WorldWideScience

Sample records for effect gases emissions

  1. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  2. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  3. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  4. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdeh, Nidal H. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2003-11-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO{sub x}), carbon dioxide (CO{sub 2}) and carbon monoxide (CO). In addition, O{sub 2} concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO{sub x}) and carbon dioxide (CO{sub 2}) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O{sub 2}) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO{sub x} gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO{sub x} but increased the particulate matter concentrations in the exhaust gases. (Author)

  5. Gases emissions of Green house Effect in Colombia

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio

    1999-01-01

    Colombia when signing the agreement mark of the united nations for the global change in 1992 and to ratify it in 1996 committed, together with the other signatory countries, to elaborate and to publish national inventories of anthropogenic emissions of green house gases and plans for its reduction and control. In this reference mark a group of professionals inside the Colombian academy of exact, physical and natural sciences, began in July of 1995, the national inventory of greenhouse gases for Colombia, having the approval of the ministry of the environment, the financial support of the organization of German technical cooperation GTZ and the technical consultantship of the work group that it is carrying out the study in the case of Venezuela. This article presents a summary of the results of the project, making emphasis in the main anthropogenic activities responsible for these emissions, especially those related with the energetic sector

  6. Emissions of greenhouse gases in the United States 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  7. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  8. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  9. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  10. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Science.gov (United States)

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  11. Agreements on emission of greenhouse gases

    International Nuclear Information System (INIS)

    Aulstad, Johan Greger

    2001-01-01

    Agreements on emission of greenhouse gases is one of the instruments used by Norwegian authorities to meet their obligations with respect to the Climate Convention and the Kyoto Protocol. This book discusses the legal issues raised by these agreements. A main topic is how the industrial emissions conform to the Pollution Act. Does the Pollution Act apply to these emissions? What is the impact of the sanction rules in this act on the emissions? The book also deals with the following general questions that arise in connection with the application of public authority: (1) Can the administration grant concessions and permits in the form of agreements? (2) What commitments can be imposed on a private party by the administration by agreement? (3) Should the procedures set down in the Pollution Act and in the Public Administration Act be followed fully when the pollution authorities make agreements? Is the opportunity of the administration to reverse more restricted when they make agreements than when they make one-sided decisions? Although this discussion primarily deals with the emission of greenhouse gases, the reasoning and conclusions are relevant in many other types of agreements in which the public administration is one of the parties. The agreement that regulates the emissions of greenhouse gases from the Norwegian aluminium industry is described in a special section. The book also gives a brief account of how agreements are used in the Danish climate policy

  12. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    1993-01-01

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  13. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  14. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  15. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  16. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  17. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  18. The challenges of the greenhouse gases emissions reduction in buildings

    International Nuclear Information System (INIS)

    Arnaud, E.

    2005-09-01

    The building sector is responsible of 18% of the greenhouse gases emissions in France. This document aims to evaluate the greenhouse gases emissions of the sector and then defines technical and financial avenues worth exploring to reduce them. (A.L.B.)

  19. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  20. Agriculture and greenhouse gases emissions reduction; Agriculture et reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Leguet, B.

    2005-09-15

    In France, the agriculture is the third sector of greenhouse gases emitter. Meanwhile since 1990 this sector poorly reduces its greenhouse gases. It is necessary to find mechanisms which allow the valorization of emissions reduction. In this framework the author presents the specificities of the greenhouse gases emissions of the agricultural sector, the possible incentives of emissions reduction, the reduction projects in France and abroad. (A.L.B.)

  1. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  2. Emissions of exhaust gases and health of the person

    Science.gov (United States)

    Germanova, Tatiana; Kernozhitskaya, Anna

    2017-10-01

    The auto-road complex brings the considerable contribution to pollution and adverse change of environment. Influence of exhaust gases of cars is at the bottom of occurrence and developments of various forms of diseases. Every townsman feels the negative influence rendered by motor transport on himself. The modern city dweller is so accustomed to the smell of exhaust gases that he does not even notice it at all, continues to breathe a poisonous mixture, while neither the car nor the road can be isolated from the habitats of people. The higher the population density, the higher the need for motor transport. The health effects of emissions of exhaust gases and vapors, including regulated and unregulated pollutants, are discussed in this article.

  3. Inventory of greenhouse gases emissions from gasoline and diesel ...

    African Journals Online (AJOL)

    Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs) released into the environment through consumption of fuels (gasoline and diesel) in Nigeria from 1980 to 2014. The fuel consumption data ...

  4. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Zhu, Xueqin; Van Ierland, Ekko

    2006-01-01

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  5. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  6. Greenhouse gases and emissions trading

    International Nuclear Information System (INIS)

    LeBlanc, A.; Dudek, D.J.

    1993-01-01

    Global cooperation is essential in cutting greenhouse-gas emissions, say Alice LeBlanc and Daniel J. Dudek of the Environmental Defense in New York City. The first step, they continue, is agreement among nations on an overall global limit for all greenhouse gases, followed by an allocation of the global limit among nations. The agreements must contain effective reporting and monitoring systems and enforcement provisions, they add. The Framework Convention on Climate Change, signed by most nations of the world in Brazil in 1992, provides the foundation for such an agreement, LeBlanc and Dudek note. open-quotes International emissions trading is a way to lower costs and expand reduction options for the benefit of all,close quotes they contend. Under such an arrangement, an international agency would assign allowances, stated in tons of carbon dioxide. Countries would be free to buy and sell allowances, but no country could exceed, in a given year, the total allowances it holds. By emitting less than its allowed amount, a country would accumulate more allowances, which it could sell. The authors claim such a system would offer benefits to the world economy by saving billions of dollars in pollution-reduction costs while still achieving emission limits established in an international agreement

  7. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio; Rodriguez M, Humberto

    1999-01-01

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  8. The Common Agricultural Policy and the Greenhouse Gases Emissions

    OpenAIRE

    BRITO SOARES, F.; Ronco, R.

    2005-01-01

    The evolution of greenhouse gases emissions in the EU-15 countries is accessed. While the absolute level of emissions turns out to be declining in the last thirty years in EU-15 Member States, emissions per output tend to rise. A relationship between the adoption of the Common Agricultural policy and the emissions level can be detected for Spain, Austria, Finland and Sweden.

  9. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share

  10. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  11. Emissions of greenhouse gases in the United States 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  12. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-01

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions

  13. Emission of Harmful Gases from Poultry Farms and Possibilities of Their Reduction

    OpenAIRE

    Brouček Jan; Čermák Bohuslav

    2015-01-01

    This review is devoted to methodology that can help to assess emission of gases from poultry housings and could be used to expand the knowledge base of researchers, policymakers and farmers to maintain sustainable environment conditions for farming systems. Concentration and emission of ammonia, methane, nitrous oxide and carbon dioxide in poultry barns are discussed in this paper. Surveys of ammonia and greenhouse gases mean concentrations and emission factors in different poultry systems ar...

  14. Emission of greenhouse gases from Danish agriculture

    International Nuclear Information System (INIS)

    Olesen, J.E.; Petersen, S.O.; Fenhann, J.V.; Andersen, J.M.; Jacobsen, B.H.

    2001-01-01

    emission factors for nitrous oxide does not imply a correspondingly large uncertainty in the relative contribution of individual sources to the total emission. The different sources of nitrous oxide in the field are affected by the same mechanisms independent of location, and thus the uncertainty is mainly associated with the level of this emission in Denmark compared with other regions. In Denmark there has not previously been any concerted research effort to quantify emissions of greenhouse gases from agriculture. The existing, somewhat scattered research has mainly been a spin-off from research programmes with other main objectives. Accordingly there is no solid foundation for evaluation of neither emission levels nor mitigation options. A proposal for a research programme on emission of greenhouse gases from agriculture is therefore presented, which should provide a better basis for quantifying individual emission sources, their development over time, and the effect of reduction measures. Emphasis is given to improve our knowledge on emissions of methane and nitrous oxide, and to the possibilities of agriculture in storing carbon and in the reduction and substitution of fossil fuel use. (au)

  15. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  16. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  17. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  18. Greatly reduced emission of greenhouse gases from the wood-processing industry

    International Nuclear Information System (INIS)

    2004-01-01

    The strong support for biomass energy in the Norwegian wood-processing industry during the last 10-15 years has contributed greatly to a considerable reduction of the emission of greenhouse gases. The potential for further reductions is primarily linked with the use of oil and involves only a few works. Oil can be replaced by other fuels, and process-technical improvements can reduce the emissions. According to prognoses, emissions will go on decreasing until 2007, when the total emission of greenhouse gases from the wood-processing industry will be about 13 per cent less than in 1998. Carbon dioxide (CO 2 ) amounts to 90 per cent of the total emission, the remaining parts being methane (CH 4 ) from landfills and dumps, and small amounts of N 2 O

  19. Emission of Harmful Gases from Poultry Farms and Possibilities of Their Reduction

    Directory of Open Access Journals (Sweden)

    Brouček Jan

    2015-03-01

    Full Text Available This review is devoted to methodology that can help to assess emission of gases from poultry housings and could be used to expand the knowledge base of researchers, policymakers and farmers to maintain sustainable environment conditions for farming systems. Concentration and emission of ammonia, methane, nitrous oxide and carbon dioxide in poultry barns are discussed in this paper. Surveys of ammonia and greenhouse gases mean concentrations and emission factors in different poultry systems are showed. This paper is also gives the findings in emission mitigation, especially to different manure handling practices, management schemes, housing and facility designs for broilers and laying hens. Finally this paper focused on investigating practical means to reduce air emissions from animal production facilities.

  20. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions

  1. A STRATEGIC PROGRAM TO REDUCE GREENHOUSE GASES EMISSIONS PRODUCED FROM FOOD INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    A. Kilic [Faculty of Science, Department of Biology, University of Nigde, Nigde (Turkey); A. Midilli [Faculty of Engineering, Department of Mechanical Engineering, Nigde (Turkey); I. Dincer [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2008-09-30

    Greenhouse gases (GHGs) emissions are at every stage of conventional food production (planting, harvesting, irrigation, food production, transportation, and application of pesticides and fertilizers, etc.). In this study, a strategic program is proposed to reduce GHGs emissions resulting during conventional food production. The factors which form the basis of this strategic program are energy, environment and sustainability. The results show that the application of sustainable food processing technologies can significantly reduce GHGs emissions resulting from food industry. Moreover, minimizing the utilization of fossil-fuel energy sources and maximizing the utilization of renewable energy sources results in the reduction of GHGs emissions during food production, which in turn reduces the effect of global warming.

  2. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    Soltani, Afshin; Rajabi, M.H.; Zeinali, E.; Soltani, Elias

    2013-01-01

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha −1 , respectively. Average across scenarios, GHG emissions of 1137 kg CO 2 -eq ha −1 and 291 kg CO 2 -eq t −1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  3. [Emission and control of gases and odorous substances from animal housing and manure depots].

    Science.gov (United States)

    Hartung, J

    1992-02-01

    Agricultural animal production in increasingly regarded as a source of gases which are both aggravating and ecologically harmful. An overview of the origin, number and quantity of trace gases emitted from animal housing and from manure stores is presented and possible means of preventing or reducing them are discussed. Of the 136 trace gases in the air of animal houses, odorous substances, ammonia and methane are most relevant to the environment. The role played by the remaining gases is largely unknown. Quantitative information is available for 23 gases. The gases are emitted principally from freshly deposited and stored faeces, from animal feed and from the animals themselves. Future work should determine sources and quantities of the gases emitted from animal housing more precisely and should aim to investigate the potential of these gases to cause damage in man, animals and environment. Odorous substances have an effect on the area immediately surrounding the animal housing. They can lead to considerable aggravation in humans. For years, VDI1 guidelines (3471/72), which prescribe distances between residential buildings and animal housing, have been valuable in preventing odour problems of this kind. Coverings are suitable for outside stores. The intensity of the odour from animal housing waste air increases from cattle through to hens and pigs; it is also further affected by the type of housing, the age of the animals and the purpose for which they are being kept. Methods of cleaning waste air (scrubbers/biofilters) are available for problematic cases. The need for guidelines to limit emissions from individual outside manure stores (lagoons) is recognised. Total ammonia emissions from animal production in the Federal Republic of Germany (up to 1989) are estimated at approximately 300,000 to 600,000 t/year. There is a shortage of satisfactory and precise research on the extent of emissions, in particular on those from naturally ventilated housing. It is

  4. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2011-01-01

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO 2 . These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: → Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. → Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. →Energy use in livestock breeding found to be 16% of agriculture energy emissions. → Energy use found to be 3% of total livestock breeding emissions. → 87% of the energy emissions is CO 2 .

  5. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  6. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N.

    2005-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  7. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    Karman, D.; Baptiste, S.

    1994-01-01

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO 2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  8. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given

  9. The emissions of greenhouse gases are reduced by a new proposal for trade of quotas

    International Nuclear Information System (INIS)

    2004-01-01

    The emission quota system will stimulate enterprises that do not currently have to pay a CO 2 tax and which are not subjected to any other political instrument to cut their emissions of greenhouse gases. Consequently, the main part of the total Norwegian emission of greenhouse gases will be covered by climate policy instruments. The quota system enters into force on January 1, 2005, from which date the EU quota system will also be in force. The quota system will comprise CO 2 emissions from oil refineries, iron and steel manufacturers, producers of cement, lime, glass and ceramic products, and certain energy plants. Not all firms that are obliged to obtain quotas will receive as many quotas as they are expected to need. Norway introduced a CO 2 tax in 1991 and is among the countries with the strongest and most extensive political instruments against emission of greenhouse gases

  10. Reference projections for greenhouse gases in the Netherlands: emission projections for 2001 - 2010

    NARCIS (Netherlands)

    Wijngaarden R van den; Ybema JR; Gijsen A; Oude Lohuis JA; Thomas R; Daniels B; Dril AWN van; Volkers CH; Energieonderzoek Centrum; LAE

    2002-01-01

    The results are presented of the project 'reference projection for energy and greenhouse gases' carried out by RIVM and ECN for the Ministries of Housing, Spatial Planning and the Environment, and of Economic Affairs. The reference projection considers emission of greenhouse gases in

  11. Emission factor of gases from the greenhouse effect for the brazilian interconnected system; Fator de emissao de gases de efeito estufa para o sistema interligado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Esparta, A. Ricardo J. [Ecoinvest Carbon S.A., Sao Paulo, SP (Brazil)]. E-mail: esparta@iee.usp.br; esparta@ecoinvestcarbon.com; Fernandez, Pablo [EcoSecurities, Rio de Janeiro, RJ (Brazil)]. E-mail: pablo.fernandez@ecosecurities.com.br; Costa, David Freire da [Econergy Brasil, Sao Paulo, SP (Brazil)]. E-mail: freire@econergy.com.br

    2006-07-01

    The participation of new power generation projects of the Brazilian interconnected system in the Clean Development Mechanism of the Kyoto Protocol demand the definition of greenhouse gases baseline emission scenarios and monitoring methodologies. The present paper describes the reasoning behind approved methodologies for capacity addition from renewable sources as well as carries out the calculation of the emission factor for the Brazilian interconnected grid. (author)

  12. The greenhouse gases HFCs, PFCs and SF{sub 6}, Danish consumption and emissions, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T.; Bode, I.

    2009-07-01

    The objective of this project was to determine the Danish consumption and actual emissions of HFCs, PFCs, and SF{sub 6} for 2007. Further, if methodology changes are made in connection to the work on 2007 data, the data for previous years are considered and updated accordingly. The emission calculation is made in accordance with the IPCC guidelines and following the method employed in previous year calculation. The methodology includes calculation of the actual emissions of HFCs, PFCs, and SF{sub 6}. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. Specific emission factors are presented. (ln)

  13. Application of banana peels waste as adsorbents for the removal of CO2, NO, NOx, and SO2 gases from motorcycle emissions

    Science.gov (United States)

    Viena, V.; Elvitriana; Wardani, S.

    2018-03-01

    The aims of the study were to investigate the application of banana peels as adsorbent for the removal of CO, NO, NOx and SO2 gases from motorcycles emissions. The effect of differents thermal activation on the characteristics of banana peels adsorbent (BPA) such as moisture content, ash content, volatile matter and fixed carbon has been studied using proximate analysis. The study of Iodine adsorption capacity of BPA was obtained at 952 mg/g adsorbent. Structure and morphology of BPA were characterized by Fourier transform infrared (FTIR) and field emission scanning electron microscopy (SEM). The results showed that BPA could significantly adsorbed the CO and SO2 gases emissions from motorcycles, but not applicable for NO, NOx gases. After 10 minutes of flue gas analysis at idle mode using BPA adsorption tube, CO gas could be totally removed, from initial 19618 ppm to 0 ppm, while SO2 gas could also be totally removed from 24523 ppm to 0 ppm. SEM test showed that temperature of activation had significant effect on the size of pores of BPA formed. BPA was suitable for application in removing CO and SO2 gases emissions from motorcycles and it helps to reduce the green house gas effects of fossil fuel to the environment.

  14. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  15. Emissions of greenhouse gases in Norway 1990 to 2000

    International Nuclear Information System (INIS)

    2002-01-01

    According to this article, the emissions of NOX from Norway in 1990 to 2000 were at a higher level than expected. Calculations show, however, that from 1999 to 2000 the emissions were reduced by seven percent. This is mainly due to reduced emission from shipping and road traffic. The SO 2 (sulphur dioxide) emissions have been halved since 1990 because of cleaner industrial emissions, replacement of fossil fuel with electricity, use of light oil and less sulphur in oil products and reducing agents. The emissions of NMVOCs (Non-methane volatile organic components) must be almost halved from 2000 to 2010 if Norway is to meet the requirements of the Gothenburg Protocol. The emissions of climate gases were reduced by one percent in 2000, despite the fact that the CO 2 emissions from the offshore petroleum activities increased by twelve percent. The emissions of methane and dioxins are going down. There is considerable uncertainty in the figures for dioxins. Calculations show that on the local community level the greatest emissions come from industry, road traffic, agriculture and land fills

  16. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  17. Balance of greenhouse gases emission in the life cycle of ethanol fuel; Balanco de emissao de gases de efeito estufa no ciclo de vida do etanol combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cinthia Rubio Urbano da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos; Walter, Arnaldo Cesar da Silva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2008-07-01

    The environmental focus of the use of biofuels is the reduction of green houses gases emissions through automobile exhaust; furthermore, the European Union has discussed the necessity of the requirement these reduction between 30 to 50% compared with the gasoline cycle. Inside this context, this paper joins and compares recent studies about green house gases emission balance of environmental life cycle of ethanol fuel derived form corn, wheat and sugar cane with the goal of recognize the reduction these emissions from the use of ethanol in function of the different alternatives of production. Results show that production of ethanol from sugar cane results higher reduction of green house gases emission compared with the gasoline. Ethanol from corn and ethanol from wheat meet, in the current conditions of Canadian production and use, the least requirement of 30% of saved emission. (author)

  18. Emissions of biogenic sulfur gases from northern bogs and fens

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  19. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  20. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  1. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  2. Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization

    International Nuclear Information System (INIS)

    Stojiljković, Mirko M.; Ignjatović, Marko G.; Vučković, Goran D.

    2015-01-01

    Buildings use a significant amount of primary energy and largely contribute to greenhouse gases emission. Cost optimality and cost effectiveness, including cost-optimal operation, are important for the adoption of energy efficient and environmentally friendly technologies. The long-term assessment of buildings-related greenhouse gases emission might take into account cost-optimal operation of their energy systems. This is often not the case in the literature. Long-term operation optimization problems are often of large scale and computationally intensive and time consuming. This paper formulates a bottom-up methodology relying on an efficient, but precise operation optimization approach, applicable to long-term problems and use with buildings simulations. We suggest moving-horizon short-term optimization to determine near-optimal operation modes and show that this approach, applied to flexible energy systems without seasonal storage, have satisfactory efficiency and accuracy compared with solving problem for an entire year. We also confirm it as a valuable pre-solve technique. Approach applicability and the importance of energy systems optimization are illustrated with a case study considering buildings envelope improvements and cogeneration and heat storage implementation in an urban residential settlement. EnergyPlus is used for buildings simulations while mixed integer linear programming optimization problems are constructed and solved using the custom-built software and the branch-and-cut solver Gurobi Optimizer. - Highlights: • Bottom-up approach for greenhouse gases emission assessment is presented. • Short-term moving-horizon optimization is used to define operation regimes. • Operation optimization and buildings simulations are connected with modeling tool. • Illustrated optimization method performed efficiently and gave accurate results.

  3. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  4. Biogenic emissions of greenhouse gases caused by arable and animal agriculture. Task 3. Overall biogenic greenhouse gas emissions from agriculture. National Inventories

    International Nuclear Information System (INIS)

    Hensen, A.

    1999-12-01

    The aim of the concerted action 'Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture' is to obtain an overview of the current knowledge on the emissions of greenhouse gases related to agricultural activities. This task 3 report summarises the activities that take place in the Netherlands with respect to agriculture emission inventories. This 'national' report was compiled using information from a number of Dutch groups. Therefore, from a national point of view the compilation does not contain new information. The paper can however be useful for other European partners to get an overview of how emission estimates are obtained in the Netherlands. 14 p

  5. Cost-effectiveness in the mitigation of green house gases

    International Nuclear Information System (INIS)

    Rey, Francisco Carlos

    2009-01-01

    This paper analyzes the cost-effectiveness in the mitigation of green house gases from solar, eolic and nuclear energy sources, concluding that nuclear is, not doubt, the mos efficient. On the other hand, nuclear is the unique source that can be installed without limit in magnitude and in the proximity of the demand, and is for all these reasons that several environmental referents in the world have changed their perception on this source and defend it as the unique actual alternative to fight against the emission of green house gases. (author) [es

  6. Model of Emissions of Greenhouse Gases (Ghg's in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008.

  7. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  8. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  9. Effect van inkuilmanagement op emissie van broeikasgassen op bedrijfsniveau = Effect of ensiling management on emission of greenhouse gases at farm level

    NARCIS (Netherlands)

    Schooten, van H.A.; Philipsen, A.P.

    2011-01-01

    This report described the losses during harvesting, storage and feed out period of grass silage. It was estimated that there was a considerable risk of extra losses due to aerobic deterioration and moderate conservation. Farmrelated computations showed that economics and emission of greenhouse gases

  10. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  11. African Anthropogenic Emissions Inventories for gases and particles from 1990 to 2016

    Science.gov (United States)

    Liousse, Catherine; Keita, Sekou; N'Datchoch Touré, Evelyne 1; Doumbia, Thierno; Yoboué, Véronique; Assamoi, Eric; Haslett, Sophie; Roblou, Laurent; Léon, Jean-François; Galy-Lacaux, Corinne; Akpo, Aristide; Coe, Hugh

    2017-04-01

    Presently, there is one African regional inventory dealing with biofuel and fossil fuel emissions (Liousse et al., 2014) and only global emission inventories including Africa. Developing a regional inventory for gases and particles is not an easy task: the DACCIWA project has allowed to organize a framework suitable for this development through regrouping several investigators. The aim is to set an African database on fuel consumption and new emission factor measurements and to include other sources of pollution than biofuel and fossil fuel such as flaring and waste burning yet not negligible in Africa. The inclusion of these sources in the new inventory and also new emissions factor measurements will reduce the uncertainties on anthropogenic emissions in Africa. This work will present the first version of African fossil fuel (FF), biofuel (BF), gas flaring and waste burning emission inventories for the 1990-2016 period for the major atmospheric compounds (gases and particles) provides up to date emission fields at 0.125° x 0.125° spatial resolution and yearly temporal resolution that can be used to model atmospheric composition and impacts over West Africa. New emission factor measurements on ground and in combustion chambers will be discussed. Temporal variability of emissions from 1990 to 2016 will be scrutinized. In parallel, uncertainties on existing biomass burning emission inventories will be presented. New emission inventories based on MODIS burnt area products and AMMABB methodology have been developed for the period 2000-2012. They will be compared with GFED and GFAS products. Finally, tests on these inventories in Regional Climate Model (RegCM) at African scale will be presented for different years.

  12. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  13. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  14. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  15. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  16. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  17. A comparative analysis of methodology for inventory of greenhouse gases emissions - IPCC and CORINAIR

    International Nuclear Information System (INIS)

    Vasilev, Kh.

    1998-01-01

    The inventory of greenhouse gases (GHG) is performed by two accepted methods - CORINAIR (of EU) and IPCC (of UN Intergovernmental Panel on Climate Changes). The first one is applied only in European countries, the second is conformable to GHG emissions from all over the world. The versions IPCC-95 and CORINAIR94 are compared from theoretical and methodological point of view. In Bulgaria the version CORINAIR95 is not applied yet and the inventory analysis for 1994 uses CORINAIR90. The emissions of main GHG and gases-precursors are compared. The main elements of inventory are analyzed. The values recommended by CORINAIR94 are taken into account. A table for accordance between the two methods is used. The differences concerning transport vehicles are taken into account also. Differences between the two methods are noticed in the following directions: nomenclature of the activities emitting GHG; organization of the inventory guides; kind of the activities and technologies included. The qualitative comparison are done for energy sector and for industry separately. The results show too big differences in the volume of the emitted GHG and the reasons could be classified as methodological ones and differences in the kind and values of the emission coefficients. For their determining standard values for Eastern Europe from IPCC guide have been applied as well as data from experimental investigations. Respectively, in the method CORINAIR emission coefficients CORINAIR90 are used. The differences between the emission coefficients determined in the two methods are as big as twice or even more for CO at solid fuels, i.g. at energy production; as big as three times at NO x and up to twenty times at methane also at solid fuels. The two methods do not read the emissions of gases-precursors at some industrial processes. This disadvantage is overcome at IPCC96 and it is necessary to complement the emission coefficients in the data base, especially for gases-precursors regarding the

  18. The potentional of renewable energy sources for greenhouse gases emissions reduction in Macedonia

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandar

    2012-01-01

    Full Text Available As European Union (EU candidate country, Macedonia is in the process of adoption of the EU strategic energy policies, harmonization of the national legislation with the EU legislation and defining the respective national goals. In this regard, the government has recently adopted a National Strategy for Utilization of Renewable Energy Sources (RES, prepared by ICEIM-MANU. The main goal of this paper is to assess the potential for greenhouse gases (GHG emissions reduction by implementation of 21%-RES-scenarios from the Strategy. The corresponding emissions reduction is calculated against the baseline (reference scenario developed within the Second National Communication on Climate Change. Furthermore, all potential RES technologies are analyzed from economic aspect and combined in a form of emissions reduction cost curve, displaying the total marginal cost of the GHG emissions reduction by RES. Finally, on the bases of the environmental and economic effectiveness of the considered RES technologies, as well as taking into account the country specific barriers, the priority actions for GHG emissions reduction are identified.

  19. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  20. Elements for a policy of greenhouse effect gases reduction; Elements pour une politique de reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO{sub 2} emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  1. Inventory and projection of greenhouse gases emissions for Sumatera Utara Province

    Science.gov (United States)

    Ambarita, H.; Soeharwinto; Ginting, N.; Basyuni, M.; Zen, Z.

    2018-03-01

    Greenhouse Gases (GHGs) emissions which result in global warming is a serious problem for the human being. Total globally anthropogenic GHG emissions were the highest in the history of the year 2000 to 2010 and reached 49 (4.5) Giga ton CO2eq per year in 2010. Many governments addressed their commitment to reducing GHG emission. The Government of Indonesia (GoI) has released a target in reducing its GHG emissions by 26% from level business as usual by 2020, and this target can be increased up to 41% by international aid. In this study, the GHG emissions for Sumatera Utara province are assessed and divided into six sectors. They are Agricultural, Land Use and Forestry, Energy, Transportation, Industrial, and Waste sectors. The results show that total GHG emissions for Sumatera Utara province in the baseline year 2010 is 191.4 million tons CO2eq. The business-as-usual projection of the GHG emission in 2020 is 354.5 million tons CO2eq. Mitigation actions will reduce GHG emissions up to 30.5% from business as usual emission in 2020.

  2. The greenhouse gases emissions allowances trading in the Czech Republic

    International Nuclear Information System (INIS)

    Chemisinec, Igor; Marvan, Miroslav; Tuma, Jiri

    2006-01-01

    The energy policy of the State is very important for a state development. The aim of this policy is power energy development, which is essential for improving the quality of life and standards of people's living in every country. Unfortunately, power energy development also has a negative impact; primarily on the environment. Some possible solutions exist for reduction of the power energy negative impacts. This paper deals with reduction of greenhouse gases (GHG) emissions in the Czech Republic according to the Kyoto protocol to the United Nations Framework Convention climate change. The ultimate objective of the United Nations Framework Convention on Climate Change is to achieve stabilization of greenhouse gas concentrations in the atmosphere. The GHG emissions allowances trading as one of the instruments for stabilisation of GHG emissions is described in the paper. (authors)

  3. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  4. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  5. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  6. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.

    Science.gov (United States)

    Chen, Tsao-Chou; Lin, Cheng-Fang

    2008-06-30

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.

  7. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    Chen, T.-C.; Lin, C.-F.

    2008-01-01

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  8. Further decrease of the emission of greenhouse gases in the Netherlands

    International Nuclear Information System (INIS)

    Olsthoorn, K.

    2007-01-01

    Calculations of the CBS (Statistics Netherlands) and the Netherlands Environmental Assessment Agency (MNP) show that in 2006, for the second year in a row, the emission of greenhouse gases in the Netherlands have decreased. At 208 billion kg CO2-equivalents it was 3% below the level of 1990, the base year of the Kyoto protocol.(mk) [nl

  9. Interaction and coupling in the emission of greenhouse gases from animal husbandry

    NARCIS (Netherlands)

    Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A.

    2001-01-01

    The gases methane (CH4) and nitrous oxide (N2O) contribute to global warming, while N2O also affects the ozone layer. Sources of greenhouse gas emissions in animal husbandry include animals, animal houses (indoor storage of animal excreta), outdoor storage, manure and slurry treatment (e.g.,

  10. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO 2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO 2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO 2 gases, is likely to become the determining factor. (UK)

  11. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  12. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  13. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  14. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    Science.gov (United States)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and

  15. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  16. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  17. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)

    Science.gov (United States)

    Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, June-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang

    2018-01-01

    We present a new data set of annual historical (1750-2014) anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs), carbonaceous aerosols (black carbon - BC, and organic carbon - OC), and CO2 developed with the Community Emissions Data System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  18. Anticipated changes in the emissions of green-house gases and ammonia from pork production due to shifts from fattening of barrows towards fattening of boars

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Berk, Andreas; Otten, Caroline

    2013-01-01

    Greenhouse gases and of ammonia emissions from pork production will change when fattening of barrows switches towards to fattening of (intact) boars. The results of an accurate feeding experiment allow for the differentiation of the effects on emissions of gender (differentiating in boars, barrow...

  19. Impact of Trade Openness and Sector Trade on Embodied Greenhouse Gases Emissions and Air Pollutants

    OpenAIRE

    Islam, Moinul; Kanemoto, Keiichiro; Managi, Shunsuke

    2016-01-01

    The production of goods and services generates greenhouse gases (GHGs) and air pollution both directly and through the activities of the supply chains on which they depend. The analysis of the latter—called embodied emissions—in the cause of internationally traded goods and services is the subject of this paper. We find that trade openness increases embodied emissions in international trade (EET). We also examine the impact of sector trade on EET. By applying a fixed-effect model using large...

