of physical quantities; kinetic theory of gases and gaseous flow; and theory of vacuum diffusion pumps. The first topic aims to present concisely the significance of units of physical quantities, catering the need and interest of those who take measurements and make calculations in different fields of vacuum sciences. The technique and applications of this particular topic are also provided. The second main topic focuses sp

  3. The application of isotope techniques to the analysis of gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.; Thuemmel, H.W.

    1978-01-01

    The development of devices for the detection of nuclear radiation has also led to systems permitting concentrations of gaseous components in gases or mixtures of gases to be determined with the aid of ionizing radiation. Such systems, which use either the ionization of gases in connection with recombination processes or the multiplication of charged particles, or the excitation of gases by means of α,β,γ or X-rays, are described. The most frequently used ionization detectors (electron capture detectors, aerosol ionization analysers, cross-section detectors, noble gas detectors and electron mobility detectors) are characterized with reference to their properties and main fields of application. It is shown that as a result of the development of sensitive energy-resolving detectors the possibilities for the utilization of excitation processes for gas analysis are increasing. The prospects for ionization detectors and systems based on the excitation of characteristic X-rays are discussed. (author)

  4. Oxygen partial pressure sensor for gases

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, J.A.; Azcona, M.A.; Orce, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-10-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10{sup -6}-1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs.

  5. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Directory of Open Access Journals (Sweden)

    Pappalardo Gelsomina

    2018-01-01

    Full Text Available The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  6. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...

  7. [Competitive study of the effects of naloxone and of almitrine on fentanyl analgesia in the anesthetized dog: effects on the muzzle opening reflex and blood gases].

    Science.gov (United States)

    Dauthier, C; Gaudy, J H; Willer, J C

    1980-01-01

    The search for a technique making it possible to dissociate the analgesia and ventilatory depression of central analgesics led to a comparison of the effects of naloxone, a specific morphinomimetic antagonist, with almitrine, a ventilatory stimulant with a peripheral action, on muzzle opening reflex and blood gases. Five male dogs (Beagles, aged one year), anaesthetised with Alfetesine were treated separately with the two drugs used alone and after fentanyl analgesia (injection of fractionnated doses up to the threshold of apnoea). The association of the two drugs was also tested in tyhe dog after analgesia. The parameters studied were muzzle opening reflex, as an indication of analgesia, and blood gases, and were observed for 45 minutes, including 15 minutes control. 1 - The intravenous injection of 1,2 mg of naloxone had the effect of increasing the surface area of muscle potentials with a maximum of 7 per cent (p 0.001) at the 15 th minute. By contrast, no significant change in blood gases was seen. In the same dogs given fentanyl analgesia, naloxone not only reversed respiratory depression but had a stimulatory effect on MOR reaching 7 per cent (p 0.001) at the 30 th minute. 2 - The effects of 1 mg.kg-1 of almitrine were characterised by a fall in MOR for a period equal to that of the study and a minimum of 7.8 per cent (p 0.001) at the 20 th minute. At the same time, marked ventilatory stimulation was seen. PO2 rose by 22.7 per cent (p 0.02) at the 5 th minute. PCO2 fell during the 30 minutes studied with a minimum of 39.6 per cent (p 0.01) at the 20 th minute. Almitrine did not antagonise the depression of MOR caused by fentanyl but reversed the respiratory depression of the analgesic, increasing PO2 by 26 per cent (p 0.01) and decreasing PCO2 by 25.7 per cent (p 0.01). 3 - The combination of both drugs cancelled out the abolition of the reflex by fentanyl then facilitated it up to 24.7 per cent (p 0.001) in comparison with the animal not receiving any

  8. Emissions of biogenic sulfur gases from northern bogs and fens

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  9. Influence of impurity gases and operating conditions on PAFC performance

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, K.; Iwasa, N.; Suzuki, M.; Okada, O. [Osaka Gas Co., Ltd. (Japan)] [and others

    1996-12-31

    On-site Phosphoric Acid Fuel Cell (PAFC) Cogeneration system is installed at various test sites, such as at underground parking lot, within chemical plant premises and near urban streets. Since in the current PAFC system, cathode air is supplied to the cell with no particular pretreatment, impurity gases in the air might influence on cell performance. We have investigated the influence of various impurity gases in the cathode gas, on sub-scale single cells, and have found that NO{sub 2}, SO{sub 2} and toluene affect negatively on cell performance. The results of these experiments and the conceivable mechanism of these effects on cell degradation are reported. We have also investigated the influence of other operating parameters, such as temperature, current density, fuel utilization on cell performance. From these experiments, we have found that operating temperature is a significant factor, which mainly determines cell voltage decline rate. The results of sub-scale single cell tests and a short-stack verification test are also reported.

