WorldWideScience

Sample records for eeg sleep spindle

  1. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    Science.gov (United States)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  2. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution.

    Science.gov (United States)

    Werth, E; Achermann, P; Dijk, D J; Borbély, A A

    1997-11-01

    The brain topography of EEG power spectra in the frequency range of sleep spindles was investigated in 34 sleep recordings from 20 healthy young men. Referential (F3-A2, C3-A2, P3-A2 and O1-A2) and bipolar derivations (F3-C3, C3-P3 and P3-O1) along the anteroposterior axis were used. Sleep spindles gave rise to a distinct peak in the EEG power spectrum. The distribution of the peak frequencies pooled over subjects and derivations showed a bimodal pattern with modes at 11.5 and 13.0 Hz, and a trough at 12.25 Hz. The large inter-subject variation in peak frequency (range: 1.25 Hz) contrasted with the small intra-subject variation between derivations, non-REM sleep episodes and different nights. In some individuals and/or some derivations, only a single spindle peak was present. The topographic distributions from referential and bipolar recordings showed differences. The power showed a declining trend over consecutive non-REM sleep episodes in the low range of spindle frequency activity and a rising trend in the high range. The functional and topographic heterogeneity of sleep spindles in conjunction with the intra-subject stability of their frequency are important characteristics for the analysis of sleep regulation on the basis of the EEG.

  3. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, D T; Goldstein, M R; Landsness, E C; Peterson, M J; Riedner, B A; Ferrarelli, F; Wanger, T; Guokas, J J; Tononi, G; Benca, R M

    2013-03-20

    Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing.

    Science.gov (United States)

    Tsanas, Athanasios; Clifford, Gari D

    2015-01-01

    Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG) signal(s) by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g., Fourier transform-based approaches) which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g., more than one EEG channels, or prior hypnogram assessment). This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means toward probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT) with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz) is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts' sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%), outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts' assessment of detected spindles.

  5. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing

    Directory of Open Access Journals (Sweden)

    Athanasios eTsanas

    2015-04-01

    Full Text Available Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG signal(s by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g. Fourier transform-based approaches which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g. more than one EEG channels, or prior hypnogram assessment. This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means towards probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts’ sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%, outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts’ assessment of detected spindles.

  6. Time-frequency dynamics during sleep spindles on the EEG in rodents with a genetic predisposition to absence epilepsy (WAG/Rij rats)

    Science.gov (United States)

    Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.

    2015-03-01

    Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.

  7. Sleep spindles predict stress-related increases in sleep disturbances

    Directory of Open Access Journals (Sweden)

    Thien Thanh eDang-Vu

    2015-02-01

    Full Text Available Background and Aim: Predisposing factors place certain individuals at higher risk for insomnia, especially in the presence of precipitating conditions such as stressful life events. Sleep spindles have been shown to play an important role in the preservation of sleep continuity. Lower spindle density might thus constitute an objective predisposing factor for sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship between baseline sleep spindle density and the prospective change in insomnia symptoms in response to a standardized academic stressor. Methods: 12 healthy students had a polysomnography (PSG recording during a period of lower stress at the beginning of the academic semester, along with an assessment of insomnia complaints using the Insomnia Severity Index (ISI. They completed a second ISI assessment at the end of the semester, a period coinciding with the week prior to final examinations and thus higher stress. Spindle density, amplitude, duration and frequency, as well as sigma power were computed from C4-O2 electroencephalography (EEG derivation during stages N2-N3 of non-rapid-eye-movement (NREM sleep, across the whole night and for each NREM sleep period. To test for the relationship between spindle density and changes in insomnia symptoms in response to academic stress, spindle measurements at baseline were correlated with changes in ISI across the academic semester.Results: Spindle density (as well as spindle amplitude and sigma power, particularly during the first NREM sleep period, negatively correlated with changes in ISI (p < 0.05. Conclusion: Lower spindle activity, especially at the beginning of the night, prospectively predicted larger increases in insomnia symptoms in response to stress. This result indicates that individual differences in sleep spindle activity contribute to the differential vulnerability to sleep disturbances in the face of precipitating factors.

  8. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Christensen, Julie A. E.; Kempfner, Jacob

    2012-01-01

    Many of the automatic sleep spindle detectors currently used to analyze sleep EEG are either validated on young subjects or not validated thoroughly. The purpose of this study is to develop and validate a fast and reliable sleep spindle detector with high performance in middle aged subjects....... An automatic sleep spindle detector using a bandpass filtering approach and a time varying threshold was developed. The validation was done on sleep epochs from EEG recordings with manually scored sleep spindles from 13 healthy subjects with a mean age of 57.9 ± 9.7 years. The sleep spindle detector reached...

  9. Sleep spindle alterations in patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Warby, Simon C.

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score...

  10. Nap sleep spindle correlates of intelligence.

    Science.gov (United States)

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  11. Sleep spindle activity in double cortex syndrome: a case report.

    Science.gov (United States)

    Sforza, Emilia; Marcoz, Jean-Pierre; Foletti, Giovanni

    2010-09-01

    Cortical dysgenesis is increasingly recognised as a cause of epilepsy. We report a case with double cortex heterotopia and secondarily generalized seizures with a generalised spike wave pattern. During the course of the disease, the child developed electrical status epilepticus in slow wave sleep. From the first examination, sleep pattern revealed increased frequency and amplitude of spindle activity, more evident in anterior areas. The role of the thalamocortical pathway in increased sleep spindle activity is discussed with emphasis on the possible role of altered thalamocortical pathways in abnormal cortical migration. A strong suspicion of cortical dysgenesis may therefore be based on specific EEG sleep patterns.

  12. Sleep spindle density in narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias

    2017-01-01

    BACKGROUND: Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether...... the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). METHODS: All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin...... levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2...

  13. Sleep spindling and fluid intelligence across adolescent development: sex matters

    Directory of Open Access Journals (Sweden)

    Róbert eBódizs

    2014-11-01

    Full Text Available Evidence supports the intricate relationship between sleep electroencephalogram (EEG spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males with an age range of 15–22 years (mean: 18 years and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test. Slow spindles (SSs and fast spindles (FSs were analyzed in 21 EEG derivations by using the individual adjustment method. A significant age-dependent increase in average FS density (r = .57; p = .005 was found. Moreover, fluid IQ correlated with FS density (r = .43; p = .04 and amplitude (r = .41; p = .049. The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = .80 (p = .002 and r = .67 (p = .012, for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = .60, p = .04. Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unravelling gender differences in adolescent brain maturation and perhaps cognitive

  14. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood

    Directory of Open Access Journals (Sweden)

    Ian J. McClain

    2016-01-01

    Full Text Available Sleep spindles, a prominent feature of the non-rapid eye movement (NREM sleep electroencephalogram (EEG, are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density and power in the sigma frequency range (10–16 Hz across ages 2, 3, and 5 years (n=8; 3 males. At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05. We also found a developmental decrease in mean spindle frequency (p<0.05 but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.

  15. Connectivity Measures in EEG Microstructural Sleep Elements.

    Science.gov (United States)

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence

  16. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

    Science.gov (United States)

    Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan

    2011-10-01

    Thalamo-cortical spindles driven by the up-state of neocortical slow (memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

  17. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations.

    Science.gov (United States)

    Yordanova, Juliana; Kolev, Vasil; Bruns, Eike; Kirov, Roumen; Verleger, Rolf

    2017-11-01

    The present study explored the sleep mechanisms which may support awareness of hidden regularities. Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  18. Inter-expert and intra-expert reliability in sleep spindle scoring

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Welinder, Peter; Sørensen, Helge Bjarup Dissing

    2015-01-01

    Objectives To measure the inter-expert and intra-expert agreement in sleep spindle scoring, and to quantify how many experts are needed to build a reliable dataset of sleep spindle scorings. Methods The EEG dataset was comprised of 400 randomly selected 115 s segments of stage 2 sleep from 110...... with higher reliability than the estimation of spindle duration. Reliability of sleep spindle scoring can be improved by using qualitative confidence scores, rather than a dichotomous yes/no scoring system. Conclusions We estimate that 2–3 experts are needed to build a spindle scoring dataset...... with ‘substantial’ reliability (κ: 0.61–0.8), and 4 or more experts are needed to build a dataset with ‘almost perfect’ reliability (κ: 0.81–1). Significance Spindle scoring is a critical part of sleep staging, and spindles are believed to play an important role in development, aging, and diseases of the nervous...

  19. Sleep spindling and fluid intelligence across adolescent development: sex matters.

    Science.gov (United States)

    Bódizs, Róbert; Gombos, Ferenc; Ujma, Péter P; Kovács, Ilona

    2014-01-01

    Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps

  20. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    Science.gov (United States)

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  1. Effect of Daytime Exercise on Sleep Eeg and Subjective Sleep

    Science.gov (United States)

    Sasazawa, Y.; Kawada, T.; Kiryu, Y.

    1997-08-01

    This study was designed to assess the effects of daytime physical exercise on the quality of objective and subjective sleep by examining all-night sleep EEGs. The subjects were five male students, aged 19 to 20 years, who were in the habit of performing regular daytime exercise. The sleep polygraphic parameters in this study were sleep stage time as a percentage of total sleep time (%S1, %S2, %S(3+4), %SREM, %MT), time in bed (TIB), sleep time (ST), total sleep time (TST), sleep onset latency (SOL), waking from sleep, sleep efficiency, number of awakenings, number of stage shifts, number of spindles, and percentages of α and δ waves, all of which were determined by an automatic computer analysis system. The OSA questionnaire was used to investigate subjective sleep. The five scales of the OSA used were sleepiness, sleep maintenance, worry, integrated sleep feeling, and sleep initiation. Each sleep parameter was compared in the exercise and the non-exercise groups. Two-way analysis of variance was applied using subject factor and exercise factor. The main effect of the subject was significant in all parameters and the main effect of exercise in %S(3+4), SOL and sleep efficiency, among the objective sleep parameters. The main effects of the subject, except sleepiness, were significant, as was the main effect of exercise on sleep initiation, among the subjective sleep parameters. These findings suggest that daytime exercise shortened sleep latency and prolonged slow-wave sleep, and that the subjects fell asleep more easily on exercise days. There were also significant individual differences in both the objective and subjective sleep parameters.

  2. Local sleep spindle modulations in relation to specific memory cues

    NARCIS (Netherlands)

    Cox, R.; Hofman, W.F.; de Boer, M.; Talamini, L.M.

    2014-01-01

    Sleep spindles have been connected to memory processes in various ways. In addition, spindles appear to be modulated at the local cortical network level. We investigated whether cueing specific memories during sleep leads to localized spindle modulations in humans. During learning of word-location

  3. Sleep Spindle Detection and Prediction Using a Mixture of Time Series and Chaotic Features

    Directory of Open Access Journals (Sweden)

    Amin Hekmatmanesh

    2017-01-01

    Full Text Available It is well established that sleep spindles (bursts of oscillatory brain electrical activity are significant indicators of learning, memory and some disease states. Therefore, many attempts have been made to detect these hallmark patterns automatically. In this pilot investigation, we paid special attention to nonlinear chaotic features of EEG signals (in combination with linear features to investigate the detection and prediction of sleep spindles. These nonlinear features included: Higuchi's, Katz's and Sevcik's Fractal Dimensions, as well as the Largest Lyapunov Exponent and Kolmogorov's Entropy. It was shown that the intensity map of various nonlinear features derived from the constructive interference of spindle signals could improve the detection of the sleep spindles. It was also observed that the prediction of sleep spindles could be facilitated by means of the analysis of these maps. Two well-known classifiers, namely the Multi-Layer Perceptron (MLP and the K-Nearest Neighbor (KNN were used to distinguish between spindle and non-spindle patterns. The MLP classifier produced a~high discriminative capacity (accuracy = 94.93%, sensitivity = 94.31% and specificity = 95.28% with significant robustness (accuracy ranging from 91.33% to 94.93%, sensitivity varying from 91.20% to 94.31%, and specificity extending from 89.79% to 95.28% in separating spindles from non-spindles. This classifier also generated the best results in predicting sleep spindles based on chaotic features. In addition, the MLP was used to find out the best time window for predicting the sleep spindles, with the experimental results reaching 97.96% accuracy.

  4. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation.

    Science.gov (United States)

    Fogel, Stuart M; Smith, Carlyle T

    2011-04-01

    Until recently, the electrophysiological mechanisms involved in strengthening new memories into a more permanent form during sleep have been largely unknown. The sleep spindle is an event in the electroencephalogram (EEG) characterizing Stage 2 sleep. Sleep spindles may reflect, at the electrophysiological level, an ideal mechanism for inducing long-term synaptic changes in the neocortex. Recent evidence suggests the spindle is highly correlated with tests of intellectual ability (e.g.; IQ tests) and may serve as a physiological index of intelligence. Further, spindles increase in number and duration in sleep following new learning and are correlated with performance improvements. Spindle density and sigma (14-16Hz) spectral power have been found to be positively correlated with performance following a daytime nap, and animal studies suggest the spindle is involved in a hippocampal-neocortical dialogue necessary for memory consolidation. The findings reviewed here collectively provide a compelling body of evidence that the function of the sleep spindle is related to intellectual ability and memory consolidation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    Science.gov (United States)

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-03

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. Copyright © 2014 the authors 0270-6474/14/3416358-11$15.00/0.

  6. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Min-Yin Liu

    2017-05-01

    Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.

  7. Different maturational changes of fast and slow sleep spindles in the first four years of life.

    Science.gov (United States)

    D'Atri, Aurora; Novelli, Luana; Ferrara, Michele; Bruni, Oliviero; De Gennaro, Luigi

    2018-02-01

    Massive changes in brain morphology and function in the first years of life reveal a postero-anterior trajectory of cortical maturation accompanied by regional modifications of NREM sleep. One of the most sensible marker of this maturation process is represented by electroencephalographic (EEG) activity within the frequency range of sleep spindles. However, direct evidence that these changes actually reflect maturational modifications of fast and slow spindles still lacks. Our study aimed at answering the following questions: 1. Do cortical changes at 11.50 Hz frequency correspond to slow spindles? 2. Do fast and slow spindles show different age trajectories and different topographical distributions? 3. Do changes in peak frequency explain age changes of slow and fast spindles? We measured the antero-posterior changes of slow and fast spindles in the first 60 min of nightly sleep of 39 infants and children (0-48 mo.). We found that (A) changes of slow spindles from birth to childhood mostly affect frontal areas (B) variations of fast and slow spindles across age groups go in opposite direction, the latter progressively increasing across ages; (C) this process is not merely reducible to changes of spindle frequency. As a main finding, our cross-sectional study shows that the first form of mature spindle (i.e., corresponding to the adult phasic event of NREM sleep) is marked by the emergence of slow spindles on anterior regions around the age of 12 months. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...

  9. Sleep-EEG in dizygotic twins discordant for Williams syndrome.

    Science.gov (United States)

    Bódizs, Róbert; Gombos, Ferenc; Szocs, Katalin; Réthelyi, János M; Gerván, Patrícia; Kovács, Ilona

    2014-01-30

    Reports on twin pairs concordant and discordant for Williams syndrome were published before, but no study unravelled sleep physiology in these cases yet. We aim to fill this gap by analyzing sleep records of a twin pair discordant for Williams syndrome extending our focus on presleep wakefulness and sleep spindling. We performed multiplex ligation-dependent probe amplification of the 7q11.23 region of a 17 years old dizygotic opposite-sex twin pair discordant for Williams syndrome. Polysomnography of laboratory sleep at this age was analyzed and followed-up after 1.5 years by ambulatory polysomnography. Sleep stages scoring, EEG power spectra and sleep spindle analyses were carried out. The twin brother showed reduced levels of amplification for all of the probes in the 7q11.23 region indicating a typical deletion spanning at least 1.038 Mb between FKBP6 and CLIP2. The results of the twin sister showed normal copy numbers in the investigated region. Lower sleep times and efficiencies, as well as higher slow wave sleep percents of the twin brother were evident during both recordings. Roughly equal NREM, Stage 2 and REM sleep percents were found. EEG analyses revealed state and derivation-independent decreases in alpha power, lack of an alpha spectral peak in presleep wakefulness, as well as higher NREM sleep sigma peak frequency in the twin brother. Faster sleep spindles with lower amplitude and shorter duration characterized the records of the twin brother. Spectra show a striking reliability and correspondence between the two situations (laboratory vs. home records). Alterations in sleep and specific neural oscillations including the alpha/sigma waves are inherent aspects of Williams syndrome.

  10. Triangular relationship between sleep spindle activity, general cognitive ability and the efficiency of declarative learning.

    Directory of Open Access Journals (Sweden)

    Caroline Lustenberger

    Full Text Available EEG sleep spindle activity (SpA during non-rapid eye movement (NREM sleep has been reported to be associated with measures of intelligence and overnight performance improvements. The reticular nucleus of the thalamus is generating sleep spindles in interaction with thalamocortical connections. The same system enables efficient encoding and processing during wakefulness. Thus, we examined if the triangular relationship between SpA, measures of intelligence and declarative learning reflect the efficiency of the thalamocortical system. As expected, SpA was associated with general cognitive ability, e.g. information processing speed. SpA was also associated with learning efficiency, however, not with overnight performance improvement in a declarative memory task. SpA might therefore reflect the efficiency of the thalamocortical network and can be seen as a marker for learning during encoding in wakefulness, i.e. learning efficiency.

  11. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle...

  12. Propofol Anesthesia and Sleep: A High-Density EEG Study

    Science.gov (United States)

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  13. Combining time-frequency and spatial information for the detection of sleep spindles

    Directory of Open Access Journals (Sweden)

    Christian eO'Reilly

    2015-02-01

    Full Text Available EEG sleep spindles are short (0.5-2.0 s bursts of activity in the 11-16 Hz band occurring during non-rapid eye movement (NREM sleep. This sporadic activity is thought to play a role in memory consolidation, brain plasticity, and protection of sleep integrity. Many automatic detectors have been proposed to assist or replace experts for sleep spindle scoring. However, these algorithms usually detect too many events making it difficult to achieve a good tradeoff between sensitivity (Se and false detection rate (FDr. In this work, we propose a semi-automatic detector comprising a sensitivity phase based on well-established criteria followed by a specificity phase using spatial and spectral criteria.In the sensitivity phase, selected events are those which amplitude in the 10 – 16 Hz band and spectral ratio characteristics both reject a null hypothesis (p <0.1 stating that the considered event is not a spindle. This null hypothesis is constructed from events occurring during rapid eye movement (REM sleep epochs. In the specificity phase, a hierarchical clustering of the selected candidates is done based on events’ frequency and spatial position along the anterior-posterior axis. Only events from the classes grouping most (at least 80% spindles scored by an expert are kept. We obtain Se = 93.2% and FDr = 93.0% in the first phase and Se = 85.4% and FDr = 86.2% in the second phase. For these two phases, Matthew’s correlation coefficients are respectively 0.228 and 0.324. Results suggest that spindles are defined by specific spatio-spectral properties and that automatic detection methods can be improved by considering these features.

  14. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    Science.gov (United States)

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  15. Sleep Spindles and Intelligence in Early Childhood--Developmental and Trait-Dependent Aspects

    Science.gov (United States)

    Ujma, Péter P.; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-01-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our…

  16. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

    NARCIS (Netherlands)

    Adamczyk, M.; Genzel, L.K.E.; Dresler, M.; Steiger, A.; Friess, E.

    2015-01-01

    Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle

  17. Age-related Changes In Sleep Spindles Characteristics During Daytime Recovery Following a 25-Hour Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    Thaïna eRosinvil

    2015-06-01

    Full Text Available Objectives: The mechanisms underlying sleep spindles (~11-15Hz; >0.5s help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g. daytime, even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups.Methods: Twenty-nine young (15 women and 14 men; 27.3 ± 5.0 and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1 healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artefact-free NREM sleep epochs. Spindle density (nb/min, amplitude (μV, frequency (Hz and duration (s were analyzed on parasagittal (linked-ears derivations. Results: In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects.Conclusion: These results suggest that the interaction between homeostatic and circadian pressure module spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep.

  18. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis

    Directory of Open Access Journals (Sweden)

    Tarek eLajnef

    2015-07-01

    Full Text Available A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG signals are split into oscillatory (spindles and transient (K-complex components. This decomposition is conveniently achieved by applying morphological component analysis (MCA to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT. Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i the transient component to reveal K-complexes and (ii the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity versus FDR on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1, the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62% and 49.09% respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are

  19. Lateralised sleep spindles relate to false memory generation.

    Science.gov (United States)

    Shaw, John J; Monaghan, Padraic

    2017-12-01

    Sleep is known to enhance false memories: After presenting participants with lists of semantically related words, sleeping before recalling these words results in a greater acceptance of unseen "lure" words related in theme to previously seen words. Furthermore, the right hemisphere (RH) seems to be more prone to false memories than the left hemisphere (LH). In the current study, we investigated the sleep architecture associated with these false memory and lateralisation effects in a nap study. Participants viewed lists of related words, then stayed awake or slept for approximately 90min, and were then tested for recognition of previously seen-old, unseen-new, or unseen-lure words presented either to the LH or RH. Sleep increased acceptance of unseen-lure words as previously seen compared to the wake group, particularly for RH presentations of word lists. RH lateralised stage 2 sleep spindle density relative to the LH correlated with this increase in false memories, suggesting that RH sleep spindles enhanced false memories in the RH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Increased EEG sigma and beta power during NREM sleep in primary insomnia.

    Science.gov (United States)

    Spiegelhalder, Kai; Regen, Wolfram; Feige, Bernd; Holz, Johannes; Piosczyk, Hannah; Baglioni, Chiara; Riemann, Dieter; Nissen, Christoph

    2012-12-01

    The hyperarousal model of primary insomnia suggests that a deficit of attenuating arousal during sleep might cause the experience of non-restorative sleep. In the current study, we examined EEG spectral power values for standard frequency bands as indices of cortical arousal and sleep protecting mechanisms during sleep in 25 patients with primary insomnia and 29 good sleeper controls. Patients with primary insomnia demonstrated significantly elevated spectral power values in the EEG beta and sigma frequency band during NREM stage 2 sleep. No differences were observed in other frequency bands or during REM sleep. Based on prior studies suggesting that EEG beta activity represents a marker of cortical arousal and EEG sleep spindle (sigma) activity is an index of sleep protective mechanisms, our findings may provide further evidence for the concept that a simultaneous activation of wake-promoting and sleep-protecting neural activity patterns contributes to the experience of non-restorative sleep in primary insomnia. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Development of Brain EEG Connectivity across Early Childhood: Does Sleep Play a Role?