  20. Norwegian environmental policy: From continued increase of the emission of greenhouse gases to decrease

    International Nuclear Information System (INIS)

    2002-01-01

    According to Norway's Minister of the Environment, Norway will be one of the first among the industrialized countries to ratify the Kyoto Protocol on the emission of greenhouse gases. The tax on carbon dioxide will be continued and from 2005 there will be a national quota system for emission from sources not previously included. Several other measures have also been proposed. The current regulations admit 16 percent increase in the emissions up to 2008, while the measures proposed by the government and listed in this article may give a reduction of 12 percent

  1. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  2. Import of combustible waste and its impact on emissions of climate gases

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Maarten; Sundberg, Johan (Profu, Moelndal (Sweden))

    2010-07-01

    Import of combustible waste for waste incineration in Sweden has increased over the last decade and prognosis show that importation will increase even further in the future. The reason for the projected increase is that many new incineration facilities are being built and several of those plan to use a portion of imported combustible waste as fuel. From an environmental perspective import of waste is controversial and some argue that the import short be restricted. Because of this controversial aspect it is essential to conduct a comprehensive analysis of the environmental impacts of the importation of combustible waste to Swedish incineration facilities. This project is a study of the impact of the import of combustible waste on climate emissions. This is a system analysis study which included both direct as well as indirect emissions from the activity of importation of combustible waste. Direct emissions occur from the incineration of waste while indirect emissions occur in systems that interact with the incineration facility. These systems are: transport of waste, alternative waste treatment, alternative electricity production and alternative heat production in the district heating system which the incineration facility is connected with. From the perspective of a system analysis the import of combustible waste to incineration leads to the following consequences regarding emissions of climate gases: - The imported waste is used as fuel in the incineration facility which generates heat and electricity. During the combustion process climate gases are being emitted - As the combustible waste is being imported it has to be transported from the country of origin to the incineration facility. The vehicle used for the transport is emitting climate gases - By importing combustible waste an alternative treatment method in the country of origin is avoided by that country. Emissions from the alternative treatment method are thereby avoided - Import of combustible waste

  3. Environment taxation and greenhouse gases (general tax on energy polluting activities and emissions trading)

    International Nuclear Information System (INIS)

    Parayre, P.; Bruhnes, P.; Huglo, Ch.

    2000-12-01

    This document brings together 11 expert testimonies about the French general tax on polluting activities (GTPA). Content: 1 - the GTPA today and in 2001: the first year GTPA, the GTPA 2001 in the water sector, the everyday formal procedures linked with GTPA, the contentious aspects of GTPA; 2 - the eco-tax or energy-GTPA: European framework of energy products taxing, enforcement and implementation of the energy-GTPA in France; 3 - the negotiable emission permits: negotiable permits for companies with a strong energy intensity, functioning of emission permits in a global strategy, the position of the European Commission about negotiable permits and the perspectives in this domain at the community level; 4 - towards a reduction of greenhouse gases: the Goeteborg protocol, the consequences of La Haye's COP6, the position of a type-sector, an efficient system for the abatement of greenhouse gases by the producing sector. (J.S.)

  4. Historical (1750–2014 anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS

    Directory of Open Access Journals (Sweden)

    R. M. Hoesly

    2018-01-01

    Full Text Available We present a new data set of annual historical (1750–2014 anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs, carbonaceous aerosols (black carbon – BC, and organic carbon – OC, and CO2 developed with the Community Emissions Data System (CEDS. We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  5. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°

    NARCIS (Netherlands)

    Olivier, J.G.J.; Bouwman, A.F.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Maas, C.W.M. van der; Zandveld, P.Y.J.

    1999-01-01

    A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by

  6. Which climate gases is it the most important to reduce?

    International Nuclear Information System (INIS)

    Godal, Odd; Fuglestvedt, Jan

    2002-01-01

    If the Kyoto Protocol had used another method for comparing the various climate gases, Norway might have had to implement more and more expensive measures. The selection of methods may be important for the making of new agreements after Kyoto. Calculations show the importance of the comparison methods for the various climate gases in negotiating new climate agreements. The Kyoto Protocol regulates the total emission of climate gases carbon dioxide (CO 2 ), methane (CH 4 ), laughing gas (N 2 O) and sulphur hexafluoride (SF 6 ), and halo fluoro carbons and perfluoro carbon. It is up to each country to choose which of these gases to concentrate on, and a tool is therefore needed to compare the effects of the various gases. In the Kyoto agreement, this is done by means of the global warming potential (GWP) of each gas over a period of 100 years. But different climate gases have different atmospheric residence times and it is not evident how the gases must be compared. Reducing the emission of methane has a strong and short-term effect while reducing the emission of carbon dioxide has a weaker but more lasting effect. Researchers have suggested other ways of comparison than the one used in the Kyoto Protocol. Among other things one may calculate the global warming potential for another time horizon than 100 years. Researchers at Cicero have investigated the consequences of two other ways of weighing climate gases: GWP(20) with time horizon of 20 years gives more weight to short-lived gases like methane, while GWP(500) with a time horizon of 500 years is more favourable to the long-lived gases. To see how much the selection of comparing method means in practice, the consequences for Norway using GWP(20) or GWP(500), have been calculated

  7. Technical papers 2: regional evaluation of the greenhouse gases emissions bound to the energy; Cahiers techniques 2: bilan regional des emissions de gaz a effet de serre liees a l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The regional evaluation of the greenhouse gases emissions is realized in the framework of the climatic change fight. This technical paper aims to give regions information on the greenhouse gases emissions bound the the energy consumption. It provides a sectoral analysis in function of the energy sources and pollution sources. (A.L.B.)

  8. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  9. The viewpoints of chemical air pollution caused by traffic subsystems and presented by the example of emission measurements of trucks' exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Kolaric, D. [Vocational College of Traffic and Transport Maribor (Slovenia)

    2011-07-01

    For a long time, experts have been emphasizing that we are in an era in which dangerous climatic changes are getting more and more notable. We have been witnessing large climatic changes caused by greenhouse gases for several years. The use of different ways of transport has a bad influence on the environment in which we daily live and work, and on human health and nature, too. For that reason, we cannot treat the safety of the transportation means only through the technical impeccability of the devices which make possible direct execution of particular technological phases in different traffic subsystems. Ecological impacts of particular traffic subsystems are very complex, and have a long-term impact on our everyday existence. Despite this we still do not devote enough attention to this. We have been aware that traffic, especially road and air traffic, is one of the largest sources of emissions of harmful exhaust gases of combustion engines and particles into the environment. The environmental impact of traffic is especially large due to greenhouse gases, which are part of exhaust gases being produced by internal combustion engines. In addition to that, there are many more toxic components in exhausted gases. For effective reduction of harmful emissions in transport, a wide spectrum of analysis and measurements must be carried out. In 2007, the first realistic freight vehicle measurements in the Republic of Slovenia were published. The TRAENVIA project precisely evaluated some types of transportation emissions, especially on long freight distances and reached some comprehensive goals: measure and compare real emissions caused by different transport means in real terms of traffic flow, to evaluate the influence of those emissions on the environment and air quality, to evaluate the contribution of the transport sector in urban areas to air pollution, to evaluate the influence on the air quality for several means of transport, to evaluate potential possibilities and

  10. Remote sensing FTIR-system for emission monitoring and ambient air control of atmospheric trace gases and air pollutants; Remote sensing FTIR-System zur Emissions- und Immissionsmessung atmosphaerischer Spurengasse und Luftschadstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, T; Mosebach, H; Bittner, H [Kayser-Threde GmbH, Muenchen (Germany)

    1994-01-01

    The Fourier Transform Infrared spectrometer K300, based on the double-pendulum interferometer, is due to its optical design particularly suitable for high resolution remote sensing emission and transmission (long path monitoring) measurements of air pollutants and atmospheric trace gases in the field. The applications encompass direct emission measurements of hot flue gases and aircraft engine exhaust as well as surveillance of industrial complexes and waste disposal sites and ambient air control of e.g. traffic polluted sites. For direct emission measurements the infrared radiation of hot gases is utilized. Monitoring of cold diffuse emissions (e.g. at waste disposal sites) and ambient air control is carried out applying a bistatic transmission configuration with an artificial infrared source (glowbar) facing the instrument from a distance up to several hundred meters (long-path monitoring). Following a short introduction of the measurement technique and system, results from the above mentioned applications, obtained during several field studies are depicted and discussed. 19 refs., 8 figs., 12 tabs.

  11. Emission of flue gases from industrial boilers and generators and their control

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Shareef, A.; Hashmi, D.R.

    2005-01-01

    Analysis of flue gases in the Stacks was carried out for 17 gas-fired boilers and 19 gas/diesel-fired generators and the concentrations of CO, NO/sub 2/, NO/sub x/ NO/sub 2/ SO/sub 2/ and C/sub x/ H/sub y/ were studied in the stack- emissions. The results have then been discussed with reference to the permissible limits, as per National Environmental Quality Standard. Higher concentration of co was observed in some boilers, and of CO and NO/sub x/ in some generators. Some effects of major air-pollutants have also been discussed as regards the human health, vegetables and materials. Some remedial measures have also been discussed to limit the concentration of air pollutants emitted from boilers and generators. (author)

  12. Effect of Electric Field in the Stabilized Premixed Flame on Combustion Process Emissions

    Science.gov (United States)

    Otto, Krickis

    2017-10-01

    The effect of the AC and DC electrical field on combustion processes has been investigated by various researchers. The results of these experiments do not always correlate, due to different experiment conditions and experiment equipment variations. The observed effects of the electrical field impact on the combustion process depends on the applied voltage polarity, flame speed and combustion physics. During the experiment was defined that starting from 1000 V the ionic wind takes the effect on emissions in flue gases, flame shape and combustion instabilities. Simulation combustion process in hermetically sealed chamber with excess oxygen amount 3 % in flue gases showed that the positive effect of electrical field on emissions lies in region from 30 to 400 V. In aforementioned voltage range carbon monoxide emissions were reduced by 6 % and at the same time the nitrogen oxide emissions were increased by 3.5 %.

  13. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  14. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    OpenAIRE

    Delucchi, Mark

    1997-01-01

    The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (IPCC, 1995) , and in most industrialized countries the use of transportation fuels and electricity accounts for a major fraction of all energy-related emissions. In the transportation sector alone, emissions of carbon dioxide (CO2) from the production and use of motor-vehicle fuels account for as much as 30% of CO2 emissions from the use of all fossil fuels (DeLuchi, 1991). The production and...

  15. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    International Nuclear Information System (INIS)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-01-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO 2 and CH 4 . In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 o C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH 4 . (author)

  16. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  17. The metal industry in Norway: Economy, employment and emission of climate gases; Metallindustrien i Norge: Oekonomi, sysselsetting og utslipp av klimagasser

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    1998-11-01

    This document presents various types of data on the metal industry in Norway as a basis for further analysis and discussion. Being energy intensive, the Norwegian metal industry has profited from the availability of hydroelectric power. The factories are often located in sparsely populated areas. In the production of aluminium, carbon dioxide is emitted to the atmosphere. A table lists all the Norwegian smelteries and their emissions of the greenhouse gases. Some of these emissions are fluoride gases with heating potentials up to 9200 times that of carbon dioxide. The emissions of SF6 are small in mass, but large in heating effect, 23900 times that of carbon dioxide. The total emission of climate gases from Norway is 59 million ton CO2 equivalents and 11% of this is due to the part of the metal industry described in this document. The total consumption of electricity of the factories included in this analysis is 25 TWh, which is 2/3 of the consumption by private households. The metal industry is not work intensive; the last twenty years the numbers of employees have decreased by 50%. But these factories are very important for the local communities. The metal industry is exposed to competition; the large fluctuation in prices on metals leads to fluctuation in the profit of the companies. Finally the report discusses the metal industry in a global context. Norway is committed to the Kyoto Protocol and the impact of this commitment on the metal industry is not clear. 2 refs., 8 figs., 9 tabs.

  18. Energy and climatic change: within 30 years, divide France's emissions of greenhouse gases in three

    International Nuclear Information System (INIS)

    Prevot, H.

    2003-01-01

    Fighting against global warming means cutting down on greenhouse gases. France can significantly reduce its emissions by seriously modifying life-styles without disrupting them. The population will accept this all the better as far as it is deeply concerned with the issues. (author)

  19. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  20. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  1. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  2. Studies on the Gases Emission under High Temperature Condition from Moulding Sands Bonded by Modified Starch CMS-Na

    Directory of Open Access Journals (Sweden)

    Kaczmarska K.

    2017-03-01

    Full Text Available Emission of gases under high temperature after pouring molten metal into moulds, which contain the organic binder or other additives (solvents or curing agent, may be an important factor influencing both on the quality of the produced castings, and on the state of environment. Therefore, a comprehensive study of the emitted gases would allow to determine restrictions on the use of the moulding sands in foundry technologies, eg. the probability of occurrence of casting defects, and identify the gaseous pollutants emitted to the environment. The aim of the research presented in this paper was to determine the amount of gases that are released at high temperatures from moulding sands bonded by biopolymer binder and the quantitative assessment of the emitted pollutants with particular emphasis on chemical compounds: benzene, toluene, ethylbenzene and xylenes (BTEX. The water-soluble modified potato starch as a sodium carboxymethyl starch with low (CMS-NaL or high (CMS-NaH degree of substitution was a binder in the tested moulding sands. A tests of gases emission level were conducted per the procedure developed at the Faculty of Foundry Engineering (AGH University of Science and Technology involving gas chromatography method (GC. The obtained results of the determination of amount of BTEX compounds generated during the decomposition process of starch binders showed lower emission of aromatic hydrocarbons in comparison with binder based on resin Kaltharz U404 with the acidic curing agent commonly used in the foundries.

  3. Overview of existing studies on full-energy-chain (FENCH) emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Literature on investigations into full-energy-chain emissions of greenhouse gases is scanty. Fourteen different studies are reviewed most of which deal with energy use only in parts of the fuel chain or with CO 2 only. The scatter in full-energy-chain emissions factors of individual energy sources is not very large, except that in the emission factors of gas-fired power, biomass-fueled power and hydropower generation. The sources of this scatter are discussed. Fossil fuels have emission factors in the range of 500-1200 g CO 2 equiv./kW(e).h. Wind, nuclear and geothermal power generation are in the range of low emission factors: 10-70 g CO 2 equiv./kW(e).h. Emission factors of hydropower and sustainable biomass-fueled power generation range 10-400 and 40-180 g CO 2 equiv./kW(e).h, resp. The solar and ocean power generating sources are in the range of 100-300 g CO 2 equiv./kW(e).h. (author). 14 refs, 2 figs, 3 tabs

  4. Inventory of Greenhouse Gases Emissions from Gasoline and Diesel Consumption in Nigeria

    Directory of Open Access Journals (Sweden)

    S. O. Giwa

    2017-06-01

    Full Text Available Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs released into the environment through consumption of fuels (gasoline and diesel in Nigeria from 1980 to 2014. The fuel consumption data for the period in view were sourced from bulletins released by Nigeria National Petroleum Corporation, (NNPC and were utilized for GHGs estimation based on default emission factors (69300 kg/TJ (CO2; gasoline, 74100 kg/TJ (CO2; diesel, 18 kg/TJ (CH4; gasoline, 3.85 kg/TJ (CH4; diesel, 1.9 kg/TJ (N2O; gasoline and 2.25 kg/TJ (N2O; diesel. In addition, the uncertainty and sensitivity analyses associated with the inventory were carried out. Total amount of GHGs emitted into the environment for the period under consideration was 7.30 x 108 tCO2 e (5.20 x 108 tCO2 e and 2.10 x 108 tCO2 e of gasoline and diesel, respectively. It is worth noting that gasoline consumption accounted for 71.23% of the total amount of GHGs with CO2 making up 98.72 % (CH4 = 1.39 % and N2O = 0.61 % of the emissions. For this study, uncertainty of estimate was between -80.93 % and 78.36 % while volume of diesel is more sensitive than the volume of gasoline of the input parameters. National policy and enforcement on low or neutral emission fuels utilization are amongst the recommended actions toward reducing GHG emissions in the country.

  5. Comparative study of emission of pollutant gases in vehicle M1, using fuel of the Andean Community

    OpenAIRE

    Jaime Fernando Antamba Guasgua; Guillermo Gorky Reyes Campaña; Miguel Estuardo Granja Paredes

    2016-01-01

    The environmental pollution is a problematics that concerns all countries about the world as result of this pollution there take place the phenomena of climate change, greenhouse effect, acid rain, and diseases in people. To delimit the issues, there were selected the countries that integrate the Andean Community, the project goal is compare by means of static and dynamic tests the values of emission of pollutant gases, with the fuel that is distributed in each of the selected countries. The ...

  6. Emissions from animal husbandry. Greenhouse gases, environmental assessment, state of the art; Emissionen der Tierhaltung. Treibhausgase, Umweltbewertung, Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    following the application of livestock manure - an integrated approach (Rachel E. Thorman); (19) Political and administrative instruments for the abatement of greenhouse gas emissions from EU agriculture (Thomas Fellmann); (20) Best available techniques (BAT) - State of the revision of the BAT reference document (Ewald Grimm); (21) Emission abatement measures in pig farming (Wilhelm Pflanz); (22) Cost of ammonia emission abatement (Sebastian Wulf); (23) Measures to reduce emissions and immissions from livestock farming - implementation and inspection (Stefan Neser); (24) Emissions from animal husbandry in Austria: assessment and reporting (Barbara Amon); (25) Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: housing and manure storage (Barbara Amon); (26) Ascertainment and assessment of energy use in livestock farming - the example of dairy farming (Werner Berg); (27) Ammonia emissions from a broiler farm: Influence of emitted concentrations on adjacent woodland (Kristina von Bobrutzki); (28) Exhaust air treatment in animal housings - How efficient are certified systems in practice? (Lars Broer); (29) Revision of methods and data for the assessment of greenhouse gas and ammonia emissions from German pig production (Ulrich Daemmgen); (30) The effect of diet composition and feeding strategies on excretion rates in German pig production (Ulrich Daemmgen); (31) Strategies for the mitigation of greenhouse gas emissions in organic dairy farming (Andreas Gattinger); (32) Calculation of emissions of greenhouse gases, ammonia and particulate matter from animal husbandry within the German agricultural emission inventory (Hans-Dieter Haenel); (33) Modelling fluxes of matter and energy for mammals in the agricultural emission inventory by taking the example dairy cow (Hans-Dieter Haenel); (34) Requirements for measures to reduce ammonia emissions from cattle husbandry (Margret Keck); (35) Sustainable nutrient management in intensive livestock areas

  7. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    Science.gov (United States)

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  8. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    International Nuclear Information System (INIS)

    Pacheco, M; Valdivia, R; Pacheco, J; Rivera, C; Alva, E; Santana, A; Huertas, J; Lefort, B; Estrada, N

    2012-01-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  9. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    International Nuclear Information System (INIS)

    Wu Jisong; Zhang Yongjie

    2008-01-01

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO 2 emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO 2 using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy

  10. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jisong [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: js_wub@buaa.edu.cn; Zhang Yongjie [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-09-15

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO{sub 2} emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO{sub 2} using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy.

  11. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jisong; Zhang, Yongjie [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-09-15

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO{sub 2} emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO{sub 2} using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy. (author)

  12. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-07-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO{sub 2} and CH{sub 4}. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 {sup o}C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH{sub 4}. (author)

  13. Contribution of the renewable energies to the decrease of the greenhouse gases emission for 2010; Contribution des EnR a la reduction des emissions de gaz a effet de serre a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-03-01

    To illustrate the renewable energies contribution to the decrease of the greenhouse gases emission in 2010 (19 Mt of CO{sub 2} per year, of greenhouse gases emission avoided), this document presents the different renewable energies sources and the international context of their implementation. Today data and estimations for 2010 are provided. (A.L.B.)

  14. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention

    Directory of Open Access Journals (Sweden)

    J. L. Campos

    2016-01-01

    Full Text Available The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG such as carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O, as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed: (1 minimization through the change of operational conditions, (2 treatment of the gaseous streams, and (3 prevention by applying new configurations and processes to remove both organic matter and pollutants. In current WWTPs, to modify the operational conditions of existing units reveals itself as possibly the most economical way to decrease N2O and CO2 emissions without deterioration of effluent quality. Nowadays the treatment of the gaseous streams containing the GHG seems to be a not suitable option due to the high capital costs of systems involved to capture and clean them. The change of WWTP configuration by using microalgae or partial nitritation-Anammox processes to remove ammonia from wastewater, instead of conventional nitrification-denitrification processes, can significantly reduce the GHG emissions and the energy consumed. However, the area required in the case of microalgae systems and the current lack of information about stability of partial nitritation-Anammox processes operating in the main stream of the WWTP are factors to be considered.

  15. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, P.R.; Meeker, K. (New Mexico Institute of Mining and Technology, Socorro (USA)); Finnegan, D. (Los Alamos National Lab., NM (USA))

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gases and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.

  16. Greenhouse gases emission from the sewage draining rivers.

    Science.gov (United States)

    Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang

    2018-01-15

    Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO 2 , CH 4 and N 2 O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH 4 was more obvious than the others. CO 2 and N 2 O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH 4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO 3 - +NO 2 - -N) and ammonia (NH 4 + -N) were positively correlated with CO 2 concentration and CH 4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH 4 concentration and N 2 O concentration. The effect of

  17. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    International Nuclear Information System (INIS)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-01-01

    Highlights: • Earthworms significantly decreased emissions of N 2 O and CH 4 , but had a marginal effect on CO 2 emission. • NH 3 , N 2 O, and CH 4 emissions were significantly reduced by reed straw and zeolite, CO 2 emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH 3 ), and greenhouse gases (GHG), including nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH 3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH 3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N 2 O, CH 4 , and CO 2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg −1 DM to 274.2, 30.4, and 314.0 mg kg −1 DM, respectively. Earthworms and amendments significantly decreased N 2 O and CH 4 emissions. Emission of CO 2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH 3 emission ranged from 3.0 to 8.1 g kg −1 DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N 2 O, CH 4 , and NH 3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer

  18. Electric energy auctions in Brazil and its effect on emissions of greenhouse gases by the electric sector; Leiloes de energia eletrica no Brasil e sua influencia nas emissoes de gases de efeito estufa pelo setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo; Pereira, Osvaldo Livio Soliano [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    The result of the auctions of electricity, after the new regulatory framework in 2004, has shown the increased participation of fossil sources of thermal generation, contributing to increased emission of greenhouse gases by the Brazilian Electricity Sector. This article aims to analyze the correlation between growth in electric generation sector and rising greenhouse gases, especially through the study of the winning projects of electric power auctions conducted with the advent of the New Institutional Model of the Power Sector from 2004, comparing with the existing policies and prospects of the next auction of the electric sector. (author)

  19. Greenhouse effect: A first estimation of the emissions in Italy

    International Nuclear Information System (INIS)

    Gaudioso, D.; Onufrio, G.

    1991-03-01

    The estimate of the anthropogenic emissions of greenhouse gases and the selection of the relevant emission factors represents a preliminary condition to define policies aiming at curbing these emissions. In the first part of this paper there is an analysis of C0 2 emission factors, referred to the various fuels and energy technologies. The values at issue take into account the physico-chemical composition of the different fossil fuels, as well as the overall efficiency of energy production cycles and end uses patterns. As concerns the other greenhouse gases, the available information is summarized at a much more integrate level. The second part presents some estimates of carbon dioxide emissions in Italy, by sector and by fuel; some characteristic levels of specific emissions are also identified. A comparative estimate for CH 4 , N 2 O, CO and CFC's is also made, in order to set up a first reference table of the emissions of greenhouse gases in our country. (author)

  20. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Directory of Open Access Journals (Sweden)

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  1. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  2. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO 2 ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO 2 -equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO 2 -equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  3. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  4. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  5. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure.

    Science.gov (United States)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-08-01

    Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg(-)(1) DM to 274.2, 30.4, and 314.0 mg kg(-1) DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg(-1) DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. EMISSION MEASUREMENTS OF GEOGENIC GREENHOUSE GASES IN THE AREA OF "PUSTY LAS" ABANDONED OILFIELD (POLISH OUTER CARPATHIANS

    Directory of Open Access Journals (Sweden)

    Piotr Guzy

    2017-07-01

    Full Text Available The emission of geogenic methane and carbon dioxide contributes to the world climate changes. The results of studies run worldwide demonstrate that the emission of geogenic gases strongly influences the increasing concentrations of greenhouse gases in the atmosphere, including methane and carbon dioxide. The Outer Carpathians reveal significant hydrocarbon potential and host numerous macro- and microseepages of hydrocarbons including the natural gas. Migration of hydrocarbons from deep accumulations towards the surface is controlled by diffusion and effusion. It appears that the Carpathians may play significant role as a supplier of greenhouse gases to the atmosphere.Before the World War II, oil macroseepages were the principal premises in petroleum exploration. In the Carpathians, hydrocarbons have been exploited since the XIX century. Unfortunately, most of discovered oil and gas deposits are recently only the historical objects. An example is the Sękowa-Ropica Górna-Siary oil deposit located in the marginal part of the Magura Nappe where oil has been extracted with dug wells until the mid XX century. One of such extraction sites is the "Pusty Las" oilfield. In that area, 10 methane and carbon dioxide emission measurement sites were located, among which 4 in dried dug wells and 6 in dig wells still filled with oil and/or water. Dynamics of methane and carbon dioxide concentration changes were measured with the modified static chambers method. Gas samples were collected immediately after the installation of the chamber and again, after 5 and 10 minutes. In the case of reclaimed or dry dug wells, static chamber was installed directly at the ground surface. In wells still filled with oil and/or water the chamber was equipped with an "apron" mounted on special sticks.The dynamics of concentrations changes varied from -0.871 to 119.924 ppm∙min-1 for methane and from -0.005 to 0.053 %obj∙min-1 for carbon dioxide. Average methane emission was 1

  7. The Norwegian Emission Inventory 2010. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond (ed.)

    2010-06-15

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency (Klif) and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emissions models like e.g. the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2010) for documentation on this topic. This report replaces the previous documentation of the emission model, (Sandmo 2009), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Emissions of CH{sub 4} and N{sub 2}O from well testing of crude oil off shore have been included - these have previously not been estimated Emissions of CH{sub 4} from enteric fermentation have increased for the whole

  8. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  9. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA

  10. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA) from

  11. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinzhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Zhengyi, E-mail: zhyhu@ucas.ac.cn [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Xingkai [State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Jiang, Xia; Zheng, Binghui [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Liu, Xiaoning [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Pan, Xubin [Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100029 (China); Kardol, Paul [Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, S 90183 Umeå (Sweden)

    2014-08-15

    Highlights: • Earthworms significantly decreased emissions of N{sub 2}O and CH{sub 4}, but had a marginal effect on CO{sub 2} emission. • NH{sub 3}, N{sub 2}O, and CH{sub 4} emissions were significantly reduced by reed straw and zeolite, CO{sub 2} emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH{sub 3}), and greenhouse gases (GHG), including nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH{sub 3} and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH{sub 3} and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N{sub 2}O, CH{sub 4}, and CO{sub 2} emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg{sup −1} DM to 274.2, 30.4, and 314.0 mg kg{sup −1} DM, respectively. Earthworms and amendments significantly decreased N{sub 2}O and CH{sub 4} emissions. Emission of CO{sub 2} was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH{sub 3} emission ranged from 3.0 to 8.1 g kg{sup −1} DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N{sub 2}O, CH{sub 4}, and NH{sub 3} from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.

  12. Emissão de gases do efeito estufa em diferentes usos da terra no bioma Cerrado

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2011-02-01

    Full Text Available A conversão de áreas nativas com o corte e queima de vegetação seguida do cultivo do solo resultam em mudanças na dinâmica da matéria orgânica do solo, com alterações nas emissões dos gases causadores de efeito estufa (GEE: CO2, CH4 e N2O da biosfera para a atmosfera, que causam a elevação da temperatura média e, consequentemente, as mudanças climáticas globais. O objetivo deste estudo foi verificar as relações entre os fluxos de CO2, CH4 e N2O com a umidade, biomassa microbiana e as formas inorgânicas de N no solo com diferentes usos das terras no bioma Cerrado (Rio Verde, Goiás. O clima da região é do tipo Aw (Köppen-Geiger, e o solo foi classificado como Latossolo Vermelho distrófico caulinítico textura argilosa com vegetação original de Cerradão. O delineamento experimental foi inteiramente casualizado (DIC, com quatro tratamentos (áreas: vegetação nativa - Cerradão (CE; pastagem (PA de braquiária, semeadura convencional (SC de soja; e semeadura direta (SD de milho sucedido por milheto. As emissões anuais de CO2 e N2O não mostraram diferenças significativas entre os tratamentos; isso ocorreu devido à elevada variação nos fluxos dos gases em decorrência da sazonalidade no clima, com as menores emissões observadas durante o inverno, devido à ausência da umidade do solo. A média na emissão de CO2 foi de 108,9 ± 85,6 mg m-2 h-1 , e para o N2O, de 13,5 ± 7,6 µg m-2 h-1. Os fluxos de CH4 apresentaram diferenças significativas somente para a pastagem, com emissão de 32 µg m-2 h-1 , enquanto nas demais áreas foram observados influxos entre 46 e 15 µg m-2 h-1 . Com os resultados das correlações, pode-se verificar que a umidade foi a variável do solo que apresentou maior correlação com o fluxo dos três gases de efeito estufa. O teor de N-NO3- e as emissões de CO2 mostraram correlações para todas as áreas. Quando consideradas as correlações para todos os tratamentos conjuntamente

  13. Emission of toxic explosive and fire hazardous gases in coal piles stored under atmospheric conditions. Part I

    International Nuclear Information System (INIS)

    Grossman, S.L.; Cohen, H.

    1998-01-01

    Bituminous coal stockpiles stored in open air undergo weathering processes due to low temperature oxidation (40-100 degree C) resulting in quality deterioration. The process is accompanied by emission of hazardous explosive gases such as molecular hydrogen and low molecular weight organic gases. The article describes the process of low temperature oxidation of coal and goes on to report on simulation experiments carried out to assess the oxidation resistance of various coals stored in Israel, performed in small glass batch reactors and on the monitoring of temperatures and gas evolved in large coal piles stored in open air (performed using a portable unit which can penetrate up to 7 meters inside a coal pile). Molecular hydrogen emissions were found in small concentrations, in all types of coal studied. The amount of hydrogen formed in the batch reactors is linearly dependent on the amount of oxygen consumed in the coal oxidation process and also on the temperature. It was only slightly dependent on the coal mass and independent of particle size. Previous published work has only mentioned hydrogen emission at higher temperatures (240 degree C)

  14. For a better control of the greenhouse gases emissions of the international maritime and aerial baggage holds: evaluation and possible actions; Pour une maitrise des emissions de gaz a effet de serre des soutes internationales aeriennes et maritimes: constat et actions possibles

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, O. [Ecole Nationale des Ponts et Chaussees, 77 - Marne la Vallee (France)

    2003-07-01

    The greenhouse gases emissions resulting from the aerial and marine baggage holds, are not taken into account in the national objectives of greenhouse gases reduction, defined by the Kyoto protocol. Thus they have to be controlled separately by each country concerned by the Kyoto protocol and urgent actions to reduce the greenhouse gases emissions are necessary. This study brings in first parts information on the context (legislation, traffic), the emission inventories and the options of allocation. It proposes then control methods and analyzes the possible measures. (A.L.B.)

