WorldWideScience

Sample records for effect gases discharges

  1. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yongjun [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)], E-mail: lclei@zju.edu.cn; Zhang Xingwang; Zhou Minghua; Zhang Yi [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  2. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    Science.gov (United States)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  3. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed

  4. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  5. Critical discharge of fluids and gases

    International Nuclear Information System (INIS)

    Seewald, Michael

    2012-01-01

    The thermal hydraulic relations during discharge of fluids and gases are complex and a closed solution does not seem to be available. For the modeling of leakage accidents in nuclear power plants basic considerations are suitable for statements on the maximum mass flow, and thus the leak rate. The maximum mass flow is reached when the critical velocity is reached in the smallest cross section. This allows the appropriate design of safety systems for one-phase and two-phase flows. For German NPP simulators the hydrodynamics simulation program RELAP5-3D is used. The simulator center operates a 1:10 scale gas model of a two-loop PWR type reactor. The observable phenomena have occurred in nuclear power plants. The characteristics for a visualization of two-phase flows are not available in the simulation software and have to be added by correlations with experimental results. The realization of expectations on digital visualization techniques is discussed.

  6. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  7. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  8. Spectroscopic Study of Electrical Glow Discharges in Gases

    Science.gov (United States)

    Reyes, P. G.; Evangelista, M.; Trujillo, C.; Castillo, F.; Rangel, J.

    2006-12-01

    The variation of the power of the light emitted in a Glow Discharge in Gases of low pressure (GDGLP) excited by a DC source was studied. A lack of dependency of the kind of gas used and the pressure it is located at was obtained. This is comparable to the potential drop which takes place in the discharge by inelastic collisions such as ionization, recombination, excitation, relaxation, etc.

  9. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. C.; Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal)

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  10. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

    Science.gov (United States)

    Traba, Christian; Liang, Jun F

    2011-08-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

  11. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  12. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  13. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

    International Nuclear Information System (INIS)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V.; Karelin, V. I.; Ripenko, V. S.; Tarasenko, V. F.; Trenkin, A. A.; Shibitov, Yu. M.; Shulepov, M. A.

    2016-01-01

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.

  14. Electrical discharge in gases: a technique for detecting metal anomalies

    International Nuclear Information System (INIS)

    Lord, D.E.

    1979-01-01

    Optical ionization effects in gases appear to be very sensitive indicators of nonuniformities caused by contamination, deformation, and other factors affecting a metal surface. These optical effects are influenced by surface electron emission, which is influenced in turn by the chemical, metallurgical, and mechanical condition of the metal surface. Based on these effects, a general technique for inspection of critical parts that is fast, inexpensive, nondestructive, and not limited by size or geometry is presented. Ionization effects that reveal nonuniformities and were recorded with standard photographic equipment are shown

  15. DBD-Corona Discharge for Degradation of Toxic Gases

    International Nuclear Information System (INIS)

    Pacheco-Pacheco, M.; Pacheco-Sotelo, J.; Moreno-Saavedra, H.; Diaz-Gomez, J. A.; Mercado-Cabrera, A.; Yousfi, M.

    2007-01-01

    The non-thermal plasma technology is a promising technique to treat SO 2 and NO x . Chemical radicals produced with this technology can remove several pollutants at atmospheric pressure in a very short period of time simultaneously. Both theoretical and experimental study on SO 2 and NO x removal, by a dielectric barrier discharge (DBD) with corona effect, is presented

  16. Specific Localization of High-Voltage Discharge in Vicinity of Two Gases

    Science.gov (United States)

    Leonov, Sergey; Shurupov, Michail; Shneider, Michail; Napartovich, Anatoly; Kochetov, Igor

    2011-10-01

    A subject of paper is the appearance and dynamics of sub-microsecond long filamentary high-voltage discharge generated in atmosphere, and in non-homogeneous gaseous media. Typical discharge parameters are: maximal current 1-3kA, breakdown voltage >100 kV, duration 30-100 ns, gap distance 50-100mm. The effect of discharge specific localization within mixing layer of two gases is particularly discussed. The second discussed idea is the filamentary discharge movement within a region with concentration gradient of different components. For the short-pulse discharge the physical mechanism appears as the following. The first stage of the spark breakdown is the multiple streamers propagation from the high-voltage electrode toward the grounded one. In case of high-power electrical source those streamers occupy a huge volume of the gas, covering all possible paths for the further development. The next phase consists of the real selection of the discharge path among the multiple channels with non-zero conductivity. Experiments and calculations are presented for Air-CO2 and Air-C2H4 pairs. The effects found are supposed to be applied for lightning prediction/protection, and for high-speed mixing acceleration. The work was funded through EOARD-ISTC project #3793p. Some part of this work was supported by RFBR grant #10-08-00952.

  17. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  18. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  19. Optical diagnostics of streamer discharges in atmospheric gases

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan

    2014-01-01

    Roč. 47, č. 46 (2014), s. 463001-463001 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP205/12/1709 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431201 Program:M Institutional support: RVO:61389021 Keywords : streamer * optical diagnostics * laser-induced fluorescence * LIF * TALIF * red-sprite Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/46/463001/pdf/0022-3727_47_46_463001.pdf

  20. Evolution of Some Particle Detectors Based On the Discharge in Gases

    Science.gov (United States)

    Charpak, G.

    1969-11-19

    Summary of the properties of some of the detectors that are commonly used in counter experiments to localize charged particles, and which are based on discharge in gases under the influence of electric fields and some basic facts of gaseous amplification in homogeneous and inhomogeneous fields.

  1. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  2. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  3. Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases

    Directory of Open Access Journals (Sweden)

    Victor F. Tarasenko

    2017-05-01

    Full Text Available Supershort avalanche electron beam (SAEB plays an important role in nanosecond-pulse discharges. This paper aims at reviewing experiments results on characteritics of SAEB and its spectra in different gases in nanosecond-pulse discharges. All the joint experiments were carried in the Institute of High Current Electronics of the Russian Academy of Sciences and the Institute of Electrical Engineering of the Chinese Academy of Sciences. In these experiments, the generation of a SAEB in SF6 in an inhomogeneous electric field was studied on three generators with pulse rise times of 0.3, 0.5 and ∼2 ns. Firstly, the comparison of SAEB parameters in SF6 with those obtained in other gases (air, nitrogen, argon, and krypton is introduced. Secondly, the SAEB spectra in SF6 and air at pressures of 10 kPa (75 torr, and 0.1 MPa (750 torr are reviewed and discussed. Finally, 1.5-D theoretical simulation of the supershort pulse of the fast electron beam in a coaxial diode filled with SF6 at atmospheric pressure is described. The simulation was carried out in the framework of hybrid model for discharge and runaway electron kinetics. The above research progress can provide better understanding of the investigation into the mechanism of nanosecond-pulse discharges.

  4. Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Zhang Renxi; Wang Jingting; Cao Xu; Hou Huiqi

    2016-01-01

    For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF 4 , SF 6 and SF 5 CF 3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF 6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF 6 , air and water vapor, respectively. 0.4 kPa CF 4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF 5 CF 3 was much more effective than that of SF 6 and CF 4 and moreover, 1.3 kPa SF 5 CF 3 , discharged with 30 kPa O 2 , Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases. (paper)

  5. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    International Nuclear Information System (INIS)

    Pacheco, M; Valdivia, R; Pacheco, J; Rivera, C; Alva, E; Santana, A; Huertas, J; Lefort, B; Estrada, N

    2012-01-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  6. Evidence of terrestrial discharge of deep groundwater on the Canadian Shield from helium in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Sheppard, M.I.

    1993-01-01

    Assessment of the impact of deep geological disposal of nuclear fuel wastes at a site in the Canadian Shield requires knowledge of the location and size of areas of discharge of deep groundwater from the vicinity of the underground disposal vault. A strong He anomaly has been detected in soil gases in a 10 X 10 m area of wetland on the banks of Boggy Creek, near Lac du Bonnet, Manitoba. The area has He concentrations in near-surface soils as high as 360 nL·L -1 and is assumed to indicate discharge of He-rich groundwater through a permeable subsurface bedrock fracture. Elevated Cl - concentrations in groundwater and its use as a open-quotes deer lickclose quotes support this interpretation. A He flux density of ∼ 2.1 L·m -2 ·a -1 is determined from a depth profile of He concentrations at one location in the site. A total He flux of 270 L·a -1 is determined for the entire site, which corresponds to a deep groundwater discharge of about 26 000 L·a -1 . This estimate is comparable with He fluxes and calculated groundwater discharges for two other lake-bottom locations on the Canadian Shield. 26 refs., 6 figs., 1 tab

  7. On the Concept of Electrode to Discharge Phenomena in Surface Roughness With Reference Strongly Electronegative Gases

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1986-01-01

    The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions of artif...

  8. The effects of spin in gases

    International Nuclear Information System (INIS)

    Laloee, F.; Freed, J.H.

    1988-01-01

    Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids

  9. Hydrogen isotopic spectral determination in inert gases with the use of light source with contracted discharge

    International Nuclear Information System (INIS)

    Nemets, V.M.; Solov'ev, A.A.

    1981-01-01

    Isotopic-spectral technique for hydrogen determination in helium, neon and argon is developed. It employs a contracted high-frequency discharge as a light source to decrease the distorting effect. of a dummy signal and the ''memory'' effect of the discharge tube. The discharge is realized in a quartz tube approximately 7 mm dia. and gas pressure in it approximately 6x10 4 Pa. The analysis technique comprises sampling of gas, dosed introduction of deuterium into the sample, selection of a mixture portion into the discharge tube, spectroscopic determination of hydrogen isotope ratio and calculation of the sought for hydrogen concentration. The lower boundary of the determined concentrations of hydrogen constitutes 7x10 - 5 , 2x10 - 4 and 4x10 - 4 volumetric per cent in helium, neon, and argon, respectively

  10. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  11. Inventory of greenhouse effect gases discharges associated to the production and use of the energy in the metropolitan zone of the valley of Mexico; Inventario de emisiones de gases de efecto invernadero asociados a la produccion y uso de la energia en la zona metropolitana del valle de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, Claudia [Secretaria del Medio Ambiente, Mexico, D.F. (Mexico)

    2001-07-01

    The Metropolitan Zone of the Valley of Mexico (ZMCM) consumed in 1996 nearly 635 of PJ in fuels and 76 PJ in electrical energy. In the fuel consumption, the transport sector participated with the 51.4%, followed by the industrial sector (21.6%), the residential one (16.6%), the electrical generation (9.5%), the commerce (0.8%) and the farming (0.2%). This proportion becomes patent in fuels since, the gasoline represents the 48.7% of the fuel consumption of the region, followed by the natural gas (21.4%), the liquefied petroleum gas (16.8%), diesel oil and gas oil (10.3%) and the rest is divided between fuel oil, diaphanous petroleum, kerosine and gas turbine fuel. The total emissions of this CO{sub 2} associated to the fuel consumption in the ZMCM ascended in 1996 to 34.9 Mtons of CO{sub 2}, which is equivalent to nearly 13% of the national emissions for that year. In a similar way to energy, transport represents the 54.9% of the CO{sub 2} emissions, followed by industry (21.3%), the residential sector (15.6%), the electric generation (8.2%) and the commercial and farming sector (1%). In the transport sector, stands out the importance of the private vehicle with the 38.4% of the emissions of this sector. With exception of sulfur oxides, the transport is the sector that contributes in a more important way to the discharges of greenhouse effect gases. Also, with exception of nitrogen oxides, the private vehicle is the one that contributes more to all the emissions. The vehicles previous to 1991 contribute with the emissions of this subsector in 24.5% of the CO{sub 2} emissions, between 54 and 59% of those of CO, between 22 and 25% to those of NO{sub x}, 50 and 51% to those of CH{sub 4}, 49 and 58% to those of NMVOC, 39% to those of N{sub 2}O and 24% to those of SO{sub 2}. In the case of nitrogen oxides, it calls the attention the loading vehicles of more than two axes with diesel engine, that contribute between 46 and 50% of the total emissions of this subsector

  12. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  13. Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal from Diesel Exhaust Gases by Silent Discharge

    Science.gov (United States)

    Shoyama, Taiji; Yoshioka, Yoshio

    To improve the NO removal performance in silent discharge process, we investigated the influence of the physical parameters such as current density, channel radius and pulse duration of the one micro discharge under the constant reduced electric field strength. And influence of the micro discharges occurrence locations were also discussed. In order to analyze the NO removal process, we assumed that the pulse micro discharges occur repeatedly at the same location in static gas and that the chemical reactions induced by micro discharge forms many radicals, which react with pollutants and by-products. The conclusions we obtained are that lower current density, smaller discharge radius and shorter discharge duration improve NO removal efficiency. These results also mean that the lower discharge energy of the one micro discharge and the larger number of parallel micro discharges increase the NO removal performance. Therefore, to make the area of one micro discharge small is a desirable way to improve the NO removal performance. So we think that the glow like discharge might be more effective than the streamer like discharge mode. Next, using the two-dimensional model, which considered the influence of gas flow, we obtained a conclusion that the repeated micro discharges at different positions are very effective to increase the De-NOx performance. The reason is that the reaction of NO2+O→NO+O2 and ozone dissociation reactions are suppressed by the movement of the location of micro discharges.

  14. Beneficial Effects of Environmental Gases: Health Prospective

    International Nuclear Information System (INIS)

    Hussein, A.Z.; IBrahim, M.S.; Zakaria, Kh.M.

    2009-01-01

    Radioactive radon gas is widely considered to be a health hazard by environmental agencies in the United States and in Europe. Yet despite the warnings of these agencies, thousands of people annually expose themselves to radon for therapeutic purposes, in facilities ranging from rustic old mines, to upscale spas and clinics. The inert natural radioactive gas radon has been used since the beginning of the century in the treatment of rheumatic diseases. In many places in the world, radon is used for therapeutic purposes for various diseases. Radon inhalation is applied in a thermal gallery with atmospheric radon concentrations up to 100 kBq/m3, elevated temperature up to 41 EC , and humidity close to 100%, or in the form of radon baths where Rn is emanated from water with high natural Rn activity. Frequently, a combination of both treatment procedures is applied. Evidence from empirical experience and from clinical observational studies suggests that radon has analgesic, anti inflammatory and immune-stimulating effects. Ozone is one of nature's most powerful oxidants. It increases the effectiveness of the antioxidant enzyme system, which scavenge excess free radicals in the body. It is used in water purification and sewage treatment and is now being applied medically to treat many diseases from wounds and colitis to cancer, stroke and AIDS. According to the dosage and concentration range, medical ozone is a pharmaceutical agent that exerts specific properties and a well-defined range of efficacy. This paper describes the medical application of environmental gases: radon and ozone

  15. Excitation of rare gases in an electron-beam-controlled discharge: report on preliminary experiments

    International Nuclear Information System (INIS)

    Bingham, F.W.

    1976-05-01

    Data from the preliminary phase of a study of rare-gas-excimer production in an electron-beam-controlled discharge are presented. The results indicate that it is possible to maintain an arc-free discharge in preionized Ar and Xe gas for a period of several microseconds at applied external E/p values up to 5 V/cm/Torr. In these experiments ultraviolet radiation emitted during the discharge signaled the presence of excited rare-gas molecules. Application of the external electric field significantly enhanced the ultraviolet intensity from xenon-gas discharges but produced little enhancement from argon-gas discharges

  16. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  17. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  18. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  19. Effective collision frequency of electrons in noble gases

    International Nuclear Information System (INIS)

    Baille, P.; Chang, J.-S.; Claude, A.; Yau, A.W.; Hobson, R.M.; Ogram, G.L.

    1981-01-01

    The electron-neutral collision frequency in the noble gases has been calculated using recent numerical results for momentum transfer cross sections by assuming a Maxwellian distribution of electron velocities. In all these gases, except for argon, good agreement is obtained with most previously published experimental and theoretical data. Mean free path, mobilities and diffusion coefficients are also calculated from the resulting effective collision frequencies. The empirical formulae are presented for an electron temperature dependence of the electron-neutral collision frequency for all noble gases up to Tsub(e) < approximately 25.000 K. (author)

  20. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  1. Raether-Meek criterion for prediction of electrodeless discharge inception on a dielectric surface in different gases

    Science.gov (United States)

    Chvyreva, A.; Pancheshnyi, S.; Christen, T.; Pemen, A. J. M.

    2018-03-01

    Electrodeless streamer inception on an epoxy surface under AC voltage stress was investigated for different gas compositions and pressures, with a focus on the pressure region below 1 bar. For this purpose, we used a set-up with cylindrical electrodes embedded out-of-axis in a cylindrical epoxy rod. Experiments were performed in N2, SF6, ambient air, Ar and CO2. The discharge inception voltage was measured, from which the critical value K of the ionization integral was reconstructed assuming a non-disturbed Laplacian field distribution. We have validated that for electropositive gases Ar an N2 the generally assumed value of K  =  10 is in good agreement with our measurements. For electronegative gases, however, the experimentally obtained values turned out to be considerably higher. We attribute this discrepancy mainly to the statistical time delay of the first electron; to increase the probability of discharge inception in a critical region, it was necessary to extend the critical area by means of applying an overvoltage to the system.

  2. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    International Nuclear Information System (INIS)

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-01-01

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma

  3. Two-dimensional theory of ionization waves in the contracted discharge of noble gases

    International Nuclear Information System (INIS)

    Golubovskij, Ju.B.; Kolobov, V.I.; Tsendin, L.D.

    1985-01-01

    The mechanism of instability generating ionization waves in contracted neon and argon discharges is connected to its two-dimensional structure. The two-dimensional perturbations of sausage-type may have the most increment. The numerical solution of the ambipolar diffusion equation and qualitative asymptotic solutions showed that the situation differs greatly from diffuse discharges at low pressure, where the waves of large wave number are instable. In the case discussed, there is a wave number interval of unstable waves. (D.Gy.)

  4. Effects of electric discharges on polymers

    International Nuclear Information System (INIS)

    Bagirov, M.A.

    2002-01-01

    Full text: One of the reasons for the worsening of electrical properties of polymeric isolation in use in the effect of the electric discharges which developing in the gas inclusions and in the interlayer inside the isolation itself. The electrical discharges in the gas gap lead to the electrical growing old and the worsening of its electro physical qualities. We have learned the changes of electrical properties (dielectrical permeability and dielectrical loss, and electrical conductivity, electrical strength) of polymer films under the influence of electrical discharges. This paper shows the ways of increase of stability of polymers to the electrical discharges

  5. Modeling of discharges generated by electron beams in dense gases: Fountain and thunderstorm regimes

    International Nuclear Information System (INIS)

    Macheret, S.O.; Shneider, M.N.; Miles, R.B.

    2001-01-01

    In this paper we present an analysis of the predicted dynamics of plasmas generated in air and other gases by injecting beams of high-energy electrons. Two distinct regimes are found, differing in the way that the excess negative charge brought in by the ionizing electron beam is removed. In the first regime, called a fountain, the charge is removed by the back current of plasma electrons toward the injection foil. In the second, called a thunderstorm, a substantial cloud of negative charge accumulates, and the increased electric field near the cloud causes a streamer to strike between the cloud and a positive or grounded electrode, or between two clouds created by two different beams. A quantitative analysis, including electron beam propagation, electrodynamics, charge particle kinetics, and a simplified heat balance, is performed in a one-dimensional approximation

  6. Acoustic effects of single electrostatic discharges

    International Nuclear Information System (INIS)

    Orzech, Łukasz

    2015-01-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(p a ) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details. (paper)

  7. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  8. Study of the electron energy distribution function in plasma produced by a rf discharge in a mixture of inert gases

    International Nuclear Information System (INIS)

    Vagner, S.D.; Ignat'ev, B.K.

    1983-01-01

    Electron energy distribution functions (EEDF) are recorded in an rf discharge in a mixture of neon and argon. The rates of different ionization processes and the energy losses of the electrons in the bulk of the discharge are calculated. The experimentally recorded electron energy distribution functions are compared with distributions calculated using a nonlocal theory. The effect of an rf voltage in the probe circuit on the recorded electron energy distribution functions is investigated experimentally

  9. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  10. Cost-effectiveness in the mitigation of green house gases

    International Nuclear Information System (INIS)

    Rey, Francisco Carlos

    2009-01-01

    This paper analyzes the cost-effectiveness in the mitigation of green house gases from solar, eolic and nuclear energy sources, concluding that nuclear is, not doubt, the mos efficient. On the other hand, nuclear is the unique source that can be installed without limit in magnitude and in the proximity of the demand, and is for all these reasons that several environmental referents in the world have changed their perception on this source and defend it as the unique actual alternative to fight against the emission of green house gases. (author) [es

  11. Thermal diffusion baro-effect in cluster gases

    International Nuclear Information System (INIS)

    Kurlapov, L.M.; Segeda, T.A.

    2003-01-01

    Thermal diffusion baro-effect as a difference of pressure under which action in the established process in the close device the particles flow of an irreversible nature is counterbalanced by current of gas is considered. For not ideal gases the settlement formula is received, in which no ideality is taken into account through the compressibility factor and also for cluster mixture. (author)

  12. Memory effect in uniformly heated granular gases

    Science.gov (United States)

    Trizac, E.; Prados, A.

    2014-07-01

    We evidence a Kovacs-like memory effect in a uniformly driven granular gas. A system of inelastic hard particles, in the low density limit, can reach a nonequilibrium steady state when properly forced. By following a certain protocol for the drive time dependence, we prepare the gas in a state where the granular temperature coincides with its long time value. The temperature subsequently does not remain constant but exhibits a nonmonotonic evolution with either a maximum or a minimum, depending on the dissipation and on the protocol. We present a theoretical analysis of this memory effect at Boltzmann-Fokker-Planck equation level and show that when dissipation exceeds a threshold, the response can be called anomalous. We find excellent agreement between the analytical predictions and direct Monte Carlo simulations.

  13. Soft X-ray generation in gases by means of a pulsed electron beam produced in a high-voltage barier discharge

    NARCIS (Netherlands)

    Azarov, A.V.; Peters, P.J.M.; Boller, Klaus J.

    2007-01-01

    A large area pulsed electron beam is produced by a high-voltage barrier discharge. We compare the properties of the x-rays generated by stopping this beam of electrons in a thin metal foil with those generated by stopping the electrons directly in various gases. The generation of x-rays was

  14. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  15. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  16. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  17. The effect of discharge chamber geometry on the characteristics of low-pressure RF capacitive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskiy, V.A. [Ecole Polytech, Lab Phys and Technol Plasmas, F-91128 Palaiseau, (France); Booth, J.P. [Lam Res Corp, Fremont, CA 94538 (United States); Landry, K. [Unaxis, F-38100 Grenoble, (France); Douai, D. [CEA Cadarache, Dept Rech Fus Controlee, EURATOM Assoc, F-13108 St Paul Les Durance, (France); Cassagne, V. [Riber, F-95873 Bezons, (France); Yegorenkov, V.D. [Kharkov Natl Univ, Dept Phys, UA-61077 Kharkov, (Ukraine)

    2007-07-01

    We report the measured extinction curves and current voltage characteristics (CVCs) in several gases of RF capacitive discharges excited at 13.56 MHz in chambers of three different geometries: 1) parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'); 2) parallel plates surrounded by a metallic cylinder ('asymmetric confined'); and 3) parallel plates inside a much larger metallic chamber ('asymmetric unconfined'), similar to the gaseous electronics conference reference cell. The extinction curves and the CVCs show differences between the symmetric, asymmetric confined, and asymmetric unconfined chamber configurations. In particular, the discharges exist over a much broader range of RF voltages and gas pressures for the asymmetric unconfined chamber. For symmetric and asymmetric confined discharges, the extinction curves are close to each other in the regions near the minima and at lower pressure, but at higher pressure, the extinction curve of the asymmetric confined discharge runs at a lower voltage than the one for the discharge in a symmetric chamber. In the particular cases of an 'asymmetric unconfined chamber' discharge or 'asymmetric confined' one, the RF discharge experiences the transition from a 'weak-current' mode to a 'strong-current' one at lower RF voltages than is the case for a 'symmetric parallel-plate' discharge. (authors)

  18. Development of an instrument to measure the concentration of noncondensable gases in geothermal discharges. Final report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Blair, C.K.; Harrison, R.F.

    1980-01-01

    Reported herein is a summary of a project to design, construct, and test a device which will continuously measure the vapor phase concentration of noncendensable gases in saturated steam/water geothermal discharges. Descriptions of the design, operating procedures, measurement accuracy, and limitations of the device are included. Also presented are results of laboratory testing and of field demonstration of the instrument. Recommendations for further refinement and development of the apparatus are discussed.

  19. Effect of air-polluting gases on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I

    1972-01-01

    Among the air-polluting gases, SO/sub 2/, ozone, peroxyacetylnitrate (PAN) and fluorine are those whose action is studied most. This review tries to show the connection between the well-known macroscopic symptoms, on the one hand, the the primary point of attack at the enzymatic level, the changes in the plant's metabolism, and the microscopic and electronmicroscopic results, on the other. PAN and ozone, which originate through the action of sunlight on auto-exhausts, cause the strong oxidizing character of this type of smog. Their primary point of attack seems to be their oxidizing effect on protein SH-groups. PAN in special oxidizes the SH-groups of a photoreducible disulfide containing chloroplast protein, thus blocking photosynthesis. SO/sub 2/, which originates from combustion of coal and petroleum as well as from roasting of sulfur-containing ores, causes the reductive character of this type of smog. SO/sub 2/ has a special position among the air-polluting gases because it can be incorporated without damaging effect into the normal sulfur metabolism up to a certain level. After exceeding this limit, it causes a rapid depression of photosynthesis. F/sup -/ is bound as a salt in the cell wall or in the cell vacuole and is thereby prevented from its damaging effect on metabolic processes up to a certain level. Upon exceeding this, it acts mainly on the enzymes of carbohydrate metabolism. In a few examples it is shown in which way the collapse of cell compartmentation causes the loss of regulatory mechanisms of the cell. The influence of internal (genetic conditions, physiological age etc.) and external (light, temperature, humidity etc.) factors on the general metabolism, and, in this way, on the sensitivity of the plant to air-polluting gases, is shown. 195 references.

  20. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  1. Kovacs-Like Memory Effect in Driven Granular Gases

    Science.gov (United States)

    Prados, A.; Trizac, E.

    2014-05-01

    While memory effects have been reported for dense enough disordered systems such as glasses, we show here by a combination of analytical and simulation techniques that they are also intrinsic to the dynamics of dilute granular gases. By means of a certain driving protocol, we prepare the gas in a state where the granular temperature T coincides with its long time limit. However, T does not subsequently remain constant but exhibits a nonmonotonic evolution before reaching its nonequilibrium steady value. The corresponding so-called Kovacs hump displays a normal behavior for weak dissipation (as observed in molecular systems) but is reversed under strong dissipation, where it, thus, becomes anomalous.

  2. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  3. Production of ultrafine particles of high-temperature tetragonal WO3 by dc arc discharge in Ar-O2 gases

    International Nuclear Information System (INIS)

    Guo Yumei; Murata, Norihiko; Ono, Kazuya; Okazaki, Tsugio

    2005-01-01

    Ultrafine particles of WO 3 are successfully produced by dc arc discharge in Ar-O 2 gases. Particle sizes are distributed from 10 nm to 1 μm depending on production conditions: gas pressure, collection position and discharge current. Observations of the cooled particles by electron microscopy indicate that the WO 3 particles are tetragonal, a phase that is usually only stable above 725 deg. C. The octahedral crystals are bounded by eight {1 0 1} faces and occasionally truncated by {1 0 0} and/or {0 0 1} faces. This method of producing WO 3 by dc arc discharge therefore affords a high-temperature phase that is preserved upon cooling to room temperature

  4. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  5. The mixing effects for real gases and their mixtures

    Science.gov (United States)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  6. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  7. Investigation of airflow effects on the dielectric barrier discharge with single/double discharge channel arrangement

    Science.gov (United States)

    Fan, Zhihui; Yan, Huijie; Liu, Yidi; Guo, Hongfei; Wang, Yuying; Ren, Chunsheng

    2018-05-01

    Atmospheric-pressure dielectric barrier discharge (DBD) with airflow participation has been widely used in recent years. In this paper, effects of airflow on DBD characteristics are experimentally investigated by single/double pin-to-plate DBD arrangements with an AC exciting source. The discharge electrical characteristics and the movements of discharge channels in airflow are investigated with a single pin electrode arrangement. The current intensities increase in positive cycles and decrease in negative cycles with the increase in airflow velocity. The transition from a filamentary discharge to a diffuse discharge is observed under certain airflow conditions, and the discharge channels move with the airflow with a movement velocity less than the corresponding airflow velocity. In the cases of double pin electrode arrangements, the repulsion between double pin discharge channels is apparent at a 10 mm distance but is not obvious at a 20 mm distance. When the airflow is introduced into the discharge gap, not as in the case of single pin electrode arrangement, the movements of discharge channels in airflow are affected by adjacent discharge channels. The corresponding reasons are analyzed in the paper.

  8. Electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined

  9. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  10. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  11. Effect of waveforms of inspired gas tension on the respiratory oscillations of carotid body discharge.

    Science.gov (United States)

    Kumar, P; Nye, P C; Torrance, R W

    1991-07-01

    The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.

  12. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  13. Boundary Effect of Planar Glow Dielectric Barrier Discharge and Its Influence on the Discharge Structure

    International Nuclear Information System (INIS)

    Xu Shaowei; Li Lulu; Ouyang Jiting

    2015-01-01

    The dielectric barrier discharge (DBD) in the glow regime in neon has been investigated by experiment and two-dimensional (2D) fluid modeling. The discharge was carried out in a planar DBD system with segmented-electrodes driven by square-wave voltage. The results show that the glow DBD originates in the center of the electrode and expands outward to the electrode edge during each half cycle of the voltage, forming a radial structure. The discharge decays firstly in the inner area but sustains longer in the edge area, showing a reversed discharge area. The discharge cannot completely cover the entire electrode surface, but remains a border of non- or weak discharge. The fluid modeling shows a similar result in agreement with the experiments. The simulations indicate that the electric field in the edge area is distorted due to the boundary effect so that the electric field and charge distribution are different from that in the inner part. The distorted field reduces the longitudinal component near the edge and causes the local field to be lower than that in the center, and hence makes the discharge behindhand. It also induces a transverse field that makes the discharge extend radially outward to the edge. The boundary effect plays an important role in the glow DBD structure. (paper)

  14. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  15. Interaction effects on dynamic correlations in noncondensed Bose gases

    NARCIS (Netherlands)

    Bezett, A.; Van Driel, H. J.; Mink, M. P.; Stoof, H. T C; Duine, R. A.

    2014-01-01

    We consider dynamic, i.e., frequency-dependent, correlations in noncondensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and we show how it depends on the

  16. The effect of firearm muzzle gases on the backspatter of blood.

    Science.gov (United States)

    Taylor, Michael C; Laber, Terry L; Epstein, Barton P; Zamzow, Dan S; Baldwin, David P

    2011-09-01

    Injuries caused by gunshots can produce what bloodstain pattern analysts know as "backspatter." Observations about the presence or absence of backspatter on an individual may be used in court as evidence of guilt or innocence. The discharge of three firearms (.22 caliber revolver, .38 caliber revolver, and .308 caliber rifle) and the resulting impact of bullets on a blood source were recorded using high-speed digital video imaging. Blood droplets, firearm muzzle gases, and ballistic shock waves were visualized using standard reflected light and shadowgraphy imaging techniques. A significant interaction between air currents, muzzle gases, and particulate material emanating from the firearms upon discharge with backspattered blood was observed. Blood droplets, initially spattered back toward the firearm and the shooter, were observed to change direction under the influence of firearm-induced air currents and were blown forward toward and beyond their original source location. Implications for experts testifying in court and for bloodstain pattern instructors are discussed.

  17. The Effect of Firearm Muzzle Gases on the Backspatter of Blood

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.C.; Laber, T.L.; Epstein, B.P.; Zamzow, D.S.; Baldwin, D.P.

    2010-05-12

    Injuries caused by gunshots can produce what bloodstain pattern analysts know as 'backspatter.' Observations about the presence or absence of backspatter on an individual may be used in court as evidence of guilt or innocence. The discharge of three firearms (.22 caliber revolver, .38 caliber revolver, and .308 caliber rifle) and the resulting impact of bullets on a blood source were recorded using high-speed digital video imaging. Blood droplets, firearm muzzle gases, and ballistic shock waves were visualized using standard reflected light and shadowgraphy imaging techniques. A significant interaction between air currents, muzzle gases, and particulate material emanating from the firearms upon discharge with backspattered blood was observed. Blood droplets, initially spattered back toward the firearm and the shooter, were observed to change direction under the influence of firearm-induced air currents and were blown forward toward and beyond their original source location. Implications for experts testifying in court and for bloodstain pattern instructors are discussed.

  18. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu

    2007-01-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  19. OH kinetic in high-pressure plasmas of atmospheric gases containing C2H6 studied by absolute measurement of the radical density in a pulsed homogeneous discharge

    International Nuclear Information System (INIS)

    Magne, L; Pasquiers, S; Gadonna, K; Jeanney, P; Blin-Simiand, N; Jorand, F; Postel, C

    2009-01-01

    The absolute value of the hydroxyl radical was measured in the afterglow of an homogeneous photo-triggered discharge generated in N 2 /O 2 /H 2 O/C 2 H 6 mixtures, using a UV absorption diagnostic synchronized with the discharge current pulse. Measurements show that OH is efficiently produced even in the absence of water vapour in the mixture, and that the radical production is closely linked to the degradation kinetic of the hydrocarbon. Experimental results for dry mixtures, both for OH and for the removal of ethane in the discharge volume, are compared with predictions of a self-consistent 0D discharge and the kinetic model. It appears that the oxidation reaction of the ethane molecule by O( 3 P) atoms plays a minor role. Dissociation of the hydrocarbon through quenching collisions of the nitrogen metastable states are of great importance for a low oxygen concentration value. Also, the oxidation of ethane by O( 1 D) cannot be neglected at high oxygen concentration. The most probable exit channel for N 2 states quenching collisions by ethane is the production of ethene and hydrogen molecules. Afterwards C 2 H 4 should be dissociated to produce H and H 2 . As previously suggested from the study of the OH density time evolution in relative value, the recombination of H and O atoms appears as a main process for the production of OH in transient low temperature plasmas generated in atmospheric gases at high pressure. Another important reaction is the reduction of the HO 2 radical by O, this radical coming from the addition of H on the oxygen molecule. H atoms come from numerous kinetic processes, amongst which is the dissociation of ethene.

  20. Effective Discharge and Annual Sediment Yield on Brazos River

    Science.gov (United States)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  1. Gases emissions of Green house Effect in Colombia

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio

    1999-01-01

    Colombia when signing the agreement mark of the united nations for the global change in 1992 and to ratify it in 1996 committed, together with the other signatory countries, to elaborate and to publish national inventories of anthropogenic emissions of green house gases and plans for its reduction and control. In this reference mark a group of professionals inside the Colombian academy of exact, physical and natural sciences, began in July of 1995, the national inventory of greenhouse gases for Colombia, having the approval of the ministry of the environment, the financial support of the organization of German technical cooperation GTZ and the technical consultantship of the work group that it is carrying out the study in the case of Venezuela. This article presents a summary of the results of the project, making emphasis in the main anthropogenic activities responsible for these emissions, especially those related with the energetic sector

  2. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  3. The effect of an auxiliary discharge on anode sheath potentials in a transverse discharge

    International Nuclear Information System (INIS)

    Foster, J.E.; Gallimore, A.D.