    Directory of Open Access Journals (Sweden)

    Monique K. LeBourgeois

    2013-11-01

    Full Text Available Sleep has beneficial effects on brain function and learning, which are reflected in plastic changes in the cortex. Early childhood is a time of rapid maturation in fundamental skills—e.g., language, cognitive control, working memory—that are predictive of future functioning. Little is currently known about the interactions between sleep and brain maturation during this developmental period. We propose coherent electroencephalogram (EEG activity during sleep may provide unique insight into maturational processes of functional brain connectivity. Longitudinal sleep EEG assessments were performed in eight healthy subjects at ages 2, 3 and 5 years. Sleep EEG coherence increased across development in a region- and frequency-specific manner. Moreover, although connectivity primarily decreased intra-hemispherically across a night of sleep, an inter-hemispheric overnight increase occurred in the frequency range of slow waves (0.8–2 Hz, theta (4.8–7.8 Hz and sleep spindles (10–14 Hz, with connectivity changes of up to 20% across a night of sleep. These findings indicate sleep EEG coherence reflects processes of brain maturation—i.e., programmed unfolding of neuronal networks—and moreover, sleep-related alterations of brain connectivity during the sensitive maturational window of early childhood.

  2. Removal of ocular artifacts from the REM sleep EEG

    NARCIS (Netherlands)

    Waterman, D.; Woestenburg, J.C.; Elton, M.; Hofman, W.; Kok, A.

    1992-01-01

    The present report concerns the first study in which electrooculographic (EOG) contamination of electroencephalographic (EEG) recordings in rapid eye movement (REM) sleep is systematically investigated. Contamination of REM sleep EEG recordings in six subjects was evaluated in the frequency domain.

  3. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    Directory of Open Access Journals (Sweden)

    Dorothée Coppieters ’t Wallant

    2016-01-01

    Full Text Available Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation and individual characteristics (intellectual quotient. Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way.

  4. Sleep spindles and intelligence in early childhood-developmental and trait-dependent aspects.

    Science.gov (United States)

    Ujma, Péter P; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-12-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our previous work in older subjects revealed sex differences in the sleep spindle correlates of IQ, which was never investigated in small children before. We investigated the relationship between age, Raven Colored Progressive Matrices (CPM) scores and sleep spindles in 28 young children (age 4-8 years, 15 girls). We specifically investigated sex differences in the psychometric correlates of sleep spindles. We also aimed to separate the correlates of sleep spindles that are because of age-related maturation from other effects that reflect an age-independent relationship between sleep spindles and general intelligence. Our results revealed a modest positive correlation between fast spindle amplitude and age. Raven CPM scores positively correlated with both slow and fast spindle amplitude, but this effect remained a tendency in males and vanished after correcting for the effects of age. Age-corrected correlations between Raven CPM scores and both slow and fast spindle amplitude were only significant in females. Overall, our results show that in male children sleep spindles are a maturational marker, but in female children they indicate trait-like intelligence, in line with previous studies in adolescent and adult subjects. Thalamocortical white matter connectivity may be the underlying mechanism behind both higher spindle amplitude and higher intelligence in female, but not male subjects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    Directory of Open Access Journals (Sweden)

    Lisa Marshall

    Full Text Available Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz during non-rapid eye movement sleep (NonREM sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.

  6. Declarative memory performance is associated with the number of sleep spindles in elderly women.

    Science.gov (United States)

    Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert

    2012-09-01

    Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.

  7. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  8. Sleep EEG of Microcephaly in Zika Outbreak.

    Science.gov (United States)

    Kanda, Paulo Afonso Medeiros; Aguiar, Aline de Almeida Xavier; Miranda, Jose Lucivan; Falcao, Alexandre Loverde; Andrade, Claudia Suenia; Reis, Luigi Neves Dos Santos; Almeida, Ellen White R Bacelar; Bello, Yanes Brum; Monfredinho, Arthur; Kanda, Rafael Guimaraes

    2018-01-01

    Microcephaly (MC), previously considered rare, is now a health emergency of international concern because of the devastating Zika virus pandemic outbreak of 2015. The authors describe the electroencephalogram (EEG) findings in sleep EEG of epileptic children who were born with microcephaly in areas of Brazil with active Zika virus transmission between 2014 and 2017. The authors reviewed EEGs from 23 children. Nine were females (39.2%), and the age distribution varied from 4 to 48 months. MC was associated with mother positive serology to toxoplasmosis (toxo), rubella (rub), herpes, and dengue (1 case); toxo (1 case); chikungunya virus (CHIKV) (1 case); syphilis (1 case); and Zika virus (ZIKV) (10 cases). In addition, 1 case was associated with perinatal hypoxia and causes of 9 cases remain unknown. The main background EEG abnormality was diffuse slowing (10 cases), followed by classic (3 cases) and modified (5 cases) hypsarrhythmia. A distinct EEG pattern was seen in ZIKV (5 cases), toxo (2 cases), and undetermined cause (1 case). It was characterized by runs of frontocentrotemporal 4.5-13 Hz activity (7 cases) or diffuse and bilateral runs of 18-24 Hz (1 case). In ZIKV, this rhythmic activity was associated with hypsarrhythmia or slow background. Further studies are necessary to determine if this association is suggestive of ZIKV infection. The authors believe that EEG should be included in the investigation of all newly diagnosed congenital MC, especially those occurring in areas of autochthonous transmission of ZIKV.

  9. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted versus fixed frequencies

    Directory of Open Access Journals (Sweden)

    Péter Przemyslaw Ujma

    2015-02-01

    Full Text Available Sleep spindles are frequently studied for their relationship with state and trait cognitive variables, and they are thought to play an important role in sleep-related memory consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep spindles is only feasible using automatic algorithms, of which a large number is available. We compared subject averages of the spindle parameters computed by a fixed frequency (11-13 Hz for slow spindles, 13-15 Hz for fast spindles automatic detection algorithm and the individual adjustment method (IAM, which uses individual frequency bands for sleep spindle detection. Fast spindle duration and amplitude are strongly correlated in the two algorithms, but there is little overlap in fast spindle density and slow spindle parameters in general. The agreement between fixed and manually determined sleep spindle frequencies is limited, especially in case of slow spindles. This is the most likely reason for the poor agreement between the two detection methods in case of slow spindle parameters. Our results suggest that while various algorithms may reliably detect fast spindles, a more sophisticated algorithm primed to individual spindle frequencies is necessary for the detection of slow spindles as well as individual variations in the number of spindles in general.

  10. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment

    Science.gov (United States)

    Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Sarasso, Simone; Scarpelli, Serena; Mangiaruga, Anastasia; D'Atri, Aurora; Tempesta, Daniela; Ferrara, Michele; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2016-01-01

    Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development. PMID:27066274

  11. Sleep spindles may predict response to cognitive-behavioral therapy for chronic insomnia.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Hatch, Benjamin; Salimi, Ali; Mograss, Melodee; Boucetta, Soufiane; O'Byrne, Jordan; Brandewinder, Marie; Berthomier, Christian; Gouin, Jean-Philippe

    2017-11-01

    While cognitive-behavioral therapy for insomnia constitutes the first-line treatment for chronic insomnia, only few reports have investigated how sleep architecture relates to response to this treatment. In this pilot study, we aimed to determine whether pre-treatment sleep spindle density predicts treatment response to cognitive-behavioral therapy for insomnia. Twenty-four participants with chronic primary insomnia participated in a 6-week cognitive-behavioral therapy for insomnia performed in groups of 4-6 participants. Treatment response was assessed using the Pittsburgh Sleep Quality Index and the Insomnia Severity Index measured at pre- and post-treatment, and at 3- and 12-months' follow-up assessments. Secondary outcome measures were extracted from sleep diaries over 7 days and overnight polysomnography, obtained at pre- and post-treatment. Spindle density during stage N2-N3 sleep was extracted from polysomnography at pre-treatment. Hierarchical linear modeling analysis assessed whether sleep spindle density predicted response to cognitive-behavioral therapy. After adjusting for age, sex, and education level, lower spindle density at pre-treatment predicted poorer response over the 12-month follow-up, as reflected by a smaller reduction in Pittsburgh Sleep Quality Index over time. Reduced spindle density also predicted lower improvements in sleep diary sleep efficiency and wake after sleep onset immediately after treatment. There were no significant associations between spindle density and changes in the Insomnia Severity Index or polysomnography variables over time. These preliminary results suggest that inter-individual differences in sleep spindle density in insomnia may represent an endogenous biomarker predicting responsiveness to cognitive-behavioral therapy. Insomnia with altered spindle activity might constitute an insomnia subtype characterized by a neurophysiological vulnerability to sleep disruption associated with impaired responsiveness to

  12. Transient Effect of the Noise of Passing Trucks on Sleep Eeg

    Science.gov (United States)

    Suzuki, S.; Kawada, T.; Kiryu, Y.; Sasazawa, Y.; Tamura, Y.

    1997-08-01

    Twelve subjects were exposed to the noise of passing trucks at peak levels of 45, 50, 55 and 60 dB(A) for 15 min intervals throughout the night each for seven to 12 nights. Effects of the noise were observed by sleep electroencephalography (EEG). Three EEG parameters were affected by the noise event during stage 2. The number of spindles per epoch was depressed on average from 1·78 to 1·02 spindles per epoch or to 57% by the noise event of 60 dB(A), which lasted for only one minute. The threshold level for inducing the decrease was 32 dB(A), as assessed by a regression equation. Time % delta wave was depressed for six minutes, with a threshold level of 41 dB(A). The integral EMG increased in response to the noise event for one minute, and the threshold level for the integral EMG was 34 dB(A).

  13. Sleep spindles are related to schizotypal personality traits and thalamic glutamine/glutamate in healthy subjects.

    Science.gov (United States)

    Lustenberger, Caroline; O'Gorman, Ruth L; Pugin, Fiona; Tüshaus, Laura; Wehrle, Flavia; Achermann, Peter; Huber, Reto

    2015-03-01

    Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12-15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Sleep spindle density was negatively correlated with magical ideation (r = -.64, P .1). The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation.

    Science.gov (United States)

    Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2017-11-29

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  15. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    Science.gov (United States)

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  16. Predicting EEG complexity from sleep macro and microstructure

    International Nuclear Information System (INIS)

    Chouvarda, I; Maglaveras, N; Mendez, M O; Rosso, V; Parrino, L; Grassi, A; Terzano, M; Bianchi, A M; Cerutti, S

    2011-01-01

    This work investigates the relation between the complexity of electroencephalography (EEG) signal, as measured by fractal dimension (FD), and normal sleep structure in terms of its macrostructure and microstructure. Sleep features are defined, encoding sleep stage and cyclic alternating pattern (CAP) related information, both in short and long term. The relevance of each sleep feature to the EEG FD is investigated, and the most informative ones are depicted. In order to quantitatively assess the relation between sleep characteristics and EEG dynamics, a modeling approach is proposed which employs subsets of the sleep macrostructure and microstructure features as input variables and predicts EEG FD based on these features of sleep micro/macrostructure. Different sleep feature sets are investigated along with linear and nonlinear models. Findings suggest that the EEG FD time series is best predicted by a nonlinear support vector machine (SVM) model, employing both sleep stage/transitions and CAP features at different time scales depending on the EEG activation subtype. This combination of features suggests that short-term and long-term history of macro and micro sleep events interact in a complex manner toward generating the dynamics of sleep

  17. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs.

    Science.gov (United States)

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2017-04-01

    The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Nishida M

    2016-01-01

    Full Text Available Masaki Nishida,1 Yusaku Nakashima,2 Toru Nishikawa11Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, 2Medical Technology Research Laboratory, Research and Development Division, Medical Business Unit, Sony Corporation, Tokyo, JapanIntroduction: Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process.Methods: Healthy control participants (n=17 and patients medicated for major depressive disorder (n=11 were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement. Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs. Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz and slow-frequency spindle activity (10.5–12.5 Hz.Result: Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups.Conclusion: Because the changes in slow

  19. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    Science.gov (United States)

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation

    Science.gov (United States)

    Lambon Ralph, Matthew A.; Kempkes, Marleen; Cousins, James N.; Lewis, Penelope A.

    2016-01-01

    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation. PMID:27030764

  1. Automatic sleep spindle detection: Benchmarking with fine temporal resolution using open science tools

    Directory of Open Access Journals (Sweden)

    Christian eO'Reilly

    2015-06-01

    Full Text Available Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: 1 that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; 2 because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; 3 reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew’s correlation coefficient, F1-score, or Cohen’s κ is necessary for adequate evaluation; 4 reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; 5 performance differences between tested automated detectors were found to be similar to those between available expert scorings; 6 much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldom posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment.

  2. Burst suppression in sleep in a routine outpatient EEG

    Directory of Open Access Journals (Sweden)

    Ammar Kheder

    2014-01-01

    Full Text Available Burst suppression (BS is an electroencephalogram (EEG pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient EEG study.

  3. Developmental changes in brain connectivity assessed using the sleep EEG.

    OpenAIRE

    Tarokh L; Carskadon M A; Achermann P

    2010-01-01

    Adolescence represents a time of significant cortical restructuring. Current theories posit that during this period connections between frequently utilized neural networks are strengthened while underutilized synaptic connections are discarded. The aim of the present study was to examine the developmental evolution of connectivity between brain regions using the sleep EEG. All night sleep EEG recordings in two longitudinal cohorts (children and teens) followed at 1.5 3 year intervals and one ...

  4. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  5. Singular spectrum analysis of sleep EEG in insomnia.

    Science.gov (United States)

    Aydın, Serap; Saraoǧlu, Hamdi Melih; Kara, Sadık

    2011-08-01

    In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.

  6. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial.

    Science.gov (United States)

    Wamsley, Erin J; Shinn, Ann K; Tucker, Matthew A; Ono, Kim E; McKinley, Sophia K; Ely, Alice V; Goff, Donald C; Stickgold, Robert; Manoach, Dara S

    2013-09-01

    In schizophrenia there is a dramatic reduction of sleep spindles that predicts deficient sleep-dependent memory consolidation. Eszopiclone (Lunesta), a non-benzodiazepine hypnotic, acts on γ-aminobutyric acid (GABA) neurons in the thalamic reticular nucleus where spindles are generated. We investigated whether eszopiclone could increase spindles and thereby improve memory consolidation in schizophrenia. In a double-blind design, patients were randomly assigned to receive either placebo or 3 mg of eszopiclone. Patients completed Baseline and Treatment visits, each consisting of two consecutive nights of polysomnography. On the second night of each visit, patients were trained on the motor sequence task (MST) at bedtime and tested the following morning. Academic research center. Twenty-one chronic, medicated schizophrenia outpatients. We compared the effects of two nights of eszopiclone vs. placebo on stage 2 sleep spindles and overnight changes in MST performance. Eszopiclone increased the number and density of spindles over baseline levels significantly more than placebo, but did not significantly enhance overnight MST improvement. In the combined eszopiclone and placebo groups, spindle number and density predicted overnight MST improvement. Eszopiclone significantly increased sleep spindles, which correlated with overnight motor sequence task improvement. These findings provide partial support for the hypothesis that the spindle deficit in schizophrenia impairs sleep-dependent memory consolidation and may be ameliorated by eszopiclone. Larger samples may be needed to detect a significant effect on memory. Given the general role of sleep spindles in cognition, they offer a promising novel potential target for treating cognitive deficits in schizophrenia.

  7. Sleep EEG in Boys with Attention Deficit Disorder

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-11-01

    Full Text Available Researchers at the University of Montreal, Canada, studied spectral analysis of non-REM sleep (stages 2, 3 and 4 and REM sleep EEG in 6 boys (age 10.3 +/- 1.2 with ADHD compared to 6 healthy controls.

  8. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods

    DEFF Research Database (Denmark)

    Warby, Simon C.; Wendt, Sabrina Lyngbye; Welinder, Peter

    2014-01-01

    to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance...... of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed...... that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects....

  9. Sleep in the human hippocampus: a stereo-EEG study.

    Directory of Open Access Journals (Sweden)

    Fabio Moroni

    Full Text Available BACKGROUND: There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: We recorded intracerebral stereo-EEG directly from the hippocampus and neocortical sites in five epileptic patients undergoing presurgical evaluations. The time course of classical EEG frequency bands during the first three NREM-REM sleep cycles of the night was evaluated. We found that delta power shows, also in the hippocampus, the progressive decrease across sleep cycles, indicating that a form of homeostatic regulation of delta activity is present also in this subcortical structure. Hippocampal sleep was also characterized by: i a lower relative power in the slow oscillation range during NREM sleep compared to the scalp EEG; ii a flattening of the time course of the very low frequencies (up to 1 Hz across sleep cycles, with relatively high levels of power even during REM sleep; iii a decrease of power in the beta band during REM sleep, at odds with the typical increase of power in the cortical recordings. CONCLUSIONS/SIGNIFICANCE: Our data imply that cortical slow oscillation is attenuated in the hippocampal structures during NREM sleep. The most peculiar feature of hippocampal sleep is the increased synchronization of the EEG rhythms during REM periods. This state of resonance may have a supportive role for the processing/consolidation of memory.

  10. Overnight improvements in two REM sleep-sensitive tasks are associated with both REM and NREM sleep changes, sleep spindle features, and awakenings for dream recall.

    Science.gov (United States)

    Nielsen, T; O'Reilly, C; Carr, M; Dumel, G; Godin, I; Solomonova, E; Lara-Carrasco, J; Blanchette-Carrière, C; Paquette, T

    2015-07-01

    Memory consolidation is associated with sleep physiology but the contribution of specific sleep stages remains controversial. To clarify the contribution of REM sleep, participants were administered two REM sleep-sensitive tasks to determine if associated changes occurred only in REM sleep. Twenty-two participants (7 men) were administered the Corsi Block Tapping and Tower of Hanoi tasks prior to and again after a night of sleep. Task improvers and non-improvers were compared for sleep structure, sleep spindles, and dream recall. Control participants (N = 15) completed the tasks twice during the day without intervening sleep. Overnight Corsi Block improvement was associated with more REM sleep whereas Tower of Hanoi improvement was associated with more N2 sleep. Corsi Block improvement correlated positively with %REM sleep and Tower of Hanoi improvement with %N2 sleep. Post-hoc analyses suggest Tower of Hanoi effects-but not Corsi Block effects-are due to trait differences. Sleep spindle density was associated with Tower of Hanoi improvement whereas spindle amplitude correlated with Corsi Block improvement. Number of REM awakenings for dream reporting (but not dream recall per se) was associated with Corsi Block, but not Tower of Hanoi, improvement but was confounded with REM sleep time. This non-replication of one of 2 REM-sensitive task effects challenges both 'dual-process' and 'sequential' or 'sleep organization' models of sleep-dependent learning and points rather to capacity limitations on REM sleep. Experimental awakenings for sampling dream mentation may not perturb sleep-dependent learning effects; they may even enhance them. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Burst suppression in sleep in a routine outpatient EEG ?

    OpenAIRE

    Kheder, Ammar; Bianchi, Matt T.; Westover, M. Brandon

    2014-01-01

    Burst suppression (BS) is an electroencephalogram (EEG) pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient...

  12. Generalized Information Equilibrium Approaches to EEG Sleep Stage Discrimination

    Directory of Open Access Journals (Sweden)

    Todd Zorick

    2016-01-01

    Full Text Available Recent advances in neuroscience have raised the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG signals is via power-law distributed neuronal avalanches, while EEG signals are nonstationary. Therefore, spectral analysis of EEG may miss many properties inherent in such signals. A complete understanding of such dynamical systems requires knowledge of the underlying nonequilibrium thermodynamics. In recent work by Fielitz and Borchardt (2011, 2014, the concept of information equilibrium (IE in information transfer processes has successfully characterized many different systems far from thermodynamic equilibrium. We utilized a publicly available database of polysomnogram EEG data from fourteen subjects with eight different one-minute tracings of sleep stage 2 and waking and an overlapping set of eleven subjects with eight different one-minute tracings of sleep stage 3. We applied principles of IE to model EEG as a system that transfers (equilibrates information from the time domain to scalp-recorded voltages. We find that waking consciousness is readily distinguished from sleep stages 2 and 3 by several differences in mean information transfer constants. Principles of IE applied to EEG may therefore prove to be useful in the study of changes in brain function more generally.

  13. Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson’s disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Kempfner, Jacob; Zoetmulder, Marielle

    2014-01-01

    ObjectiveTo determine whether sleep spindles (SS) are potentially a biomarker for Parkinson’s disease (PD). MethodsFifteen PD patients with REM sleep behavior disorder (PD+RBD), 15 PD patients without RBD (PD−RBD), 15 idiopathic RBD (iRBD) patients and 15 age-matched controls underwent...... polysomnography (PSG). SS were scored in an extract of data from control subjects. An automatic SS detector using a Matching Pursuit (MP) algorithm and a Support Vector Machine (SVM) was developed and applied to the PSG recordings. The SS densities in N1, N2, N3, all NREM combined and REM sleep were obtained...

  14. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Directory of Open Access Journals (Sweden)

    Laura eRay

    2015-09-01

    Full Text Available A spindle detection method was developed that: 1 extracts the signal of interest (i.e., spindle-related phasic changes in sigma relative to ongoing background sigma activity using complex demodulation, 2 accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and 3 employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile. Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  15. Acute toxicity and sleep-wake EEG analysis of Stachtarpheta ...

    African Journals Online (AJOL)

    The effect of systemic administration of TASC on sleep architecture in rats was also evaluated in Sprague-Dawley rats that were chronically implanted with electrodes for electroencephalogram (EEG) and electromyogram (EMG) recording. The acute toxicity test revealed no lethal effect with doses of SCCR (up to 2000 ...

  16. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects.

    Science.gov (United States)

    Ferri, Raffaele; Rundo, Francesco; Silvani, Alessandro; Zucconi, Marco; Bruni, Oliviero; Ferini-Strambi, Luigi; Plazzi, Giuseppe; Manconi, Mauro

    2017-08-01

    We aimed to analyze quantitatively rapid eye movement (REM) sleep electroencephalogram (EEG) in controls, drug-naïve idiopathic REM sleep behavior disorder patients (iRBD), and iRBD patients treated with clonazepam. Twenty-nine drug-naïve iRBD patients (mean age 68.2 years), 14 iRBD patients under chronic clonazepam therapy (mean age 66.3 years), and 21 controls (mean age 66.8 years) were recruited. Power spectra were obtained from sleep EEG (central derivation), using a 2-second sliding window, with 1-second steps. The power values of each REM sleep EEG spectral band (one every second) were normalized with respect to the average power value obtained during sleep stage 2 in the same individual. In drug-naïve patients, the normalized power values showed a less pronounced REM-related decrease of power in all bands with frequency sleep EEG structure changes found in this study disclose subtle but significant alterations in the cortical electrophysiology of RBD that might represent the early expression of the supposed neurodegenerative processes already taking place at this stage of the disease and might be the target of better and effective future therapeutic strategies for this condition. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    Science.gov (United States)

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  18. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    Science.gov (United States)

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  19. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    Science.gov (United States)

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  20. EEG transients in the sigma range during non-REM sleep predict learning in dogs

    NARCIS (Netherlands)

    Iotchev, I.B.; Kis, A.; Bodizs, R.; Luijtelaar, E.L.J.M. van; Kubinyi, E.