  15. Fluorinated Greenhouse Gases in Photovoltaic Module Manufacturing: Potential Emissions and Abatement Strategies

    NARCIS (Netherlands)

    Alsema, E.A.|info:eu-repo/dai/nl/073416258; de Wild-Schoten, M.J.; Fthenakis, V.M.; Agostinelli, G.; Dekkers, H.; Roth, K.; Kinzig, V.

    2007-01-01

    Some fluorinated gases (F-gases) which are used, or considered to be used, in crystalline silicon photovoltaic solar cell and film silicon module manufacturing have a very high global warming effect. CF4, C2F6, SF6 and NF3 have global warming potentials 7390, 12200, 22800 and 17200 times higher than

  16. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  17. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  18. Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks-Genovese, Vanessa; Klooster, Steven; Torregrosa, Alicia

    2002-10-01

    To produce a new daily record of trace gas emissions from biomass burning events for the Brazilian Legal Amazon, we have combined satellite advanced very high resolution radiometer (AVHRR) data on fire counts together for the first time with vegetation greenness imagery as inputs to an ecosystem biomass model at 8 km spatial resolution. This analysis goes beyond previous estimates for reactive gas emissions from Amazon fires, owing to a more detailed geographic distribution estimate of vegetation biomass, coupled with daily fire activity for the region (original 1 km resolution), and inclusion of fire effects in extensive areas of the Legal Amazon (defined as the Brazilian states of Acre, Amapá, Amazonas, Maranhao, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins) covered by open woodland, secondary forests, savanna, and pasture vegetation. Results from our emissions model indicate that annual emissions from Amazon deforestation and biomass burning in the early 1990s total to 102 Tg yr-1 carbon monoxide (CO) and 3.5 Tg yr-1 nitrogen oxides (NOx). Peak daily burning emissions, which occurred in early September 1992, were estimated at slightly more than 3 Tg d-1for CO and 0.1 Tg d-1for NOx flux to the atmosphere. Other burning source fluxes of gases with relatively high emission factors are reported, including methane (CH4), nonmethane hydrocarbons (NMHC), and sulfur dioxide (SO2), in addition to total particulate matter (TPM). We estimate the Brazilian Amazon region to be a source of between one fifth and one third for each of these global emission fluxes to the atmosphere. The regional distribution of burning emissions appears to be highest in the Brazilian states of Maranhao and Tocantins, mainly from burning outside of moist forest areas, and in Pará and Mato Grosso, where we identify important contributions from primary forest cutting and burning. These new daily emission estimates of reactive gases from biomass burning fluxes are designed to be used as

  19. Biomass fuel burning and its implications: deforestation and greenhouse gases emissions in Pakistan.

    Science.gov (United States)

    Tahir, S N A; Rafique, M; Alaamer, A S

    2010-07-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO(2), CH(4) and N(2)O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO(2)-equivalent has been estimated to be 533019 t y(-1). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. [Estimation of carbonaceous gases emission from forest fires in Xiao Xing'an Mountains of Northeast China in 1953-2011].

    Science.gov (United States)

    Hu, Hai-Qing; Luo, Bi-Zhen; Wei, Shu-Jing; Sun, Long; Wei, Shu-Wei; Wen, Zheng-Min

    2013-11-01

    Based on the forest resources investigation data and the forest fire inventory in 1953-2011, in combining with our field research in burned areas and our laboratory experiments, this paper estimated the carbonaceous gases carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nonmethane hydrocarbons (NMHC) emission from the forest fires in Xiao Xing' an Mountains of Heilongjiang Province, Northeast China in 1953-2011. The total carbon emission from the forest fires in the Xiao Xing'an Mountains in 1953-2011 was 1.12 x 10(7) t, and the annual emission was averagely 1.90 x10(5) t, accounting for 1.7% of the annual average total carbon emission from the forest fires in China. The emission of CO2, CO, CH4, and NMHC was 3.39 x 10(7), 1.94 x 10(5), 1.09 x 10(5), and 7.46 x 10(4) t, respectively, and the corresponding annual average emission was 5.74 x 10(5), 3.29 x 10(4), 1.85 x 10(3), and 1.27 x 10(3) t, accounting for 1.4%, 1.2%, 1.7%, and 1.1% of the annual carbonaceous gases emitted from the forest fires in China, respectively. The combustion efficiency and the carbon emission per unit burned area of different forest types decreased in order of coniferous forest > broad-leaved forest > coniferous broadleaved mixed forest. Some rational forest fire management measures were put forward.

  1. Evaluation of the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002; Bilan des emissions de gaz a effet de serre (CO{sub 2}, CH{sub 4}, N{sub 2}O) en prairie paturee et dans des exploitations d'elevage herbager. GES-Prairies. Rapport de la premiere tranche du projet Decembre 2002

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F

    2002-12-15

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO{sub 2} and CH{sub 4} (by the breeding animals on grass) and N{sub 2}O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  2. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  3. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  4. Emissions of Greenhouse gases in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Evers, C.W.A. [Ministry of Housing, The Hague (Netherlands). Inspectorate for Environmental Protection; Berdowski, J.J.M.; Pulles, T.P.J. [TNO Inst. for Environmental Sciences, Delft (Netherlands)

    1995-12-31

    The Dutch emission inventory system enables the registration, analysis and localization of emission data of both industrial and non-industrial sources in the Netherlands. The results can be used to test the effectiveness of governmental environmental policy. These activities are part of the policy evaluation tasks of the Inspectorate General for Environmental Protection (IGEP) and of the Ministry of Transport, Public Works and Water Management. The emission inventory takes place in cycles of one year. Recently, the most relevant results of the Dutch emission inventory for 1992 have been published. In that cycle the emissions in 1992 to air and water from about 800 major companies have been registered. These 800 companies are the most important contributors to the total industrial emissions in the Netherlands. The emissions of these companies are registered within the individual inventory system. The emissions from the smaller enterprises and from diffuse non-industrial sources are stored in the collective emission inventory system. The data collected in the 1992 inventory have been established for the first time in close cooperation between the IGEP, TNO, the Central Bureau of Statistics and the National Institute of Public Health and Environmental Protection. This implies that the data presented here have to be considered as the official data for the emissions in the Netherlands for the year 1992. (author)

  5. Emissions of Greenhouse gases in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Evers, C W.A. [Ministry of Housing, The Hague (Netherlands). Inspectorate for Environmental Protection; Berdowski, J J.M.; Pulles, T P.J. [TNO Inst. for Environmental Sciences, Delft (Netherlands)

    1996-12-31

    The Dutch emission inventory system enables the registration, analysis and localization of emission data of both industrial and non-industrial sources in the Netherlands. The results can be used to test the effectiveness of governmental environmental policy. These activities are part of the policy evaluation tasks of the Inspectorate General for Environmental Protection (IGEP) and of the Ministry of Transport, Public Works and Water Management. The emission inventory takes place in cycles of one year. Recently, the most relevant results of the Dutch emission inventory for 1992 have been published. In that cycle the emissions in 1992 to air and water from about 800 major companies have been registered. These 800 companies are the most important contributors to the total industrial emissions in the Netherlands. The emissions of these companies are registered within the individual inventory system. The emissions from the smaller enterprises and from diffuse non-industrial sources are stored in the collective emission inventory system. The data collected in the 1992 inventory have been established for the first time in close cooperation between the IGEP, TNO, the Central Bureau of Statistics and the National Institute of Public Health and Environmental Protection. This implies that the data presented here have to be considered as the official data for the emissions in the Netherlands for the year 1992. (author)

  6. Temperature-Dependent Photoluminescence Emission from Unstrained and Strained GaSe Nanosheets

    Directory of Open Access Journals (Sweden)

    Duan Zhang

    2017-11-01

    Full Text Available Two-dimensional AIIIBVI layered semiconductors have recently attracted great attention due to their potential applications in piezo-phototronics and optoelectronics. Here, we report the temperature-dependent photoluminescence (PL of strained and unstrained GaSe flakes. It is found that, as the temperature increases, the PL from both the strained (wrinkled and unstrained (flat positions show a prominent red-shift to low energies. However, for the flat case, the slope of PL energy versus temperature at the range of 163–283 K is about −0.36 meV/K, which is smaller than that of the wrinkled one (−0.5 meV/K. This is because more strain can be introduced at the freestanding wrinkled position during the temperature increase, thus accelerates the main PL peak (peak I, direct band gap transition shift to lower energy. Additionally, for the wrinkled sheet, three new exciton states (peaks III, IV, and V appear at the red side of peak I, and the emission intensity is highly dependent on the temperature variation. These peaks can be attributed to the bound exciton recombination. These findings demonstrate an interesting route for optical band gap tuning of the layered GaSe sheet, which are important for future optoelectronic device design.

  7. Study of a method for reducing fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of passenger cars when using the “climate control” system

    Science.gov (United States)

    Burakova, L. N.; Anisimov, I. A.; Burakova, A. D.; Burakova, O. D.

    2018-05-01

    The article deals with the issue of improving the fuel economy and environmental friendliness of motor vehicles which serve the administrative and management personnel of the oil and gas industry. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, we established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3%, and the amount of specific emissions of harmful substances by 0.8-2.3%.

  8. Greenhouse gases emission from soils under major crops in Northwest India

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N., E-mail: nivetajain@gmail.com [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Chakraborty, D. [Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India)

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N{sub 2}O emissions were significantly different (P > 0.05) among the crop types. Emission of N{sub 2}O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r{sup 2} = 0.74, P < 0.05). The cumulative flux of CH{sub 4} from the rice crop was 28.64 ± 4.40 kg ha{sup −1}, while the mean seasonal integrated flux of CO{sub 2} from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO{sub 2} ha{sup −1} under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO{sub 2} eq. ha{sup −1} (pigeon pea) and 3968 kg CO{sub 2} eq. ha{sup −1} (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha{sup −1}) and largest in wheat (1042 kg C ha{sup −1}). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha{sup −1}, methane from 27.78–29.50 kg ha{sup −1} and carbon dioxide from 2377–3910 kg ha{sup −1}. • Emission of nitrous oxide as percent of applied N was highest in pulses (0

  9. Greenhouse gases emission from soils under major crops in Northwest India

    International Nuclear Information System (INIS)

    Jain, N.; Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P.

    2016-01-01

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N 2 O emissions were significantly different (P > 0.05) among the crop types. Emission of N 2 O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r 2 = 0.74, P < 0.05). The cumulative flux of CH 4 from the rice crop was 28.64 ± 4.40 kg ha −1 , while the mean seasonal integrated flux of CO 2 from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO 2 ha −1 under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO 2 eq. ha −1 (pigeon pea) and 3968 kg CO 2 eq. ha −1 (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha −1 ) and largest in wheat (1042 kg C ha −1 ). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha −1 , methane from 27.78–29.50 kg ha −1 and carbon dioxide from 2377–3910 kg ha −1 . • Emission of nitrous oxide as percent of applied N was highest in pulses (0.67%) followed by oilseeds (0.55%). • Global warming potential (GWP) of soils under different

  10. Greenhouse gases emissions inventory in 2005 by the Mexican energy sector; Inventario de emisiones en 2005 de gases de efecto invernadero por el sector energetico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, R.; Munoz Lerdo Carranza, R.; Villalba Valle, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rfv@iie.org.mx; rml@iie.org.mx; danviva17@yahoo.com.mx

    2010-01-15

    In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance National de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission source that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sector had the most GHG emissions, and that Mexico as a non-industrialized country had lower per capita emissions that developed countries. [Spanish] En este trabajo se calcularon las emisiones de Gases de Efecto de inventario (GEI's) del 2005 por la seccion de consumo y/o transformacion de energia en Mexico. El documento obtenido no es oficial, y como referencia, se utiliza el consumo de combustible que refiere el Balance Nacional de Energia 2005, publicado por la Secretaria de Energia. Con esto, se estandarizan las fuentes de emision que en algun momento usara el Inventario Nacional de Emisiones de GEI's 2005. Para resolver la falta de factores de emision propios de Mexico, se recurre a los factores globales de emision propuestos como valores por omision por el Panel Intergubernamental de Cambio Climatico. Para la estimacion de las emisiones de GEI's se utilizo el Metodo Sectorial tomando en consideracion el consumo de combustible de cada uno de los subsectores en que se encuentra dividido el sector energetico. Se encontro que los sectores transporte y de la industria de la transformacion de energia son los que

  11. Selection of solvents to strip toxic gases from emissions in industrial plants

    International Nuclear Information System (INIS)

    Castro, G. P.; Franco Junior, M.R.

    2000-01-01

    Acid gases such as carbon dioxide and hydrogen sulfide are normally found in some industrial emissions. Investigations of the solubility of them in some industrial solvents have been done. Currently, there is a limited amount of experimental data in the literature regarding the solubility of these compounds in some solvents. A model was developed for correlating the solubility of some hydrocarbons in water and other solvents. The new model will be presented in this work that is based on Henry's law for one phase and an equation of state for the other phase. It has been utilized for use with aqueous solutions of alkanolamines. Experimental equilibrium data have been compared to the ones from the literature. Some excellent results about prediction of solubility of hydrocarbons (methane, ethane and propane) in alkanolamines were published by Castro and Franco Jr, 2000. Now we are checking the model in predicting solubility data of some acid gases in streams which will be thrown in the atmosphere. One solvent or mixture of solvents should be selected to perform this process and in this way providing less air pollution. (author)

  12. Use of 222Rn for estimation of greenhouse gases emissions at Russian territory

    Science.gov (United States)

    Berezina, E. V.; Elansky, N. F.

    2009-04-01

    It is well known that 222Rn is widely used as a tracer for studying different atmospheric processes including estimations of greenhouse gases emissions. Calculation of 222Rn fluxes from the soil into the atmosphere allows quantitative estimation of greenhouse gases emissions having the soil origin or sources of which are located near the surface. For accurate estimation of 222Rn fluxes detailed investigations of spatial and temporal variations of its concentrations are necessary. 222Rn concentrations data in the atmospheric surface layer over continental Russia from Moscow to Vladivostok obtained during the six TROICA (Transcontinental Observations Into the Chemistry of the Atmosphere) expeditions of the mobile laboratory along the Trans-Siberian railroad are analyzed. Spatial distribution, diurnal and seasonal variations of surface 222Rn concentrations along the Trans-Siberian railroad are investigated. According to the obtained data surface 222Rn concentration values above continental Russia vary from 0.5 to 75 Bq/m3 depending on meteorological conditions and geological features of the territory with the average value being 8.42 ± 0.10 Bq/m3. The average 222Rn concentration is maximum in the autumn expedition and minimum in the spring one. The factors mostly influencing 222Rn concentration variations are studied: surface temperature inversions, geological features of the territory, precipitations. 222Rn accumulation features in the atmospheric surface layer during night temperature inversions are analyzed. It was noted that during night temperature inversions the surface 222Rn concentration is 7 - 8 times more than the one during the nights without temperature inversions. Since atmospheric stratification determines accumulation and diurnal variations of many atmospheric pollutants as well as greenhouse gases its features are analyzed in detail. Surface temperature inversions were mainly observed from 18:00-19:00 to 06:00-07:00 in the warm season and from 16

  13. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  14. Analysis of the influence of the expansion of the South American electric system in emissions of greenhouse gases; Analise da influencia da expansao do sistema eletrico Sul-Americano nas emissoes de gases de efeito estufa

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, Annemarlen Gehrke [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Blesl, Markus [Institute of Economics and the Rational Use of Energie (IER), Stuttgart (Germany)

    2010-07-01

    South America combines economic and population growth with a consequent rapid increase in electricity demand. This can only be covered by building new power plants, use of the remaining renewable potential and expansion of transmission lines. The expansion of supply in all regions, with reliable generation and transmission systems is the greatest challenge for the continent in order to reduce social differences and not to curb economic development. To support the energy planning the application of system models represents useful method. This paper intends to analyze the expansion effect of power plant parks in regard of greenhouse gases emissions using a regionalized model system 'TIMES (The Integrated Markal - EFOM System)'. The model includes 10 South American countries (Argentina, Brazil, Bolivia, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay and Venezuela) with their respective power parks and transmission lines, demand divided in sectors, potential use of renewable energy sources, gas pipelines and possibilities of new interconnections within and between countries. As results are obtained the future installed capacity and generation according the energy use, greenhouse gases emissions, as well as the investments needed to expand the electric system in different scenarios. (author)

  15. Emission of greenhouse gases from the use of fossil fuels in Ibague, Tolima (Colombia

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2017-01-01

    Full Text Available Climate change is caused by the increase of concen-trations of greenhouse gases (ghg, especially CO2, caused by the proliferation of fossil fuels use. Forest systems can capture carbon in biomass and mitigate the climate change problem. The aim of this research was to estimate the emission of ghg from the sale of fossil fuels in the city of Ibague and propose options of mitigation with productive systems in Tolima. Throughout a review, the total number of service stations in the city urban area was determined. Carrying on interviews to employers that attend public, the sales of fossil fuels (gasoline, diesel and ResumoA mudança climática é causada pelo aumento das concentrações dos gases de efeito estufa (gei, especialmente, pelo CO2 produzido pela prolife-ração do uso de combustíveis fósseis. Os sistemas forestais podem absorver carbono na biomassa e mitigar o problema da mudança climática. O objetivo do estudo foi estimar a emissão de geide acordo com a venda de combustíveis fósseis em Ibagué e plantear opções de mitigação com sistemas de produção no Tolima. Mediante revisão de literatura, determinou-se o número de postos de gasolina no perímetro urbano de Ibagué. Através de enquetes a empregados que atendem ao público, natural gas vehicle-ngv, were determined and based on the total number of stations and emission factors, it was estimated the total emission from each fuel in the city. Some mitigation options, such as coffee, cocoa and teak plantations have been proposed. It was estimated an emission of 368 Gg CO2/year (1 Gg = 10⁹ g from sales of fuels, equivalent to 718 kg CO2/person/year. These ghgemissions should be mitigated with reduction in the use of fossil fuels or throughout establishment of agricultural and forestry production systems which allows fixating CO2

  16. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.

    Science.gov (United States)

    Nag, Subir K; Liu, Ruiqiang; Lal, Rattan

    2017-10-23

    Wetlands are a C sink, but they also account for a large natural source of greenhouse gases (GHG), particularly methane (CH 4 ). Soils of wetlands play an important role in alleviating the global climate change regardless of the emission of CH 4 . However, there are uncertainties about the amount of C stored and emitted from wetlands because of the site specific factors. Therefore, the present study was conducted in a temperate riverine flow-through wetland, part of which was covered with emerging macrophyte Typhus latifolia in central Ohio, USA, with the objective to assess emissions of GHGs (CH 4, CO 2 , N 2 O) and measure C and nitrogen (N) stocks in wetland soil in comparison to a reference upland site. The data revealed that CH 4 emission from the open and vegetated wetland ranged from 1.03-0.51 Mg C/ha/y and that of CO 2 varied from 1.26-1.51 Mg C/ha/y. In comparison, CH 4 emission from reference upland site was negligible (0.01 Mg C/ha/y), but CO 2 emission was much higher (3.24 Mg C/ha/y). The stock of C in wetland soil was 85 to 125 Mg C/ha up to 0.3 m depth. The average rate of emission was 2.15 Mg C/ha/y, but the rate of sequestration was calculated as 5.55 Mg C/ha/y. Thus, the wetland was actually a C sink. Emission of N 2 O was slightly higher in vegetated wetland (0.153 mg N 2 O-N/m 2 /h) than the open wetland and the reference site (0.129 mg N 2 O-N/m 2 /h). Effect of temperature on emission of GHGs from the systems was also studied.

  17. Sampling and analysis methods for geothermal fluids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.C.

    1978-07-01

    The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

  18. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from temperate fuels common in the United States

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-08-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. A gas chromatograph-mass spectrometer (GC-MS) provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectrometer (OP-FTIR) and 3 different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the U.S. Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana. The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the 3 geographic fuel regions being simulated. Emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 ± 0.12 % of emissions by mole and less than 0.95 ± 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 42-57 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire

  19. Greenhouse gases emissions in rivers of the Tibetan Plateau.

    Science.gov (United States)

    Qu, Bin; Aho, Kelly Sue; Li, Chaoliu; Kang, Shichang; Sillanpää, Mika; Yan, Fangping; Raymond, Peter A

    2017-11-29

    Greenhouse gases (GHGs) emissions from streams are important to regional biogeochemical budgets. This study is one of the first to incorporate stream GHGs (CO 2 , CH 4 and N 2 O) concentrations and emissions in rivers of the Tibetan Plateau. With one-time sampling from 32 sites in rivers of the plateau, we found that most of the rivers were supersaturated with CO 2 , CH 4 and N 2 O during the study period. Medians of partial pressures of CO 2 (pCO 2 ), pCH 4 and pN 2 O were presented 864 μatm, 6.3 μatm, and 0.25 μatm respectively. Based on a scaling model of the flux of gas, the calculated fluxes of CO 2 , CH 4 and N 2 O (3,452 mg-C m 2 d -1 , 26.7 mg-C m 2 d -1 and 0.18 mg-N m 2 d -1 , respectively) in rivers of the Tibetan Plateau were found comparable with most other rivers in the world; and it was revealed that the evasion rates of CO 2 and CH 4 in tributaries of the rivers of the plateau were higher than those in the mainstream despite its high altitude. Furthermore, concentrations of GHGs in the studied rivers were related to dissolved carbon and nitrogen, indicating that riverine dissolved components could be used to scale GHGs envision in rivers of the Tibetan Plateau.

  20. Development of a low-temperature two-stage fluidized bed incinerator for controlling heavy-metal emission in flue gases

    International Nuclear Information System (INIS)

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2014-01-01

    This study develops a low-temperature two-stage fluidized bed system for treating municipal solid waste. This new system can decrease the emission of heavy metals, has low construction costs, and can save energy owing to its lower operating temperature. To confirm the treatment efficiency of this system, the combustion efficiency and heavy-metal emission were determined. An artificial waste containing heavy metals (chromium, lead, and cadmium) was used in this study. The tested parameters included first-stage temperature and system gas velocity. Results obtained using a thermogravimetric analyzer with a differential scanning calorimeter indicated that the first-stage temperature should be controlled to at least 400 °C. Although, a large amount of carbon monoxide was emitted after the first stage, it was efficiently consumed in the second. Loss of the ignition values of ash residues were between 0.005% and 0.166%, and they exhibited a negative correlation with temperature and gas velocity. Furthermore, the emission concentration of heavy metals in the two-stage system was lower than that of the traditional one-stage fluidized bed system. The heavy-metal emissions can be decreased by between 16% and 82% using the low-temperature operating process, silica sand adsorption, and the filtration of the secondary stage. -- Graphical abstract: Heavy-metal emission concentrations in flue gases under different temperatures and gas velocities (dashed line: average of the heavy-metal emission in flue gases in the one-stage fluidized-bed incinerator). Highlights: • Low temperature two-stage system is developed to control heavy metal. • The different first-stage temperatures affect the combustion efficiency. • Surplus CO was destroyed efficiently by the secondary fluidized bed combustor. • Metal emission in two-stage system is lower than in the traditional system. • Temperature, bed adsorption, and filtration are the main control mechanisms

  1. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  2. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  3. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  4. Global emissions inventories

    International Nuclear Information System (INIS)

    Dignon, J.

    1995-07-01

    Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions

  5. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  6. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  7. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  8. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Tahir, S.N.A.; Rafique, M.; Alaamer, A.S.

    2010-01-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO 2 , CH 4 and N 2 O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO 2 -equivalent has been estimated to be 533019 t y -1 . - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  9. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  10. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four

    International Nuclear Information System (INIS)

    2005-01-01

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  11. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    Science.gov (United States)

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  12. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Mohammad Songolzadeh

    2014-01-01

    Full Text Available Increasing concentrations of greenhouse gases (GHGs such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  13. Energy efficiency and the use of renewable energies, how to estimate how much they mitigate the green house effect gases emissions; Eficiencia energetica y uso de energias renovables, como estimar cuanto mitigan las emisiones de gases efecto invernadoro?

    Energy Technology Data Exchange (ETDEWEB)

    Asociacion de Tecnicos y Profesionistas en Aplicacion Energetica, A.C. [Mexico (Mexico)

    2002-06-01

    In the last years much attention has been given to the polluting gas discharges, in special of those that favor the green house effect (GHE), due to the negative sequels that its concentration causes to the atmosphere, particularly as the cause of the increase in the overall temperature of the planet, which has been denominated world-wide climatic change. There are many activities that allow to lessen or to elude the GHE gas emissions, and with the main ones the so-called projects of Energy Efficiency and Renewable Energy (EE/RE) have been structured. In order to carry out a project within the frame of the MDL, it is necessary to evaluate with quality, precision and transparency, the amount of emissions of GHE gases that are reduced or suppressed thanks to their application. For that reason, in our country we tried different methodologies directed to estimate the CO{sub 2} emissions that are attenuated or eliminated by means of the application of EE/RE projects. [Spanish] En los ultimos anos se ha puesto mucha atencion a las emisiones de gases contaminantes, en especial de los que favorecen el efecto invernadero (GEI), debido a las secuelas negativas que su concentracion ocasiona a la atmosfera, particularmente como causante del aumento en la temperatura general del planeta, en lo que se ha denominado cambio climatico mundial. Existen muchas actividades que permiten aminorar o eludir las emisiones de GEI, y con las principales se han estructurado los llamados proyectos de eficiencia energetica y energia renovables (EE/ER). Para llevar a cabo un proyecto dentro del marco del MDL, es necesario evaluar con calidad, precision y transparencia, la cantidad de emisiones de GEI que se reducen o suprimen gracias a su aplicacion. Por ello, en nuestro pais ensayamos diferentes metodologias encaminadas a estimar las emisiones de CO{sub 2} que se atenuan o eliminan mediante la aplicacion de proyectos de EE/ER.

  14. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  15. Application of the FTIR system K300 for the emission and immission measurement of atmospheric trace gases and harmful substances in the air: examples of cases and results. Anwendung des FTIR-Systems K300 zur Emissions- und Immissionsmessung atmosphaerischer Spurengase und Luftschadstoffe: Fallbeispiele und Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, T [Kayser-Threde GmbH, Muenchen (Germany); Mosebach, H [Kayser-Threde GmbH, Muenchen (Germany); Bittner, H [Kayser-Threde GmbH, Muenchen (Germany)

    1993-01-01

    The K300 double oscillation interferometer used for the investigations is a Fourier transform infrared (FTIR) spectrometer which, due to its special optical design, is very suitable for high resolution remote sensing emission and immission (long-path monitoring) measurements of harmful substances in the air and atmospheric trace gases, when used in the field. The spectrum of applications extends from the direct measurement of hot chimney waste gases and of engine exhaust gases via the monitoring of industrial plants or waste dumps (diffuse emission) to the immission measurement of sites with heavy traffic. For direct emission measurements, the infrared characteristic radiation of hot waste gases is used; for the measurement of cold diffuse emission or immission, one measures against an artificial infrared source of radiation, which can be erected at a distance of several hundred metres from the equipment (bistatic configuration, socalled long-path monitoring). The results of different applications, which were obtained in the context of various campaigns of measurements, are shown after a short introduction of the system. (orig./BBR)

  16. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  18. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    International Nuclear Information System (INIS)

    1994-10-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  19. Mitigation of greenhouse gases from agriculture

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.; de Klein, C. A. M.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach...

  20. Spacetime Distributions of Wildfire Areas and Emissions of Carbon-Containing Gases and Aerosols in Northern Eurasia according to Satellite-Monitoring Data

    Science.gov (United States)

    Bondur, V. G.; Gordo, K. A.; Kladov, V. L.

    2017-12-01

    Based on online wildfire satellite-monitoring data, distributions of burned-out areas, as well as emission volumes of carbon-containing gases (CO and CO2) and fine aerosols (PM2.5), for different regions and months in 2005-2016 (across the territory of Russia) and in 2010-2016 (northern Eurasia) are analyzed. Distinctive features of the seasonal behavior of wildfires and emission volumes of carbon-containing gases and fine aerosols for different regions of northern Eurasia are determined. It is shown that between 2005 and 2016 the annual area of territories burned out during wildfires in Russia decreased by almost a factor of 2.6 owing to early detection and suppression of fire sources. It is determined that in 2014-2016 the relative size of burned-out areas in Ukraine increased 6-9-fold and volumes of CO, CO2, and PM2.5 emissions by more than a factor of 6.5-7.5 times when compared to earlier years and these characteristics for other European countries.

  1. Effective collision frequency of electrons in noble gases

    International Nuclear Information System (INIS)

    Baille, P.; Chang, J.-S.; Claude, A.; Yau, A.W.; Hobson, R.M.; Ogram, G.L.

    1981-01-01

    The electron-neutral collision frequency in the noble gases has been calculated using recent numerical results for momentum transfer cross sections by assuming a Maxwellian distribution of electron velocities. In all these gases, except for argon, good agreement is obtained with most previously published experimental and theoretical data. Mean free path, mobilities and diffusion coefficients are also calculated from the resulting effective collision frequencies. The empirical formulae are presented for an electron temperature dependence of the electron-neutral collision frequency for all noble gases up to Tsub(e) < approximately 25.000 K. (author)

  2. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  3. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  4. Emission of greenhouse gases from sewage installations; Emissies van broeikasgassen van rwzi's

    Energy Technology Data Exchange (ETDEWEB)

    Van Voorthuizen, E.; Van Leusden, M.; Visser, A.; Kruit, J. [Royal Haskoning, Amersfoort (Netherlands); Kampschreur, M.; Van Dongen, U.; Van Loosdrecht, M. [Technische Universiteit Delft TUD, Delft (Netherlands)

    2010-03-15

    Emissions of greenhouse gases (CO2, CH4, N2O) from wastewater treatment plants (WWTPs) are monitored. The emission of CO2 from waste water treatment plants (WWTPs) is related to the use of electricity, natural gas or other fossil fuels. The amount and origin of the emission of CH4 and N2O, however, is unknown. Presently emission factors from the IPCC (Intergovernmental Panel on Climate Change) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) are used to estimate those emissions. The aim of the study on the title subject was to determine the level of N2O and CH4 emission from Dutch WWTPs to understand the accuracy of the existing emission factors. In this way an estimation of the total greenhouse gas emission from a Dutch WWTP can be made. The emission of N2O and CH4 was measured at three WWTPs in the Netherlands: Papendrecht, Kortenoord and Kralingseveer [Dutch] In deze studie zijn de indirecte en directe emissies van broeikasgassen (CO2, CH4 en N2O) van rwzi's in kaart gebracht aan de hand van metingen. De resultaten hebben aanleiding gegeven voor een vervolgonderzoek waarbij onder meer kennis wordt ontwikkeld op het gebied van methaanvorming (CH4) in de riolering en mogelijkheden om de emissie van methaan op een zuivering te reduceren. Met betrekking tot lachgas N2O wordt onderzoek gedaan naar de vormingsprocessen van lachgas en de wijze waarop deze vrijkomt vanuit een rwzi. Verder worden relaties tussen lachgasemissie en procesparameters inzichtelijk gemaakt. Met deze kennis is het hopelijk in de toekomst mogelijk om maatregelen te nemen die de vorming en emissie van lachgas vanuit rwzi's te reduceren.