  10. Effects of quantum statistics in cold-atom gases

    International Nuclear Information System (INIS)

    Villain, Pierre

    2000-01-01

    The first part of this research thesis recalls the main properties of Bose-Einstein condensates as they have been experimentally produced since 1995 in diluted alkaline gases and as they have been magnetically trapped. The author discusses the standard theoretical approach of Bogoliubov which relies on an hypothesis of symmetry breakage. Then, the author addresses the dynamic consequences of this hypothesis, in particularly on the existence of a condensate phase jamming which results in a loss of coherence properties for the system. The third part addresses the dynamic study of a condensate within a pattern-type potential. A numerical integration of the Gross-Pitaevskii equation is performed. Through variations of the non-linear parameter (which expresses interactions between atoms), the influence of non-linearities on the system behaviour is analysed. Notably, the author shows how, by increasing this parameter, the macroscopic wave function passes from a regular dynamics to a stochastic dynamics. In the fourth part, the author reports the modelling of an experiment of mixing with five waves within the context of matter waves. He shows how to adapt this experiment for fermions/bosons mixing where an incident fermion wave is sent towards a network of condensed bosons [fr

  11. Emission factor of gases from the greenhouse effect for the brazilian interconnected system; Fator de emissao de gases de efeito estufa para o sistema interligado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Esparta, A. Ricardo J. [Ecoinvest Carbon S.A., Sao Paulo, SP (Brazil)]. E-mail: esparta@iee.usp.br; esparta@ecoinvestcarbon.com; Fernandez, Pablo [EcoSecurities, Rio de Janeiro, RJ (Brazil)]. E-mail: pablo.fernandez@ecosecurities.com.br; Costa, David Freire da [Econergy Brasil, Sao Paulo, SP (Brazil)]. E-mail: freire@econergy.com.br

    2006-07-01

    The participation of new power generation projects of the Brazilian interconnected system in the Clean Development Mechanism of the Kyoto Protocol demand the definition of greenhouse gases baseline emission scenarios and monitoring methodologies. The present paper describes the reasoning behind approved methodologies for capacity addition from renewable sources as well as carries out the calculation of the emission factor for the Brazilian interconnected grid. (author)

  12. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  13. Rare gases adsorption and separation on silver doped adsorbent

    International Nuclear Information System (INIS)

    Deliere, Ludovic

    2015-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) implements means for detecting nuclear tests in an International Monitoring System (IMS). The Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) has developed in the mid-90's, the SPALAX system (Systeme de Prelevement d'Air en Ligne avec l'Analyse des radioXenons). Xenon analysis, including radioactive isotopes from the fission reaction during the explosion, requires the development of highly efficient process for xenon concentration. In this work, the adsorption and diffusion phenomena of noble gases are studied in silver exchanged ZSM-5 zeolite. The 'experience/Monte Carlo simulation' coupling is used to determine the essential thermodynamic data on the adsorption of noble gases and to characterize the adsorption sites. The presence of a strong adsorption site, identified as silver nanoparticles and intervening at low concentration of noble gases (including xenon and radon) in some silver exchanged zeolites, achieves adsorption and selectivity performance to date unrivaled. These results allow considering their use in many critical applications in the field of capture and separation of rare gases: rare gas industrial production, reprocessing of spent fuel from gas, radon in air pollution control. (author) [fr

  14. Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Lake, M.E.

    1999-01-01

    Biological techniques are highly cost-effective for the treatment of off-gases containing low concentrations of pollutants (<5 g/m3). They may also be attractive for the elimination of higher concentrations of explosive hydrocarbons (when compared to incineration). Conventional techniques such as

  15. Removal of rare gases from large volume airstreams

    International Nuclear Information System (INIS)

    Hopke, P.K.; Leong, K.H.; Stukel, J.J.; Lewis, C.; Jebackumar, R.; Illinois Univ., Urbana; Illinois Univ., Urbana

    1986-01-01

    The cost-effective removal of low levels of rare gases and particularly radon from large volume air flows is a difficult problem. The use of various scrubbing systems using non-conventional fluids has been studied. The parameters for both a packed tower absorber and a gas scrubber have been calculated for a system using perfluorobenzene as the fluid. Based on these parameters, a packed bed tower of conventional proportions is feasible for the removal of >95% of 37 Bq/m 3 of radon from a flow of 4.7 m 3 /second. (author)

  16. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  17. Evidence for solar flare rare gases in the Khor Temiki aubrite.