    1997-01-01

    A novel scheme that employs the use of an auxiliary discharge has been shown to reduce markedly anode sheath potentials in a transverse discharge. An 8.8 A low-pressure argon discharge in the presence of a transverse magnetic field was used as the plasma source in this study. In such discharges, the transverse flux that is collected by the anode is severely limited due to marked reductions in the transverse diffusion coefficient. Findings of this study indicate that the local electron number density and the transverse flux increase when the auxiliary discharge is operated. Changes in these parameters are reflected in the measured anode sheath voltage. Anode sheath potentials, estimated by using Langmuir probes, were shown to be reduced by over 33% when the auxiliary discharge is operated. These reductions in anode sheath potentials translated into significant reductions in anode power flux as measured using water calorimeter techniques. The reductions in anode power flux also correlate well with changes in the electron transverse flux. Finally, techniques implementing these positive effects in real plasma accelerators are discussed. copyright 1997 American Institute of Physics

  4. The Breakdown Mechanisms In Electrical Discharges: The Role Of The Field Emission Effect In Direct Current Discharges In Micro gaps

    International Nuclear Information System (INIS)

    Radmilovic-Radjenovic, M.; Radjenovic, B.; Bojarov, A.; Klas, M.; Matejcik, S.

    2013-01-01

    This review represents an attempt to sum up the current state of the research in the field of breakdown phenomena in electrical discharges. The paper provides facts and theories concerning different classes of direct current, radio and microwave frequency discharges, in vacuum, in the gas and in liquids, without and in the presence of the magnetic fields. The emphasize was made on the field emission effects and on the fundamental aspects of the breakdown phenomena in micro discharges via discussions and analysis of the experimental, theoretical and simulation results. It was found that the Paschen's law is not applicable for the micron gap sizes, when deviations from the standard scaling law become evident and modified Paschen curve should be used. The explanation of the deviations from the Paschen law was attributed to the secondary electron emission enhanced by the strong field generated in micro gaps. The experiments were carried out in order to establish scaling law in micro gaps. The volt-ampere characteristics were also recorded and compared with the theoretical predictions based on the Fowler-Nordheim theory. The importance of the enhancement factor and the space charge on results was also considered. On the basis of the experimental breakdown voltage curves, the effective yields in micro gaps have been estimated for different gases which can be served as input data in modeling. The effective yields allow analytically produce modified Paschen curves that predicts the deviations from the Paschen law observed in the experiments. In addition, we present results of computer simulations using a Particle-in-cell/Monte Carlo Collisions (PIC/MCC) code with the secondary emission model in order to include the field emission enhanced secondary electron production in micro gaps. The agreement between simulation and experimental results suggest that computer simulations can be used to improve understanding of the plasma physics as an alternative to analytical

  5. Effects of foreign gases on H- formation in a magnetic multipole hydrogen plasma source

    International Nuclear Information System (INIS)

    Mosbach, T

    2005-01-01

    The effects of admixtures of argon and xenon and of nitrogen (for the purpose of comparison between atomic and molecular additives) to a given H 2 base pressure are investigated with respect to the vibrational populations of hydrogen molecules in the electronic ground state, to the density of negative ions and to the electron energy distribution function (EEDF). This work aims to unravel the influence of the vibrational population distribution and the EEDF on the formation of negative hydrogen ions in the volume of a magnetic multipole plasma source. The admixtures of these foreign gases lead to a measurable state-specific decrease in the population of the high vibrational states of the H 2 molecule. Higher states exhibit a clearly stronger decrease with increasing foreign gas partial pressure. The measured density of the negative ions decreases with increasing noble gas partial pressure, despite the fact that the low-energy fraction of the measured EEDF is modified such that the efficiency of ion formation by dissociative attachment is more favourable. The various measurements are compared for the case of the H 2 -Ar discharge, with a global model developed for the stationary plasma state. The decrease in the density of the negative ions with increasing argon admixture can be reproduced by the model with high accuracy on the basis of measured population distributions of the vibrationally excited H 2 molecules and the measured EEDF

  6. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    Science.gov (United States)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  7. Effects of vaginal discharge on female sexual function.

    Science.gov (United States)

    Gungor, Ayse N C; Uludag, Aysegul; Sahin, Melih; Gencer, Meryem; Uysal, Ahmet

    2014-01-01

    To assess the effects of vaginal discharge on female sexual dysfunction (FSD) by using the Female Sexual Function Index (FSFI). In a study at a university hospital in Canakkale, Turkey, women affected by vaginal discharge and age-matched healthy control women were recruited between January and December 2012. Women were grouped in accordance with their vaginal discharge complaints and each participant completed the FSFI questionnaire. A total of 114 women were included in the study. Women in the first group (n=58) had no vaginal discharge or had physiologic vaginal discharge, those in the second group (n=29) had abnormal vaginal discharge with itching, and those in the third group (n=27) had abnormal vaginal discharge without itching. Compared with the first group, women in the second and third groups had higher FSFI scores for desire, arousal, orgasm, and pain, in addition to higher overall FSFI scores. Women with genital malodor had significantly higher FSFI scores than patients without genital malodor (23.83 ± 5.07 vs 21.15 ± 4.78; P=0.008). Women with abnormal vaginal discharges were found to have better FSFI scores for some domains. This finding may be attributed to the adverse effects of sexual intercourse on vaginal infections. © 2013.

  8. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  9. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  10. Assessment of the effect of effluent discharge from coffee refineries ...

    African Journals Online (AJOL)

    Admin

    2Department of Environmental Health, Jimma University, Jimma, Ethiopia. ... cherries, transport them hydraulically through the pulping ..... Table 2. Interaction effects of effluent discharges by coffee refineries on physical characteristics between.

  11. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    Science.gov (United States)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  12. Effects of quantum statistics in cold-atom gases

    International Nuclear Information System (INIS)

    Villain, Pierre

    2000-01-01

    The first part of this research thesis recalls the main properties of Bose-Einstein condensates as they have been experimentally produced since 1995 in diluted alkaline gases and as they have been magnetically trapped. The author discusses the standard theoretical approach of Bogoliubov which relies on an hypothesis of symmetry breakage. Then, the author addresses the dynamic consequences of this hypothesis, in particularly on the existence of a condensate phase jamming which results in a loss of coherence properties for the system. The third part addresses the dynamic study of a condensate within a pattern-type potential. A numerical integration of the Gross-Pitaevskii equation is performed. Through variations of the non-linear parameter (which expresses interactions between atoms), the influence of non-linearities on the system behaviour is analysed. Notably, the author shows how, by increasing this parameter, the macroscopic wave function passes from a regular dynamics to a stochastic dynamics. In the fourth part, the author reports the modelling of an experiment of mixing with five waves within the context of matter waves. He shows how to adapt this experiment for fermions/bosons mixing where an incident fermion wave is sent towards a network of condensed bosons [fr

  13. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    Science.gov (United States)

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-11-11

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.

  14. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    Science.gov (United States)

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  15. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2015-11-01

    Full Text Available Sulfur hexafluoride (SF6 is widely utilized in gas-insulated switchgear (GIS. However, part of SF6 decomposes into different components under partial discharge (PD conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.

  16. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    Science.gov (United States)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  17. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Dang Sai-Chao; Ma Qiang; Xia Wei-Dong

    2015-01-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current C ms , air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. (paper)

  18. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  19. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  20. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  1. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdeh, Nidal H. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2003-11-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO{sub x}), carbon dioxide (CO{sub 2}) and carbon monoxide (CO). In addition, O{sub 2} concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO{sub x}) and carbon dioxide (CO{sub 2}) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O{sub 2}) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO{sub x} gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO{sub x} but increased the particulate matter concentrations in the exhaust gases. (Author)

  2. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  3. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  4. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  5. Effect of liquid waste discharges from steam generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides.

  6. Effect of liquid waste discharges from steam generating facilities

    International Nuclear Information System (INIS)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides

  7. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  8. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  9. Drag Effect in Double-Layer Dipolar Fermi Gases

    International Nuclear Information System (INIS)

    Tanatar, B; Renklioglu, B; Oktel, M O

    2014-01-01

    We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system

  10. Assessment of the effect of effluent discharge from coffee refineries ...

    African Journals Online (AJOL)

    The ecohydrological quality of water resource of Ethiopia is declining at an alarming rate, resulting in severe environmental degradation. This study finds out the effects of effluent discharge from intensive coffee refineries on river water quality based on physicochemical parameters and benthos assemblages as biological ...

  11. Effect of noble gases on an atmospheric greenhouse /Titan/.

    Science.gov (United States)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  12. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  13. Effect of van der Waals interactions on the structural and binding properties of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation); Shandakov, Sergey D. [Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation)

    2015-12-15

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Se bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.

  14. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  15. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  16. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  17. [Effectiveness of an early discharge program after normal childbirth].

    Science.gov (United States)

    Teulón González, M; Martínez Pillado, M; Cuadrado Martín, M M; Rivero Martín, M J; Cerezuela Requena, J F

    To implement a program of early hospital discharge after an uncomplicated birth, in order to improve the effectiveness, as well as ensuring clinical safety and patient acceptability. Descriptive study of the effectiveness of an early discharge program after uncomplicated delivery between February 2012 and September 2013. The populations are post-partum women and newborns admitted to the University Hospital of Fuenlabrada, with a duration of less than 24h after uncomplicated delivery that met the defined inclusion criteria. Satisfaction was assessed using a Likert scale. The effectiveness of the program was monitored by safety indicators, productivity, adaptation, and continuity of care. A total of 20% of cases capable of early discharge from Fuenlabrada University Hospital completed the program. Almost all (94%) were normal deliveries. The 188 cases included were from 911 patients with uncomplicated childbirth, accounting for 6.5% of the 2,857 total births. The mean stay of patients included showed a decrease of 50% (2.4 to 1.2 days). All patients received continuity of care after hospital discharge. The review consultation was reprogrammed for 4.8% of cases, with 2% of patients re-admitted within 96h. with no serious problems. Four newborns (2%) required attention in the emergency department (mother or newborn) before 96h. The assessment of patient satisfaction achieved a score of 4.5 out of 5. The program achieved a decrease in the average stay by 50%, favouring the autonomy of midwives. This acceptance level is in line with similar interventions. The deployment of the program may be useful for other changes in care processes. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Self-stabilized discharge filament in plane-parallel barrier discharge configuration: formation, breakdown mechanism, and memory effects

    Science.gov (United States)

    Tschiersch, R.; Nemschokmichal, S.; Bogaczyk, M.; Meichsner, J.

    2017-10-01

    Single self-stabilized discharge filaments were investigated in the plane-parallel electrode configuration. The barrier discharge was operated inside a gap of 3 mm shielded by glass plates to both electrodes, using helium-nitrogen mixtures and a square-wave feeding voltage at a frequency of 2 kHz. The combined application of electrical measurements, ICCD camera imaging, optical emission spectroscopy and surface charge diagnostics via the electro-optic Pockels effect allowed the correlation of the discharge development in the volume and on the dielectric surfaces. The formation criteria and existence regimes were found by systematic variation of the nitrogen admixture to helium, the total pressure and the feeding voltage amplitude. Single self-stabilized discharge filaments can be operated over a wide parameter range, foremost, by significant reduction of the voltage amplitude after the operation in the microdischarge regime. Here, the outstanding importance of the surface charge memory effect on the long-term stability was pointed out by the recalculated spatio-temporally resolved gap voltage. The optical emission revealed discharge characteristics that are partially reminiscent of both the glow-like barrier discharge and the microdischarge regime, such as a Townsend pre-phase, a fast cathode-directed ionization front during the breakdown and radially propagating surface discharges during the afterglow.

  19. Effect of photocurrent amplification in In sub 2 O sub 3 -GaSe heterostructure

    CERN Document Server

    Drapak, S I

    2001-01-01

    The experimentally determined effects of originating the photocurrent amplification in the In sub 2 O sub 3 -GaSe heterostructure with localization of the barrier plane perpendicular to the semiconductor layers are described. The value of the amplification coefficient by the reverse displacement U = 10 V reached M approx = 82 and the absolute value of the current sensitivity - 30-32 A/W. The mechanism of the current transfer through the dielectric, inevitable originating on the gallium monoselenide surface, is determined on the basis of the volt-ampere characteristics study. The supposition is made on the change in the conductivity mechanisms by transferring the barrier plane from the parallel to the perpendicular one to the GaSe layers

  20. Effect of specific industrial gases on the growth of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, V G

    1963-01-01

    Variations in the growth increment of annual rings can serve as index of the injuries effect of various industrial gases on plants. For such an objective, young trees are preferable because they are more responsive to changes of surrounding conditions and recover more rapidly after being affected by gas. The older trees react more slowly, take longer to recover, and as a rule eventually dry up. These differences may be related to the prevalence of different kinds of gas resistance (N.P. Krasinskiy, 1950) at definite ages; in the case of old trees the nature of resistant being anatomical, morphological, and physiological (less oxidation of the cell content), whereas in young trees the biological resistance to gases is greater.

  1. The effect of system boundaries on the mean free path for confined gases

    Directory of Open Access Journals (Sweden)

    Sooraj K. Prabha

    2013-10-01

    Full Text Available The mean free path of rarefied gases is accurately determined using Molecular Dynamics simulations. The simulations are carried out on isothermal argon gas (Lennard-Jones fluid over a range of rarefaction levels under various confinements (unbounded gas, parallel reflective wall and explicit solid platinum wall bounded gas in a nanoscale domain. The system is also analyzed independently in constitutive sub-systems to calculate the corresponding local mean free paths. Our studies which predominate in the transition regime substantiate the boundary limiting effect on mean free paths owing to the sharp diminution in molecular free paths near the planar boundaries. These studies provide insight to the transport phenomena of rarefied gases through nanochannels which have established their potential in microscale and nanoscale heat transfer applications.

  2. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  3. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  4. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  5. Long Term Effects of Tear Gases on Respiratory System: Analysis of 93 Cases

    Directory of Open Access Journals (Sweden)

    Peri Arbak

    2014-01-01

    Full Text Available Aim. This study aimed to assess the long-term respiratory effects of tear gases among the subjects with history of frequent exposure. Materials and Methods. A questionnaire by NIOSH and pulmonary function tests was performed in 93 males exposed to the tear gases frequently and 55 nonexposed subjects. Results. The mean numbers of total exposure and last 2 years exposure were 8.4±6.4 times, 5.6±5.8 times, respectively. Tear gas exposed subjects were presented with a higher rate for cough and phlegm more than 3 months (24.7% versus 11.3%, P>0.05. Mean FEV1/FVC and % predicted MMFR in smoker exposed subjects are significantly lower than those in smoker controls (81.7% versus 84.1%, P=0.046 and 89.9% versus 109.6%, P=0.0004, resp.. % predicted MMFR in nonsmoker exposed subjects is significantly lower than that in nonsmoker controls (99.4% versus 113.1%, P=0.05. Odds ratios for chest tightness, exercise dyspnea, dyspnea on level ground, winter morning cough, phlegm, and daily phlegm were increased almost 2 to 2.5 folds among tear gas exposed subjects. Conclusion. The rates for respiratory complaints were high in the case of the exposure to the tear gases previously. Tears gas exposed subjects were found to be under the risk for chronic bronchitis.

  6. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    present in the sample in question, metaphorically a drop in the bucket. Thus, they are very difficult or impossible to detect and, therefore, in practical terms, attracting little or no interest. When the bucket is empty, or nearly so, however, the "drop" contributed by nuclear transmutations may become observable or even dominant. Traditionally there are two types of (nearly) empty buckets that are most suitable for revealing the effects of nuclear transmutations: short-lived radionuclides (e.g., 10Be and 26Al) which would be entirely absent except for recent nuclear reactions, and the noble gases, renowned for their scarcity.Emphasis on nuclear processes explains what sometimes seems to be an obsession with isotopes in noble-gas geo- and cosmochemistry. Different nuclear processes will produce different isotopes, singly or in suites with well-defined proportions (i.e., "components"), different from one process to another. Much of the traditional agenda of noble-gas geochemistry, and especially cosmochemistry, thus consists of isotopic analysis, and deconvolution of an observed isotopic spectrum into constituent components. (In most geochemical investigations, noble gases are detected by mass spectrometry, a technique that is inherently sensitive to specific isotopes, not just the chemical element. Isotopic data thus emerge naturally in most studies. Noble-gas mass spectrometry can be a much more sensitive technique than other traditional types of mass spectrometry because the gases are "noble," and therefore relatively easy to separate from other elements, and because they are scarce, so that they can be analyzed in "static"-mode (no pumping during analysis) gas-source spectrometers, permitting relatively high detection efficiency without overwhelming blanks.) In realistic terms, it is very difficult to appreciate noble-gas geo-/cosmochemistry without a basic familiarity with noble-gas isotopes: which isotopes occur in nature (i.e., which are stable), in what

  7. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  8. A research program on radiative, chemical, and dynamical feedback progresses influencing the carbon dioxide and trace gases climate effects

    International Nuclear Information System (INIS)

    1989-07-01

    This report summarizes the up-to-date progress. The program includes two tasks: atmospheric radiation and climatic effects and their objective is to link quantitatively the radiation forcing changes and the climate responses caused by increasing greenhouse gases. Here, the objective and approach are described. We investigate the combined atmospheric radiation characteristics of the greenhouse gases (H 2 O, CO 2 , CH 4 , N 2 O, CFCs, and O 3 ), aerosols and clouds. Since the climatic effect of increasing atmospheric greenhouse gases is initiated by perturabtion to the longwave thermal radiation, it is critical to understand better the radiation characteristics of the greenhouse gases and their relationship to radiatively-important aerosols and clouds; the latter reflect solar radiation (a cooling of the surface) and provide a greenhouse effect (a warming to the surface). Therefore, aerosol and cloud particles are an integral part of the radiation field in the atmosphere. 9 refs

  9. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  10. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  11. Effects of corona discharge treatment on some properties of wool ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... Corona discharge after operation worsted water absorption property increased and the ... finally conditioned with atmospheric air (20°C, relative humidity ... For corona treatment, a glow discharge generator was used with a.

  12. Effects of mineral matters on evolution of sulfur-containing gases in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-07-01

    The evolution of sulfur-containing gases were investigated using two Chinese coals with their de-ash and de-pyrite forms in pyrolysis and hydropyrolysis. Mineral matter can not only return H{sub 2}S produced in pyrolysis and hydropyrolysis, but also catalyse hydrodesulfurization and reduce COS formation. Secondary reactions markedly influence COS formation. Mineral matter can reduce CH{sub 3}SH formation, and pyrite shows positive effects on CH{sub 3}SH formation. 7 refs., 6 figs., 1 tab.

  13. Energy efficiency and the use of renewable energies, how to estimate how much they mitigate the green house effect gases emissions; Eficiencia energetica y uso de energias renovables, como estimar cuanto mitigan las emisiones de gases efecto invernadoro?

    Energy Technology Data Exchange (ETDEWEB)

    Asociacion de Tecnicos y Profesionistas en Aplicacion Energetica, A.C. [Mexico (Mexico)

    2002-06-01

    In the last years much attention has been given to the polluting gas discharges, in special of those that favor the green house effect (GHE), due to the negative sequels that its concentration causes to the atmosphere, particularly as the cause of the increase in the overall temperature of the planet, which has been denominated world-wide climatic change. There are many activities that allow to lessen or to elude the GHE gas emissions, and with the main ones the so-called projects of Energy Efficiency and Renewable Energy (EE/RE) have been structured. In order to carry out a project within the frame of the MDL, it is necessary to evaluate with quality, precision and transparency, the amount of emissions of GHE gases that are reduced or suppressed thanks to their application. For that reason, in our country we tried different methodologies directed to estimate the CO{sub 2} emissions that are attenuated or eliminated by means of the application of EE/RE projects. [Spanish] En los ultimos anos se ha puesto mucha atencion a las emisiones de gases contaminantes, en especial de los que favorecen el efecto invernadero (GEI), debido a las secuelas negativas que su concentracion ocasiona a la atmosfera, particularmente como causante del aumento en la temperatura general del planeta, en lo que se ha denominado cambio climatico mundial. Existen muchas actividades que permiten aminorar o eludir las emisiones de GEI, y con las principales se han estructurado los llamados proyectos de eficiencia energetica y energia renovables (EE/ER). Para llevar a cabo un proyecto dentro del marco del MDL, es necesario evaluar con calidad, precision y transparencia, la cantidad de emisiones de GEI que se reducen o suprimen gracias a su aplicacion. Por ello, en nuestro pais ensayamos diferentes metodologias encaminadas a estimar las emisiones de CO{sub 2} que se atenuan o eliminan mediante la aplicacion de proyectos de EE/ER.

  14. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  15. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  16. Subnanosecond breakdown in high-pressure gases

    Science.gov (United States)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  17. Climate-chemical interactions and effects of changing atmospheric trace gases

    Science.gov (United States)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  18. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Zhu, Xueqin; Van Ierland, Ekko

    2006-01-01

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  19. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  20. An assessment of the effects of a cadmium discharge ordinance

    International Nuclear Information System (INIS)

    Moser, J.H.; Schultz, J.L.

    1982-01-01

    The problem facing the MMSD was high levels of cadmium in Milorganite fertilizer. The cause was determined to be discharges from industry, primarily electroplaters. The solution was the cooperative development of an ordinance to limit the discharge of cadmium. Because the dischargers acted responsibly to comply with the ordinance, the ordinance succeeded in achieving its objective of significantly reducing the cadmium loading to the municipal sewerage system and subsequently reducing the cadmium concentration in Milorganite fertilizer

  1. Climate-chemical interactions and effects of changing atmospheric trace gases

    International Nuclear Information System (INIS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  2. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  3. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  4. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  5. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  6. Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

    CERN Document Server

    Azevedo, C.D.R.

    2016-12-13

    A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed.

  7. A simple modelling of mass diffusion effects on condensation with noncondensable gases for the CATHARE Code

    Energy Technology Data Exchange (ETDEWEB)

    Coste, P.; Bestion, D. [Commissariat a l Energie Atomique, Grenoble (France)

    1995-09-01

    This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.

  8. Mass spectrometric characterizations of ions generated in RF magnetron discharges during sputtering of silver in Ne, Ar, Kr and Xe gases

    Czech Academy of Sciences Publication Activity Database

    Pokorný, D.; Novotný, Michal; Musil, Jindřich; Fitl, Přemysl; Bulíř, Jiří; Lančok, Ján

    2013-01-01

    Roč. 10, č. 7 (2013), s. 593-602 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GAP108/11/1298; GA ČR(CZ) GAP108/11/1312; GA ČR(CZ) GAP108/11/0958 Grant - others:AVČR(CZ) M100101271 Institutional support: RVO:68378271 Keywords : double charge ions * mass spectrometry * noble gas * RF magnetron discharges * silver * single charge ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.964, year: 2013

  9. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  10. effect of land use on water discharge in humid regions

    African Journals Online (AJOL)

    LUCY

    From the Pearson's Product Moment correlation analysis of the relationship ... mean discharge measurement in the basin, the result shows a strong negative relationship with r = - ..... presented at the British Ecological .... Peninsular Malaysia.

  11. The Effect of a Corona Discharge on a Lightning Attachment

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-01

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed

  12. Pump effect of a capillary discharge in electrically conductive liquids

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.

    2007-01-01

    Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf

  13. Effect of zero discharge permits on oil and gas operations

    International Nuclear Information System (INIS)

    Higdon, G.D.

    1994-01-01

    This paper examines one of the more prominent effects of the Clean Water Act (CWA) upon oil and gas operations. To that end, the paper begins with a general discussion of the regulatory background and permitting framework which serves as the foundation for water pollution control. From this discussion, the paper will then move into a discussion of particular permit provisions which govern the discharge of wastes generated from oil and gas operations. Upon discussing these provisions, the paper will then discuss potential enforcement options available to the Environmental Protection Agency (EPA) to address violations of the regulations and permits it has issued to implement the CWA. In that regard, the paper will also discuss some recent enforcement theories advocated by the EPA which may have significant impacts upon oil and gas operators and the way in which they conduct their operations. In light of some of these recent enforcement activities, the paper will close with a discussion of the implications of the theories of liability espoused by EPA and steps which oil and gas operators may taking in response to the positions assumed by EPA

  14. Effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555

    Directory of Open Access Journals (Sweden)

    Ali K. Mohammed

    2018-01-01

    Full Text Available In this research, we studied the effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555 which made by (Radiometer-Copenhagen, by using theories of tribology and Reynolds equation on performance of blood film convergence area, we analyzing the influence of theoretical model for peristaltic pump (consist of steeper motor and 4 cylindrical bearings distributed on circular disc rotating around capillary tube, by using (MATLAB R 2012b programing with numerical solution of finite difference method in 5 nodes element , we fined the blood film thickness and the pressure on contact area grid ( consist from annual and axial lines , then influence of viscosity of blood on pressure generated in limited temperature of ambient and velocity of motor , and flow rate of blood in tube. The important conclusions appear that the rotating sliding movement of motor cause low pressure (positive while the rolling cylindrical rollers of bearings cause high pressure (negative which lead to push the blood in tube, that mean the direction of rotating blood opposite the direction of rotating motor of peristaltic pump, also the viscosity of blood effect on velocity of flow and the speed of motor with bearings, and the effect of blood film thickness effect on pressure generated in tube. DOI: http://dx.doi.org/10.25130/tjes.24.2017.18

  15. A composition for protection the stylobate in high-rise construction from the harmful effects of car exhaust gases

    Science.gov (United States)

    Sokolova, Irina

    2018-03-01

    In large cities, high-rise buildings are usually located along highways with heavy traffic. The study was carried out with the aim of creating a material for protection the stylobate of a high-rise building from the harmful effects of car exhaust gases. A polymer-silicate composition based on schungite and schungisite components is proposed. The composition has the properties of a wall material resistant to the corrosive environment of car exhaust gases. The results of the composition studies are presented. The possibility of increase the durability of exterior slabs for stylobate walls of high-rise buildings is substantiated, provided the proposed material is applied.

  16. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  17. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  18. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  19. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  20. Estimated radiological effects of the normal discharge of radioactivity from nuclear power plants in the Netherlands with a total capacity of 3500 MWe

    International Nuclear Information System (INIS)

    Lugt, G. van der; Wijker, H.; Kema, N.V.

    1977-01-01

    In the Netherlands discussions are going on about the installation of three nuclear power plants, leading with the two existing plants to a total capacity of 3500 MWe. To have an impression of the radiological impact of this program, calculations were carried out concerning the population doses due to the discharge of radioactivity from the plants during normal operation. The discharge via the ventilation stack gives doses due to noble gases, halogens and particulate material. The population dose due to the halogens in the grass-milk-man chain is estimated using the real distribution of grass-land around the reactor sites. It could be concluded that the population dose due to the contamination of crops and fruit is negligeable. A conservative estimation is made for the dose due to the discharge of tritium. The population dose due to the discharge in the cooling water is calculated using the following pathways: drinking water; consumption of fish; consumption of meat from animals fed with fish products. The individual doses caused by the normal discharge of a 1000 MWe plant appeared to be very low, mostly below 1 mrem/year. The population dose is in the order of some tens manrems. The total dose of the 5 nuclear power plants to the dutch population is not more than 70 manrem. Using a linear dose-effect relationship the health effects to the population are estimated and compared with the normal frequency

  1. Effects of Sewage Discharge on Polychaete Communities in East ...

    African Journals Online (AJOL)

    exposed to the discharge of sewage and two control assemblages. Journal of Experimental Marine Biology and. Ecology 189: 103-122. Chareonpanich C, Montani S, Tsutsumi H,. Matsuoka S (1993) Modification of chemical characteristics of organically enriched sediment by Capitella sp. Marine Pollution Bulletin 26: 375- ...

  2. Effect of target power on the physical properties of Ti thin films prepared by DC magnetron sputtering with supported discharge

    Directory of Open Access Journals (Sweden)

    Kavitha A.

    2017-02-01

    Full Text Available The present paper describes the effect of target power on the properties of Ti thin films prepared by DC magnetron sputtering with (triode mode and without (diode mode supported discharge. The traditional diode magnetron sputtering with an addition of a hot filament has been used to sustain the discharge at a lower pressure. The effect of target power (60, 80, 100 and 120 W on the physical properties of Ti thin films has been studied in diode and triode modes. XRD studies showed that the Ti thin films prepared at a target power up to 100 W in diode mode were amorphous in nature. The Ti thin films exhibited crystalline structure at much lower target power of 80 W with a preferred orientation along (0 0 2 plane. The grain size of Ti thin films prepared in triode mode increased from 64 nm to 80 nm, whereas in diode mode, the grain size increased from 2 nm to 5 nm. EDAX analysis confirmed that the incorporation of reactive gases was lower in triode mode compared to diode mode. The electrical resistivity of Ti thin films deposited in diode mode was found to be 85 µΩ⋅cm (target power 120 W. The electrical resistivity of Ti thin films in triode mode was found to be deceased to 15.2 µΩ⋅cm (target power 120 W.

  3. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Science.gov (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  4. Orbital order and effective mass enhancement in t2 g two-dimensional electron gases

    Science.gov (United States)

    Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan

    2015-03-01

    It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.

  5. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    Science.gov (United States)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  6. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    Singh, S.V.; Storch, H.V.

    1994-01-01

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  7. Quantum size effects on the thermal and potential conductivities of ideal gases

    International Nuclear Information System (INIS)

    Ozturk, Z F; Sisman, A

    2009-01-01

    Thermal and potential conductivities of ideal Maxwellian, Fermi and Bose gases are derived by considering the small corrections due to the wave character of gas particles. Potential conductivity is regarded as conductivity due to any potential gradient like electrical, gravitational or chemical ones. A long rectangular channel is considered as a transport domain. The size of the domain in the transport direction is much longer than the mean free path of particles l while the sizes in transverse directions are shorter than l. On the other hand, all sizes of the domain are assumed to be larger than the thermal de Broglie wavelength of particles. Therefore, quantum size effects (QSE) are weak enough to be considered as small corrections on conventional terms. Corrections on thermal and potential conductivities are examined. It is seen that the size and shape of the transport domain become additional control parameters on both conductivities. Since the size dependencies of thermal and electrical conductivities are different, the Lorenz number becomes size and shape dependent and deviations from the Wiedemann-Franz law may be expected in nanoscale due to QSE. Variations of the corrections with chemical potential are analysed.

  8. Effect of Spatial Dimension and External Potential on Joule-Thomson Coefficients of Ideal Bose Gases

    International Nuclear Information System (INIS)

    Yuan Duqi; Wang Canjun

    2010-01-01

    Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (JTC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → T C (T C is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant Δ = [1 - Π[ n i=1 (kT/varpi i ) 1/t i Γ(1/t i + 1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, varpi i is the external field's energy), is obtained. The potential makes the JTC increase when Δ > 0, on the contrary, it makes the JTC decrease when Δ i < 1. (general)

  9. Long term high flow humidified oxygen treatment in COPD – effect on blood gases

    DEFF Research Database (Denmark)

    Storgaard, Line; Weinreich, Ulla; Hockey, Hans

    2017-01-01

    .Aim: To investigate the treatment effect on arterial blood gases (PaO2, PaCO2 and SaO2) in patients with resting hypoxemia over 12 months.Method: In this prospective, randomized controlled, one-year study, 200 COPD patients treated with LTOT, all GOLD class 4, were randomized to NHF (n=100) or usual care (n=100......) between March 2013 and June 2015.Results: The groups are comparable in average days in study, age, gender, smoking status, pack years, BMI, FEV1%, 6 minutes walking test, administered oxygen (L/min), PaO2 PaCO2 and Sa02 at baseline and number of exacerbations and admissions one year prior to study start....... Treated with a mean NHF-flow of 20 L/min, no significant difference was seen in PaO2 or SaO2 over the study, but a significantly different change in PaCO2 was seen after 6 months (p<0.05) and after 12 months (p<0.01) in favor of patients treated with NHF. Increase in PaCO<2 was approximately 0...

  10. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  11. Effect of the barrier properties on the surface part of the barrier discharge

    International Nuclear Information System (INIS)

    Sokolova, M.V.; Zhukov, S.V.

    1998-01-01

    The effect of barrier characteristics on the discharge processes in a barrier discharge was investigated, main attention being paid to the amount and distribution of the charge left on the barrier surface by the volume discharge in the main air gap. The measurements show that the main part of the gap charge is due to the volume part of the discharge. The measured values of the surface charge significantly increase with the voltage applied and with the length of the gas gap, while the dimensions of the charge spot and the distribution of charge density are determined by the barrier properties. (J.U.)

  12. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    Science.gov (United States)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  13. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com [Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, 50229 Semarang, 8508101 (Indonesia); Zainal, Z. A., E-mail: mezainal@usm.my [School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  14. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  15. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Mul, G.; Perez-Ramirez, J.; Xu, Xiaoding; Oonk, H.; Yakovlev, A.

    2001-06-01

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  16. Magnetic-field control of low-pressure diffuse discharges

    International Nuclear Information System (INIS)

    Cooper, J.R.

    1986-01-01

    Application of a magnetic field in a direction transverse to the electric field in a diffuse discharge can have a strong effect on the transport parameters in the discharge medium and on the external characteristics of the discharge as a whole. Deviations in these transport parameters were investigated in this work by means of Monte Carlo calculations, and the electrical characteristics of the total discharge were observed experimentally. Results of the theoretical investigation show that, in attaching gas mixtures, both the ionization and attachment-rate coefficients in the positive column of the discharge are changed such that the combined effect results in an increase in resistivity. Experimentally, it is seen that application of a crossed magnetic field to an abnormal glow discharge in attaching gases in a certain parameter range causes the discharge voltage to increase significantly. The effect seems to be most strongly influenced by processes in the cathode-fall region

  17. Baseline studies and evaluation of effects of surface discharge of deep-sea mining - INDEX area

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; Sardessai, S.

    . An evaluation of possible effects of surface discharge of mining fines - a slurry consisting of fine nodule fragments, bottom water and sediments - suggests that the discharge, with an expected solid content of 50 g/l, will induce increased primary production...

  18. Effect of dc and pulsed corona discharge on DNA and proteins

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Polyakova, A.V.; Belousova, E.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated the effect of a d.c. and pulsed corona discharge in air and nitrogen on DNA and albumin films in the temperature range 77-298 K. The authors have shown that upon exposure to a corona discharge and O 3 , the biopolymers are degraded. With a reduction in temperature, the extent of degradation of DNA drops

  19. Effect of temperature on the uniform field breakdown strength of electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Mathis, R.A.; Hunter, S.R.; Carter, J.G.

    1987-03-01

    In general, the electron attachment rate constant, k/sub a/ ( ,Υ), as a function of the mean electron energy and temperature Υ for electronegative gases which attach electrons nondissociatively decreases greatly with Υ from room temperature to Υ ≤ 600K, while that for electronegative gases which attach electrons dissociatively increases with increasing Υ. Based on recent studies in our laboratory on k/sub a/ ( ,Υ), we investigated the variation with Υ (∼295-575K) of the uniform field breakdown strength, (E/N)/sub lim/, for three classes of electronegative gases: (a) gases such as c-C 4 F 8 (and c-C 4 F 6 , 1-C 3 F 6 ) which attach strongly low-energy (≤ 1 eV) electrons nondissociatively and for which k/sub a/ ( ,Υ), decreases precipitously with Υ above ambient; (b) gases such as C 2 F 6 and CF 3 Cl which attach electrons exclusively dissociatively and whose k/sub a/ ( ,Υ) increases with Υ; and (c) gases such as C 3 F 8 and n-C 4 F 10 which attach electrons both nondissociatively and dissociatively over a common low-energy range and whose k/sub a/ ( ,Υ) first decreases and then increases with Υ above ambient. The (E/N)/sub lim/(Υ) has been found to decrease significantly with Υ for (a), to decrease slowly with Υ for (c), and to increase slightly with Υ for (b). These changes in (E/N)/sub lim/ follow those in k/sub a/ ( ,Υ). A similar behavior is expected for other electronegative gaseous dielectrics in the respective three groups

  20. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  1. Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics.