  5. The effects of spin in gases

    International Nuclear Information System (INIS)

    Laloee, F.; Freed, J.H.

    1988-01-01

    Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids

  6. Integrated approach for combining sustainability and safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety) towards greenhouse gases emission targets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tobias V. [Det Norske Veritas (DNV), Hovik, Oslo (Norway)

    2009-07-01

    This paper aims to present an approach to integrate sustainability and safety concerns on top of a typical RAM Analysis to support new enterprises to find alternatives to align themselves to the greenhouse gases emission targets, measured as CO{sub 2} (carbon dioxide) equivalent. This approach can be used to measure the impact of the potential CO{sub 2} equivalent emission levels mainly related to new enterprises with high CO{sub 2} content towards environment and production, as per example, the extraction of oil and gas from the Brazilian Pre-salt layers. In this sense, this integrated approach, combining Sustainability and Safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety), can be used to assess the impact of CO{sub 2} 'production' along the entire enterprise life-cycle, including the impact of possible facility shutdown due to emission restrictions limits, as well as due to the occurrence of additional failures modes related to CO{sub 2} corrosion capabilities. Thus, at the end, this integrated approach would allow companies to find out a more cost-effective alternative to adapt their business into the global warming reality, overcoming the inherent threats of greenhouse gases. (author)

  7. Greenhouse effect gas emission: an assessment without measuring; Emissions de gaz a effet de serre: une mesure sans capteur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-02-01

    The European directive 2003/87/CE creates a market for greenhouse effect gases (GEG) emission quotas. The setting of this market implies for each enterprise to make an inventory of its own GEG emissions. The gases involved in this assessment are those concerned in international agreements, namely CO{sub 2}, CH{sub 4}, N{sub 2}O, C{sub n}H{sub m}F{sub p}, C{sub n}F{sub 2n+2} and SF{sub 6}. The French agency for the environment and the management of energy (ADEME) proposes a method to make a consistent inventory that is based on equivalencies that are listed, for instance the production of a ton of steel generates 870 kg of carbon emission equivalent, this value falls to 300 kg in the case of steel made from recycled materials, another example: the extraction and the transport to the refinery of one ton of crude oil represents 61 kg of carbon emission equivalent. 3 levels of completion are considered: the first level takes into account only the gas emissions that follow directly from the enterprise's activities. The second level adds to the first level the gas emissions due to the transport of energy, goods and people involved in the enterprise's activities. The third level integrates to the second level the gas emissions issued from the production of the energy and goods necessary to the enterprise's activities. The lack of accuracy of this method is assessed to be less than 20% in the best cases. (A.C.)

  8. The Norwegian Emission Inventory 2012. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond (ed.)

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF (land use, land-use change and forestry) is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2012) for documentation on this topic.This report replaces the previous documentation of the emission model (Sandmo 2011), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Minor NOx emissions from production of rock wool, which previously not have been estimated, have been included, Some factors for estimation of N2O from agriculture have been altered

  9. The Norwegian Emission Inventory 2012. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond [ed.

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF (land use, land-use change and forestry) is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2012) for documentation on this topic.This report replaces the previous documentation of the emission model (Sandmo 2011), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Minor NOx emissions from production of rock wool, which previously not have been estimated, have been included, Some factors for estimation of N2O from agriculture have been altered, The

  10. The effect of gas and oil well blowout emissions on livestock in Alberta

    International Nuclear Information System (INIS)

    Beck, B.E.

    1992-01-01

    Poisoning caused by emissions from sour gas well or oil well blowouts is not acute because the gases are diluted by the atmosphere before they reach livestock. Exposure may last a month or more and may produce a syndrome indistinguishable from common disorders of flu, malaise, mood change, and in the case of animals, lack of production or decreased production. Little information is available on the composition of releases from well blowouts, which may change due to concurrent reactions with oxygen and photodecomposition. Effects on livestock observed to results from sour gas plant emissions (mostly sulfur dioxide) include runny eyes in cattle, loss of production, diarrhea and abortion. Blowout emissions may contain oxidant gases as well as hydrogen sulfides. These products irritate mucous membranes, and can lead to pink eye. Respiratory problems may include upper respiratory tract infections, and may produce susceptibility to secondary pneumonia. Abortion, infertility and congenital effects are areas of concern. It is considered unlikely that hydrogen sulfide can cause such effects, however carbon disulfide and carbonyl sulfide, both present in sour gas blowouts, are known to have effects on the fetus. Effects on production and performance are unknown, and it is postulated that amounts of sulfur deposition are insufficient to cause nutrient deficiencies. Psychological reactions are suggested to explain some of the adverse effects of exposure to sour gas. 1 ref

  11. ACCOUNTING FOR GREENHOUSE GASES EMISSIONS ALLOWANCES IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Marius Deac

    2013-02-01

    Full Text Available The present paper tries to analyze the accounting challenges that the implementation of EU Emissions Trading Scheme has risen. On 2 December 2004, IASB has issued an interpretation regarding the accounting of the GHG emissions allowances (IFRIC 3 „Emission Rights”. This interpretation should have been effective for annual periods beginning after 1 March 2005, the first year of the EU Emission Trading Scheme implementation. Less than a year after it was issued, IFRIC has withdrawn IFRIC 3. In December 2007, IASB has started a new project in order to provide guidance on accounting for carbon allowances called Emissions Trading Schemes Project. In the absence of an accounting standard regarding the accounting of these emissions allowances a diversity of accounting practices have been identified. Nowadays, there are three main accounting practices for the recognition of the emissions allowances and the GHG emissions liabilities: IFRIC 3 approach, the government grants approach and the net liability or off balance sheet approach. The accounting treatment of greenhouse gas emissions allowances by Romanian companies resembles the net liability or off balance sheet approach. Finance Ministry Order no. 1118/2012 states that GHG emission certificates should be recognized as fixed assets (if the entity is expecting a profit in the long term or in the category of short term investments (if the entity is expecting a profit in the short term. The accounting of the greenhouse gas emissions allowances described above is applicable mainly to traders of such certificates and not for the installations in the scope of the EU ETS directive, which should recognize GHG emissions off balance sheet, at their nominal value (nil if received for free. The shortfall or excess of allowances will be recognized in the profit or loss as they are bought or sold by the entity (the accounting treatment imposed by Finance Ministry Order no. 3055/2009.

  12. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Directory of Open Access Journals (Sweden)

    Travis J. Schuyler

    2017-10-01

    Full Text Available The emission of greenhouse gases (GHGs has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1 micro aerial vehicles (MAVs; (2 vertical take-off and landing (VTOL; and, (3 low-altitude short endurance (LASE systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL, which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change.

  13. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO{sub 2} - from the whole energy chain, from ``cradle to grave``. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs.

  14. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    International Nuclear Information System (INIS)

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO 2 - from the whole energy chain, from ''cradle to grave''. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs

  15. Inventário de Emissões de Gases de Efeito Estufa no Campus Gávea da PUC-Rio

    Directory of Open Access Journals (Sweden)

    João Paulo Andrade F. de Carvalho

    Full Text Available RESUMO O presente trabalho apresenta resultados preliminares de um inventário de emissões de gases de efeito estufa (GEE elaborado para o campus da PUC-Rio, situado no bairro da Gávea, zona sul da cidade do Rio de Janeiro. Foram identificadas emissões de GEE nos escopos 1 (combustão estacionária e móvel, emissões fugitivas, escopo 2 (consumo de energia elétrica e escopo 3 (transporte, viagens, geração e descarte de resíduos sólidos, seguindo metodologias recomendadas pelo Programa Brasileiro GHG Protocol. Dentre as fontes de emissão, a mais difícil de quantificar foi justamente a principal geradora, relacionada com os deslocamentos entre o campus e as residências dos 20 mil potenciais frequentadores diários da PUC-Rio durante 2011.

  16. GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria

    International Nuclear Information System (INIS)

    Saheb Koussa, Djohra; Koussa, Mustapha

    2016-01-01

    This paper presents a method for economic evaluation and GHGs (greenhouse gases) emissions calculation from a GCRES (grid-connected renewable energy system). An investigation is made on large-scale operations of 67 MWh/day GCRES. A comparison is performed between a GCRES and a standard grid operation focusing on environmental and economic impacts. Emissions and the Renewable energy generation fraction (RF) of total energy consumption are calculated as the main environmental indicators. Costs including NPC (net present cost), COE (cost of energy) and payback period are calculated as the economic indicators. Using the hourly mean global solar irradiance, temperature and wind speed data relative to In Salah and Adrar locations characterized by an arid and hot climate according to the Koppen–Geiger climate classification, a long-term continuous implementation of hybrid renewable energy systems are simulated using HOMER software and are discussed. As results, it is observed that a GCRES reduce 30% and 35% of GHGs emission, and 81% and 76% of COE during the operation phase respectively for In Salah and Adrar. Investments in GCRES should be considered only by planning to produce parts of the equipment locally, which leads to significantly reduce the costs and, consequently, the emissions. - Highlights: • Grid-connected renewable energy system (GCRES). • Economic evaluation and greenhouse gases (GHGs) emissions calculation. • In Salah and Adrar are taken as two examples of the famous Algerian arid land. • The climatic data are used to simulate the long-term implementation of the system.

  17. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    Science.gov (United States)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations

  18. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  19. Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2015-07-01

    Full Text Available Greenhouse gas emissions in China have been increasing in line with its energy consumption and economic growth. Major means for energy-related greenhouse gases mitigation in the foreseeable future are transition to less carbon intensive energy supplies and structural changes in energy consumption. In this paper, a bottom-up model is built to examine typical projected scenarios for energy supply and demand, with which trends of energy-related carbon dioxide emissions by 2050 can be analyzed. Results show that low-carbon technologies remain essential contributors to reducing emissions and altering emissions trends up to 2050. By pushing the limit of current practicality, emissions reduction can reach 20 to 28 percent and the advent of carbon peaking could shift from 2040 to 2030. In addition, the effect of electrification at end-use sectors is studied. Results show that electrifying transport could reduce emissions and bring the advent of carbon peaking forward, but the effect is less significant compared with low-carbon technologies. Moreover, it implies the importance of decarbonizing power supply before electrifying end-use sectors.

  20. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  1. Agripec : um modelo para estimar custos economicos e emissões de gases efeito-estufa para a pecuaria bovina brasileira

    OpenAIRE

    Costa, Thelmo Vergara de Almeida Martins

    2011-01-01

    A criação bovina é um importante emissor de Gases Efeito Estufa (GEE) do Brasil. A maior parte das emissões de metano vem da fermentação entérica, resultado normal do processo digestivo dos animais ruminantes como os bovinos. No entanto, a tarefa de analisar a contribuição da pecuária bovina nas emissões de GEEs necessita da identificação dos contextos regionais em que ocorrem os diferentes sistemas de produção no Brasil. Assim, para se comparar diferentes sistemas produtivos, é necessário se...

  2. Purification of burned gases of domestic wastes; Moderna purificacion de gases quemados de las basuras domesticas

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, J.; Buttman, P.; Johansson, T.

    1997-09-01

    The author presents the technology to reduce the emission from the burned gases purification of domestic wastes combustion. The technology was demonstrated in Hobec, Denmark, and developed in Germany. (Author)

  3. Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE)

    NARCIS (Netherlands)

    Batjes, N.H.

    1994-01-01

    The role of soil in controlling production and fluxes of biotic greenhouse gases is the focus of research in progress at the International Soil Reference and Information Centre (ISRIC). There are two main goals in this project on World Inventory of Soil Emission Potentials (WISE). The first is to

  4. Ozone depleting substances and gases HFCs, PFCs and SF{sub 6}. Consumption and emissions 2003; Ozonlagsnedbrydende stoffer og drivhusgasserne HFC'er PFC'er og SF6. Forbrug og emissioner 2003

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T.

    2005-07-01

    The evaluation includes a calculation of actual emissions of HFCs, PFCs and SF{sub 6} in Denmark. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. The evaluation has partly been prepared to enable Denmark to fulfil its international obligations to provide information within this area, and partly to follow the trend in consumption and emissions of HFCs, PFCs and SF{sub 6}. (BA)

  5. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    Science.gov (United States)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  6. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Mul, G.; Perez-Ramirez, J.; Xu, Xiaoding; Oonk, H.; Yakovlev, A.

    2001-06-01

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  7. Extension of EU Emissions Trading Scheme to Other Sectors and Gases: Consequences for Uncertainty of Total Tradable Amount

    International Nuclear Information System (INIS)

    Monni, S.; Syri, S.; Pipatti, R.; Savolainen, I.

    2007-01-01

    Emissions trading in the European Union (EU), covering the least uncertain emission sources of greenhouse gas emission inventories (CO 2 from combustion and selected industrial processes in large installations), began in 2005. During the first commitment period of the Kyoto Protocol (2008-2012), the emissions trading between Parties to the Protocol will cover all greenhouse gases (CO 2 , CH 4 , N 2 O, HFCs, PFCs, and SF 6 ) and sectors (energy, industry, agriculture, waste, and selected land-use activities) included in the Protocol. In this paper, we estimate the uncertainties in different emissions trading schemes based on uncertainties in corresponding inventories. According to the results, uncertainty in emissions from the EU15 and the EU25 included in the first phase of the EU emissions trading scheme (2005-2007) is ±3% (at 95% confidence interval relative to the mean value). If the trading were extended to CH 4 and N 2 O, in addition to CO 2 , but no new emissions sectors were included, the tradable amount of emissions would increase by only 2% and the uncertainty in the emissions would range from -4 to +8%. Finally, uncertainty in emissions included in emissions trading under the Kyoto Protocol was estimated to vary from -6 to +21%. Inclusion of removals from forest-related activities under the Kyoto Protocol did not notably affect uncertainty, as the volume of these removals is estimated to be small

  8. Ground-Based Remote Sensing and Imaging of Volcanic Gases and Quantitative Determination of Multi-Species Emission Fluxes

    Directory of Open Access Journals (Sweden)

    Ulrich Platt

    2018-01-01

    Full Text Available The physical and chemical structure and the spatial evolution of volcanic plumes are of great interest since they influence the Earth’s atmospheric composition and the climate. Equally important is the monitoring of the abundance and emission patterns of volcanic gases, which gives insight into processes in the Earth’s interior that are difficult to access otherwise. Here, we review spectroscopic approaches (from ultra-violet to thermal infra-red to determine multi-species emissions and to quantify gas fluxes. Particular attention is given to the emerging field of plume imaging and quantitative image interpretation. Here UV SO2 cameras paved the way but several other promising techniques are under study and development. We also give a brief summary of a series of initial applications of fast imaging techniques for volcanological research.

  9. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  10. Condensating flue gases of light oil boilers: Influence on emissions and on the efficiency of the heat production

    International Nuclear Information System (INIS)

    Lehtinen, M.; Fogelholm, C.J.

    1995-01-01

    The aim of the research was to find out the influence of condensating the flue gases on emissions and on the efficiency of the heat production. The installations that were examined were a heat pump - boiler combination. Comparable research has not been done in Finland before. For the measurements the test instrument was installed in a laboratory hall. It consisted of a 45 kW boiler and a 10 kW (heating power) heat pump and a flow controlled room. The test instrument was equipped with thermal and current sensors and flue gas analysators. The fuel used in tests was a typical light fuel oil. Sulphur content of the oil was 0,03 percentage by weight Reduction of the emissions was researched in two ways, analysing the flue gases and the condensation water. Following compounds in the flue gases were measured: NO x , O 2 SO 2 , CO and CO 2 . Sulphur, metals and pH-value were analysed from the condensation water. The content of sulphur and metals in condense water were compared to content of the same components in oil. Reduction of the sulphur was under 30 %. As the balance limit for defining the efficiency was chosen the flow controlled room. Measurements were done with two different heat loads. At the first test drive average heat load was about 19 kW. Therefore the burner was on for about five minutes and off for about 15 minutes. The heat pump was running continuously. At the second test drive the average heat load was about 50 kW, therefore both the burner and the heat pump were on all the time The lower heat value of fuel was used on the efficiency calculation At the first test drive efficiency was 1,364 and at the second test drive efficiency was 1,048. Out door temperature was +12 deg C (author)

  11. Potential effects of emission taxes on CO2 emissions in the OECD and LDCs

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1991-01-01

    A set of existing optimization models, which represent the energy systems of the OECD and LDCs (less developed countries excluding centrally planned economies) with a time horizon to 2020, has been applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures is a scheme of taxes levied on the emission of six pollutants, including the greenhouse gases CO 2 and methane. The tax levels introduced are based on taxes discussed by the Swedish government: they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models include the following alternatives: (i) reduction of final energy demand by supplying the requested services by other means (i.e., conservation); (ii) substitution of new fuels for polluting fuels; (iii) introduction of clean technologies for the same purposes; (iv) additions of pollution-reduction technologies. Alternative scenarios with emission taxes are compared with a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 yr in the base scenario would be changed to stable levels to 2010 by tax-induced measures. Thereafter, energy-consumption growth in the LDCs reverses this trend. (author)

  12. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  13. [Effect of carbon substrate concentration on N2, N2O, NO, CO2, and CH4 emissions from a paddy soil in anaerobic condition].

    Science.gov (United States)

    Chen, Nuo; Liao, Ting-ting; Wang, Rui; Zheng, Xun-hua; Hu, Rong-gui; Butterbach-Bahl, Klaus

    2014-09-01

    Understanding the effects of carbon and nitrogen substrates concentrations on the emissions of denitrification gases including nitrogen (N2) , nitrous oxide (N2O) and nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) from anaerobic paddy soils is believed to be helpful for development of greenhouse gas mitigation strategies. Moreover, understanding the quantitative dependence of denitrification products compositions on carbon substrate concentration could provide some key parameters or parameterization scheme for developing process-oriented model(s) of nitrogen transformation. Using a silt loam soil collected from a paddy field, we investigated the influence of carbon substrate concentration on the emissions of the denitrification gases, CO2 and CH4 from anaerobically incubated soils by setting two treatments: control (CK) with initial soil nitrate and dissolved organic carbon (DOC) concentrations of ~ 50 mg.kg-1 and -28 mg kg-1 , respectively; and DOC added (C + ) with initial soil nitrate and DOC concentrations of ~50 mg.kg-1 and ~300 mg.kg-1 , respectively. The emissions of denitrification gases, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each treatment were dynamically measured, using the gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that CH4 emission was not observed in CK treatment while observed in C treatment. Aggregate emission of greenhouse gases for C + treatment was significantly higher comparing with the CK treatment (P emissions in total nitrogen gases emissions were approximately 9% , 35% and 56% for CK treatment, respectively; and approximately 31% , 50% and 19% for C+ treatment, respectively, with significant differences between these two treatments (P carbon substrate concentrations can significantly change the composition of nitrogen gas emissions. The results also implicated that organic fertilizer should not be applied to nitrate-rich paddy soils prior to

  14. Greenhouse gases mitigation options and strategies for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  15. Cryogenic method for measuring nuclides and fission gases

    Science.gov (United States)

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  16. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  17. Posicionamento estratégico em resposta às restrições regulatórias de emissões de gases do efeito estufa

    Directory of Open Access Journals (Sweden)

    Mônica Cavalcanti Sá de Abreu

    2014-09-01

    Full Text Available No trabalho relatado, analisa-se a estratégia de redução das emissões dos gases do efeito estufa (GEE em uma empresa de distribuição de energia elétrica. A pesquisa foi conduzida por meio de entrevistas semiestruturadas com a presidência da empresa e com os gestores das áreas de planejamento e controle, marketing, regulação, meio ambiente, responsabilidade social, e pesquisa e desenvolvimento. Tendo-se como ponto de partida o resultado do inventário de emissões de GEE, os gestores foram questionados sobre as iniciativas e os benefícios dos projetos de mitigação das emissões de GEE, as pressões dos stakeholders e o papel da regulamentação na remediação e na prevenção dos impactos decorrentes da mudança climática. Os resultados indicam que os gestores não reconhecem oportunidades de investimentos em projetos de redução das emissões de gases do efeito estufa. A empresa adota uma estratégia instrumental e atua em um ambiente de negócios com restrições regulatórias incipientes de controle das emissões de GEE. No estudo, revela-se que a empresa adota uma estratégia climática evasiva e explora a ausência de prioridade do setor elétrico brasileiro na redução do impacto ambiental ou da vulnerabilidade à mudança climática.

  18. Comparative study of emission of pollutant gases in vehicle M1, using fuel of the Andean Community

    Directory of Open Access Journals (Sweden)

    Jaime Fernando Antamba Guasgua

    2016-09-01

    Full Text Available The environmental pollution is a problematics that concerns all countries about the world as result of this pollution there take place the phenomena of climate change, greenhouse effect, acid rain, and diseases in people. To delimit the issues, there were selected the countries that integrate the Andean Community, the project goal is compare by means of static and dynamic tests the values of emission of pollutant gases, with the fuel that is distributed in each of the selected countries. The process of measuring and testing of static tests were developed under NTE INEN 2203:1999 standard, considering the idle condition (820 rpm and high engine speed (2500 RPM, in both these cases, an constant engine oil temperature of 94 ° C and dynamic tests carried out according to ASM 25/25 and ASM 50/15 cycles, the results that have been achieved with the different fuels in a vehicle Chevrolet Sail, the best-selling in the country. Based on tests developed, the evaluated vehicle will be able to circulate without any disadvantage with any of the fuels of the Andean Community according NTE INEN 2204:2002 standard. Accordingly, the fuel with the lowest levels of emissions of gaseous pollutants is the distributed one in Peru.

  19. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  20. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-01

    Highlights: ► GHGs emissions from sludge digestion + residue land use in China were calculated. ► The AD unit contributes more than 97% of total biogenic GHGs emissions. ► AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO 2 , biogenic CO 2 , CH 4, and avoided CO 2 as the main objects is discussed respectively. The results show that the total CO 2 -eq is about 1133 kg/t DM (including the biogenic CO 2 ), while the net CO 2 -eq is about 372 kg/t DM (excluding the biogenic CO 2 ). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO 2 -eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO 2 -eq reduction.

  1. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  2. An overview on non-CO2 greenhouse gases

    NARCIS (Netherlands)

    Pulles, T.; Amstel, van A.R.

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of

  3. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  4. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Caballero, A.; Aymerich, I. [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain); Poch, M. [Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG), Institute of the Environment, University of Girona, Campus Montilivi s/n, E-17071 Girona (Spain); Pijuan, M., E-mail: mpijuan@icra.cat [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain)

    2014-09-15

    In this study, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH{sub 4} and N{sub 2}O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH{sub 4} or N{sub 2}O peak emissions. CH{sub 4} emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N{sub 2}O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH{sub 4} and N{sub 2}O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH{sub 4} and N{sub 2}O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH{sub 4} and N{sub 2}O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH{sub 4} emissions were related with the inflow of influent and reject wastewater. • N{sub 2}O was generated as consequence of nitrification imbalances.

  5. Investigation into the emission of greenhouse effect gases; Onshitsu koka gas no haishutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the situation of greenhouse effect gas emissions of advanced countries based on the reports from them. The advanced countries which concluded the U.N. Framework Convention on Climate Change (OECD member countries, the former U.S.S.R., and East European countries) are to be reported to the office concerned with work for the framework the situation of their greenhouse effect gas emissions according to the obligation of the framework. In and after April 1997, they made the second report. The paper summarized changes in emission amount, the future trend, and the policies/measures mainly taken of nine countries which have already presented the second report (the U.S., the U.K., Germany, Holland, Italy, Norway, Sweden, Finland, and New Zealand) and one country (Russia) which has made only the first report. Moreover, the literature was collected and summed up concerning the mechanism and coefficients of the emission of nitrous oxide and methane. The collected literature was classified into all fields/plural number of fields, energy relation, industrial process relation, relation with the use of organic solvent and other products, agricultural relation, relation with changes in land use and forests, and waste relation. 4 figs., 228 tabs.

  6. Mobility as a territorial key factor in the emission of greenhouse gases; La movilidad como factor territorial dominante en la emision de gases de efecto invernadero

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Montane Lopez, M. M.; Garcia Cortes, A.; Jimenez Arroyo, F.

    2011-07-01

    Transport and energy generation are the two dominant sectors in the overall balance of energy consumption, and thus of greenhouse gases emissions. Placement of energy generation plants responds to strategic reasons relate to energy supply in the Spanish territory, while transport is an economic activity tightly related to the productive structure and territorial characteristics: density of populations, geographic situation, efficient space organization, etc. The analysis of these factors enables to prioritize different strategies according the their energetic efficiency in order to pursue an economy less dependent of fossil fuels, focused in activities of higher added value and that keeps in mind limits and strengths of Spanish reality. (Author) 9 refs.

  7. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  8. [Measurement model of carbon emission from forest fire: a review].

    Science.gov (United States)

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  9. Relevance of emissions timing in biofuel greenhouse gases and climate impacts.

    Science.gov (United States)

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott

    2011-10-01

    Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.

  10. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  11. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    Science.gov (United States)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  12. Anaesthetic gases: environmental impact and alternatives ...

    African Journals Online (AJOL)

    Anaesthetic gases: environmental impact and alternatives. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... to be small when compared to gaseous emissions from industrial and agricultural sources, the actual percentage contribution to climate change is small. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  13. Electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined

  14. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    Energy Technology Data Exchange (ETDEWEB)

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  15. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Directory of Open Access Journals (Sweden)

    Chang-Lin Chiang

    2016-01-01

    Full Text Available The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO, aluminum oxide coated FTO (Al2O3/FTO and magnesium oxide coated FTO (MgO/FTO were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  16. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Zeng, Hui-Kai [Department of Electronic Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 320, Taiwan (China); Li, Jung-Yu, E-mail: JY-Lee@itri.org.tw; Chen, Shih-Pu; Lin, Yi-Ping [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Hsieh, Tai-Chiung; Juang, Jenh-Yih, E-mail: jyjuang@cc.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  17. The national-economic cost of reduction of greenhouse gases emission. Comparison of investments aimed towards a reduced greenhouse gas emission in power industry, agriculture, transportation sector and other essential greenhouse gas sources

    International Nuclear Information System (INIS)

    1995-01-01

    For a number of years the cost of reducing CO 2 emissions in the energy sector in Denmark has been investigated in detail. The same has not been the case what concerns the cost of reducing other greenhouse gases (CH 4 and N 2 O) and especially not what concerns the possibilities of reducing greenhouse gases in other sectors in the Danish economy, i.e. agriculture, transport, industry, domestic waste and forestry. Thus, the objective of this project was twofold: 1) To calculate the national economic costs related to a number of options for reducing Danish greenhouse gas emissions (CO 2 , CH 4 and N 2 O) by using the same methodology for all important sectors in the economy and 2) To compare the cost efficiency of these options not only wihtin the individual sectors but also across the sectoral boundaries to achieve an overall view of the reduction possibilities in society and the associated costs. (au) 80 refs.; Prepared by Forskningscenter Risoe and Danmarks Miljoeundersoegelser. Afdeling for Systemanalyse

  18. Greenhouse Gas Emissions From Cattle

    Directory of Open Access Journals (Sweden)

    Podkówka Zbigniew

    2015-03-01

    Full Text Available Cattle produce greenhouse gases (GHG which lead to changes in the chemical composition of the atmosphere. These gases which cause greenhouse effect include: methane (CH4, nitrous oxide (N2O, nitrogen oxides (NOx, sulphur dioxide (SO2, ammonia (NH3, dust particles and non-methane volatile organic compounds, commonly described as other than methane hydrocarbons. Fermentation processes taking place in the digestive tract produce ‘digestive gases’, distinguished from gases which are emitted during the decomposition of manure. Among these digestive gases methane and non-methane volatile organic compounds are of particular relevance importance. The amount of gases produced by cows can be reduced by choosing to rear animals with an improved genetically based performance. A dairy cow with higher production efficiency, producing milk with higher protein content and at the same time reduced fat content emits less GHG into the environment. Increasing the ratio of feed mixtures in a feed ration also reduces GHG emissions, especially of methane. By selection of dairy cows with higher production efficiency and appropriate nutrition, the farm's expected milk production target can be achieved while at the same time, the size of the herd is reduced, leading to a reduction of GHG emissions.

  19. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  20. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  1. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  2. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  3. Effects of aerosol emission pathways on future warming and human health

    Science.gov (United States)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from -1.3 W m-2 to -0.4 W m-2 (RCP8.5) and -0.2 W m-2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was -1.6 W m-2 (HIGH) and practically zero (LOW). The difference in global mean temperature

  4. An experimental investigation of exhaust emission from agricultural tractors

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Rashid; Rabbani, Hekmat; Lorestani, Ali Nejat; Javadikia, Payam; Jaliliantabar, Farzad [Mechanics of Agricultural Machinery Department, Razi University of Kermanshah (Iran, Islamic Republic of)

    2013-07-01

    Agricultural machinery is an important source of emission of air pollutant in rural locations. Emissions of a specific tractor engine mainly depend on engine speed. Various driving methods and use of implements with different work capacities can affect the engine load. This study deals with the effects of types of tractors and operation conditions on engine emission. In this study two types of agricultural tractors (MF285 and U650) and some tillage implements such as centrifugal type spreader, boom type sprayer and rotary tiller were employed. Some of the exhausted gases from both tractors in each condition were measured such as, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2) and nitrogen oxide (NO). Engine oil temperature was measured at every step for both types of tractors. Difference between steady-state condition and operation conditions was evaluated. The results showed all exhaust gases that measured and engine oil temperature at every operation conditions are higher than steady-state condition. A general conclusion of the work was that, using various implements and employing different types of tractors effect on engine emissions. The results of variance analysis showed all exhausted gases had a significant relationship with types of implements used at 1%. Also, all exhausted gases except CO had a significant relationship with types of tractors. A further conclusion was that NO emission increased as engine oil temperature increased. The final conclusion was about the difference between MF285 and U650; using U650 at operation conditions is better than MF285 in terms of pollution.

  5. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    Science.gov (United States)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  6. Calibration of new measuring systems to detect emissions of radioactive noble gases

    International Nuclear Information System (INIS)

    Winkelmann, I.; Kreiner, H.J.

    1977-12-01

    This report describes the calibration of different systems for the integral measurement of radioactive noble gases and the calibration of a measuring chamber for the detection of individual nuclides of radioactive noble gases in the gaseous effluent of nuclear power plants. For these measuring chambers the calibration factors for Kr-85 and Xe-133 are given as well as the detection limits to be obtained with these measuring systems for several radioactive noble gases present in the gaseous effluent at the stack of nuclear power plants. Calibration factors for Kr-85 and Xe-133 and the detection limits of this measuring method for the detections of individual nuclides of radioactive noble gases in air samples are defined taken wirh a high pressure compressor in pressure flasks an measured on a Ge(Li)-semiconductor spectrometer (pressure flask measuring method). A measuring equipment is described and calibrated which allows simultaneous measurement of activity concentration of radioactive noble gases and radioactive aerosols with a sensitivity of 2 x 10 -7 Ci/m 3 for radioactive gases and 1 x 10 -9 Ci/m 3 for radioactive particulates at a background radiation of 1 R/h. This paper is an additional report to our STH-Bericht 3/76, 'Calibration of measuring equipment for monitoring of gaseous effluents from nuclear power plants', which specifies a procedure for the calibration of measuring chambers for monitoring of gaseous radioactive effluents from nuclear power plants /1/. The calibration system used here makes it possible to simultaneously calibrate several noble gas measuring devices. (orig.) [de

  7. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    Science.gov (United States)

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  8. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  9. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  10. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  11. Luminescence yield in irradiating gases by X-rays and alpha particles

    International Nuclear Information System (INIS)

    Combecher, D.