    Science.gov (United States)

    Rajan, R. S.; Price, P. B.

    1973-01-01

    It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.

  18. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  19. Quantum statistics of dense gases and nonideal plasmas

    CERN Document Server

    Ebeling, Werner; Filinov, Vladimir

    2017-01-01

    The aim of this book is the pedagogical exploration of the basic principles of quantum-statistical thermodynamics as applied to various states of matter – ranging from rare gases to astrophysical matter with high-energy density. The reader will learn in this work that thermodynamics and quantum statistics are still the concepts on which even the most advanced research is operating - despite of a flood of modern concepts, classical entities like temperature, pressure, energy and entropy are shown to remain fundamental. The physics of gases, plasmas and high-energy density matter is still a growing field and even though solids and liquids dominate our daily life, more than 99 percent of the visible Universe is in the state of gases and plasmas and the overwhelming part of matter exists at extreme conditions connected with very large energy densities, such as in the interior of stars. This text, combining material from lectures and advanced seminars given by the authors over many decades, is a must-have intr...

  20. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  1. Radiolytic generation of gases in reactors

    International Nuclear Information System (INIS)

    Ramshesh, V.; Venkateswarlu, K.S.

    1988-01-01

    Water or heavy water is used in different circuits in a reactor. Their most common use is as a moderator and/or as a coolant. Light water is used at other places such as in end shield, calandria vault etc., In the process they are exposed to intense ionizing radiation and undergo radiolytic degradation. The molecular produts of radiolysis are hydrogen, hydrogen peroxide and oxygen. As is commonly known if hydrogen is formed beyond a certain level, in the presence of oxygen it may lead to combustion or even explosion. Thus one should comprehend the basic principles of radiolysis and see whether the concentration of these gases under various conditions can be worked out. This report attempts to analyse in depth the radiolytic generation of gases in reactor systems. (author). 3 tabs

  2. Greenhouse gases - observed tendencies contra scenarios

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2006-01-01

    The article presents a study of the increase in greenhouse gases and concludes that it will be necessary to substantially reduce the CO2 concentrations in the atmosphere in order to avoid serious climatic changes

  3. Capacitors on the basis of intercalate GaSe

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2010-06-01

    Full Text Available The compound GaSe is obtained by the technique of intercalation of a GaSe single crystal in a melt of the ferroelectric salt KNO3. The x-ray analysis of its crystal structure has been carried out and dielectric frequency characteristics of samples has been measured. It is estab-lished, that accumulation of electric charges occurs in the examined examples in frequency area 100—1000 Hz. A sample of filter capacitor has been created on the basis of the re-ceived compounds.

  4. Thermoelectric transport and Peltier cooling of cold atomic gases

    Science.gov (United States)

    Grenier, Charles; Kollath, Corinna; Georges, Antoine

    2016-12-01

    This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and 'thermoelectric' transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.

  5. Temas de Física para Ingeniería: Gases ideales

    OpenAIRE

    Beléndez Vázquez, Augusto

    1992-01-01

    Acústica, fluidos y termodinámica: "Gases ideales". Modelo molecular del gas ideal. Interpretación microscópica de la presión y la temperatura. Equipartición de la energía. Capacidades caloríficas de los gases. Proceso adiabático en un gas ideal.

  6. Molecular simulation of water removal from simple gases with zeolite NaA.

    Science.gov (United States)

    Csányi, Eva; Ható, Zoltán; Kristóf, Tamás

    2012-06-01

    Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H(2)O, CO, H(2), CH(4) and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.

  7. Persistence of climate changes due to a range of greenhouse gases.

    Science.gov (United States)

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  8. Weekly cycle of minor air gases in Moscow

    Science.gov (United States)

    Lokoshchenko, Mikhail A.; Elansky, Nikolay F.; Trifanova, Alexandra V.