    2017-01-01

    Sleep spindles are phasic bursts of thalamo-cortical activity, visible in the cortex as transient oscillations in the sigma range (usually defined in humans as 12-14 or 9-16 Hz). They have been associated with sleep-dependent memory consolidation and sleep stability in humans and rodents.

  1. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    Science.gov (United States)

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in

  2. Occurrence of epileptiform discharges and sleep during EEG recordings in children after melatonin intake versus sleep-deprivation.

    Science.gov (United States)

    Gustafsson, Greta; Broström, Anders; Ulander, Martin; Vrethem, Magnus; Svanborg, Eva

    2015-08-01

    To determine if melatonin is equally efficient as partial sleep deprivation in inducing sleep without interfering with epileptiform discharges in EEG recordings in children 1-16 years old. We retrospectively analysed 129 EEGs recorded after melatonin intake and 113 EEGs recorded after partial sleep deprivation. Comparisons were made concerning occurrence of epileptiform discharges, the number of children who fell asleep and the technical quality of EEG recordings. Comparison between different age groups was also made. No significant differences were found regarding occurrence of epileptiform discharges (33% after melatonin intake, 36% after sleep deprivation), or proportion of unsuccessful EEGs (8% and 10%, respectively). Melatonin and sleep deprivation were equally efficient in inducing sleep (70% in both groups). Significantly more children aged 1-4 years obtained sleep after melatonin intake in comparison to sleep deprivation (82% vs. 58%, p⩽0.01), and in comparison to older children with melatonin induced sleep (58-67%, p⩽0.05). Sleep deprived children 9-12 years old had higher percentage of epileptiform discharges (62%, p⩽0.05) compared to younger sleep deprived children. Melatonin is equally efficient as partial sleep deprivation to induce sleep and does not affect the occurrence of epileptiform discharges in the EEG recording. Sleep deprivation could still be preferable in older children as melatonin probably has less sleep inducing effect. Melatonin induced sleep have advantages, especially in younger children as they fall asleep easier than after sleep deprivation. The procedure is easier for the parents than keeping a young child awake for half the night. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Effects of SWS deprivation on subsequent EEG power density and spontaneous sleep duration

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.

    In order to test predictions of the 2-process model of sleep regulation, the effects of slow wave sleep (SWS) deprivation by acoustic stimulation during the first part of the sleep period on EEG power density and sleep duration were investigated in 2 experiments. In the first experiment, 8 subjects

  4. Reduction in time-to-sleep through EEG based brain state detection and audio stimulation.

    Science.gov (United States)

    Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Aung Aung Phyo Wai; Chuanchu Wang; Haihong Zhang

    2015-08-01

    We developed an EEG- and audio-based sleep sensing and enhancing system, called iSleep (interactive Sleep enhancement apparatus). The system adopts a closed-loop approach which optimizes the audio recording selection based on user's sleep status detected through our online EEG computing algorithm. The iSleep prototype comprises two major parts: 1) a sleeping mask integrated with a single channel EEG electrode and amplifier, a pair of stereo earphones and a microcontroller with wireless circuit for control and data streaming; 2) a mobile app to receive EEG signals for online sleep monitoring and audio playback control. In this study we attempt to validate our hypothesis that appropriate audio stimulation in relation to brain state can induce faster onset of sleep and improve the quality of a nap. We conduct experiments on 28 healthy subjects, each undergoing two nap sessions - one with a quiet background and one with our audio-stimulation. We compare the time-to-sleep in both sessions between two groups of subjects, e.g., fast and slow sleep onset groups. The p-value obtained from Wilcoxon Signed Rank Test is 1.22e-04 for slow onset group, which demonstrates that iSleep can significantly reduce the time-to-sleep for people with difficulty in falling sleep.

  5. Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease.

    Science.gov (United States)

    Christensen, Julie A E; Kempfner, Jacob; Zoetmulder, Marielle; Leonthin, Helle L; Arvastson, Lars; Christensen, Søren R; Sorensen, Helge B D; Jennum, Poul

    2014-03-01

    To determine whether sleep spindles (SS) are potentially a biomarker for Parkinson's disease (PD). Fifteen PD patients with REM sleep behavior disorder (PD+RBD), 15 PD patients without RBD (PD-RBD), 15 idiopathic RBD (iRBD) patients and 15 age-matched controls underwent polysomnography (PSG). SS were scored in an extract of data from control subjects. An automatic SS detector using a Matching Pursuit (MP) algorithm and a Support Vector Machine (SVM) was developed and applied to the PSG recordings. The SS densities in N1, N2, N3, all NREM combined and REM sleep were obtained and evaluated across the groups. The SS detector achieved a sensitivity of 84.7% and a specificity of 84.5%. At a significance level of α=1%, the iRBD and PD+RBD patients had a significantly lower SS density than the control group in N2, N3 and all NREM stages combined. At a significance level of α=5%, PD-RBD had a significantly lower SS density in N2 and all NREM stages combined. The lower SS density suggests involvement in pre-thalamic fibers involved in SS generation. SS density is a potential early PD biomarker. It is likely that an automatic SS detector could be a supportive diagnostic tool in the evaluation of iRBD and PD patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Comparison of quantitative EEG characteristics of quiet and active sleep in newborns.

    Science.gov (United States)

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2003-11-01

    The aim of the present study was to verify whether the proposed method of computer-supported EEG analysis is able to differentiate the EEG activity in quiet sleep (QS) from that in active sleep (AS) in newborns. A quantitative description of the neonatal EEG may contribute to a more exact evaluation of the functional state of the brain, as well as to a refinement of diagnostics of brain dysfunction manifesting itself frequently as 'dysrhythmia' or 'dysmaturity'. Twenty-one healthy newborns (10 full-term and 11 pre-term) were examined polygraphically (EEG-eight channels, respiration, ECG, EOG and EMG) in the course of sleep. From each EEG record, two 5-min samples (one from QS and one from AS) were subject to an off-line computerized analysis. The obtained data were averaged with respect to the sleep state and to the conceptional age. The number of variables was reduced by means of factor analysis. All factors identified by factor analysis were highly significantly influenced by sleep states in both developmental periods. Likewise, a comparison of the measured variables between QS and AS revealed many statistically significant differences. The variables describing (a) the number and length of quasi-stationary segments, (b) voltage and (c) power in delta and theta bands contributed to the greatest degree to the differentiation of EEGs between both sleep states. The presented method of the computerized EEG analysis which has good discriminative potential is adequately sensitive and describes the neonatal EEG with convenient accuracy.

  7. Automated Sleep Stage Scoring by Decision Tree Learning

    National Research Council Canada - National Science Library

    Hanaoka, Masaaki

    2001-01-01

    ... practice regarded as one of the most successful machine learning methods. In our method, first characteristics of EEG, EOG and EMG are compared with characteristic features of alpha waves, delta waves, sleep spindles, K-complexes and REMs...

  8. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  9. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  10. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  11. Sex Differences in the Sleep EEG of Young Adults : Visual Scoring and Spectral Analysis

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Bloem, Gerda M.

    1989-01-01

    Baseline sleep of 13 men (mean age of 23.5 years) and 15 women (21.9 years) was analyzed. Visual scoring of the electroencephalograms (EEGs) revealed no significant differences between the sexes in the amounts of slow-wave sleep and rapid-eye-movement (REM) sleep. Spectral analysis, however,

  12. Sleep disruption increases seizure susceptibility: Behavioral and EEG evaluation of an experimental model of sleep apnea.

    Science.gov (United States)

    Hrnčić, Dragan; Grubač, Željko; Rašić-Marković, Aleksandra; Šutulović, Nikola; Šušić, Veselinka; Bjekić-Macut, Jelica; Stanojlović, Olivera

    2016-03-01

    Sleep disruption accompanies sleep apnea as one of its major symptoms. Obstructive sleep apnea is particularly common in patients with refractory epilepsy, but causing factors underlying this are far from being resolved. Therefore, translational studies regarding this issue are important. Our aim was to investigate the effects of sleep disruption on seizure susceptibility of rats using experimental model of lindane-induced refractory seizures. Sleep disruption in male Wistar rats with implanted EEG electrodes was achieved by treadmill method (belt speed set on 0.02 m/s for working and 0.00 m/s for stop mode, respectively). Animals were assigned to experimental conditions lasting 6h: 1) sleep disruption (sleep interrupted, SI; 30s working and 90 s stop mode every 2 min; 180 cycles in total); 2) activity control (AC, 10 min working and 30 min stop mode, 9 cycles in total); 3) treadmill chamber control (TC, only stop mode). Afterwards, the animals were intraperitoneally treated with lindane (L, 4 mg/kg, SI+L, AC+L and TC+L groups) or dimethylsulfoxide (DMSO, SIc, ACc and TCc groups). Convulsive behavior was assessed by seizure incidence, latency time to first seizure, and its severity during 30 min after drug administration. Number and duration of ictal periods were determined in recorded EEGs. Incidence and severity of lindane-induced seizures were significantly increased, latency time significantly decreased in animals undergoing sleep disruption (SI+L group) compared with the animals from TC+L. Seizure latency was also significantly decreased in SI+L compared to AC+L groups. Number of ictal periods were increased and duration of it presented tendency to increase in SI+L comparing to AC+L. No convulsive signs were observed in TCc, ACc and SIc groups, as well as no ictal periods in EEG. These results indicate sleep disruption facilitates induction of epileptic activity in rodent model of lindane-epilepsy enabling translational research of this phenomenon. Copyright

  13. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    Science.gov (United States)

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Usefulness of a simple sleep-deprived EEG protocol for epilepsy diagnosis in de novo subjects.

    Science.gov (United States)

    Giorgi, Filippo S; Perini, Daria; Maestri, Michelangelo; Guida, Melania; Pizzanelli, Chiara; Caserta, Anna; Iudice, Alfonso; Bonanni, Enrica

    2013-11-01

    In case series concerning the role of EEG after sleep deprivation (SD-EEG) in epilepsy, patients' features and protocols vary dramatically from one report to another. In this study, we assessed the usefulness of a simple SD-EEG method in well characterized patients. Among the 963 adult subjects submitted to SD-EEG at our Center, in the period 2003-2010, we retrospectively selected for analysis only those: (1) evaluated for suspected epileptic seizures; (2) with a normal/non-specific baseline EEG; (3) still drug-free at the time of SD-EEG; (4) with an MRI analysis; (5) with at least 1 year follow-up. SD-EEG consisted in SD from 2:00 AM and laboratory EEG from 8:00 AM to 10:30 AM. We analyzed epileptic interictal abnormalities (IIAs) and their correlations with patients' features. Epilepsy was confirmed in 131 patients. SD-EEG showed IIAs in 41.2% of all patients with epilepsy, and a 91.1% specificity for epilepsy diagnosis; IIAs types observed during SD-EEG are different in generalized versus focal epilepsies; for focal epilepsies, the IIAs yield in SD-EEG is higher than in second routine EEG. This simple SD-EEG protocol is very useful in de novo patients with suspected seizures. This study sheds new light on the role of SD-EEG in specific epilepsy populations. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    Science.gov (United States)

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  16. Optimizing detection and analysis of slow waves in sleep EEG.

    Science.gov (United States)

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    Science.gov (United States)

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  18. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.

    Science.gov (United States)

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M; Emmenegger, Yann; Franken, Paul

    2013-03-01

    Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Mouse sleep laboratory. Male mice. Sleep deprivation. The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.

  19. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    Science.gov (United States)

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  20. EEG Changes across Multiple Nights of Sleep Restriction and Recovery in Adolescents: The Need for Sleep Study.

    Science.gov (United States)

    Ong, Ju Lynn; Lo, June C; Gooley, Joshua J; Chee, Michael W L

    2016-06-01

    To investigate sleep EEG changes in adolescents across 7 nights of sleep restriction to 5 h time in bed [TIB]) and 3 recovery nights of 9 h TIB. A parallel-group design, quasi-laboratory study was conducted in a boarding school. Fifty-five healthy adolescents (25 males, age = 15-19 y) who reported habitual TIBs of approximately 6 h on week nights (group average) but extended their sleep on weekends were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-week protocol comprising 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the Control group), and 3 nights of recovery sleep (TIB = 9 h). Polysomnography was obtained on two baseline, three manipulation, and two recovery nights. Across the sleep restriction nights, total SWS duration was preserved relative to the 9 h baseline sleep opportunity, while other sleep stages were reduced. Considering only the first 5 h of sleep opportunity, SR participants had reduced N1 duration and wake after sleep onset (WASO), and increased total sleep time (TST), rapid eye movement (REM) sleep, and slow wave sleep (SWS) relative to baseline. Total REM sleep, N2, and TST duration remained above baseline levels by the third recovery sleep episode. In spite of preservation of SWS duration over multiple nights of sleep restriction, adolescents accustomed to curtailing nocturnal sleep on school day nights evidence residual effects on sleep macro-structure, even after three nights of recovery sleep. Older teenagers may not be as resilient to successive nights of sleep restriction as is commonly believed. © 2016 Associated Professional Sleep Societies, LLC.

  1. Pilot prospective study of post-surgery sleep and EEG predictors of post-operative delirium.

    Science.gov (United States)

    Evans, Joanna L; Nadler, Jacob W; Preud'homme, Xavier A; Fang, Eric; Daughtry, Rommie L; Chapman, Joseph B; Attarian, David; Wellman, Samuel; Krystal, Andrew D

    2017-08-01

    Delirium is a common post-operative complication associated with significant costs, morbidity, and mortality. We sought sleep/EEG predictors of delirium present prior to delirium symptoms to facilitate developing and targeting therapies. Continuous EEG data were obtained in 12 patients post-orthopedic surgery from the day of surgery until delirium assessment on post-operative day 2 (POD2). Diminished total sleep time (r=-0.68; pdelirium severity. Patients experiencing delirium slept 2.4h less and took 2h longer to fall asleep. Greater waking EEG delta power (r=0.84; pdelirium severity. Loss of sleep on night1 post-surgery is an early predictor of subsequent delirium. EEG Delta Power alterations in waking and sleep appear to be later indicators of impending delirium. Further work is needed to evaluate reproducibility/generalizability and assess whether sleep loss contributes to causing delirium. This first study to prospectively collect continuous EEG data for an extended period prior to delirium onset identified EEG-derived indices that predict subsequent delirium that could aid in developing and targeting therapies. Copyright © 2017. Published by Elsevier B.V.

  2. Insomnia and sleep misperception.

    Science.gov (United States)

    Bastien, C H; Ceklic, T; St-Hilaire, P; Desmarais, F; Pérusse, A D; Lefrançois, J; Pedneault-Drolet, M

    2014-10-01

    Sleep misperception is often observed in insomnia individuals (INS). The extent of misperception varies between different types of INS. The following paper comprised sections which will be aimed at studying the sleep EEG and compares it to subjective reports of sleep in individuals suffering from either psychophysiological insomnia or paradoxical insomnia and good sleeper controls. The EEG can be studied without any intervention (thus using the raw data) via either PSG or fine quantitative EEG analyses (power spectral analysis [PSA]), identifying EEG patterns as in the case of cyclic alternating patterns (CAPs) or by decorticating the EEG while scoring the different transient or phasic events (K-Complexes or sleep spindles). One can also act on the on-going EEG by delivering stimuli so to study their impact on cortical measures as in the case of event-related potential studies (ERPs). From the paucity of studies available using these different techniques, a general conclusion can be reached: sleep misperception is not an easy phenomenon to quantify and its clinical value is not well recognized. Still, while none of the techniques or EEG measures defined in the paper is available and/or recommended to diagnose insomnia, ERPs might be the most indicated technique to study hyperarousal and sleep quality in different types of INS. More research shall also be dedicated to EEG patterns and transient phasic events as these EEG scoring techniques can offer a unique insight of sleep misperception. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Actigraphy combined with EEG compared to polysomnography in sleep apnea patients

    International Nuclear Information System (INIS)

    Fietze, Ingo; Penzel, Thomas; Partinen, Markku; Sauter, Jochen; Küchler, Gert; Suvoro, Alexander; Hein, Holger

    2015-01-01

    An actigraph extended with electroencephalography (EEG), electroocculography (EOG) and electromyography (EMG) was compared to polysomnography in two studies on patients suffering from sleep disordered breathing. Study A with 30 subjects used a single lead EEG, and study B with 20 subjects used EOG and EMG in addition. Sleep was scored according to Rechtschaffen and Kales rules. Total sleep time (TST), sleep period time (SPT), sleep efficiency (SE), sustained sleep efficiency (SSE), sleep-onset latency (SL), and sleep stages were compared. For study A an epoch-by-epoch comparison of sleep stages revealed an overall agreement of 74.2%. Correlations were high for SE (0.98, p < 0.001), SSE (0.98, p < 0.001), TST (0.99, p < 0.001), SPT (0.99, p < 0.001), and SL (0.98, p < 0.001). Regarding the sleep stages, correlations were high for rapid eye movement (REM) (0.83, p < 0.001), light-sleep (0.78, p < 0.001), and deep sleep (0.73, p < 0.001). For study B, results of an epoch-by-epoch comparison of sleep stages showed an overall agreement of 75.5%. Correlations were high for SE (0.98, p < 0.001), SSE (0.98, p < 0.001), TST (0.87, p < 0.001), SL (0.98, p < 0.001), SPT (0.94, p < 0.001), and for rapid eye movement (REM) (0.91, p < 0.001), light-sleep (0.74, p < 0.001), and deep sleep (0.89, p < 0.001). In summary the study revealed high agreement between polysomnography and single lead EEG in sleep apnea patients. Deviations for REM were slightly higher for the single lead EEG compared to single lead EEG plus EOG/EMG. Both simplified systems proved to be reliable for comfortable out-patient sleep recording. (paper)

  4. Relationship of slow and rapid EEG components of CAP to ASDA arousals in normal sleep.

    Science.gov (United States)

    Parrino, L; Smerieri, A; Rossi, M; Terzano, M G

    2001-12-15

    Besides arousals (according to the ASDA definition), sleep contains also K-complexes and delta bursts which, in spite of their sleep-like features, are endowed with activating effects on autonomic functions. The link between phasic delta activities and enhancement of vegetative functions indicates the possibility of physiological activation without sleep disruption (i.e., arousal without awakening). A functional connection seems to include slow (K-complexes and delta bursts) and rapid (arousals) EEG events within the comprehensive term of activating complexes. CAP (cyclic alternating pattern) is the spontaneous EEG rhythm that ties both slow and rapid activating complexes together during NREM sleep. The present study aims at exploring the relationship between arousals and CAP components in a selected sample of healthy sleepers. Polysomnographic analysis according to the scoring rules for sleep stages and arousals. CAP analysis included also tabulation of subtypes A1 (slow EEG activating complexes), A2 and A3 (activating complexes with fast EEG components). 40 sleep-lab accomplished recordings. Healthy subjects belonging to a wide age range (38 +/- 20 yrs.). N/A. Of all the arousals occurring in NREM sleep, 87% were inserted within CAP. Subtypes A2 and A3 of CAP corresponded strikingly with arousals (r=0.843; p<0.0001), while no statistical relationship emerged when arousals were matched with subtypes A1 of CAP. Subtypes A1 instead correlated positively with the percentages of deep sleep (r=0.366; p<0.02). The CAP subtype classification encompasses both the process of sleep maintenance (subtypes A1) and sleep fragmentation (subtypes A2 and A3), and provides a periodicity dimension to the activating events of NREM sleep.

  5. Characterization of sleep need dissipation using EEG based slow-wave activity analysis in two age groups

    NARCIS (Netherlands)

    Garcia-Molina, G.; Baehr, K.; Steele, B.; Tsoneva, T.K.; Pfundtner, S.; Mahadevan, A.; Papas, N.; Riedner, B.; Tononi, G.; White, D.

    2017-01-01

    Introduction: In the two-process model of sleep regulation, slow-wave activity (SWA, EEG power in the 0.5–4 Hz band) is a direct indicator of sleep need. SWA builds up during NREM sleep, declines before the onset of REM sleep, remains low during REM and the level of increase in successive NREM

  6. Quantitative Analysis of the Effects of Slow Wave Sleep Deprivation During the First 3 h of Sleep on Subsequent EEG Power Density

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Bloem, Gerda M.; Hoofdakker, Rutger H. van den

    1987-01-01

    The relation between EEG power density during slow wave sleep (SWS) deprivation and power density during subsequent sleep was investigated. Nine young male adults slept in the laboratory for 3 consecutive nights. Spectral analysis of the EEG on the 2nd (baseline) night revealed an exponential

  7. The effect of different EEG derivations on sleep staging in rats: the frontal midline–parietal bipolar electrode for sleep scoring

    International Nuclear Information System (INIS)

    Fang, Guangzhan; Zhang, Chunpeng; Xia, Yang; Lai, Yongxiu; Liu, Tiejun; You, Zili; Yao, Dezhong

    2009-01-01

    Most sleep-staging research has focused on developing and optimizing algorithms for sleep scoring, but little attention has been paid to the effect of different electroencephalogram (EEG) derivations on sleep staging. To explore the possible effects of EEG derivations, an automatic computer method was established and confirmed by agreement analysis between the computer and two independent raters, and four fronto-parietal bipolar leads were compared for sleep scoring in rats. The results demonstrated that different bipolar electrodes have significantly different sleep-staging accuracies, and that the optimal frontal electrode for sleep scoring is located at the anterior midline

  8. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory.

    Science.gov (United States)

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-08-01

    Sodium oxybate (SO) is a GABAβ agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAβ receptor agonist, to assess the role of GABAβ receptors in the SO response. As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAβ receptors in REMS generation.

  9. Automatic characterization of sleep need dissipation dynamics using a single EEG signal.

    Science.gov (United States)

    Garcia-Molina, Gary; Bellesi, Michele; Riedner, Brady; Pastoor, Sander; Pfundtner, Stefan; Tononi, Giulio

    2015-01-01

    In the two-process model of sleep regulation, slow-wave activity (SWA, i.e. the EEG power in the 0.5-4 Hz frequency band) is considered a direct indicator of sleep need. SWA builds up during non-rapid eye movement (NREM) sleep, declines before the onset of rapid-eye-movement (REM) sleep, remains low during REM and the level of increase in successive NREM episodes gets progressively lower. Sleep need dissipates with a speed that is proportional to SWA and can be characterized in terms of the initial sleep need, and the decay rate. The goal in this paper is to automatically characterize sleep need from a single EEG signal acquired at a frontal location. To achieve this, a highly specific and reasonably sensitive NREM detection algorithm is proposed that leverages the concept of a single-class Kernel-based classifier. Using automatic NREM detection, we propose a method to estimate the decay rate and the initial sleep need. This method was tested on experimental data from 8 subjects who recorded EEG during three nights at home. We found that on average the estimates of the decay rate and the initial sleep need have higher values when automatic NREM detection was used as compared to manual NREM annotation. However, the average variability of these estimates across multiple nights of the same subject was lower when the automatic NREM detection classifier was used. While this method slightly over estimates the sleep need parameters, the reduced variability across subjects makes it more effective for within subject statistical comparisons of a given sleep intervention.