    1973-01-01

    In this paper, the measurable light emission in the irradiation of gases as modle substances has been quantitatively determined. The gases Ar, H 2 , N 2 , air, and C 3 H 8 were irradiated with X-rays and α-particles at a pressure of 730 torr. The emitted light was measured in the spectral range between the short-wave absorption edge of the gases and 6000 A (spectral resolution: 20 A). The spectral light yield was determined from the efficiency of the apparatus and from the total energy absorbed in the gases. (HK) [de

  12. Effect of pest controlling neem (Azadirachta indica A. Juss) and mata-raton (Gliricidia sepium Jacquin) leaf extracts on emission of green house gases and inorganic-N content in urea-amended soil.

    Science.gov (United States)

    Méndez-Bautista, Joaquín; Fernández-Luqueño, Fabián; López-Valdez, Fernando; Mendoza-Cristino, Reyna; Montes-Molina, Joaquín A; Gutierrez-Miceli, F A; Dendooven, L

    2009-07-01

    Extracts of neem (Azadirachta indica A. Juss.) and Gliricidia sepium Jacquin, locally known as 'mata-raton', are used to control pests of maize. Their application, however, is known to affect soil microorganisms. We investigated if these extracts affected emissions of methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O), important greenhouse gases, and dynamics of soil inorganic N. Soil was treated with extracts of neem, mata-raton or lambda-cyhalothrin, used as chemical control. The soil was amended with or without urea and incubated at 40% and 100% water holding capacity (WHC). Concentrations of ammonium (NH4+), nitrite (NO2(-)) and nitrate (NO3(-)) and emissions of CH4, CO2 and N2O were monitored for 7d. Treating urea-amended soil with extracts of neem, mata-raton or lambda-cyhalothrin reduced the emission of CO2 significantly compared to the untreated soil with the largest decrease found in the latter. Oxidation of CH4 was inhibited by extracts of neem in the unamended soil, and by neem, mata-raton and lambda-cyhalothrin in the urea-amended soil compared to the untreated soil. Neem, mata-raton and lambda-cyhalothrin reduced the N2O emission from the unamended soil incubated at 40%WHC compared to the untreated soil. Extracts of neem, mata-raton and lambda-cyhalothrin had no significant effect on dynamics of NH4(+), NO2(-) and NO(3)(-). It was found that emission of CO2 and oxidation of CH4 was inhibited in the urea-amended soil treated with extracts of neem, mata-raton and lambda-cyhalothrin, but ammonification, N2O emission and nitrification were not affected.

  13. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    Science.gov (United States)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  14. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  15. Electrical discharge in gases: a technique for detecting metal anomalies

    International Nuclear Information System (INIS)

    Lord, D.E.

    1979-01-01

    Optical ionization effects in gases appear to be very sensitive indicators of nonuniformities caused by contamination, deformation, and other factors affecting a metal surface. These optical effects are influenced by surface electron emission, which is influenced in turn by the chemical, metallurgical, and mechanical condition of the metal surface. Based on these effects, a general technique for inspection of critical parts that is fast, inexpensive, nondestructive, and not limited by size or geometry is presented. Ionization effects that reveal nonuniformities and were recorded with standard photographic equipment are shown

  16. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  17. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Science.gov (United States)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  18. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    Science.gov (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  19. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  20. Emission of greenhouse gases from controlled incineration of cattle manure.

    Science.gov (United States)

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  1. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  2. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    Science.gov (United States)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  3. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    International Nuclear Information System (INIS)

    Reisinger, Andy; Ledgard, Stewart

    2013-01-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO 2 -equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO 2 -equivalent emissions, particularly for CH 4 . While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH 4 and N 2 O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric. (letter)

  4. EFFECTS OF AMARANTHS’ SEEDS ON DEHYDROGENASE ACTIVITY AND GASES EMISSION IN METHANOGENIC BIOREACTORS

    Directory of Open Access Journals (Sweden)

    Victor COVALIOV

    2015-12-01

    Full Text Available The influence of amaranths‘ seeds as the source of squalene on the dehydrogenase activity and efficiency of methane production were investigated in methanogenic bench-scale (5000 ml bioreactors used to treat the mixture of distillery wastes and farmyard manure. The adding of amaranth seeds to the methanogenic bioreactor has an inhibitory effect on the dehydrogenase activity and stimulates the process of methanogenesis. Dehydrogenase activity decreased with the increase of doses of squalene and its trend had a close connection with doses (R2=0.77-0.78. The methane content in the total amount of gases is 65.3-71.3% in a bioreactor with the additive of amaranth seeds in a dose of 50 mg l-1, which is 22.1% higher than in the the control bioreactor without additives. The increase in squalene concentration higher than 0.0005% is not rational because its stimulating effect on the methanogenic process decreases. Anaerobic digestion of alcohol distillery industry wastes with manure is a complex nonlinear time-varying microbiological process. Dehydrogenase activity trends in the experiment are described by the power function for 5 hours observations and by the logarithmic function for 120 hours of observations. Trends of CH4 are described by the polynomial function in all periods of testing. Correlation coefficients are 0.37 and 0.70 for CH4 after 5 and 120 hours of the anaerobic digestion. Dehydrogenase activity is in the close negative connection with the amount of gases, including methane. Correlation analysis between dehydrogenase activity and the release of gases has revealed the moderate and strongly negative link during 24 hours after the start of the experiment.EFECTUL SEMINŢELOR DE AMARANT ASUPRA ACTIVITĂŢII DEHIDROGENAZEI ŞI EMISIEI GAZELOR ÎN BIOREACTOARELE METANOGENEÎn bioreactoare metanogene unite consecutiv, cu volum de 5000 ml, utilizate pentru tratarea amestecului de borhot de la distilarea alcoolului cu gunoi de grajd, a fost

  5. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    International Nuclear Information System (INIS)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-01-01

    Highlights: ► We constructed future scenarios of emissions of greenhouse gases in waste. ► Was used the IPCC methodology for calculating emission inventories. ► We calculated the costs of abatement for emissions reduction in landfill waste. ► The results were compared to Brazil, state and city of Rio de Janeiro. ► The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management

  6. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  7. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  8. Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide

    International Nuclear Information System (INIS)

    Halmann, M.; Steinfeld, A.

    2006-01-01

    Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO 2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO 2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H 2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO 2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases

  9. Project ARES analysis of strategies of greenhouse effect gases emissions reduction. Synthesis report july 2002

    International Nuclear Information System (INIS)

    Criqui, P.; Blanchard, O.; Kitous, A.; Hourcade, J.Ch.; Ghersi, F.; Kousnetzoff, N.; Genet, J.; Fahr, St.; Soria, A.; Russ, P.

    2002-07-01

    The ARES project was realized around three main activities. The first part was the elaboration by the CEPII of a scenario of a world economic growth, detailed by region for the year 2030. The second part develops by the IEPE a scenario of allocation of emission quotas for the year 2030, by a gradual reduction of the emissions growth in the developing countries, the evaluation of the scenario from the POLES model, with a comparison of the results with the alternative models described in literature or proposed by the negotiation. The last part is the extension and the development by the CIRED of the 14 zones IMACLIM model, the elaboration of interfaces with POLES and the study of the general equilibrium effects of the different attribution scenari studied by the IEPE. (A.L.B.)

  10. Emissão de PM2,5 e gases em sistemas domésticos de queima de biomassa

    OpenAIRE

    Fernandes, Ana Patrícia da Silva

    2009-01-01

    Realizou-se uma série de testes para determinar a composição gasosa e a constituição química das emissões de PM2,5 resultantes da combustão doméstica em lareira e fogão. Queimaram-se 7 espécies lenhosas representativas da floresta Portuguesa (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acácia longifolia, Quercus faginea, Olea europea, Quercus ilex rotundifolia) e briquetes de resíduos de biomassa. A amostragem de gases foi realizada junto à exaustão da chaminé do fogão e da lareira...

  11. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley

    1988-01-01

    Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.

  12. Persistence of climate changes due to a range of greenhouse gases.

    Science.gov (United States)

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  13. Greenhouse effect: A first estimation of the emissions in Italy; I gas a effetto serra: Una prima valutazione delle emissioni in Italia

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, D [ENEA - Area Energia, Ambiente e Salute - Centro Ricerche Energia, Casaccia, Rome (Italy); Onufrio, G [Contrattista ENEA (Italy)

    1991-03-15

    The estimate of the anthropogenic emissions of greenhouse gases and the selection of the relevant emission factors represents a preliminary condition to define policies aiming at curbing these emissions. In the first part of this paper there is an analysis of C0{sub 2} emission factors, referred to the various fuels and energy technologies. The values at issue take into account the physico-chemical composition of the different fossil fuels, as well as the overall efficiency of energy production cycles and end uses patterns. As concerns the other greenhouse gases, the available information is summarized at a much more integrate level. The second part presents some estimates of carbon dioxide emissions in Italy, by sector and by fuel; some characteristic levels of specific emissions are also identified. A comparative estimate for CH{sub 4}, N{sub 2}O, CO and CFC's is also made, in order to set up a first reference table of the emissions of greenhouse gases in our country. (author)

  14. Evaluation of emissions in gas powered electric generator engine with vegetable oil; Avaliacao das emissoes de gases em motor gerador eletrico alimentado com oleo vegetal

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thalita C. de; Cunha, Joao Paulo Barreto; Cotrim, Suzane Santana; Brito, Gustavo Mendes; Delmond, Josue Gomes [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas], E-mail: thalitacarrijo@gmail.com

    2012-11-01

    The use of vegetable oils as fuel in diesel engines is a good alternative to reduce emissions of greenhouse gases in the atmosphere from the use of fossil fuels, either in pure form or as biodiesel. The soybean, oilseed single high-availability in Brazil, is the most viable feedstock for the production of oil and its use as a fuel because of the structure of production, distribution and grain crushing. This study aimed to evaluate the performance of a duty diesel generator fueled with blends of diesel and soybean oil at concentrations of 10%, 25%, 50% and 75%, and soybean oil pure, 100%. During the tests we evaluated the energy consumption of the generator and the emission of greenhouse gases (O{sub 2}, CO, CO{sub 2}, NO{sub x} and SO{sub 2}), according to the demand of electric charges (0, 500, 1000, 1500 and 2000 Watts) connected to the group generator. The results, using the F test, showed that the hourly consumption of fuel increased with increasing concentration in the mixture of diesel fuel and engine load demand from the generator. It follows that in the environment, increasing the oil concentration in the mixture caused a reduction in emissions, except for the emission of oxygen. The best choice for the operation for the engine generator using vegetable oil soya be provided for up to 60 % oil in the mixture and load demand up to 1000W, in which occurred lower emissions of carbon monoxide (CO) and therefore improved efficiency in the combustion process. (author)

  15. Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China

    International Nuclear Information System (INIS)

    Liu, Zhe; Adams, Michelle; Cote, Raymond P.; Geng, Yong; Chen, Qinghua; Liu, Weili; Sun, Lu; Yu, Xiaoman

    2017-01-01

    Although not yet a global consensus, there is widespread agreement that climate change is the result of anthropogenic sources of greenhouse gases (GHG) emissions. In order to respond to this issue, society has applied such strategies as clean energy development, improving industrial resource efficiency etc. Despite this, GHG emissions are still pursuing an upward trend. As the largest global GHG emitter, China faces a considerable challenge in responding to its agreed target of 40–45% GHG emission mitigation per unit gross domestic production (GDP) by 2020 as compared to 2005 levels. How to practically achieve this is still largely undecided. Comprehensive development of industrial symbiosis around nationwide is considered part of the solution. However, few researchers have studied how to actually implement a comprehensive development of industrial symbiosis for the purpose of GHG emission mitigation. This work intends to address this gap through highlighting the opportunities to develop such an approach for particular application to GHG emissions reduction in China. In addition, this study will also address the challenges ahead associated with the implementation of such a strategy, and outlines the where future research could be focused. Policy implications like establishing industrial symbiosis indicators associated with GHG emission mitigation are proposed. - Highlights: • Urgent issue of GHG mitigation and background of industrial symbiosis are introduced. • The challenges like lack of indicator, investigating methodologies and regional disparity are analyzed. • Opportunities for GHG mitigation through comprehensive development of industrial symbiosis are detailed. • Policy implications for responding GHG mitigation through industrial symbiosis are proposed.

  16. Options for the reduction of gases emissions of greenhouse effect (GEI), Colombia 1998 -2010

    International Nuclear Information System (INIS)

    Rodriguez M, Humberto; Gonzalez B, Fabio

    1999-01-01

    Taking into account the greenhouse gas emissions for Colombia in year 2010, different options for reduction of GHG emissions were considered. Twenty-four options were evaluated from economical and technical points of view, with a total reduction potential of 31.7 M ton/ year of CO 2 equivalent. About 75% of this potential could be developed in the forestry sector and 25% in energy projects. If the proposed measures can to be implemented, the country's emissions will be 143.5 M ton/year of co2 by 2010: this means that Colombia will have lowered its emissions not only to the 1990 level but down to 14% below this level

  17. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting

    NARCIS (Netherlands)

    Nigussie, Abebe; Kuijper, Thomas; Bruun, Sander; Neergaard, de Andreas

    2016-01-01

    Thermophilic composting produces a significant amount of greenhouse gases. The objectives of this study were (i) to evaluate the effectiveness of vermicomposting to reduce nitrogen losses and greenhouse gases emissions compared to thermophilic composting, and (ii) to determine the effect of

  18. Thermal diffusion baro-effect in cluster gases

    International Nuclear Information System (INIS)

    Kurlapov, L.M.; Segeda, T.A.

    2003-01-01

    Thermal diffusion baro-effect as a difference of pressure under which action in the established process in the close device the particles flow of an irreversible nature is counterbalanced by current of gas is considered. For not ideal gases the settlement formula is received, in which no ideality is taken into account through the compressibility factor and also for cluster mixture. (author)

  19. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Blasing, T.J.

    1992-01-01

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO 2 ), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co 2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO 2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co 2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  20. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  1. An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions.

    Science.gov (United States)

    Kung, Chih-Chun; McCarl, Bruce A; Chen, Chi-Chung

    2014-03-11

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan's future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan's energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  2. Greenhouse gases during storage and after application of digested and non-digested dairy cattle slurry including ammonia emissions and barley yield; Vaexthusgaser fraan roetad och oroetad noetflytgoedsel vid lagring och efter spridning, samt bestaemning av ammoniakavgaang och skoerd i vaarkorn

    Energy Technology Data Exchange (ETDEWEB)

    Rodhe, Lena; Ascue, Johnny; Tersmeden, Marianne; Willen, Agnes; Nordberg, Aake; Salomon, Eva; Sundberg, Martin

    2013-07-01

    Given that the manure-based biogas production is likely to increase in the coming years , it's important to find a proper handling of digested manure that have low emissions of both climate gases methane (CH{sub 4}) and nitrous oxide (N{sub 2}O ) as ammonia (NH{sub 3}) , which indirectly contributes to emissions of N{sub 2}O. The project have; Quantified GHG emissions, from undigested and digested manure during storage in winter and summer, and during land application in autumn and spring. Examined the effect on GHG emissions of covering digested manure during storage in winter and summer, and quantified NH{sub 3} emissions, yield and apparent nitrogen (N) recovery in spring barley.

  3. Study of reaction between water and exhaust gases from diesel engines used in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Mazukhina, S.I.; Kalabin, G.V.; Romanov, V.S.

    1988-05-01

    A method of mathematical simulation, based on the principle of local equilibrium of the kinetic components, was proposed for formulating and solving problems related to the combustion of fuel and the treatment of exhaust gases from a diesel engine in underground workings. Results of a study of the effects of exhaust gas quantity and composition on the reaction between the gases and water are presented. It is shown that the kinetic model correlates well with the equilibrium model, adequately describes the process, and gives a reliable picture of the changes over a period of time. The proposed method can be used to study the gas emission with different fuel mixtures and liquid neutralizing agents with a view to reducing the toxicity of diesel-engine exhaust gases.

  4. Emissions inventories and options for control

    Energy Technology Data Exchange (ETDEWEB)

    Swart, R.J.; Van Amstel, A.R.; Van den Born, G.J.; Kroeze, C. [National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands)

    1995-11-01

    In 1990, little was known about the emissions of greenhouse gases in the Netherlands, notably those of the non-CO{sub 2} greenhouse gases. Uncertainties included the causes, the emissions factors and the regional distribution of emissions. The main objectives of the project at that time were formulated as follows: (a) provide information for prioritizing greenhouse gas emissions research in the Netherlands; (b) provide input data for global models (later shifted to the EDGAR-project); and (c) support national and international policy development. The emphasis of the project was on non-CO{sub 2} greenhouse gases, notably methane (CH{sub 4}) and nitrous oxide (N{sub 2}O). While state-of-the-art information from international research would be used and analyzed, the focus of the project was on the Dutch emissions and their causes. Information was drawn from literature research, discussions with national and international experts, and experimental information from several projects. 2 figs., 12 refs.

  5. Custo marginal de abatimento de emissões de gases de efeito estufa na recuperação da pastagem = Marginal abatement cost of greenhouse gases emissions in pasture recovery

    Directory of Open Access Journals (Sweden)

    Willian Jun Kimura

    2016-10-01

    Full Text Available A demanda crescente por alimentos e as preocupações ambientais fizeram com que líderes governamentais incentivassem a adoção de tecnologias que possam aumentar a oferta de alimentos de forma sustentável. O objetivo com esse trabalho é valorar a mitigação de gases de efeito estufa através da recuperação de pastagem por meio do financiamento com a linha de crédito do Programa Agricultura de Baixa Emissão de Carbono, utilizando a ferramenta custo marginal de abatimento. Para alcançar os objetivos propostos, foram utilizados dados financeiros do Centro de Estudos Avançados em Economia Aplicada e da Confederação da Agricultura e Pecuária do Brasil e de emissões, do Painel Intergovernamental sobre Mudanças Climáticas e do Plano Agricultura de Baixa Emissão de Carbono para simular os custos anuais líquidos e as emissões líquidas da tecnologia atual e de abatimento, representadas por uma pecuária de baixa tecnologia e em pastagem recuperada, respectivamente. Os valores financeiros e de emissões da pecuária em pasto recuperado se apresentaram mais favoráveis quando comparados à pecuária de baixa tecnologia. Considerando esses dois fatores, chega-se a um custo marginal de abatimento de - R$ 24,72 por tCO2 equivalente. Desta maneira, a cada uma tonelada de gás carbônico equivalente mitigado pela recuperação da pastagem, o pecuarista tem um resultado financeiro de R$ 24,72 a mais do que se continuasse com uma pecuária de baixa tecnologia. Sendo assim, a recuperação de pastagem demostra ser uma prática que permite o aumento na produção de alimento de forma sustentável tanto ambientalmente quanto financeiramente. = Due to the growing demand for food and environmental concerns, government leaders have been driven to encourage the adoption of technologies which can increase the food supply in a sustainable way. This work aims to value greenhouse gas mitigation through pasture recovery by market incentives such as

  6. [Effect of Biochar on Soil Greenhouse Gas Emissions in Semi-arid Region].

    Science.gov (United States)

    Guo, Yan-liang; Wang, Dan-dan; Zheng, Ji-yong; Zhao, Shi-wei; Zhang, Xing-chang

    2015-09-01

    This study aimed to investigate the effects of biochar addition on the emission of greenhouse gases from farmland soil in semi-arid region. Through an in-situ experiments, the influence of sawdust biochar(J) and locust tree skin biochar (H) at three doses (1%, 3%, and 5% of quality percentage) on C2, CH4 and N2O emissions were studied within the six months in the south of Ningxiaprovince. The results indicated that soil CO2 emission flux was slightly increased with the addition doses for both biochars, and the averaged CO2 emission flux for sawdust and locust tree skin biochar was enhanced by 1. 89% and 3. 34% compared to the control, but the difference between treatments was not statistically significant. The soil CH4 emission was decreased with the increasing of biochar doses, by 1. 17%, 2. 55%, 4. 32% for J1, J3, J5 and 2. 35%, 5. 83%, 7. 32% for H1, H3, H5, respectively. However, the difference was statistically significant only for J5, H3 and H5 treatments (P effect on soil N2O emission. Our study indicated that the biochar has no significant influence on soil CO2 and N2O emissions within six months in semi-arid region and can significantly influence soil CH4 emissions (P < 0. 05). As for biochar type, the locust tree skin biochar is significantly better than the sawdust biochar in terms of restraining CH4 emission(P = 0. 048).

  7. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  8. Norwegian emissions of CO2 1987-1994. A study of some effects of the CO2 tax

    International Nuclear Information System (INIS)

    Larsen, B.M.; Nesbakken, R.

    1997-01-01

    Several countries have introduced taxes on fossil fuels with the aim of reducing atmospheric emissions, partly because of local environmental goals (SO2, NOx) and partly to participate in a global effort to reduce emissions of greenhouse gases. Many macroeconomic studies, based on both global and national models, have been made of how emissions can be reduced with the help of taxes and the consequent reduction in GDP following the introduction of such taxes. Norway has had a CO2 tax for five years, thereby providing a unique opportunity to evaluate the effects of this tax on emissions. The paper provides a counterfactual analysis of energy consumption and emissions if no CO2 taxes had been introduced, compared with the actual situation in which such taxes exist. The effect of a CO2 tax on oil consumption, and thus CO2 emissions, is studied on the basis of partial economic models for various sectors of the Norwegian economy. The study indicates that the CO2 tax has had an impact on CO2 emissions in Norway. 7 figs., 3 tabs., 17 refs

  9. Impact of greenhouse gases on agricultural productivity in Pakistan

    International Nuclear Information System (INIS)

    Valasai, G.D; Harijan, K.; Uqaili, M.S.; Memon, H.R

    2005-01-01

    Pakistan is an agricultural developing country. About 68% of the country's population resides in rural areas and is mostly linked with agriculture. Agricultural sector contributes more than 25% to GDP, employees about 45% of the labour force and contributes significantly to export earnings of the country. Energy sector is the major source (80%) of emissions of Greenhouse Gases (GHGs). Agriculture and livestock sectors are also responsible for GHGs emissions. The emissions of GHGs results in acid rain and earth's temperature rise (global warming). The destabilization of the global climate destroys natural ecosystem and increases natural disasters, such as violent storms, floods, droughts etc. The acid rain and these natural disasters affect the agricultural productivity. The study indicates that the agricultural productivity per capita in Pakistan decreased continuously during the last two decades. The paper concludes that due to emissions of GHGs, the agricultural productivity is significantly affected in the country. The government should take concrete measures to minimize the emissions of GHGs for increasing the agricultural productivity and reducing other harmful impacts in the country. This paper presents the review and analysis of the effects of GHGs emissions on the agricultural productivity in Pakistan. (author)

  10. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2017-10-01

    Full Text Available Introduction Agriculture is a major consumer of chemical resources. Increasing use of the inputs in agriculture has led to numerous environmental problems such as high consumption of nonrenewable energy resources, loss of biodiversity and pollution of the aquatic environment (Moradi et al., 2014. This environmental change will have the serious impacts on different growth and development processes of crops. The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause to climatic change (IPCC, 2007. This condition is also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. Consistent with the development of agricultural production systems and move towards modernization in this sector increased dependence of the chemical resource (Salinger, 2005. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the greenhouse gases (GHGs emission and global warming potential (GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating wheat, barley and maize in some regions of Kerman province at 2011-2012 growth season. Materials and methods The study was conducted in Kerman province of Iran. Information about planting area of potato, onion and watermelon in various regions of Kerman was collected. Data were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. The application rates of the chemical inputs were collected by using a face-to-face questionnaire in various regions (Bardsir, Bam, Jiroft

  11. Flaring versus thermal incineration of waste gases in the oil and gas industry

    International Nuclear Information System (INIS)

    Smolarski, G.M.

    1999-01-01

    The efficient combustion of waste gases at oil processing plants, battery or well sites is discussed. Several problem situations are examined, field test results are reviewed, and custom design systems are explained including modifications to systems to conserve fuel. It is shown that combustion of waste gases in fuel efficient thermal incinerators is a practical means of disposal, particularly for sour or toxic gas of low heating value. These gases contain noxious compounds that may cause odours or adverse health effects. Results of a field tests of a portable in-situ incinerator show that compared to flaring (to oxide waste gas), incineration is a more efficient form of waste management. Emission tests also prove the superior performance of incineration. The feasibility of incinerating oil storage tank vapours was also demonstrated. Tests were also conducted with a fuel-efficient Glycol Still Off-Gas Incinerator which was developed to control toxic waste emissions. Glycol dehydration removes water vapour from natural gas. The key compounds that are removed by glycol are aromatic hydrocarbons or BTEX compounds (benzene, toluene, ethylbenzene and xylene), and sulphur compounds. The main design considerations for any incinerator are temperature, turbulence and residence time. An incinerator exit temperature of 760 degrees C is generally needed to reduce sulphur compounds. 2 refs., 8 tabs., 7 figs

  12. Green residues from Bangkok green space for renewable energy recovery, phosphorus recycling and greenhouse gases emission reduction.

    Science.gov (United States)

    Thitanuwat, Bussarakam; Polprasert, Chongchin; Englande, Andrew J

    2017-03-01

    Effective ways to integrate human life quality, environmental pollution mitigation and efficient waste management strategies are becoming a crisis challenge for sustainable urban development. The aims of this study are: (1) to evaluate and recommend an optimum Urban Green Space (UGS) area for the Bangkok Metropolitan Administration (BMA); and (2) to quantify potential renewable resources including electricity generation and potential nutrient recovery from generated ash. Green House Gases (GHGs) emissions from the management of Green Residues (GR) produced in a recommended UGS expansion are estimated and compared with those from the existing BMA waste management practice. Results obtained from this study indicate that an increase in UGS from its current 2.02% to 22.4% of the BMA urban area is recommended. This optimum value is primarily due to the area needed as living space for its population. At this scale, GR produced of about 334kt·y -1 may be used to generate electricity at the rate of 206GWh·y -1 by employing incineration technology. Additionally, instead of going to landfill, phosphorus (P) contained in the ash of 1077 t P·y -1 could be recovered to produce P fertilizer to be recycled for agricultural cultivation. Income earned from selling these products is found to offset all of the operational cost of the proposed GR management methodology itself plus 7% of the cost of BMA's Municipal Solid Waste (MSW) operations. About 70% of the current GHGs emission may be reduced based on incineration simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of air-polluting gases on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I

    1972-01-01

    Among the air-polluting gases, SO/sub 2/, ozone, peroxyacetylnitrate (PAN) and fluorine are those whose action is studied most. This review tries to show the connection between the well-known macroscopic symptoms, on the one hand, the the primary point of attack at the enzymatic level, the changes in the plant's metabolism, and the microscopic and electronmicroscopic results, on the other. PAN and ozone, which originate through the action of sunlight on auto-exhausts, cause the strong oxidizing character of this type of smog. Their primary point of attack seems to be their oxidizing effect on protein SH-groups. PAN in special oxidizes the SH-groups of a photoreducible disulfide containing chloroplast protein, thus blocking photosynthesis. SO/sub 2/, which originates from combustion of coal and petroleum as well as from roasting of sulfur-containing ores, causes the reductive character of this type of smog. SO/sub 2/ has a special position among the air-polluting gases because it can be incorporated without damaging effect into the normal sulfur metabolism up to a certain level. After exceeding this limit, it causes a rapid depression of photosynthesis. F/sup -/ is bound as a salt in the cell wall or in the cell vacuole and is thereby prevented from its damaging effect on metabolic processes up to a certain level. Upon exceeding this, it acts mainly on the enzymes of carbohydrate metabolism. In a few examples it is shown in which way the collapse of cell compartmentation causes the loss of regulatory mechanisms of the cell. The influence of internal (genetic conditions, physiological age etc.) and external (light, temperature, humidity etc.) factors on the general metabolism, and, in this way, on the sensitivity of the plant to air-polluting gases, is shown. 195 references.

  14. Emissions from urban waste

    International Nuclear Information System (INIS)

    Chacha, J.S.

    1998-01-01

    Indiscriminate emission of gases and fumes from improper storage, transport systems and wastes disposals have polluted the environment especially surface and underground water and air. This has irreversibly affects on the environment some of which can be devastating to life.Some of the potential adverse effects on environment include the ozone depletion, acid rain,soil degradation and climate change

  15. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    OpenAIRE

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-01-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gase...

  16. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V.B.; Kopp, I.Z.; Yasenski, A.N. [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1995-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  17. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V B; Kopp, I Z; Yasenski, A N [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1996-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  18. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    NARCIS (Netherlands)

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design,

  19. Transition paths towards CO2 emission reduction in the steel industry

    NARCIS (Netherlands)

    Daniëls, Berend Wilhelm

    2002-01-01

    Radiative forcing, better known as the Greenhouse Effect, is probably the major 21st century environmental problem. Its probable cause is the anthropogenic emission of greenhouse gases, especially CO2. The Kyoto agreement enforces considerable reductions of the GHG emissions in 2010, with 6 to 8% of

  20. The influence of ion bombardment on emission properties of carbon materials

    International Nuclear Information System (INIS)

    Chepusov, Alexander; Komarskiy, Alexander; Kuznetsov, Vadim

    2014-01-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  1. The influence of ion bombardment on emission properties of carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Chepusov, Alexander, E-mail: chepusov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Komarskiy, Alexander, E-mail: aakomarskiy@gmail.com [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Kuznetsov, Vadim, E-mail: kuznetsov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation)

    2014-07-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  2. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  3. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  4. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  5. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  6. Potential effects of emission taxes on CO2 emissions in OECD and LDC countries. Working paper

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1990-12-01

    A set of existing optimization models representing the energy systems of the OECD and LDC countries (the LDC region covers all less developed countries excluding centrally planned economies) with a time horizon up to 2020 was applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures was a scheme of taxes levied on the emissions of 6 relevant pollutants-including the greenhouse gases CO 2 and methane. The tax levels introduced are based on the taxes discussed by the Swedish government administration; they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models offer the choice between the following alternatives as response to increases in expenditures caused by emission taxes: (*) Reduction of final energy demand by supplying the requested services by other means (i.e., conservation). (*) Substitution of 'dirty' fuels by fuels entailing less pollution. (*) Introduction of 'clean' technologies for the same purposes (e.g., a combined cycle based on coal gasification is a much cleaner process for electricity generation from coal than conventional coal power plants). (*) For SO 2 and NO x emissions pollution reduction technologies (i.e., scrubbers and catalysts) can be added to existing technologies in order to reduce emissions. Alternative scenarios with emission taxes are compared to a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 years in the base scenario would be changed into stabilization up to 2010 by measures induced by the tax levels introduced. Thereafter, however, energy consumption growth in the LDC area, in conjunction with the exhaustion of economically viable emission reduction measures, reverse this trend: CO 2 emissions start to increase again after

  7. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  8. Energy balance, bioelectricity and emission of greenhouse gases from power plants in Mato Grosso do Sul; Balanco energetico, bioeletricidade e emissao de gases estufa das usinas de Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Turdera, Eduardo Mirko Valenzuela [Universidade Federal da Grande Dourados (UFGD), MS (Brazil)], email: eduardoturdera@ufgd.edu.br

    2010-07-01

    First we present in this paper the most important greenhouse gases emitted by sugar cane crops. The principal reference of the energy balance methodology and its theory are described. Furthermore, we show the yields of the unique energy balance applied to the sugar cane mills of Mato Grosso do Sul. The yields brings information about land use of the sugar cane crops, efficiency of technologies and process to produce ethanol and inputs about how the companies could improve its competitive position which involves, to care of environment impacts. Finally, we present the yield of CO{sub 2} emissions of the five mills evaluated. (author)

  9. Multi-objective optimization of aircraft design for emission and cost reductions

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-02-01

    Full Text Available Pollutant gases emitted from the civil jet are doing more and more harm to the environment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emission in aircraft conceptual design stage is improved based on the International Civil Aviation Organization (ICAO aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent per seat per kilometer is proposed to measure the emissions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC are performed with five geometry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases.