    2017-04-01

    The weekly cycle of the surface concentrations of five trace atmospheric gases in Moscow has been analyzed based on continuous automatic once-a-minute measurements. The data of joint ecological station of the Institute of Atmospheric Physics and Moscow State University for nine years (2002-2010) were used. This station operated in conditions of comparatively clear park zone of the University on the South-Western periphery of the city at a distance of 8 km from the city centre. Fortunately, none of the great sources of the air pollution - neither point sources, nor linear ones - are present in the vicinity of the station so that the measurements there are quite representative. Results of spectral analysis demonstrate statistically significant maximum of spectral density close to 7 days. Any clear periodicity of around seven days may be a consequence of either natural synoptic period or weekly cycle. The fact that the influence of human activity on urban air composition changes with a weekly periodicity is confirmed by statistically significant difference between concentrations of trace gases on working days and on Sunday (when emissions from both the traffic and the industrial sources are minimal). On average, both primary pollutants (nitrogen oxide and carbon oxide) and the secondary ones (NO2) show the lowest concentrations of the week on Sunday whereas ozone, by contrast, peaks on this day. Besides, usual diurnal cycle of air pollutants is transformed on Sunday - e.g., secondary nocturnal maximum of ozone in the city is absent on Sunday like at rural area. On Saturday concentrations of trace gases are in between working days and Sunday; this 'Saturday effect' is a result of a gradual clearing of the urban air. An additional effect is that in the first half of Monday (before noon) surface concentrations of NO and NO2 are generally less, whereas the concentration of O3 is, on the contrary, a bit higher than at the same time on the rest of working days. The 'Monday

  9. Weak antilocalization induced by Rashba spin-orbit interaction in layered III-VI compound semiconductor GaSe thin films

    Science.gov (United States)

    Takasuna, Shoichi; Shiogai, Junichi; Matsuzaka, Shunichiro; Kohda, Makoto; Oyama, Yutaka; Nitta, Junsaku

    2017-10-01

    Magnetoconductance (MC) at low temperature was measured to investigate spin-related transport affected by spin-orbit interaction (SOI) in III-VI compound n -type GaSe thin films. Results reveal that MC shows weak antilocalization (WAL). Its temperature and gate voltage dependences reveal that the dominant spin relaxation is governed by the D'yakonov-Perel' mechanism associated with the Rashba SOI. The estimated Rashba SOI strength in GaSe is much stronger than that of III-V compound GaAs quantum wells, although the energy gap and spin split-off band in GaSe closely resemble those in GaAs. The angle dependence of WAL amplitude in the in-plane magnetic field direction is almost isotropic. This isotropy indicates that the strength of the Dresselhaus SOI is negligible compared with the Rashba SOI strength. The SOI effect in n -GaSe thin films differs greatly from those of III-V compound semiconductors and transition-metal dichalcogenides.

  10. Multidisciplinary strategy to reduce errors with the use of medical gases.

    Science.gov (United States)

    Amor-García, Miguel Ángel; Ibáñez-García, Sara; Díaz-Redondo, Alicia; Herranz Alonso, Ana; Sanjurjo Sáez, María

    2018-05-01

    Lack of awareness of the risks associated with the use of medical  gases amongst health professionals and health organizations is concerning. The  objective of this study is to redefine the use process of medical gases in a  hospital setting. A sentinel event took place in a clinical unit, the incorrect administration of a medical gas to an inpatient. A multidisciplinary  causeroot analysis of the sentinel event was carried out. Different improvement points were identified for each error detected and so we defined a  good strategy to ensure the safe use of these drugs. 9 errors were identified and the following improvement actions were  defined: storage (gases of clinical use were separated from those of industrial  use and proper identification signs were placed), prescription (6 protocols were  included in the hospital´s Computerized Physician Order Entry software),  validation (pharmacist validation of the prescription to ensure appropriate use of  these), dispensation (a new protocol for medical gases dispensation and  transportation was designed and implemented) and administration (information  on the pressure gauges used for each type of gas was collected and reviewed).  72 Signs with recommendations for medical gases identification and  administration were placed in all the clinical units. Specific training on the safe  use of medical gases and general safety training was imparted. The implementation of a process that integrates all phases of use  of medical gases and applies to all professionals involved is presented here as a  strategy to increase safety in the use of these medicines. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. Unconventional gases: a North-American energy revolution not without consequences for Europe

    International Nuclear Information System (INIS)