  10. Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation

    Science.gov (United States)

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul

    2013-01-01

    Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state

  11. EEG quantification of alertness: methods for early identification of individuals most susceptible to sleep deprivation

    Science.gov (United States)

    Berka, Chris; Levendowski, Daniel J.; Westbrook, Philip; Davis, Gene; Lumicao, Michelle N.; Olmstead, Richard E.; Popovic, Miodrag; Zivkovic, Vladimir T.; Ramsey, Caitlin K.

    2005-05-01

    Electroencephalographic (EEG) and neurocognitive measures were simultaneously acquired to quantify alertness from 24 participants during 44-hours of sleep deprivation. Performance on a three-choice vigilance task (3C-VT), paired-associate learning/memory task (PAL) and modified Maintenance of Wakefulness Test (MWT), and sleep technician-observed drowsiness (eye-closures, head-nods, EEG slowing) were quantified. The B-Alert system automatically classifies each second of EEG on an alertness/drowsiness continuum. B-Alert classifications were significantly correlated with technician-observations, visually scored EEG and performance measures. B-Alert classifications during 3C-VT, and technician observations and performance during the 3C-VT and PAL evidenced progressively increasing drowsiness as a result of sleep deprivation with a stabilizing effect observed at the batteries occurring between 0600 and 1100 suggesting a possible circadian effect similar to those reported in previous sleep deprivation studies. Participants were given an opportunity to take a 40-minute nap approximately 24-hours into the sleep deprivation portion of the study (i.e., 7 PM on Saturday). The nap was followed by a transient period of increased alertness. Approximately 8 hours after the nap, behavioral and physiological measures of drowsiness returned to levels prior to the nap. Cluster analysis was used to stratify individuals into three groups based on their level of impairment as a result of sleep deprivation. The combination of B-Alert and neuro-behavioral measures may identify individuals whose performance is most susceptible to sleep deprivation. These objective measures could be applied in an operational setting to provide a "biobehavioral assay" to determine vulnerability to sleep deprivation.

  12. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.

    Science.gov (United States)

    Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien

    2017-01-01

    Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Enhancement of Neocortical-Medial Temporal EEG Correlations during Non-REM Sleep

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2008-01-01

    Full Text Available Interregional interactions of oscillatory activity are crucial for the integrated processing of multiple brain regions. However, while the EEG in virtually all brain structures passes through substantial modifications during sleep, it is still an open question whether interactions between neocortical and medial temporal EEG oscillations also depend on the state of alertness. Several previous studies in animals and humans suggest that hippocampal-neocortical interactions crucially depend on the state of alertness (i.e., waking state or sleep. Here, we analyzed scalp and intracranial EEG recordings during sleep and waking state in epilepsy patients undergoing presurgical evaluation. We found that the amplitudes of oscillations within the medial temporal lobe and the neocortex were more closely correlated during sleep, in particular during non-REM sleep, than during waking state. Possibly, the encoding of novel sensory inputs, which mainly occurs during waking state, requires that medial temporal dynamics are rather independent from neocortical dynamics, while the consolidation of memories during sleep may demand closer interactions between MTL and neocortex.

  14. Cortical connectivity modulation during sleep onset: A study via graph theory on EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Gorgoni, Maurizio; Ferrara, Michele; Iberite, Francesco; Bramanti, Placido; De Gennaro, Luigi; Rossini, Paolo Maria

    2017-11-01

    Sleep onset is characterized by a specific and orchestrated pattern of frequency and topographical EEG changes. Conventional power analyses of electroencephalographic (EEG) and computational assessments of network dynamics have described an earlier synchronization of the centrofrontal areas rhythms and a spread of synchronizing signals from associative prefrontal to posterior areas. Here, we assess how "small world" characteristics of the brain networks, as reflected in the EEG rhythms, are modified in the wakefulness-sleep transition comparing the pre- and post-sleep onset epochs. The results show that sleep onset is characterized by a less ordered brain network (as reflected by the higher value of small world) in the sigma band for the frontal lobes indicating stronger connectivity, and a more ordered brain network in the low frequency delta and theta bands indicating disconnection on the remaining brain areas. Our results depict the timing and topography of the specific mechanisms for the maintenance of functional connectivity of frontal brain regions at the sleep onset, also providing a possible explanation for the prevalence of the frontal-to-posterior information flow directionality previously observed after sleep onset. Hum Brain Mapp 38:5456-5464, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. A Comparison Study on Multidomain EEG Features for Sleep Stage Classification

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-01-01

    Full Text Available Feature extraction from physiological signals of EEG (electroencephalogram is an essential part for sleep staging. In this study, multidomain feature extraction was investigated based on time domain analysis, nonlinear analysis, and frequency domain analysis. Unlike the traditional feature calculation in time domain, a sequence merging method was developed as a preprocessing procedure. The objective is to eliminate the clutter waveform and highlight the characteristic waveform for further analysis. The numbers of the characteristic activities were extracted as the features from time domain. The contributions of features from different domains to the sleep stages were compared. The effectiveness was further analyzed by automatic sleep stage classification and compared with the visual inspection. The overnight clinical sleep EEG recordings of 3 patients after the treatment of Continuous Positive Airway Pressure (CPAP were tested. The obtained results showed that the developed method can highlight the characteristic activity which is useful for both automatic sleep staging and visual inspection. Furthermore, it can be a training tool for better understanding the appearance of characteristic waveforms from raw sleep EEG which is mixed and complex in time domain.

  16. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria; Kluge, Götz; Griefahn, Barbara

    2008-01-01

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  17. Sleep EEG Changes during Adolescence: An Index of a Fundamental Brain Reorganization

    Science.gov (United States)

    Feinberg, Irwin; Campbell, Ian G.

    2010-01-01

    Delta (1-4 Hz) EEG power in non-rapid eye movement (NREM) sleep declines massively during adolescence. This observation stimulated the hypothesis that during adolescence the human brain undergoes an extensive reorganization driven by synaptic elimination. The parallel declines in synaptic density, delta wave amplitude and cortical metabolic rate…

  18. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters.

    Science.gov (United States)

    Vyazovskiy, V V; Palchykova, S; Achermann, P; Tobler, I; Deboer, T

    2017-02-01

    It has been shown previously in Djungarian hamsters that the initial electroencephalography (EEG) slow-wave activity (power in the 0.5-4.0 Hz band; SWA) in non-rapid eye movement (NREM) sleep following an episode of daily torpor is consistently enhanced, similar to the SWA increase after sleep deprivation (SD). However, it is unknown whether the network mechanisms underlying the SWA increase after torpor and SD are similar. EEG slow waves recorded in the neocortex during sleep reflect synchronized transitions between periods of activity and silence among large neuronal populations. We therefore set out to investigate characteristics of individual cortical EEG slow waves recorded during NREM sleep after 4 h SD and during sleep after emergence from an episode of daily torpor in adult male Djungarian hamsters. We found that during the first hour after both SD and torpor, the SWA increase was associated with an increase in slow-wave incidence and amplitude. However, the slopes of single slow waves during NREM sleep were steeper in the first hour after SD but not after torpor, and, in contrast to sleep after SD, the magnitude of change in slopes after torpor was unrelated to the changes in SWA. Furthermore, slow-wave slopes decreased progressively within the first 2 h after SD, while a progressive increase in slow-wave slopes was apparent during the first 2 h after torpor. The data suggest that prolonged waking and torpor have different effects on cortical network activity underlying slow-wave characteristics, while resulting in a similar homeostatic sleep response of SWA. We suggest that sleep plays an important role in network homeostasis after both waking and torpor, consistent with a recovery function for both states. © The Author 2017. Published by Oxford University Press.

  19. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal

    NARCIS (Netherlands)

    Radha, M.; Garcia Molina, G.; Poel, M.; Tononi, G.

    2014-01-01

    Automatic sleep staging on an online basis has recently emerged as a research topic motivated by fundamental sleep research. The aim of this paper is to find optimal signal processing methods and machine learning algorithms to achieve online sleep staging on the basis of a single EEG signal. The

  20. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.

    Science.gov (United States)

    Li, Yanjun; Tang, Xiaoying; Xu, Zhi; Liu, Weifeng; Li, Jing

    2016-03-01

    Whether the temporal correlation between inter-leads Electroencephalogram (EEG) that located on the boundary between left and right brain hemispheres is associated with sleep stages or not is still unknown. The purpose of this paper is to evaluate the role of correlation coefficients between EEG leads Fpz-Cz and Pz-Oz for automatic classification of sleep stages. A total number of 39 EEG recordings (about 20 h each) were selected from the expanded sleep database in European data format for temporal correlation analysis. Original waveform of EEG was decomposed into sub-bands δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz) and β (13-30 Hz). The correlation coefficient between original EEG leads Fpz-Cz and Pz-Oz within frequency band 0.5-30 Hz was defined as r(EEG) and was calculated every 30 s, while that between the two leads EEG in sub-bands δ, θ, α and β were defined as r(δ), r(θ), r(α) and r(β), respectively. Classification of wakefulness and sleep was processed by fixed threshold that derived from the probability density function of correlation coefficients. There was no correlation between EEG leads Fpz-Cz and Pz-Oz during wakefulness (|r| r > 0.1 for r(EEG) and r(δ)), while low correlation existed during sleep (r ≈ -0.4 for r(EEG), r(δ), r(θ), r(α) and r(β)). There were significant differences (analysis of variance, P correlation index between EEG leads Fpz-Cz and Pz-Oz could distinguish all five types of wakefulness, rapid eye movement (REM) sleep, N1 sleep, N2 sleep and N3 sleep. In conclusion, the temporal correlation between EEG bipolar leads Fpz-Cz and Pz-Oz are highly associated with sleep-wake stages. Moreover, high accuracy of sleep-wake classification could be achieved by the temporal correlation within frequency band 0.5-30 Hz between EEG leads Fpz-Cz and Pz-Oz.

  1. Non-REM sleep EEG power distribution in fatigue and sleepiness.

    Science.gov (United States)

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Linkowski, Paul; Le Bon, Olivier

    2014-04-01

    The aim of this study is to contribute to the sleep-related differentiation between daytime fatigue and sleepiness. 135 subjects presenting with sleep apnea-hypopnea syndrome (SAHS, n=58) or chronic fatigue syndrome (CFS, n=52) with respective sleepiness or fatigue complaints and a control group (n=25) underwent polysomnography and psychometric assessments for fatigue, sleepiness, affective symptoms and perceived sleep quality. Sleep EEG spectral analysis for ultra slow, delta, theta, alpha, sigma and beta power bands was performed on frontal, central and occipital derivations. Patient groups presented with impaired subjective sleep quality and higher affective symptom intensity. CFS patients presented with highest fatigue and SAHS patients with highest sleepiness levels. All groups showed similar total sleep time. Subject groups mainly differed in sleep efficiency, wake after sleep onset, duration of light sleep (N1, N2) and slow wave sleep, as well as in sleep fragmentation and respiratory disturbance. Relative non-REM sleep power spectra distributions suggest a pattern of power exchange in higher frequency bands at the expense of central ultra slow power in CFS patients during all non-REM stages. In SAHS patients, however, we found an opposite pattern at occipital sites during N1 and N2. Slow wave activity presents as a crossroad of fatigue and sleepiness with, however, different spectral power band distributions during non-REM sleep. The homeostatic function of sleep might be compromised in CFS patients and could explain why, in contrast to sleepiness, fatigue does not resolve with sleep in these patients. The present findings thus contribute to the differentiation of both phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Sleep EEG findings in ICD-10 borderline personality disorder in Egypt.

    Science.gov (United States)

    Asaad, Tarek; Okasha, Tarek; Okasha, Ahmed

    2002-09-01

    Previous work has demonstrated that patients with borderline personality disorder show some similarities to patients with major depression, especially regarding their sleep profile. This study aimed at investigating such a hypothesis in an Egyptian sample, considering the possible influence of cultural differences. All night polysomnographic assessments were made for 20 ICD-10 diagnosed borderline patients (without co-morbid depression), in addition to 20 patients with major depression and 20 healthy matched controls. The two patient groups differed significantly from controls in their sleep profile, especially regarding sleep continuity measures, decreased SWS and REM sleep abnormalities. High similarity was found in EEG sleep profile of the two patient groups, though the changes were more robust in patients with depression. The small number of subjects precluded finer analyses of sleep microstructure by depressive symptoms. The great similarity in EEG sleep profile between borderline personality disorder patients and patients with major depression suggests a common biological origin for both conditions, with the difference being 'quantitative' rather than 'qualitative'. Our data are all the more compelling in that the presumed personality disturbance in the Egyptian culture manifests neurophysiologically as in the Western world.

  3. Assessment of sleep quality in powernapping

    DEFF Research Database (Denmark)

    Kooravand Takht Sabzy, Bashaer; Thomsen, Carsten E

    2011-01-01

    The purpose of this study is to assess the Sleep Quality (SQ) in powernapping. The contributed factors for SQ assessment are time of Sleep Onset (SO), Sleep Length (SL), Sleep Depth (SD), and detection of sleep events (K-complex (KC) and Sleep Spindle (SS)). Data from daytime nap for 10 subjects, 2...... days each, including EEG and ECG were recorded. The SD and sleep events were analyzed by applying spectral analysis. The SO time was detected by a combination of signal spectral analysis, Slow Rolling Eye Movement (SREM) detection, Heart Rate Variability (HRV) analysis and EEG segmentation using both...... Autocorrelation Function (ACF), and Crosscorrelation Function (CCF) methods. The EEG derivation FP1-FP2 filtered in a narrow band and used as an alternative to EOG for SREM detection. The ACF and CCF segmentation methods were also applied for detection of sleep events. The ACF method detects segment boundaries...

  4. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring.

    Directory of Open Access Journals (Sweden)

    Jun Lv

    Full Text Available Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG and functional magnetic resonance imaging (fMRI time series.In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep.In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.

  5. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    Science.gov (United States)

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A.; Zennig, Corinna; Benca, Ruth M.; Lutz, Antoine; Davidson, Richard J.; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function. PMID:24015304

  6. Detecting interictal discharges in first seizure patients: ambulatory EEG or EEG after sleep deprivation?

    NARCIS (Netherlands)

    Geut, I.; Weenink, S.; Knottnerus, I.L.H.; van Putten, Michel J.A.M.

    2017-01-01

    Purpose Uncertainty about recurrence after a first unprovoked seizure is a significant psychological burden for patients, and motivates the need for diagnostic tools with high sensitivity and specificity to assess recurrence risk. As the sensitivity of a routine EEG after a first unprovoked seizure

  7. Automated EEG sleep staging in the term-age baby using a generative modelling approach

    Science.gov (United States)

    Pillay, Kirubin; Dereymaeker, Anneleen; Jansen, Katrien; Naulaers, Gunnar; Van Huffel, Sabine; De Vos, Maarten

    2018-06-01

    Objective. We develop a method for automated four-state sleep classification of preterm and term-born babies at term-age of 38-40 weeks postmenstrual age (the age since the last menstrual cycle of the mother) using multichannel electroencephalogram (EEG) recordings. At this critical age, EEG differentiates from broader quiet sleep (QS) and active sleep (AS) stages to four, more complex states, and the quality and timing of this differentiation is indicative of the level of brain development. However, existing methods for automated sleep classification remain focussed only on QS and AS sleep classification. Approach. EEG features were calculated from 16 EEG recordings, in 30 s epochs, and personalized feature scaling used to correct for some of the inter-recording variability, by standardizing each recording’s feature data using its mean and standard deviation. Hidden Markov models (HMMs) and Gaussian mixture models (GMMs) were trained, with the HMM incorporating knowledge of the sleep state transition probabilities. Performance of the GMM and HMM (with and without scaling) were compared, and Cohen’s kappa agreement calculated between the estimates and clinicians’ visual labels. Main results. For four-state classification, the HMM proved superior to the GMM. With the inclusion of personalized feature scaling, mean kappa (±standard deviation) was 0.62 (±0.16) compared to the GMM value of 0.55 (±0.15). Without feature scaling, kappas for the HMM and GMM dropped to 0.56 (±0.18) and 0.51 (±0.15), respectively. Significance. This is the first study to present a successful method for the automated staging of four states in term-age sleep using multichannel EEG. Results suggested a benefit in incorporating transition information using an HMM, and correcting for inter-recording variability through personalized feature scaling. Determining the timing and quality of these states are indicative of developmental delays in both preterm and term-born babies that may

  8. Extraction of features from sleep EEG for Bayesian assessment of brain development.

    Directory of Open Access Journals (Sweden)

    Vitaly Schetinin

    Full Text Available Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG. Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy.

  9. Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring

    DEFF Research Database (Denmark)

    Vilamala, Albert; Madsen, Kristoffer Hougaard; Hansen, Lars K.

    2017-01-01

    to purse for an automatic stage scoring based on machine learning techniques have been carried out over the last years. In this work, we resort to multitaper spectral analysis to create visually interpretable images of sleep patterns from EEG signals as inputs to a deep convolutional network trained...... to solve visual recognition tasks. As a working example of transfer learning, a system able to accurately classify sleep stages in new unseen patients is presented. Evaluations in a widely-used publicly available dataset favourably compare to state-of-the-art results, while providing a framework for visual...

  10. Linear and non-linear interdependence of EEG and HRV frequency bands in human sleep.

    Science.gov (United States)

    Chaparro-Vargas, Ramiro; Dissanayaka, P Chamila; Patti, Chanakya Reddy; Schilling, Claudia; Schredl, Michael; Cvetkovic, Dean

    2014-01-01

    The characterisation of functional interdependencies of the autonomic nervous system (ANS) stands an evergrowing interest to unveil electroencephalographic (EEG) and Heart Rate Variability (HRV) interactions. This paper presents a biosignal processing approach as a supportive computational resource in the estimation of sleep dynamics. The application of linear, non-linear methods and statistical tests upon 10 overnight polysomnographic (PSG) recordings, allowed the computation of wavelet coherence and phase locking values, in order to identify discerning features amongst the clinical healthy subjects. Our findings showed that neuronal oscillations θ, α and σ interact with cardiac power bands at mid-to-high rank of coherence and phase locking, particularly during NREM sleep stages.

  11. Quantitative analysis of sleep EEG microstructure in the time-frequency domain.

    Science.gov (United States)

    De Carli, Fabrizio; Nobili, Lino; Beelke, Manolo; Watanabe, Tsuyoshi; Smerieri, Arianna; Parrino, Liborio; Terzano, Mario Giovanni; Ferrillo, Franco

    2004-06-30

    A number of phasic events influence sleep quality and sleep macrostructure. The detection of arousals and the analysis of cyclic alternating patterns (CAP) support the evaluation of sleep fragmentation and instability. Sixteen polygraphic overnight recordings were visually inspected for conventional Rechtscaffen and Kales scoring, while arousals were detected following the criteria of the American Sleep Disorders Association (ASDA). Three electroencephalograph (EEG) segments were associated to each event, corresponding to background activity, pre-arousal period and arousal. The study was supplemented by the analysis of time-frequency distribution of EEG within each subtype of phase A in the CAP. The arousals were characterized by the increase of alpha and beta power with regard to background. Within NREM sleep most of the arousals were preceded by a transient increase of delta power. The time-frequency evolution of the phase A of the CAP sequence showed a strong prevalence of delta activity during the whole A1, but high amplitude delta waves were found also in the first 2/3 s of A2 and A3, followed by desynchronization. Our results underline the strict relationship between the ASDA arousals, and the subtype A2 and A3 within the CAP: in both the association between a short sequence of transient slow waves and the successive increase of frequency and decrease of amplitude characterizes the arousal response.

  12. Identification of memory reactivation during sleep by EEG classification.

    Science.gov (United States)

    Belal, Suliman; Cousins, James; El-Deredy, Wael; Parkes, Laura; Schneider, Jules; Tsujimura, Hikaru; Zoumpoulaki, Alexia; Perapoch, Marta; Santamaria, Lorena; Lewis, Penelope

    2018-04-17

    Memory reactivation during sleep is critical for consolidation, but also extremely difficult to measure as it is subtle, distributed and temporally unpredictable. This article reports a novel method for detecting such reactivation in standard sleep recordings. During learning, participants produced a complex sequence of finger presses, with each finger cued by a distinct audio-visual stimulus. Auditory cues were then re-played during subsequent sleep to trigger neural reactivation through a method known as targeted memory reactivation (TMR). Next, we used electroencephalography data from the learning session to train a machine learning classifier, and then applied this classifier to sleep data to determine how successfully each tone had elicited memory reactivation. Neural reactivation was classified above chance in all participants when TMR was applied in SWS, and in 5 of the 14 participants to whom TMR was applied in N2. Classification success reduced across numerous repetitions of the tone cue, suggesting either a gradually reducing responsiveness to such cues or a plasticity-related change in the neural signature as a result of cueing. We believe this method will be valuable for future investigations of memory consolidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Changes in EEG power density of non-REM sleep in depressed patients during treatment with trazodone

    NARCIS (Netherlands)

    Bemmel, Alex L. van; Beersma, Domien G.M.; Hoofdakker, Rutger H. van den

    1995-01-01

    Recently, it was hypothesized that acute or cumulative suppression of non-REM sleep intensity might be related to the therapeutic effects of antidepressants. This intensity has been proposed to be expressed in the EEG power density in non-REM sleep. In the present study, the relationship was

  14. The 2007 AASM recommendations for EEG electrode placement in polysomnography: impact on sleep and cortical arousal scoring.

    Science.gov (United States)

    Ruehland, Warren R; O'Donoghue, Fergal J; Pierce, Robert J; Thornton, Andrew T; Singh, Parmjit; Copland, Janet M; Stevens, Bronwyn; Rochford, Peter D

    2011-01-01

    To examine the impact of using American Academy of Sleep Medicine (AASM) recommended EEG derivations (F4/M1, C4/M1, O2/M1) vs. a single derivation (C4/M1) in polysomnography (PSG) on the measurement of sleep and cortical arousals, including inter- and intra-observer variability. Prospective, non-blinded, randomized comparison. Three Australian tertiary-care hospital clinical sleep laboratories. 30 PSGs from consecutive patients investigated for obstructive sleep apnea (OSA) during December 2007 and January 2008. N/A. To examine the impact of EEG derivations on PSG summary statistics, 3 scorers from different Australian clinical sleep laboratories each scored separate sets of 10 PSGs twice, once using 3 EEG derivations and once using 1 EEG derivation. To examine the impact on inter- and intra-scorer reliability, all 3 scorers scored a subset of 10 PSGs 4 times, twice using each method. All PSGs were de-identified and scored in random order according to the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Using 3 referential EEG derivations during PSG, as recommended in the AASM manual, instead of a single central EEG derivation, as originally suggested by Rechtschaffen and Kales (1968), resulted in a mean ± SE decrease in N1 sleep of 9.6 ± 3.9 min (P = 0.018) and an increase in N3 sleep of 10.6 ± 2.8 min (P = 0.001). No significant differences were observed for any other sleep or arousal scoring summary statistics; nor were any differences observed in inter-scorer or intra-scorer reliability for scoring sleep or cortical arousals. This study provides information for those changing practice to comply with the 2007 AASM recommendations for EEG placement in PSG, for those using portable devices that are unable to comply with the recommendations due to limited channel options, and for the development of future standards for PSG scoring and recording. As the use of multiple EEG derivations only led to small changes in the distribution of derived sleep

  15. Topographical characteristics and principal component structure of the hypnagogic EEG.

    Science.gov (United States)

    Tanaka, H; Hayashi, M; Hori, T

    1997-07-01

    The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.