    Science.gov (United States)

    Lin, Lung-Chang; Lee, Wei-Te; Wu, Hui-Chuan; Tsai, Chin-Lin; Wei, Ruey-Chang; Jong, Yuh-Jyh; Yang, Rei-Cheng

    2010-05-01

    Certain music has been shown to improve mental function, leading to what is known as the Mozart effect. This study measured the impact of Mozart's Sonata for two pianos in D major, K.448, on different epileptic foci of epileptiform discharge in Taiwanese children (n=58) with seizure disorders and investigated the characteristics of the musical stimulus presented that resulted in epileptiform discharge reduction. We examined the relationship between the number of discharges with the foci of epileptiform discharge (n=6), sleep state, gender, and mentality. A continuous electroencephalogram was recorded before, during and after exposure to Mozart's Sonata for two pianos in D major, K.448 (piano K.448), and the frequencies of discharges were compared. The study was repeated a week later using digitally computerized string version of the same musical stimulus (string K.448), in patients who responded to piano K.448 with the largest reduction in interictal discharges (n=11). Interictal discharges were reduced in most (81.0%) patients and varied greatly (33.10+/-28.33%) as they listened to the piano K.448 (more fundamental tones and lower harmonics). Patients with generalized or central discharge showed the most improvement. In most patients (76.1%), the decrease in epileptiform discharges continued after the music ended. The state of wakefulness, gender and mentality did not affect the results. Although the string K.448 had a larger number of higher harmonics in the spectrogram analysis, the discharges were not reduced at all when listening to this music. These results suggest that listening to Mozart K.448 for two pianos reduced epileptiform discharges in children with epilepsy. This study suggests that it is possible to reduce the number of epileptiform discharges in some patients by optimizing the fundamental tones and minimizing the higher frequency harmonics. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  3. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  4. Global warming: Experimental study about the effect of accumulation of greenhouse gases in the atmosphere

    Science.gov (United States)

    Molto, Carlos; Mas, Miquel

    2010-05-01

    The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The

  5. Effect of Carbonated Beverage Intake on Blood Gases and Some Biochemical Parameters in Male Albino Rats

    International Nuclear Information System (INIS)

    Taha, M.S.; Osman, H.F.

    2012-01-01

    The purpose of this study was to identify the effect of carbonated beverage (colourless or black coloured drinks) on arterial blood gases, kidney function, bone mineral density (BMD), glucose and insulin. The rats were divided into three groups; ten rats per each group. Group (I) used as control, group (II) rats supplemented with colourless carbonated beverage (10 ml /100 ml water) and group (III) rats supplemented with black coloured carbonated beverage (10 ml /100 ml water) for three months. The arterial blood gases were evaluated by measuring ph PO 2 , , PCO 2 , , H + a nd HCO 3 -. Rats receiving the coloured drinks showed high significant increase in ph while PO 2 showed very high significant decrease in both groups. PCO 2 showed high significant decrease in groups (II) and (III) while H + showed high significant decrease in group (III) only. HCO 3 - showed high significant increase in group III. All these changes were related to carbonic acid dissolved in water and the increased ph lead to alkalinity of the blood and it is inversely proportional to the number of hydrogen ions (H + ). Non-significant changes were observed in sodium ions while potassium ions showed significant increase in group (II) and high significant increase in group (III). The level of urea showed high and very high significant increase in groups (II) and (III), respectively. Creatinine level showed non-significant increase in group (III). The histopathology changes were observed in kidney tissues in rats of groups (II) and (III). From these results, it appears that black coloured beverage can increase the risk of kidney problems more than colourless beverages. Ca + and inorganic phosphorous levels showed non- significant change except Ca ions showed a significant decrease in rats of group (III). The acidity of carbonated beverage leads to weak bones by promoting the loss of calcium. The decrease of bone mineral density was more pronounced in some parts of femur of rats receiving black

  6. Abrupt changes in neon discharge plasma detected via the optogalvanic effect

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xianming L., E-mail: xhan@butler.edu [Dept. of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Blosser, Michael C. [Dept. of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Misra, Prabhakar [Dept. of Physics and Astronomy, Howard University, Washington DC 20059 (United States); Chandran, Haridass [Dept. of Physical Science, Belfry School, Belfry, KY 41514 (United States)

    2012-10-30

    When a laser is tuned between two excited energy levels of a gas in a Direct Current discharge lamp, the discharge current will experience a temporary disturbance lasting tens or hundreds of microseconds known as the optogalvanic effect. We have carried out extensive studies of optogalvanic effects in neon discharge plasmas for transitions at 621.7 nm, 630.5 nm, 638.3 nm, 650.7 nm and 659.9 nm. A nonlinear least-squares Monte Carlo technique has been used to determine the relevant amplitude coefficients, decay rates and the instrumental time constant. We discovered an abrupt change in the neon discharge plasma at a discharge current of about 6 mA.

  7. Industrial gases

    International Nuclear Information System (INIS)

    Hunter, D.; Jackson, D.; Coeyman, M.

    1993-01-01

    Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements

  8. [Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water].

    Science.gov (United States)

    Xiao, Qi-Tao; Hu, Zheng-Hu; James, Deng; Xiao, Wei; Liu, Shou-Dong; Li, Xu-Hui

    2014-01-01

    To gain insight into antiseptic effects on the concentrations of CO2, CH4, and N2O in lake water, antisepetic (CuSO4 and HgCl2) were added into water sample, and concentrations of greenhouse gases were measured by the gas chromatography based on water equilibrium method. Experiments were conducted as following: the control group without antisepetic (CK), the treatment group with 1 mL CuSO4 solution (T1), the treatment group with 5 mL CuSO4 solution (T2), and the treatment group with 0.5 mL HgCl2 solution (T3). All groups were divided into two batches: immediately analysis (I), and after 2 days analysis (II). Results showed that CuSO4 and HgCl2 significantly increased CO2 concentration, the mean CO2 concentration (Mco2) of CK (I) and CK (II) were (11.5 +/- 1.47) micromol x L(-1) and (14.38 +/- 1.59) micromol x L(-1), respectively; the Mco2 of T1 (I) and T1 (II) were (376 +/- 70) micromol x L(-1) and (448 +/- 246.83) micromol x L(-1), respectively; the Mco2 of T2 (I) and T2 (II) were (885 +/- 51.53) micromol x L(-1) and (988.83 +/- 101.96) micromol x L(-1), respectively; the Mco2 of T3 (I) and T3 (II) were (287.19 +/- 30.01) micromol x L(-1) and (331.33 +/- 22.06) micromol x L(-1), respectively. The results also showed that there was no difference in CH4 and N2O concentrations among treatments. Water samples should be analyzed as soon as possible after pretreatment. Our findings suggest that adding antiseptic may lead an increase in CO2 concentration.

  9. Gravity effects on a gliding arc in four noble gases: from normal to hypergravity

    NARCIS (Netherlands)

    Potocnakova, L.; Sperka, J.; Zikan, P.; van Loon, J.J.W.A.; Beckers, J.; Kudrle, V.

    2015-01-01

    A gliding arc in four noble gases (He, Ne, Ar, Kr) has been studied under previously unexplored conditions of varying artificial gravity, from normal 1 g gravity up to 18 g hypergravity. Significant differences, mainly the visual thickness of the plasma channel, its maximum elongation and general

  10. EFFECTS OF AMARANTHS’ SEEDS ON DEHYDROGENASE ACTIVITY AND GASES EMISSION IN METHANOGENIC BIOREACTORS

    Directory of Open Access Journals (Sweden)

    Victor COVALIOV

    2015-12-01

    Full Text Available The influence of amaranths‘ seeds as the source of squalene on the dehydrogenase activity and efficiency of methane production were investigated in methanogenic bench-scale (5000 ml bioreactors used to treat the mixture of distillery wastes and farmyard manure. The adding of amaranth seeds to the methanogenic bioreactor has an inhibitory effect on the dehydrogenase activity and stimulates the process of methanogenesis. Dehydrogenase activity decreased with the increase of doses of squalene and its trend had a close connection with doses (R2=0.77-0.78. The methane content in the total amount of gases is 65.3-71.3% in a bioreactor with the additive of amaranth seeds in a dose of 50 mg l-1, which is 22.1% higher than in the the control bioreactor without additives. The increase in squalene concentration higher than 0.0005% is not rational because its stimulating effect on the methanogenic process decreases. Anaerobic digestion of alcohol distillery industry wastes with manure is a complex nonlinear time-varying microbiological process. Dehydrogenase activity trends in the experiment are described by the power function for 5 hours observations and by the logarithmic function for 120 hours of observations. Trends of CH4 are described by the polynomial function in all periods of testing. Correlation coefficients are 0.37 and 0.70 for CH4 after 5 and 120 hours of the anaerobic digestion. Dehydrogenase activity is in the close negative connection with the amount of gases, including methane. Correlation analysis between dehydrogenase activity and the release of gases has revealed the moderate and strongly negative link during 24 hours after the start of the experiment.EFECTUL SEMINŢELOR DE AMARANT ASUPRA ACTIVITĂŢII DEHIDROGENAZEI ŞI EMISIEI GAZELOR ÎN BIOREACTOARELE METANOGENEÎn bioreactoare metanogene unite consecutiv, cu volum de 5000 ml, utilizate pentru tratarea amestecului de borhot de la distilarea alcoolului cu gunoi de grajd, a fost

  11. Permitted water pollution discharges and population cancer and non-cancer mortality: toxicity weights and upstream discharge effects in US rural-urban areas.

    Science.gov (United States)

    Hendryx, Michael; Conley, Jamison; Fedorko, Evan; Luo, Juhua; Armistead, Matthew

    2012-04-02

    The study conducts statistical and spatial analyses to investigate amounts and types of permitted surface water pollution discharges in relation to population mortality rates for cancer and non-cancer causes nationwide and by urban-rural setting. Data from the Environmental Protection Agency's (EPA) Discharge Monitoring Report (DMR) were used to measure the location, type, and quantity of a selected set of 38 discharge chemicals for 10,395 facilities across the contiguous US. Exposures were refined by weighting amounts of chemical discharges by their estimated toxicity to human health, and by estimating the discharges that occur not only in a local county, but area-weighted discharges occurring upstream in the same watershed. Centers for Disease Control and Prevention (CDC) mortality files were used to measure age-adjusted population mortality rates for cancer, kidney disease, and total non-cancer causes. Analysis included multiple linear regressions to adjust for population health risk covariates. Spatial analyses were conducted by applying geographically weighted regression to examine the geographic relationships between releases and mortality. Greater non-carcinogenic chemical discharge quantities were associated with significantly higher non-cancer mortality rates, regardless of toxicity weighting or upstream discharge weighting. Cancer mortality was higher in association with carcinogenic discharges only after applying toxicity weights. Kidney disease mortality was related to higher non-carcinogenic discharges only when both applying toxicity weights and including upstream discharges. Effects for kidney mortality and total non-cancer mortality were stronger in rural areas than urban areas. Spatial results show correlations between non-carcinogenic discharges and cancer mortality for much of the contiguous United States, suggesting that chemicals not currently recognized as carcinogens may contribute to cancer mortality risk. The geographically weighted

  12. Permitted water pollution discharges and population cancer and non-cancer mortality: toxicity weights and upstream discharge effects in US rural-urban areas

    Directory of Open Access Journals (Sweden)

    Hendryx Michael

    2012-04-01

    Full Text Available Abstract Background The study conducts statistical and spatial analyses to investigate amounts and types of permitted surface water pollution discharges in relation to population mortality rates for cancer and non-cancer causes nationwide and by urban-rural setting. Data from the Environmental Protection Agency's (EPA Discharge Monitoring Report (DMR were used to measure the location, type, and quantity of a selected set of 38 discharge chemicals for 10,395 facilities across the contiguous US. Exposures were refined by weighting amounts of chemical discharges by their estimated toxicity to human health, and by estimating the discharges that occur not only in a local county, but area-weighted discharges occurring upstream in the same watershed. Centers for Disease Control and Prevention (CDC mortality files were used to measure age-adjusted population mortality rates for cancer, kidney disease, and total non-cancer causes. Analysis included multiple linear regressions to adjust for population health risk covariates. Spatial analyses were conducted by applying geographically weighted regression to examine the geographic relationships between releases and mortality. Results Greater non-carcinogenic chemical discharge quantities were associated with significantly higher non-cancer mortality rates, regardless of toxicity weighting or upstream discharge weighting. Cancer mortality was higher in association with carcinogenic discharges only after applying toxicity weights. Kidney disease mortality was related to higher non-carcinogenic discharges only when both applying toxicity weights and including upstream discharges. Effects for kidney mortality and total non-cancer mortality were stronger in rural areas than urban areas. Spatial results show correlations between non-carcinogenic discharges and cancer mortality for much of the contiguous United States, suggesting that chemicals not currently recognized as carcinogens may contribute to cancer

  13. Computational physics of electric discharges in gas flows

    CERN Document Server

    Surzhikov, Sergey T

    2012-01-01

    Gas discharges are of interest for many processes in mechanics, manufacturing, materials science and aerophysics. To understand the physics behind the phenomena is of key importance for the effective use and development of gas discharge devices. This worktreats methods of computational modeling of electrodischarge processes and dynamics of partially ionized gases. These methods are necessary to tackleproblems of physical mechanics, physics of gas discharges and aerophysics.Particular attention is given to a solution of two-dimensional problems of physical mechanics of glow discharges.The use o

  14. Experimental effect of flow depth on ratio discharge in lateral intakes in river bend

    International Nuclear Information System (INIS)

    Masjedi, A; Foroushani, E P

    2012-01-01

    Open-channel dividing flow is characterized by the inflow and outflow discharges, the upstream and downstream water depths, and the recirculation flow in the branch channel. In general, diversion flow can be categorized as natural and artificial flow. Natural flow diversion usually occurs as braiding or cut-off in bend rivers, while artificial flow is man-made to divert flow by lateral intake channels for water supply. This study presents the results of a laboratory research into effect intake flow depth on ratio discharge in lateral intakes in 180 degree bend. Investigation on lateral intake and determination of intake flow depth is among the most important issues in lateral intake on ratio discharge with model intake flow depth were measured in a laboratory flume under clear-water. Experiments were conducted for various intake flow depths and with different discharges. It was found that by increasing the flow depth at 180 degree flume bend, ratio discharge increases.

  15. Charged particle emission effects on the characteristics of glow discharges with oscillating electrons

    CERN Document Server

    Nikulin, S P

    2001-01-01

    One discusses the effect of selection of charged particles on conditions to maintain and the characteristics of a glow discharge with oscillating electrons. It is shown that there is a pressure dependent optimal level of ion selection when the energy efficiency of ion source reaches its maximum value. It is determined that departure of fast ionizing electrons affects negatively the discharge maintenance wile emission of slow plasma electrons may promote maintenance of a discharge high current shape. It is shown that high efficient electron emission without violation of a discharge stability may take place in a magnetic field due to different nature of spatial distributions of fast and slow particles in discharges with electron oscillation

  16. The Effect of Flow Distribution on the Concentration of NO Produced by Pulsed Arc Discharge

    International Nuclear Information System (INIS)

    Hu Hui; Bao Bin; Wang Heli; Liang Haiyan; He Junjia; He Zhenghao; Li Jin

    2007-01-01

    As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO 2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power. The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO 2 could be controlled and the ratio of NO 2 /NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution

  17. Effect of electronegative additives on physical properties and chemical activity of gas discharge plasma

    Science.gov (United States)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2018-01-01

    Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.

  18. Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    International Nuclear Information System (INIS)

    Tishchenko, V N; Grachev, G N; Smirnov, A L; Pavlov, A A; Pavlov, A A; Golubev, M P

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source. (laser applications and other topics in quantum electronics)

  19. Effect of capacitor loss on discharging characteristics of xenon flash lamp

    International Nuclear Information System (INIS)

    Zhang Chu; Lin Dejiang; Xu Chunmei; Shen Hongbin; Chen Xiaohan

    2012-01-01

    The effect of storage capacitor's loss on the discharging characteristics of the xenon flash lamp was studied, and the xenon flash lamp discharging circuit was analyzed and improved. The capacitor can be equivalent to a series of an ideal capacitor and loss resistance. The improved formula of the xenon lamp discharging characteristics was given when actual capacitance loss is not zero, and the xenon lamp discharging current and discharging power are calculated and analyzed in detail with the increase of the capacitor loss. The results show that the increase of loss will lead to the decrease of xenon lamp discharging current and peak power and the xenon lamp flash time, and influence laser pumping efficiency. The loss will also lead to the capacitor inverse charging in LC discharging circuit; this will influence normal working of the capacitor and decrease the lift of the xenon lamp. The actual energy storage capacitor charging and discharging experiments show that the increase of capacitor loss will lead to the decrease of xenon lamp light-emitting waveform peak, shortening of the flash time and increase of the electrode sputter, thus verity, the reasonableness of theoretical analysis. In addition, the experiments show that environmental factors have very significant impact on the increase of the storage capacitor loss. (authors)

  20. Effects of electron beam irradiation on electrification of and discharge from surface of artificial satellite

    International Nuclear Information System (INIS)

    Nishimoto, Hironobu; Fujii, Haruhisa; Shibuya, Yoshikazu; Kasai, Koitaro; Abe, Toshio.

    1986-01-01

    Plasma has the largest influence on the electrification and discharge in the space environment. In the present study, satellite surface material is irradiated with an electron beam witch simulates the electron flow in the plasma, in order to investigate the mechanism of electrification and discharge and to provide basic information required for developing electrification prevention techniques. The heat-control material samples used include silver-deposited Teflon, aluminum-deposited Kapton, optical solar reflector and transparent conductive-coated aluminum-deposited Kapton. It is shown that silvered Teflon is electrified more easily than aluminized Kapton. Two types of discharge are found to occur in silvered Teflon: creeping discharge in thick samples (5 mil) and penetration break accompanied by creeping discharge in thin samples (1 mil). The discharge frequency increases with increasing beam current density and electron energy. The occurrence of discharge results in an increase in the sunlight absorption factor of silvered Teflon. When a set of four sheets of optical solar reflector is subjected to electron beam, active discharge is seen to take place between the sheets. It is also revealed that static electrification can be prevented effectively if the surface of heat-control material is coated with transparent conductive material such as indium oxide. (Nogami, K.)

  1. Waste water discharge and its effect on the quality of water of Mahim creek and bay

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    Coastal environment around Mahim was monitored to evaluate the effects of domestic and industrial waste water discharge in Mahim Creek, Maharashtra, India. Vertical salinity and DO gradient occasionally observed in the Mahim Bay during postmonsoon...

  2. Ionization asymmetry effects on the properties modulation of atmospheric pressure dielectric barrier discharge sustained by tailored voltage waveforms

    Science.gov (United States)

    Zhang, Z. L.; Nie, Q. Y.; Zhang, X. N.; Wang, Z. B.; Kong, F. R.; Jiang, B. H.; Lim, J. W. M.

    2018-04-01

    The dielectric barrier discharge (DBD) is a promising technology to generate high density and uniform cold plasmas in atmospheric pressure gases. The effective independent tuning of key plasma parameters is quite important for both application-focused and fundamental studies. In this paper, based on a one-dimensional fluid model with semi-kinetics treatment, numerical studies of ionization asymmetry effects on the properties modulation of atmospheric DBD sustained by tailored voltage waveforms are reported. The driving voltage waveform is characterized by an asymmetric-slope fundamental sinusoidal radio frequency signal superimposing one or more harmonics, and the effects of the number of harmonics, phase shift, as well as the fluctuation of harmonics on the sheath dynamics, impact ionization of electrons and key plasma parameters are investigated. The results have shown that the electron density can exhibit a substantial increase due to the effective electron heating by a spatially asymmetric sheath structure. The strategic modulation of harmonics number and phase shift is capable of raising the electron density significantly (e.g., nearly three times in this case), but without a significant increase in the gas temperature. Moreover, by tailoring the fluctuation of harmonics with a steeper slope, a more profound efficiency in electron impact ionization can be achieved, and thus enhancing the electron density effectively. This method then enables a novel alternative approach to realize the independent control of the key plasma parameters under atmospheric pressure.

  3. Effect of a sound wave on the stability of an argon discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Karapetyan, D.M.; Tavakalyan, L.B.

    1992-01-01

    The effect of a sound wave on the stability of the positive column of an argon discharge has been studied experimentally in the range of pressures from 40 to 180 torr and discharge currents from 40 to 110 mA in a tube with an interior diameter of 9.8 cm. It is shown that, depending on the intensity of the sound wave and the discharge parameters, sound can cause the positive column either to contract or to leave the contracted state. The electric field strength has been measured as a function of the sound intensity. An analogy between the effect of sound and that of longitudinal pumping of the gas on the argon discharge parameters has been established. The radial temperature of the gas has been studied in an argon discharge as a function of the sound intensity for different gas pressures. A direct relationship has been established between the sign of the detector effect produced by a sound wave in a discharge and the processes of contraction and filamentation of a discharge. 11 refs., 4 figs., 1 tab

  4. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  5. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  6. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  7. Emission factor of gases from the greenhouse effect for the brazilian interconnected system; Fator de emissao de gases de efeito estufa para o sistema interligado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Esparta, A. Ricardo J. [Ecoinvest Carbon S.A., Sao Paulo, SP (Brazil)]. E-mail: esparta@iee.usp.br; esparta@ecoinvestcarbon.com; Fernandez, Pablo [EcoSecurities, Rio de Janeiro, RJ (Brazil)]. E-mail: pablo.fernandez@ecosecurities.com.br; Costa, David Freire da [Econergy Brasil, Sao Paulo, SP (Brazil)]. E-mail: freire@econergy.com.br

    2006-07-01

    The participation of new power generation projects of the Brazilian interconnected system in the Clean Development Mechanism of the Kyoto Protocol demand the definition of greenhouse gases baseline emission scenarios and monitoring methodologies. The present paper describes the reasoning behind approved methodologies for capacity addition from renewable sources as well as carries out the calculation of the emission factor for the Brazilian interconnected grid. (author)

  8. Effects of electrostatic discharge on three cryogenic temperature sensor models

    Energy Technology Data Exchange (ETDEWEB)

    Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  9. Effects of electrostatic discharge on three cryogenic temperature sensor models

    International Nuclear Information System (INIS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure

  10. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  11. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    Science.gov (United States)

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble

  12. Effects of biofilter media depth and moisture content on removal of gases from a swine barn.

    Science.gov (United States)

    Liu, Tongshuai; Dong, Hongmin; Zhu, Zhiping; Shang, Bin; Yin, Fubin; Zhang, Wanqin; Zhou, Tanlong

    2017-12-01

    Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH 3 ), hydrogen sulfide (H 2 S), and nitrous oxide (N 2 O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH 3 removal efficiency, but increase outlet N 2 O concentration. When MC was 67%, the average NH 3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H 2 S removal efficiency dropped from 68.1-90.0% (1-34 days of the test period) to 36.8-63.7% (35-58 days of the test period); and the average outlet N 2 O concentration increased by 25.5-60.1%. When MC was 55%, the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and -18.9 ± 8.1%, respectively; and the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and -24.5 ±12.1%, respectively. When MC was 45%, the highest average NH 3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N 2 O removal efficiency for three MDs ranged from -18.8% to -12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH 3 and H 2 S, and to simultaneously prevent elevated emission of N 2 O and large

  13. Effect of pressure on the structural properties and electronic band structure of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, U.; Olguin, D.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Cantarero, A. [Department of Materials Sciences, University of Valencia, 46000 Burjasot (Spain); Hanfland, M. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2007-01-15

    The structural properties of GaSe have been investigated up to 38 GPa by monochromatic X-ray diffraction. The onset of the phase transition from the {epsilon}-GaSe to a disordered NaCl-type structural motif is observed near 21 GPa. Using the experimentally determined lattice parameters of the layered {epsilon}-phase as input, constrained ab-initio total energy calculations were performed in order to optimize the internal structural parameters at different pressures. The results obtained for the nearest-neighbor Ga-Se distance agree with those derived from recent EXAFS measurements. In addition, information is obtained on the changes of Ga-Ga and Se-Se bond lengths which were not accessible to a direct experimental determination yet. Based on the optimized structural parameters, we report calculations of band gap changes of {epsilon}-GaSe under pressure. The optical response and electronic band structure of the metallic high-pressure phase of GaSe are discussed briefly. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  15. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  16. The electron energy distribution function of noble gases with flow

    International Nuclear Information System (INIS)

    Karditsas, P.J.

    1989-01-01

    The treatment of the Boltzmann equation by several investigators, for the determination of the electron energy distribution function (EEDF) in noble gases was restricted to static discharges. It is of great interest to magnetoplasmadynamic power generation to develop the Boltzmann equation to account for the effect of the bulk fluid flow on the EEDF. The two term expansion of the Boltzmann equation, as given, results in additional terms introduced to the equations due to the bulk fluid flow, with velocity u

  17. Magnetic reconnection and precursor effect in coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.

    1988-01-01

    A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities

  18. Carbon dioxide reforming of methane by atmospheric pressure pulsed glow discharge: The effect of pulse compression

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A.; Modarresi, H.

    2006-01-01

    Methane reforming by carbon dioxide in atmospheric pressure pulsed glow discharge was examined. The pulse duration of plasma was compressed to ∼50 ns or lower. This compression allowed working at higher frequencies, more than 3 k Hz, without glow to arc transition. The main outlet gases were synthetic gases (H 2 , CO) and C 2 (ethylene, ethane, and acetylene) products. At equal reactants proportion CO 2 /CH 4 =1, about 42 p ercent o f plasma energy went to chemical dissociation while reactant conversions were relatively high, i.e. near 55 p ercent % (CH 4 ) and 42 p ercent ( CO 2 ). At this point, the energy expenditure was less than 3.8 eV per each converted molecule. The reactor energy performance even gets better at higher CO 2 /CH 4 proportions. At CO 2 /CH 4 =5, The conversions of about 65 p ercent a nd 45 p ercent w ere obtained for methane and carbon dioxide respectively, while energy efficiency reached near 45 p ercent . It is discussed that high nonequilibrium state of vibrational energy at short pulses, especially in carbon dioxide, leads to this improvement.

  19. Interaction effects on the unstable discharge-energy characteristic of pump-turbine in pump mode

    Science.gov (United States)

    Tao, R.; Xiao, R. F.; Yang, W.; Liu, W. C.

    2013-12-01

    For a pump-turbine, unstable discharge-energy characteristic is an important factor for operating stability. In this study, the rotor-stator interaction effects on the pump-turbine which has the unstable discharge-energy characteristic has been studied. A series of transient CFD simulations under different discharge conditions have been conducted. Through the contrast between the simulations and experiments, it is found out that the energy decline is strongly affected by the flow loss in the adjustable vane. More importantly, the magnitude and direction of fluid flowing into the adjustable vane are varying with the impeller rotating. Disordered flow structure occurs in the adjustable vane and causes the energy losses due to the interaction effects. Based on this study, improvements on the flow uniformity at impeller outlet will help us to solve the unstable discharge-energy problem.

  20. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  1. Effect of energetic electrons on dust charging in hot cathode filament discharge

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  2. Effect of energetic electrons on dust charging in hot cathode filament discharge

    International Nuclear Information System (INIS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-01-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  3. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  4. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Muhammad Arif [Applied Chemistry Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Ubaid-ur-Rehman [Applied Chemistry Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Ghaffar, Abdul; Ahmed, Kurshid [Electronics Division, PINSTECH, PO Nilore, Islamabad (Pakistan)

    2002-08-01

    The effect of O{sub 2} and O{sub 3} bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 M{omega} resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l{sup -1} methylene blue in distilled water was decolourized in 120 min. Bubbling O{sub 2} at 10 ml min{sup -1} through the discharge region reduced the decolourization time to 25 min. Bubbling O{sub 2} containing 1500 {mu}mol O{sub 3} l{sup -1} at 10 ml min{sup -1} reduced the decolourization time to 8 min. The O{sub 3} was produced by fractionating input energy between a water treatment reactor and a O{sub 3} generator, i.e. no additional energy was consumed for O{sub 3} production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in 30 min by corona discharge with O{sub 2} bubbling, and in 11 min by corona discharge with bubbling of O{sub 2} containing 1500 {mu}mol O{sub 3} l{sup -1}.

  5. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Ubaid-ur-Rehman; Ghaffar, Abdul; Ahmed, Kurshid

    2002-01-01

    The effect of O 2 and O 3 bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 MΩ resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l -1 methylene blue in distilled water was decolourized in 120 min. Bubbling O 2 at 10 ml min -1 through the discharge region reduced the decolourization time to 25 min. Bubbling O 2 containing 1500 μmol O 3 l -1 at 10 ml min -1 reduced the decolourization time to 8 min. The O 3 was produced by fractionating input energy between a water treatment reactor and a O 3 generator, i.e. no additional energy was consumed for O 3 production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in 30 min by corona discharge with O 2 bubbling, and in 11 min by corona discharge with bubbling of O 2 containing 1500 μmol O 3 l -1

  6. The Effects of General and Epidural Anaesthesia in Maternal’s Stress Hormones and Blood Gases in Elective Cesarean Section

    Directory of Open Access Journals (Sweden)

    Meral EZBERCI

    2005-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of general and epidural anaesthesia in maternal’s stress hormones and blood gases in elective cesarean section.\tMATERIALS-METHODS: 50 patients in ASA II (American Society of Anesthesiology class who would undergo elective cesarean section in University of Kahramanmaras Sutcuimam, Department of Anaesthesiology and Reanimation included in the study and randomized into two equal groups (General anaesthesia: Group G and Epidural anaesthesia: Group E. In both groups, maternal stress hormones (TSH, cortisol, and insulin and blood gases were studied. All patients received famotidine and granisetron iv 30 min before operations in premedication room. In the general anaesthesia group; aritmal, propofol, and succinylcholine was used for induction and muscle relaxation. Following the induction, positive pressure ventilation of the lungs was started immediately using a 50% N2O + O2 mixture. After delivery of the baby, anaesthesia and muscle relaxation was maintained by 50% N2O +O2, 0,5-1% MAC isoflurane, and cisatracurium. In the epidural anaesthesia group; epidural anaesthesia was performed with 0,375 % bupivacaine. The epidural needle inserted through L2-3 or L3-4 interspace. After achieving T4-5 neural blockade, the operation was started. In general anaesthesia group; blood samples for maternal stres hormones were taken before induction and after delivery of the baby. In epidural anaesthesia group; blood samples for maternal stres hormones were taken catheter placement and after delivery of the baby. Blood samples for maternal blood gases were taken after the delivery of the baby.\tRESULTS: In both groups; there were statistically significant decrease in maternal TSH and insulin and there were no statistically significant changes in maternal cortisol. In maternal blood gases analyses, only PO2 and SO2 changes were statistically significant between two groups.\tCONCLUSION: With these results

  7. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  8. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  9. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio; Rodriguez M, Humberto

    1999-01-01

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  10. Decomposition of naphthalene by dc gliding arc gas discharge.

    Science.gov (United States)

    Yu, Liang; Li, Xiaodong; Tu, Xin; Wang, Yu; Lu, Shengyong; Yan, Jianhua

    2010-01-14

    Gliding arc discharge has been proved to be effective in treatment of gas and liquid contaminants. In this study, physical characteristics of dc gliding arc discharge and its application to naphthalene destruction are investigated with different external resistances and carrier gases. The decomposition rate increases with increasing of oxygen concentration and decreases with external resistance. This value can be achieved up to 92.3% at the external resistance of 50 kOmega in the oxygen discharge, while the highest destruction energy efficiency reaches 3.6 g (kW h)(-1) with the external resistance of 93 kOmega. Possible reaction pathways and degradation mechanisms in the plasma with different gases are proposed by qualitative analysis of postdestructed products. In the air and oxygen gliding arc discharges, the naphthalene degradation is mainly governed by reactions with oxygen-derived radicals.

  11. Sputtering gases and pressure effects on the microstructure, magnetic properties and recording performance of TbFeCo films

    International Nuclear Information System (INIS)

    Murakami, Motoyoshi; Birukawa, Masahiro

    2008-01-01

    The MsHc value is considered to be a key factor in high-density recording, and controlling the microstructure on the magnetic underlayer was found to be an effective way of increasing the MsHc of the amorphous TbFeCo magneto-optical (MO) medium. In this paper, we investigate the TbFeCo film's magnetic properties and the effects on the microcolumnar structure, which depends on the sputtering conditions of using various sputtering gases including Ar, Kr, and Xe, and the recording characteristics of TbFeCo memory layers. With heavy sputtering gases such as Kr or Xe, the columnar structure can be prepared in a TbFeCo film at a pressure lower than 1.0 Pa. The columnar structure of a recording layer can be effectively formed thanks to the effects of the magnetic underlayer, which has a fine surface even in the sputtering process in which Xe gas is used. The above applies to the sputtering process in which Ar gas is used. Also, when Xe gas is used in the sputtering process, coercivity Hc is increased through the formation of a well-segregated microcolumnar structure built on domain wall pinning sites, and we obtain a large MsHc and a high squareness ratio of the Kerr-hysteresis loop. Our results indicate that processing a TbFeCo film with heavy sputtering gases is suitable for tiny mark stability because the temperature gradient of Hc is increased. The objective of the low-pressure sputtering process using Xe gas to produce the columnar structure is to achieve ultra-high-density recording with tiny mark stability in the TbFeCo medium. This has been confirmed with magnetic force microscope (MFM) images of stable tiny marks recorded on TbFeCo film

  12. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  13. The effect of external visible light on the breakdown voltage of a long discharge tube

    Science.gov (United States)

    Shishpanov, A. I.; Ionikh, Yu. Z.; Meshchanov, A. V.

    2016-06-01

    The breakdown characteristics of a discharge tube with a configuration typical of gas-discharge light sources and electric-discharge lasers (a so-called "long discharge tube") filled with argon or helium at a pressure of 1 Torr have been investigated. A breakdown has been implemented using positive and negative voltage pulses with a linear leading edge having a slope dU/ dt ~ 10-107 V/s. Visible light from an external source (halogen incandescent lamp) is found to affect the breakdown characteristics. The dependences of the dynamic breakdown voltage of the tube on dU/ dt and on the incident light intensity are measured. The breakdown voltage is found to decrease under irradiation of the high-voltage anode of the tube in a wide range of dU/ dt. A dependence of the effect magnitude on the light intensity and spectrum is obtained. Possible physical mechanisms of this phenomenon are discussed.

  14. Ozone generation by negative corona discharge: the effect of Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de Fisica Aplicada II, Universidad de Sevilla (Spain); Belasri, A [Laboratoire de Physique des Plasmas, des Materiaux Conducteur et Leurs Applications, Universite d' Oran (Algeria)

    2008-10-07

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  15. Ozone generation by negative corona discharge: the effect of Joule heating

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A; Belasri, A

    2008-01-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage

  16. Ozone generation by negative corona discharge: the effect of Joule heating

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Fernández-Rueda, A.; Castellanos, A.; Belasri, A.