    2011-01-01

    This paper gives a definition of the different existing unconventional gases (coal-bed methane, tight gases, shale gases), and outlines that, although these gases as well as the techniques to extract them have been well known for a long time, it is the combination of two of these techniques (hydraulic fracturing or fracking, and horizontal drilling) which enables the current technological development and the exploitation of these gases. It also outlines that the current situation in terms of natural resources favours such a development. It evokes projects in the United States, China, India, Europe, and more particularly in France, stressing that environmental issues and population density in Europe are obstacles to perform these drillings. The author questions the production cost issue and explains how these developments, notably in the USA, may change completely the world energetic landscape, and therefore entail a review of the European energy agenda. He explores the possible consequences of a durable decrease of gas prices

  12. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  13. Device for adsorbing exhaled radioactive gases and process

    International Nuclear Information System (INIS)

    Glasser, H.; Panetta, P.F.

    1976-01-01

    Sorption means are provided for sorbing radioactive gases, as in the exhalations of a living subject, especially for nuclear diagnostic test studies, comprising means for adsorbing the radioactive gas onto activated carbon, the carbon being contained in a plurality of independent, series-connected, chambers. The sorption means are especially adapted for the adsorption of radioactive inert gases such as xenon-133 ( 133 Xe). There can also be provided indicator means for indicating the flow-through of xenon comprising an indicator which changes color upon contact with xenon, such as dioxygenylhexafluoroantimoniate. 14 claims, 7 drawing figures

  14. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  15. Agreements on emission of greenhouse gases

    International Nuclear Information System (INIS)

    Aulstad, Johan Greger

    2001-01-01

    Agreements on emission of greenhouse gases is one of the instruments used by Norwegian authorities to meet their obligations with respect to the Climate Convention and the Kyoto Protocol. This book discusses the legal issues raised by these agreements. A main topic is how the industrial emissions conform to the Pollution Act. Does the Pollution Act apply to these emissions? What is the impact of the sanction rules in this act on the emissions? The book also deals with the following general questions that arise in connection with the application of public authority: (1) Can the administration grant concessions and permits in the form of agreements? (2) What commitments can be imposed on a private party by the administration by agreement? (3) Should the procedures set down in the Pollution Act and in the Public Administration Act be followed fully when the pollution authorities make agreements? Is the opportunity of the administration to reverse more restricted when they make agreements than when they make one-sided decisions? Although this discussion primarily deals with the emission of greenhouse gases, the reasoning and conclusions are relevant in many other types of agreements in which the public administration is one of the parties. The agreement that regulates the emissions of greenhouse gases from the Norwegian aluminium industry is described in a special section. The book also gives a brief account of how agreements are used in the Danish climate policy

  16. Detecting and Identifying Industrial Gases by a Method Based on Olfactory Machine at Different Concentrations

    Directory of Open Access Journals (Sweden)

    Yunlong Sun

    2018-01-01

    Full Text Available Gas sensors have been widely reported for industrial gas detection and monitoring. However, the rapid detection and identification of industrial gases are still a challenge. In this work, we measure four typical industrial gases including CO2, CH4, NH3, and volatile organic compounds (VOCs based on electronic nose (EN at different concentrations. To solve the problem of effective classification and identification of different industrial gases, we propose an algorithm based on the selective local linear embedding (SLLE to reduce the dimensionality and extract the features of high-dimensional data. Combining the Euclidean distance (ED formula with the proposed algorithm, we can achieve better classification and identification of four kinds of gases. We compared the classification and recognition results of classical principal component analysis (PCA, linear discriminate analysis (LDA, and PCA + LDA algorithms with the proposed SLLE algorithm after selecting the original data and performing feature extraction. The experimental results show that the recognition accuracy rate of the SLLE reaches 91.36%, which is better than the other three algorithms. In addition, the SLLE algorithm provides more efficient and accurate responses to high-dimensional industrial gas data. It can be used in real-time industrial gas detection and monitoring combined with gas sensor networks.