  16. EEG

    Science.gov (United States)

    ... brain dead. EEG cannot be used to measure intelligence. Normal Results Brain electrical activity has a certain ... 2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  17. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    Science.gov (United States)

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  18. Wake and Sleep EEG in Patients With Huntington Disease: An eLORETA Study and Review of the Literature.

    Science.gov (United States)

    Piano, Carla; Mazzucchi, Edoardo; Bentivoglio, Anna Rita; Losurdo, Anna; Calandra Buonaura, Giovanna; Imperatori, Claudio; Cortelli, Pietro; Della Marca, Giacomo

    2017-01-01

    The aim of the study was to evaluate the EEG modifications in patients with Huntington disease (HD) compared with controls, by means of the exact LOw REsolution Tomography (eLORETA) software. We evaluated EEG changes during wake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Moreover, we reviewed the literature concerning EEG modifications in HD. Twenty-three consecutive adult patients affected by HD were enrolled, 14 women and 9 men, mean age was 57.0 ± 12.4 years. Control subjects were healthy volunteers (mean age 58.2 ± 14.6 years). EEG and polygraphic recordings were performed during wake (before sleep) and during sleep. Sources of EEG activities were determined using the eLORETA software. In wake EEG, significant differences between patients and controls were detected in the delta frequency band (threshold T = ±4.606; P < .01) in the Brodmann areas (BAs) 3, 4, and 6 bilaterally. In NREM sleep, HD patients showed increased alpha power (T = ±4.516; P < .01) in BAs 4 and 6 bilaterally; decreased theta power (T = ±4.516; P < .01) in the BAs 23, 29, and 30; and decreased beta power (T = ±4.516; P < .01) in the left BA 30. During REM, HD patients presented decreased theta and alpha power (threshold T = ±4.640; P < .01) in the BAs 23, 29, 30, and 31 bilaterally. In conclusion, EEG data suggest a motor cortex dysfunction during wake and sleep in HD patients, which correlates with the clinical and polysomnographic evidence of increased motor activity during wake and NREM, and nearly absent motor abnormalities in REM. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  19. Developmental Changes in Sleep Oscillations during Early Childhood

    Directory of Open Access Journals (Sweden)

    Eckehard Olbrich

    2017-01-01

    Full Text Available Although quantitative analysis of the sleep electroencephalogram (EEG has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  20. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    Science.gov (United States)

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Statistical features of hypnagogic EEG measured by a new scoring system.

    Science.gov (United States)

    Tanaka, H; Hayashi, M; Hori, T

    1996-11-01

    The purpose of this study was to examine the durations of individual occurrences of each of nine hypnagogic electroencephalographic (EEG) stages and the interchange relationship among these stages. Most of the alpha patterns (stages 1, 2, and 3), ripples (stage 5), and spindles (stage 9) tended to last > 2 minutes. On the other hand, histograms of the durations of time in EEG flattening (stage 4) and vertex sharp wave (stages 6, 7, and 8) patterns had peaks that lasted hypnagogic state. This was especially true for the first five stages. EEG stages with vertex sharp waves (stages 6, 7, and 8), however, showed less-smooth changes, with approximately 20% of all changes involving a jump of more than one stage. These results show that the basic EEG activities in the sleep onset period are the alpha, theta, and sleep spindles activities, whereas the activities of vertex sharp waves seem to have a secondary or enhancing role, instead of independent characteristics.

  2. [Daytime tiredness correlated with nocturnal respiratory and arousal variables in patients with sleep apnea: polysomnographic and EEG mapping studies].

    Science.gov (United States)

    Saletu, M; Hauer, C; Anderer, P; Saletu-Zyhlarz, G; Gruber, G; Oberndorfer, S; Mandl, M; Popovic, R; Saletu, B

    2000-03-24

    There is evidence that daytime tiredness is caused by apnea/hypopnea with oxygen desaturation and/or by sleep fragmentation due to arousals. The aim of this study was to investigate objective and subjective sleep and awakening quality and daytime vigilance--objectified by midmorning mapping of vigilance-controlled EEG (V-EEG)--in sleep apnea patients (N: 18), as compared with age- and sex-matched normal controls (N: 18) as well as to correlate nocturnal respiratory distress and arousals to daytime brain function. Statistical analyses demonstrated a deterioration in subjective and objective sleep and awakening quality in apnea patients. Midmorning V-EEG mapping in apnea patients exhibited less total power, more delta and theta, less alpha and beta activity, as well as a slower dominant frequency and centroid of the total activity compared to controls, which suggests a vigilance decrement. The Spearman rank correlation between 6 polysomnographically registered respiratory variables and 36 diurnal quantitative EEG measures demonstrated the following: the higher the apnea, apnea-hypopnea, snoring and desaturation indices and the lower the minimum and average low oxygen saturation, the more pronounced was diurnal tiredness. Eleven arousal measures based on ASDA criteria showed the following significant correlations: the higher the nocturnal arousal index and the more arousals due to hypopneas, the greater was daytime tiredness. On the other hand, the greater the average frequency change during arousals and the more spontaneous arousals, the better was daytime vigilance. Our findings show that, in contrast to the lengthy Multiple Sleep Latency (MSLT) and Maintenance of Wakefulness (MWT) tests which evaluate sleep pressure under resting conditions conducive to sleep, V-EEG mapping provides a brief objective measure of a sleep apnea patient's daytime tiredness under conditions of wakefulness more appropriate to reflect the patient's everyday life.

  3. Frequency of EEG arousals from nocturnal sleep in normal subjects.

    Science.gov (United States)

    Mathur, R; Douglas, N J

    1995-06-01

    Brief arousals are clinically important and increasingly scored during polysomnography. However, the frequency of arousals during routine polysomnography in the normal population is unknown. We performed overnight polysomnography in the 55 of 59 control subjects from a family practice list who were approached and agreed to undergo polysomnography. Awakenings were scored according to the criteria of Rechtschaffen and Kales and briefer arousals according to three different criteria, including the American Sleep Disorders Association (ASDA) definition. There was a mean of 4 [95% confidence interval (CI), 1-15) Rechtschaffen and Kales awakenings per hour, whereas the ASDA definition gave 21 (95% CI, 7-56) per hour slept. Arousal frequencies increased significantly (p < 0.001) with age in our subjects, who ranged from the late teens to early 70s. The high upper limit of the frequency of brief arousals was not altered by exclusion of patients who snored or had witnessed apneas or daytime sleepiness. It is important that those scoring arousals on routine polysomnography recognize that high arousal frequencies occur in the normal population on 1-night polysomnography.

  4. EEG

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... However, very few studies have examined the use of EEG in developing countries, including Ni- ... of evoked potentials from brain neurons, referred to as .... Percentage. Gender. Male. 89. 62.7. Female. 53. 37.3. Age. 0-10. 59.

  5. Adenosine A1 receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Geissler, E.

    2007-01-01

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A 1 and A 2A adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A 1 receptor (A 1 AR) in the modulation of vigilance states. The A 1 AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A 1 AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A 2A adenosine receptor (A 2A AR) is also assumed. The distinct functions of the A 1 and A 2A receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A 1 receptor antagonist, 8-cyclopentyl-3-(3- 18 Ffluoropropyl)- 1-propylxanthine ( 18 F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A 1 AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A 1 receptors in human sleep regulation, combining 18 F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A 1 AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered 18 F-CPFPX binding. Moreover, it was investigated whether radioligand uptake might be influenced by caffeine, since

  6. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    International Nuclear Information System (INIS)

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.; Amano, T.; Mortel, K.; Karacan, I.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significance was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements

  7. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease.

    Science.gov (United States)

    Christensen, Julie A E; Zoetmulder, Marielle; Koch, Henriette; Frandsen, Rune; Arvastson, Lars; Christensen, Søren R; Jennum, Poul; Sorensen, Helge B D

    2014-09-30

    Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases. This study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model. The features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients. The topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration. This study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    Science.gov (United States)

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Mobile Healthcare for Automatic Driving Sleep-Onset Detection Using Wavelet-Based EEG and Respiration Signals

    Directory of Open Access Journals (Sweden)

    Boon-Giin Lee

    2014-09-01

    Full Text Available Driving drowsiness is a major cause of traffic accidents worldwide and has drawn the attention of researchers in recent decades. This paper presents an application for in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset in real time. The proposed application classifies the driving mental fatigue condition by analyzing the electroencephalogram (EEG and respiration signals of a driver in the time and frequency domains. Our concept is heavily reliant on mobile technology, particularly remote physiological monitoring using Bluetooth. Respiratory events are gathered, and eight-channel EEG readings are captured from the frontal, central, and parietal (Fpz-Cz, Pz-Oz regions. EEGs are preprocessed with a Butterworth bandpass filter, and features are subsequently extracted from the filtered EEG signals by employing the wavelet-packet-transform (WPT method to categorize the signals into four frequency bands: α, β, θ, and δ. A mutual information (MI technique selects the most descriptive features for further classification. The reduction in the number of prominent features improves the sleep-onset classification speed in the support vector machine (SVM and results in a high sleep-onset recognition rate. Test results reveal that the combined use of the EEG and respiration signals results in 98.6% recognition accuracy. Our proposed application explores the possibility of processing long-term multi-channel signals.

  10. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Zoetmulder, Marielle; Koch, Henriette

    2014-01-01

    patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating i...... and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients. (C) 2014 Elsevier B.V. All rights reserved.......Background: Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases. New method: This study evaluates sleep using a topic modeling and unsupervised learning...

  11. Interrelationship of sleep and juvenile myoclonic epilepsy (JME): a sleep questionnaire-, EEG-, and polysomnography (PSG)-based prospective case-control study.

    Science.gov (United States)

    Ramachandraiah, C T; Sinha, S; Taly, A B; Rao, S; Satishchandra, P

    2012-11-01

    We studied the effects of 'epilepsy on sleep and its architecture' and 'sleep on the occurrence and distribution of interictal epileptiform discharges (ED)' using 'sleep questionnaires', 'EEG', and 'PSG' in patients with JME. Forty patients with JME [20 on valproate (Group I - 20.8±4.0 years; M: F=9:11) and 20 drug-naïve (Group II - 24.4±6.7 years; M: F=9:11)] and 20 controls (M: F=9:11; age: 23.5±4.7 years) underwent assessment with Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), overnight PSG, and scalp-EEG. Epileptiform discharges (EDs) were quantified in different sleep stages. The 'ED Index' was derived as number of EDs/min per stage. Statistical Package for the Social Sciences (SPSS) vs. 11 was used for statistical analysis. A 'p' EEG revealed EDs in 22/40 (Group I: 7 and Group II: 15) patients. Thirty-five patients had EDs in various sleep stages during PSG (Group I: 17 and Group II: 18): N1 - Group I: 9 and Group II: 14, N2 - Group I: 14 and Group II: 14, N3 - Group I: 14 and Group II: 10, and REM - Group I: 9 and Group II: 11. The ED Index was higher during N2/N3 in Group I and N1/REM in Group II. The epileptiform discharges were frequently associated with arousals in N1/REM and K-complexes in N2. There was no other significant difference between Groups I and II. In conclusion, there was poor sleep quality in patients with JME compared to controls, especially those on valproate who had altered sleep architecture. Epileptiform activity was observed more often in sleep than wakefulness. Sleep stages had variable effect on epileptiform discharges with light sleep having a facilitatory effect in the drug-naïve group and slow wave sleep having a facilitatory effect in the valproate group. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    Science.gov (United States)

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Schmidt, Marlit A

    2012-01-01

    Evoked cortical responses do not follow a rigid input–output function but are dynamically shaped by intrinsic neural properties at the time of stimulation. Recent research has emphasized the role of oscillatory activity in determining cortical excitability. Here we employed EEG-guided transcranial......, closely resembling a spontaneous SO. However, both MEPs and TEPs were consistently larger when evoked during SO up-states than during down-states, and ampliudes within each SO state depended on the actual EEG potential at the time and site of stimulation. These results provide first-time evidence...... magnetic stimulation (TMS) during non-rapid eye movement sleep to examine whether the spontaneous

  14. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    Science.gov (United States)

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  15. Proepileptic patterns in EEG of WAG/Rij rats

    Science.gov (United States)

    Grubov, Vadim V.; Sitnikova, Evgenia Yu.; Nedaivozov, Vladimir O.; Koronovskii, Alexey A.

    2018-04-01

    In this paper we study specific oscillatory patterns on EEG signals of WAG/Rij rats. These patterns are known as proepileptic because they occur in time period during the development of absence-epilepsy before fully-formed epileptic seizures. In the paper we analyze EEG signals of WAG/Rij rats with continuous wavelet transform and empirical mode decomposition in order to find particular features of epileptic spike-wave discharges and nonepileptic sleep spindles. Then we introduce proepileptic activity as patterns that combine features of epileptic and non-epileptic activity. We analyze proepileptic activity in order to specify its features and time-frequency structure.

  16. Transient decoupling of cortical EEGs following arousals during NREM sleep in middle-aged and elderly women.

    Science.gov (United States)

    Ramanand, Pravitha; Bruce, Margaret C; Bruce, Eugene N

    2010-08-01

    Spontaneous cortical arousals in non-REM sleep increase with age and contribute to sleep fragmentation in the elderly. EEG spectral power in the faster frequencies exhibits well-described shifts during arousals. On the other hand, EEG activities also exhibit correlations, which are interpreted as an index of interdependence between distant cortical neural activities. The possibility of changes to the interdependence between cortical regions due to an arousal has not been considered. In this work, using previously recorded C3A2 and C4A1 EEG signals from two groups of adults, middle-aged (42-50 years) and elderly (71-86 years) women, we examined the effects of spontaneous arousals in NREM sleep on cortical interdependence. We quantified the auto- and cross-correlations in these signals using mutual information and characterized these correlations in periods before the onset and following the end of arousals. The pre-arousal period exhibited significantly higher interdependence between central regions than that following the arousal in both age groups (middle-aged: p=0.004, elderly: ppower changes characteristic of an arousal are no longer visible. The findings suggest that the state following an arousal characterized by lower interdependence may resemble a more vigilant period during which the system may be vulnerable to more arousals. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Long-range correlations of different EEG derivations in rats: sleep stage-dependent generators may play a key role

    International Nuclear Information System (INIS)

    Fang, Guangzhan; Xia, Yang; Lai, Yongxiu; You, Zili; Yao, Dezhong

    2010-01-01

    For the electroencephalogram (EEG), topographic differences in the long-range temporal correlations would imply that these signals might be affected by specific mechanisms related to the generation of a given neuronal process. So the properties of the generators of various EEG oscillations might be investigated by their spatial differences of the long-range temporal correlations. In the present study, these correlations were characterized with respect to their topography during different vigilance states by detrended fluctuation analysis (DFA). The results indicated that (1) most of the scaling exponents acquired from different EEG derivations for various oscillations were significantly different in each vigilance state; these differences might be resulted from the different quantities and different locations of sleep stage-dependent generators of various neuronal processes; (2) there might be multiple generators of delta and theta over the brain and many of them were sleep stage-dependent; (3) the best site of the frontal electrode in a fronto-parietal bipolar electrode for sleep staging might be above the anterior midline cortex. We suggest that DFA analysis can be used to explore the properties of the generators of a given neuronal oscillation, and the localizations of these generators if more electrodes are involved

  18. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability.

    Science.gov (United States)

    Miller, Christopher B; Bartlett, Delwyn J; Mullins, Anna E; Dodds, Kirsty L; Gordon, Christopher J; Kyle, Simon D; Kim, Jong Won; D'Rozario, Angela L; Lee, Rico S C; Comas, Maria; Marshall, Nathaniel S; Yee, Brendon J; Espie, Colin A; Grunstein, Ronald R

    2016-11-01

    To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative ( q )-EEG and heart rate variability (HRV). Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q -EEG. Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. © 2016 Associated Professional Sleep Societies, LLC.

  19. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability

    Science.gov (United States)

    Miller, Christopher B.; Bartlett, Delwyn J.; Mullins, Anna E.; Dodds, Kirsty L.; Gordon, Christopher J.; Kyle, Simon D.; Kim, Jong Won; D'Rozario, Angela L.; Lee, Rico S.C.; Comas, Maria; Marshall, Nathaniel S.; Yee, Brendon J.; Espie, Colin A.; Grunstein, Ronald R.

    2016-01-01

    Study Objectives: To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative (q)-EEG and heart rate variability (HRV). Methods: Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. Results: From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q-EEG. Clinical Trial Registration: Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. Citation: Miller CB, Bartlett DJ, Mullins AE, Dodds KL, Gordon CJ, Kyle SD, Kim JW, D'Rozario AL, Lee RS, Comas M, Marshall NS, Yee BJ, Espie CA, Grunstein RR. Clusters of Insomnia Disorder: an exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability. SLEEP 2016;39(11):1993–2004. PMID:27568796

  20. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study.

    Science.gov (United States)

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I; Koch, Stefan P; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G; Czisch, Michael

    2012-07-01

    To investigate the neural correlates of lucid dreaming. Parallel EEG/fMRI recordings of night sleep. Sleep laboratory and fMRI facilities. Four experienced lucid dreamers. N/A. Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming.

  1. Evidence for age-associated disinhibition of the wake drive provided by scoring principal components of the resting EEG spectrum in sleep-provoking conditions.

    Science.gov (United States)

    Putilov, Arcady A; Donskaya, Olga G

    2016-01-01

    Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.

  2. Intraindividual Increase of Homeostatic Sleep Pressure Across Acute and Chronic Sleep Loss: A High-Density EEG Study.

    Science.gov (United States)

    Maric, Angelina; Lustenberger, Caroline; Werth, Esther; Baumann, Christian R; Poryazova, Rositsa; Huber, Reto

    2017-09-01

    To compare intraindividually the effects of acute sleep deprivation (ASD) and chronic sleep restriction (CSR) on the homeostatic increase in slow wave activity (SWA) and to relate it to impairments in basic cognitive functioning, that is, vigilance. The increase in SWA after ASD (40 hours of wakefulness) and after CSR (seven nights with time in bed restricted to 5 hours per night) relative to baseline sleep was assessed in nine healthy, male participants (age = 18-26 years) by high-density electroencephalography. The SWA increase during the initial part of sleep was compared between the two conditions of sleep loss. The increase in SWA was related to the increase in lapses of vigilance in the psychomotor vigilance task (PVT) during the preceding days. While ASD induced a stronger increase in initial SWA than CSR, the increase was globally correlated across the two conditions in most electrodes. The increase in initial SWA was positively associated with the increase in PVT lapses. The individual homeostatic response in SWA is globally preserved across acute and chronic sleep loss, that is, individuals showing a larger increase after ASD also do so after CSR and vice versa. Furthermore, the increase in SWA is globally correlated to vigilance impairments after sleep loss over both conditions. Thus, the increase in SWA might therefore provide a physiological marker for individual differences in performance impairments after sleep loss. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Night and day variations of sleep in patients with disorders of consciousness.

    Science.gov (United States)

    Wislowska, Malgorzata; Del Giudice, Renata; Lechinger, Julia; Wielek, Tomasz; Heib, Dominik P J; Pitiot, Alain; Pichler, Gerald; Michitsch, Gabriele; Donis, Johann; Schabus, Manuel

    2017-03-21

    Brain injuries substantially change the entire landscape of oscillatory dynamics and render detection of typical sleep patterns difficult. Yet, sleep is characterized not only by specific EEG waveforms, but also by its circadian organization. In the present study we investigated whether brain dynamics of patients with disorders of consciousness systematically change between day and night. We recorded ~24 h EEG at the bedside of 18 patients diagnosed to be vigilant but unaware (Unresponsive Wakefulness Syndrome) and 17 patients revealing signs of fluctuating consciousness (Minimally Conscious State). The day-to-night changes in (i) spectral power, (ii) sleep-specific oscillatory patterns and (iii) signal complexity were analyzed and compared to 26 healthy control subjects. Surprisingly, the prevalence of sleep spindles and slow waves did not systematically vary between day and night in patients, whereas day-night changes in EEG power spectra and signal complexity were revealed in minimally conscious but not unaware patients.

  4. NREM sleep oscillations and brain plasticity in aging

    Directory of Open Access Journals (Sweden)

    Stuart eFogel

    2012-12-01

    Full Text Available The human electroencephalogram (EEG during non-rapid eye movement sleep (NREM is characterized mainly by high-amplitude (> 75 µV, slow-frequency (< 4 Hz waves (slow waves; SW and sleep spindles (~11-15 Hz; > 0.25 s. These NREM oscillations play a crucial role in brain plasticity, and importantly, NREM sleep oscillations change considerably with aging. This review discusses the association between NREM sleep oscillations and cerebral plasticity as well as the functional impact of age-related changes on NREM sleep oscillations. We propose that age-related reduction in sleep-dependent memory consolidation may be due in part to changes in NREM sleep oscillations.

  5. Cordance derived from REM sleep EEG as a biomarker for treatment response in depression--a naturalistic study after antidepressant medication

    NARCIS (Netherlands)

    Adamczyk, M.; Gazea, M.; Wollweber, B.; Holsboer, F.; Dresler, M.; Steiger, A.; Pawlowski, M.

    2015-01-01

    OBJECTIVE: To evaluate whether prefrontal cordance in theta frequency band derived from REM sleep EEG after the first week of antidepressant medication could characterize the treatment response after 4 weeks of therapy in depressed patients. METHOD: 20 in-patients (15 females, 5 males) with a

  6. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography.

    Directory of Open Access Journals (Sweden)

    Kate E Sprecher

    Full Text Available Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel electroencephalography (EEG during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18-65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson's coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor.

  7. The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.

    Science.gov (United States)

    Bigan, C; Strungaru, R

    1998-01-01

    During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.