  10. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    Science.gov (United States)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  11. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  12. International negotiations about reducing the emission of greenhouse gases

    International Nuclear Information System (INIS)

    Lepage, C.

    1999-01-01

    It is high time Europe proposed concrete actions within the framework of Kyoto negotiations. Europe should participate to negotiations actively, otherwise a non-efficient agreement could be applied. At Kyoto it was decided that licences for releasing greenhouse gases could be exchanged between countries but not between firms. The global efficiency and success of such a system requires to involve firms and polluters more directly. (A.C.)

  13. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  14. Recent trends in the variability of halogenated trace gases over the United States

    Science.gov (United States)

    Hurst, Dale F.; Bakwin, Peter S.; Elkins, James W.

    1998-10-01

    Recent trends in the atmospheric variability of seven halogenated trace gases are determined from three years (November 1994 through October 1997) of hourly gas chromatographic measurements at a 610 m tower in North Carolina and 17 months (June 1996 through October 1997) of similar measurements at a 450 m tower in Wisconsin. Production of five of these gases, CCl3F (CFC-11), CCl2F2 (CFC-12), CCl2FCClF2 (CFC-113), CH3CCl3 (methyl chloroform), and CCl4 (carbon tetrachloride), is now strictly regulated in the United States and other developed countries under international legislation. C2Cl4 (tetrachloroethene) and SF6 (sulfur hexafluoride) are currently produced without restriction, but requests for voluntary cutbacks in C2Cl4 emissions have been made, at least in the United States. Atmospheric variability of these gases is examined at several sampling heights on the towers, but trends are deduced using only nighttime data at the top sampling level of each tower to minimize variability driven by local emissions and the diurnal cycle of the planetary boundary layer, leaving regional emissions as the main source of day-to-day variability. Significant downward trends are determined for CFC-12, CFC-113, CH3CCl3, and C2Cl4 variability at both towers, reflecting decreased emissions of these gases in two regions of the United States. Trends in CFC-11, CCl4, and SF6 variability at both towers are not significantly different from zero.

  15. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  16. Atmospheric emissions : hydro-electricity versus other options

    International Nuclear Information System (INIS)

    Chamberland, A.; Belanger, C.; Gagnon, L.

    1996-01-01

    One of the great environmental advantage offered by hydro-electricity in northern or temperate climates includes reduced atmospheric emissions. While natural gas plants, from an environmental viewpoint, are thought to be the best fossil fuel option, they emit 18 times more greenhouse gases, at least 60 times more sulfur dioxide and hundreds of times more nitrogen oxides than do hydro-electric systems. The relative SO 2 and greenhouse gas emissions from energy systems in Canada were outlined, and their environmental impacts were described. At the same time, mention was made of other environmental pollutants, such as acid rain, photochemical smog, and particulates that continue to have major impacts on the environment, but were displaced as the focus of attention by greenhouse gases. A study was conducted to determine the effects of extreme biomass decomposition and greenhouse gas emissions from reservoirs. The study showed that at depths of more than 10 centimeters below water surface, organic matter does not contribute to greenhouse gas production, even at 20 degrees C. It was demonstrated that even when maximum biomass decomposition is assumed, a modern natural gas plant would emit 14 times more green house gases than a hydroelectric plant of comparable capacity. 13 refs., 4 tabs., 3 figs

  17. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  18. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  19. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    1994-04-01

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  20. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  1. Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere

    International Nuclear Information System (INIS)

    Scholes, Mary; Andreae, M.O.

    2000-01-01

    Tropical regions, with their high biological activity, have the potential to emit large amounts of trace gases and aerosols to the atmosphere. This can take the form of trace gas fluxes from soils and vegetation, where gaseous species are produced and consumed by living organisms, or of smoke emissions from vegetation fires. In the last decade, considerable scientific effort has gone into quantifying these fluxes from the African continent. We find that both biogenic and pyrogenic emissions have a powerful impact on regional and global atmospheric chemistry, particularly on photooxidation processes and tropospheric ozone. The emissions of radiatively active gases and aerosols from the African continent are likely to have a significant climatic effect, but presently available data are not sufficient for reliable quantitative estimates of this effect

  2. Natural and human-related sources of ozone-forming trace gases in southern Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1998-09-01

    Full Text Available or vehicular pollution. The cloud of tropospheric ozone which forms over southern Africa every spring probably has its main origin in natural emissions of the ozone-forming trace gases, including CO from vegetation fires, emissions of NO from soils...

  3. Manual on measurement of methane and nitrous oxide emissions from agriculture

    International Nuclear Information System (INIS)

    1992-11-01

    Nitrous oxide and methane are two of the gases primarily responsible for atmospheric warming, or the ''greenhouse effect''. Agricultural activities are an important source of methane and nitrous oxide emissions, but quantitation of these sources is generally lacking. This manual describes techniques to evaluate current emissions from diverse animal and crop production practices and suggests methods for decreasing these emissions. Refs, figs and tabs

  4. Effect of different dietary strategies on gas emissions and growth performance in post- weaned piglets

    Directory of Open Access Journals (Sweden)

    G. Montalvo

    2013-10-01

    Full Text Available The objective of this study was to assess the effects of different dietary strategies in post-weaned piglets on gas emissions and animal performance. Eighty piglets were allotted in ten environmentally-controlled chambers. Piglets were fed with five different isoenergetic diets: control, low protein (LP, inclusion of sugar beet pulp (SBP, addition of benzoic acid (BA and a combination of LP, SBP and BA (LP+SBP+BA. The gases analyzed were ammonia (NH3, methane (CH4, nitrous oxide (N2O and carbon dioxide (CO2. For NH3, the most effective treatment was LP, with a reduction of 61%. The LP+SBP+BA reduced NH3 emission by 51%, the inclusion of SBP by 43% and the least effective technique was BA, which decreased by 9.5%, compared to control. The CH4 emission was reduced by 30% for LP, but was increased by 23% for SBP and 24.6% for LP+SBP+BA. Benzoic acid did not differ from control group. The N2O emission did not show statistically differences, and CO2 and carbon dioxide equivalent (CO2eq emission increased with LP+SBP+BA (14 and 15% respectively, but were not affected by other diets. No effect of dietary treatment was observed on the growth performances compared with control group (p >0.05. We can conclude that the best technique to reduce NH3 emission was LP. Inclusion of SBP decreases NH3 emission, but can increase greenhouse gas emissions. It would be interesting to evaluate the effect of higher percentages of BA because the promising results. Combining techniques is not a good strategy to obtain an additive effect in gas emissions reduction.

  5. Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, F.; Tavassoli, S. H. [Laser and Plasma Research Institute, ShahidBeheshti University, 19396 4716, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-01-15

    In the present study, the ablation behavior of aluminum target and its plasma radiation in noble ambient gases by a laser pulse with wavelength of 266 nm and pulse duration of 10 ns are numerically studied. A thermal model of laser ablation considering heat conduction, Euler equations, Saha-Eggert equations, Knudsen layer, mass and energy balance relations and optical shielding effects are used for calculation of plasma parameters. Effects of excitation energy on plasma expansion and its emissivity are investigated. Time and spatial-resolved plasma emission including bremsstrahlung, recombination and spectral emission at early delay times after laser irradiation is obtained. Effects of two ambient gases (He and Ar) as well as different gas pressures of 100, 300, 500, and 760 Torr on plasma expansion and its spectrum are studied. Results illustrate that at initial delay times, especially at high noble gas pressures, ionic lines have the maximum intensities, while at later times neutral lines dominate. When the pressure of ambient gas increases, a confinement of the plasma plume is predicted and the intensity of neutral lines decreases. Continuous emission increases with wavelength in both ambient gases. Spatially resolved analysis shows that an intense continuous emission is predicted next to the sample surface decreasing with distance from the latter.

  6. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  7. Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N₂O emission dynamics.

    Science.gov (United States)

    Guo, Lisha; Vanrolleghem, Peter A

    2014-02-01

    An activated sludge model for greenhouse gases no. 1 was calibrated with data from a wastewater treatment plant (WWTP) without control systems and validated with data from three similar plants equipped with control systems. Special about the calibration/validation approach adopted in this paper is that the data are obtained from simulations with a mathematical model that is widely accepted to describe effluent quality and operating costs of actual WWTPs, the Benchmark Simulation Model No. 2 (BSM2). The calibration also aimed at fitting the model to typical observed nitrous oxide (N₂O) emission data, i.e., a yearly average of 0.5% of the influent total nitrogen load emitted as N₂O-N. Model validation was performed by challenging the model in configurations with different control strategies. The kinetic term describing the dissolved oxygen effect on the denitrification by ammonia-oxidizing bacteria (AOB) was modified into a Haldane term. Both original and Haldane-modified models passed calibration and validation. Even though their yearly averaged values were similar, the two models presented different dynamic N₂O emissions under cold temperature conditions and control. Therefore, data collected in such situations can potentially permit model discrimination. Observed seasonal trends in N₂O emissions are simulated well with both original and Haldane-modified models. A mechanistic explanation based on the temperature-dependent interaction between heterotrophic and autotrophic N₂O pathways was provided. Finally, while adding the AOB denitrification pathway to a model with only heterotrophic N₂O production showed little impact on effluent quality and operating cost criteria, it clearly affected N2O emission productions.

  8. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.

    Science.gov (United States)

    Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy

    2002-12-01

    The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.

  9. Greenhouse gases: How does heavy oil stack up?

    International Nuclear Information System (INIS)

    Ottenbreit, R.J.

    1991-01-01

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  10. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  11. Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform

    International Nuclear Information System (INIS)

    Adger, W.N.; Moran, D.C.

    1993-01-01

    Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies

  12. Beyond Vienna and Montreal: A global framework convention on greenhouse gases

    International Nuclear Information System (INIS)

    Wirth, D.A.; Lashof, D.A.

    1993-01-01

    This chapter discusses the need for a framework treaty analogous to the Vienna Convention and to the Montreal Protocol for greenhouse gases. Discussed are the following topics: (1) the immediate need for multilateral greenhouse gas controls, including policy implications of scientific uncertainties; (2) recent steps toward a greenhouse gas convention; (3) an environmentally meaningful plan for a greenhouse gase conventions, including the ozone precident, CO 2 targets, resource transfers, trading emissions allocations, institutional issues

  13. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  14. Possibilities for the emissions reduction of smoke particles in the flue emissions of diesel motors

    International Nuclear Information System (INIS)

    Mikarovska Vesna; Stojanovski, Vasko

    2000-01-01

    Taking into consideration the fact that the traffic needs have been increased, the international committee through its associations make efforts in order to find more effective measures for the environmental protection. In this contest the international regulations are very rigorous towards the quality and quantity of the exhaust gases emission from the engines with internal combustion. In this paper the normative and limitations of the exhaust emission of compression ignition engines are presented. Also, the results from experimental investigations of transport vehicles with different time of exploitation and passed kilometers are given, as well as the factors that influent to the smoke component reduction in exhaust emission. (Authors)

  15. Emission trading in Slovakia is not bound to Kyoto

    International Nuclear Information System (INIS)

    Slovak, K.; Zackova, K.

    2004-01-01

    After Pentagon published its report problems related to changes in climate became an important discussion topic again. The report indicates that future temperature increase could have fatal impacts like flooding of Netherlands. Representatives of Slovak National Climate Program do not completely share this view. They consider it to be the worst scenario - catastrophic scenario. And they are also positive that the emissions of greenhouse gases that are the main reason for these changes of climate will decrease. EU is currently working on Directives that will support one of the possible solutions - emission trading and will make this trade independent from ratification of the Kyoto protocol. The basic principle is simple - a country with production of the greenhouse gases below the legally set level or below the level set out by international agreement on climatic changes will have some spare emission quotas that can be traded i.e. sold to a country that produces more gases then allowed. And based on such an agreement signed between a Slovak and Japanese company, Japan will be allowed to produce more greenhouse gases if it can prove that there is an area in the world where the production is below the limit. But, at the same time, it will have to pay for this over-production. Starting next year over 12-thousand companies will be allowed to participate in this business. At the moment an act on emission trading is being prepared in Slovakia. It should have been completed by end of January but the approval process is being delayed. Similar acts are under preparation also in other countries and not even the EU member states have passed them yet. The National Allocation Plan in Slovakia should distribute the emission quotas to about 200 companies. Many European politicians consider the emission trade an effective economic tool provided it will be used as motivation for decrease of greenhouse gas production. And so all companies participating in this project will handle in

  16. Greenhouse gas emissions from South Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-05-01

    Full Text Available of CO2. These gases included 350 Tg CO2 (65.6% of the effect), 183 Tg CH4 (34.2%) and 1.2 Tg N2O (0.2%). The mining and burning of coal contributed more than 80% of the greenhouse gas emissions from South African territory....

  17. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross

    1990-01-01

    Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.

  18. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  19. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  20. The influence of macroeconomic indicators on the emission of greenhouse gases. Treatment of outliers Case study - România

    Directory of Open Access Journals (Sweden)

    Evelina GRĂDINARU

    2015-06-01

    Full Text Available This paper implements the multiple linear regression method in order to determine the correlation between a number of independent variables and a dependent variable. It begins with a brief introduction explaining the purpose of this analysis, and continues with the implementation of the econometric model in order to calculate the coefficient of determination that the four significant macroeconomic indicators, namely the amount of energy produced from renewable sources, gross domestic product (GDP, the price of Brent oil barrel on the European market and the energy intensity of the economy have on total emissions of greenhouse gases in Romania. The final part will expose the conclusions of the present analysis.

  1. Reduction of exhaust gases an fuel consumption. Impacts on air qulity and greenhouse effect; Abgas- und Verbrauchsverringerung. Auswirkungen auf Luftqualitaet und Treibhauseffekt

    Energy Technology Data Exchange (ETDEWEB)

    Metz, N. (ed.)

    2007-07-01

    The book includes contributions on European exhaust gas limits for stationary and mobile pollution sources, challenges for the automotive industry, NO{sub 2}, CO{sub 2} and fine dust emissions of power plants, potential for emission reductions of modern engines, comparison of CO{sub 2} avoidance costs with costs for mitigation measures, CO{sub 2} saving potentials in buildings, characterization of diesel particulates, concepts for emission reductions, development of air quality and greenhouse gases, impact of fine dust and NO{sub 2} on public health, new combustion processes based on new fuel specifications.

  2. 10 CFR 300.7 - Net emission reductions.

    Science.gov (United States)

    2010-01-01

    ... the likely direct and indirect effects of the actions taken to reduce greenhouse gas emissions. (d... DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7... gases listed in the definition of “greenhouse gases” in § 300.2 are eligible for registration. (b...

  3. Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese rice-wheat rotation ecosystems

    Science.gov (United States)

    Yao, Zhisheng; Zhou, Zaixing; Zheng, Xunhua; Xie, Baohua; Liu, Chunyan; Butterbach-Bahl, Klaus; Zhu, Jianguo

    2010-03-01

    Tillage practices result in major changes to soil environmental conditions and to the distribution of crop residues and nutrients in the soil profile, which may consequently affect the biogenic production and emission of N trace gases. To investigate the effects of tillage during the nonwaterlogged period on nitric oxide (NO) and nitrous oxide (N2O) emissions in rice-wheat rotation systems, we performed field experiments at three sites (Suzhou, Wuxi, and Jiangdu) in the Yangtze River Delta using static chamber techniques. The results showed that the effect of tillage on the emissions of both gases differed among the three field sites due to differences in agricultural management and soil texture. At the site with a light soil texture (Jiangdu: sandy loam), no tillage resulted in reduced NO emissions (0.5 kg N ha-1) as compared to conventionally tilled fields (0.9 kg N ha-1; p tillage plots showed significantly higher emissions (p tillage resulted in lower NO and higher N2O emissions from either N fertilized or unfertilized fields even though these results were not statistically significant. In the silty clay loam soils (Suzhou), which showed the highest soil organic carbon contents and the highest rates of N trace gas emissions in all three of the investigated sites, reduced tillage resulted in much higher NO emissions, whereas N2O emissions were not obviously influenced by tillage practices (reduced tillage versus tillage: NO, 9.5 versus 5.4 kg N ha-1; N2O, 10.6 versus 9.0 kg N ha-1). Similar effects of tillage were observed for the direct emission factors of the applied N during the wheat season. The observed emission factors for the different sites ranged from 0.3% to 2.4% for N2O (mean: 1.0%) and from 0.1% to 4.0% (mean: 0.9%) for NO, respectively. The observed site-to-site differences in emission factors are most likely the results of variations in soil properties (such as texture and pH) and agricultural practices (such as tillage and crop residue management

  4. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  5. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    Science.gov (United States)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  6. Emissions of biogenic sulfur gases from Alaskan tundra

    Science.gov (United States)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  7. BP's emissions trading system

    International Nuclear Information System (INIS)

    Victor, David G.; House, Joshua C.

    2006-01-01

    Between 1998 and 2001, BP reduced its emissions of greenhouse gases by more than 10%. BP's success in cutting emissions is often equated with its use of an apparently market-based emissions trading program. However no independent study has ever examined the rules and operation of BP's system and the incentives acting on managers to reduce emissions. We use interviews with key managers and with traders in several critical business units to explore the bound of BP's success with emissions trading. No money actually changed hands when permits were traded, and the main effect of the program was to create awareness of money-saving emission controls rather than strong price incentives. We show that the trading system did not operate like a 'textbook' cap and trade scheme. Rather, the BP system operated much like a 'safety valve' trading system, where managers let the market function until the cost of doing so surpassed what the company was willing to tolerate

  8. Reducing Methane Emissions: The Other Climate Change Challenge

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard

    2008-08-01

    investments can often be recouped by providing a new energy service or switching away from fossil fuels. Both underestimating the effects of methane emission reductions, and the wide range of sector-related greenhouse gas emission reduction programmes and measures, lead us to reconsider whether it is appropriate to set emission reduction targets expressed in t CO_2 eq and, consequently, whether it is relevant to implement a 'global carbon market', precisely based on the use of this unit. Both the importance of the time factor to assess the respective effects of CO_2 and CH_4 emission reductions, and the extraordinary range of policies and technologies - in terms of implementing conditions and economic costs -, lead us to recommend that separate emission reduction targets be set for these two greenhouse gases and that international climate negotiators begin to draw up country-by-country priority action programmes and define arrangements for their implementation on the basis of a preliminary analysis of the largest and most easily harnessed sectoral reduction potentials

  9. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  10. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  11. Greenhouse gases accounting and reporting for waste management - A South African perspective

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2010-01-01

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  12. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  13. Quantification of the greenhouse effect gases at the territorial scale. Final report; Quantification des emissions de gaz a effet de serre a l'echelle territoriale. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Lacassagne, S

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  14. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2002-01-01

    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  15. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  16. The Effect of Different Types of Diet on Greenhouse Gas Emissions in Greece

    Directory of Open Access Journals (Sweden)

    Konstadinos Abeliotis

    2016-02-01

    Full Text Available Diet modifications are explored for the mitigation of greenhouse gases emissions worldwide. The current paper aims at estimating the carbon footprint of the diet of the Greek consumers in 2011. Based on food items consumption data, equivalent CO2 emission factors, the total carbon footprint associated with the per capita Greek diet patterns is calculated. Data for this task are retrieved from readily available resources of existent literature. The per capita carbon footprint resulting from the consumption of food items in Greece in 2011 for the reference scenario is calculated to be 1,827.4 kg CO2/y. In addition, alternative diet scenarios are proposed, their carbon footprint is calculated and suggestions are made for possible sustainable dietary changes. The results indicate that transition to a lacto-ovo-vegetarian diet constitutes a very drastic change towards mitigating greenhouse gases. However its acceptance by the public is very questionable. Thus, the second alternative scenario, which anticipates the substitution of beef by mainly pork and chicken, becomes more relevant. These results could serve as a yardstick for policy interventions aiming at reducing GHG emissions via diet modifications in Greece.

  17. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  18. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas

    International Nuclear Information System (INIS)

    De Giacomo, A.; Dell'Aglio, M.; Gaudiuso, R.; Amoruso, S.; De Pascale, O.

    2012-01-01

    In this paper the most important features of Laser Induced Plasma (LIP) evolution were analyzed from the fundamental point of view, in order to point out the effects of background environment on the plasma emission spectra. In particular, the main differences between air and vacuum Laser-Induced Breakdown (LIBS) are discussed, as well as those arising in high-pressure gases and in liquid environment. As can be expected, the dynamics of the plasma is strongly dependent on the environment where the plasma itself expands, which can be exploited for several different applications, ranging from chemical analysis and process diagnostics to materials science. The effect of other experimental conditions, such as the state of aggregation of the irradiated target, and the effect of laser pulse duration are also briefly reviewed. - Highlights: ► General processes involved in laser ablation and plasma generation were reported. ► Effect of number density in the plasma on the spectra features was discussed. ► LIP in gases at different pressures, in liquids and in DP techniques was discussed. ► LIBS spectra in various environments and correlated applications were discussed.

  19. Ozone depleting substances and greenhouse gases HFCs, PFCs and SF{sub 6} consumption and emissions; Ozonlagsnedbrydende stoffer og drivhusgasserne HFC'er, PFC'er og SF{sub 6}. Forbrug og emissioner 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [Planmiljoe, Veksoe Sjaelland (Denmark)

    2004-07-01

    The aim of the project is to map the 2002 Danish consumption of produced ozone depleting substances and the consumption and actual emission of the greenhouse gases HFCs, PFCs and SF{sub 6}. The inventory is performed, partly according to the guidelines recommended by IPCC (Intergovernmental Panel on Climate Change), and partly according to the method that has been used for previous mappings. The mapping is done partly in order to meet Denmark's international commitments to report and partly in order to monitor how the consumption of ozone depleting substances and the emissions of greenhouse gases develop. The mapping of ozone depleting substances includes the net consumption, meaning the amount of the imported raw materials in bulk or in drums minus any re-export of the substances in the form of raw materials. Mapping of the actual emissions of HFCs, PFCs and SF{sub 6} is done in continuation of previous greenhouse gas inventories. The inventory process is continuously improving due to development of international approved guidelines (IPCC) and the production of increasingly detailed data. (BA)

  20. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Cushman, R.M.

    2001-01-01

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO(sub 2)) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO(sub 2) and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO(sub 2) on vegetation; and the vulnerability of coastal areas to rising sea levels

  1. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  2. Five essays on emissions trading

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    2005-03-01

    The thesis discusses energy, environmental and economic aspects of polluting emissions with emphasis on greenhouse gas trade and political measures. 5 papers are included with titles: 1) Carbon trading across sources and periods constrained by the Marrakesh Accords which examines examine the potential effects on permit prices and abatement costs of four compliance rules governing emissions trade across sources and periods in the Kyoto Protocol: The banking rule that allows excess permits to be used later; the restoration rate rule that penalizes borrowing; the commitment period reserve rule that limits sales; and finally, the suspension rule that restricts borrowing and sales. Our framework is a two-period model where parties may be out of compliance in the Kyoto period, but are assumed to comply at a later time. Under varying assumptions about market power and US participation, we find that the rules may have pronounced effects on individual costs, but overall efficiency is not severely affected. 2) Affine price expectations and equilibrium in strategic markets which considers equilibrium in imperfect markets, featuring agents who exchange property rights. Important cases include trade in emission permits of greenhouse gases, or exchange of catch quotas of fish. Some players act strategically while others are price-takers. The ''demand curve'' is endogenous, and it affects all parties. The resulting, reduced objectives need not be concave. Therefore, existence of equilibrium is a delicate matter. To simplify things, and to ensure availability of ''equilibria up to first order'', we presume that all strategic agents form affine price expectations. 3) Greenhouse gases, quota exchange and oligopolistic competition that discusses the problem how quotas can be shared in the ''emissions market'' and how can the agents reach as overall equilibrium in the product market. 4) Strategic markets in property rights

  3. Five essays on emissions trading

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    2005-03-01

    The thesis discusses energy, environmental and economic aspects of polluting emissions with emphasis on greenhouse gas trade and political measures. 5 papers are included with titles: 1) Carbon trading across sources and periods constrained by the Marrakesh Accords which examines examine the potential effects on permit prices and abatement costs of four compliance rules governing emissions trade across sources and periods in the Kyoto Protocol: The banking rule that allows excess permits to be used later; the restoration rate rule that penalizes borrowing; the commitment period reserve rule that limits sales; and finally, the suspension rule that restricts borrowing and sales. Our framework is a two-period model where parties may be out of compliance in the Kyoto period, but are assumed to comply at a later time. Under varying assumptions about market power and US participation, we find that the rules may have pronounced effects on individual costs, but overall efficiency is not severely affected. 2) Affine price expectations and equilibrium in strategic markets which considers equilibrium in imperfect markets, featuring agents who exchange property rights. Important cases include trade in emission permits of greenhouse gases, or exchange of catch quotas of fish. Some players act strategically while others are price-takers. The ''demand curve'' is endogenous, and it affects all parties. The resulting, reduced objectives need not be concave. Therefore, existence of equilibrium is a delicate matter. To simplify things, and to ensure availability of ''equilibria up to first order'', we presume that all strategic agents form affine price expectations. 3) Greenhouse gases, quota exchange and oligopolistic competition that discusses the problem how quotas can be shared in the ''emissions market'' and how can the agents reach as overall equilibrium in the product market. 4) Strategic markets in property rights without price-takers that deals with Cournot-type models of

  4. Greenhouse gas emissions from Savanna ( Miombo ) woodlands ...

    African Journals Online (AJOL)

    Natural vegetation represents an important sink for greenhouse gases (GHGs); however, there is relatively little information available on emissions from southern African savannas. The effects of clearing savanna woodlands for crop production on soil fluxes of N2O, CO2 and CH4 were studied on clay (Chromic luvisol) and ...

  5. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    Science.gov (United States)

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  6. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    Science.gov (United States)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    understanding of Chinese emissions at more disaggregated levels is essential for finding effective mitigation measures for reducing national and regional air pollution in China.

  7. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  8. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    Science.gov (United States)

    Xiang, Bin; Montzka, Stephen A.; Miller, Scot M.; Elkins, James W.; Moore, Fred L.; Atlas, Elliot L.; Miller, Ben R.; Weiss, Ray F.; Prinn, Ronald G.; Wofsy, Steven C.

    2014-01-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. PMID:25422438

  9. Inventory compilation of F-gases 2008. Data on HFCs, PFCs, and SF{sub 6} for the national emissions reporting under the Framework Convention on Climate Change for the reporting year 2008; Emissionen fluorierter Treibhausgase in Deutschland 2008. Inventarermittlung der F-Gase 2008 Daten von HFKW, FKW und SF6 fuer die nationale Emissionsberichterstattung gemaess Klimarahmenkonvnention fuer das Berichtsjahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2010-06-15

    This report presents the 2008 data on the German emissions of the fluorinated greenhouse gases HFCs, PFCs, and SF{sub 6} (F-gases) to be entered into the ZSE (Centralised System of Emissions at the German Environmental Agency). The overall emissions of HFCs, PFCs, and SF6 have doubled from 1995 to 2008, from 3,241 to 7,202 metric tons. In terms of global warming, the emissions in 2008 exceeded again the 1995 level, with 18.0 vs. 15.5 million tons CO{sub 2} equivalent. Against the previous your, the emissions in metric units have decreased the first time since 1995, however the global warming emissions, have increased by further 0.7 million t CO{sub 2} equivalent. PFC emissions remained in 2008 at the 2007 level although they show a constant down trend from 1995 onwards. Emissions of SF6, which had decreased before 2002, are increasing again from 2003/04. HFC emissions, which continue rising since 1995, stopped growing in 2008 due to a consumption drop in the foam sector. They represent almost two thirds of the total German F-gas emissions. However, only refrigeration and air conditioning are still substantial applications of HFCs, while in the formerly large application sectors of CFCs and HCFCs, such as hard foam, fire extinguishers, and aerosols, natural fluids are being used widely, today. In stationary refrigeration and mobile air conditioning, the upward trend in HFCs emissions was still ongoing in 2008. Section I of this report presents the F-gas emissions data for 2008, in addition to those in 1995, 2000, 2004, and 2007. In section II the data sources of survey are documented. Section III presents the F-gas emissions 1995 - 2008 in detailed tables, by individual sectors. (orig.)

  10. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    Science.gov (United States)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).

  11. Emission from Estonian oil shale power plants

    International Nuclear Information System (INIS)

    Aunela, L.; Haesaenen, E.; Kinnunen, V.; Larjava, K.; Mehtonen, A.; Salmikangas, T.; Leskelae, J.; Loosaar, J.

    1995-01-01

    Flue gas emissions from pulverized oil shale fired boilers of Estonian and Baltic power plants have been studied. The concentrations of NO x , CO, C x H y , HCI, Hf and polycyclic aromatic hydrocarbons in flue gases have been found to be relatively low and acceptable according to German emission limits, for instance. Desulphurization degree of flue gases by SO 2 absorption with ash has been found to vary defending on boiler type and operation conditions. In spite of significant sulphur capture (average values for different boilers in the range between 68 and 77 % of the initial sulphur content of the fuel), SO 2 concentrations in flue gases remain still very high (up to 2600 mg/m 3 , 10% O 2 ). Very high concentrations of particles, especially at Estonian Power Plant (up o 6250 mg/m 3 , 10 % 0 2 ) have been detected. Heavy metal emissions were too high by the reason of particle control insufficiency as well. Yearly emission estimates of this study support the former Estonian ones within the range of 10-15 %. (author)

  12. Production, administration and disposal of cyclotron produced shortlived radioactive gases for positron emission tomography studies at the Austin Repatriation Medical Centre, Melbourne

    Energy Technology Data Exchange (ETDEWEB)

    Egan, G.F.; O`Keefe, G. [Austin Hospital, Heidelberg, VIC (Australia); Tochon-Danguy, H.J.; Midgley, S.; Phana, K.S.; Sachinidis, J.; Chan, J.G. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1995-01-01

    Positron Emission Tomography (PET) Centre is operational at the Austin Repatriation Medical Centre, Melbourne. The major equipment consists of a 10 MeV cyclotron and a whole body PET scanner. Radioactive gases produced and used directly in clinical studies include [{sup 15}O]O{sub 2}, [{sup 15}O]CO, and [{sup 15}O]CO{sub 2}, whilst [{sup 11}C]CO{sub 2} is also produced for use in radiochemistry syntheses. Radioactivity delivery rates of 3.7, 3.3, and 1.6 GBq/min to the scanner suite have been achieved for [{sup 15}O]O{sub 2}, [{sup 15}O]CO{sub 2}, and [{sup 15}O]CO respectively, and batch productions of 36.3 GBq of [{sup 11}C]CO{sub 2} have been produced. The production. patient administration and disposal of the short-lived radioactive gases has been achieved in compliance with radiation protection principles. Radioactive gas doses of 1.7 GBq are administered to patients with less than 0.02 MBq/m{sup 3} leakage into the scanner suite. Less than 13 MBq of [ {sup 15}O]-labelled gases are released into the environment per patient study at a concentration of 0.018 MBq/m{sup 3}. Annually less than 2 GBq is expected to be released into the environment. The centre design and first four months` experience of radioactive gas production, administration and disposal is presented. 5 refs., 4 tab., 1 fig.