    2008-10-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  17. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  18. Effect of an educational intervention on parental readiness for premature infant discharge from the neonatal intensive care units.

    Science.gov (United States)

    Chen, Yongfeng; Zhang, Jun; Bai, Jinbing

    2016-01-01

    To examine the effect of an educational intervention on parental readiness for premature infant discharge from neonatal intensive care units. Low readiness for discharge can result in negative healthcare outcomes for infants and their parents. However, few studies have examined the effect of discharge education programmes on parental readiness for premature infant discharge in Chinese critical care settings. A quasi-experimental study. Between October 2011-March 2012, 154 parents of premature infants were recruited from neonatal intensive care units of two tertiary hospitals in Central China. These parents were assigned to either the intervention or control group based on their entry order. Parents in the intervention group received two sessions of 60-minute discharge education along with hospital routine care; parents in the control group only received hospital routine care. Parental readiness for discharge and quality of discharge education were assessed on the day of infant discharge from neonatal intensive care units. Independent samples t-test and linear regression were used to analyse the data. Parental readiness for premature infant discharge was in the moderate level. Independent samples t-test showed that both mean scores of parental discharge readiness and discharge teaching quality from the intervention group were significantly higher than those in the control group. Linear regression analysis showed that discharge teaching quality explained 39·7% of the variance in parental readiness for premature infant discharge. Discharge education can improve parental readiness for premature infant discharge. Quality of discharge teaching can significantly predict parental readiness for premature infant discharge. © 2015 John Wiley & Sons Ltd.

  19. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    Science.gov (United States)

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Thickness-dependent magneto-optical effects in hole-doped GaS and GaSe multilayers: a first-principles study

    Science.gov (United States)

    Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui

    2018-04-01

    Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.

  1. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  2. Electrolyte effects in a model of proton discharge on charged electrodes

    Science.gov (United States)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  3. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings

    International Nuclear Information System (INIS)

    Troughton, S.C.; Nominé, A.; Dean, J.; Clyne, T.W.

    2016-01-01

    Highlights: • High speed current/video monitoring of discharge cascades. • SEM and X-ray Computed Tomography of cascade sites. • Effects of supply frequency and process interruption. • Explanation of cascade localisation. - Abstract: Short duration (∼1 s) PEO treatments have been applied to aluminium alloy samples on which coatings of thickness ∼100 μm had previously been created. This was done using the small area electrical monitoring system previously developed in the Gordon Laboratory in Cambridge. Voltage supply frequencies of 50 Hz and 2.5 kHz were employed. Fairly high resolution SEM micrographs were taken, covering the whole surface of small area samples (ie over a circular area of diameter about 0.9 mm). This was done both before and after the 1 s PEO treatments. X-ray tomographic data were also obtained in the vicinity of a recently-completed set of discharges. The outcomes of these observations were correlated with synchronised high speed electrical monitoring and video photography, carried out during the PEO treatment periods. Localised cascades (comprising hundreds of individual discharges) were observed in all cases, persisting throughout the 1 s periods and also reappearing in the same location when a second 1 s PEO treatment was applied to the same sample. This repetition of discharges at the same location is apparently due to the deep pores associated with these sites, creating a pathway of low electrical resistance, even after appreciable oxidation has occurred in the vicinity. Observations were made of the way in which the surfaces were reconstructed locally as discharge cascades occurred. With the high frequency voltage supply, discharge lifetimes were limited to the half-cycle period (of 200 μs), but in other respects the cascades were similar to those with the lower frequency. However, some discharges occurred during cathodic half-cycles with the high frequency supply, at the same location as the anodic discharges in the cascade

  4. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings

    Energy Technology Data Exchange (ETDEWEB)

    Troughton, S.C. [Department of Materials Science & Metallurgy, Cambridge Universitym 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Nominé, A. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Dean, J. [Department of Materials Science & Metallurgy, Cambridge Universitym 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Clyne, T.W., E-mail: twc10@cam.ac.uk [Department of Materials Science & Metallurgy, Cambridge Universitym 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-12-15

    Highlights: • High speed current/video monitoring of discharge cascades. • SEM and X-ray Computed Tomography of cascade sites. • Effects of supply frequency and process interruption. • Explanation of cascade localisation. - Abstract: Short duration (∼1 s) PEO treatments have been applied to aluminium alloy samples on which coatings of thickness ∼100 μm had previously been created. This was done using the small area electrical monitoring system previously developed in the Gordon Laboratory in Cambridge. Voltage supply frequencies of 50 Hz and 2.5 kHz were employed. Fairly high resolution SEM micrographs were taken, covering the whole surface of small area samples (ie over a circular area of diameter about 0.9 mm). This was done both before and after the 1 s PEO treatments. X-ray tomographic data were also obtained in the vicinity of a recently-completed set of discharges. The outcomes of these observations were correlated with synchronised high speed electrical monitoring and video photography, carried out during the PEO treatment periods. Localised cascades (comprising hundreds of individual discharges) were observed in all cases, persisting throughout the 1 s periods and also reappearing in the same location when a second 1 s PEO treatment was applied to the same sample. This repetition of discharges at the same location is apparently due to the deep pores associated with these sites, creating a pathway of low electrical resistance, even after appreciable oxidation has occurred in the vicinity. Observations were made of the way in which the surfaces were reconstructed locally as discharge cascades occurred. With the high frequency voltage supply, discharge lifetimes were limited to the half-cycle period (of 200 μs), but in other respects the cascades were similar to those with the lower frequency. However, some discharges occurred during cathodic half-cycles with the high frequency supply, at the same location as the anodic discharges in the cascade

  5. Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico

    Science.gov (United States)

    Larsen, M.C.; Webb, R.M.T.

    2009-01-01

    Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.

  6. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.

    Science.gov (United States)

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Caceres, Ana I; Escalera, Jasmine; Jordt, Sven-Eric

    2009-04-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca(2+) imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca(2+) influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.

  7. Effect of land cover, stream discharge, and precipitation on water quality in Puerto Rico

    Science.gov (United States)

    Hall, J. S.; Uriarte, M.

    2017-12-01

    In 2015, Puerto Rico experienced one of the worst droughts in its history, causing widespread water rationing and sparking concerns for future resources. The drought represents precipitation extremes that provide valuable insight into the effects of land cover (LC), on modulating discharge and water quality indices at varying spatial scales. We used data collected from 38 water quality and 55 precipitation monitoring stations in Puerto Rico from 2005 to 2016, paired with a 2010 land cover map to (1) determine whether temporal variability in discharge, precipitation, or antecedent precipitation was a better predictor of water quality, (2) find the spatial scale where LC has the greatest impact on water quality, and (3) quantify impacts of LC on water quality indices, including dissolved oxygen (mg/L), total nitrogen (mg/L), phosphorous (mg/L), turbidity (NTRU), fecal coliforms (colony units/100mL) and instantaneous discharge (ft3/s). The resulting linear mixed effects models account for between 36-68% of the variance in water quality. Preliminary results indicate that phosphorous and nitrogen were best predicted from instantaneous stream discharge, the log of discharge was the better predictor for turbidity and fecal coliforms, and summed 2 and 14-day antecedent precipitation indices were better predictors for dissolved oxygen and discharge, respectively. Increased urban and pasture area reliably decreased water quality in relation to forest cover, while agriculture and wetlands had little or mixed effects. Turbidity and nitrogen responded to a watershed level LC, while phosphorous, fecal coliforms, and discharge responded to LC in 60 m riparian buffers at the watershed scale. Our results indicate that LC modulates changing precipitation regimes and the ensuing impacts on water quality at a range of spatial scales.

  8. Effect of naphtha diluent on greenhouse gases and reduced sulfur compounds emissions from oil sands tailings.

    Science.gov (United States)

    Gee, Kathleen F; Poon, Ho Yin; Hashisho, Zaher; Ulrich, Ania C

    2017-11-15

    The long-term storage of oil sands tailings has resulted in the evolution of greenhouse gases (CH 4 and CO 2 ) as a result of residual organics biodegradation. Recent studies have identified black, sulfidic zones below the tailings-water interface, which may be producing toxic sulfur-containing gases. An anaerobic mesocosm study was conducted over an 11-week period to characterize the evolution of CH 4 , CO 2 and reduced sulfur compounds (RSCs) (including H 2 S) in tailings as it relates to naphtha-containing diluent concentrations (0.2, 0.8, and 1.5% w/v) and microbial activity. Our results showed that RSCs were produced first at 0.12μmol°RSCs/mL MFT (1.5% w/v diluent treatment). RSCs contribution (from highest to lowest) was H 2 S and 2-methylthiophene>2.5-dimethylthiophene>3-methylthiophene>thiofuran>butyl mercaptan>carbonyl sulfide, where H 2 S and 2-methylthiophene contributed 81% of the gas produced. CH 4 and CO 2 production occurred after week 5 at 40.7μmolCH 4 /mL MFT and 5.9μmolCO 2 /mL MFT (1.5% w/v diluent treatment). The amount of H 2 S and CH 4 generated is correlated to the amount of diluent present and to microbial activity as shown by corresponding increases in sulfate-reducers' Dissimilatory sulfite reductase (DsrAB) gene and methanogens' methyl-coenzyme M reductase (MCR) gene. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adsorption of trace gases to ice surfaces: surface, bulk and co-adsorbate effects

    Science.gov (United States)

    Kerbrat, Michael; Bartels-Rausch, Thorsten; Huthwelker, Thomas; Schneebeli, Martin; Pinzer, Bernd; Ammann, Markus

    2010-05-01

    Atmospheric ices frequently interact with trace gases and aerosol making them an important storage, transport or reaction medium in the global ecosystem. Further, this also alters the physical properties of the ice particles with potential consequences for the global irradiation balance and for the relative humidity of surrounding air masses. We present recent results from a set of laboratory experiments of atmospheric relevance to investigate the nature of the uptake processes. The focus of this talk will be placed on the partitioning of acidic acid and nitrous acid on ice surfaces.The presented results span from very simple reversible adsorption experiments of a single trace gas onto ice surfaces to more complex, but well controlled, experimental procedures that successfully allowed us to - Disentangle surface adsorption and uptake into the ice matrix using radioactive labelled trace gases. - Show that simultaneous adsorption of acetic acid and nitrous acid to an ice surface is consistent with the Langmuir co-adsorption model. The experiments were done in a packed ice bed flow tube at atmospheric pressure and at temperatures between 213 and 253 K. The HONO gas phase mixing ratio was between 0.4 and 137 ppbv, the mixing ratio of acetic acid between 5 and 160 ppbv . The use of the radioactive labelled nitrous acid molecules for these experiments enabled in situ monitoring of the migration of trace gas in the flow tube. The measurements showed that the interactions do not only occur through adsorption but also via diffusion into polycrystalline ice. A method is suggested to disentangle the bulk and the surface processes. The co-adsorption of acetic and nitrous acids was also investigated. The measurements are well reproduced by a competitive Langmuir adsorption model.

  10. The effect of early postnatal discharge from hospital for women and infants: a systematic review protocol.

    Science.gov (United States)

    Jones, Eleanor; Taylor, Beck; MacArthur, Christine; Pritchett, Ruth; Cummins, Carole

    2016-02-08

    The length of postnatal hospital stay has declined over the last 40 years. There is little evidence to support a policy of early discharge following birth, and there is some concern about whether early discharge of mothers and babies is safe. The Cochrane review on the effects of early discharge from hospital only included randomised controlled trials (RCTs) which are problematic in this area, and a systematic review including other study designs is required. The aim of this broader systematic review is to determine possible effects of a policy of early postnatal discharge on important maternal and infant health-related outcomes. A systematic search of published literature will be conducted for randomised controlled trials, non-randomised controlled trials (NRCTs), controlled before-after studies (CBA), and interrupted time series studies (ITS) that report on the effect of a policy of early postnatal discharge from hospital. Databases including Cochrane CENTRAL, MEDLINE, EMBASE, CINAHL and Science Citation Index will be searched for relevant material. Reference lists of articles will also be searched in addition to searches to identify grey literature. Screening of identified articles and data extraction will be conducted in duplicate and independently. Methodological quality of the included studies will be assessed using the Effective Practice and Organisation of Care (EPOC) criteria for risk of bias tool. Discrepancies will be resolved by consensus or by consulting a third author. Meta-analysis using a random effects model will be used to combine data. Where significant heterogeneity is present, data will be combined in a narrative synthesis. The findings will be reported according to the preferred reporting items for systematic reviews (PRISMA) statement. Information on the effects of early postnatal discharge from hospital will be important for policy makers and clinicians providing maternity care. This review will also identify any gaps in the current

  11. Travelling-wave-sustained discharges

    International Nuclear Information System (INIS)

    Schlueter, Hans; Shivarova, Antonia

    2007-01-01

    This review is on discharges maintained by travelling waves: new plasma sources, discovered in 1974 and considered as a prototype of the gas discharges according to their definition as nonlinear systems which unify in a self-consistent manner plasmas and fields. In the presentation here of the fluid-plasma models of the diffusion-controlled regime of the travelling-wave-sustained discharges (TWSDs), the basic features of the discharge maintenance-the discharge self-consistency and the electron heating in the high-frequency field-are stressed. Operation of stationary and pulsed discharges, discharge maintenance without and in external magnetic fields as well as discharge production in different gases (argon, helium, helium-argon gas mixtures and hydrogen) are covered. Modulation instability of diffusion-controlled discharges and discharge filamentation at higher gas pressures are also included in the review. Experimental findings which motivate aspects of the reported modelling are pointed out

  12. Effective atomic numbers, electron densities, and tissue equivalence of some gases and mixtures for dosimetry of radiation detectors

    Directory of Open Access Journals (Sweden)

    Singh Vishwanath P.

    2012-01-01

    Full Text Available Total mass attenuation coefficients, µm, effective atomic number, Zeff, and effective electron density, Neff, of different gases - carbon dioxide, methane, acetylene, propane, butane, and pentane used in radiation detectors, have been calculated for the photon energy of 1 keV to 100 GeV. Each gas has constant Zeff values between 0.10 to 10 MeV photon energies; however, these values are way far away from ICRU tissue. Carbon dioxide gas shows the closest tissue equivalence in the entire photon energy spectrum. Relative tissue equivalences of the mixtures of gases with respect to ICRU tissue are in the range of 0.998-1.041 for air, argon (4.5% + methane (95.5%, argon (0.5% + carbon dioxide (99.5%, and nitrogen (5% + methane (7% + carbon dioxide (88%. The gas composition of xenon (0.5% + carbon dioxide (99.5% shows 1.605 times higher tissue equivalence compared to the ICRU tissue. The investigated photon interaction parameters are useful for exposure and energy absorption buildup factors calculation and design, and fabrication of gaseous detectors for ambient radiation measurement by the Geiger-Muller detector, ionization chambers and proportional counters.

  13. Short-term effects of humidification devices on respiratory pattern and arterial blood gases during noninvasive ventilation.

    Science.gov (United States)

    Lellouche, François; Pignataro, Claudia; Maggiore, Salvatore Maurizio; Girou, Emmanuelle; Deye, Nicolas; Taillé, Solenne; Fischler, Marc; Brochard, Laurent

    2012-11-01

    The impact of humidification devices on ventilatory and arterial blood gases parameters during noninvasive ventilation (NIV) remains controversial. The aim of the study was to compare the short-term impact of heat and moisture exchangers (HMEs) and heated humidifiers (HHs) during NIV for either hypercapnic or hypoxemic acute respiratory failure. Consecutive subjects receiving NIV were successively treated with HME and HH in randomized order for 30 min each. At the end of each period, arterial blood gases were measured and ventilatory parameters were recorded. Eighty-one subjects were enrolled, of whom 52 were hypercapnic (with or without acidosis) and 29 hypoxemic. Minute ventilation was greater with the HME, in comparison with the HH (15 [12-18] vs 12 [10-16] median [interquartile range], P < .001), while P(aCO(2)) was increased when using HME, indicating a dead space effect. This effect was observed in all subjects, but was more pronounced in hypercapnic subjects (P(aCO(2)) 62 ± 17 mm Hg with HME vs 57 ± 14 with HH, P < .001). In a subgroup of 19 subjects with respiratory acidosis, alveolar hypoventilation improved only with the HH. The amplitude of the dead space impact was a function of the degree of hypercapnia. Use of an HME decreased CO(2) elimination during NIV, despite increased minute ventilation, especially in hypercapnic subjects.

  14. Method for storing radioactive rare gases

    International Nuclear Information System (INIS)

    Watabe, Atsushi; Nagao, Hiroyuki; Takiguchi, Yukio; Kanazawa, Toshio; Soya, Masataka.

    1975-01-01

    Object: To safely and securely store radioactive rare gases for a long period of time. Structure: The waste gases produced in nuclear power plant are cooled by a cooler and then introduced into a low temperature adsorbing device so that the gases are adsorbed by adsorbents, and then discharged into atmosphere through the purifying gas discharge line. When the radioactive rare gases reach a level of saturation in the amount of adsorption, they are heated and extracted by a suction pump and heated by a heater. The gases are then introduced into an oxygen-impurity removing device and the purified rare gases containing no oxygen and impurities are cooled by a cooler and fed into a gas holder. When the amount of radioactive rare gases stored within the gas holder reaches a given level, they are compressed and sealed by a compressure into a storing cylinder and residual gases in the piping are sucked and recovered into the gas holder, after which the cylinder is removed and stored in a fixed room. (Kamimura, M.)

  15. [Effect of electromagnetic radiation on discharge activity of neurons in the hippocampus CA1 in rats].

    Science.gov (United States)

    Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei

    2013-09-01

    In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending

  16. The effect of particle shape on hopper discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, P.W. [CSIRO, Clayton, Vic. (Australia). Mathematical and Information Sciences

    1999-07-01

    Hopper flows are an important class of industrial particle flows. The inclusion of particle shape allows DEM models to replicate many features of real hopper flows that are not possible when using circular particles. Elongated particles can produce flow rates up to 30% lower than for circular particles and the flow patterns are quite different. The yielding of the particle microstructure resembles more the tearing of a continuum solid, with large scale quasi-stable voids being formed and large groups of particles moving together. The flow becomes increasingly concentrated in a relatively narrow funnel above the hopper opening. This is encouragement that DEM may be able to predict important problems such as bridging and rat-holing. Increasing the blockiness or angularity of the particles also increases resistance to flow and reduces flow rates by up to 28% but does not have any perceptible effect on the nature of the flow. 11 refs., 7 figs.

  17. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    Science.gov (United States)

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  18. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  19. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Joseane Böhm

    Full Text Available Abstract Introduction: Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Methods: Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG. Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Results: Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035. There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly, which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027. Conclusion: The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.

  20. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease.

    Science.gov (United States)

    Böhm, Joseane; Monteiro, Mariane Borba; Andrade, Francini Porcher; Veronese, Francisco Veríssimo; Thomé, Fernando Saldanha

    2017-01-01

    Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG). Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035). There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly), which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027). The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes.

  1. The effects of greenhouse gases on the Antarctic ozone hole in the past, present, and future

    Science.gov (United States)

    Newman, P. A.; Li, F.; Lait, L. R.; Oman, L.

    2017-12-01

    The Antarctic ozone hole is primarily caused by human-produced ozone depleting substances such as chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. The large ozone spring-time depletion relies on the very-cold conditions of the Antarctic lower stratosphere, and the general containment of air by the polar night jet over Antarctica. Here we show the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) coupled ocean-atmosphere-chemistry model for exploring the impact of increasing greenhouse gases (GHGs). Model simulations covering the 1960-2010 period are shown for: 1) a control ensemble with observed levels of ODSs and GHGs, 2) an ensemble with fixed 1960 GHG concentrations, and 3) an ensemble with fixed 1960 ODS levels. We look at a similar set of simulations (control, 2005 fixed GHG levels, and 2005 fixed ODS levels) with a new version of GEOSCCM over the period 2005-2100. These future simulations show that the decrease of ODSs leads to similar ozone recovery for both the control run and the fixed GHG scenarios, in spite of GHG forced changes to stratospheric ozone levels. These simulations demonstrate that GHG levels will have major impacts on the stratosphere by 2100, but have only small impacts on the Antarctic ozone hole.

  2. An investigation on two-phase mixture discharges: the effects of macroparticle sizes

    Energy Technology Data Exchange (ETDEWEB)

    Deng Heming; He Zhenghao; Xu Yuhang; Ma Jun; Liu Junxiang; Guo Runkai, E-mail: denghem@gmail.co [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Hubei province Wuhan 430074 (China)

    2010-06-30

    A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration, and there has been significant interest in many technical applications and natural phenomena concerning two-phase mixture discharges (TPMDs), but until now there has been no widely accepted analysis for the propagation of discharges in TPMs. In this paper, 21 kinds of different dielectric materials are used to investigate the effects on TPMD. The diameters of macroparticles in 21 kinds of TPMs are measured by microscope, laser particle size analyzer, etc, and the volume fractions are measured by a video camera and particle image velocimetry system. Based on a direct comparison of the breakdown voltages and the percentages of the discharge path in TPMs with those in air, this work reveals that whether TPMs promote the discharge development or not depends mainly on the macroparticle sizes. These macroparticles in TPMs distort the electric field, interact with ions, electrons or photons, and produce corresponding enhancements or decreases in ionization and excitation as the streamer front encounters them, but the details of alterations on the discharge development are highly correlated with the macroparticle sizes.

  3. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    CERN Document Server

    Malik, M A; Ghaffar, A; Ahmed, K

    2002-01-01

    The effect of O sub 2 and O sub 3 bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 M OMEGA resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l sup - sup 1 methylene blue in distilled water was decolourized in 120 min. Bubbling O sub 2 at 10 ml min sup - sup 1 through the discharge region reduced the decolourization time to 25 min. Bubbling O sub 2 containing 1500 mu mol O sub 3 l sup - sup 1 at 10 ml min sup - sup 1 reduced the decolourization time to 8 min. The O sub 3 was produced by fractionating input energy between a water treatment reactor and a O sub 3 generator, i.e. no additional energy was consumed for O sub 3 production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in...

  4. Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas

    International Nuclear Information System (INIS)

    Baba, K.; Kaneko, T.; Hatakeyama, R.

    2007-01-01

    The availability of plasma ion irradiation toward a gas-liquid interface is investigated in a rf discharge system incorporating an ionic liquid. The introduction of the ionic liquid to the plasma causes the formation of a sheath electric field on the ionic liquid surface, resulting in the acceleration of the ions to the ionic liquid and the generation of secondary electrons from the ionic liquid by the ion irradiation. These effects are found to advance the discharge process and enhance the plasma production

  5. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  6. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    Science.gov (United States)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  7. The effect of external electron injection and the environment composition on development of atmospheric discharge investigation

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Oginov, A.V.; Chajkovskij, S.A.; Shpakov, K.V.

    2012-01-01

    The effect of external electron injection (with energy about 150 keV) on initial phase development of the high-voltage (1.0-1.2 MV) long (500-700 mm) gas discharge is investigated. The experiments were conducted in atmospheric pressure air and in a mixture of air and water droplet phase [ru

  8. Cost-effectiveness of a transitional pharmaceutical care program for patients discharged from the hospital

    NARCIS (Netherlands)

    Karapinar-Çarkıt, Fatma; van der Knaap, Ronald; Bouhannouch, Fatiha; Borgsteede, Sander D; Janssen, Marjo J A; Siegert, Carl E H; Egberts, Toine C G; van den Bemt, Patricia M L A; van Wier, Marieke F; Bosmans, Judith E

    2017-01-01

    BACKGROUND: To improve continuity of care at hospital admission and discharge and to decrease medication errors pharmaceutical care programs are developed. This study aims to determine the cost-effectiveness of the COACH program in comparison with usual care from a societal perspective. METHODS: A

  9. Effect of Implementing a Discharge Plan on Functional Abilities of Geriatric Patients with Hip Fractures

    Science.gov (United States)

    AL Khayya, Hatem; El Geneidy, Moshera; Ibrahim, Hanaa; Kassem, Mohamed

    2016-01-01

    Hip fracture is considered one of the most fatal fractures for elderly people, resulting in increased morbidity and mortality and impaired functional capacity, particularly for basic and instrumental activities of daily living. The aim of this study was to determine the effect of implementing a discharge plan on functional abilities of geriatric…

  10. Cost-effectiveness of a transitional pharmaceutical care program for patients discharged from the hospital

    NARCIS (Netherlands)

    F. Karapinar-Çarkit (Fatma); R. van der Knaap (Ronald); Bouhannouch, F. (Fatiha); S.D. Borgsteede (Sander); M.J.A. Janssen (Marjo); Siegert, C.E.H. (Carl E. H.); T.C.G. Egberts (Toine C.G.); P.M.L.A. van den Bemt (Patricia); M.F. van Wier (Marieke); J.E. Bosmans (Judith)

    2017-01-01

    textabstractBackground To improve continuity of care at hospital admission and discharge and to decrease medication errors pharmaceutical care programs are developed. This study aims to determine the cost-effectiveness of the COACH program in comparison with usual care from a societal perspective.

  11. Modification of the poly(ethylene) terephthalate track membrane structure and surface in the plasma of non-polymerized gases

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel, P.Y.

    1999-01-01

    An investigation of the properties of poly(ethylene) terephthalate track membranes (PETTMs) treated with a plasma RF-discharge in non-polymerized gases has been performed. The influence of the plasma treatment conditions on the basic properties of the membranes has been studied. It was arranged that the effect of non-polymerized gases plasma on the PETTMs results to etching a membrane's surface layer. The membranes' pore size and the form in this case change. It is shown that it is possible to change the structure of track membranes directly by gas discharge etching

  12. A systematic review of the cost and cost-effectiveness of electronic discharge communications.

    Science.gov (United States)

    Sevick, Laura K; Esmail, Rosmin; Tang, Karen; Lorenzetti, Diane L; Ronksley, Paul; James, Matthew; Santana, Maria; Ghali, William A; Clement, Fiona

    2017-07-02

    The transition between acute care and community care can be a vulnerable period in a patients' treatment due to the potential for postdischarge adverse events. The vulnerability of this period has been attributed to factors related to the miscommunication between hospital-based and community-based physicians. Electronic discharge communication has been proposed as one solution to bridge this communication gap. Prior to widespread implementation of these tools, the costs and benefits should be considered. To establish the cost and cost-effectiveness of electronic discharge communications compared with traditional discharge systems for individuals who have completed care with one provider and are transitioning care to a new provider. We conducted a systematic review of the published literature, using best practices, to identify economic evaluations/cost analyses of electronic discharge communication tools. Inclusion criteria were: (1) economic analysis and (2) electronic discharge communication tool as the intervention. Quality of each article was assessed, and data were summarised using a component-based analysis. One thousand unique abstracts were identified, and 57 full-text articles were assessed for eligibility. Four studies met final inclusion criteria. These studies varied in their primary objectives, methodology, costs reported and outcomes. All of the studies were of low to good quality. Three of the studies reported a cost-effectiveness measure ranging from an incremental daily cost of decreasing average discharge note completion by 1 day of $0.331 (2003 Canadian), a cost per page per discharge letter of €9.51 and a dynamic net present value of €31.1 million for a 5-year implementation of the intervention. None of the identified studies considered clinically meaningful patient or quality outcomes. Economic analyses of electronic discharge communications are scarcely reported, and with inconsistent methodology and outcomes. Further studies are needed

  13. The effect of temperature on pulsed positive streamer discharges in air over the range 292 K–1438 K

    Science.gov (United States)

    Ono, Ryo; Ishikawa, Yuta

    2018-05-01

    The effect of temperature on pulsed positive streamer discharges in air is measured by comparing atmospheric-pressure, high-temperature discharges with low-pressure, room-temperature discharges at the same air densities n and discharge voltages. Both discharges have the same reduced electric field E/n, so the differences between the two discharges only depend on the temperature, which is varied from 292 K to 1438 K. Temperature affects the discharge pulse energy most significantly; at 1438 K, the energy of an atmospheric-pressure discharge pulse is approximately 30 times larger than that of the corresponding 20.5 kPa, room-temperature discharge. Temperature also affects the shapes of the streamers when K, but no significant effect is observed for K. There is also no significant temperature effect on the spatially integrated intensity of N2(C–B) emission. However, temperature strongly affects the ratio of the integrated emission intensity to the discharge energy. No effect of the temperature is observed on the propagation velocity of the primary streamer or on the length of the secondary streamer.

  14. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    Science.gov (United States)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  15. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  16. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  17. Experimental investigation of non-condensable gases effect on operation of VVER steam generator in condensation mode

    International Nuclear Information System (INIS)

    Efanov, A. D.; Kalyakin, S. G.; Morozov, A. V.; Remizov, O. V.; Tsyganok, A. A.; Generalov, V. N.; Berkovich, V. M.; Taranov, G. S.

    2008-01-01

    performed to investigate the effect of non-condensable gases on condensation mode of operation of SG model at the pressure 0.25-0.3 MPa, correspond to WER reactor pressure at the last stage of the beyond design basis accident. (authors)

  18. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  19. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  20. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  1. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  2. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  3. Experimental analysis on the effects of DC arc discharges at various flow regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, G. [University of L’Aquila, L’Aquila 67100 (Italy); Saracoglu, B. H., E-mail: saracog@vki.ac.be; Regert, T. [von Karman Institute for Fluid Dynamics, Rhode Saint Genèse B-1640 (Belgium); Paniagua, G. [Purdue University, West-Lafayette, Indiana 47907 (United States)

    2015-03-15

    This paper addresses the control of the boundary layer on a compression ramp by means of DC electrical arc discharges. The development and realization of the control system are first described and then assessed in the wind tunnel. The objective of the research was to control the supersonic flow using the minimum amount of energy. The array of electrodes was located at the base of a ramp, where a low momentum flow develops. The electrical discharge was generated by a custom designed electronic facility based on high-voltage ignition coils. The slanted tungsten electrodes were insulated by mounting them in a ceramic support. The discharge evolution was studied through high-speed flow visualizations, while electrical measurements at the high-voltage section of the circuitry allowed to estimate the energy release. The development of a high-speed short exposure Schlieren imaging technique, based on a very short duration laser pulse illumination and a double shot CCD camera, allowed to observe the macroscopic effects associated with the arc establishment between the electrodes (glow, sound wave and heat release). Due to the long residence time, the thermal perturbation spread along the streamwise direction. Cross correlation of Schlieren images with short time separation revealed that in supersonic conditions, the discharges led to an overall acceleration of the flow field underneath the oblique shock wave.

  4. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    Science.gov (United States)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  5. Effect of the Mesh Transparency on the Electrical Characteristics of DC Pseudo Discharge

    International Nuclear Information System (INIS)

    Al-Halim, M. A. Abd; Abu-Hashem, A.; Moubarak, D. I.

    2015-01-01

    A DC pseudo discharge for air has been studied. Air pressure is used in the range between 0.7 Torr and 12 Torr. The breakdown occurs between a plane cathode and a mesh anode at transparencies of 19%, 46%, and 65%. The current-voltage characteristic curves of the discharge, which are measured at different pressures, distances, and mesh transparences, take effect in the region of abnormal glow. The discharge voltage decreases as the air pressure increases, while more voltage is needed to maintain the discharge when either the mesh transparency or the inter-electrode distance is increased. An increment of mesh transparency causes high negative potential behind the mesh due to the high concentration of electrons, which accumulate and collide with neutral atoms. Paschen curves deviate from the expected regular one. The left side of Paschen curves appears at inter-electrode distance of 1 mm, whereas the right side appears at inter-electrode distance of 5 mm. The intermediate region is observed only at 3 mm distance between the two electrodes. For the transparency range used in this work, it is found that the decrement of the breakdown voltage, on the right side, depends on the mesh transparency. For different electrode separations, the measured Paschen curves are coincident and deviate from the standard ones of Paschen's law. (paper)

  6. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2017-01-15

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  7. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    International Nuclear Information System (INIS)

    Lebedev, Yu. A.; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L.

    2017-01-01

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  8. [A study of home care needs of patients at discharge and effects of home care--centered on patients discharged from a rural general hospital].

    Science.gov (United States)

    Choi, Y S; Kim, D H; Storey, M; Kim, C J; Kang, K S

    1992-01-01

    The study was carried out at W. hospital, an affiliated hospital of Y university, involved a total of 163 patients who were discharged from the hospital between May 1990 and March 1991. Data collection was twice, just prior to discharge and a minimum of three months post discharge. Thirty patients who lived within a hour travel time of the hospital received home care during the three months post discharge. Nursing diagnoses and nursing interventions for these patients were analyzed in this study. The results of the study are summarized as follows: 1. Discharge needs for the subjects of the study were analyzed using Gordon's eleven functional categories and it was found that 48.3% of the total sample had identified nursing needs. Of these, the needs most frequently identified were in the categories of sexuality, 79.3%, health perception, 68.2% self concept, 62.5%, and sleep and rest 62.5%. Looking at the nursing diagnosis that were made for the 30 patients receiving home care, the following diagnoses were the most frequently given; alteration in sexual pattern 79.3%, alterations in health maintenance, 72.6%, alteration in comfort, 68.0%, depression, 64.0%, noncompliance with diet therapy, 63.7%, alteration in self concept, 55.6%, and alteration in sleep pattern, 53%. 2. In looking at the effects of home nursing care as demonstrated by changes in the functional categories over the three month period, it was found that of the 11 functional categories, the need level for health perception, nutrition, activity and self concept decreased slightly over the three month period. On the average sleep patterns improved, but restfulness was slightly less and bowel elimination patterns improved but satisfaction with urinary elimination was slightly less. On the other hand, role enactment, sexuality, stress management and spirituality decreased slightly. The only results that were statistically significant at the 0.05 level were improvement in digestion and decrease in pain. No

  9. Heart pacemaker - discharge

    Science.gov (United States)

    Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...

  10. Blistering effects in neutral injection systems operated with helium and hydrogen gases: a preliminary assessment

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1977-01-01

    The practical effects of blistering and flaking in neutral injection systems are studied. These effects will soon be more important because of energy increases in systems now under development and because of their operation with fast helium ions as well as hydrogen and deuterium ions. Two main effects were studied: enhanced erosion rate and possible voltage breakdown from sharp flakes and gas emission

  11. The Effect of Non-condensable Gases Removal on Air Gap Membrane Distillation: Experimental and Simulation Studies

    KAUST Repository

    Alsaadi, Ahmad S.