  8. Low Activity Microstates During Sleep.

    Science.gov (United States)

    Miyawaki, Hiroyuki; Billeh, Yazan N; Diba, Kamran

    2017-06-01

    To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call "LOW" activity sleep. We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260-360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2. LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of "LOW-active" cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  9. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, David T; Landsness, Eric C; Peterson, Michael J; Goldstein, Michael R; Riedner, Brady A; Wanger, Timothy; Guokas, Jeffrey J; Tononi, Giulio; Benca, Ruth M

    2012-09-18

    Sleep disturbance plays an important role in major depressive disorder (MDD). Prior investigations have demonstrated that slow wave activity (SWA) during sleep is altered in MDD; however, results have not been consistent across studies, which may be due in part to sex-related differences in SWA and/or limited spatial resolution of spectral analyses. This study sought to characterize SWA in MDD utilizing high-density electroencephalography (hdEEG) to examine the topography of SWA across the cortex in MDD, as well as sex-related variation in SWA topography in the disorder. All-night recordings with 256 channel hdEEG were collected in 30 unipolar MDD subjects (19 women) and 30 age and sex-matched control subjects. Spectral analyses of SWA were performed to determine group differences. SWA was compared between MDD and controls, including analyses stratified by sex, using statistical non-parametric mapping to correct for multiple comparisons of topographic data. As a group, MDD subjects demonstrated significant increases in all-night SWA primarily in bilateral prefrontal channels. When stratified by sex, MDD women demonstrated global increases in SWA relative to age-matched controls that were most consistent in bilateral prefrontal regions; however, MDD men showed no significant differences relative to age-matched controls. Further analyses demonstrated increased SWA in MDD women was most prominent in the first portion of the night. Women, but not men with MDD demonstrate significant increases in SWA in multiple cortical areas relative to control subjects. Further research is warranted to investigate the role of SWA in MDD, and to clarify how increased SWA in women with MDD is related to the pathophysiology of the disorder.

  10. Nonlinear Analysis of the Sleep EEG in Children with Pervasive Developmental Disorder

    Czech Academy of Sciences Publication Activity Database

    Kulíšek, R.; Hrnčíř, Z.; Hrdlička, M.; Faladová, L.; Štěrbová, K.; Kršek, P.; Vymlátilová, E.; Paluš, Milan; Zumrová, A.; Komárek, V.

    2008-01-01

    Roč. 29, č. 4 (2008), s. 512-517 ISSN 0172-780X Institutional research plan: CEZ:AV0Z10300504 Keywords : EEG * synchronization * autism * underconnectivity model Subject RIV: FH - Neurology Impact factor: 1.359, year: 2008

  11. On the need of objective vigilance monitoring: Effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI

    Directory of Open Access Journals (Sweden)

    Michael eCzisch

    2012-04-01

    Full Text Available Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation are not fully understood. Previous neuroimaging studies of sleep deprivation have not been able to exclude the effects of reduced arousal and vigilance when examining cerebral responses to cognitive challenges. Here, we used a simultaneous electroencephalography (EEG and functional magnetic resonance imaging (fMRI approach to study the effects of 36 hours of total sleep deprivation (TSD. Specifically, we focused on changes in selective attention processes as induced by an active acoustic oddball task, with the ability to isolate runs with objective EEG signs of high or reduced vigilance. At high vigilance, task-related activity appears to be sustained by compensatory co-activation of insular regions, but task-negative activity in the right posterior node of the default mode network is altered following TSD. When EEG shows signs of reduced vigilance, task-positive activity was massively impaired, but task-negative activation was showing levels comparable with the control condition after a well-rested night. Our results suggest that loss of strict anti-correlation between task-positive and task-negative activation reflects the effects of TSD, while the actual state of vigilance and task performance either affects task-related or task-negative activity.

  12. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets

    Science.gov (United States)

    Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E.

    2017-11-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. This paper evaluates two approaches for detecting stereotypic rhythmic activities in EEG, i.e., the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). The CWT is a well-known method of time-frequency analysis of EEG, whereas EMD is a relatively novel approach for extracting signal's waveforms. A new method for pattern recognition based on combination of CWT and EMD is proposed. It was found that this combined approach resulted to the sensitivity of 86.5% and specificity of 92.9% for sleep spindles and 97.6% and 93.2% for SWD, correspondingly. Considering strong within- and between-subjects variability of sleep spindles, the obtained efficiency in their detection was high in comparison with other methods based on CWT. It is concluded that the combination of a wavelet-based approach and empirical modes increases the quality of automatic detection of stereotypic patterns in rat's EEG.

  13. Adenosine A{sub 1} receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)[Dissertation 17227

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, E

    2007-07-01

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A{sub 1} and A{sub 2A} adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A{sub 1} receptor (A{sub 1}AR) in the modulation of vigilance states. The A{sub 1}AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A{sub 1}AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A{sub 2A} adenosine receptor (A{sub 2A}AR) is also assumed. The distinct functions of the A{sub 1} and A{sub 2A} receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A{sub 1} receptor antagonist, 8-cyclopentyl-3-(3-{sup 18}Ffluoropropyl)- 1-propylxanthine ({sup 18}F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A{sub 1}AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A{sub 1} receptors in human sleep regulation, combining {sup 18}F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A{sub 1}AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered {sup 18}F-CPFPX binding. Moreover, it was

  14. Time course of EEG slow-wave activity in pre-school children with sleep disordered breathing: a possible mechanism for daytime deficits?

    Science.gov (United States)

    Biggs, Sarah N; Walter, Lisa M; Nisbet, Lauren C; Jackman, Angela R; Anderson, Vicki; Nixon, Gillian M; Davey, Margot J; Trinder, John; Hoffmann, Robert; Armitage, Roseanne; Horne, Rosemary S C

    2012-09-01

    Daytime deficits in children with sleep disordered breathing (SDB) are theorized to result from hypoxic insult to the developing brain or fragmented sleep. Yet, these do not explain why deficits occur in primary snorers (PS). The time course of slow wave EEG activity (SWA), a proxy of homeostatic regulation and cortical maturation, may provide insight. Clinical and control subjects (N=175: mean age 4.3±0.9 y: 61% male) participated in overnight polysomnography (PSG). Standard sleep scoring and power spectral analyses were conducted on EEG (C4/A1; 0.5-sleep stages and respiratory parameters. Repeated-measures ANCOVA evaluated group differences in the time course of SWA. Four groups were classified: controls (OAHI ≤ 1 event/h; no clinical history); PS (OAHI ≤ 1 event/h; clinical history); mild OSA (OAHI=1-5 events/h); and moderate to severe OSA (MS OSA: OAHI>5 events/h). Group differences were found in the percentage of time spent in NREM Stages 1 and 4 (psleep pressure but impaired restorative sleep function in pre-school children with SDB, providing new insights into the possible mechanism for daytime deficits observed in all severities of SDB. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effects of serotonergic system on the sleeping time and EEG in rats

    Directory of Open Access Journals (Sweden)

    Alaei H

    2001-08-01

    Full Text Available The phenomenon of sleep is an active nervous and biologic rhythm, which is under influence of neurotransmitters of central nervous system. In this study, the influence of serotonergic system on sleeping time have been assessed by agonist-antagonist drugs using two methods of induction and non-induction behavioral and electrophysiology. The method used for measurement of total sleeing time was Angle method. For assessment of drugs impact on brain waves, after opening two holes in frontal and temporal regions, two non-polarized silvery electrodes were fixed in above regions and was connected to physiograph and computer by linkers for waves analysis. Injection intra-ventriculary is done by stereotax apparatus. Results indicate that diazepam (2.5 mg/kg increases sleeping time in two stages of induction and non-induction (P<0.01. 5-HTP (15, 45 mg/kg increases dose-dependence sleeping time. p-CPA (150, 300 mg/kg shows biphasic influence on sleeping time. The 300 mg/kg dose of p-CPA reduces sleeping time while 150 mg/kg dose inverts sleeping time (P<0.05. Interferential affects of drugs with (5-HTP 45 mg/kg and p-CPA (300 mg/kg doses are similar to control groups. Injection of 5-HTP inverts p-CPA affect. Intra-ventriculary Injection of 5-HTP in 150 µg/kg and 300 µg/kg doses, decreases frequency of delta waves and significantly increases the frequencies of other waves but conversely, 500 µg/kg decreases it. Due to findings of this study, interferential affects of agonist-antagonist of 5-HTP, can not invert p-CPA affect. Supported by GABA affects, diazepam induces its inhibitory affect in per-synaptic and post-synaptic membrane through ascending reticular both systems and blocking stimulation of brain cortical and limbic system. Affects of two other drugs on sleeping time and brain waves are probably caused by increment of released serotonin in pre-synaptic neurons. Although their interferential affects with other neurotransmitter system should be

  16. Role of the gluten-free diet on neurological-EEG findings and sleep disordered breathing in children with celiac disease.

    Science.gov (United States)

    Parisi, P; Pietropaoli, N; Ferretti, A; Nenna, R; Mastrogiorgio, G; Del Pozzo, M; Principessa, L; Bonamico, M; Villa, M P

    2015-02-01

    To determine whether celiac children are at risk for EEG-neurological features and sleep disordered breathing (SDB), and whether an appropriate gluten-free diet (GFD) influences these disorders. We consecutively enrolled 19 children with a new biopsy-proven celiac disease (CD) diagnosis. At CD diagnosis and after 6 months of GFD, each patient underwent a general and neurological examination, an electroencephalogram, a questionnaire about neurological features, and a validated questionnaire about SDB: OSA (obstructive sleep apnea) scores0 predict OSA. At CD diagnosis, 37% of patients complained headache that affected daily activities and 32% showed positive OSA score. The EEG examinations revealed abnormal finding in 48% of children. After 6 months of GFD headache disappeared in 72% of children and EEG abnormalities in 78%; all children showed negative OSA score. According to our preliminary data, in the presence of unexplained EEG abnormalities and/or other neurological disorders/SDB an atypical or silent CD should also be taken into account. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Cordance derived from REM sleep EEG as a biomarker for treatment response in depression--a naturalistic study after antidepressant medication.

    Science.gov (United States)

    Adamczyk, Marek; Gazea, Mary; Wollweber, Bastian; Holsboer, Florian; Dresler, Martin; Steiger, Axel; Pawlowski, Marcel

    2015-04-01

    To evaluate whether prefrontal cordance in theta frequency band derived from REM sleep EEG after the first week of antidepressant medication could characterize the treatment response after 4 weeks of therapy in depressed patients. 20 in-patients (15 females, 5 males) with a depressive episode and 20 healthy matched controls were recruited into 4-week, open label, case-control study. Patients were treated with various antidepressants. No significant differences in age (responders (mean ± SD): 45 ± 22) years; non-responders: 49 ± 12 years), medication or Hamilton Depression Rating Scale (HAM-D) score (responders: 23.8 ± 4.5; non-responders 24.5 ± 7.6) at inclusion into the study were found between responders and non-responders. Response to treatment was defined as a ≥50% reduction of HAM-D score at the end of four weeks of active medication. Sleep EEG of patients was recorded after the first and the fourth week of medication. Cordance was computed for prefrontal EEG channels in theta frequency band during tonic REM sleep. The group of 8 responders had significantly higher prefrontal theta cordance in relation to the group of 12 non-responders after the first week of antidepressant medication. This finding was significant also when controlling for age, gender and number of previous depressive episodes (F1,15 = 6.025, P = .027). Furthermore, prefrontal cordance of all patients showed significant positive correlation (r = 0.52; P = .019) with the improvement of HAM-D score between the inclusion week and fourth week of medication. The results suggest that prefrontal cordance derived from REM sleep EEG could provide a biomarker for the response to antidepressant treatment in depressed patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Pontas positivas occipitais transitórias no eletrencefalograma de pacientes epilépticos submetidos a privação do sono Sleep occipital positive transient spikes seen at EEG of epileptic patients submitted to sleep deprivation

    Directory of Open Access Journals (Sweden)

    Gilson Edmar Gonçalves e Silva

    2007-06-01

    Full Text Available OBJETIVO: Comparar o aparecimento do grafoelemento de ponta positiva occipital transitória do sono em eletrencefalograma (EEG de pacientes epilépticos com e sem privação do sono, como método de ativação. MÉTODO: Foram analisados 40 EEG de 20 pacientes epilépticos com idade variando de 12 a 43 anos sendo 60% do sexo masculino, atendidos no Hospital das Clínicas da Universidade Federal de Pernambuco, no período de 1995 a 2000. Foram incluídos pacientes com epilepsia diagnosticada clinicamente e EEG sem alteração. Cada paciente foi submetido a um EEG sem privação de sono e outro após 36 horas de privação. O registro dos dois EEG foi separado por intervalo de 48 horas, obedecendo ao protocolo padrão. O efeito da privação do sono foi avaliado pelo aparecimento do grafoelemento PPOTS durante o estágio NREM do sono. RESULTADOS: No EEG sem privação do sono, a PPOTS foi identificada em 6 (30% pacientes no estágio I e em 1 (5% paciente em ambos os estágios I e II NREM. Após privação do sono, PPOTS estiveram ausentes em apenas um paciente, mas presentes em 25% casos no estágio I NREM e em 70%, nos estágios I e II NREM. CONCLUSÃO: O aumento da freqüência de PPOTS após privação do sono, parece indicar a existência da liberação de neurotransmissores excitatórios, o que pode contribuir significativamente para a investigação da excitabilidade cerebral.OBJECTIVE: To compare the presence of "sleep occipital positive transient spikes" (SOPTS in the electroencephalogram (EEG of epileptic patients without sleep deprivation (SD to those with SD, as an activation method. METHOD: The author analyzed 40 EEG of 20 epileptic patients, aging from 12 to 43 years, 60%, males. Those patients were attempted at the Clinics Hospital of Universidade Federal de Pernambuco, from 1995 to 2000. Every patient included in this study had epilepsy clinically diagnosed and all EEG without abnormalities. Each subject was submitted to one EEG

  19. The role of sleep in declarative memory consolidation--direct evidence by intracranial EEG.

    NARCIS (Netherlands)

    Axmacher, N.; Haupt, S.; Fernandez, G.S.E.; Elger, C.E.; Fell, J.

    2008-01-01

    Two step theories of memory formation assume that an initial learning phase is followed by a consolidation stage. Memory consolidation has been suggested to occur predominantly during sleep. Very recent findings, however, suggest that important steps in memory consolidation occur also during waking

  20. The role of sleep in declarative memory consolidation--direct evidence by intracranial EEG.

    Science.gov (United States)

    Axmacher, Nikolai; Haupt, Sven; Fernández, Guillén; Elger, Christian E; Fell, Juergen

    2008-03-01

    Two step theories of memory formation assume that an initial learning phase is followed by a consolidation stage. Memory consolidation has been suggested to occur predominantly during sleep. Very recent findings, however, suggest that important steps in memory consolidation occur also during waking state but may become saturated after some time awake. Sleep, in this model, specifically favors restoration of synaptic plasticity and accelerated memory consolidation while asleep and briefly afterwards. To distinguish between these different views, we recorded intracranial electroencephalograms from the hippocampus and rhinal cortex of human subjects while they retrieved information acquired either before or after a "nap" in the afternoon or on a control day without nap. Reaction times, hippocampal event-related potentials, and oscillatory gamma activity indicated a temporal gradient of hippocampal involvement in information retrieval on the control day, suggesting hippocampal-neocortical information transfer during waking state. On the day with nap, retrieval of recent items that were encoded briefly after the nap did not involve the hippocampus to a higher degree than retrieval of items encoded before the nap. These results suggest that sleep facilitates rapid processing through the hippocampus but is not necessary for information transfer into the neocortex per se.

  1. Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation

    Directory of Open Access Journals (Sweden)

    Renee E. Shimizu

    2018-02-01

    Full Text Available Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12–15 Hz sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks.

  2. Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation.

    Science.gov (United States)

    Shimizu, Renee E; Connolly, Patrick M; Cellini, Nicola; Armstrong, Diana M; Hernandez, Lexus T; Estrada, Rolando; Aguilar, Mario; Weisend, Michael P; Mednick, Sara C; Simons, Stephen B

    2018-01-01

    Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM) sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12-15 Hz) sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks.

  3. Effects of an alkaloid-rich extract from Mitragyna speciosa leaves and fluoxetine on sleep profiles, EEG spectral frequency and ethanol withdrawal symptoms in rats.

    Science.gov (United States)

    Cheaha, Dania; Keawpradub, Niwat; Sawangjaroen, Kitja; Phukpattaranont, Pimpimol; Kumarnsit, Ekkasit

    2015-10-15

    Many antidepressants are effective in alleviating ethanol withdrawal symptoms. However, most of them suppress rapid eye movement (REM) sleep. Thus, development of antidepressants without undesirable side effects would be preferable. Previously, crude alkaloid extract from Mitragyna speciosa (MS) Korth was found to produce antidepressant activities. It was hypothesized that the alkaloid extract from MS may attenuate ethanol withdrawal without REM sleep disturbance. Adult male Wistar rats implanted with electrodes over the frontal and parietal cortices were used for two separated studies. For an acute study, 10 mg/kg fluoxetine or 60 mg/kg alkaloid extract from MS were administered intragastrically. Electroencephalographic (EEG) signals were recorded for 3 h to examine sleep profiles and EEG fingerprints. Another set of animal was used for an ethanol withdrawal study. They were rendered dependent on ethanol via a modified liquid diet (MLD) containing ethanol ad libitum for 28 days. On day 29, fluoxetine (10 mg/kg) or alkaloid extract from MS (60 mg/kg) were administered 15 min before the ethanol-containing MLD was replaced with an isocaloric ethanol-free MLD to induced ethanol withdrawal symptoms. The sleep analysis revealed that alkaloid extract from MS did not change any REM parameters which included average duration of each REM episode, total REM time, number of REM episode and REM latency whereas fluoxetine significantly suppressed all REM parameters and delayed REM latency. However, power spectral analysis revealed similar fingerprints for fluoxetine and alkaloid extract from MS characterized by decreasing powers in the slow frequency range in frontal and parietal cortical EEG. Neither treatment affected spontaneous motor activity. Finally, both alkaloid extract from MS and fluoxetine were found to significantly attenuate ethanol withdrawal-induced hyperexcitability (increases gamma activity) in both cortices and to reduce locomotor activity. The present study

  4. The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    CERN Document Server

    Merica, H

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) - in fitting the data well - successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN...

  5. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  6. Hippocampal Sleep Features: Relations to Human Memory Function

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  7. Classification of iRBD and Parkinson's patients using a general data-driven sleep staging model built on EEG

    DEFF Research Database (Denmark)

    Koch, Henriette; Christensen, Julie Anja Engelhard; Frandsen, Rune

    2013-01-01

    Sleep analysis is an important diagnostic tool for sleep disorders. However, the current manual sleep scoring is time-consuming as it is a crude discretization in time and stages. This study changes Esbroeck and Westover's [1] latent sleep staging model into a global model. The proposed data......-driven method trained a topic mixture model on 10 control subjects and was applied on 10 other control subjects, 10 iRBD patients and 10 Parkinson's patients. In that way 30 topic mixture diagrams were obtained from which features reflecting distinct sleep architectures between control subjects and patients...... were extracted. Two features calculated on basis of two latent sleep states classified subjects as “control” or “patient” by a simple clustering algorithm. The mean sleep staging accuracy compared to classical AASM scoring was 72.4% for control subjects and a clustering of the derived features resulted...

  8. How do people with drug-resistant mesial temporal lobe epilepsy sleep? A clinical and video-EEG with EOG and submental EMG for sleep staging study

    Directory of Open Access Journals (Sweden)

    Aline Vieira Scarlatelli-Lima

    2016-09-01

    Full Text Available This study aimed to assess subjective and objective sleep parameters in a homogeneous group of drug-resistant mesial temporal lobe epilepsy (MTLE patients through internationally validated clinical questionnaires, video-electroencephalographic (VEEG and polysomnographic (PSG studies. Fifty-six patients with definite diagnosis of MTLE who were candidates for epilepsy surgery underwent a detailed clinical history, the Pittsburgh Sleep Quality Index (PSQI, Epworth Sleepiness Scale (ESS, Stanford Sleepiness Scale (SSS, neurological examination, 1.5 T brain magnetic resonance imaging, VEEG and PSG. Sixteen percent of patients reported significant daytime sleepiness as measured by ESS and 27% reported low levels of sleep quality as measured by PSQI. Patients with medically resistant epilepsy by MTLE showed increased wakefulness after sleep onset (WASO with mean ± standard deviation of 17.4 ± 15.6, longer non-rapid eye movement (NREM 1 (7.5 ± 4.6% and NREM3 sleep (26.6 ± 11.8%, abnormal rapid eye movement (REM latency in 30/56 patients, shorter REM sleep (16.7 ± 6.6%, and abnormal alpha delta patterns were observed in 41/56 patients. The analysis of interictal epileptic discharges (IEDs evidenced highest spiking rate during NREM3 sleep and higher concordance with imaging data when IEDs were recorded in sleep, mainly during REM sleep. We concluded that patients with MTLE showed disrupted sleep architecture that may result in daytime dysfunction and sleep complaints. Furthermore, NREM sleep activated focal IEDs and them - when recorded during sleep - had higher localizing value.

  9. Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment.

    Science.gov (United States)

    Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes

    2017-07-26

    Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.

  10. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics.

    Science.gov (United States)

    Chriskos, Panteleimon; Frantzidis, Christos A; Gkivogkli, Polyxeni T; Bamidis, Panagiotis D; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.

  11. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2015-01-01

    Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging

  12. Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data.

    Science.gov (United States)

    Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M; Jerbi, Karim

    2017-01-01

    We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module.

  13. Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data

    Directory of Open Access Journals (Sweden)

    Etienne Combrisson

    2017-09-01

    Full Text Available We introduce Sleep, a new Python open-source graphical user interface (GUI dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1 Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2 Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM, (3 Implementation of practical signal processing tools such as re-referencing or filtering, and (4 Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module.

  14. Sleep

    Science.gov (United States)

    ... Institute (NHLBI). 1 Mood. Sleep affects your mood. Insufficient sleep can cause irritability that can lead to trouble with relationships, ... basics/understanding_sleep.htm#dynamic_activity Centers for Disease ... insufficient rest or sleep among adults—United States, 2008. MMWR, 58 (42), ...

  15. Targeted Memory Reactivation during Sleep Depends on Prior Learning.

    Science.gov (United States)

    Creery, Jessica D; Oudiette, Delphine; Antony, James W; Paller, Ken A

    2015-05-01

    When sounds associated with learning are presented again during slow-wave sleep, targeted memory reactivation (TMR) can produce improvements in subsequent location recall. Here we used TMR to investigate memory consolidation during an afternoon nap as a function of prior learning. Twenty healthy individuals (8 male, 19-23 y old). Participants learned to associate each of 50 common objects with a unique screen location. When each object appeared, its characteristic sound was played. After electroencephalography (EEG) electrodes were applied, location recall was assessed for each object, followed by a 90-min interval for sleep. During EEG-verified slow-wave sleep, half of the sounds were quietly presented over white noise. Recall was assessed 3 h after initial learning. A beneficial effect of TMR was found in the form of higher recall accuracy for cued objects compared to uncued objects when pre-sleep accuracy was used as an explanatory variable. An analysis of individual differences revealed that this benefit was greater for participants with higher pre-sleep recall accuracy. In an analysis for individual objects, cueing benefits were apparent as long as initial recall was not highly accurate. Sleep physiology analyses revealed that the cueing benefit correlated with delta power and fast spindle density. These findings substantiate the use of targeted memory reactivation (TMR) methods for manipulating consolidation during sleep. TMR can selectively strengthen memory storage for object-location associations learned prior to sleep, except for those near-perfectly memorized. Neural measures found in conjunction with TMR-induced strengthening provide additional evidence about mechanisms of sleep consolidation. © 2015 Associated Professional Sleep Societies, LLC.