  17. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  18. Use of zeolites for the removal of volatile sulfur compounds from industrial waste gases and from natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Dudzik,; Z,; Bilska, M

    1974-12-01

    The use of zeolites for the removal of sulfur dioxide from industrial waste gases and for the removal of hydrogen sulfide and volatile mercaptans from the natural gas or synthetic gas manufactured from coal is discussed. The effectiveness and cost of zeolite methods are superior to that of other methods. The best sorption properties with respect to sulfur dioxide are observed in faujasites and erionites. The molecular sieve 13X (a sodium form of low-silicon faujasite) is the most effective sorbent of hydrogen sulfide, produced commercially on a large scale. This zeolite is also a very effective catalyst for simultaneous oxygenation of hydrogen sulfide. The reaction with oxygen can begin at temperatures as low as -80/sup 0/C. The effectiveness of zeolite reactors is enhanced by the presence of oxygen in the gas being purified, and is hindered by the presence of water or water vapor. The extraordinary catalytic activity of sodium faujasites is due to free donors, and sulfur and oxygen ion donors at their surface. A zeolite reactor is also economical.

  19. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  20. Radiolytic and thermal generation of gases from Hanford grout samples

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  1. Anaesthetic gases: environmental impact and alternatives

    African Journals Online (AJOL)

    Little consideration has been given to the environmental impact of anaesthetic gas .... our practice to select gases with a lower environmental impact is also ... is used as raw material for new anaesthetics. ... none in the pipeline.1. Conclusion.

  2. Origin and Evolution of Reactive and Noble Gases Dissolved in Matrix Pore Water

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F. [Hydroisotop GmbH, Schweitenkirchen (Germany); Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Bern (Switzerland); Waber, H. N. [Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Bern (Switzerland); Smellie, J. A.T. [Conterra AB, Stockholm (Sweden)

    2013-07-15

    Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the first time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in situ production and accumulation rates deliver information about the residence time of pore water. (author)

  3. Localized injury to plant organs from hydrogen fluoride and other acid gases

    Energy Technology Data Exchange (ETDEWEB)

    Romell, L G

    1941-01-01

    The origin of localized lesions from acid gases in smoke is discussed. The idea of corrosion is refuted. The action of acid gases in solution is analyzed for HCl on a numerical bases. With respect to HCl a more than hundredfold numerical error, constantly copied in the past, is corrected in a discussion of safe limits. Severe damage to leaves is reported from evaporating 0.001 molar HF solution. The border effect seen in leaves injured by HCl, HNO/sub 3/ or fluoric smoke is explained as due to an uneven uptake of acid gas in a distorted diffusion field, whereby a critical threshold is sooner reached along protruding edges. This phenomenon was studied in experiments with leaf models cut from indicator papers. Experiments with a fruit model showed that it may also account for localized injury to fruits hanging in the foliage and generally for the protective action at a distance observed in plants injured by fluoric smoke. It is suggested that the border reaction of indicator papers might be used for estimating the content of certain acid gases in the air. A hematein lake paper easily prepared was found to give a sensitive and specific reaction for HF in air. 38 references, 2 figures.

  4. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    Science.gov (United States)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  5. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2002-01-01

    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  6. Mapping phenotypic plasticity and genotype-environment interactions affecting life-history traits in Caenorhabditis elegans

    NARCIS (Netherlands)

    Gutteling, E.W.; Riksen, J.A.G.; Bakker, J.; Kammenga, J.E.

    2007-01-01

    Phenotypic plasticity and genotype-environment interactions (GEI) play an important role in the evolution of life histories. Knowledge of the molecular genetic basis of plasticity and GEI provides insight into the underlying mechanisms of life-history changes in different environments. We used a

  7. Effect van inkuilmanagement op emissie van broeikasgassen op bedrijfsniveau = Effect of ensiling management on emission of greenhouse gases at farm level

    NARCIS (Netherlands)

    Schooten, van H.A.; Philipsen, A.P.

    2011-01-01

    This report described the losses during harvesting, storage and feed out period of grass silage. It was estimated that there was a considerable risk of extra losses due to aerobic deterioration and moderate conservation. Farmrelated computations showed that economics and emission of greenhouse gases

  8. Elements for a policy of greenhouse effect gases reduction; Elements pour une politique de reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO{sub 2} emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  9. Anaesthetic gases: environmental impact and alternatives ...

    African Journals Online (AJOL)

    Anaesthetic gases: environmental impact and alternatives. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... to be small when compared to gaseous emissions from industrial and agricultural sources, the actual percentage contribution to climate change is small. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  10. Climate Change, Greenhouse Gases and Aerosols

    Indian Academy of Sciences (India)

    user

    their radiative properties are similar to the glass used in a green- house. Greenhouse gases in the Earth's atmosphere absorb 90% of the radiation emitted .... and wind speed and direction in each box is calculated using the physical laws gov-.