    2014-04-01

    In the kingdom of Saudi Arabia (KSA), the current seawater desalination technologies are completely relying on burning unsustainable crude oil as their main energy driver. Saudi authorities have realized that the KSA is not going to be protected from the future global energy crisis and have started to set up a plan to diversify its energy resources. Membrane Distillation (MD) has emerged as an attractive alternative desalination process. It combines advantages from both thermal and membrane-based technologies and holds the potential of being a cost-effective separation process that can utilize low-grade waste heat or renewable energy. MD has four different configurations; among them is Air Gap Membrane Distillation (AGMD) which is the second most commonly tested and the most commercially available pilot-plant design. AGMD has a stagnant thin layer of air between the membrane and the condensation surface. This layer introduces a mass transfer resistance that makes the process require a large membrane surface area if a large quantity of fresh water is desired. This dissertation reports on experimental and theoretical work conducted to enhance the AGMD flux by removing non-condensable gases from the module and replacing it with either vacuum, liquid water or porous materials. At first, a mathematical model for AGMD was developed and validated experimentally to create a baseline for improvements that could be achieved after the removal of non-condensable gases. The mathematical model was then modified to simulate the process under vacuum where it showed a flux enhancement that reached 286%. The Water Gap Membrane Distillation (WGMD) configuration improved the flux by almost the same percentage. Since enhancing the flux is expected to increase temperature polarization effects, a theoretical study was conducted on the effect of temperature polarization in a Vacuum Membrane Distillation (VMD) configuration. The study showed that the effect of temperature polarization at

  12. Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity

    KAUST Repository

    Zhang, Xuming

    2016-08-24

    Ozone synthesis in air dielectric barrier discharge (DBD) was studied with an emphasis on the effects of power sources and humidity. Discharge characteristics were investigated to understand the physical properties of plasma and corresponding system performance. It was found that 10-ns pulsed DBD produced a homogeneous discharge mode, while ac DBD yielded an inhomogeneous pattern with many microdischarge channels. At a similar level of the energy density (ED), decreasing the flowrate is more effective in the production of ozone for the cases of the ac DBD, while increased voltage is more effective for the pulsed DBD. Note that the maximum ozone production efficiency (110 g/kWh) was achieved with the pulsed DBD. At the ED of ∼ 85 J/L, the ozone concentrations with dry air were over three times higher than those with the relative humidity of 100% for both the ac DBD and pulsed DBD cases. A numerical simulation was conducted using a global model to understand a detailed chemical role of water vapor to ozone production. It was found HO and OH radicals from water vapor significantly consumed O atoms, resulting in a reduction in ozone production. The global model qualitatively captured the experimental trends, providing further evidence that the primary effect of humidity on ozone production is chemical in nature.

  13. Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases

    International Nuclear Information System (INIS)

    Rotstayn, L D; Collier, M A; Jeffrey, S J; Syktus, J I; Wong, K K; Kidston, J

    2013-01-01

    We use single-forcing historical simulations with a coupled atmosphere–ocean global climate model to compare the effects of anthropogenic aerosols (AAs) and increasing long-lived greenhouse gases (LLGHGs) on simulated winter circulation in the Southern Hemisphere (SH). Our primary focus is on the subtropical jet, which is an important source of baroclinic instability, especially in the Australasian region, where the speed of the jet is largest. For the period 1950 to 2005, our simulations suggest that AAs weaken the jet, whereas increasing LLGHGs strengthen the jet. The different responses are explained in terms of thermal wind balance: increasing LLGHGs preferentially warm the tropical mid-troposphere and upper troposphere, whereas AAs have a similar effect of opposite sign. In the mid-troposphere, the warming (cooling) effect of LLGHGs (AAs) is maximal between 20S and 30S; this coincides with the descending branch of the Hadley circulation, which may advect temperature changes from the tropical upper troposphere to the subtropics of the SH. It follows that LLGHGs (AAs) increase (decrease) the mid-tropospheric temperature gradient between low latitudes and the SH mid-latitudes. The strongest effects are seen at longitudes where the southward branches of the Hadley cell in the upper troposphere are strongest, notably at those that correspond to Asia and the western Pacific warm pool. (letter)

  14. Cost-effectiveness of greenhouse gases mitigation measures in the European agro-forestry sector: a literature survey

    International Nuclear Information System (INIS)

    Povellato, Andrea; Bosello, Francesco; Giupponi, Carlo

    2007-01-01

    Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation

  15. Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges

    Science.gov (United States)

    Zhang, Yuan-Tao; Wang, Yan-Hui

    2018-02-01

    In this paper, we present a modeling study on the discharge characteristics driven by short pulsed voltages, focusing on the effects of pulse rise rate based on the fluid description of atmospheric plasmas. The numerical results show that the breakdown voltage of short pulsed discharge is almost linearly dependent on the pulse rise rate, which is also confirmed by the derived equations from the fluid model. In other words, if the pulse rise rate is fixed as a constant, the simulation results clearly suggest that the breakdown voltage is almost unchanged, although the amplitude of pulsed voltage increases significantly. The spatial distribution of the electric field and electron density are given to reveal the underpinning physics. Additionally, the computational data and the analytical expression also indicate that an increased repetition frequency can effectively decrease the breakdown voltage and current density, which is consistent with the experimental observation.

  16. Effectiveness of granisetron in controlling pediatric gastroenteritis-related vomiting after discharge from the ED.

    Science.gov (United States)

    Qazi, Khajista; BinSalleeh, Hashim M; Shah, Ubaid H; AlGhamedi, Najwa; Tamim, Hani; Mubasher, Mohamed; Alrasheed, Faris; Alkanhal, Abdulrahman; AlTamimi, Saleh A

    2014-09-01

    The objective of the study is to determine the efficacy of oral granisetron (a long-acting 5-HT3 receptor antagonist) in stopping vomiting subsequent to discharge from emergency department (ED), in 6-month-old to 8-year-old patients with gastroenteritis-related vomiting and dehydration, who had failed an initial trial of oral rehydration (ORT). Eligible patients were offered ORT on a slowly advancing schedule. Patients who tolerated the initial ORT were discharged home. Patients who vomited were randomized to receive either 40 μg/kg of granisetron or placebo, and ORT was resumed. Patients who tolerated the postrandomization ORT were discharged home with another dose of the study drug. Parents were contacted by telephone every 24 hours until complete resolution of symptoms. The primary outcome was the proportion of patients with vomiting at 24 hours. Of the 900 eligible patients, 537 (60%) tolerated the initial ORT and were discharged home. Of the patients who vomited during the initial ORT, 165 were included in the final study sample (placebo, n = 82; granisetron, n = 83). There was no statistically significant difference in the proportion of patients with vomiting at 24 hours (granisetron, n = 38; placebo, n = 45; odds ratio, 0.64; 95% confidence interval, 0.34-1.19; P = .16). A similar trend in the proportion of patients with vomiting was noted for the entire follow-up period (granisetron, n = 43; placebo, n = 47; odds ratio, 0.73; P = .33; 95% confidence interval, 0.39-1.36). Granisetron was not effective in controlling gastroenteritis-related vomiting subsequent to discharge from ED. It did not change the expected course of the illness. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Ngoc Quyen

    2014-09-01

    Full Text Available Srepok watershed plays an important role in Central Highland in Viet Nam. It impacts to developing social-economic conditions. Therefore, it is necessary to research elements which impact to natural resources in this watershed. The Soil and Water Assessment Tool (SWAT model and Geography Information System (GIS were used to simulate water discharge in the Srepok watershed. The objectives of the research were to apply GIS and SWAT model for simulation water discharge and then, we assessed land use change which impacted on water discharge in the watershed. The observed stream flow data from Ban Don Stream gauge station was used to calibrate for the period from 1981 to 2000 and then validate for the period from 2001 to 2009. After using SWAT-CUP software to calibration, NSI reached 0.63 and R square value achieved 0.64 from 2004 to 2008 in calibration and NSI gained good level at 0.74 and R square got 0.75 from 2009 to 2012 in validation step at Ban Don Station. After that, land cover in 2010 was processed like land cover in 2000 and set up SWAT model again. The simulated water discharge in scenario 1 (land use 2000 was compared with scenario 2 (land use 2010, the simulation result was not significant difference between two scenarios because the change of area of land use was not much enough to affect the fluctuation of water discharge. However, the effect of land cover on water resource could be seen clearly via total water yield. The percentage of surface flow in 2000 was twice times more than in 2010; retard and base flow in 2000 was slightly more than in 2010. Therefore, decreased surface flow, increased infiltration capacity of water and enriched base flow resulted in the growth of land cover.

  18. The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water

    KAUST Repository

    Hamdan, Ahmad

    2016-05-17

    Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids. © 2016 IOP Publishing Ltd.

  19. Effects of Xe Gas Content and Total Gas Pressure on the Discharge Characteristics of Colour Plasma Display Panels

    International Nuclear Information System (INIS)

    Hu Wenbo; Han Mengju; Liang Zhihu

    2006-01-01

    The effects of the Xe gas content and total gas pressure on the discharge characteristics of colour plasma display panels including the sustaining voltage margin, white-field chromaticity, discharge time lag (DTL), discharge current peak, and full-width-at-half-maximum (FWHM) of the discharge current pulse, are experimentally studied. The results indicate that as the Xe gas content in the He-Ne-Xe gas mixture or total pressure increases, the sustaining voltage margin increases, the white-field chromaticity improves, and the discharge current peak has a maximum value, while DTL and FWHM have a minimum value. The mean electron energy in the gas mixture discharge is also calculated through a numerical solution of Boltzmann equation. The experimental results are explained from a view of the mean electron energy variations with the Xe gas content and total gas pressure

  20. Effect of the electrodynamic structure of a microwave discharge in air on the efficiency of oxygen dissociation

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachov, A.M.; Ivanov, O.A.; Kolysko, A.L.

    1997-01-01

    From experimental measurements and numerical calculations of oxygen dissociation in a nanosecond microwave (MW) discharge in air, the dependance is obtained of the energy cost for the production of an oxygen atom on the electrodynamic structure and parameters of the discharge. Oxygen dissociation is shown to be most efficient when high-power MW pulses are used. On the basis of numerical calculations of the energy cost for oxygen for dissociation in a MW discharge created at altitudes of the ozone layer in the earth's atmosphere, a conclusion is made about the possibility of using MW discharges for effective compensation of the ozone loss in a local ''oxide hole.''

  1. Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed

    Directory of Open Access Journals (Sweden)

    Miroslaw-Swiatek Dorota

    2017-09-01

    Full Text Available Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA. Turkey Creek (WS 78 is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.

  2. A measurement of hydrogen transport in deuterium discharges using the dynamic response of the effective mass

    International Nuclear Information System (INIS)

    Dudok de Wit, T.; Duval, B.P.; Joye, B.; Lister, J.B.

    1992-02-01

    Particle tagging in a tokamak provides an attractive method for studying transport mechanisms. The injection of test particles at the plasma edge and the subsequent measurement of the evolution of their concentration at the centre can be used to quantify the underlying transport mechanisms. This has been carried out on the TCA tokamak by injecting hydrogen into a deuterium discharge, and simultaneously measuring the temporal evolution of the effective mass and the edge ionisation rate. (author) 3 figs., 9 refs

  3. Comparison of dielectric barrier discharge modes fungicidal effect on candida albicans growth

    International Nuclear Information System (INIS)

    Slama, J.; Kriha, V.; Fantova, V.; Julak, J.

    2013-01-01

    Filamentary and quasi-homogeneous mode of dielectric barrier discharge (DBD) was investigated as a plasma source with fungicidal effect on Candida albicans yeast inoculated on Sabouraud agar wafers. As compared with the filamentary DBD mode, the quasi-homogeneous mode had significantly better results: shorter exposition time needed for inhibiting C. albicans yeast, moreover the quasi-homogeneous mode had gentle influence on the agar surface structure.

  4. Hazardous gas treatment by atmospheric discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, J.

    2005-01-01

    The emissions of NO x ; SO x , CO 2 and volatile organic compounds (VOCs) including fluorocarbons to the atmosphere influence heavily our environment, NO x and SO x emitted to the atmosphere are the major cause of acid rains, while CO 2 and VOCs emissions cause the greenhouse effect which leads to abnormal global heating of the atmosphere and creating in a temperature inversion layer that traps gaseous pollutants. Therefore, there is an increasing interest in controlling these emissions. A new technique, which uses the plasma processes induced by energetic electrons, emerges as one of the most effective methods of reducing concentrations of the emitted gaseous pollutants. Various plasma techniques have been tested for gaseous pollution control. The electron bean irradiation was found to be physically and economically efficient for NO x and SO x reduction in the exhaust gases from electrical and heat power plants. The capability of the non-thermal plasmas, produced in atmospheric pressure electrical discharges, for decomposition of the gaseous pollutants has been widely tested. These atmospheric pressure electrical discharges are dielectric barrier discharges, pulsed and de corona discharges (in the reactors with the point-to-plate, wire-cylinder and wire-plate geometries, in the reactors with flow stabilized corona torch and corona radical shower), gliding discharges, inductively coupled high-frequency discharges, ac surface discharges, ac discharges in the packed bed reactors, and microwave torch discharges. In this paper, after reviewing the methods and devices used for producing the non-thermal plasmas for gaseous pollutant control, some results of the laboratory experiments on the plasmas abatement of NO x ; SO x and various VOCs will be presented, followed by a discussion on the energy efficiency and by-products. Also some results obtained in the pilot-plants will be given. finally other possible applications of the presented plasma devices for controlling

  5. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  6. Application of effective discharge analysis to environmental flow decision-making

    Science.gov (United States)

    McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.

    2016-01-01

    Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.

  7. Theoretical Investigation of the Bistability Effect in Non-Self-Sustained Discharges in Kr and Ar

    International Nuclear Information System (INIS)

    Dyatko, N.A.; Napartovich, A.P.

    2004-01-01

    The electron energy distribution function and the related plasma parameters in non-self-sustained discharges in Kr and Ar are studied theoretically. The investigations are carried out by numerically solving the corresponding Boltzmann equation for the electron energy distribution function with allowance for electron-electron collisions. The electron energy distribution and electron density are calculated self-consistently as functions of the intensity q of the source of secondary electrons and the magnitude of the reduced electric field E/N. The main goal of the investigations was to determine the conditions under which the plasma exhibits bistable parameters. Calculations show that, for discharges in Kr, there is a certain range of q and E/N values in which the Boltzmann equation has two different stable solutions. For an Ar plasma, such a bistability effect was not found: over the parameter range under consideration, the Boltzmann equation has a unique solution. Various plasma parameters (such as the effective electron temperature, electron drift velocity, and electron current density) are calculated for different discharge conditions, including those corresponding to the bistability effect

  8. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  9. The Effects of the Properties of Gases on the Design of Bubble Columns Equipped with a Fine Pore Sparger

    Directory of Open Access Journals (Sweden)

    Athanasios G. Kanaris

    2018-03-01

    Full Text Available This work concerns the performance of bubble columns equipped with porous sparger and investigates the effect of gas phase properties by conducting experiments with various gases (i.e., air, CO2, He that cover a wide range of physical property values. The purpose is to investigate the validity of the design equations, which were proposed in our previous work and can predict with reasonable accuracy the transition point from homogeneous to heterogeneous regime as well as the gas holdup and the mean Sauter diameter at the homogeneous regime. Although, the correlations were checked with data obtained using different geometrical configurations and several Newtonian and non-Newtonian liquids, as well as the addition of surfactants, the gas phase was always atmospheric air. The new experiments revealed that only the use of low-density gas (He has a measurable effect on bubble column performance. More precisely, when the low-density gas (He is employed, the transition point shifts to higher gas flow rates and the gas holdup decreases, a fact attributed to the lower momentum force exerted by the gas. In view of the new data, the proposed correlations have been slightly modified to include the effect of gas phase properties and it is found that they can predict the aforementioned quantities with an accuracy of ±15%. It has been also proved that computational fluid dynamics (CFD simulations are an accurate means for assessing the flow characteristics inside a bubble column.

  10. The Effect of Aqueous Alteration on Primordial Noble Gases in CM Chondrites

    Science.gov (United States)

    Weimer, D.; Busemann, H.; Alexander, C. M. O'D.; Maden, C.

    2017-07-01

    We have analyzed 32 CM chondrites for their noble gas contents and isotopic compositions and calculated CRE ages. Correlated effects of parent body aqueous alteration with primordial noble gas contents were detected.

  11. Numerical and experimental investigation on the performance of safety valves operating with different gases

    International Nuclear Information System (INIS)

    Dossena, V.; Marinoni, F.; Bassi, F.; Franchina, N.; Savini, M.

    2013-01-01

    A detailed analysis of the effect related to the expansion of different gases throughout safety relief valves is carried out both numerically and experimentally. The considered gases are air, argon and ethylene, representative of a wide range of specific heat ratios. A first experimental campaign performed in air and argon on a safety relief valve characterized by connection 1/2″ × 1″ and orifice designation D (diameter 10 mm) according to API 526 showed significant reduction both in disc lift and in exhausted mass flow rate, at the nominal overpressure, when operating with argon. In order to gain a deeper insight into the physics involved and to evaluate the valve behavior with other gases, an extensive numerical testing has been performed by means of an accurate CFD code based on discontinuous Galerkin formulation. Numerical results are at first validated against measurements obtained in air on a 2″ J 3″ safety relief valve proving a remarkable accuracy of the computational method. Then the validated solver is applied on the same computational grid using argon and ethylene as working fluids. The three gases are considered as thermally perfect gases. A critical discussion based on the numerical results allows to clarify the fluid dynamic and physical reasons causing the observed trends both in the opening force and in the discharge coefficient. The main conclusion is that particular care must be taken when a safety valve operates with a fluid characterized by a specific heat ratio greater than the one of the gas used during type testing. -- Highlights: ► Effects of different gases on the discharge capacity and operational characteristics on safety relief valves. ► Influence of different specific heat ratio on safety relief valves discharge coefficient. ► Skilful application of Discontinuous Galerkin CFD solver to safety valves performances prediction

  12. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  13. Effect of an offshore sinkhole perforation in a coastal confined aquifer on submarine groundwater discharge

    Science.gov (United States)

    Fratesi, S.E.; Leonard, V.; Sanford, W.E.

    2007-01-01

    In order to explore submarine groundwater discharge in the vicinity of karst features that penetrate the confining layer of an offshore, partially confined aquifer, we constructed a three-dimensional groundwater model using the SUTRA (Saturated-Unsaturated TRAnsport) variable-density groundwater flow model. We ran a parameter sensitivity analysis, testing the effects of recharge rates, permeabilities of the aquifer and confining layer, and thickness of the confining layer. In all simulations, less than 20% of the freshwater recharge for the entire model exits through the sinkhole. Recirculated seawater usually accounts for 10-30% of the total outflow from the model. Often, the sinkhole lies seaward of the transition zone and acts as a recharge feature for recirculating seawater. The permeability ratio between aquifer and confining layer influences the configuration of the freshwater wedge the most; as confining layer permeability decreases, the wedge lengthens and the fraction of total discharge exiting through the sinkhole increases. Copyright ?? 2007 IAHS Press.

  14. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    International Nuclear Information System (INIS)

    NIKROO, A.; PONTELANDOLFO, J.M.; CASTILLO, E.R.

    2002-01-01

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 (micro)m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 (micro)m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard

  15. Effect of discharge duct geometry on centrifugal fan performance and noise emission

    Science.gov (United States)

    Nelson, David A.; Butrymowicz, William; Thomas, Christopher

    2005-09-01

    Non-ideal inlet and discharge duct geometries can cause significant changes to both the aerodynamic performance (``fan curve'') and specific sound power emission of a fan. A proper understanding of actual installed performance, as well as a good estimate of the system backpressure curve, is critical to achieving flow and acoustic goals as well as other criteria such as power consumption, mass and volume. To this end a battery of ISO 10302 tests was performed on a blower assembly which supports the Advanced Animal Habitat, being developed by ORBITEC for deployment on the International Space Station. The blower assembly consists of (4) identical centrifugal fans that, amongst themselves and across two prototypes, incorporated several discharge geometries. The inlet geometries were identical in all cases. Thus by comparing the dimensionless pressure-flow and noise emission characteristics across the cases, significant insight into the nature and potential magnitude of these effects is gained.

  16. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  17. Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge.

    Science.gov (United States)

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2014-07-01

    The optogalvanic (OG) effect has been observed in a Eu/Ne hollow cathode discharge lamp using pulsed laser irradiation. An OG spectrum is recorded in dye laser wavelength region 574–602 nm using a boxcar-averager. In total 41 atomic lines are observed. Of these, 38 lines are assigned to neon transitions. Two lines observed corresponding to wavelengths 576.519 and 601.815 nm are assigned to europium transitions; (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 6 7/2 ) and (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 8 9/2 ), respectively, and the remaining line at 582.475 nm could not be assigned. The effect of the discharge current on europium as well as neon OG signals is also studied. At moderate discharge current values, an extra positive peak is observed in neon OG signal for the transition (1s 5 →2p 2 ) at 588.189 nm, which is explained by Penning-ionization process using the quasi-resonant energy transfer interactions between excited neon and europium atoms lying in 2p 2 and D 10 9/2 states, respectively.

  18. Effects of enterostomal nurse telephone follow-up on postoperative adjustment of discharged colostomy patients.

    Science.gov (United States)

    Zhang, Jun-e; Wong, Frances Kam Yuet; You, Li-ming; Zheng, Mei-chun; Li, Qiong; Zhang, Bing-yan; Huang, Man-rong; Ye, Xin-Mei; Liang, Ming-juan; Liu, Jin-ling

    2013-01-01

    People with a new colostomy encounter many difficulties as they struggle to adjust to their ostomies. Nurse telephone follow-up is a convenient way to ensure continuity of care. There is a paucity of studies testing if nurse telephone follow-up can enhance adjustment of postdischarged colostomy patients. The purpose of this study was to evaluate the effect of enterostomal nurse telephone follow-up on the adjustment levels of discharged colostomy patients. This was a randomized controlled trial. Participants (n = 103) who had undergone colostomy operations in China were recruited and randomly assigned to the study or control group. Both the study and control groups received routine discharge care, whereas the study group received 2-3 nurse telephone calls in the follow-up period. The outcome measures included Ostomy Adjustment Scale, Stoma Self-efficacy Scale, satisfaction with care, and stoma complications. Results of this study indicated that participants in the study group had significantly better ostomy adjustment, higher stoma self-efficacy, higher satisfaction with care, and less stoma complications compared with those in the control group. This study provided evidence to support that enterostomal nurse telephone follow-up can improve patient ostomy adjustment level and other related outcomes. Nurse telephone follow-up is an effective intervention to support the adjustment of stoma patients after hospital discharge.

  19. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    Science.gov (United States)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  20. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  1. Effects of transfer from the operating room to the intensive care unit after cardiac surgery on hemodynamics and blood gases

    International Nuclear Information System (INIS)

    Celik, S.; Gurkan, S.; Ustabasi, Z.; Atilgan, Y.; Sari, A.

    2008-01-01

    Objective was to evaluate the effect of transferring open-heart surgery patients from the operating room to the intensive care unit on hemodynamic parameters and blood gases. The study was conducted as a prospective, observational study at the German Hospital, Istanbul, Turkey in 2007. Hemodynamic, blood gas values and oxygen saturation measured by pulse oximetry SpO2 values were recorded in 37 patients who undergone open-heart surgery. Data were evaluated by descriptive statistical methods, Friedman's test and correlation analysis. Thirty-seven patients were included in this study. The low systolic and diastolic arterial blood pressure values prior to transfer, while patients were still under the effect of anesthesia, increased during the transfer and to one and 30 minutes after completion of transfer and return to normal values p<0.05. The SpO2 value measured at 30 minutes after completion of transfer was higher than the first value p<0.05. The pH p<0.001 and arterial partial pressure of oxygen p<0.001 values at the beginning of the transfer had significantly increased at the end of transfer and arterial partial pressure of carbon dioxide values had significantly decreased p<0.001. The transfer of open-heart surgery patients was observed to safe. (author)

  2. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  3. Influence of Size Effect and Foreign Gases on Formation of Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2006-01-01

    Roč. 33, č. 1 (2006), s. 56-60 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA2076203 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanoparticles * condensation coefficient * size effect Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.708, year: 2006

  4. Fragility of the fractional quantum spin Hall effect in quantum gases

    International Nuclear Information System (INIS)

    Fialko, O; Brand, J; Zülicke, U

    2014-01-01

    We consider the effect of contact interaction in a prototypical quantum spin Hall system of pseudo-spin-1/2 particles. A strong effective magnetic field with opposite directions for the two spin states restricts two-dimensional particle motion to the lowest Landau level. While interaction between same-spin particles leads to incompressible correlated states at fractional filling factors as known from the fractional quantum Hall effect, these states are destabilized by interactions between opposite spin particles. Exact results for two particles with opposite spin reveal a quasi-continuous spectrum of extended states with a large density of states at low energy. This has implications for the prospects of realizing the fractional quantum spin Hall effect in electronic or ultra-cold atom systems. Numerical diagonalization is used to extend the two-particle results to many bosonic particles and trapped systems. The interplay between an external trapping potential and spin-dependent interactions is shown to open up new possibilities for engineering exotic correlated many-particle states with ultra-cold atoms. (paper)

  5. Long-term effects of OBM cutting discharges at 12 locations on the Dutch continental shelf

    International Nuclear Information System (INIS)

    Daan, R.; Mulder, M.

    1996-01-01

    A sampling programme was carried out in 1994 and 1995 covering 12 well sites where OBM cuttings had been discharged 7 to 13 years ago. The locations were selected in areas with different sediment types. In terms of amounts of base oil discharged the discharge loads ranged from 13 to 298 tonnes. The locations included actual production platforms but also abandoned well sites. At each location compendious surveys were carried out, during which 4 stations were sampled at distances between 100 and 2000m from the discharge site. Sediment samples for chemical analysis were collected at all stations and numbers of the OBM-sensitive species Echinocardium cordatum were counted in all samples. Additional macrofauna analyses were performed for 5 locations. The chemical analyses revealed elevated oil concentrations at 5 of the 12 locations, but traces of oil were visually observed in a few samples at another 2 locations. Maximum concentrations, measured over the upper 10 cm layer, were generally in the order of 10-50 mg/kg dry sediment, but at one location a concentration of 200 mg/kg was found, which is comparable to the values found at formerly investigated locations L4-a and P6-b, but considerably lower than at K12-a. This indicates that concentration levels at most locations are generally not as high as found at the locations formerly investigated. Except for one location where oil was found up to 250m from the platform, elevated oil concentrations in surface sediments only occurred at 100m stations. Significant effects on the population densities of E. cordatum were found at 7 of the 12 locations. Further, at 2 locations the abundance pattern of the species was indicative of an effect but there was no statistical significance. Population densities of E. cordaturn appeared to be depressed in the vicinity of two locations where no oil was detected. This indicates that the absence of oil in samples does not necessarily mean that sediment conditions have completely recovered

  6. THE SENSITIVITY OF THE GREENHOUSE EFFECT TO CHANGES IN THE CONCENTRATION OF GASES IN PLANETARY ATMOSPHERES

    Directory of Open Access Journals (Sweden)

    Smadar Bressler

    2013-12-01

    Full Text Available We present a radiative transfer model for Earth-Like-Planets (ELP. The model allows the assessment of the effect of a change in the concentration of an atmospheric component, especially a greenhouse gas (GHG, on the surface temperature of a planet. The model is based on the separation between the contribution of the short wavelength molecular absorption and the long wavelength one. A unique feature of the model is the condition of energy conservation at every point in the atmosphere. The radiative transfer equation is solved in the two stream approximation without assuming the existence of an LTE in any wavelength range. The model allows us to solve the Simpson paradox, whereby the greenhouse effect (GHE has no temperature limit. On the contrary, we show that the temperature saturates, and its value depends primarily on the distance of the planet from the central star. We also show how the relative humidity affects the surface temperature of a planet and explain why the effect is smaller than the one derived when the above assumptions are neglected.

  7. Effects of distribution function nonequilibrium tails on relaxation and transfer processes in rarefied gases

    International Nuclear Information System (INIS)

    Grigoryev, Yu.N.; Mikhalitsyn, A.N.; Yanenko, N.N.

    1984-01-01

    Quantitative characteristics of the nonmonotone relaxation process are studied in a gas of pseudo-Maxwell molecules. Basic results are obtained by a direct numerical integration of the nonlinear Boltzmann equation. The evolution of initial distributions being finite or having exponential asymptotics of tails was researched. In particular, initial data obtained by selective excitation (absorption) against the Maxwell background encountered in laser physics problems have been considered. It is shown that under conditions of a developed effect of nonmonotone relaxation the overpopulation in the velocity range 4 <= upsilon <= 10 exceeds on the average 2-3 times the equilibrium value. For the given particles energy the excitation is preserved during t = 5/6 and the total relaxation time of the overpopulation wave reaches t asymptotically equals 20. The amplitudes and the relaxation time of overpopulation in the ''cupola'' region of distribution are substantially lower than in the case of a developed effect in the tail. The influence of the effect on the kinetics of threshold chemical reaction is studied. From the results it follows that in the process of nonmonotone relaxation the mean rates of binary threshold reactions can exceed more than twice the equilibrium values. This estimate is valid for all power like intermolecular repulsive potentials from the pseudo-Maxwell model up to rigid spheres. Time intervals over which the mean reaction rate exceeds considerably the equilibrium one make from 5 to 15 mean free path times increasing with the decrease in the potential ''rigidity''. (author)

  8. Effects of the harmful gases SO/sub 2/ and HF on plant leaf structure

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H; Wu, Z; Wang, J; Qian, D; Li, Z

    1980-09-01

    The injury induced by SO/sub 2/ appeared progressively; cells contracted and became deformed, the protoplasm and the chloroplasts turned yellow-brown or collapsed while no effects were seen in the vascular bundles. However, the injury induced by HF were different; the cells were not deformed immediately, the protoplasm became red-brown, the mesophyll cells adjacent to stomata or vascular bundles became red-brown too, and there were no effects on chloroplasts, which did not collapse until the tissue necrosis appeared. The cells of xylem and phloem turned red-brown. The process of injury to leaf structure induced by SO/sub 2/ is discussed. It is observed that destruction of chlorophyll and the interruption of photosynthesis by SO/sub 2/ took place first in the palisade tissue, whereas the contraction and disintegration of the cells happened first in the spongy tissue. The effect of HF (the contractive collapse of chlorophyll and mesophyll) occurred after the influence on protoplasm appeared.

  9. Cost-effectiveness of a transitional pharmaceutical care program for patients discharged from the hospital.

    Directory of Open Access Journals (Sweden)

    Fatma Karapinar-Çarkıt

    Full Text Available To improve continuity of care at hospital admission and discharge and to decrease medication errors pharmaceutical care programs are developed. This study aims to determine the cost-effectiveness of the COACH program in comparison with usual care from a societal perspective.A controlled clinical trial was performed at the Internal Medicine department of a general teaching hospital. All admitted patients using at least one prescription drug were included. The COACH program consisted of medication reconciliation, patient counselling at discharge, and communication to healthcare providers in primary care. The primary outcome was the proportion of patients with an unplanned rehospitalisation within three months after discharge. Also, the number of quality-adjusted life-years (QALYs was assessed. Cost data were collected using cost diaries. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios between the groups was estimated by bootstrapping.In the COACH program, 168 patients were included and in usual care 151 patients. There was no significant difference in the proportion of patients with unplanned rehospitalisations (mean difference 0.17%, 95% CI -8.85;8.51, and in QALYs (mean difference -0.0085, 95% CI -0.0170;0.0001. Total costs for the COACH program were non-significantly lower than usual care (-€1160, 95% CI -3168;847. Cost-effectiveness planes showed that the program was not cost-effective compared with usual care for unplanned rehospitalisations and QALYs gained.The COACH program was not cost-effective in comparison with usual care. Future studies should focus on high risk patients and include other outcomes (e.g. adverse drug events as this may increase the chances of a cost-effective intervention. Dutch trial register NTR1519.

  10. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    Science.gov (United States)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  11. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  12. TOPICAL REVIEW: Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    Science.gov (United States)

    Chabert, P.

    2007-02-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries.

  13. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  14. Investigation into the emission of greenhouse effect gases; Onshitsu koka gas no haishutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the situation of greenhouse effect gas emissions of advanced countries based on the reports from them. The advanced countries which concluded the U.N. Framework Convention on Climate Change (OECD member countries, the former U.S.S.R., and East European countries) are to be reported to the office concerned with work for the framework the situation of their greenhouse effect gas emissions according to the obligation of the framework. In and after April 1997, they made the second report. The paper summarized changes in emission amount, the future trend, and the policies/measures mainly taken of nine countries which have already presented the second report (the U.S., the U.K., Germany, Holland, Italy, Norway, Sweden, Finland, and New Zealand) and one country (Russia) which has made only the first report. Moreover, the literature was collected and summed up concerning the mechanism and coefficients of the emission of nitrous oxide and methane. The collected literature was classified into all fields/plural number of fields, energy relation, industrial process relation, relation with the use of organic solvent and other products, agricultural relation, relation with changes in land use and forests, and waste relation. 4 figs., 228 tabs.

  15. The long-term effect of listening to Mozart K.448 decreases epileptiform discharges in children with epilepsy.

    Science.gov (United States)

    Lin, Lung-Chang; Lee, Wei-Te; Wu, Hui-Chuan; Tsai, Chin-Lin; Wei, Ruey-Chang; Mok, Hin-Kiu; Weng, Chia-Fen; Lee, Mei-wen; Yang, Rei-Cheng

    2011-08-01

    Mozart's Sonata for Two Pianos in D major, K.448 (Mozart K.448), has been shown to improve mental function, leading to what is known as the Mozart Effect. Our previous work revealed that epileptiform discharges in children with epilepsy decrease during and right after listening to Mozart K.448. However, the duration of the effect was not studied. In the study described here, we evaluated the long-term effect of Mozart K.448 on epileptiform discharges in children with epilepsy. Eighteen children with epilepsy whose seizures were clinically well controlled with antiepileptic drugs were included. For each child, EEGs had revealed persistent epileptiform discharges for at least 6 months. These patients listened to Mozart K.448 for 8 minutes once a day before bedtime for 6 months. Epileptiform discharges were recorded and compared before and after 1, 2, and 6 months of listening to Mozart K.448. All of the children remained on the same antiepileptic drug over the 6 months. Relationships between number of epileptiform discharges and foci of discharges, intelligence, epilepsy etiology, age, and gender were analyzed. Epileptiform discharges significantly decreased by 53.2±47.4, 64.4±47.1, and 71.6±45.8%, respectively, after listening to Mozart K.448 for 1, 2, and 6 months. All patients except those with occipital discharges showed a significant decrease in epileptiform discharges. Patients with normal intelligence and idiopathic epilepsy had greater decreases than those with mental retardation and symptomatic epilepsy. Age and gender did not affect the results. We conclude that long-term listening to Mozart K.448 may be effective in decreasing epileptiform discharges in children with epilepsy in a chronologically progressive manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effect of Crusher Type and Crusher Discharge Setting On Washability Characteristics of Coal

    Science.gov (United States)

    Ahila, P.; Battacharya, S.

    2018-02-01

    Natural resources have been serving the life of many civilizations, among these coals are of prime importance. Coal is the most important and abundant fossil fuel in India. It accounts for 55% of the country’s energy need. Coal will continue as the mainstay fuel for power generation. Previous researches has been made about the coal feed size and coal type had great influence on the crushing performance of the same jaw crusher and amount of fines generated from a particular coal depends not only upon coal friability but also on crusher type. Therefore, it necessitates crushing and grinding the coal for downstream process. In this paper the effect of crusher type and crusher discharge setting on washability characteristics of same crushed non-coking coal has been studied. Thus four different crushers were investigated at variable parameters like discharge settings, different capacities and feed openings. The experimental work conducted for all crushers with same feed size and HGI (Hardgrove Grindability Index). Based on the investigation the results indicate that the four crushers which has been involved for the experimental work shows that the variation in not only the product size distribution and also reduction ratio. Maximum breakage has been occurred at coarsest size fraction of irrespective of crusher type and discharge setting.