  16. Sleep-related modifications of EEG connectivity in the sensory-motor networks in Huntington Disease: An eLORETA study and review of the literature.

    Science.gov (United States)

    Piano, Carla; Imperatori, Claudio; Losurdo, Anna; Bentivoglio, Anna Rita; Cortelli, Pietro; Della Marca, Giacomo

    2017-07-01

    To evaluate EEG functional connectivity in the sensory-motor network, during wake and sleep, in patients with Huntington Disease (HD). 23 patients with HD and 23 age- and sex-matched healthy controls were enrolled. EEG connectivity analysis was performed by means of exact Low Resolution Electric Tomography (eLORETA). In wake, HD patients showed an increase of delta lagged phase synchronization (T=3.60; p<0.05) among Broadman's Areas (BA) 6-8 bilaterally; right BA 6-8 and right BA 1-2-3; left BA 1-2-3 and left BA 4. In NREM, HD patients showed an increase of delta lagged phase synchronization (T=3.56; p<0.05) among left BA 1-2-3 and right BA 6-8. In REM, HD patients showed an increase of lagged phase synchronization (T=3.60; p<0.05) among the BA 6-8 bilaterally (delta band); left BA 1-2-3 and right BA 1-2-3 (theta); left BA 1-2-3 and right BA 4 (theta); left BA 1-2-3 and right BA 1-2-3 (alpha). Our results may reflect an abnormal function of the motor areas or an effort to counterbalance the pathological motor output. Our results may help to understand the pathophysiology of sleep-related movement disorders in Huntington's Disease, and to define therapeutically strategies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: a combined EEG study using LORETA and Omega complexity : reversible alterations of brain activity in OSAS.

    Science.gov (United States)

    Toth, Marton; Faludi, Bela; Kondakor, Istvan

    2012-10-01

    Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long

  18. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    Science.gov (United States)

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  19. EEG biofeedback

    OpenAIRE

    Dvořáček, Michael

    2010-01-01

    Vznik EEG aktivity v mozku, rozdělení EEG vln podle frekvence, způsob měření EEG, přístroje pro měření EEG. Dále popis biofeedback metody, její možnosti a návrh biofeedback her. Popis zpracování naměřených EEG signálů. EEG generation, brain rhythms, methods of recording EEG, EEG recorder. Description of biofeedback, potentialities of biofeedback, proposal of biofeedback games. Description of processing measured EEG signals. B

  20. Individual differences in the effects of mobile phone exposure on human sleep: rethinking the problem.

    Science.gov (United States)

    Loughran, Sarah P; McKenzie, Raymond J; Jackson, Melinda L; Howard, Mark E; Croft, Rodney J

    2012-01-01

    Mobile phone exposure-related effects on the human electroencephalogram (EEG) have been shown during both waking and sleep states, albeit with slight differences in the frequency affected. This discrepancy, combined with studies that failed to find effects, has led many to conclude that no consistent effects exist. We hypothesised that these differences might partly be due to individual variability in response, and that mobile phone emissions may in fact have large but differential effects on human brain activity. Twenty volunteers from our previous study underwent an adaptation night followed by two experimental nights in which they were randomly exposed to two conditions (Active and Sham), followed by a full-night sleep episode. The EEG spectral power was increased in the sleep spindle frequency range in the first 30 min of non-rapid eye movement (non-REM) sleep following Active exposure. This increase was more prominent in the participants that showed an increase in the original study. These results confirm previous findings of mobile phone-like emissions affecting the EEG during non-REM sleep. Importantly, this low-level effect was also shown to be sensitive to individual variability. Furthermore, this indicates that previous negative results are not strong evidence for a lack of an effect and, given the far-reaching implications of mobile phone research, we may need to rethink the interpretation of results and the manner in which research is conducted in this field. Copyright © 2011 Wiley Periodicals, Inc.

  1. The Making of SPINdle

    Science.gov (United States)

    Lam, Ho-Pun; Governatori, Guido

    We present the design and implementation of SPINdle - an open source Java based defeasible logic reasoner capable to perform efficient and scalable reasoning on defeasible logic theories (including theories with over 1 million rules). The implementation covers both the standard and modal extensions to defeasible logics. It can be used as a standalone theory prover and can be embedded into any applications as a defeasible logic rule engine. It allows users or agents to issues queries, on a given knowledge base or a theory generated on the fly by other applications, and automatically produces the conclusions of its consequences. The theory can also be represented using XML.

  2. Valve spindle gland

    International Nuclear Information System (INIS)

    Burda, Z.; Harazim, A.; Kerlin, K.

    1979-01-01

    A gland is proposed of the valve spindle designed for radioactive or otherwise harmful media, such as in nuclear power plant primary circuits. The gland is installed in the valve cover and consists of a primary and a secondary part and of a gland case partitioning the gland space into two chambers. The bottom face of the gland case is provided with a double-sided collar for controlling the elements of the bottom primary gland while the top face is provided with a removable flange. (M.S.)

  3. Sleep to the beat: A nap favours consolidation of timing.

    Science.gov (United States)

    Verweij, Ilse M; Onuki, Yoshiyuki; Van Someren, Eus J W; Van der Werf, Ysbrand D

    2016-06-01

    Growing evidence suggests that sleep is important for procedural learning, but few studies have investigated the effect of sleep on the temporal aspects of motor skill learning. We assessed the effect of a 90-min day-time nap on learning a motor timing task, using 2 adaptations of a serial interception sequence learning (SISL) task. Forty-two right-handed participants performed the task before and after a 90-min period of sleep or wake. Electroencephalography (EEG) was recorded throughout. The motor task consisted of a sequential spatial pattern and was performed according to 2 different timing conditions, that is, either following a sequential or a random temporal pattern. The increase in accuracy was compared between groups using a mixed linear regression model. Within the sleep group, performance improvement was modeled based on sleep characteristics, including spindle- and slow-wave density. The sleep group, but not the wake group, showed improvement in the random temporal, but especially and significantly more strongly in the sequential temporal condition. None of the sleep characteristics predicted improvement on either general of the timing conditions. In conclusion, a daytime nap improves performance on a timing task. We show that performance on the task with a sequential timing sequence benefits more from sleep than motor timing. More important, the temporal sequence did not benefit initial learning, because differences arose only after an offline period and specifically when this period contained sleep. Sleep appears to aid in the extraction of regularities for optimal subsequent performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Pituitary spindle cell oncocytoma

    Directory of Open Access Journals (Sweden)

    Soledad Sosa

    2018-01-01

    Full Text Available Spindle cell oncocytoma is an infrequent benign non-endocrine sellar neoplasm. Due to its similar morphology to pituitary adenomas, consideration of this differential diagnosis would conduce to a more careful surgical approach in order to avoid intraoperative bleeding and aiming to a complete resection, on which depends long-term outcomes. We present the case of a 60-year-old male who complained about visual abnormalities, with computerized visual field confirmation. On biochemistry, a panhypopituitarism was detected. The brain magnetic resonance images showed a sellar mass. A non-functioning pituitary macroadenoma was presumptively diagnosed and due to the visual impairment, surgical transesphenoidal treatment was indicated. The histological diagnosis was spindle cell oncocytoma. Five months after surgery, the control image demonstrated a lesion that was considered as remnant tumor, hence radiosurgery was performed. During the follow-up, the tumor reduced its size and four years after initial treatment, the sellar resonance imaging showed disappearance of the residual tumor. Communication of new cases of this rare entity will enlarge the existing evidence and will help to determinate the most effective treatment and prognosis.

  5. Juvenile myoclonic epilepsy: clinical and EEG features

    DEFF Research Database (Denmark)

    Pedersen, S B; Petersen, K A

    1998-01-01

    We aimed to characterize the clinical profile and EEG features of 43 patients with juvenile myoclonic epilepsy. In a retrospective design we studied the records of, and re-interviewed, 43 patients diagnosed with JME from the epilepsy clinic data base. Furthermore, available EEGs were re...... were sleep deprivation (84%), stress (70%), and alcohol consumption (51%). EEG findings included rapid spike-wave and polyspike-wave....

  6. Juvenile myoclonic epilepsy: clinical and EEG features

    DEFF Research Database (Denmark)

    Pedersen, S B; Petersen, K A

    1998-01-01

    We aimed to characterize the clinical profile and EEG features of 43 patients with juvenile myoclonic epilepsy. In a retrospective design we studied the records of, and re-interviewed, 43 patients diagnosed with JME from the epilepsy clinic data base. Furthermore, available EEGs were re-evaluated...... were sleep deprivation (84%), stress (70%), and alcohol consumption (51%). EEG findings included rapid spike-wave and polyspike-wave....

  7. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis

    Directory of Open Access Journals (Sweden)

    Woods C Geoffrey

    2010-11-01

    Full Text Available Abstract Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM are the commonest cause of autosomal recessive primary microcephaly (MCPH a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC. Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical

  8. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    occurrence of rapid eye movements, sleep spindles, and slow wave sleep. Using these features an approach for classifying sleep stages every one second during the night was developed. From observation of the results of the sleep stage classification, it was determined how to add faster dynamics to the nonlinear dynamic model. Slow and fast REM activity are modeled separately and the activity in the gamma frequency band of the EEG signal is used to model both spontaneous and noise-induced awakenings. The nonlinear model predicts changes in sleep structure similar to those found by other researchers and reported in the sleep literature and similar to those found in obtained survey data. To compare sleep disturbance model predictions, flight operations data from US airports were obtained and sleep disturbance in communities was predicted for different operations scenarios using the modified Markov model, the nonlinear dynamic model, and other aircraft noise awakening models. Similarities and differences in model predictions were evaluated in order to determine if the use of the developed sleep structure model leads to improved predictions of the impact of nighttime noise on communities.

  9. The effect of CPAP treatment on EEG of OSAS patients.

    Science.gov (United States)

    Zhang, Cheng; Lv, Jun; Zhou, Junhong; Su, Li; Feng, Liping; Ma, Jing; Wang, Guangfa; Zhang, Jue

    2015-12-01

    Continuous positive airway pressure (CPAP) is currently the most effective treatment method for obstructive sleep apnea syndrome (OSAS). The purpose of this study was to compare the sleep electroencephalogram (EEG) changes before and after the application of CPAP to OSAS patients. A retrospective study was conducted and 45 sequential patients who received both polysomnography (PSG) and CPAP titration were included. The raw data of sleep EEG were extracted and analyzed by engineers using two main factors: fractal dimension (FD) and the zero-crossing rate of detrended FD (zDFD). FD was an effective indicator reflecting the EEG complexity and zDFD was useful to reflect the variability of the EEG complexity. The FD and zDFD indexes of sleep EEG of 45 OSAS patients before and after CPAP titration were analyzed. The age of 45 OSAS patients was 52.7 ± 5.6 years old and the patients include 12 females and 33 males. After CPAP treatment, FD of EEG in non-rapid eye movement (NREM) sleep decreased significantly (P CPAP therapy (P CPAP therapy had a significant influence on sleep EEG in patients with OSAHS, which lead to a more stable EEG pattern. This may be one of the mechanisms that CPAP could improve sleep quality and brain function of OSAS patients.

  10. Rett syndrome: EEG presentation.

    Science.gov (United States)

    Robertson, R; Langill, L; Wong, P K; Ho, H H

    1988-11-01

    Rett syndrome, a degenerative neurological disorder of girls, has a classical presentation and typical EEG findings. The electroencephalograms (EEGs) of 7 girls whose records have been followed from the onset of symptoms to the age of 5 or more are presented. These findings are tabulated with the Clinical Staging System of Hagberg and Witt-Engerström (1986). The records show a progressive deterioration in background rhythms in waking and sleep. The abnormalities of the background activity may only become evident at 4-5 years of age or during stage 2--the Rapid Destructive Stage. The marked contrast between waking and sleep background may not occur until stage 3--the Pseudostationary Stage. In essence EEG changes appear to lag behind clinical symptomatology by 1-3 years. An unexpected, but frequent, abnormality was central spikes seen in 5 of 7 girls. They appeared to be age related and could be evoked by tactile stimulation in 2 patients. We hypothesize that the prominent 'hand washing' mannerism may be self-stimulating and related to the appearance of central spike discharges.

  11. Sleep for cognitive enhancement

    Directory of Open Access Journals (Sweden)

    Susanne eDiekelmann

    2014-04-01

    Full Text Available Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i cueing memory reactivation during sleep, (ii stimulating sleep-specific brain oscillations, and (iii targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.

  12. What the cerveau isolé preparation tells us nowadays about sleep-wake mechanisms?

    Science.gov (United States)

    Gottesmann, C

    1988-01-01

    The intercollicular transected preparation opened a rich field for investigations of sleep-wake mechanisms. Initial results showed that brain stem ascending influences are essential for maintaining an activated cortex. It was subsequently shown that the forebrain also develops activating influences, since EEG desynchronization of the cortex reappears in the chronic cerveau isolé preparation, and continuous or almost continuous theta rhythm is able to occur in the acute cerveau isolé preparation. A brief "intermediate stage" of sleep occurs during natural sleep just prior to and after paradoxical sleep. It is characterized by cortical spindle bursts, hippocampal low frequency theta activity (two patterns of the acute cerveau isolé preparation) and is accompanied by a very low thalamic transmission level, suggesting a cerveau isolé-like state. The chronic cerveau isolé preparation also demonstrates that the executive processes of paradoxical sleep are located in the lower brain stem, while the occurrence of this sleep stage seems to be modulated by forebrain structures.

  13. Close relationship between fMRI signals and transient heart rate changes accompanying K-complex. Simultaneous EEG/fMRI study

    International Nuclear Information System (INIS)

    Kan, Shigeyuki; Koike, Takahiko; Miyauchi, Satoru; Misaki, Masaya

    2009-01-01

    Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) allows the investigation of spontaneous activities in the human brain. Recently, by using this technique, increases in fMRI signal accompanying transient EEG activities such as sleep spindles and slow waves were reported. Although these fMRI signal increases appear to arise as a result of the neural activities being reflected in the EEG, when the influence of physiological activities upon fMRI signals are taken into consideration, it is highly controversial that fMRI signal increases accompanying transient EEG activities reflect actual neural activities. In the present study, we conducted simultaneous fMRI and polysomnograph recording of 18 normal adults, to study the effect of transient heart rate changes after a K-complex on fMRI signals. Significant fMRI signal increase was observed in the cerebellum, the ventral thalamus, the dorsal part of the brainstem, the periventricular white matter and the ventricle (quadrigeminal cistern). On the other hand, significant fMRI signal decrease was observed only in the right insula. Moreover, intensities of fMRI signal increase that was accompanied by a K-complex correlated positively with the magnitude of heart rate changes after a K-complex. Previous studies have reported that K-complex is closely related with sympathetic nervous activity and that the attributes of perfusion regulation in the brain differ during wakefulness and sleep. By taking these findings into consideration, our present results indicate that a close relationship exists between a K-complex and the changes in cardio- and neurovascular regulations that are mediated by the autonomic nervous system during sleep; further, these results indicate that transient heart rate changes after a K-complex can affect the fMRI signal generated in certain brain regions. (author)

  14. Quantitative topographic differentiation of the neonatal EEG.

    Science.gov (United States)

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2006-09-01

    To test the discriminatory topographic potential of a new method of the automatic EEG analysis in neonates. A quantitative description of the neonatal EEG can contribute to the objective assessment of the functional state of the brain, and may improve the precision of diagnosing cerebral dysfunctions manifested by 'disorganization', 'dysrhythmia' or 'dysmaturity'. 21 healthy, full-term newborns were examined polygraphically during sleep (EEG-8 referential derivations, respiration, ECG, EOG, EMG). From each EEG record, two 5-min samples (one from the middle of quiet sleep, the other from the middle of active sleep) were subject to subsequent automatic analysis and were described by 13 variables: spectral features and features describing shape and variability of the signal. The data from individual infants were averaged and the number of variables was reduced by factor analysis. All factors identified by factor analysis were statistically significantly influenced by the location of derivation. A large number of statistically significant differences were also established when comparing the effects of individual derivations on each of the 13 measured variables. Both spectral features and features describing shape and variability of the signal are largely accountable for the topographic differentiation of the neonatal EEG. The presented method of the automatic EEG analysis is capable to assess the topographic characteristics of the neonatal EEG, and it is adequately sensitive and describes the neonatal electroencephalogram with sufficient precision. The discriminatory capability of the used method represents a promise for their application in the clinical practice.

  15. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children.

    Science.gov (United States)

    Doucette, Margaret R; Kurth, Salome; Chevalier, Nicolas; Munakata, Yuko; LeBourgeois, Monique K

    2015-11-04

    Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10-13 Hz) and fast (13.25-17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV²; and fast sigma power was 0.9 ± 0.2 μV². Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.

  16. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children

    Directory of Open Access Journals (Sweden)

    Margaret R. Doucette

    2015-11-01

    Full Text Available Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG, little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10–13 Hz and fast (13.25–17 Hz sigma power from all-night high-density electroencephalography (EEG in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years. Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV2; and fast sigma power was 0.9 ± 0.2 μV2. Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from −0.6 to −0.8, such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.

  17. EEG (Electroencephalogram)

    Science.gov (United States)

    ... in diagnosing brain disorders, especially epilepsy or another seizure disorder. An EEG might also be helpful for diagnosing ... Sometimes seizures are intentionally triggered in people with epilepsy during the test, but appropriate medical care is ...

  18. On the need of objective vigilance monitoring: effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI

    NARCIS (Netherlands)

    Czisch, M.; Wehrle, R.; Harsay, H.A.; Wetter, T.C.; Holsboer, F.; Sämann, P.G.; Drummond, S.P.A.

    2012-01-01

    Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation (SD) are not fully understood. Previous neuroimaging studies of SD have not been able to

  19. Sleep electroencephalography as a biomarker in depression

    Directory of Open Access Journals (Sweden)

    Steiger A

    2015-04-01

    Full Text Available Axel Steiger, Marcel Pawlowski, Mayumi Kimura Max Planck Institute of Psychiatry, Munich, Germany Abstract: The sleep electroencephalogram (EEG provides biomarkers of depression, which may help with diagnosis, prediction of therapy response, and prognosis in the treatment of depression. In patients with depression, characteristic sleep EEG changes include impaired sleep continuity, disinhibition of rapid-eye-movement (REM sleep, and impaired non-REM sleep. Most antidepressants suppress REM sleep in depressed patients, healthy volunteers, and in animal models. REM suppression appears to be an important, but not an absolute requirement, for antidepressive effects of a substance. Enhanced REM density, a measure for frequency of REM, characterizes high-risk probands for affective disorders. REM-sleep changes were also found in animal models of depression. Sleep-EEG variables were shown to predict the response to treatment with antidepressants. Furthermore, certain clusters of sleep EEG variables predicted the course of the disorder for several years. Some of the predicted sleep EEG markers appear to be related to hypothalamic–pituitary–adrenal system activity. Keywords: biomarkers, depression, sleep EEG, antidepressants, prediction, animal models

  20. Mutual information measures applied to EEG signals for sleepiness characterization

    OpenAIRE

    Melia, Umberto Sergio Pio; Guaita, Marc; Vallverdú Ferrer, Montserrat; Embid, Cristina; Vilaseca, I; Salamero, Manuel; Santamaria, Joan

    2015-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep lat...

  1. EEG recording after sleep deprivation in a series of patients with juvenile myoclonic epilepsy Registros eletrencefalográficos após privação de sono em uma série de pacientes com epilepsia mioclônica juvenil

    Directory of Open Access Journals (Sweden)

    Nise Alessandra de Carvalho Sousa

    2005-06-01

    Full Text Available Seizures in Juvenile Myoclonic Epilepsy (JME are dependent on the sleep-wake cycle and precipitant factors, among which sleep deprivation (SD is one of the most important. Still an under diagnosed syndrome, misinterpretation of the EEGs contributes to diagnostic delay. Despite this, a quantitative EEG investigation of SD effects has not been performed. We investigated the effect of SD on EEGs in 41 patients, aged 16-50 yr. (mean 25.4, who had not yet had syndromic diagnosis after a mean delay of 8.2 yr. Two EEG recordings separated by a 48-hour interval were taken at 7 a.m. preceded by a period of 6 hours of sleep (routine EEG and after SD (sleep-deprived EEG. The same protocol was followed and included a rest wakefulness recording, photic stimulation, hyperventilation and a post-hyperventilation period. The EEGs were analyzed as to the effect of SD on the number, duration, morphology, localization and predominance of abnormalities in the different stages. A discharge index (DI was calculated. Out of the 41 patients, 4 presented both normal EEG recordings. In 37 (90.2% there were epileptiform discharges (ED. The number of patients with ED ascended from 26 (70.3% in the routine EEG to 32 (86.5% in the sleep-deprived exam. The presence of generalized spike-wave and multispike-wave increased from 20 (54.1% and 13 (35.1% in the first EEG to 29 (78.4% and 19 (51.4% in the second, respectively (pNa epilepsia mioclônica juvenil (EMJ, uma síndrome epiléptica ainda subdiagnosticada, as crises são dependentes do ciclo vigília-sono e de fatores precipitantes, entre os quais a privação de sono (PS é um dos mais importantes. A interpretação inadequada dos EEGs contribui para atraso no diagnóstico. Ainda não foi realizada investigação quantitativa sobre os efeitos da PS. Avaliamos o efeito da PS nos EEGs de 41 pacientes entre 16 e 50 anos (média 25,4 com EMJ em dois registros eletrencefalográficos, separados por intervalo de 48 horas. Os

  2. Mechanical design principles of a mitotic spindle.

    Science.gov (United States)

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  3. The Spindle Cell Neoplasms of the Oral Cavity.

    Science.gov (United States)

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology.