  11. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  12. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  13. Solubilities of some gases in four immidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Afzal, Waheed; Liu, Xiangyang; Prausnitz, John M.

    2013-01-01

    Graphical abstract: Experimental apparatus based on the synthetic-volumetric method for measuring solubilities of gases in liquids. Highlights: • We constructed an apparatus for measuring solubilities of sparingly-soluble gases. • We measured solubilities of five gases in four immidazolium-based ionic liquids. • We calculated Henry’s constants for gases in the ionic liquids studied in this work. -- Abstract: The synthetic-volumetric method is used for rapidly measuring solubilities of sparingly-soluble gases in monoethylene glycol and in four ionic liquids. Known molar quantities of solute and solvent are charged into an equilibrium vessel. Measured quantities at equilibrium include: temperature, pressure, quantities of fluids, and volumes of the gas and liquid phases in the equilibrium vessel. These measurements enable calculation of equilibrium compositions using material balances. No sampling or chemical analyses are required. Solubilities are reported for carbon dioxide, krypton, oxygen, and hydrogen in monoethylene glycol, l-n-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], l-n-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf 2 N], or 1-ethyl-3-methylimidazolium acetate [EMIM][AC]. Solubilities were measured over the temperature range (298 to 355) K and for pressures up to about 7 MPa using two different pieces of equipment, both based on the volumetric method: a low-pressure glass apparatus and a high-pressure stainless-steel apparatus. Special emphasis is given to experimental reliability to assure consistent data

  14. Thermodynamic model for swelling of unconfined coal due to adsorption of mixed gases

    NARCIS (Netherlands)

    Liu, J.; Peach, C.J.; Zhou, Hongwei; Spiers, C.J.

    2015-01-01

    Permeability evolution in coal seams during CO2-Enhanced Coalbed Methane (ECBM) production is strongly influenced by swelling/shrinkage effects related to sorption and desorption of both CO2 and CH4. Other gases, such as N2, have also been proposed for injection in ECBM operations. In addition,

  15. Energy–pressure relation for low-dimensional gases

    Directory of Open Access Journals (Sweden)

    Francesco Mancarella

    2014-10-01

    Full Text Available A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates, including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce

  16. Energy–pressure relation for low-dimensional gases

    International Nuclear Information System (INIS)

    Mancarella, Francesco; Mussardo, Giuseppe; Trombettoni, Andrea

    2014-01-01

    A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale

  17. Long term high flow humidified oxygen treatment in COPD – effect on blood gases

    DEFF Research Database (Denmark)

    Storgaard, Line; Weinreich, Ulla; Hockey, Hans

    2017-01-01

    .Aim: To investigate the treatment effect on arterial blood gases (PaO2, PaCO2 and SaO2) in patients with resting hypoxemia over 12 months.Method: In this prospective, randomized controlled, one-year study, 200 COPD patients treated with LTOT, all GOLD class 4, were randomized to NHF (n=100) or usual care (n=100......) between March 2013 and June 2015.Results: The groups are comparable in average days in study, age, gender, smoking status, pack years, BMI, FEV1%, 6 minutes walking test, administered oxygen (L/min), PaO2 PaCO2 and Sa02 at baseline and number of exacerbations and admissions one year prior to study start....... Treated with a mean NHF-flow of 20 L/min, no significant difference was seen in PaO2 or SaO2 over the study, but a significantly different change in PaCO2 was seen after 6 months (p<0.05) and after 12 months (p<0.01) in favor of patients treated with NHF. Increase in PaCO<2 was approximately 0...

  18. Condensate statistics in interacting and ideal dilute bose gases

    Science.gov (United States)

    Kocharovsky; Kocharovsky; Scully

    2000-03-13

    We obtain analytical formulas for the statistics, in particular, for the characteristic function and all cumulants, of the Bose-Einstein condensate in dilute weakly interacting and ideal equilibrium gases in the canonical ensemble via the particle-number-conserving operator formalism of Girardeau and Arnowitt. We prove that the ground-state occupation statistics is not Gaussian even in the thermodynamic limit. We calculate the effect of Bogoliubov coupling on suppression of ground-state occupation fluctuations and show that they are governed by a pair-correlation, squeezing mechanism.

  19. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  20. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.