  17. The effect of active antennas on the hot-restrike of high intensity discharge lamps

    International Nuclear Information System (INIS)

    Hoebing, T; Bergner, A; Ruhrmann, C; Mentel, J; Awakowicz, P; Koch, B; Manders, F

    2014-01-01

    The ignition voltage of high intensity discharge (HID) lamps with mercury as the buffer gas may rise from 3 kV for the cold state up to more than 15 kV for a hot lamp. By coating a lamp burner with an electrically conductive layer, which operates as an active antenna, the ignition voltage of HID lamps can be significantly reduced. An active antenna connected to one of the lamp electrodes transports the potential from this electrode to the vicinity of the opposite electrode and generates an enhanced electric field inside the burner. On applying a symmetrically shaped ignition pulse, a weak pre-discharge within the first half-cycle produces free charge carriers initiating ignition of the lamp within the subsequent second half-cycle. The authors present a set-up for electrical and optical investigations of hot-restrike in HID lamps. The ignition voltage is measured for two different polarities as a function of the cooldown time. An analysis of its reduction is given. Furthermore, the pre-discharge is investigated by means of short-time photography. It is demonstrated that a negative polarity of the active antenna within the first half-cycle and a positive polarity within the second one is the most effective succession. (paper)

  18. The Effect of High-Pressure Arc Discharge Plasma on the Degradation of Chlorpyrifos

    International Nuclear Information System (INIS)

    Yin Meiqiang; Ma Tengcai; Zhang Jialiang; Huang Mingjing; Ma Buzhou

    2006-01-01

    A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml

  19. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  20. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  1. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  2. Periphyton indicate effects of wastewater discharge in the near-coastal zone, Perth (Western Australia)

    Science.gov (United States)

    Cosgrove, Jeffrey; Walker, Di; Morrison, Peter; Hillman, Karen

    2004-10-01

    Periphyton communities on artificial substrata were successfully utilised as a biological indicator of the potential eutrophic effects of wastewater discharge into coastal waters off Perth, Western Australia. Biomass and percentage carbonate content measurements of periphyton communities grown in situ indicated that the periphyton primary production (organic weight) was enhanced in the vicinity of the discharge outlets, with a significant negative correlation between distance north of the northern outlet in Whitfords Lagoon and periphyton organic weight (OW) observed in autumn at a depth of 4 m ( r = -0.704, P relatively calm autumn season and substrata at depths of 2 m and 4 m. Thus, in favourable conditions phytoplankton and high relief reef communities are more likely to exhibit a eutrophic influence (in the form of enhanced primary production) of the treated wastewater discharge. Laboratory studies confirmed that treated wastewater, diluted 100-fold to estimate surface concentrations above the wastewater outfalls in the field, stimulates periphyton growth above levels recorded in unpolluted seawater ( F = 12.485; P = 0.0073).

  3. Numerical study on the effect of non-condensable gases on the bi-phasic flow in geothermal wells; Estudio numerico del efecto de gases incondensables sobre el flujo bifasico en pozos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo Gutierrez, Edgar; Garcia Gutierrez, Alfonso; Santoyo Gutierrez, Socrates; Morales Rosas, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-09-01

    The objective of this paper is to describe a numerical study to determine the flow characteristics that predominate in geothermal wells and that produces a significant amount of non-condensable gases. It is known that these gases affect the thermodynamic conditions that dominate the fluid transport in the well or inclusively within the proper producing reservoir, therefore, it is extremely important to evaluate this effect. For this purpose the numerical model Geopozo V2.0 was developed. This model considers the carbon dioxide (CO{sub 2}) as the representative gas of the non-condensable gases present in the geothermal fluid. Due to this consideration, Geopozo V2.0 includes a methodology or the estimation of the thermodynamic and transport properties of geothermal fluids, considering these as a mix of two components: H{sub 2}O (vapor and liquid) and CO{sub 2}, under conditions of monophasic and biphasic flow. The application of Geopozo V2.0 for a typical case of flow in geothermal wells with high CO{sub 2} content revealed that the presence of this gas affects significantly the location of the flashing point inside the well and consequently, the amount of steam produced. This is of importance or the design and selection of the surface and generation equipment, aspect that to this date has been ignored (Suwana, 1991). [Espanol] El objetivo de este trabajo es describir un estudio numerico para determinar las caracteristicas del flujo que predominan en pozos geotermicos y que producen una cantidad significante de gases incondensables. Se tiene conocimiento de que estos gases afectan las condiciones termodinamicas que dominan el transporte de fluidos en el pozo o incluso dentro del mismo yacimiento geotermico productor, por lo que es de suma importancia evaluar dicho efecto. Para ello fue desarrollado el modelo numerico Geopozo V2.0. Este modelo considera al dioxido de carbono (CO{sub 2}) como el gas representativo de los incondensables presentes en el fluido geotermico

  4. On the effective diffusivity of gases in PEM fuel cell electrodes

    International Nuclear Information System (INIS)

    Karan, K.; Pharoah, J.G.

    2004-01-01

    'Full text:' Gas diffusion layer of polymer electrolyte membrane fuel cells (PEMFCs) play a critically important and multiple role as reactant gas distributor, medium for electron and water transport. The most commonly used GDL material is either carbon cloth or carbon paper. Scanning electron microscopic analysis reveals that the GDL microstructure resembles the structure of randomly laid out fibres. Almost all publications on PEMFC models have treated diffusive transport of chemical species through the porous gas diffusion layer (GDL) using correlations originally derived for isotropic granular porous media. Unfortunately, the GDL microstructure does not resemble such a structure. This paper questions the validity of effective diffusivity models used in PEMFC literature and shows that the choice of diffusivity model has significant impact on the prediction of local species fluxes and composition, and consequently on local current densities. (author)

  5. Project ARES analysis of strategies of greenhouse effect gases emissions reduction. Synthesis report july 2002

    International Nuclear Information System (INIS)

    Criqui, P.; Blanchard, O.; Kitous, A.; Hourcade, J.Ch.; Ghersi, F.; Kousnetzoff, N.; Genet, J.; Fahr, St.; Soria, A.; Russ, P.

    2002-07-01

    The ARES project was realized around three main activities. The first part was the elaboration by the CEPII of a scenario of a world economic growth, detailed by region for the year 2030. The second part develops by the IEPE a scenario of allocation of emission quotas for the year 2030, by a gradual reduction of the emissions growth in the developing countries, the evaluation of the scenario from the POLES model, with a comparison of the results with the alternative models described in literature or proposed by the negotiation. The last part is the extension and the development by the CIRED of the 14 zones IMACLIM model, the elaboration of interfaces with POLES and the study of the general equilibrium effects of the different attribution scenari studied by the IEPE. (A.L.B.)

  6. Effect of Organic Vapour on Porous Alumina Based Moisture Sensor in Dry Gases

    Directory of Open Access Journals (Sweden)

    Saakshi DHANEKAR

    2009-08-01

    Full Text Available A capacitive porous alumina based trace moisture sensor in the range of 50 to 500 ppm (V was fabricated by low cost sol-gel technique. The cross-sensitivities due to the presence of organic vapours like ethanol, methanol, acetone and benzene were studied. The change in response and recovery time with ppm for moisture sensing was also calculated. The experimental results conclude that moisture sensor is responsive to the polar organic vapours but has almost negligible response to the nonpolar molecules like benzene. Response of the sensor to the organic vapours as compared to the moisture sensitivity is very less. The effect of ambient temperature was found to be negligible.

  7. Modeling the Effects of the Cathode Composition of a Lithium Iron Phosphate Battery on the Discharge Behavior

    Directory of Open Access Journals (Sweden)

    Won Il Cho

    2013-10-01

    Full Text Available This paper reports a modeling methodology to predict the effects on the discharge behavior of the cathode composition of a lithium iron phosphate (LFP battery cell comprising a LFP cathode, a lithium metal anode, and an organic electrolyte. A one-dimensional model based on a finite element method is presented to calculate the cell voltage change of a LFP battery cell during galvanostatic discharge. To test the validity of the modeling approach, the modeling results for the variations of the cell voltage of the LFP battery as a function of time are compared with the experimental measurements during galvanostatic discharge at various discharge rates of 0.1C, 0.5C, 1.0C, and 2.0C for three different compositions of the LFP cathode. The discharge curves obtained from the model are in good agreement with the experimental measurements. On the basis of the validated modeling approach, the effects of the cathode composition on the discharge behavior of a LFP battery cell are estimated. The modeling results exhibit highly nonlinear dependencies of the discharge behavior of a LFP battery cell on the discharge C-rate and cathode composition.

  8. Effectiveness of evacuating combustible gases by two parallel expellers closely coupled at one end of a gas pipeline

    International Nuclear Information System (INIS)

    Hawryluk, A.; Botros, K.K.

    2008-01-01

    Expeller performance has been formulated in terms of its capability to create suction pressure at the throat. This formulation has been used to assess the effectiveness of evacuating combustible gases from a pipeline section from one end using dual expellers mounted in parallel on two adjacent blow-down stacks. A general formulation was derived to address any situation of asymmetry in the stack resistance, asymmetry in the expellers' power as well overall pipeline resistance to suction flow. Solutions of the closed-form equations were obtained and presented on performance graphs showing the ratio of the suction flow using dual expellers to that using either one in a single mode. It was found that there are conditions at which expelling with dual expellers exceed that of either expeller operating alone. It was also shown that when asymmetric expellers are used, where one expeller is more powerful than the other, the benefits of using two expellers is realized up to a limiting degree of asymmetry, beyond which the weaker expeller could be stalled and then reverse flow

  9. Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation.

    Science.gov (United States)

    Swart, Marcel; Rösler, Ernst; Bickelhaupt, F Matthias

    2006-10-01

    We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases. Copyright 2006 Wiley Periodicals, Inc.

  10. Nipple Discharge

    Science.gov (United States)

    ... any unexpected nipple discharge evaluated by a doctor. Nipple discharge in men under any circumstances could be a problem and needs further evaluation. One or both breasts may produce a nipple discharge, either spontaneously or when you squeeze your ...

  11. Effects of feeding on arterial blood gases in the American alligator Alligator mississippiensis.

    Science.gov (United States)

    Busk, M; Overgaard, J; Hicks, J W; Bennett, A F; Wang, T

    2000-10-01

    Reptiles habitually ingest large meals at infrequent intervals, leading to changes in acid-base status as the net secretion of acid to the stomach causes a metabolic alkalosis (the alkaline tide). In chronically cannulated and undisturbed amphibians and reptiles, the pH changes in arterial blood are, nevertheless, reduced by a concomitant respiratory acidosis (increased P(CO2) caused by a relative hypoventilation). Alligators (Alligator mississippiensis) have been reported to exhibit exceptionally large increases in plasma [HCO3(-)] following feeding, but these studies were based on blood samples obtained by cardiac puncture, so stress and disturbance may have affected the blood gas levels. Furthermore, crocodilian haemoglobin is characterised by a unique binding of HCO3(-) that act to reduce blood oxygen-affinity, and it has been proposed that this feature safeguards oxygen offloading by counteracting pH effects on blood oxygen-affinity. Therefore, to study acid-base regulation and the interaction between the alkaline tide and oxygen transport in more detail, we describe the arterial blood gas composition of chronically cannulated and undisturbed alligators before and after voluntary feeding (meal size 7.5+/-1% of body mass). Digestion was associated with an approximately fourfold increase in metabolic rate (from 0.63+/-0.04 to 2.32+/-0.24 ml O(2) min(-1)kg(-1)) and was accompanied by a small increase in the respiratory gas exchange ratio. The arterial P(O2) of fasting alligators was 60.3+/-6.8 mmHg (1 mmHg = 0.133 kPa) and reached a maximum of 81.3+/-2.7 mmHg at 96 h following feeding; there was only a small increase in lactate levels, so the increased metabolic rate seems to be entirely aerobic. Plasma [HCO3(-)] increased from 24.4+/-1.1 to 36.9+/-1.7 mmol l(-1) (at 24 h), but since arterial P(CO2) increased from 29.0+/-1.1 to 36.8+/-1.3 mmHg, arterial pH remained virtually unaffected (changing from 7.51+/-0.01 to 7.58+/-0.01 at 24 h). The changes in plasma [HCO

  12. Effects of chronic occupational exposure to anaesthetic gases on the rate of neutrophil apoptosis among anaesthetists.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Volatile anaesthetic agents are known to influence neutrophil function. The aim was to determine the effect of chronic occupational exposure to volatile anaesthetic agents on the rate of neutrophil apoptosis among anaesthetists. To test this hypothesis, we compared the rate of neutrophil apoptosis in anaesthetists who had been chronically exposed to volatile anaesthetic agents with that in unexposed volunteers. METHODS: Venous blood (20 mL) was withdrawn from 24 ASA I-II volunteers, from which neutrophils were isolated, and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. RESULTS: At 1 h (but not at 12 and 24 h) in culture, the rate of neutrophil apoptosis was significantly less in the anaesthetists--13.8 (12.9%) versus 34.4 (12.1%) (P = 0.001). CONCLUSIONS: Chronic occupational exposure to volatile anaesthetic agents may inhibit neutrophil apoptosis. This may have implications for anaesthetists and similarly exposed healthcare workers in terms of the adequacy of their inflammatory response.

  13. A comparative study of the broadening effect on rotational lines by methane and noble gases

    International Nuclear Information System (INIS)

    Kircz, J.G.

    1979-01-01

    Line broadening measurements for the mixtures HCl-CH 4 and HCl-CD 4 have been performed and the results of these experiments are reported. Current theoretical models for the systems studied are briefly discussed. In order to identify specific effects the authors have tried to find a generalisation for linewidth cross-sections for the HCl-noble gas systems. This is done in the spirit of the well known corresponding state treatment in statistical mechanics in an attempt to find, in terms of reduced variables, a generalised intermolecular potential for these systems. Extensive calculations on the HCl-Ar and HCl-Kr intermolecular potentials, as derived from linewidth measurements, are reported in an attempt to extract a more exact potential for these systems. The results are compared with other recent results from the literature. The use of a semi-empirical method for the evaluation of the experimental data is described. This empirical method has been used in a comparison between the HCl-noble gas experiments and the present experiments of HCl-methane. The possibility of splitting the observed data into a 'noble gas' part and a 'extra' part due to the intermolecular interactions which result from the coupling of the HCl rotations with the internal degrees of freedom of the methane molecules is discussed. (Auth.)

  14. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  15. Studies on the mechanism of injurious effects of toxic gases on crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Taniyama, T; Arikado, H; Iwata, Y; Sawanaka, K

    1972-01-01

    The experiment was undertaken to elucidate after-effects of SO/sub 2/-treatment for long period on photosynthesis and dark respiration in the rice plant after it was released from the treatment. Treatment with SO/sub 2/ was for 90 hours at the tillering stage and 66 hours at the maximum number of tillers stage. The concentrations of SO/sub 2/ to which the plant was exposed were 0, 1.2, 4.0 and 10 ppM at the latter stage, and 0, 0.271, 0.719 and 1.415 at the former stage. Apparent photosynthesis of the rice plant exposed to SO/sub 2/ for long period, showed a considerable decrease 24 hours after the plant had been released from fumigation with the gas at both the tillering and maximum number of tillers stages, this being true to any concentrations of the gas. Gross photosynthesis of the rice plant was gradually decreased with an increase in the concentration of the gas and the difference between the control and treated plants in apparent and gross photosynthesis was enlarged with an increase in the light intensity. Light compensation point of the rice plant moved towards a higher light intensity in accordance with the concentration of the gas. Under the condition in a single leaf, the light-curve of carbon assimilation in the rice plant treated with SO/sub 2/ for 80 hours showed always lower values than that of the control (SO/sub 2/-oppM) at 1st, 3rd and 6th days after SO/sub 2/ was removed, respectively. As increasing in the SO/sub 2/ concentrations, apparent photosynthesis decreased proportionally. From the above-mentioned facts it was demonstrated that the decrease of dry matter production in the rice plant exposed to the gas for long period might be resulted not only from a decrease of photosynthesis and an increase of dark respiration during SO/sub 2/-treatment, but also from a decrease of photosynthesis after the gas had been removed.

  16. Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Morita, K.; Jia, C.Q. [University of Toronto, Toronto, ON (Canada)

    2010-07-01

    Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO{sub 2}) and sulfur trioxide (SO{sub 3}) may interfere in the removal process. Most of the current literature suggests that SO{sub 2} hinders elemental mercury (Hg{sup 0}) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO{sub 2} with oxygen (O{sub 2}) enhances Hg{sup 0} oxidation by promoting Cl2 formation below 100{sup o}C. However, studies in which SO{sub 2} was shown to have a positive correlation with Hg{sup 0} oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO{sub 3} are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO{sub 3} is an inevitable product of SO{sub 2} oxidation by O{sub 2}, a reaction that hinders Hg{sup 0} oxidation, it readily reacts with water vapor, forms sulfuric acid (H{sub 2 }SO{sub 4}) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H{sub 2}SO{sub 4} on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

  17. Comparison of thermal and radical effects of EGR gases on combustion process in dual fuel engines at part loads

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Khoshbakhti Saray, R.; Sohrabi, A.; Niaei, A.

    2007-01-01

    Dual fuel engines at part load inevitably suffer from lower thermal efficiency and higher emission of carbon monoxide and unburned fuel. This work is conducted to investigate the combustion characteristics of a dual fuel (Diesel-gas) engine at part loads using a single zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. In this home made software, the presence of the pilot fuel is considered as a heat source that is deriving form two superposed Wiebe's combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR) and species concentration. Therefore, this work is an attempt to investigate the combustion phenomenon at part load and using exhaust gas recirculation (EGR) to improve the above mentioned problems. Also, the results of this work show that each of the different cases of EGR (thermal, chemical and radical cases) has an important role on the combustion process in dual fuel engines at part loads. It is found that all the different cases of EGR have positive effects on the performance and emission parameters of dual fuel engines at part loads despite the negative effect of some diluent gases in the chemical case, which moderates too much the positive effects of the thermal and radical cases of EGR. Predicted values show good agreement with corresponding experimental values over the whole range of engine operating conditions. Implications will be discussed in detail

  18. Effects of General and Epidural Anaesthesia in Newborn’s Stres Hormones, Blood Gases, and Apgar Scores in Elective Cesarean Section

    Directory of Open Access Journals (Sweden)

    Meral Ezberci

    2005-12-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of general and epidural anaesthesia in newborn’s stres hormones, blood gases, and Apgar scores in elective cesarean section. MATERIALS-METHODS: 50 patients in ASA II (American Society of Anesthesiology class who would undergo elective cesarean section in University of Kahramanmaras Sutcuimam, Department of Anaesthesiology and Reanimation included in the study and randomized into two equal groups (General anaesthesia: Group G and Epidural anaesthesia: Group E. In both groups, newborn stres hormones (TSH, cortisol, and insulin, blood gases, and Apgar scores were studued. All patients received famotidine and granisetron iv 30 min before operations in premedication room. In the general anaesthesia group; aritmal, propofol, and succinylcholine was used for induction and muscle relaxation. Following the induction, positive pressure ventilation of the lungs was started immediately using a 50% N2O + O2 mixture. After delivery of the baby, anaesthesia and muscle relaxation was maintained by 50% N2O +O2, 0,5-1% MAC isoflurane, and cisatracurium. In the epidural anaesthesia group; epidural anaesthesia was performed with 0,375% bupivacaine. The epidural needle inserted through L2-3 or L3-4 interspace. After achieving T4-5 neural blockade, the operation was started. Blood samples for newborn stres hormones and blood gases were taken from umblical vein. The Apgar scores were recorded at 1 min and again at 5 min after the delivery by same person. RESULTS: There were no differences in newborn stress hormones between two groups. In newborn blood gases analyses, only SO2 changes were statistically significant between two groups. There were no differences in newborn Apgar scores between two groups. CONCLUSION: With these results, we concluded that each of the general and epidural anaesthesia techniques have similar effects on newborn blood gases, stress hormones and Apgar scores and can be acceptable

  19. The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles

    KAUST Repository

    Hamdan, Ahmad; Čerņevičs, Kristians; Cha, Min

    2017-01-01

    We investigated the effect of a liquid's electrical conductivity (EC) on the physical characteristics of electrical discharges in liquids with gaseous bubbles. Argon gas was supplied into the liquid to form an array of gaseous bubbles in between two

  20. Effect of ''outer'' sources and dissipative processes on abundance of inert gases in atmospheres of the Earth group planets

    International Nuclear Information System (INIS)

    Pavlov, A.K.

    1981-01-01

    The problem of abundance of inert gases in atmospheres of the Earth group planets is discussed. It is shown that introduction of He, Ne and 36 Ar into the Mars and Mercury atmospheres with interplanetary dust and from other external sources require the presence of special mechanisms of losses for these gases. For the Mars atmosphere dissipation on atmosphere interaction with solar wind during the periods of anomalously low temperatures is a probable mechanisms of Ne and 36 Ar losses. For the Mercury thermal dissipation for He and polar wind for other inert gases are possible. For all the planets of the Earth group dissipation on interaction with solar wind and introduction with interplanetary dust could play an important role at the early stages of evolution of planets [ru

  1. Effectiveness of recycling light in ultra-bright short-arc discharge lamps.

    Science.gov (United States)

    Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M

    2007-10-17

    Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

  2. EFFECT OF THE CRITICAL IRRADIANCE ON PHOTOVOLTAIC WATER PUMP DISCHARGE UNDER EGYPTIAN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Mamdouh Abbas HELMY

    2015-04-01

    Full Text Available The present investigation aimed to study the effect of critical irradiance due to changing tilt angle of PV panel and tracking sun on submersible pump discharge. The authors used solar tracker and suitable tilt angle for the panel to increase the time interval during which the water pump operates. For the same irradiance collected by the PV, all systems pump the same amount of water, although they occur at different periods of the day. The pump itself 'does not know whether the electric power comes from any processes, as long as it has the same intensity.

  3. Respiratory properties of blood and arterial blood gases in the tegu lizard: effects of temperature and hypercapnia.

    Science.gov (United States)

    Wood, S C; Glass, M L; Andersen, N A; Heisler, N

    1987-01-01

    The effects of body temperature and hypercapnia (7% inspired CO2) on arterial blood gases, plasma pH, and the characteristics of the blood oxygen dissociation curve were determined in Tegu lizards (Tupinambis nigropunctatus). Arterial pH fell from 7.59 to 7.50 when body temperature was increased from 25 to 35 degrees C. The pH/temperature coefficient (delta pH/delta t = -0.009 U/degrees C) was half of that predicted on the basis of 'constant relative alkalinity' and the alphastat hypothesis. The fall in plasma pH resulted from a decrease in plasma [HCO3-], and a rise in plasma Pco2. The O2 affinity of Tegu blood, expressed by the partial pressure at half saturation (P50), decreased with temperature in vitro from 42.3 to 49.6 torr at pH 7.4. The apparent enthalpy (delta H = -3.1 kcal/mol) is about 1/4 of that of human blood. In vivo, the arterial blood oxygen saturation decreased from 89% at 25 degrees to 82% at 35 degrees C. Arterial Po2 increased from 61 to 71 torr as expected from the right-shift of the oxygen dissociation curve. During environmental hypercapnia (7% CO2, 21% O2, 72% N2 inspired concentrations), arterial pH decreased to 7.28. Arterial O2 saturation remained constant and arterial Po2 increased from 61 to 85 torr due to the right-shift of the oxygen dissociation curve. The comparatively small effect of changes in temperature on the oxygen affinity of Tegu blood (directly according to the delta H value, and indirectly via changes in blood pH) results in a relatively small right shift of the oxygen dissociation curve, and accordingly in relatively high arterial and tissue Po2 values also at higher temperatures.

  4. [Gases in vitreoretinal surgery].

    Science.gov (United States)

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.

  5. Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds.

    Science.gov (United States)

    Kim, Je-Wook; Puligundla, Pradeep; Mok, Chulkyoon

    2017-01-01

    Different pathogenic microorganisms have been reported to cause sprouts-associated outbreaks. In order to sterilise and enhance the germination of seeds, non-thermal plasma has been increasingly investigated in the field of agricultural science as an alternative to the traditional pre-sowing seed treatments. This work aimed to evaluate the effect of corona discharge plasma jet (CDPJ) on disinfection of the natural bio-contaminants of broccoli seed and also studied the plasma effect on sprout seed germination rate and physico-chemical properties of sprouts. Aerobic bacteria, moulds and yeasts, B. cereus, E. coli, Salmonella spp. were detected on the broccoli seed surface. After 0-3 min treatment using CDPJ, the detected microorganisms were reduced in the range of 1.2-2.3 log units. Inactivation patterns were better explained using pseudo-first-order kinetics. The plasma treatment of seeds up to 2 min exhibited a positive effect on germination rate, seedling growth. The physico-chemical and sensory characteristics of sprouts were unaffected due to the CDPJ treatment of their respective seeds. Corona discharge plasma jet can potentially be used for microbial decontamination of broccoli seeds. In addition, the plasma treatment of broccoli sprout seeds has enabled a significant enhancement in their germination rate and seedling growth without compromising physico-chemical and sensory characteristics of their corresponding sprouts. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Materia, Stefano [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, Silvio; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Terray, Laurent [Sciences de l' Univers au CERFACS, URA1875 CERFACS/CNRS, Toulouse (France)

    2012-11-15

    The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea

  7. Municipal wastewater characteristics in Thailand and effects of soft intervention measures in households on pollutant discharge reduction.

    Science.gov (United States)

    Tsuzuki, Y; Koottatep, T; Jiawkok, S; Saengpeng, S

    2010-01-01

    In developing countries with large Millennium Development Goals (MDGs) sanitation indicator, pollutant discharge reduction function of wastewater treatment systems should be considered. In this paper, pollutant generations per capita (PGCs) and pollutant discharges per capita (PDCs) are estimated as a base dataset for wastewater management in Thailand. PDCs of black water, i.e. toilet wastewater, are found to be much smaller than PGCs of black water. However, PDCs of gray water, i.e. municipal wastewater other than toilet wastewater are large. Gray water is often discharged without treatment and contributes much to ambient water deterioration. Moreover, possible 5-day biological oxygen demand (BOD5) discharge reductions with "soft interventions", i.e. measurements in households to reduce wastewater pollutant discharge such as using a paper filter or a plastic net in kitchen sinks and so on, are estimated as 39, 21 and 34% for BOD5, total Kjeldahl nitrogen (TKN) and phosphate (PO4-P), respectively. For the estimation, environmental accounting housekeeping (EAH) books of domestic wastewater, spreadsheets with pollutant discharges by water usages and possible effects of "soft interventions" are applied. The framework of this study with "soft intervention" effects on pollutant discharge reductions should enhance wastewater management especially in the areas under development of wastewater treatment systems.

  8. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  9. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K

    2016-05-18

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.

  10. The effects of brewery effluent discharge on the water quality and ...

    African Journals Online (AJOL)

    Effluent discharge into the river significantly altered the water quality. Monitoring of effluent discharge into the aquatic environment and strict adherence to regulatory limits will halt further degradation of the environment. Key words: Water, sediment physico-chemistry, distribution coefficient, effluent discharge, tropical river ...

  11. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen.

    Science.gov (United States)

    Yang, Bin; Zhou, Minghua; Lei, Lecheng

    2005-07-01

    The technology of combined liquid and gas phase discharges (LGD) using pulsed high voltage for dyes degradation was developed in this study. Apparent synergistic effects for Acid orange II (AO) degradation in the presence of oxygen were observed. The enhancement of AO degradation rate was around 302%. Furthermore, higher energy efficiency was obtained comparing with individual liquid phase discharge (LD) or gas phase discharge process (GD). The AO degradation in the presence of oxygen by LGD proceeded through the direct ozone oxidation and the ozone decomposition induced by LD. Important operating parameters such as electrode distance, applied voltage, pulse repetition rate, and types of dyes were further investigated.

  12. MODELING THE UPTAKE OF GASES BY THE DOG NASAL-PHARYNGEAL REGION: EFFECTS OF MORPHOMETRIC AND PHYSICOCHEMICAL FACTORS

    Science.gov (United States)

    Generally, the uptake of reactive gases by the respiratory tract is simulated assuming that all path from the trachea to the most distal airspaces ore equivalent. s this is not the case, especially for non-humans, the adequacy of this approach to predict doses that con be useful ...

  13. The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors.

    Science.gov (United States)

    Li, Guiyang; Zhang, Biao; Yan, Jun; Wang, Zhonggang

    2016-01-21

    This work reveals that furfural and 2-thenaldehyde can readily react with melamine via "one-step" polycondensation to yield hyper-cross-linked sulfur-, nitrogen- and oxygen-rich microporous polyaminals with promising applications in adsorption of gases and toxic organic vapors.

  14. Electric-Discharge Machining Techniques for Evaluating Tritium Effects on Materials

    International Nuclear Information System (INIS)

    Morgan, M.J.

    2003-01-01

    In this investigation, new ways to evaluate the long-term effects of tritium on the structural properties of components were developed. Electric-discharge machining (EDM) techniques for cutting tensile and fracture toughness samples from tritium exposed regions of returned reservoirs were demonstrated. An existing electric discharge machine was used to cut sub-size tensile and fracture toughness samples from the inside surfaces of reservoir mockups. Tensile properties from the EDM tensile samples were similar to those measured using full-size samples cut from similar stock. Although the existing equipment could not be used for machining tritium-exposed hardware, off-the shelf EDM units are available that could. With the right equipment and the required radiological controls in place, similar machining and testing techniques could be used to directly measure the effects of tritium on the properties of material cut from reservoir returns. Stress-strain properties from tritium-exposed reservoirs would improve finite element modeling of reservoir performance because the data would be representative of the true state of the reservoir material in the field. Tensile data from samples cut directly from reservoirs would also complement existing shelf storage and burst test data of the Life Storage Program and help answer questions about a specific reservoir's processing history and properties

  15. Effects of Neuroactive Drugs in the Discharge Patterns of Microsternarchus (Hypopomidae: Gymnotiformes) Electric Organ.

    Science.gov (United States)

    de Jesus, Isac Silva; Ferreira, Milena; Silva-Júnior, Urbano Lopes; Alves-Gomes, José Antônio

    2017-12-01

    Considering the conserved nature of synaptic physiology among vertebrates, we tested the effects of three psychotropics (diazepam, doxapram, and nicotine) on Microsternarchus cf. bilineatus, measuring 10 parameters associated to the electric organ discharges rhythm and waveform before and after the administration of each drug and a control group. There were statistically significant differences (p electric organ's (EO) firing rate, regardless of the expected stimulant or depressor effect of the drugs on the central nervous system (CNS). The intensity of the response changed with the treatment. The observed changes in the fishes' behavior may be a result of the drugs' direct action on the CNS or a combination of this with systemic effects of each substance tested, also in the EO.

  16. [Competitive study of the effects of naloxone and of almitrine on fentanyl analgesia in the anesthetized dog: effects on the muzzle opening reflex and blood gases].

    Science.gov (United States)

    Dauthier, C; Gaudy, J H; Willer, J C

    1980-01-01

    The search for a technique making it possible to dissociate the analgesia and ventilatory depression of central analgesics led to a comparison of the effects of naloxone, a specific morphinomimetic antagonist, with almitrine, a ventilatory stimulant with a peripheral action, on muzzle opening reflex and blood gases. Five male dogs (Beagles, aged one year), anaesthetised with Alfetesine were treated separately with the two drugs used alone and after fentanyl analgesia (injection of fractionnated doses up to the threshold of apnoea). The association of the two drugs was also tested in tyhe dog after analgesia. The parameters studied were muzzle opening reflex, as an indication of analgesia, and blood gases, and were observed for 45 minutes, including 15 minutes control. 1 - The intravenous injection of 1,2 mg of naloxone had the effect of increasing the surface area of muscle potentials with a maximum of 7 per cent (p 0.001) at the 15 th minute. By contrast, no significant change in blood gases was seen. In the same dogs given fentanyl analgesia, naloxone not only reversed respiratory depression but had a stimulatory effect on MOR reaching 7 per cent (p 0.001) at the 30 th minute. 2 - The effects of 1 mg.kg-1 of almitrine were characterised by a fall in MOR for a period equal to that of the study and a minimum of 7.8 per cent (p 0.001) at the 20 th minute. At the same time, marked ventilatory stimulation was seen. PO2 rose by 22.7 per cent (p 0.02) at the 5 th minute. PCO2 fell during the 30 minutes studied with a minimum of 39.6 per cent (p 0.01) at the 20 th minute. Almitrine did not antagonise the depression of MOR caused by fentanyl but reversed the respiratory depression of the analgesic, increasing PO2 by 26 per cent (p 0.01) and decreasing PCO2 by 25.7 per cent (p 0.01). 3 - The combination of both drugs cancelled out the abolition of the reflex by fentanyl then facilitated it up to 24.7 per cent (p 0.001) in comparison with the animal not receiving any

  17. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  18. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  19. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  20. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  1. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems

    Science.gov (United States)

    Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A.

    2010-01-01

    Recent research has shown that small, mountainous river systems (SMRS) account for a significant fraction of the global flux of sediment and particulate organic carbon (POC) to the ocean. The enormous number of SMRS precludes intensive studies of the sort conducted on large systems, necessitating development of a conceptual framework that permits cross-system comparison and scaling up. Herein, we introduce the geomorphic concept of effective discharge to the problem of source-to-sink POC transport. This idea recognizes that transport effectiveness is the product of discharge frequency and magnitude, wherein the latter is quantified as a power-law relationship between discharge and load (the 'rating curve'). An analytical solution for effective discharge (Qe) identifies two key variables: the standard deviation of the natural logarithm of discharge (??q), and the rating exponent of constituent i (bi Data from selected SMRS are used to show that for a given river Qe-POC transport in SMRS should exploit the conceptual framework provided herein and seek to identify how constituent-specific effective discharges vary between rivers and respond to perturbations. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  2. Elements for a policy of greenhouse effect gases reduction; Elements pour une politique de reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO{sub 2} emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  3. A Preliminary Investigation of the Effect of Ocean Thermal Energy Conversion (OTEC Effluent Discharge Options on Global OTEC Resources

    Directory of Open Access Journals (Sweden)

    Gérard Nihous

    2018-03-01

    Full Text Available A simple algorithm previously used to evaluate steady-state global Ocean Thermal Energy Conversion (OTEC resources is extended to probe the effect of various effluent discharge methodologies. It is found that separate evaporator and condenser discharges potentially increase OTEC net power limits by about 60% over a comparable mixed discharge scenario. This stems from a relatively less severe degradation of the thermal resource at given OTEC seawater flow rates, which corresponds to a smaller heat input into the ocean. Next, the most practical case of a mixed discharge into the mixed layer is found to correspond to only 80% of the so-called baseline case (mixed discharge at a water depth of initial neutral buoyancy. In general, locating effluent discharges at initial neutral-buoyancy depths appears to be nearly optimal in terms of OTEC net power production limits. The depth selected for the OTEC condenser effluent discharge, however, has by far the greatest impact. Clearly, these results are preliminary and should be investigated in more complex ocean general circulation models.

  4. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  5. [Experimental study of the effects of impulse-electric discharge on chemotaxis and cytoadhesion of urinary infection pathogens].

    Science.gov (United States)

    Kuderinov, S K; Azizov, I S; Turgunov, E M; Shambilova, N A

    2006-01-01

    The aim of the experimental study was to evaluate effects of impulse-electric discharge in liquid on chemotaxis and cytoadhesion of urinary infection pathogens. Chemotaxis was determined in respect to the lung, liver, spleen, kidney, ureter, urinary bladder, urethra of white mice by S. Likholetov's modified method. Cytoadhesion was assessed by V. Brilis. The experiments show that the impulse-electric discharge holds promise for urological practice.