  13. Emission of Gases during Composting of Solid Waste

    Directory of Open Access Journals (Sweden)

    Dajana Kučić

    2017-10-01

    Full Text Available Composting is a biochemical process converting organic components into stable compost with release of heat, water, CO2 and NH3. The objective of this work was to determine the amount of CO2 and NH3 in the exhaust gases during composting of tobacco waste (TW and mixture of tobacco and grape waste (TGW. The cumulative evolved CO2 during 21 days of composting of TW and TGW, per mass of volatile matter, was 94.01 g kg−1 and 208.18 g kg−1, respectively, and cumulative evolved NH3 during composting of TW and TGW, per mass of volatile matter, was 504.81 mg kg−1 and 122.45 mg kg−1, respectively.

  14. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    OpenAIRE

    L. Zhang; S. X. Wang; Q. R. Wu; F. Y. Wang; C.-J. Lin; L. M. Zhang; M. L. Hui; J. M. Hao

    2015-01-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C t...

  15. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    Ezekiel, R.; Wilson, P.

    2001-01-01

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  16. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  17. Air emissions in France overseas substances involved in the acidification, eutrophication, photochemical and greenhouse effect processes; Emissions dans l'air en France Outre-mer substances impliquees dans les phenomenes d'acidification, de photochimie et d'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The concerned substances are SO{sub 2} and NO{sub x} for the DOM (overseas departments); the six direct greenhouse gases (CO{sub 2}, CH{sub 4}, N{sub 2}O, HFC, PFC and SF{sub 6}) and non direct gases (VOC, CO, NO{sub x}, and SO{sub 2}) for the overseas departments and territories; the NH{sub 3} emissions for the eutrophication. Emissions are presented by the mean of charts. (A.L.B.)

  18. Emissions and targets of greenhouse gases not included in the Emission Trading System 2013-2020

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M.

    2011-06-15

    This report evaluates the European Commission's (EC) proposal to calculate Member States' targets for emissions not included in the Emission Trading System (ETS) (as announced in the so-called Effort Sharing Decision). The calculation procedures and data sources proposed by the EC have been used for calculating non-ETS emission targets for the Netherlands, for the years from 2013 to 2020. In order to compare results, an alternative approach also was introduced and evaluated. In this approach more transparent data sources were used. Furthermore, the report updates the emission forecast of non-ETS emission levels in the Netherlands, for 2020, and evaluates the consequences of excluding uncertainties related to monitoring from the (updated) emission forecast. It is concluded that, for the Netherlands, the non-ETS emission caps as proposed by the EC would result in an emission cap of 105 Mt CO2 equivalent by 2020. This is higher than in the alternative approach, which would result in a cap of 103 Mt CO2 equivalents. The difference is explained by the different data sources that were used. A drawback of the data sources used in the EC proposal is the lack of transparency of part of the data, which resulted in an additional uncertainty as not all issues could be verified. However, other Member States may not have similar data sources available, in case the EC decides to adopt the alternative approach. The calculated emission caps are to be considered as estimates based on the most recent (but sometimes uncertain) statistics. The EC will determine the definite caps by the end of 2012. Based on a 2010 forecast, and including both an updated division of emissions into ETS and non-ETS emissions and a revised methodology for calculating nitrous oxide emissions, we estimate that non-ETS emissions in the Netherlands would be 104 Mt CO2 equivalents by 2020, with an uncertainty range of between 96 and 112 Mt CO2 equivalents. It is our conclusion that non-ETS emission

  19. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    OpenAIRE

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design, and, in case of mechanically ventilated animal houses, the application of end-of-pipe air treatment, viz acid scrubbers and bioscrubbers. Air treatment techniques can achieve very high emission red...

  20. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  1. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  2. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  3. The electricity cogeneration in sugar mills and alcohol and the reduction of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Valdés Delgado, Antonio

    2015-01-01

    Electric power in Cuba currently produces -in high proportion- plants employing fossil fuel. The price of fossil fuels and the negative influence on the environment by emissions of greenhouse gases, has indicated the need to develop other energy sources. Biomass sugarcane provides ample opportunities to produce this energy with positive economic and environmental results. The technological process for the production of sugar requires the use of mechanical energy, low power consumption compared to thermal energy requirements and their use at low pressures determine the possibility of implementing a cogeneration system of mechanical, thermal and electrical energy. The power consumption for the driving equipment of a factory is about 15-30 kw-kr / ton rod. The amount of electrical energy generated in a sugar cane factory is sufficient to meet their own needs, being able to obtain an additional amount for supply to the public network and meet the needs of other productions as is alcohol. Agricultural crop residues (RAC) and sugarcane bagasse and a liquid fuel: alcohol and gaseous fuel: different energy possibilities derived from the sugar industry reflected in the disposal of solid fuels such as is the biogas. The preparation of solid, liquid and gaseous fuels from sugar and alcohol production avoids the use of fossil fuels such as gasoline and fuel oil and gas enables not be sent into the atmosphere that impact on the greenhouse effect. (full text)

  4. Effect of naphtha diluent on greenhouse gases and reduced sulfur compounds emissions from oil sands tailings.

    Science.gov (United States)

    Gee, Kathleen F; Poon, Ho Yin; Hashisho, Zaher; Ulrich, Ania C

    2017-11-15

    The long-term storage of oil sands tailings has resulted in the evolution of greenhouse gases (CH 4 and CO 2 ) as a result of residual organics biodegradation. Recent studies have identified black, sulfidic zones below the tailings-water interface, which may be producing toxic sulfur-containing gases. An anaerobic mesocosm study was conducted over an 11-week period to characterize the evolution of CH 4 , CO 2 and reduced sulfur compounds (RSCs) (including H 2 S) in tailings as it relates to naphtha-containing diluent concentrations (0.2, 0.8, and 1.5% w/v) and microbial activity. Our results showed that RSCs were produced first at 0.12μmol°RSCs/mL MFT (1.5% w/v diluent treatment). RSCs contribution (from highest to lowest) was H 2 S and 2-methylthiophene>2.5-dimethylthiophene>3-methylthiophene>thiofuran>butyl mercaptan>carbonyl sulfide, where H 2 S and 2-methylthiophene contributed 81% of the gas produced. CH 4 and CO 2 production occurred after week 5 at 40.7μmolCH 4 /mL MFT and 5.9μmolCO 2 /mL MFT (1.5% w/v diluent treatment). The amount of H 2 S and CH 4 generated is correlated to the amount of diluent present and to microbial activity as shown by corresponding increases in sulfate-reducers' Dissimilatory sulfite reductase (DsrAB) gene and methanogens' methyl-coenzyme M reductase (MCR) gene. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Developing a 'Research Test Bed' to introduce innovative Emission Testing Technology to improve New Zealand's Vehicle Emission Standards

    International Nuclear Information System (INIS)

    Cox, Stephen J

    2012-01-01

    Vehicle exhaust emissions arise from the combustion of the fuel and air mixture in the engine. Exhaust emission gases generally include carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), particulates, and the greenhouse gas carbon dioxide (CO2). In New Zealand improvements have occurred in emissions standards over the past 20 years however significant health related issues are now being discovered in Auckland as a direct effect of high vehicle emission levels. Pollution in New Zealand, especially via vehicle emissions are an increasing concern and threatens New Zealand's 'clean and green' image. Unitec Institute of Technology proposes establishing a Vehicle Emissions Testing Facility, and with an understanding with Auckland University, National Institute of Water and Atmosphere Research Ltd (NIWA) this research group can work collaboratively on vehicle emissions testing. New Zealand research providers would support an application in the UK led by the University of Huddersfield to a range of European Union Structural Funds. New Zealand has an ideal 'vehicle emissions research environment' supported by significant expertise in vehicle emission control technology and associated protocols at the University of Auckland, and the effects of high vehicle emissions on health at the National Institutes of Water and Atmosphere (NIWA).

  6. The Little Heat Engine: Heat Transfer in Solids, Liquids and Gases

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-10-01

    Full Text Available In this work, an introductory exposition of the laws of thermodynamics and radiative heat transfer is presented while exploring the concepts of the ideal solid, the lattice, and the vibrational, translational, and rotational degrees of freedom. Analysis of heat transfer in this manner helps scientists to recognize that the laws of thermal radiation are strictly applicable only to the ideal solid. On the Earth, such a solid is best represented by either graphite or soot. Indeed, certain forms of graphite can approach perfect absorption over a relatively large frequency range. Nonetheless, in dealing with heat, solids will eventually sublime or melt. Similarly, liquids will give way to the gas phase. That thermal conductivity eventually decreases in the solid signals an inability to further dissipate heat and the coming breakdown of Planck’s law. Ultimately, this breakdown is reflected in the thermal emission of gases. Interestingly, total gaseous emissivity can de- crease with increasing temperature. Consequently, neither solids, liquids, or gases can maintain the behavior predicted by the laws of thermal emission. Since the laws of thermal emission are, in fact, not universal, the extension of these principles to non-solids constitutes a serious overextension of the work of Kirchhoff, Wien, Stefan and Planck.

  7. Inventory of greenhouse gases at the municipality level. Description of calculation methods; Denmark; Drivhusgasopgoerelse paa kommuneniveau. Beskrivelse af beregningsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Lyck, E.; Thomsen, Marianne; Hoffmann, L.; Fauser, P.

    2009-02-15

    This report includes a description of methodologies, data and algorithms behind the inventories of greenhouse gases at the municipality level divided into sectors. The starting point for the sectors in this report is the sectors used for the official Danish emission inventories. A simplified generalization of the equations used in emission calculations is based on the assumption that emissions of a given activity is estimated using data descriptive for the size of the activity multiplied by an emission factor pr unit of activity. Emissions of CH{sub 4} and N{sub 2}O are converted to CO{sub 2} equivalents. In this project this generalization and these conversions are also the basis for all methodologies. The sectors included in this report are: the collective power and heating, individual heating, mobile sources, transportation and machinery, industrial processes, solvents, agriculture, land use and waste depositing and wastewater. The methods include calculations of the greenhouse gases that are most important for the sectors. The importance is estimated from the national emission inventory. This report covers methodologies for the greenhouse gases CO{sub 2}, CH{sub 4} and N{sub 2}O. Due to the mentioned importance criteria for some sectors not all greenhouse gases are included. As for the national inventories the calculation is built into several levels (Tiers) with increased requirements for municipalities regarding data. Tier 1 is mainly based on the Danish national greenhouse gas inventory data using appropriate distribution keys for a given activity into municipality level. Tier 2 is more detailed and includes emission factors used in the Danish national greenhouse gas inventories, for some sectors the emission factors are aggregated, while municipalities can enter their own activity data. At Tier 3, which is the most detailed level, there is - for some sectors - the opportunity to enter municipality specific emission factors and activity data. For other

  8. Determinants and predictability of global wildfire emissions

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2012-08-01

    Full Text Available Biomass burning is one of the largest sources of atmospheric trace gases and aerosols globally. These emissions have a major impact on the radiative balance of the atmosphere and on air quality, and are thus of significant scientific and societal interest. Several datasets have been developed that quantify those emissions on a global grid and offered to the atmospheric modelling community. However, no study has yet attempted to systematically quantify the dependence of the inferred pyrogenic emissions on underlying assumptions and input data. Such a sensitivity study is needed for understanding how well we can currently model those emissions and what the factors are that contribute to uncertainties in those emission estimates.

    Here, we combine various satellite-derived burned area products, a terrestrial ecosystem model to simulate fuel loads and the effect of fire on ecosystem dynamics, a model of fuel combustion, and various emission models that relate combusted biomass to the emission of various trace gases and aerosols. We carry out simulations with varying parameters for combustion completeness and fuel decomposition rates within published estimates, four different emissions models and three different global burned-area products. We find that variations in combustion completeness and simulated fuel loads have the largest impact on simulated global emissions for most species, except for some with highly uncertain emission factors. Variation in burned-area estimates also contribute considerably to emission uncertainties. We conclude that global models urgently need more field-based data for better parameterisation of combustion completeness and validation of simulated fuel loads, and that further validation and improvement of burned area information is necessary for accurately modelling global wildfire emissions. The results are important for chemical transport modelling studies, and for simulations of biomass burning impacts on the

  9. Assessing the DICE model: uncertainty associated with the emission and retention of greenhouse gases

    International Nuclear Information System (INIS)

    Kaufmann, R.K.

    1997-01-01

    Analysis of the DICE model indicates that it contains unsupported assumptions, simple extrapolations, and mis-specifications that cause it to understate the rate at which economic activity emits greenhouse gases and the rate at which the atmosphere retains greenhouse gases. The model assumes a world population that is 2 billion people lower than the 'base case' projected by demographers. The model extrapolates a decline in the quantity of greenhouse gases emitted per unit of economic activity that is possible only if there is a structural break in the economic and engineering factors have determined this ratio over the last century. The model uses a single equation to simulate the rate at which greenhouse gases accumulate in the atmosphere. The forecast for the airborne fraction generated by this equation contradicts forecasts generated by models that represent the physical and chemical processes which determine the movement of carbon from the atmosphere to the ocean. When these unsupported assumptions, simple extrapolations, and misspecifications are remedied with simple fixes, the economic impact of global climate change increases several fold. Similarly, these remedies increase the impact of uncertainty on estimates for the economic impact of global climate change. Together, these results indicate that considerable scientific and economic research is needed before the threat of climate change can be dismissed with any degree of certainty. 23 refs., 3 figs

  10. Anthropogenic mercury emissions from 1980 to 2012 in China.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.

  11. Estimación de la emisión de gases de efecto invernadero en el municipio de Montería (Córdoba, Colombia

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Echeverri Londoño

    2006-07-01

    Full Text Available En este trabajo se presenta la primera versión del inventario de emisiones de gases de efecto invernadero para el año de 2005 en el municipio de Montería (Córdoba, Colombia. Este inventario incluye las emisiones provenientes de los vehículos automotores, los rellenos sanitarios y las fuentes biogénicas. No se tuvieron en cuenta las fuentes puntuales por ser estas muy escasas en la zona de estudio y generar contaminantes diferentes a los gases de efecto invernadero. Los estimativos que aquí se presentan no corresponden a valores absolutos; las cifras son el producto de métodos indirectos de cálculo, que deben ser interpretados como indicadores de las cantidades realmente emitidas. Se presentan con el fin de ilustrar el orden de magnitud en que pueden estar las descargas al ambiente y las principales actividades que las producen.In this work, the first version of 2005's emissions inventory of greenhouse effect gases in Montería town (Córdoba, Colombia is reported. This inventory includes the originated emissions from automotive vehicles, sanitary fillings and biogenic sources. Point sources were not considered because these are not common in the interested zone and they generate polluting agents different from greenhouse effect gases. The estimated values in this research were obtained by mean of indirect methods and they do not correspond to absolute values. Therefore, they are used in order to illustrate the amounts of gases that are really emitted and unloaded to atmosphere

  12. Chemical composition of wildland fire emissions

    Science.gov (United States)

    Shawn P. Urbanski; Wei Min Hao; Stephen Baker

    2009-01-01

    Wildland fires are major sources of trace gases and aerosol, and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth's climate system. The wide variety of pollutants released by wildland fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. Through...

  13. Thickness-dependent magneto-optical effects in hole-doped GaS and GaSe multilayers: a first-principles study

    Science.gov (United States)

    Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui

    2018-04-01

    Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.

  14. Health effects of adopting low greenhouse gas emission diets in the UK

    Science.gov (United States)

    Milner, James; Green, Rosemary; Dangour, Alan D; Haines, Andy; Chalabi, Zaid; Spadaro, Joseph; Markandya, Anil; Wilkinson, Paul

    2015-01-01

    Objective Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. Design Epidemiological modelling study. Setting UK. Participants UK population. Intervention Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. Main outcome Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. Results If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. Conclusions There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required. PMID:25929258

  15. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Nasibe Pourghasemian

    2017-12-01

    Full Text Available Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Therefore, it is necessary to reduce the application of chemical inputs in agricultural systems. Agriculture contributes significantly to atmospheric GHG emissions, with 14% of the global net CO2 emissions coming from this sector. Chemical inputs have a major role in this hazards. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the GHGs emission and Global warming Potential GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating potato, onion and watermelon in some regions of Kerman province at 2011-2012 growth season. Material and Methods The study was conducted in Kerman province of Iran. Data of planting area, application rates of the chemical inputs and other different parameter were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman(Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. Farm random sampling was done within whole population and the sample size was determined by proper equations. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Then the amount of

  16. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization

    International Nuclear Information System (INIS)

    Ahlvik, P.; Brandberg, Aa.

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO x and SO x emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future

  17. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  18. Effects of forest fertilization on C sequestration and GHG emissions

    International Nuclear Information System (INIS)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F.; Bull, G.Q.; Northway, S.; Mohn, W.W.

    2005-01-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N 2 O) and consumption of methane (CH 4 ) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO 2 ). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N 2 O production and CH 4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N 2 O emission and CH 4 oxidation in forest soils. The actual N 2 O, CO 2 , and CH 4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  19. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  20. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  1. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  2. Results of the working group on the division by four of greenhouse gases emissions in France, at the horizon of 2050, called ''factor 4''. DGEMP- Observatory of the energy

    International Nuclear Information System (INIS)

    2005-01-01

    This group, created by the french Government in march 2005, aims to evaluate the different possibilities to reach the objective of division by four the greenhouse gases emissions. This document presents some recalls on the climatic change and the situation today, the positions of the France and the foreign and the conclusions and the recommendations of the group. (A.L.B.)

  3. Structure and optical properties of GaSe-CdSe composites driven by Cd intercalation in GaSe lamellar crystals

    International Nuclear Information System (INIS)

    Caraman, Iuliana; Kantser, Valeriu; Evtodiev, Igor; Untila, Dumitru; Dmitroglo, Liliana; Leontie, Liviu; Arzumanyan, Grigory

    2015-01-01

    A new composite material composed of GaSe and CdSe has been obtained by treatment of GaSe single-crystal lamellas in Cd vapors at temperatures of 773-853 K and intercalation of Cd interlayers. The structure and optical properties of the GaSe-CdSe composite material have been studied. The content of CdSe crystallites was found to grow with increasing treatment temperature or with increasing duration of treatment at a constant temperature. Analysis of XRD, PL, XPS, AFM, and Raman patterns has shown that the heterogeneous composite composed of micro and nanocrystallites of CdSe in GaSe can be obtained by Cd intercalation in a temperature range of 753-853 K. On the basis of Raman spectrum, the vibrational modes of the composite have been identified. The PL of these materials contains emission bands of free and bound excitons, donor-acceptor bands, and bands of recombination via impurity levels. The PL emission spectra measured at a temperature of 78 and 300 K for the composites result from the overlapping of the emission bands of the components of GaSe doped with Cd and the CdSe crystallites. (authors)

  4. Effect of the synthetic zeolite modification on its physicochemical and catalytic properties in the preparation of the catalysts effectively removing sulphur dioxide from exhaust gases

    Directory of Open Access Journals (Sweden)

    Marcewicz-Kuba Agnieszka

    2016-06-01

    Full Text Available This work presents the research results of the influence of modification deSONOx type catalyst of the sulfur dioxide emissions in the process of the hard coal combustion. The addition of zeolite catalysts modified by transition metal ions: V, Mg, activated by zinc sorbent with or without graphite addition caused the deeper burning of coal grains. The addition of the deSOx catalysts to the coal resulted in lowered sulphur dioxide emission. The addition of unmodified zeolite to coal during combustion reduced sulphur dioxide emission at about 5%. The modification of the support by both V and Mg reduced the amount of sulphur dioxide significantly. The obtained results of SO2 removal from exhaust gases were from 34.5% for Sip/Mg to 68.3% for Sip/V.

  5. Measures applicable to transportation sector in order to improve their greenhouse gas emission balance

    International Nuclear Information System (INIS)

    Lamure, C.A.

    1991-01-01

    The greenhouse effect gases emitted by transport vehicles are mainly carbon dioxide, methane and nitrogen dioxide; CO 2 emissions from transport vehicles (automobiles, aircraft) are growing and their relative importance is growing even more due to lowering of other CO 2 sources. Greenhouse gases from thermal engines are assessed as a function of engine and fuel types. Several solutions are proposed in order to reduce pollutant emissions: road traffic control (road pricing), automobile restricted utilization (speed, access areas, traffic and parking regulation), consumption regulation, collective transports (buses, mini buses), urban organization for pedestrian and bicycle transport, fuel substitution, life style modification tele-commuting, etc

  6. International collaboration on capture, storage and utilization of greenhouse gases

    International Nuclear Information System (INIS)

    Freund, P.

    1998-01-01

    Climate change will have world-wide implications. So it is highly appropriate that there should be international collaboration to investigate technologies for reducing emissions of greenhouse gases, the root cause of the problem. Sixteen countries, as well as three industrial sponsors, support the IEA Greenhouse Gas R and D Program and, in many cases, industry is also involved indirectly, through the national memberships. This provides a broad range of interest and expertise to guide the management of the Program, as well as ensuring that the results reach a wide audience. The IEA Greenhouse Gas R and D Program has three main activities: (1) evaluation of technologies for mitigation of greenhouse gas emissions from use of fossil fuels; (2) dissemination of the results of these studies; (3) identification of targets for research, development and demonstration and promotion of these findings. In its first five years of operation, the Program has studied the major greenhouse gases, carbon dioxide and methane, and various means of reducing their emissions. The main emphasis has been placed on capture, storage and utilization of CO 2 from power generation. This option is now much better understood and can be compared with more established measures, such as fuel switching, energy efficiency improvements and use of renewable energy. As well as studying abatement of CO 2 emissions, the Program has conducted a series of studies of technologies for reducing CH 4 emissions from man-made sources. The Program's activities are carried out by the Operating Agent, who develops and manages a series of technical studies to meet members' requirements

  7. Greenhouse Gas (CO2 AND N2O Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O desde Suelos

    Directory of Open Access Journals (Sweden)

    Cristina Muñoz

    2010-09-01

    Full Text Available In agricultural activities, the main greenhouse gases (GHG are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.En actividades agrícolas los principales gases de efecto invernadero (GHG son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas.

  8. Blackbody Emission from Laser Breakdown in High-Pressure Gases

    Science.gov (United States)

    Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.

    2014-08-01

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  9. Active methods of mercury removal from flue gases.

    Science.gov (United States)

    Marczak, Marta; Budzyń, Stanisław; Szczurowski, Jakub; Kogut, Krzysztof; Burmistrz, Piotr

    2018-03-23

    Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year -1 . According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg -1 . The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m -3 for sub-bituminous coal and 17.5 μg m -3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243-277 μg Hg kg -1 , while the largest fraction at only 95 μg Hg kg -1 . The CD fraction physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  10. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  11. Biogenic versus abiogenic emissions from agriculture in the Netherlands and options for emission control in tomato cultivation

    NARCIS (Netherlands)

    Pluimers, J.C.; Kroeze, C.; Bakker, E.J.; Challa, H.; Hordijk, L.

    2001-01-01

    In this paper, present-day emissions of greenhouse gases and acidifying compounds from agriculture are analysed at the farm level. Quantitative estimates are given for these emissions from three nested systems in the Netherlands: the agricultural sector, greenhouse horticulture, and tomato

  12. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    Science.gov (United States)

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. © 2014 John Wiley & Sons Ltd.

  13. The sectoral trends of multigas emissions inventory of India

    DEFF Research Database (Denmark)

    Garg, A.; Shukla, P.R.; Kapshe, M.

    2006-01-01

    This paper provides the trends of greenhouse gas (GHG) and local air pollutant emissions of India for 1985-2005. The GHGs covered are six Kyoto gases, namely carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs) and sulfur hexafluoride (SF6...... in the same sector is the major source of N2O emissions. PFC emissions are dominated by C2F6 and CF4 emissions from aluminum production. The majority of HFC emissions are contributed by HFC-23, a by-product during the production of HCFC-22 that is widely used in refrigeration industry. CO emissions have...... dominance from biomass burning. Particulate emissions are dominated by biomass burning (residential sector), road transport and coal combustion in large plants. These varied emission patterns provide interesting policy links and disjoints, such as-which and where mitigation flexibility for the Kyoto gases...

  14. High-resolution atmospheric emission inventory of the argentine energy sector. Comparison with edgar global emission database

    Directory of Open Access Journals (Sweden)

    S. Enrique Puliafito

    2017-12-01

    Full Text Available This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution, of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road, residential and commercial. The following pollutants were included: greenhouse gases (CO2, CH4, N2O, ozone precursors (CO, NOx, VOC and other specific air quality indicators such as SO2, PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%; followed by electricity generation, with 40.9 Tg (28%; residential + commercial, with 31.24 Tg (22%; and cement and refinery production, with 14.3 Tg (10%. This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km, the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km2 of ozone precursors gases and 11.5 Mg/km2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining

  15. From climate change to emissions trading : a briefing

    International Nuclear Information System (INIS)

    Marcu, A.

    2002-01-01

    Global warming is caused by the presence of greenhouse gases (GHGs) in the earth's atmosphere. These gases include, carbon dioxide, nitrous oxides, sulphur dioxide and methane. GHGs trap heat between the earth's atmosphere and the earth's surface to cause an overall warming trend of the Earth. The United Nations Framework Convention on Climate Change was established to address the issue of climate change and to determine the anthropogenic impact on climate change. Evidence from ice cores suggest that global warming has occurred in the past. The current state of global warming was examined by comparing the climate of today with that of the past. It was determined that the current global warming trend surpasses that of any ever observed in the past. The Kyoto Protocol was adopted in 1997 as a policy set to address the need for the world to reduce GHG emissions into the atmosphere. The Kyoto Protocol puts forth 3 sets of mechanisms to help businesses reduce GHG emissions. Emissions trading is one of them: it is a financial flexibility mechanism that allows businesses that have emitted more than their allowed share of GHGs to buy allowances from business that have emitted fewer GHGs than they were allowed. Emissions trading does not create reductions, however, it identifies the most economical solution to reduce GHGs. TransAlta, Ontario Power Generation and Suncor have conducted a few transactions to see how the market will work. There will be a global register to keep track of all assigned allowances. The paper described government action in addressing the climate change issue with reference to actions in the United Kingdom, Netherlands, Denmark and Switzerland. Canada has initiated the Greenhouse Gas Emission Reduction Trading Pilot (GERT) to test the effectiveness of emission reduction trading for GHGs in the Canadian context. GERT is a partnership between the federal government, some provinces, industry, labour and environmental groups. Ontario has established a

  16. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  17. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  18. Hydropower may produce more greenhouse gases

    International Nuclear Information System (INIS)

    Kolshus, Hans H.; Folkestad, Tonje

    2002-01-01

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  19. A decomposition analysis of CO2 emissions from energy use: Turkish case

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2009-01-01

    Environmental problems, especially 'climate change' due to significant increase in anthropogenic greenhouse gases, have been on the agenda since 1980s. Among the greenhouse gases, carbon dioxide (CO 2 ) is the most important one and is responsible for more than 60% of the greenhouse effect. The objective of this study is to identify the factors that contribute to changes in CO 2 emissions for the Turkish economy by utilizing Log Mean Divisia Index (LMDI) method developed by Ang (2005) [Ang, B.W., 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33, 867-871]. Turkish economy is divided into three aggregated sectors, namely agriculture, industry and services, and energy sources used by these sectors are aggregated into four groups: solid fuels, petroleum, natural gas and electricity. This study covers the period 1970-2006, which enables us to investigate the effects of different macroeconomic policies on carbon dioxide emissions through changes in shares of industries and use of different energy sources. Our analysis shows that the main component that determines the changes in CO 2 emissions of the Turkish economy is the economic activity. Even though important changes in the structure of the economy during 1970-2006 period are observed, structure effect is not a significant factor in changes in CO 2 emissions, however intensity effect is.

  20. The economics of controlling stock pollutants: An efficient strategy for greenhouse gases

    International Nuclear Information System (INIS)

    Falk, I.; Mendelsohn, R.

    1993-01-01

    Optimal control theory is applied to develop an efficient strategy to control stock pollutants such as greenhouse gases and hazardous waste. The optimal strategy suggests that, at any time, the marginal costs of abatement should be equated with the present value of the marginal damage of timely unabated emission. The optimal strategy calls for increasingly tight abatement over time as the pollutant stock accumulates. The optimal policy applied to greenhouse gases suggest moderate abatement efforts, at present, with the potential for much greater future efforts. 15 refs., 2 tabs

  1. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    Science.gov (United States)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; hide

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  2. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four; Les travaux du groupe de travail sur la division par quatre des emissions de gaz a effet de serre de la France, a l'horizon 2050, dit facteur 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  3. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  4. Feasibility study on blast furnace ironmaking system integrated with methanol synthesis for reduction of carbon dioxide emission with effective use of energy

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T [and others; Tohoku University, Sendai (Japan)

    1993-01-01

    The system proposed involves injection of natural gas at the tuyeres to reduce coke consumption, and methanol synthesis from the top gas. Operating data are calculated with a mathematical model, showing that significant reductions in emission of greenhouse gases and in exergy losses can be expected. (Development of an effective catalyst for the methanol synthesis is described in a companion paper: A. Muramatsu et al., 1144-1149).

  5. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  6. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes.

    Science.gov (United States)

    Ali, Muhammad Aslam; Hoque, M Anamul; Kim, Pil Joo

    2013-04-01

    A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25-27 % and 32-38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36-40 % and 26-30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7-27 % and 6-34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.

  7. Methane emissions due to oil and natural gas operations in the Netherlands

    International Nuclear Information System (INIS)

    Oonk, J.; Vosbeek, M.E.J.P.