  6. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-02-01

    The effects of self-discharge on the performance of symmetric electric double-layer capacitors (EDLCs) and active electrolyte-enhanced supercapacitors were examined by incorporating self-discharge into electrochemical capacitor models during charging and discharging. The sources of self-discharge in capacitors were side reactions or redox reactions and several impurities and electric double-layer (EDL) instability. The effects of self-discharge during capacitor storage was negligible since it took a fully charged capacitor a minimum of 14.0 days to be entirely discharged by self-discharge in all conditions studied, hence self-discharge in storage condition can be ignored. The first and second charge-discharge cycle energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a capacitor of electrode effective conductivity α1 = 0.05 S/cm with only EDL instability self-discharge with current density J_{{VR}} = 1.25 × 10-3 A/cm2 were 72.33% and 72.34%, respectively. Also, energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a similar capacitor with both side reactions and redox reactions and EDL instability self-discharges with current densities J_{{VR}} = 0.00125 A/cm2 and J_{{{{VR}}1}} = 0.0032 A/cm2 were 38.13% and 38.14% respectively, compared with 84.24% and 84.25% in a similar capacitor without self-discharge. A capacitor with only EDL instability self-discharge and that with both side reactions and redox reactions and EDL instability self-discharge lost 9.73 Wh and 28.38 Wh of energy, respectively, through self-discharge during charging and discharging. Hence, EDLCs charging and discharging time is significantly dependent on the self-discharge rate which are too large to be ignored.

  7. Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.

    Science.gov (United States)

    Brooks, Lucy; Melsom, Fredrik; Glette, Tormod

    2015-07-15

    Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of Hydroxyl Radicals on Introduced Organisms of Ship's Ballast Water Based Micro-Gap Discharge

    International Nuclear Information System (INIS)

    Bai Mindong; Zhang Zhitao; Bai Mindi; Yang Bo; Bai Xiyao

    2007-01-01

    With the physical method of micro-gap gas discharge, OH· radicals were produced by the ionization of O 2 in air and H 2 O in the gaseous state, in order to explore more effective method to treat the ship's ballast water. The surface morphology of Al 2 O 3 dielectric layer was analysed using Atomic Force Microscopy (AFM), where the size of Al 2 O 3 particles was in the range of 2 μm to 5 μm. At the same time, the biochemical effect of hydroxyl radicals on the introduced organisms and the quality of ship's ballast water were studied. The results indicate that the main reasons of cell death are lipid peroxide and damage of the antioxidant enzyme system in Catalase (CAT), Peroxidase (POD) and Superoxide dismutase (SOD). In addition, the quality of the ballast water was greatly improved

  9. Effects of ramp reset pulses on the address discharge in a shadow mask plasma display panel

    International Nuclear Information System (INIS)

    Yang Lanlan; Tu Yan; Zhang Xiong; Jiang Youyan; Zhang Jian; Wang Baoping

    2007-01-01

    A two-dimensional self-consistent numerical simulation model is used to analyse the effects of the ramp reset pulses on the address discharge in a shadow mask plasma display panel (SM-PDP). Some basic parameters such as the slope of the ramp pulse and the terminal voltage of the ramp reset period are varied to investigate their effects. The simulation results illustrate that the wall voltage is mainly decided by the terminal voltage and the firing voltage at the end of the ramp reset period. Moreover, the variation of the ramp slope will also bring a few modifications to the wall voltage. The priming particles in the beginning of the addressing period are related to the slope of the ramping down voltage pulse. The simulation results can help us optimize the driving scheme of the SM-PDP

  10. Effect of kicker circuit inductance on the transmission-line discharging

    International Nuclear Information System (INIS)

    Feng Deren; Wang Xiangqi; Shang Lei; Pei Yuanji; Fan Kuanjun

    2004-01-01

    Circuit inductance exists at discharging circuit of transmission-line, it includes the inductance at the main switch of thyratron when conducts, the linking inductance between the linking cables, the matching resistance inductance and the load inductance. When a long pulse is generated by transmission-line, the circuit inductance can be omitted. However, when the pulse is short (such as shorter than 200 ns), especially when ferromagnetic core kicker acts as the load, the effect is obvious. The short pulse current is needed in order to generate long time interval synchronous radiation light pulses by using online assembly of pulse convex orbit and DC convex orbit. This paper analyses the effect and presents several experimental results. It also supposes two practical cases to decrease the rise time of the pulse

  11. Effect of annealing process on TiN/TiC bilayers grown by pulsed arc discharge

    International Nuclear Information System (INIS)

    Ramos-Rivera, L.; Escobar, D.; Benavides-Palacios, V.; Arango, P.J.; Restrepo-Parra, E.

    2012-01-01

    In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 °C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 °C, TiO 2 phase begun to appear and it was well observed at 500 °C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.

  12. Effect of electric discharge machining on the fatigue life of Inconel 718

    Science.gov (United States)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  13. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    Science.gov (United States)

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Temperature Effect on Electrical Treeing and Partial Discharge Characteristics of Silicone Rubber-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizi Ahmad

    2015-01-01

    Full Text Available This study investigated electrical treeing and its associated phase-resolved partial discharge (PD activities in room-temperature, vulcanized silicone rubber/organomontmorillonite nanocomposite sample materials over a range of temperatures in order to assess the effect of temperature on different filler concentrations under AC voltage. The samples were prepared with three levels of nanofiller content: 0% by weight (wt, 1% by wt, and 3% by wt. The electrical treeing and PD activities of these samples were investigated at temperatures of 20°C, 40°C, and 60°C. The results show that the characteristics of the electrical tree changed with increasing temperature. The tree inception times decreased at 20°C due to space charge dynamics, and the tree growth time increased at 40°C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60°C, more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred. This led to an increase in electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. This reflects an enhanced stability in the nanocomposite electrical properties compared with the base polymer.

  16. The effect of the pulse repetition rate on the fast ionization wave discharge

    Science.gov (United States)

    Huang, Bang-Dou; Carbone, Emile; Takashima, Keisuke; Zhu, Xi-Ming; Czarnetzki, Uwe; Pu, Yi-Kang

    2018-06-01

    The effect of the pulse repetition rate (PRR) on the generation of high energy electrons in a fast ionization wave (FIW) discharge is investigated by both experiment and modelling. The FIW discharge is driven by nanosecond high voltage pulses and is generated in helium with a pressure of 30 mbar. The axial electric field (E z ), as the driven force of high energy electron generation, is strongly influenced by PRR. Both the measurement and the model show that, during the breakdown, the peak value of E z decreases with the PRR, while after the breakdown, the value of E z increases with the PRR. The electron energy distribution function (EEDF) is calculated with a model similar to Boeuf and Pitchford (1995 Phys. Rev. E 51 1376). It is found that, with a low value of PRR, the EEDF during the breakdown is strongly non-Maxwellian with an elevated high energy tail, while the EEDF after the breakdown is also non-Maxwellian but with a much depleted population of high energy electrons. However, with a high value of PRR, the EEDF is Maxwellian-like without much temporal variation both during and after the breakdown. With the calculated EEDF, the temporal evolution of the population of helium excited species given by the model is in good agreement with the measured optical emission, which also depends critically on the shape of the EEDF.

  17. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker.

    Science.gov (United States)

    Alieva, Roza R; Belogurova, Nadezhda V; Petrova, Alena S; Kudryasheva, Nadezhda S

    2014-05-01

    Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.

  18. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  19. The effect of solvent component on the discharge performance of Lithium-sulfur cell containing various organic electrolytes

    International Nuclear Information System (INIS)

    Kim, Seok; Jung, Yongju; Lim, Hong S.

    2004-01-01

    The effect of solvent component on the discharge performance of lithium-sulfur (Li/S) cell and the optimal composition of ternary electrolyte for the improved discharge performance of the cell have been investigated. The capacity value and capacity stability with cycle are dependent on the nature of solvent as well as the composition of mixed solvent. The change trend of discharge performance as a function of content of each solvent component is studied. Capacity value increases as the 1,3-dioxolane (DOX) content decreases. Average discharge voltage shows larger value when the 1,2-dimethoxy ethane (DME) content is small. Finally, we have obtained the optimal solvent composition by using a statistical method

  20. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    Science.gov (United States)

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  2. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liqiang, QI, E-mail: qi_liqiang@163.com; Yajuan, Zhang

    2013-07-15

    Highlights: • The influence mechanism of water vapor humidification on SO{sub 2} oxidation was analyzed. •The effects of water vapor on the specific resistance in fly ash in ESPs were reported. • The effects of water vapor on the size distribution and specific surface area of fly ash were discussed. • The adhesive characteristic of fly ash in different water vapor was experimented. -- Abstract: Sulfur dioxide (SO{sub 2}) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5 μm in diameter from flue gas. SO{sub 2} removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO{sub 3}{sup −} to SO{sub 4}{sup 2−}. Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased.

  3. Method and apparatus for removing radioactive gases from a nuclear reactor

    International Nuclear Information System (INIS)

    Frumerman, R.; Brown, W.W.

    1975-01-01

    A description is given of a method for removing radioactive gases from a nuclear reactor including the steps of draining coolant from a nuclear reactor to a level just below the coolant inlet and outlet nozzles to form a vapor space and then charging the space with an inert gas, circulating coolant through the reactor to assist the release of radioactive gases from the coolant into the vapor space, withdrawing the radioactive gases from the vapor space by a vacuum pump which then condenses and separates water from gases carried forward by the vacuum pump, discharging the water to a storage tank and supplying the separated gases to a gas compressor which pumps the gases to gas decay tanks. After the gases in the decay tanks lose their radioactive characteristics, the gases may be discharged to the atmosphere or returned to the reactor for further use

  4. Modeling the cathode region of noble gas mixture discharges using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Donko, Z.; Janossy, M.

    1992-10-01

    A model of the cathode dark space of DC glow discharges was developed in order to study the effects caused by mixing small amounts (≤2%) of other noble gases (Ne, Ar, Kr and Xe) to He. The motion of charged particles was described by Monte Carlo simulation. Several discharge parameters (electron and ion energy distribution functions, electron and ion current densities, reduced ionization coefficients, and current density-voltage characteristics) were obtained. Small amounts of admixtures were found to modify significantly the discharge parameters. Current density-voltage characteristics obtained from the model showed good agreement with experimental data. (author) 40 refs.; 14 figs

  5. N and Si Implantation Effect on Structural and Electrical Properties of Bridgman grown GaSe Single Crystal

    International Nuclear Information System (INIS)

    Karabulut, O.

    2004-01-01

    N and Si implantation to GaSe single crystals were carried out parallel to c-axis with ion beam of about 10 1 6 ions/cm 2 dose having energy values 30, 60 and 100 keV. Ion implantation modifications on Bridgman grown GaSe single crystals have been investigated by means of XRD, electrical conductivity, absorption and photoconductivity measurements. XRD measurements revealed that annealing results in a complete recovery of the crystalline nature that was moderately reduced upon implantation. It was observed that both N- and Siimplantation followed by annealing process decreased the resistivity values from 10 7 to 10 3 .-cm. The analysis of temperature dependent conductivity showed that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Absorption and spectral photoconductivity measurements showed that the band edge is shifted in the implanted sample. All these modifications were attributed to the structural modifications and continuous shallow trap levels introduced upon implantation and annealing

  6. Application of information statistical theory to the description of the effect of heat conduction on the chemical reaction rate in gases

    International Nuclear Information System (INIS)

    Fort, J.; Cukrowski, A.S.

    1998-01-01

    The effect of the heat flux on the rate of chemical reaction in dilute gases is shown to be important for reactions characterized by high activation energies and in the presence of very large temperature gradients. This effect, obtained from the second-order terms in the distribution function (similar to those obtained in the Burnett approximation to the solution of the Boltzmann equation), is derived on the basis of information theory. It is shown that the analytical results describing the effect are simpler if the kinetic definition for the nonequilibrium temperature is introduced than if the thermodynamic definition is introduced. The numerical results are nearly the same for both definitions. (author)

  7. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    International Nuclear Information System (INIS)

    Shimizu, T; Zimmermann, J L; Morfill, G E

    2011-01-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O 2 /N 2 and H 2 O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  8. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Science.gov (United States)

    Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.

    2011-02-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O2/N2 and H2O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  9. Effects of the ion-solid interaction in glow discharge vapour deposition polymerization of pyromellitic dianhydride

    International Nuclear Information System (INIS)

    Maggioni, G.; Carturan, S.; Rigato, V.; Pieri, U.

    2000-01-01

    Low energy He ion bombardment of pyromellitic dianhydride monomer used in glow discharge vapour deposition polymerization (GDVDP) of polyimide coatings and its effects on the film deposition process have been studied. The sublimation of the monomer molecules and the simultaneous formation of a damaged, carbon-rich surface layer on the target are discussed from a theoretical point of view based on simulations of the ion-solid interaction. Optical emission and mass spectrometry have been used to analyse the species emitted from the target. In order to study the time evolution of the PMDA target damage, the deposition rate of monomer molecules has been monitored. FT-IR spectroscopy has been used to determine the molecular damaging of the target monomer and deposited films

  10. The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Hu Miao; Guo Yun

    2012-01-01

    In this work, a Dielectric Barrier Discharge (DBD) air plasma was used to sterilize Escherichia coli (E. coli) on the surface of medical Polyethylene Terephthalate (PET) film. The leakage of cellular DNA and protein by optical absorbance measurement at 260 nm and 280 nm, together with transmission electron microscopy (TEM) about cell morphology were performed after sterilization to analyse inactivation mechanisms. The results indicated that the DBD air plasma was very effective in E. coli sterilization. The plasma germicidal efficiency depended on the plasma treatment time, the air-gap distance, and the applied voltage. Within 5 min of plasma treatment, the germicidal efficiency against E. coli could reach 99.99%. An etching action on cell membranes by electrons, ions and radicals is the primary mechanism for DBD air plasma sterilization, which leads to the effusion of cellular contents (DNA and protein) and bacterial death. (plasma technology)

  11. Effects of a precursor plasma on a coaxial-to-radial transition discharge

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    The Quick-Fire series of experiments on the AFWL SHIVA-Star 9.6 megajoule capacitor bank utilizes a coaxial plasma gun as a power conditioning and switching element driving an imploding plasma liner in what is essentially a hollow z-pinch. Initially, the liner is a thin, cylindrical plastic-and-metal foil. Ideally, the foil remains undisturbed until switching action occurs, and steps have been taken to minimize the amount of hot material that is accelerated into the plasma region ahead of the main coaxial discharge. The condition of the foil and the surrounding region prior to switching has been studied both with nitrogen laser shadowgraphy and with a technique which measures the deflection of a helium-neon laser beam due to the presence of density gradients in the switching region. Estimates of the density of precursor plasmas and their effects on foil condition are presented

  12. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T; Zimmermann, J L; Morfill, G E, E-mail: tshimizu@mpe.mpg.de [Max-Planck Institute for Extraterrestrial Physics, Giessenbachstr., 85748 Garching (Germany)

    2011-02-15

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O{sub 2}/N{sub 2} and H{sub 2}O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  13. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  14. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    Science.gov (United States)

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  15. Effect of Electrical Discharge Machining on Stress Concentration in Titanium Alloy Holes.

    Science.gov (United States)

    Hsu, Wei-Hsuan; Chien, Wan-Ting

    2016-11-24

    Titanium alloys have several advantages, such as a high strength-to-weight ratio. However, the machinability of titanium alloys is not as good as its mechanical properties. Many machining processes have been used to fabricate titanium alloys. Among these machining processes, electrical discharge machining (EDM) has the advantage of processing efficiency. EDM is based on thermoelectric energy between a workpiece and an electrode. A pulse discharge occurs in a small gap between the workpiece and electrode. Then, the material from the workpiece is removed through melting and vaporization. However, defects such as cracks and notches are often detected at the boundary of holes fabricated using EDM and the irregular profile of EDM holes reduces product quality. In this study, an innovative method was proposed to estimate the effect of EDM parameters on the surface quality of the holes. The method combining the finite element method and image processing can rapidly evaluate the stress concentration factor of a workpiece. The stress concentration factor was assumed as an index of EDM process performance for estimating the surface quality of EDM holes. In EDM manufacturing processes, Ti-6Al-4V was used as an experimental material and, as process parameters, pulse current and pulse on-time were taken into account. The results showed that finite element simulations can effectively analyze stress concentration in EDM holes. Using high energy during EDM leads to poor hole quality, and the stress concentration factor of a workpiece is correlated to hole quality. The maximum stress concentration factor for an EDM hole was more than four times that for the same diameter of the undamaged hole.

  16. Investigation into the effects of static electrical discharge on MR images

    International Nuclear Information System (INIS)

    Watson, L.; Mugler, J.P.; Morris, L.; Brookeman, J.R.

    1986-01-01

    During data acquisition, static electrical discharge in the vicinity of the antenna causes characteristic striated artifacts across the affected images. The degree and nature of image corruption are functions of the timing, number, and intensity of such discharge events. Low room humidity and the presence of synthetic fiber readily promote static discharge. Computer manipulation of raw data files can simulate such events and also automatically identify actual discharge data points. If necessary, affected files can be rewritten with appropriately derived values and the integrity of the images restored

  17. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao

    2014-01-01

    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  18. Electron runaway in rf discharges

    International Nuclear Information System (INIS)

    Chen, F.F.

    1992-10-01

    The critical electric field is computed as a function of pressure and starting energy for electrons to run away to high energies in moderate pressure discharges. The runaway conditions depend critically on the shape of the elastic cross section vs. energy curve. Computations are made for H, H 2 , and He gases, and it is shown that runaway occurs much more readily in atomic hydrogen than in the other gases. The values of the runaway fields are larger than would normally occur in dc discharges, where large voltages would lead to arc formation. However, in rf discharges such electric fields can be sustained over times long compared to electron transit times but short compared to ion transit times. (author)

  19. Coupling hydrologic and hydraulic models to take into consideration retention effects on extreme peak discharges in Switzerland

    Science.gov (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2015-04-01

    Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.

  20. Effectiveness of a discharge education program in reducing the severity of postpartum depression: a randomized controlled evaluation study.

    Science.gov (United States)

    Ho, Shiao-Ming; Heh, Shu-Shya; Jevitt, Cecilia M; Huang, Lian-Hua; Fu, Yu-Ying; Wang, Li-Lin

    2009-10-01

    The effectiveness of a hospital discharge education program including information on postnatal depression was evaluated to reduce psychological morbidity after childbirth. A randomized controlled trial (RCT) was conducted in a regional hospital in Taipei. Two hundred first-time mothers agreed to take part and were randomly allocated to an intervention group (n=100) or control group (n=100). The intervention group received discharge education on postnatal depression provided by postpartum ward nurses. The control group received general postpartum education. The main outcome measure was the Edinburgh Postnatal Depression Scale (EPDS) administered by postal questionnaire at six weeks and three months after delivery. Women who received discharge education intervention on postnatal depression were less likely to have high depression scores when compared to the control group at three months postpartum. A discharge educational intervention including postnatal depression information given to women during the postpartum stay benefits psychological well-being. A postpartum discharge education program including information on postnatal depression should be integrated into postpartum discharge care in general practice. 2009 Elsevier Ireland Ltd.

  1. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Science.gov (United States)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  2. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  3. Measurements of the total energy lost per electron-ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge

    International Nuclear Information System (INIS)

    Lee, Young-Kwang; Ku, Ju-Hwan; Chung, Chin-Wook

    2011-01-01

    Experimental measurements of the total energy lost per electron-ion pair lost, ε T , were performed in a low-pressure inductive atomic gases (Ar, He) and molecular gases (O 2 , N 2 ) discharge. The value of ε T was determined from a power balance based on the electropositive global (volume-averaged) model. A floating harmonic method was employed to measure ion fluxes and electron temperatures at the discharge wall. In the pressure range 5-50 mTorr, it was found that the measured ε T ranged from about 70 to 150 V for atomic gases, but from about 180 to 1300 V for molecular gases. This difference between atomic and molecular discharge is caused by additional collisional energy losses of molecular gases. For argon discharge, the stepwise ionization effect on ε T was observed at relatively high pressures. For different gases, the measured ε T was evaluated with respect to the electron temperature, and then compared with the calculation results, which were derived from collisional and kinetic energy loss. The measured ε T and their calculations showed reasonable agreement.

  4. Effectiveness of intrauterine treatment with cephapirin in dairy cows with purulent vaginal discharge.

    Science.gov (United States)

    Tison, N; Bouchard, E; DesCôteaux, L; Lefebvre, R C

    2017-02-01

    The objective of this study was to assess the efficacy of cephapirin intrauterine treatment preceding a timed artificial insemination protocol in lactating dairy cows with purulent vaginal discharges (PVDs). Holstein dairy cows (n = 1247) from 18 herds were enrolled in a controlled randomized clinical trial. At 34 days in milk (DIM; ±7 days), cows had a genital examination (transrectal palpation, vaginoscopy, and uterine bacteriology). They were randomly assigned to either the control group (CONT, no treatment) or the treatment group (CEPH) consisting of 1 intrauterine infusion of 500-mg cephapirin benzathine (RCL) (Metricure, Merck Animal Health, Montreal, Canada) regardless of the uterine health status. All cows were systematically enrolled in a presynch-ovsynch protocol for the first insemination. A second genital examination was made 2 weeks later. Cows that received any systemic or local antibiotics 10 days prior sampling to the end of the synchronization protocol were excluded from the study. Reproductive data of cows were collected for at least 300 DIM, entered in a databank, and validated (health record management software, DSAHR). Pregnancy diagnosis was done by transrectal palpation at the routinely scheduled veterinarian visits. On the basis of the highest sum of sensibility and specificity for pregnancy status at 120 DIM, the optimal cutoff for vaginal discharge score was determined as the presence of cloudy discharge with or without purulent material (PVD+, score 2). With a prevalence of 21.6% at 34 DIM, PVD+ was detrimental to the first-service conception rate (FSCR; PVD+: 26 ± 5%; PVD-: 40 ± 3%; P = 0.02). The negative effect of PVD+ was indicated by a hazard ratio of 0.72 (chi-square = 8.58; P < 0.01; 95% confidence interval = 0.56-0.91). Treatment with cephapirin was associated with a significant improvement of the FSCR in PVD+ cows (PVD+ CEPH: 36 ± 5%, PVD+ CONT: 23 ± 5%; P < 0.05), although it did not produce a

  5. The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles

    KAUST Repository

    Hamdan, Ahmad

    2017-03-27

    We investigated the effect of a liquid\\'s electrical conductivity (EC) on the physical characteristics of electrical discharges in liquids with gaseous bubbles. Argon gas was supplied into the liquid to form an array of gaseous bubbles in between two electrodes (a pin-to-hollow electrode setup). Methanol and water were considered as base liquids, representing a low and a high dielectric permittivity (ϵ) liquid respectively, while potassium chloride (KCl) was added to control the EC of the liquids. When increasing the EC of the liquids, we found that the discharge probability was reduced by 46% for in-water and 38% for in-methanol discharges. We also found that the injected charge decreased by ∼4 μC as the EC increased. Moreover, as the gap distance increased from 1 to 2.5 mm, the injected charge decreased by 2 μC for in-water discharge and by 4 μC for in-methanol discharge. The plasma emission is another important parameter in characterizing discharges. With increasing the EC, the plasma emission volume decreased linearly by a factor of ∼5. The plasma lifetime was shortened by around 33% for in-water and 20% for in-methanol discharges in the case of d = 1 mm, while the decrease was 40% for in-water and 30% for in-methanol discharges in the case of d = 2.5 mm. Using the broadening characteristics of the Hα line, the electron density was estimated during the first 100 ns by ∼3 × 10 cm for in-water discharges and by ∼2 × 10 cm for in-methanol discharges, and it decreased by about one order of magnitude after 800 ns; note that n dependence on the EC was not significant. The reported findings provide further understanding of electrical discharges in bubbled liquids and highlight the influence of a liquid\\'s EC, which are useful in the development and optimization of the applications based on such process.

  6. Effects of thermal discharges on the seasonal patterns of nutrient concentrations in brackish water

    International Nuclear Information System (INIS)

    Nitchals, D.

    1985-05-01

    Massiv quantities of water are used in power plant cooling systems, especially nuclear power plants, and are often returned to the donor ecosystem at significantly elevated temperatures. Few studies of the environmental effects of such a situation have looked extensively at the effects on nutrients in the water. The present study examined the effects of cooling water discharges from a nuclear power plant on the seasonal nutrient patterns within and outside a brackish water, research artificial lake, the 0.9 km 2 Biotest Basin on Sweden's east coast. The lack of ice cover in winter is the most apparent effect. In a portion of the lake with a relatively long water residence time, on the order of a few days, the vernal nutrient depletion of phosphate, nitrate, and nitrite apparently began sooner than outside the lake. Benthic influence on nutrient concentrations in the free water mass may be very significant in coastal areas receiving heat inputs. This study's data apparently support the conclusion by other researchers that phosphorus may be the nutrient limiting algal growth in the spring in this area of the central Baltic Sea. Determination of a nutrient budget for the Basin was unachievable because inlet and outlet nutrient concentrations were insufficiently different to override experimental variation. Implications for management of heat inputs to coastal ecosystems include avoidance of areas with high nutrient content, rich organic sediment, or poor flushing. (author)

  7. The effect of k-cubic Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases

    International Nuclear Information System (INIS)

    Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin

    2014-01-01

    We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Effects of easily ionizable elements on the liquid sampling-atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Venzie, Jacob L.; Marcus, R. Kenneth

    2006-01-01

    A series of studies has been undertaken to determine the susceptibility of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) atomic emission source to easily ionizable element (EIE) effects. The initial portions of the study involved monitoring the voltage drop across the plasma as a function of the pH to ascertain whether or not the conductivity of the liquid eluent alters the plasma energetics and subsequently the analyte signal strength. It was found that altering the pH (0.0 to 2.0) in the sample matrix did not significantly change the discharge voltage. The emission signal intensities for Cu(I) 327.4 nm, Mo(I) 344.7 nm, Sc(I) 326.9 nm and Hg(I) 253.6 nm were measured as a function of the easily ionizable element (sodium and calcium) concentration in the injection matrix. A range of 0.0 to 0.1% (w/v) EIE in the sample matrix did not cause a significant change in the Cu, Sc, and Mo signal-to-background ratios, with only a slight change noted for Hg. In addition to this test of analyte response, the plasma energetics as a function of EIE concentration are assessed using the ratio of Mg(II) to Mg(I) (280.2 nm and 285.2 nm, respectively) intensities. The Mg(II)/Mg(I) ratio showed that the plasma energetics did not change significantly over the same range of EIE addition. These results are best explained by the electrolytic nature of the eluent acting as an ionic (and perhaps spectrochemical) buffer

  9. Modelling the effects of spatial and temporal resolution of rainfall and basin model on extreme river discharge

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are

  10. Evaluation of the effective equivalent dose in the general public due to the discharge of uranium in groundwater

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Jacomino, V.M.F.

    1989-12-01

    Some facilities available at IPEN-CNEN/SP may discharge uranium in their liquid effluents. The uranium contents of these effluents are analyzed by photometry or fluorimetry, and according to the results obtained a decision is made, by the Environmental Monitoring Division, upon their discharge to the environment. In 1988 a total activity of 3.66x10 9 Bq of uranium was discharge in a volume of approximately 30 m 3 . The effective equivalent dose in the general public was evaluated by making a conservative assumption that all the liquid effluents containing uranium are discharged directly to the soil reaching the groundwater. The dose calculation was carried out by using a generic model which described the transport of radionuclides in the groundwater. In order to be conservative it was also assumed that the critical pathway is the direct in gestion of water through hypothetical wells around the Institute. Conservative assumptions were also made in the characterization of the local aquifer parameters such as vertical and longitudinal dispersivity, effective porosity of the soil, hydraulic conductivity etc., in roder to overestimate the effective equivalent dose. The result obtained, of 5.3x10 -10 mSv/a is far below the dose limit for the public adopted by the Radiological Protection Board. The derived limit for the discharge was also evaluated, using the same model, giving a result of 3.6x10 13 Bq/a. (author) [pt

  11. Overvoltage effect on electrical discharge type in medium-conductivity water in inhomogeneous pulsed electric field

    Science.gov (United States)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.

    2018-01-01

    The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.

  12. Effectiveness of post-discharge case management in general-medical outpatients: a randomized, controlled trial

    NARCIS (Netherlands)

    Latour, Corine H. M.; de Vos, Rien; Huyse, Frits J.; de Jonge, Peter; van Gemert, Liesbeth A. M.; Stalman, Wim A. B.

    2006-01-01

    This study was initiated to determine the impact of post-discharge, nurse-led, home-based case management intervention on the number of emergency readmissions, level of care utilization, quality of life, and psychological functioning. Patients discharged home from a general hospital (N=147) were

  13. Effectiveness of post-discharge case management in general-medical outpatients: A randomized, controlled trial

    NARCIS (Netherlands)

    Latour-Delfgaauw, C.H.M.; Vos, R.; Huyse, F.J.; de Jonge, P.; van Gemert, L.A.M.; Stalman, W.A.B.

    2006-01-01

    This study was initiated to determine the impact of post-discharge, nurse-led, home-based case management intervention on the number of emergency readmissions, level of care utilization, quality of life, and psychological functioning. Patients discharged home from a general hospital (N=147) were

  14. Effectiveness of post-discharge case management in general-medical outpatients: A randomized, controlled trial

    NARCIS (Netherlands)

    Latour, C.H.M.; de Vos, R.; Huyse, F.J.; De Jonge, P.; van Gemert, L.A.M.; Stalman, W.A.B.

    2006-01-01

    This study was initiated to determine the impact of post- discharge, nurse- led, home- based case management intervention on the number of emergency readmissions, level of care utilization, quality of life, and psychological functioning. Patients discharged home from a general hospital (N = 147)

  15. Effectiveness of post-discharge case management in general-medical outpatients : A randomized, controlled trial

    NARCIS (Netherlands)

    Latour, Corine H. M.; de Vos, Rien; Huyse, Frits J.; de Jonge, Peter; van Gemert, Liesbeth A. M.; Stalman, Wim A. B.

    2006-01-01

    This study was initiated to determine the impact of post- discharge, nurse- led, home- based case management intervention on the number of emergency readmissions, level of care utilization, quality of life, and psychological functioning. Patients discharged home from a general hospital (N = 147)

  16. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad; Cha, Min

    2016-01-01

    in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied

  17. Discharge destination's effect on bounce-back risk in Black, White, and Hispanic acute ischemic stroke patients.

    Science.gov (United States)

    Kind, Amy J H; Smith, Maureen A; Liou, Jinn-Ing; Pandhi, Nancy; Frytak, Jennifer R; Finch, Michael D

    2010-02-01

    To determine whether racial and ethnic effects on bounce-back risk (ie, movement to settings of higher care intensity within 30 d of hospital discharge) in acute stroke patients vary depending on initial posthospital discharge destination. Retrospective analysis of administrative data. Four hundred twenty-two hospitals, southern/eastern United States. All Medicare beneficiaries 65 years or more with hospitalization for acute ischemic stroke within one of the 422 target hospitals during the years 1999 or 2000 (N=63,679). Not applicable. Adjusted predicted probabilities for discharge to and for bouncing back from each initial discharge site (ie, home, home with home health care, skilled nursing facility [SNF], or rehabilitation center) by race (ie, black, white, and Hispanic). Models included sociodemographics, comorbidities, stroke severity, and length of stay. Blacks and Hispanics were significantly more likely to be discharged to home health care (blacks=21% [95% confidence interval (CI), 19.9-22.8], Hispanic=19% [17.1-21.7] vs whites=16% [15.5-16.8]) and less likely to be discharged to SNFs (blacks=26% [95% CI, 23.6-29.3], Hispanics=28% [25.4-31.6] vs whites=33% [31.8-35.1]) than whites. However, blacks and Hispanics were significantly more likely to bounce back when discharged to SNFs than whites (blacks=26% [95% CI, 24.2-28.6], Hispanics=28% [24-32.6] vs whites=21% [20.3-21.9]). Hispanics had a lower risk of bouncing back when discharged home than either blacks or whites (Hispanics=14% [95% CI, 11.3-17] vs blacks=20% [18.4-22.2], whites=18% [16.8-18.3]). Patients discharged to home health care or rehabilitation centers demonstrated no significant differences in bounce-back risk. Racial/ethnic bounce-back risk differs depending on initial discharge destination. Additional research is needed to fully understand this variation in effect. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Fate and effects of nearshore discharges of OCS produced waters. Volume 2. Technical report (Final)

    International Nuclear Information System (INIS)

    Rabalais, N.N.; McKee, B.A.; Reed, D.J.; Means, J.C.

    1991-06-01

    While the number of facilities that discharge OCS produced waters into coastal environments of Louisiana are few in number, they account for large volumes, individually and collectively. Of the 15 facilities which discharge OCS-generated produced water into coastal environments of Louisiana (as of February 1990), 10 discharges in seven areas were studied. The discharge volumes of the study areas range from 3,000 to 106,000/bbl.d. The receiving environments for these effluents are varied, but include the shallow, nearshore continental shelf; high energy, freshwater distributaries of the Mississippi River delta; and brackish and saline coastal environments with moderately to poorly flushed waters. All study areas are within the Mississippi River Deltaic Plain. The study expanded on the initial assessment of Boesch and Rabalais (1989a) with increased temporal and spatial studies of three areas, additional study sites including an abandoned discharge, and additional analytical and field observations

  19. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Koski, Marja; Stedmon, Colin; Trapp, Stefan

    2017-01-01

    and hydrocarbons. We investigated 1) the threshold concentrations of scrubber discharge water for survival, feeding and reproduction of the copepod Acartia tonsa, 2) whether the effects depend on the exposure route and 3) whether exposure to discharge water can be detected in field-collected organisms. A direct...... constituents could have synergistic effects on plankton productivity and bioaccumulation of metals, although the effects will depend on their dilution in the marine environment....

  20. Effect of Air-Curtain Discharge Speed on the Effectiveness of Vortex-like Air-Curtain Approach for Severe Accident Management

    International Nuclear Information System (INIS)

    Ullah, Sana; Yim, Man Sung

    2017-01-01

    The purpose of air-curtain installation is to isolate reactor containment from outside environment, confine the leaking radioactive material in a localized area, and minimize the impact of outside wind. The wind could blow away airborne radioactive material immediately after discharge leaving little room for effective capturing. Therefore, vortex-like air-curtain plays an important role in this process, and its effectiveness could severely influence the performance of overall system. An approach based on vortex-like air-curtain was proposed earlier for preventing spread of radioactive material to the environment and mitigate subsequent radiological consequences. Effect of air-curtain discharge speed, and discharge angle was studied, and a quantitative account of air curtain in terms of effectiveness parameter was performed in this work. It was found that for given wind speed, air-curtain effectiveness would improve with increase in air-curtain discharge speed to an extent, after which any increase in discharge velicity could deteriorate the performance, due to imbalance between discharge and wind speed. Keeping air-curtain discharge at an angle of 15° opposite to the predominant flow direction is devised.