    1995-01-01

    The Netherlands is the 4th largest natural gas producer, with about 4% of the total world natural gas production. Also, significant amounts of oil are extracted. For this reason it can be expected that methane emissions from oil and natural gas operations contribute significantly to total methane emissions. Estimates so far, made by both the Dutch government and the industry vary widely. A renewed estimate is made of methane emissions from oil and natural gas production, based on a detailed engineering study of sources of methane in the system and quantification of source strengths. The estimate is validated by interpretation of atmospheric measurements. 1990 methane emissions from natural gas production were estimated to be 62 to 108 kton. The main cause of methane emissions is the venting of off-gases from processes and passing-valve emissions in the off-shore. Emissions from oil production were estimated to be 14 kton, mainly caused by venting of off-gases from processes. Best feasible options for emission reduction are: identification and replacement of leaking valves, and reuse or re-compression of off-gases from processes. Both options are existing policy in the Netherlands. 23 figs., 38 tabs., 2 appendices, 53 refs

  8. Effects of forest fertilization on C sequestration and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  9. Air treatment techniques for abatement of emissions from intensive livestock production

    OpenAIRE

    Melse, R.W.

    2009-01-01

    Keywords: Air treatment; Scrubber; Bioscrubber; Biofilter; Biotrickling filter; Ammonia; NH3; Odour; Livestock production; Animal husbandry; Pig; Poultry. Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction from animal houses include feed management, adaptation of housing design, and the application o...

  10. Effect of specific industrial gases on the growth of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, V G

    1963-01-01

    Variations in the growth increment of annual rings can serve as index of the injuries effect of various industrial gases on plants. For such an objective, young trees are preferable because they are more responsive to changes of surrounding conditions and recover more rapidly after being affected by gas. The older trees react more slowly, take longer to recover, and as a rule eventually dry up. These differences may be related to the prevalence of different kinds of gas resistance (N.P. Krasinskiy, 1950) at definite ages; in the case of old trees the nature of resistant being anatomical, morphological, and physiological (less oxidation of the cell content), whereas in young trees the biological resistance to gases is greater.

  11. A Global Outlook to the Carbon Dioxide Emissions in the World and Emission Factors of the Thermal Power Plants in Turkey

    International Nuclear Information System (INIS)

    Atimtay, Aysel T.

    2003-01-01

    World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO 2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO 2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO 2 , NO x and CO 2 . The estimated results show that CO 2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO 2 emissions in 2020

  12. Effects of nitrogen fertilization and grazing on the emission of nitrous oxide from grassland

    Energy Technology Data Exchange (ETDEWEB)

    Velthof, G.L.; Oenema, O. [Nutrient Management Institute NMI, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    Nitrous oxide (N2O) is one of the trace gases that possibly contribute to the depletion of stratospheric ozone and to global warming. Soils are a major source of N2O. Thus far, the contribution of agricultural soils and practises in The Netherlands to the total N2O burden of the atmosphere is largely unknown, because in-situ field measurements are scarce. In the research project reported here, effects of nitrogen (N) fertilization, grazing animals and soil type on N2O emission from grassland in The Netherlands were investigated. The aim of these investigations was to provide insight into the major factors that contribute to N2O emission from managed grassland and to provide quantitative N2O emission rates, obtained from field measurements. The research programme was split in three parts. First, a monitoring study, in which fluxes of N2O were measured weekly at four contrasting grassland sites with three different management practices each, during a period of two years. Secondly, field and greenhouse studies, in which the temporal and spatial variability of N2O fluxes, the effects of type and level of N fertilizer application and the effect of groundwater level on N2O emissions from grassland were assessed in detail. Thirdly, model calculations in which the possibilities were assessed of the use of improved nutrient management as tool to reduce N2O losses from dairy farming systems in The Netherlands, using a whole-farm approach. figs., tabs., refs.

  13. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  14. Inventário de materiais, energia e emissões dos gases de efeito estufa na vida útil de máquinas agrícolas

    OpenAIRE

    Edemilson José Mantoam

    2016-01-01

    A questão energética, associada às mudanças climáticas e à dependência dos recursos naturais é um dos principais desafios do século XXI. A necessidade de produzir alimentos, para atender a crescente demanda da população, requer o aumento da utilização de máquinas e equipamentos, demandando maior quantidade de energia e causando emissões dos gases de efeito estufa. Fontes de materiais e de energia são consumidas ao longo do ciclo de vida do produto, portanto é importante reduzir a demanda dess...

  15. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Facility ''Bench of Stationary Engines for Study of Emissions (E65-PO) CIEMAT''

    International Nuclear Information System (INIS)

    Rojas Garcia, E.; Rodriguez Maroto, J.J.

    2007-01-01

    The Project of Technology of Aerosols in Generation of Energy, of the Department of Fossil Fuels of the CIEMAT, began in the year 2004, a research activity line, based on the study of the emissions coming from internal combustion engines, particularly of Diesel technology. Activity was continued by the Polluting Emissions Group of the Department of Environment, when becoming the original Project in this Group. From the concession to the Group, of the project GR/AMB/0119/2004 Evaluation of the Emissions of Biodiesel supported by the Autonomous Community of Madrid together with the European Regional Development Fund (ERDF), this activity was encourage, with the design, assembly and to get ready of the facility Bench of stationary engines for study of emissions, located in the building 65 at CIEMAT, Madrid. The present report constitutes a detailed technical description of each one of the elements that the installation Bench of stationary engines for study of emissions it integrated within the framework of the referred project (GR/AMB/0119/2004) and whose capacity includes studies of the effects of the engine, fuel, operation conditions, and methodology of sampling and measurement of emissions (gases and particles). The fundamental parts of facility describes in the present report are: engine test cell (cabin of sound insulation , ventilation and refrigeration system, anti vibrations mounting, engine, dynamometric brake), lines of preconditioning of particles and gases emissions (exhaust line, primary and secondary dilution lines, gases cleaning system...), other general parts of facility (sampling and measurement station, service lines...). The present report not only reflects the characteristics of the systems involved, but rather also in certain cases specified the procedure and reason for their choice. (Author) 10 refs

  17. An efficiency analysis of modern and perspective methods and facilities to reduce of the automobile transport exhaust gases

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Юдін

    2015-09-01

    Full Text Available The article studies the degree of atmosphere pollution with automobile transport exhaust gases, the evolution of their rating in the European Union, and the reasons why Ukrainian automobile transport exhaust gases lag behind in meeting emission standards. Constructive, organizational, and regulating techniques aimed at reducing the amount of exhaust gases are analyzed; non-standard propositions concerning cooperation of motor vehicle owners and regulatory authorities are offered; the examples of successful practices employed in Zaporizhia region are given

  18. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  19. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  20. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation Campos do sul do Brasil: estoques de carbono no solo, fluxos de gases de efeito estufa e algumas opções para mitigação

    Directory of Open Access Journals (Sweden)

    VD Pillar

    2012-08-01

    Full Text Available The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.Os campos do sul do Brasil são ecossistemas naturais com alta diversidade e têm sido há séculos importantes para a atividade pastoril e para outros importantes serviços ambientais. Este trabalho aponta os principais fatores que controlam os processos ecossistêmicos, revisa e discute os dados disponíveis sobre os estoques de carbono no solo e as emissões de gases de efeito estufa dos solos, e sugere oportunidades de mitigação das mudanças climáticas. A pesquisa sobre as emissões de carbono e gases de efeito estufa nos campos do

  1. EU Emission Trading: Starting with Carbon Dioxide

    DEFF Research Database (Denmark)

    Vesterdal, Morten; Svendsen, Gert Tinggaard

    2003-01-01

    The Commission of the European Union wants to start a limited emission trading scheme by 2005 within the Community to enable "learning-by-doing" prior to the Kyoto Protocol. This to accomplish the desired 8% target level for six different greenhouse gases. However, in the EU it is not clear whether...... all the six relevant greenhouse gases or only CO2 should be traded. What is the simplest and most practicable solution? We argue in favour of the latter option for three main reasons: the possible dominating global warming potential of CO2, expected future developments in CO2 emissions and the fact...

  2. Lakeview: who benefits from higher emissions?

    International Nuclear Information System (INIS)

    Author

    2001-07-01

    The single largest source of air pollution in the Greater Toronto Area (GTA) is the Lakeview Generating Station. It emits nitrogen oxides and sulphur dioxide causing smog and acid rain, and greenhouse gases which result in global warming and climate change. In addition, it is expected that the station will become the largest mercury source, a potent nerve toxin, in the GTA by December 2001. An announcement was made on March 26, 2001 by the Ontario Environment Minister that the Lakeview Generating Station must be converted to efficient cleaner-burning natural gas from dirty coal by the spring of 2005. More specifically, April 2005 is the deadline for Lakeview to cease burning coal, and will be required to meet emissions standards associated with the performance of efficient natural gas technology. During the announcement, emphasis was placed on the fact that there is sufficient time remaining until the deadline for the planning and construction of new generating capacity that would replace the Lakeview generating station. The public health benefits that would be derived from the generating station conversion are numerous. There would be a reduction of over 60 per cent in the greenhouse gases emissions, a reduction of over 90 per cent of the nitrogen oxides emissions, and the sulphur dioxide emissions would be down by 99.5 per cent while the mercury emissions would completely disappear. The draft regulation released on July 3, 2001 stated that Lakeview would be permitted to burn gas in its old, inefficient coal boilers forever, instead of converting to efficient natural gas technology. After a discussion of who benefits from burning natural gas in the inefficient boilers (Ontario Power Generation), whether high-efficiency natural gas combined-cycle turbines are cost-effective (yes), when the coal be phased out at Lakeview (by April 2003 at the latest), and emissions trading, recommendations were made. The first recommendation stated that the Environment Minister

  3. A research program on radiative, chemical, and dynamical feedback progresses influencing the carbon dioxide and trace gases climate effects

    International Nuclear Information System (INIS)

    1989-07-01

    This report summarizes the up-to-date progress. The program includes two tasks: atmospheric radiation and climatic effects and their objective is to link quantitatively the radiation forcing changes and the climate responses caused by increasing greenhouse gases. Here, the objective and approach are described. We investigate the combined atmospheric radiation characteristics of the greenhouse gases (H 2 O, CO 2 , CH 4 , N 2 O, CFCs, and O 3 ), aerosols and clouds. Since the climatic effect of increasing atmospheric greenhouse gases is initiated by perturabtion to the longwave thermal radiation, it is critical to understand better the radiation characteristics of the greenhouse gases and their relationship to radiatively-important aerosols and clouds; the latter reflect solar radiation (a cooling of the surface) and provide a greenhouse effect (a warming to the surface). Therefore, aerosol and cloud particles are an integral part of the radiation field in the atmosphere. 9 refs

  4. Electricity production from biogas in Serbia: Assessment of emissions reduction

    Directory of Open Access Journals (Sweden)

    Cvetković Slobodan M.

    2016-01-01

    Full Text Available Biogas represents a promising source for the production of clean energy. The objective of this paper was to quantify the potential for the reduction of emissions to the environment during the production of electricity from biogas in comparison with environmental effects of the production of the same amount of electricity from fossil resources (coal from Kolubara basin and natural gas. Basis for comparison of environmental impacts in this work was the annual production of electricity in biogas plants of the total capacity of 80 MW. This study has shown that the annual production of electricity from biogas power plants of 80 MW results in: substitution of up to 840 kt of coal from Kolubara basin and 123.2 million m3 of natural gas; reduction in emissions of greenhouse gases in the range of 491.16 kt - 604.97 kt CO2-eq, depending on the energy efficiency of the process of electricity production from biogas; reduction in emissions of greenhouse gases up to 92.37 kt CO2-eq compared to the use of natural gas for electricity generation.

  5. Reducing Supply Chain GHG Emissions from LCD Panel Manufacturing Webinar

    Science.gov (United States)

    Fluorinated greenhouse gases (F-GHGs) are among the most potent and persistent greenhouse gases contributing to global climate change. Learn about the manufacturing processes which release F-GHGs, and how LCD suppliers are working to reduce emissions.

  6. Two components of Na emission in sonoluminescence spectrum from surfactant aqueous solutions.

    Science.gov (United States)

    Hayashi, Yuichi; Choi, Pak-Kon

    2015-03-01

    Sonoluminescence from sodium dodecyl sulfate (SDS) aqueous solutions exhibits Na emission. The spectrum of Na emission was measured as a function of sonication time for a total of 30 min at an ultrasonic frequency of 148 kHz. The spectral line profiles changed with the sonication time, suggesting that the Na emission consists of two components: broadened lines, which are shifted from the original D lines, and unshifted narrow lines. The intensity of the unshifted narrow lines decreased at a greater rate than that of the broadened lines with increasing sonication time. This effect was enhanced at a higher acoustic power. The shifted broadened lines remained after sonication for 30 min. We propose that these quenching effects are caused by the accumulation of gases decomposed from SDS molecules inside bubbles. The CO₂ gas dependence of Na emission in NaCl aqueous solutions showed a similar change in the line profiles to that in SDS aqueous solutions, which supported this proposition. The unshifted narrow lines are easily affected by foreign gases. The results suggest that the two components originate from different environments around the emitting species, although both of them originate from the gas phase inside bubbles. The generation mechanisms of the two components are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  8. National inventory of anhyd ric carbonic emissions providing of fuels consumption as energy source

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention of the United Nations about Climatic Change, carried out in 1992, and whose ratification this being considerate d at level Parliament in the Republica Oriental del Uruguay, it has as objective to achieve the stabilization of the concentrations of gases of effect hot house in the atmosphere at a level that impedes interferences dangerous antropogenias. The National Direction of environment has carried out and Inventory of the Emissions of gas carbonic anhydride in the execution of the arisen commitments of the mentioned Convention. It being this the first step for the realization of a national inventory, which will not include the rest of the gases of effect hothouse controlled by the Protocols of Montreal. The inventory of the emissions carried out by the Division of Global and Regional Matters, it has been carried out for each one of the years understood in the period from 1987 to 1992 being studied the contribution of each sector of the national activity in the Emissions of carbonic anhydride.The results show that the total emissions estimated for Uruguay reach only the 6655 gigagrames of annual for the year 1992, being a light increase of the emission values among the years 1989 at 1992

  9. A Systematic Exploration of the Local and Remote Climate Effects of Anthropogenic Aerosol Emissions from Key Regions

    Science.gov (United States)

    Voulgarakis, A.; Kasoar, M.; Shawki, D.; Lamarque, J. F.; Shindell, D. T.; Faluvegi, G.; Bellouin, N.; Collins, W.; Tsigaridis, K.

    2016-12-01

    The radiative forcing of short-lived pollutants such as aerosols and tropospheric ozone is highly inhomogeneous and can therefore affect regional temperature, circulation and precipitation in a much more complicated way than the forcing of well-mixed greenhouse gases. Such effects have only recently started to be examined thoroughly and systematically from a global point of view, to understand regional interactions. Here, after outlining some key past work in this area, results from recent simulations with the UK Met Office's HadGEM3 global composition-climate model will be presented in which anthropogenic emissions of sulfur dioxide (SO2) and black carbon in key regions (East Asia, South Asia, Europe, the US, and the northern mid-latitudes as a whole) have been removed. The linkages between emissions, concentrations, radiative forcing, temperature and precipitation responses will be discussed. A particular emphasis will be placed on non-local effects, i.e. how emissions over a certain region can affect other areas remotely. Finally, we will contrast our results with those from similar experiments pursued using the NASA GISS-E2 and the NCAR CESM1 models for US and East Asian SO2 emissions, and will discuss the large differences in the models' behaviour.

  10. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery.

    Science.gov (United States)

    Thiel, Cassandra L; Woods, Noe C; Bilec, Melissa M

    2018-04-01

    To determine the carbon footprint of various sustainability interventions used for laparoscopic hysterectomy. We designed interventions for laparoscopic hysterectomy from approaches that sustainable health care organizations advocate. We used a hybrid environmental life cycle assessment framework to estimate greenhouse gas emissions from the proposed interventions. We conducted the study from September 2015 to December 2016 at the University of Pittsburgh (Pittsburgh, Pennsylvania). The largest carbon footprint savings came from selecting specific anesthetic gases and minimizing the materials used in surgery. Energy-related interventions resulted in a 10% reduction in carbon footprint per case but would result in larger savings for the whole facility. Commonly implemented approaches, such as recycling surgical waste, resulted in less than a 5% reduction in greenhouse gases. To reduce the environmental emissions of surgeries, health care providers need to implement a combination of approaches, including minimizing materials, moving away from certain heat-trapping anesthetic gases, maximizing instrument reuse or single-use device reprocessing, and reducing off-hour energy use in the operating room. These strategies can reduce the carbon footprint of an average laparoscopic hysterectomy by up to 80%. Recycling alone does very little to reduce environmental footprint. Public Health Implications. Health care services are a major source of environmental emissions and reducing their carbon footprint would improve environmental and human health. Facilities seeking to reduce environmental footprint should take a comprehensive systems approach to find safe and effective interventions and should identify and address policy barriers to implementing more sustainable practices.

  11. Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2017-11-15

    The present paper focused on reducing greenhouse gases emissions in wastewater treatment plants operation by application of suitable control strategies. Specifically, the objective is to reduce nitrous oxide emissions during the nitrification process. Incomplete nitrification in the aerobic tanks can lead to an accumulation of nitrite that triggers the nitrous oxide emissions. In order to avoid the peaks of nitrous oxide emissions, this paper proposes a cascade control configuration by manipulating the dissolved oxygen set-points in the aerobic tanks. This control strategy is combined with ammonia cascade control already applied in the literature. This is performed with the objective to take also into account effluent pollutants and operational costs. In addition, other greenhouse gases emissions sources are also evaluated. Results have been obtained by simulation, using a modified version of Benchmark Simulation Model no. 2, which takes into account greenhouse gases emissions. This is called Benchmark Simulation Model no. 2 Gas. The results show that the proposed control strategies are able to reduce by 29.86% of nitrous oxide emissions compared to the default control strategy, while maintaining a satisfactory trade-off between water quality and costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  13. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  14. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  15. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  16. Evaluating four N2O emission algorithms in RZWQM2 in response to N rate on an irrigated corn field

    Science.gov (United States)

    Nitrous oxide (N2O) emissions from agricultural soils are major contributors to greenhouse gases. Correctly assessing the effects of the interactions between agricultural practices and environmental factors on N2O emissions is required for better crop and nitrogen (N) management. We used an enhanced...

  17. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  18. Kovacs-Like Memory Effect in Driven Granular Gases

    Science.gov (United States)

    Prados, A.; Trizac, E.

    2014-05-01

    While memory effects have been reported for dense enough disordered systems such as glasses, we show here by a combination of analytical and simulation techniques that they are also intrinsic to the dynamics of dilute granular gases. By means of a certain driving protocol, we prepare the gas in a state where the granular temperature T coincides with its long time limit. However, T does not subsequently remain constant but exhibits a nonmonotonic evolution before reaching its nonequilibrium steady value. The corresponding so-called Kovacs hump displays a normal behavior for weak dissipation (as observed in molecular systems) but is reversed under strong dissipation, where it, thus, becomes anomalous.

  19. Elastic and plastic soil deformation and its influence on emission of greenhouse gases

    Science.gov (United States)

    Haas, Christoph; Holthusen, Dörthe; Mordhorst, Anneka; Lipiec, Jerzy; Horn, Rainer

    2016-04-01

    Soil management alters physical, chemical and biological soil properties. Stress application affects microbiological activity and habitats for microorganisms in the root zone and causes soil degradation. We hypothesized that stress application results in altered greenhouse gas emissions if soil strength is exceeded. In the experiments, soil management dependent greenhouse gas emissions of intact soil cores (no, reduced, conventional tillages) were determined using two experimental setups; CO2 emissions were determined with: a dynamic measurement system, and a static chamber method before and after a vertical soil stress had been applied. For the latter CH4 and N2O emissions were analyzed additionally. Stress dependent effects can be summed as follows: In the elastic deformation range microbiological activity increased in conventional tillage soil and decreased in reduced tillage and no tillage. Beyond the precompression stress a release of formerly protected soil organic carbon and an almost total loss of CH4 oxidizability occurred. Only swelling and shrinkage of no tillage and reduced tillage regenerated their microhabitat function. Thus, the direct link between soil strength and microbial activity can be applied as a marker for soil rigidity and the transition to new disequilibria concerning microbial activity and composition.

  20. Consumo de combustíveis no Brasil e Mato Grosso: estimativa do custo ecológico da emissão de gases de efeito estufa

    Directory of Open Access Journals (Sweden)

    Vallência Maíra Gomes

    2012-01-01

    Full Text Available O principal objetivo deste trabalho foi estimar o nível da emissão de gases deefeito estufa (GEE a partir do consumo de combustíveis fósseis e renováveis noBrasil e no estado de Mato Grosso entre os anos de 2003 e 2010. Uma vezreconhecido o quantum de emissão de GEE, calculou-se o custo ecológico destaemissão a partir dos preços da tonelada de carbono comercializada na BolsaEuropeia do Clima e na Bolsa do Clima de Chicago. A partir deste exercício,estimou-se o peso deste custo ecológico sobre o Produto Interno Bruto do Brasil ede Mato Grosso no período analisado, considerando hipoteticamente a incorporaçãodestes custos externos na matriz produtiva de ambas as referências espaciais.Utilizando a base de dados de consumo de combustíveis do Brasil e de Mato Grossoda Agência Nacional de Petróleo, Gás Natural e Biocombustíveis, foi empregado oMétodo “Top-Down” ou método de referência do IPCC para estimar as emissões dedióxido de carbono. Atrelou-se o preço do carbono nas Bolsas da Europa e dosEstados Unidos à emissão de gases do efeito estufa, para se estimar os custosexternos, chamados aqui também de custos ecológicos. Os resultados mostram queos custos ecológicos estão tendendo a redução neste período, tanto pela contençãoda emissão de GEE frente ao PIB quanto pela tendência negativa dos preços docarbono nas bolsas internacionais.Abstract The main objective of this study was to estimate the level of greenhouse gasesemission (GHG from the consumption of fossil and renewable fuels in Brazil and inthe state of Mato Grosso between the years 2003 and 2010. Once recognized thequantum of GHG emission, was calculated the ecological cost of this emission asfrom the prices of the ton of carbon traded on the European Climate Exchange andon the Chicago Climate Exchange. From this exercise, was estimated the weight ofthis ecological cost on Gross Domestic Product (GDP of the Brazil and of MatoGrosso in the period

  1. Climate change and local pollution effects. An integrated approach

    International Nuclear Information System (INIS)

    Aaheim, H.A.; Kristin, A.; Seip, H.M.

    1999-01-01

    Few studies on measures for mitigation of damage caused by man-made emissions to the environment have tried to consider all major effects. We illustrate the importance of an integrated approach by estimating costs and benefits of a proposed energy saving program for Hungary, originally designed to reduce CO 2 emissions. The dominant benefit of implementing the program is likely to be reduced health damage from local pollutants. Also reduced costs of material damage and to a lesser extent vegetation damage contribute to make the net benefit considerable. Compared to the reduction in these local and regional effects, the benefits from reducing greenhouse gases are likely to be minor. Since local effects in general occur much earlier after measures have been implemented than effects of increased emissions of greenhouse gases, inclusion of local effects makes evaluation of climate policy less dependent on the choice of discount rate. In our opinion, similar results are likely for many measures originally designed to reduce emissions of greenhouse gases particularly in some areas in developing countries with high local pollution levels. Main uncertainties in the analysis, e.g. in the relationships between damage and pollution level, are discussed. 72 refs

  2. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  3. Prediction of emissions and exhaust temperature for direct injection diesel engine with emulsified fuel using ANN

    OpenAIRE

    KÖKKÜLÜNK, Görkem; AKDOĞAN, Erhan; AYHAN, Vezir

    2014-01-01

    Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA) regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI) diesel engines are commonly used as a prop...

  4. Study of PAH emission from the solid fuels combustion in residential furnaces

    International Nuclear Information System (INIS)

    Kakareka, Sergey V.; Kukharchyk, Tamara I.; Khomich, Valery S.

    2005-01-01

    The procedure for and results of a test study of polycyclic aromatic hydrocarbon (PAH) emission from a few types of solid fuels combustion in residential furnaces of various designs typical for Belarus are discussed. Greatest levels of PAH emission were detected from domestic wastes and wood waste combustion. Lowest levels of PAH emission are from peat briquette combustion. It was found that PAH concentration in off-gases from firewood combustion also varies significantly depending on the type of wood: the highest values of PAH are typical for waste gases from birch firewood combustion in comparison with pine firewood combustion. Draft PAH emission factors are proposed with intended application for emission inventory of such installations

  5. Initial scoping of GHG emissions trading potential in Alberta : CABREE discussion paper

    International Nuclear Information System (INIS)

    Armstrong, R.

    2002-03-01

    The past five years have seen the emergence of the concept of emissions trading for greenhouse gases, which would make possible a reduction of the costs required to meet emissions targets agreed upon under the Kyoto Protocol. Emissions trading potential and initial scoping in Alberta is examined in this document, with a special emphasis placed on greenhouse gases. The design of a system, encompassing the theory underlying the mechanism, the current developments, issues of importance in this context, as well as the potential for inclusion of other sectors in Alberta were also discussed. For the purpose of this document, emissions trading was defined as one party reducing its emissions levels then transferring the ownership of that reduction to another party who can then purchase this reduction to assist in meeting its own emissions target. Emission trading can be divided into two basic types called Cap and Trade, and Baseline and Credit. Market creation and behaviour, and regulatory behaviour are factors that can render a trading system more feasible. It is important to analyze the goals before designing the specifics of the system. The incorporation of the various sectors of the economy of Alberta would be affected by their unique features. The greatest promise for emissions trading in Alberta is shown by the energy sector. The percentage of emissions covered, the number of participants, the economic effectiveness are all criteria that affect the performance of any system. figs

  6. Senegal country study; Evaluation des couts de reduction des emissions de gaz a effect de serre au Senegal

    Energy Technology Data Exchange (ETDEWEB)

    Sow, I

    1998-10-01

    The first part of this study consists of an analysis of the socio-economic development in Senegal and of establishment of inventory and energy balance for greenhouse gases. Scenarios for emission from single economic sectors are discussed. (EG)

  7. Emissions trading for climate policy - US and European perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bernd Hansjuergens (ed.) [Martin Luther-Universitaet Halle-Wittenburg (Germany)

    2005-07-01

    The 1997 Kyoto Conference introduced emissions trading as a new policy instrument for climate protection. Bringing together scholars in the fields of economics, political science and law, this book provides a description, analysis and evaluation of different aspects of emissions trading as an instrument to control greenhouse gases. The authors analyse theoretical aspects of regulatory instruments for climate policy, provide an overview of US experience with market-based instruments, draw lessons from existing trading schemes for the control of greenhouse gases, and discuss options for emissions trading in climate policy. They also highlight the background of climate policy and instrument choice in the US and Europe and of the emerging new systems in Europe, particularly the new EU's directive for a CO{sub 2} emissions trading system. 8 figs., 15 tabs.

  8. Greenhouse gases emission from sanitary landfills in Lombardy: estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Antognazza, F.; Moretti, M.; Caserini, S.

    2009-01-01

    Quantification of methane emissions from landfills is important to evaluate measures for reduction of greenhouse gas emissions. A census has been conducted across all landfills in Lombardy in order to get a double assessment of greenhouse gas emissions in the period 1973-2007. The first approach is of a deterministic kind: it produced a GHG emission assessment of about 2,240 ktCO 2 (like 2.4% of GHG emission in Lombardy in 2005). The second approach is a probabilistic approach according to Monte Carlo simulation, and allows an assessment of probabilistic distribution of emissions and uncertainty. Uncertainty in GHG emission from landfill in Lombardy is about 20% and efficiency of LFG collection and biodegradable carbon content are the most relevant parameters in this assessment. Also, a projection of GHG emission was made. Two scenarios were analyzed for the 2008-2020 period: a business as usual (BAU) one and an alternative one. It results that we are expecting a 50% reduction of GHG emission, with alternative scenario, from 2007 level: at regional scale it is like a 1% of overall GHG emissions in Lombardy. [it

  9. The mixing effects for real gases and their mixtures

    Science.gov (United States)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  10. Climate-chemical interactions and effects of changing atmospheric trace gases

    International Nuclear Information System (INIS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  11. A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon

    International Nuclear Information System (INIS)

    Sathaye, J.; Norgaard, R.; Makundi, W.

    1993-07-01

    This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries

  12. Emission sources and quantities

    International Nuclear Information System (INIS)

    Heinen, B.

    1991-01-01

    The paper examines emission sources and quantities for SO 2 and NO x . Natural SO 2 is released from volcanic sources and to a much lower extent from marsh gases. In nature NO x is mainly produced in the course of the chemical and bacterial denitrification processes going on in the soil. Manmade pollutants are produced in combustion processes. The paper concentrates on manmade pollution. Aspects discussed include: mechanism of pollution development; manmade emission sources (e.g. industry, traffic, power plants and domestic sources); and emission quantities and forecasts. 11 refs., 2 figs., 5 tabs

  13. Spontaneous radiation emission during penetration of ions in solids

    International Nuclear Information System (INIS)

    Miraglia, J.E.; Pacher, M.C.

    1988-01-01

    In this work, the principal continuum radiative emission processes, which occur during the penetration of ions in solids or gases, are resumed. The characteristics of the following processes are discussed: secondary electron bremsstrahlung (SEB), atomic bremsstrahlung (AB), and internuclear bremsstrahlung (INB). Recent advances of the ion channeling effects in crystal solids on the spontaneous radiative spectra are exposed. (A.C.A.S.) [pt

  14. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1997-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  15. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  16. Creating mechanisms of toxic substances emission of combustion engines

    OpenAIRE

    Jankowski Antoni; Kowalski Mirosław

    2015-01-01

    The paper analyses the mechanisms of creation of toxic exhaust gases, which mainly derived from inexact fuel metering and improper air-fuel mixture preparation. The paper describes the process of creating toxic components in the exhaust gases of piston engines during engine operation, and impact on the emission of these components determining the composition of the fuel mixture determined equivalence factor Φ. The principal mechanisms of formation of toxic exhaust gases, in particular nitroge...

  17. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  18. Emissions inventories and options for control. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Swart, R.J.; Van Amstel, A.R.; Van den Born, G.J.; Kroeze, C.

    1995-10-01

    This report is the final summary report of the project `Social causes of the greenhouse effect, emissions inventories and options for control`. The objectives of the project, that started in 1990, were to support the development of a comprehensive Dutch climate policy and to identify gaps in the knowledge about sources of greenhouse gases. The four phases of the project are summarized. In the first phase, a first national inventory of greenhouse gas emissions was made, capturing carbon dioxide (CO{sub 2}), chlorofluorocarbons (CFCs), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and the ozone precursors carbon monoxide (CO), nitrogen oxides (NO{sub x} ) and volatile organic compounds (VOC). In the second phase, the acquired expertise was used to support the development of Guidelines for National Emissions Inventories by the joint OECD/IPCC programme through workshop organization and participation in the international planning group. In the third phase, a detailed analysis was performed of the sources of methane, its current and future emissions and the options for control. Finally, a similar analysis was performed for nitrous oxide. In these studies, it was found that policies not specifically aiming at mitigating climate change, would help to control the emissions of the non-CO{sub 2} greenhouse gases. While for methane, national emissions would even decrease because of measures in the livestock management and waste disposal sectors, for nitrous oxide the reductions in agricultural emissions would be outweighed by increases, especially in the transportation sector. The project shows that the application of more detailed information leads to differences with the Guidelines, both because of the limited number of source categories in the Guidelines and because of different, locally specific emissions factors. 4 figs., 2 tabs., 14 refs.

  19. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  20. [Gases in vitreoretinal surgery].

    Science.gov (United States)

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.