  1. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  2. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    Science.gov (United States)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  3. Overexploitation and cumulative drought trend effect on Ras El Ain karstic spring discharge (Khabour Sub-basin, Syria)

    Science.gov (United States)

    Abou Zakhem, Boulos; Kattaa, Bassam

    2017-10-01

    The effects of climate change and overexploitation are being strongly perceived in the studied area and the springs discharge is obviously affected. In this paper, Ras El Ain spring discharge and precipitation were analyzed by normalized methods on an yearly timescale. The deficit of Ras El Ain spring discharge due to overexploitation factors and drought effects was estimated. Cumulative drought analyses were carried out using SPI10 and SQI10. Finally, the decreasing trends of the spring discharge due to the deficiency in rainfall were analyzed. The main results reveal that the annual mean deficit of Ras El Ain spring discharge due to overpumping was between 32 and 45%, whereas, annual mean deficit related to drought was between 22 and 35% on average, during the last 30 years (post-1984). The moving averages of SPI and SQI delineate very well the drought periods during last three decades. The cumulative droughts using SPI10 and SQI10 reveal that wet period (pre-1984) with positive values was characterized by high precipitation and spring discharge. Overexploitation period (1984-1989) is distinguished by decreasing SQI10 values whereas, SPI10 is almost stable. The response of the karst system to the precipitation signal has been changed, during the drought period (1990-2000), and the spring behaviour has been modified due to the first overexploitation period. Finally, overexploitation period (2001-2008) is related to the second phase of groundwater intensive pumping for irrigation purposes. Consequently, this period is completely catastrophic causing the drying up of the spring. The decreasing trends analyzed using DPI and DQI showed annual decreasing rates relative to the mean values of -0.268% and -0.105%, respectively. Thus, the results of theoretical model reveal that precipitation will decrease by about DPI = -20.7% and the discharge will decline by about -9.2% by 2050. Consequently, the declining discharge due to climatic variation under natural conditions as

  4. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    International Nuclear Information System (INIS)

    Sen Gupta, Susanta K

    2015-01-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma–liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining. (topical review)

  5. The Plasma Discharge System For Effective Sterilization Of Water And Solid Surfaces

    International Nuclear Information System (INIS)

    Senturk, K.

    2010-01-01

    The different areas such as medicine, surgery, food production need efficient sterilization system since they are directly related to human health. In this work a new plasma system is described in order to present its effectiveness in sterilization. This is a different method from conventional methods such as: chemicals and heat addition, UV irradiation etc. The developed plasma system produces cold plasma working under atmospheric pressure. To generate the plasma both AC and DC high voltage power supplies were used. The developed system is cheap and very effective for sterilization. The light emission for both AC and DC coronas for the plasmas were investigated to understand the nature of generated plasma ionization. Different parameters like temperature, voltage, application time were changed during the plasma application and the optimization for killing the micro-organisms were investigated. To understand the biological effect of plasma on the organisms comparisons were done by using the scanning electron microscope and absorption spectrometer. The plasma was applied on the bacteria like Escherichia coli, Bacillus subtilis, Streptococcus mutans , the yeasts such as Candida albicans, and green algae. The efficiency, the non toxic nature, the affordable price make this plasma discharge method a very efficient one for sterilization.

  6. Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2013-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high-frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that the Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity. (paper)

  7. Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma

    Science.gov (United States)

    Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl

    2016-10-01

    Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.

  8. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  9. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  10. Electric energy auctions in Brazil and its effect on emissions of greenhouse gases by the electric sector; Leiloes de energia eletrica no Brasil e sua influencia nas emissoes de gases de efeito estufa pelo setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo; Pereira, Osvaldo Livio Soliano [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    The result of the auctions of electricity, after the new regulatory framework in 2004, has shown the increased participation of fossil sources of thermal generation, contributing to increased emission of greenhouse gases by the Brazilian Electricity Sector. This article aims to analyze the correlation between growth in electric generation sector and rising greenhouse gases, especially through the study of the winning projects of electric power auctions conducted with the advent of the New Institutional Model of the Power Sector from 2004, comparing with the existing policies and prospects of the next auction of the electric sector. (author)

  11. Gases (CH4, CO2 and N2 and pore water chemistry in the surface sediments of Lake Orta, Italy: acidification effects on C and N gas cycling

    Directory of Open Access Journals (Sweden)

    Donald D. ADAMS

    2001-02-01

    Full Text Available Lake Orta, a subalpine, warm monomictic lake in northwestern Italy was heavily polluted from rayon factory discharges of ammonium and copper since 1926. In the 1950s accumulations of contaminants resulted in whole lake pHs of 3.8-4.0 from ammonium oxidation. Partial remediation started in the 1950s, but by 1985-89 the water remained acidified at pHs of 4.0. Artificial liming (14,500 t in 1989-90 resulted in improved water quality and substantial recovery of the biological community. Sediment gases, sampled in 1989 before liming, from the lake's four basins showed severe inhibition of methanogenesis (CH4 = 0.0-0.15 mM in the surface sediments (0.5-5 cm of the southern basin, location of the plant effluent, as compared to the deep central and northern basins (0.9-1.4 mM. Four years after liming, cores collected in 1994 near the 1989 southern basin sites showed a slight change in surface sediment methane (0.07-0.82 mM, yet suggested continual sediment toxicity, at least to carbon cycling through methanogenesis. Calculations of diffuse flux of CH4 at the sediment-water interface (SWI in 1989 were 6.6-7.4 mM m-2 day-1 for the central and northern basins and 0.13 for the southern basin. CH4 fluxes increased 16x to 2 mM m-2 day-1 in 1994 in the southern basin, possibly from remediation of near surface sediments. The impact of pollution on denitrification (formation of sediment N2 gas was not so obvious since two processes could counteract each other (high NO3 - stimulating denitrification versus possible negative effects from acidity and metals. The calculated flux of N2 from the southern basin sediments increased 5x four years after liming compared to the period of acidification, suggesting possible toxicity towards denitrifiers during the earlier period. Core overlying water (0.68 mM exhibited N2 concentrations close to saturation, while most surface sediments were twice as much (1.5 mM. Surface (0-6 cm sediment N2 was similar at most sites, with the

  12. Reale Gase, tiefe Temperaturen

    Science.gov (United States)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  13. Gases in uranium exploration

    International Nuclear Information System (INIS)

    Wright, R.J.; Pacer, J.C.

    1981-01-01

    Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)

  14. Effect of Micro Electrical Discharge Machining Process Conditions on Tool Wear Characteristics: Results of an Analytic Study

    DEFF Research Database (Denmark)

    Puthumana, Govindan; P., Rajeev

    2016-01-01

    Micro electrical discharge machining is one of the established techniques to manufacture high aspect ratio features on electrically conductive materials. This paper presents the results and inferences of an analytical study for estimating theeffect of process conditions on tool electrode wear...... characteristicsin micro-EDM process. A new approach with two novel factors anticipated to directly control the material removal mechanism from the tool electrode are proposed; using discharge energyfactor (DEf) and dielectric flushing factor (DFf). The results showed that the correlation between the tool wear rate...... (TWR) and the factors is poor. Thus, individual effects of each factor on TWR are analyzed. The factors selected for the study of individual effects are pulse on-time, discharge peak current, gap voltage and gap flushing pressure. The tool wear rate decreases linearly with an increase in the pulse on...

  15. The prevalence and effects of aspiration among neonates at the time of discharge.

    Science.gov (United States)

    Karsch, Emily; Irving, Sharon Y; Aylward, Brandon S; Mahle, William T

    2017-09-01

    Neonates undergoing heart surgery for CHD are at risk for postoperative gastrointestinal complications and aspiration events. There are limited data regarding the prevalence of aspiration after neonatal cardiothoracic surgery; thus, the effects of aspiration events on this patient population are not well understood. This retrospective chart review examined the prevalence and effects of aspiration among neonates who had undergone cardiac surgery at the time of their discharge. Introduction This study examined the prevalence of aspiration among neonates who had undergone cardiac surgery. Demographic data regarding these patients were analysed in order to determine risk factors for postoperative aspiration. Post-discharge feeding routes and therapeutic interventions were extracted to examine the time spent using alternate feeding routes because of aspiration risk or poor caloric intake. Modified barium swallow study results were used to evaluate the effectiveness of the test as a diagnostic tool. Materials and methods A retrospective study was undertaken of neonates who had undergone heart surgery from July, 2013 to January, 2014. Data describing patient demographics, feeding methods, and follow-up visits were recorded and compared using a χ2 test for goodness of fit and a Kaplan-Meier graph. The patient population included 62 infants - 36 of whom were male, and 10 who were born with single-ventricle circulation. The median age at surgery was 6 days (interquartile range=4 to 10 days). Modified barium swallow study results showed that 46% of patients (n=29) aspirated or were at risk for aspiration, as indicated by laryngeal penetration. In addition, 48% (n=10) of subjects with a negative barium swallow or no swallow study demonstrated clinical aspiration events. Tube feedings were required by 66% (n=41) of the participants. The median time spent on tube feeds, whether in combination with oral feeds or exclusive use of a nasogastric or gastric tube, was 54 days; 44% (n

  16. Effect of substrate temperature on ac conduction properties of amorphous and polycrystalline GaSe thin films

    International Nuclear Information System (INIS)

    Thamilselvan, M.; PremNazeer, K.; Mangalaraj, D.; Narayandass, Sa.K.; Yi, Junsin

    2004-01-01

    X-ray diffraction analysis of GaSe thin films used in the present investigation showed that the as-deposited and the one deposited at higher substrate temperature are in amorphous and polycrystalline state, respectively. The alternating current (ac) conduction properties of thermally evaporated films of GaSe were studied ex situ employing symmetric aluminium ohmic electrodes in the frequency range of 120-10 5 Hz at various temperature regimes. For the film deposited at elevated substrate temperature (573 K) the ac conductivity was found to increase with improvement of its crystalline structure. The ac conductivity (σ ac ) is found to be proportional to (ω s ) where s m calculated from ac conductivity measurements are compared with optical studies of our previous reported work for a-GaSe and poly-GaSe thin films. The distance between the localized centres (R), activation energy (ΔE σ ) and the number of sites per unit energy per unit volume N(E F ) at the Fermi level were evaluated for both a-GaSe and poly-GaSe thin films. Goswami and Goswami model has been invoked to explain the dependence of capacitance on frequency and temperature

  17. The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges

    International Nuclear Information System (INIS)

    Schüngel, E; Mohr, S; Iwashita, S; Schulze, J; Czarnetzki, U

    2013-01-01

    In capacitive hydrogen diluted silane discharges the formation of dust affects plasma processes used, e.g. for thin film solar cell manufacturing. Thus, a basic understanding of the interaction between plasma and dust is required to optimize such processes. We investigate a highly diluted silane discharge experimentally using phase-resolved optical emission spectroscopy to study the electron dynamics, laser light scattering on the dust particles to relate the electron dynamics with the spatial distribution of dust, and current and voltage measurements to characterize the electrical symmetry of the discharge via the dc self-bias. The measurements are performed in single and dual frequency discharges. A mode transition from the α-mode to a bulk drift mode (Ω-mode) is found, if the amount of silane and, thereby, the amount of dust and negative ions is increased. By controlling the electrode temperatures, the dust can be distributed asymmetrically between the electrodes via the thermophoretic force. This affects both the electron heating and the discharge symmetry, i.e. a dc self-bias develops in a single frequency discharge. Using the Electrical Asymmetry Effect (EAE), the dc self-bias can be controlled in dual frequency discharges via the phase angle between the two applied frequencies. The Ω-mode is observed for all phase angles and is explained by a simple model of the electron power dissipation. The model shows that the mode transition is characterized by a phase shift between the applied voltage and the electron conduction current, and that the plasma density profile can be estimated using the measured phase shift. The control interval of the dc self-bias obtained using the EAE will be shifted, if an asymmetric dust distribution is present. However, the width of the interval remains unchanged, because the dust distribution is hardly affected by the phase angle. (paper)

  18. Effect of Cooling Methods on Methane Conversion via Dielectric-Barrier Discharges

    International Nuclear Information System (INIS)

    Wang Baowei; Yang Kuanhui; Xu Genhui

    2008-01-01

    Effects of cooling methods on stability and methane conversion rate using dielectric-barrier discharges (DBD) were systematically investigated in this article. The results showed that the methane conversion rate was as high as 44.43% in a pure methane system at a flow rate of 100 mL ± min -1 and an input power of 234.2 W with air cooling. A dark greenish and soft film-like carbon was deposited on the outer surface of quartz tube when the outer electrode was water-cooled, which decreased the methane conversion. With air cooling of inner electrode the selectivity of C 2 hydrocarbons was higher than that with other cooling methods, while the C 3 hydrocarbons had higher selectivity with flowing water cooling. Cooling the inner electrode could restrain the carbon deposition, but would decrease the methane conversion rate. The stability of both reaction and plasma operation can be improved through cooling the reactor. From thermodynamic analysis, it was found that the effective collisions frequency among the reactant molecules and free electrons (e - ) increased with temperature, which in turn led to a higher methane conversion rate and a change in the distribution of products.

  19. The effects of sampling location and turbulence on discharge estimates in short converging turbine intakes

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gomez, P.; Harding, S. F.; Richmond, M. C.

    2017-01-01

    Standards provide recommendations for best practices when installing current meters to measure fluid flow in closed conduits. A central guideline requires the velocity distribution to be regular and the flow steady. Because of the nature of the short converging intakes typical of low-head hydroturbines, these assumptions may be invalid if current meters are intended to be used to estimate discharge. Usual concerns are (1) the effects of the number of devices, (2) the sampling location and (3) the high turbulence caused by blockage from submersible traveling screens usually deployed for safe downstream fish passage. These three effects were examined in the present study by using 3D simulated flow fields in both steady-state and transient modes. In the process of describing an application at an existing hydroturbine intake at Ice Harbor Dam, the present work outlined the methods involved, which combined computational fluid dynamics, laboratory measurements in physical models of the hydroturbine, and current meter performance evaluations in experimental settings. The main conclusions in this specific application were that a steady-state flow field sufficed to determine the adequate number of meters and their location, and that both the transverse velocity and turbulence intensity had a small impact on estimate errors. However, while it may not be possible to extrapolate these findings to other field conditions and measuring devices, the study laid out a path to conduct similar assessments in other applications.

  20. Physiologic effects of prolonged conducted electrical weapon discharge in ethanol-intoxicated adults.

    Science.gov (United States)

    Moscati, Ronald; Ho, Jeffrey D; Dawes, Donald M; Miner, James R

    2010-06-01

    This study examines the physiologic effects of prolonged conducted electrical weapon (CEW) exposure on alcohol-intoxicated adult subjects. Adult volunteers were recruited at a TASER International training conference. All subjects ingested mixed drinks until clinical intoxication or until a minimum breath alcohol level of 0.08 mg/dL was achieved. Blood samples for venous pH, Pco(2), bicarbonate, and lactate were measured in all subjects at baseline, immediately after alcohol ingestion, immediately after exposure to a 15-second TASER X26 discharge (Taser International Inc, Scottsdale, AZ), and 24 hours post-alcohol ingestion. Laboratory values were compared at sampling times using repeated-measure analysis of variance. A focused analysis comparing time points within groups was then performed using paired t tests. Twenty-two subjects were enrolled into the study. There was a decrease in pH and bicarbonate and an increase in lactate after alcohol ingestion. There was a further increase in lactate and drop in pH after CEW exposure. No subject experienced a significant adverse event. All values had returned to baseline levels at 24 hours except lactate, which demonstrated a small but clinically insignificant increase. Prolonged continuous CEW exposure in the setting of acute alcohol intoxication has no clinically significant effect on subjects in terms of markers of metabolic acidosis. The acidosis seen is consistent with what occurs with ethanol intoxication or moderate exertion. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    Science.gov (United States)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  2. A survey of post-discharge side effects of conscious sedation using chloral hydrate in pediatric CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.C.; Adamson, S.D.; Tatman, L.H.; Berbaum, K.S. [Department of Radiology, Univ. of Iowa College of Medicine, Iowa City, IA (United States)

    1999-04-01

    Background. Limited information is available on post-discharge side effects of chloral hydrate sedation in pediatric imaging. Objective. To prospectively study the post-discharge side effects of chloral hydrate sedation in pediatric CT and MR imaging. Materials and methods. A total of 119 children undergoing CT and MRI were sedated using chloral hydrate with 89 % success (mean initial dose, 72 mg/kg body weight) and 98 % success after augmentation (mean total, 78 mg/kg body weight). The frequency of each post-discharge side effect was correlated with other side effects and 12 patient/technical parameters. Results. The survey was completed in 80 children. Sleepiness lasted for > 4 h in 28 %. Unsteadiness occurred in 68 % and hyperactivity in 29 %. Appetite became poor in 14 % and vomiting occurred in 15 %. Normal activity was resumed after > 4 h in 54 %. Sleep deprivation did not result in increased success or earlier onset of sedation and might be associated with hyperactivity. A higher dose did not result in an increased success rate or earlier onset of sedation within the dose range used in this study. Conclusion. Data on the post-discharge side effects of chloral hydrate sedation will be useful to radiologists, technologists, and nurses explaining to parents about sedation using this agent. (orig.) With 2 tabs., 24 refs.

  3. A survey of post-discharge side effects of conscious sedation using chloral hydrate in pediatric CT and MR imaging

    International Nuclear Information System (INIS)

    Kao, S.C.; Adamson, S.D.; Tatman, L.H.; Berbaum, K.S.

    1999-01-01

    Background. Limited information is available on post-discharge side effects of chloral hydrate sedation in pediatric imaging. Objective. To prospectively study the post-discharge side effects of chloral hydrate sedation in pediatric CT and MR imaging. Materials and methods. A total of 119 children undergoing CT and MRI were sedated using chloral hydrate with 89 % success (mean initial dose, 72 mg/kg body weight) and 98 % success after augmentation (mean total, 78 mg/kg body weight). The frequency of each post-discharge side effect was correlated with other side effects and 12 patient/technical parameters. Results. The survey was completed in 80 children. Sleepiness lasted for > 4 h in 28 %. Unsteadiness occurred in 68 % and hyperactivity in 29 %. Appetite became poor in 14 % and vomiting occurred in 15 %. Normal activity was resumed after > 4 h in 54 %. Sleep deprivation did not result in increased success or earlier onset of sedation and might be associated with hyperactivity. A higher dose did not result in an increased success rate or earlier onset of sedation within the dose range used in this study. Conclusion. Data on the post-discharge side effects of chloral hydrate sedation will be useful to radiologists, technologists, and nurses explaining to parents about sedation using this agent. (orig.)

  4. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  5. Seismic effects on bedrock and underground constructions. A literature survey of damage on constructions; Changes in groundwater levels and flow; Changes in chemistry in groundwater and gases

    International Nuclear Information System (INIS)

    Roeshoff, Kennert.

    1989-06-01

    This report is a literature review of direct and indirect effects of earthquakes on underground constructions as tunnels, caverns and mines. The direct damage will cause vibrations, shaking and displacement, which may lead to partial or total destruction of the underground facility. Damage caused by shaking has been reported in several studies, and several hundreds of events have been reported both from mines and tunnels. These reports are mainly from active earthquake areas. There are very few reports of damage caused by displacements on an existing fault. The damage, which may be severe, is generally concentrated to the vicinity of the fault zone. The report also includes a review of the effects caused by earthquakes on groundwater level, flow, pressure, chemistry and constituents in the ground. Such changes are mainly reported from studies in wells near active faults. The interesting coupling of changes in groundwater characteristics around an underground construction is, unfortunately, very seldom reported. The groundwater level and pressure changes are discussed in Chapter 4. The bases for this part of the review is taken from the Alaska earthquake 1964. Other observations are reported from wells and reservoirs located near existing faults. Changes of the geochemistry in groundwater and soil gases are reviewed in Chapter 4. The mechanisms of seismochemical anomalies are discussed and examples of short and long term monitoring are given from USA, Soviet Union and China. Gases in ground water and soil is reported in Chapter 5. Radon is so far one of the most studied species and its variation in short, medium and long term with seismic activity is rather well understood. Other gases or isotopes that have been studied include helium, carbon dioxide, hydrogen, argon and methane, radium and uranium. The paper also includes same statements for repository design based on the result of the review. (81 refs.)

  6. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    Science.gov (United States)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  7. Dispensing inhalers to patients with chronic obstructive pulmonary disease on hospital discharge: Effects on prescription filling and readmission.

    Science.gov (United States)

    Blee, John; Roux, Ryan K; Gautreaux, Stefani; Sherer, Jeffrey T; Garey, Kevin W

    2015-07-15

    The effects of dispensing inhalers to patients with chronic obstructive pulmonary disease (COPD) on hospital discharge were evaluated. Data were collected in 2011-12 for patients with COPD who had hospital orders for the study inhalers (preintervention group) and after implementation of the multidose medication dispensing on discharge (MMDD) service (2013-14) (postintervention group). The primary objective of this study was to assess inhaler adherence and readmission rates before and after MMDD implementation. Adherence was defined as filling the discharge prescription for the multidose inhaler at a Harris Health pharmacy within three days of discharge or having at least seven days of medication left in an inhaler from a previous prescription that was filled or refilled before hospital admission. All patients in the postintervention group were considered adherent, since every patient was given the remainder of his or her multidose inhaler when discharged. Data from 620 patients (412 in the preintervention group, 208 in the postintervention group) were collected. During the preintervention time period, 88 of 412 patients were readmitted within 30 days compared with 18 of 208 patients during the postintervention period (p filling behavior, and reduced rates of 30- and 60-day hospital readmissions. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  9. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Science.gov (United States)

    Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua

    2018-04-01

    Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming

  10. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Directory of Open Access Journals (Sweden)

    Enling Tang

    2018-04-01

    Full Text Available Due to the actual situation of spacecraft surface’ charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane, respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low

  11. Effect of avalanche-type barrier discharge on a silver halide photographic material in the case of blocked ionic conductivity

    International Nuclear Information System (INIS)

    Boychenko, A. P.

    2012-01-01

    Imaging of avalanche-type barrier gas discharge excited by single videopulses ∼7 μs long is studied via chemical activation of an ion subsystem of microcrystals of silver halide photographic emulsions by 1-phenyl-5-mercaptotetrazole. Using “Retina” commercial X-ray film and specially fabricated photoemulsion microcrystals with effective surface and deep electron traps as an example, the selective gas-discharge sensitivity of photographic layers to applied-voltage polarity is detected. It is shown that their sensitivity to barrier discharge ignited by negative-polarity pulses (on the electrode with a photographic material) is higher than in the case of positive pulses, irrespective of the photographic material’s position in the capacitor system.

  12. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    Science.gov (United States)

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  13. The effects of different additives in electrolyte of AGM batteries on self-discharge

    Energy Technology Data Exchange (ETDEWEB)

    Yazd, M. Safari; Molazemi, A. [Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran); Moayed, M.H. [Metallurgical and Materials Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran)

    2006-07-14

    Hydrogen and oxygen evolution at the negative and positive electrodes in AGM batteries are the main reasons of self-discharging. The self-discharge of five AGM batteries was investigated by measuring different potential between two electrodes during 48 days. Five different battery electrolytes were used including 35% (w/w) H{sub 2}SO{sub 4} without additives and the remaining contain 7.1, 9.94, and 21.3gl{sup -1} sodium sulfate, 4gl{sup -1} boric acid, 3gl{sup -1} citric acid, and finally 0.7 and 1gl{sup -1} stearic acid except one containing boric acid that the concentration of H{sub 2}SO{sub 4} was 36% (w/w). The results revealed that the rate of self-discharge for battery without additive was 0.01Vday{sup -1}. The battery with boric acid showed the lowest rate of self-discharge with 0.0025Vday{sup -1}. It was also found that stearic and citric acids are comparatively appropriate additives for decreasing the self-discharge. They caused a decrease of the self-discharge rate to 0.005 and 0.0075Vday{sup -1} on appropriate concentration, respectively. In compared to other additives, sodium sulfate showed to be not an appropriate additive for decreasing battery self-discharging. The rate of 0.03Vday{sup -1} of self-discharging was obtained for the battery containing all selected concentration of sodium sulfate during first 4 days of measuring. (author)

  14. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.

    Science.gov (United States)

    Steven M. Wondzell

    2006-01-01

    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  15. Sterilization and decontamination of surfaces using atmospheric pressure plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garate, E.; Gornostaeva, O.; Alexeff, I.; Kang, W.L.

    1999-07-01

    The goal of the program is to demonstrate that an atmospheric pressure plasma discharge can rapidly and effectively sterilize or decontaminate surfaces that are contaminated with model biological and chemical warfare agents. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC. AC or pulsed discharges. the work done to date has focused on the sterilization of aluminum, polished steel and tantalum foil metal coupons, about 2 cm on a side and 2 mm thick, which have been inoculated with up to 10{sup 6} spores per coupon of Bacillus subtilis var niger or Bascillus stearothermorphilus. Results indicate that 5 minute exposures to the atmospheric pressure plasma discharge can reduce the viable spore count by 4 orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are stimulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  16. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    Science.gov (United States)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  17. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  18. Effect of voltage waveform on dielectric barrier discharge ozone production efficiency

    Science.gov (United States)

    Mericam-Bourdet, N.; Kirkpatrick, M. J.; Tuvache, F.; Frochot, D.; Odic, E.

    2012-03-01

    Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge - it does this by tailoring the duration of the current peak into the tens of nanosecond range.

  19. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  20. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    Science.gov (United States)

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to

  1. Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance

    International Nuclear Information System (INIS)

    Nazri Dagang Ahmad; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi

    2009-01-01

    Since there is much concern about environmental preservation, the authors have paid attention to the uses of mercury in lighting application. They have focused on the application of the xenon low-pressure inductively coupled plasma (ICP) discharge in developing cylindrical type mercury-free light sources. ICP can be operated at low filling gas pressures and demonstrates significant potential in producing high density plasma. Xenon pressure was varied from 0.1 to 100 Torr and the lamp luminance was measured. The gas pressure dependence shows an increase in luminance at pressures below 1 Torr. In order to clarify this behaviour, measurement of plasma parameters was carried out using the double probe method and its relation to lamp luminance is discussed. As the gas pressure is decreased (from 1 to 0.01 Torr), the electron temperature increases while the electron density decreases while at the same time the lamp luminance increases. There are several factors that are believed to contribute to the increase in luminance in the very low pressure region. Increases in luminance are considered to be due to the electron-ion recombination process which brings a strong recombination radiation in continuum in the visible region and also due to the effect of stochastic heating.

  2. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    Science.gov (United States)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  3. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  5. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    Science.gov (United States)

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  6. Eccentric muscle damage has variable effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles.

    Science.gov (United States)

    Dartnall, Tamara J; Rogasch, Nigel C; Nordstrom, Michael A; Semmler, John G

    2009-07-01

    The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task. These tasks were performed on three separate days before, immediately after, and 24 h after eccentric exercise of elbow flexor muscles. MVC force declined (42%) immediately after exercise and remained depressed (29%) 24 h later, indicative of muscle damage. Mean motor unit recruitment threshold for biceps brachii was 8.4+/-4.2% MVC, (n=34) before eccentric exercise, and was reduced by 41% (5.0+/-3.0% MVC, n=34) immediately after and by 39% (5.2+/-2.5% MVC, n=34) 24 h after exercise. No significant changes in motor unit recruitment threshold were observed in the brachialis muscle. However, for the minimum tonic discharge rate task, motor units in both muscles discharged 11% faster (10.8+/-2.0 vs. 9.7+/-1.7 Hz) immediately after (n=29) exercise compared with that before (n=32). The minimum discharge rate variability was greater in brachialis muscle immediately after exercise (13.8+/-3.1%) compared with that before (11.9+/-3.1%) and 24 h after exercise (11.7+/-2.4%). No significant changes in minimum discharge rate variability were observed in the biceps brachii motor units after exercise. These results indicate that muscle damage from eccentric exercise alters motor unit recruitment thresholds for >or=24 h, but the effect is not the same in the different elbow flexor muscles.

  7. Effects of produced water discharges on the colonization potential of Macrocystis pyrifera spores

    International Nuclear Information System (INIS)

    Lewis, R.J.; Reed, D.C.

    1993-01-01

    Point sources of pollution (e.g. industrial outfalls) may produce ecological impacts at distant locations if pollutants affect dispersive propagules. The authors used laboratory experiments to determine how exposure to produced water (PW; aqueous fraction of petroleum production that is typically discharged into coastal waters) in the water column influences the colonization potential of giant kelp (Macrocystis pyrifera) spores on the bottom. Spores were maintained in suspension in 18 L containers and exposed to one of five concentrations of PW (0 to 10%) for varying amounts of time. Spore swimming generally decreased with increasing PW concentration and exposure duration, with the specific pattern of decrease differing between experimental trials done at different dates. The effect of exposure duration in the water column on the ability of swimming spores to attach to plastic dishes placed the bottom varied with PW concentration. Spores placed in 1 and 10% PW showed a steady decline in their ability to attach with increased exposure; lower concentrations of PW had no such effects. The proportion of spores that germinated after attachment varied tremendously with exposure duration and date of experimental trial. A low proportion of spores that settled during the first 12 h germinated, indicative of a short period of precompetency. Surprisingly, water column exposure to high concentrations of PW during the first 12 h reduced this precompetent period and greatly improved germination success. The magnitude of this enhancement, however, varied among dates. Delayed expression of PW effects were not observed in developing gametophytes; survival of individuals that successfully germinated and gamete production was not affected by previous exposure to PW as a spore

  8. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  9. Faraday space in a high-frequency γ discharge and the influence of pressure on the normal current density effect of an α discharge and the nature of the α-γ transition

    International Nuclear Information System (INIS)

    Raizer, Yu.P.; Shneider, M.N.

    1992-01-01

    The essential differences between high-frequency capacative discharges at intermediate and low pressures are considered. A theory is developed for the negative emission region and the Faraday dark space in a γ discharge. It is based on the kinetic equation for electrons in the highly nonuniform field of an electrode sheath, which is solved in the forward-backward approximation. If a uniform positive column is formed in the middle of the gap of a γ discharge of average pressure which is not too short, then at low pressures the hf plasma acts as the equivalent of the negative emission or Faraday space of a glow discharge with a typical weak field and low electron temperature. A region of reversed average field also appears, which is characteristic of a glow discharge. The question of the normal current density effect in an α discharge is discussed. This effect is observed at average pressures. At low pressures the effect disappears, and even weak current covers the entire electrode; the pressures at which this occurs and the reasons for it are demonstrated. The nature of the α-γ transition, which takes place discontinuously at average pressures but continuously at lower pressures, is discussed. The reason for this behavior is discussed and the pressure at which the discontinuous mechanism changes into continuous is estimated

  10. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    Science.gov (United States)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  11. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  12. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  13. Effectiveness of community-based rehabilitation after traumatic brain injury for 489 program completers compared with those precipitously discharged.

    Science.gov (United States)

    Altman, Irwin M; Swick, Shannon; Parrot, Devan; Malec, James F

    2010-11-01

    To evaluate outcomes of home- and community-based postacute brain injury rehabilitation (PABIR). Retrospective analysis of program evaluation data for treatment completers and noncompleters. Home- and community-based PABIR conducted in 7 geographically distinct U.S. cities. Patients (N=489) with traumatic brain injury who completed the prescribed course of rehabilitation (completed-course-of-treatment [CCT] group) compared with 114 who were discharged precipitously before program completion (precipitous-discharge [PD] group). PABIR delivered in home and community settings by certified professional staff on an individualized basis. Mayo-Portland Adaptability Inventory (MPAI-4) completed by means of professional consensus on admission and at discharge; MPAI-4 Participation Index at 3- and 12-month follow-up through telephone contact. Analysis of covariance (CCT vs PD group as between-subjects variable, admission MPAI-4 score as covariate) showed significant differences between groups at discharge on the full MPAI-4 (F=82.25; P<.001), Ability Index (F=50.24; P<.001), Adjustment Index (F=81.20; P<.001), and Participation Index (F=59.48; P<.001). A large portion of the sample was lost to follow-up; however, available data showed that group differences remained statistically significant at follow-up. Results provided evidence of the effectiveness of home- and community-based PABIR and that treatment effects were maintained at follow-up. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. A review of environmental governance and its effects on concentrate discharge from desalination plants in the Kingdom of Saudi Arabia

    KAUST Repository

    Van Der Merwe, Riaan

    2013-01-01

    The most likely environmental impact of concentrate discharges (in most instances twice the concentration of the ambient environment) leaking from desalination plants on local marine ecosystems has been controversially discussed for many years. Increasing water demand and lack of renewable natural water resources in Saudi Arabia also result in greater dependence on desalination and consequently amplify the impact on marine environment and multifactorial ecosystems in near-field areas of desalination discharges. Accurate scientific baseline data should furnish information on various factors such as intake- and outfall locality, brine (concentrate) discharge and chemical characteristics (i.e. effluent concentration, mass flow rates (flux)), local effects, and even cumulative effects of desalination activities, at least on a regional and even on a national scale. Even if such data were available, in many cases they are non-transparent and are not even accessible, or tend to be overlooked as a result of ambiguous desalination-related policies. This paper focuses on national environmental regulations in the Kingdom of Saudi Arabia (KSA) and how such regulations help control the flow of concentrate discharge into the receiving waters. © 2013 Desalination Publications.

  15. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  16. Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI

    Science.gov (United States)

    Gkiatis, K.; Bromis, K.; Kakkos, I.; Karanasiou, I. S.; Matsopoulos, G. K.; Garganis, K.

    2017-11-01

    Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.

  17. The effect of contextual factors on unintentional injury hospitalization: from the Korea National Hospital Discharge Survey.

    Science.gov (United States)

    Lee, Hye Ah; Han, Hyejin; Lee, Seonhwa; Park, Bomi; Park, Bo Hyun; Lee, Won Kyung; Park, Ju Ok; Hong, Sungok; Kim, Young Taek; Park, Hyesook

    2018-03-13

    It has been suggested that health risks are affected by geographical area, but there are few studies on contextual effects using multilevel analysis, especially regarding unintentional injury. This study investigated trends in unintentional injury hospitalization rates over the past decade in Korea, and also examined community-level risk factors while controlling for individual-level factors. Using data from the 2004 to 2013 Korea National Hospital Discharge Survey (KNHDS), trends in age-adjusted injury hospitalization rate were conducted using the Joinpoint Regression Program. Based on the 2013 KNHDS, we collected community-level factors by linking various data sources and selected dominant factors related to injury hospitalization through a stepwise method. Multilevel analysis was performed to assess the community-level factors while controlling for individual-level factors. In 2004, the age-adjusted unintentional injury hospitalization rate was 1570.1 per 100,000 population and increased to 1887.1 per 100,000 population in 2013. The average annual percent change in rate of hospitalizations due to unintentional injury was 2.31% (95% confidence interval: 1.8-2.9). It was somewhat higher for females than for males (3.25% vs. 1.64%, respectively). Both community- and individual-level factors were found to significantly influence unintentional injury hospitalization risk. As community-level risk factors, finance utilization capacity of the local government and neighborhood socioeconomic status, were independently associated with unintentional injury hospitalization after controlling for individual-level factors, and accounted for 19.9% of community-level variation in unintentional injury hospitalization. Regional differences must be considered when creating policies and interventions. Further studies are required to evaluate specific factors related to injury mechanism.

  18. Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon

    International Nuclear Information System (INIS)

    Ji Puhui; Qu Guangzhou; Li Jie

    2013-01-01

    The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N 2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatography mass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N 2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC

  19. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    Science.gov (United States)

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  20. Transport simulations of a density limit in radiation-dominated tokamak discharges: profile effects

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1988-01-01

    The density limit observed in tokamak experiments is thought to be due to a radiative collapse of the current channel. A transport code coupled with a magnetohydrodynamic (MHD) equilibrium routine is used to determine the detailed, self-consistent evolution of the plasma profiles in tokamak discharges with radiated power close to or equaling the input power. The present work is confined to Ohmic discharges in steady state. It is found that the shape of the density profile can have a significant impact on the variation of the maximum electron density with plasma current. Analytic calculations confirm this result