  4. Accuracy of Spindle Units with Hydrostatic Bearings

    Directory of Open Access Journals (Sweden)

    Fedorynenko Dmytro

    2016-06-01

    Full Text Available The work is devoted to the research of precision regularities in a spindle unit by the trajectory of the spindle installed on hydrostatic bearings. The mathematical model of trajectories spindle with lumped parameters that allows to define the position of the spindle with regard the simultaneous influence of design parameters, geometrical deviations ofform, temperature deformation bearing surfaces, the random nature of operational parameters and technical loads of hydrostatic bearings has been developed. Based on the results of numerical modeling the influence of shape errors of bearing surface of hydrostatic bearing on the statistical characteristics of the radius vector trajectories of the spindle by varying the values rotational speed of the spindle and oil pressure in front hydrostatic bearing has been developed. The obtained statistical regularities of precision spindle unit have been confirmed experimentally. It has been shown that an effective way to increase the precision of spindle units is to regulate the size of the gap in hydrostatic spindle bearings. The new design of an adjustable hydrostatic bearing, which can improve the accuracy of regulation size gap has been proposed.

  5. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exercise Effects on Sleep Physiology

    Directory of Open Access Journals (Sweden)

    Sunao eUchida

    2012-04-01

    Full Text Available This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. Thus, research on the effects of exercise on sleep began, in the 1960’s, with a focus primarily on sleep EEG (CNS sleep changes. Those early studies found only small effects of exercise on sleep. More recent sleep research has explored not only CNS functioning, but somatic physiology as well. As physical exercise mostly affects somatic functions, endocrine and autonomic nervous system (ANS changes that occur during sleep should be affected by daytime exercise. Since endocrinological, metabolic and autonomic changes can be measured during sleep, it should be possible to assess exercise effects on somatic physiology in addition to CNS sleep quality, building from standard polysomnographic (PSG techniques. Incorporating measures of somatic physiology in the quantitative assessment of sleep could further our understanding of sleep's function as an auto-regulatory, global phenomenon.

  7. Pharmaco-EEG Studies in Animals: A History-Based Introduction to Contemporary Translational Applications.

    Science.gov (United States)

    Drinkenburg, Wilhelmus H I M; Ahnaou, Abdallah; Ruigt, Gé S F

    2015-01-01

    Current research on the effects of pharmacological agents on human neurophysiology finds its roots in animal research, which is also reflected in contemporary animal pharmaco-electroencephalography (p-EEG) applications. The contributions, present value and translational appreciation of animal p-EEG-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. After the pioneering years in the late 19th and early 20th century, animal p-EEG research flourished in the pharmaceutical industry in the early 1980s. However, around the turn of the millennium the emergence of structurally and functionally revealing imaging techniques and the increasing application of molecular biology caused a temporary reduction in the use of EEG as a window into the brain for the prediction of drug efficacy. Today, animal p-EEG is applied again for its biomarker potential - extensive databases of p-EEG and polysomnography studies in rats and mice hold EEG signatures of a broad collection of psychoactive reference and test compounds. A multitude of functional EEG measures has been investigated, ranging from simple spectral power and sleep-wake parameters to advanced neuronal connectivity and plasticity parameters. Compared to clinical p-EEG studies, where the level of vigilance can be well controlled, changes in sleep-waking behaviour are generally a prominent confounding variable in animal p-EEG studies and need to be dealt with. Contributions of rodent pharmaco-sleep EEG research are outlined to illustrate the value and limitations of such preclinical p-EEG data for pharmacodynamic and chronopharmacological drug profiling. Contemporary applications of p-EEG and pharmaco-sleep EEG recordings in animals provide a common and relatively inexpensive window into the functional brain early in the preclinical and clinical development of psychoactive drugs in comparison to other brain imaging techniques. They provide information on the impact of

  8. Pharmaco-EEG: A Study of Individualized Medicine in Clinical Practice.

    Science.gov (United States)

    Swatzyna, Ronald J; Kozlowski, Gerald P; Tarnow, Jay D

    2015-07-01

    Pharmaco-electroencephalography (Pharmaco-EEG) studies using clinical EEG and quantitative EEG (qEEG) technologies have existed for more than 4 decades. This is a promising area that could improve psychotropic intervention using neurological data. One of the objectives in our clinical practice has been to collect EEG and quantitative EEG (qEEG) data. In the past 5 years, we have identified a subset of refractory cases (n = 386) found to contain commonalities of a small number of electrophysiological features in the following diagnostic categories: mood, anxiety, autistic spectrum, and attention deficit disorders, Four abnormalities were noted in the majority of medication failure cases and these abnormalities did not appear to significantly align with their diagnoses. Those were the following: encephalopathy, focal slowing, beta spindles, and transient discharges. To analyze the relationship noted, they were tested for association with the assigned diagnoses. Fisher's exact test and binary logistics regression found very little (6%) association between particular EEG/qEEG abnormalities and diagnoses. Findings from studies of this type suggest that EEG/qEEG provides individualized understanding of pharmacotherapy failures and has the potential to improve medication selection. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  9. Voluntary Sleep Loss in Rats

    Science.gov (United States)

    Oonk, Marcella; Krueger, James M.; Davis, Christopher J.

    2016-01-01

    Study Objectives: Animal sleep deprivation (SDEP), in contrast to human SDEP, is involuntary and involves repeated exposure to aversive stimuli including the inability of the animal to control the waking stimulus. Therefore, we explored intracranial self-stimulation (ICSS), an operant behavior, as a method for voluntary SDEP in rodents. Methods: Male Sprague-Dawley rats were implanted with electroencephalography/electromyography (EEG/EMG) recording electrodes and a unilateral bipolar electrode into the lateral hypothalamus. Rats were allowed to self-stimulate, or underwent gentle handling-induced SDEP (GH-SDEP), during the first 6 h of the light phase, after which they were allowed to sleep. Other rats performed the 6 h ICSS and 1 w later were subjected to 6 h of noncontingent stimulation (NCS). During NCS the individual stimulation patterns recorded during ICSS were replayed. Results: After GH-SDEP, ICSS, or NCS, time in nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep increased. Further, in the 24 h after SDEP, rats recovered all of the REM sleep lost during SDEP, but only 75% to 80% of the NREM sleep lost, regardless of the SDEP method. The magnitude of EEG slow wave responses occurring during NREM sleep also increased after SDEP treatments. However, NREM sleep EEG slow wave activity (SWA) responses were attenuated following ICSS, compared to GH-SDEP and NCS. Conclusions: We conclude that ICSS and NCS can be used to sleep deprive rats. Changes in rebound NREM sleep EEG SWA occurring after ICSS, NCS, and GH-SDEP suggest that nonspecific effects of the SDEP procedure differentially affect recovery sleep phenotypes. Citation: Oonk M, Krueger JM, Davis CJ. Voluntary sleep loss in rats. SLEEP 2016;39(7):1467–1479. PMID:27166236

  10. Sleep Sleeping Patch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Sleep Sleeping Patch is a new kind of external patch based on modern sleep medicine research achievements, which uses the internationally advanced transdermal therapeutic system (TTS). The Sleep Sleeping Patch transmits natural sleep inducers such as peppermint and liquorice extracts and melatonin through the skin to induce sleep. Clinical research proves that the Sleep Sleeping Patch can effectively improve insomnia and the quality of sleep. Highly effective: With the modern TTS therapy,

  11. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  12. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.

    2015-04-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  13. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  14. The Physics of the Metaphase Spindle.

    Science.gov (United States)

    Oriola, David; Needleman, Daniel J; Brugués, Jan

    2018-05-20

    The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.

  15. Spinal spindle cell haemangioma: an atypical location.

    Science.gov (United States)

    Talan-Hranilović, J; Vucić, M; Sajko, T; Bedek, D; Tomić, K; Lupret, V

    2007-03-01

    We present a case of the 31-year-old male patient who complained of weakness in both legs and progressed slowly. Neuroimagine of the thoracic spine showed an intraspinal, extradural mass lesion, measuring 5.3 x 1.2 cm at the Th1-Th3 level. Histologically the lesion was a spindle cell haemangioma composed of dilated vascular spaces and a proliferation of bland appearing interspersed spindle cells. Immunohistochemical analysis was diffusely positive for VIM, SMA and focally for CD34. This lesion is uncommon and shows a predilection for distal extremities. Spindle cell haemangioma within the spine has not been previously reported in the literature.

  16. Automatic REM sleep detection associated with idiopathic rem sleep Behavior Disorder

    DEFF Research Database (Denmark)

    Kempfner, J; Sørensen, Gertrud Laura; Sorensen, H B D

    2011-01-01

    Rapid eye movement sleep Behavior Disorder (RBD) is a strong early marker of later development of Parkinsonism. Currently there are no objective methods to identify and discriminate abnormal from normal motor activity during REM sleep. Therefore, a REM sleep detection without the use of chin...... electromyography (EMG) is useful. This is addressed by analyzing the classification performance when implementing two automatic REM sleep detectors. The first detector uses the electroencephalography (EEG), electrooculography (EOG) and EMG to detect REM sleep, while the second detector only uses the EEG and EOG....

  17. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles

    Science.gov (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun

    2017-07-01

    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2

  18. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles.

    Science.gov (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun

    2017-07-01

    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 →TC 1 →Cortex 1 and Cortex 1 →Cortex 2 →Cortex 3

  19. Ketamine increases the frequency of electroencephalographic bicoherence peak on the alpha spindle area induced with propofol.

    Science.gov (United States)

    Hayashi, K; Tsuda, N; Sawa, T; Hagihira, S

    2007-09-01

    The reticular and thalamocortical system is known to play a prominent role in spindle wave activity, and the spindle wave is related to the sedative effects of anaesthetics. Recently, bispectral analysis of the EEG has been developed as a better method to indicate nonlinear regulation including the thalamocortical system linking to the cortical area. In the present study, in order to explore the interference of ketamine with the nonlinear regulation of the sub-cortical system, we examined the effect of ketamine on spindle alpha waves through the bispectral analysis. The study included 21 patients. Anaesthesia was induced and maintained using a propofol-TCI system (target-controlled infusion, with target concentration 3.5 microg ml(-1)). An A-2000 BIS monitor was used and the raw EEG signals were collected via an RS232 interface on a personal computer. Bicoherence, the normalized bispectrum, and power spectrum were analysed before and after i.v. administration of 1 mg kg(-1) racemic ketamine. Propofol caused alpha peaks in both power and bicoherence spectra, with average frequencies of 10.6 (SD 0.9) Hz and 10.7 (1.0) Hz, respectively. The addition of ketamine significantly shifted each peak to frequencies of 14.4 (1.4) Hz and 13.6 (1.5) Hz, respectively [P < 0.05, mean (SD)]. Ketamine shifted the alpha peaks of bicoherence induced by propofol to higher frequencies. This suggests that ketamine changes the alpha spindle rhythms through the modulation of the nonlinear sub-cortical reverberating network.

  20. Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness

    Science.gov (United States)

    Dement, W. C.; Barchas, J. D.

    1972-01-01

    An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.

  1. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  2. Characterization of Sleep Using Bispectral Analysis

    National Research Council Canada - National Science Library

    McPherson, Cameron

    2001-01-01

    This study investigated the relationship between a Bispectral Index (BIS), as measured by Aspect Medical Systems' A-1000 EEG monitor, and clinical sleep staging based on the Rechtschaffen and Kales (RK...

  3. Human genetics and sleep behavior.

    Science.gov (United States)

    Shi, Guangsen; Wu, David; Ptáček, Louis J; Fu, Ying-Hui

    2017-06-01

    Why we sleep remains one of the greatest mysteries in science. In the past few years, great advances have been made to better understand this phenomenon. Human genetics has contributed significantly to this movement, as many features of sleep have been found to be heritable. Discoveries about these genetic variations that affect human sleep will aid us in understanding the underlying mechanism of sleep. Here we summarize recent discoveries about the genetic variations affecting the timing of sleep, duration of sleep and EEG patterns. To conclude, we also discuss some of the sleep-related neurological disorders such as Autism Spectrum Disorder (ASD) and Alzheimer's Disease (AD) and the potential challenges and future directions of human genetics in sleep research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Night sleep in patients with vegetative state.

    Science.gov (United States)

    Pavlov, Yuri G; Gais, Steffen; Müller, Friedemann; Schönauer, Monika; Schäpers, Barbara; Born, Jan; Kotchoubey, Boris

    2017-10-01

    Polysomnographic recording of night sleep was carried out in 15 patients with the diagnosis vegetative state (syn. unresponsive wakefulness syndrome). Sleep scoring was performed by three raters, and confirmed by means of a spectral power analysis of the electroencephalogram, electrooculogram and electromyogram. All patients but one exhibited at least some signs of sleep. In particular, sleep stage N1 was found in 13 patients, N2 in 14 patients, N3 in nine patients, and rapid eye movement sleep in 10 patients. Three patients exhibited all phenomena characteristic for normal sleep, including spindles and rapid eye movements. However, in all but one patient, sleep patterns were severely disturbed as compared with normative data. All patients had frequent and long periods of wakefulness during the night. In some apparent rapid eye movement sleep episodes, no eye movements were recorded. Sleep spindles were detected in five patients only, and their density was very low. We conclude that the majority of vegetative state patients retain some important circadian changes. Further studies are necessary to disentangle multiple factors potentially affecting sleep pattern of vegetative state patients. © 2017 European Sleep Research Society.

  5. Automatic REM Sleep Detection Associated with Idiopathic REM Sleep Behavior Disorder

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Sørensen, Helge Bjarup Dissing

    2011-01-01

    Rapid eye movement sleep Behavior Disorder (RBD) is a strong early marker of later development of Parkinsonism. Currently there are no objective methods to identify and discriminate abnormal from normal motor activity during REM sleep. Therefore, a REM sleep detection without the use of chin...... electromyography (EMG) is useful. This is addressed by analyzing the classification performance when implementing two automatic REM sleep detectors. The first detector uses the electroencephalography (EEG), electrooculography (EOG) and EMG to detect REM sleep, while the second detector only uses the EEG and EOG......, an automatic computerized REM detection algorithm has been implemented, using wavelet packet combined with artificial neural network. Results: When using the EEG, EOG and EMG modalities, it was possible to correctly classify REM sleep with an average Area Under Curve (AUC) equal to 0:900:03 for normal subjects...

  6. Meditation and the EEG

    OpenAIRE

    West, Michael

    1980-01-01

    Previous research on meditation and the EEG is described, and findings relating to EEG patterns during meditation are discussed. Comparisons of meditation with other altered states are reviewed and it is concluded that, on the basis of existing EEG evidence, there is some reason for differentiating between meditation and drowsing. Research on alpha-blocking and habituation of the blocking response during meditation is reviewed, and the effects of meditation on EEG patterns outside of meditati...

  7. Sleep disturbances in IDDM patients with nocturnal hypoglycemia

    DEFF Research Database (Denmark)

    Bendtson, I; Gade, J; Thomsen, C E

    1992-01-01

    Eight insulin-dependent diabetic patients were studied to evaluate sleep patterns during normoglycemia and spontaneous and insulin-induced hypoglycemia. Two channels of electroencephalogram (EEG), electromyogram and actooculogram were recorded. The signals were analyzed off-line, using...... a polygraphic sleep analysis system. The scoring was mainly based on the color density spectral array of the EEG. Blood glucose and growth hormone were measured serially. Asymptomatic, spontaneous nocturnal hypoglycemia occurred in 38% of the nights. Conventional sleep analysis showed a tendency toward...

  8. Mobile EEG in epilepsy

    NARCIS (Netherlands)

    Askamp, Jessica; van Putten, Michel Johannes Antonius Maria

    2014-01-01

    The sensitivity of routine EEG recordings for interictal epileptiform discharges in epilepsy is limited. In some patients, inpatient video-EEG may be performed to increase the likelihood of finding abnormalities. Although many agree that home EEG recordings may provide a cost-effective alternative

  9. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    Science.gov (United States)

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  10. A defect-driven diagnostic method for machine tool spindles.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  11. Sleep: a physiological "cerveau isolé" stage?

    Science.gov (United States)

    Gottesmann, C; User, P; Gioanni, H

    1980-01-01

    Rapid or paradoxical sleep in the rat is usually preceded and often followed by a stage of short duration characterized by large spindles in the frontal cortex and theta rhythm in the hippocampus. The midbrain transection induces for hours the same electrophysiological patterns suggesting the existence in the rat of a short physiologically isolated, forebrain stage during sleep.

  12. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity

    NARCIS (Netherlands)

    Beersma, D.G.M.; Dijk, D.J.; Blok, Guus; Everhardus, I.

    Nine healthy male subjects were deprived of REM sleep during the first 5 h after sleep onset. Afterwards recovery sleep was undisturbed. During the deprivation period the non-REM EEG power spectrum was reduced when compared to baseline for the frequencies up to 7 Hz, despite the fact that non-REM

  13. Encephalopathy with status epilepticus during sleep (ESES) induced by oxcarbazepine in idiopathic focal epilepsy in childhood

    DEFF Research Database (Denmark)

    Pavlidis, Elena; Rubboli, Guido; Nikanorova, Marina

    2015-01-01

    Encephalopathy with status epilepticus during sleep (ESES) is an age-related disorder characterized by neuropsychological regression, epilepsy and a typical EEG pattern of continuous epileptiform activity (> 85%) during NREM sleep. Cases of worsening or induction of ESES with phenytoin...

  14. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    Science.gov (United States)

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  15. Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.

    Science.gov (United States)

    Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo

    2017-12-01

    Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.

  16. Effects of social stimuli on sleep in mice : non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction

    NARCIS (Netherlands)

    Meerlo, Peter; Turek, Fred W.

    2001-01-01

    Sleep is generally considered to be a process of recovery from prior wakefulness. In addition to being affected by the duration of the waking period, sleep architecture and sleep EEG also depend on the quality of wakefulness. In the present experiment, we examined how sleep is affected by different

  17. Added diagnostic value of magnetoencephalography (MEG) in patients suspected for epilepsy, where previous, extensive EEG workup was unrevealing

    DEFF Research Database (Denmark)

    Duez, Lene; Beniczky, Sándor; Tankisi, Hatice

    2016-01-01

    was calculated from the cases where abnormalities were seen in MEG but not EEG. RESULTS: Twenty-two patients had the diagnosis epilepsy according to the reference standard. MEG-EEG detected abnormalities, and supported the diagnosis in nine of the 22 patients with the diagnosis epilepsy at one-year follow......OBJECTIVE: To elucidate the possible additional diagnostic yield of MEG in the workup of patients with suspected epilepsy, where repeated EEGs, including sleep-recordings failed to identify abnormalities. METHODS: Fifty-two consecutive patients with clinical suspicion of epilepsy and at least three...... normal EEGs, including sleep-EEG, were prospectively analyzed. The reference standard was inferred from the diagnosis obtained from the medical charts, after at least one-year follow-up. MEG (306-channel, whole-head) and simultaneous EEG (MEG-EEG) was recorded for one hour. The added sensitivity of MEG...

  18. Sleep, Torpor and Memory Impairment

    Science.gov (United States)

    Palchykova, S.; Tobler, I.

    It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.

  19. Cyclic alternating pattern and interictal epileptiform discharges during morning sleep after sleep deprivation in temporal lobe epilepsy.

    Science.gov (United States)

    Giorgi, Filippo Sean; Maestri, Michelangelo; Guida, Melania; Carnicelli, Luca; Caciagli, Lorenzo; Ferri, Raffaele; Bonuccelli, Ubaldo; Bonanni, Enrica

    2017-08-01

    Sleep deprivation (SD) increases the occurrence of interictal epileptiform discharges (IED) compared to basal EEG in temporal lobe epilepsy (TLE). In adults, EEG after SD is usually performed in the morning after SD. We aimed to evaluate whether morning sleep after SD bears additional IED-inducing effects compared with nocturnal physiological sleep, and whether changes in sleep stability (described by the cyclic alternating pattern-CAP) play a significant role. Adult patients with TLE underwent in-lab night polysomnography (n-PSG) and, within 7days from n-PSG, they underwent also a morning EEG after night SD (SD-EEG). We included only TLE patients in which both recordings showed IED. SD-EEG consisted of waking up patients at 2:00 AM and performing video EEG at 8:00 AM. For both recordings, we obtained the following markers for the first sleep cycle: IED/h (Spike Index, SI), sleep macrostructure, microstructure (NREM CAP rate; A1, A2 and A3 Indices), and SI association with CAP variables. The macrostructure of the first sleep cycle was similar in n-PSG and morning SD-EEG, whereas CAP rate and SI were significantly higher in SD-EEG. SI increase was selectively associated with CAP phases. SD increases the instability of morning recovery sleep compared with n-PSG, and particularly enhances CAP A1 phases, which are associated with the majority of IED. Thus, higher instability of morning recovery sleep may account at least in part for the increased IED yield in SD-EEG in TLE patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  1. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  2. Standardized Computer-based Organized Reporting of EEG: SCORE

    Science.gov (United States)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  3. Preserved sleep microstructure in blind individuals

    DEFF Research Database (Denmark)

    Aubin, Sébrina; Christensen, Julie A.E.; Jennum, Poul

    2018-01-01

    , as light is the primary zeitgeber of the master biological clock found in the suprachiasmatic nucleus of the hypothalamus. In addition, a greater number of sleep disturbances is often reported in blind individuals. Here, we examined various electroencephalographic microstructural components of sleep, both...... during rapid-eye-movement (REM) sleep and non-REM (NREM) sleep, between blind individuals, including both of early and late onset, and normal-sighted controls. During wakefulness, occipital alpha oscillations were lower, or absent in blind individuals. During sleep, differences were observed across...... electrode derivations between the early and late blind samples, which may reflect altered cortical networking in early blindness. Despite these differences in power spectra density, the electroencephalography microstructure of sleep, including sleep spindles, slow wave activity, and sawtooth waves, remained...

  4. Mutual information measures applied to EEG signals for sleepiness characterization.

    Science.gov (United States)

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. EEG and Coma.

    Science.gov (United States)

    Ardeshna, Nikesh I

    2016-03-01

    Coma is defined as a state of extreme unresponsiveness, in which a person exhibits no voluntary movement or behavior even to painful stimuli. The utilization of EEG for patients in coma has increased dramatically over the last few years. In fact, many institutions have set protocols for continuous EEG (cEEG) monitoring for patients in coma due to potential causes such as subarachnoid hemorrhage or cardiac arrest. Consequently, EEG plays an important role in diagnosis, managenent, and in some cases even prognosis of coma patients.

  6. Automatic classification of background EEG activity in healthy and sick neonates

    Science.gov (United States)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  7. Formation and suppression of acoustic memories during human sleep.

    Science.gov (United States)

    Andrillon, Thomas; Pressnitzer, Daniel; Léger, Damien; Kouider, Sid

    2017-08-08

    Sleep and memory are deeply related, but the nature of the neuroplastic processes induced by sleep remains unclear. Here, we report that memory traces can be both formed or suppressed during sleep, depending on sleep phase. We played samples of acoustic noise to sleeping human listeners. Repeated exposure to a novel noise during Rapid Eye Movements (REM) or light non-REM (NREM) sleep leads to improvements in behavioral performance upon awakening. Strikingly, the same exposure during deep NREM sleep leads to impaired performance upon awakening. Electroencephalographic markers of learning extracted during sleep confirm a dissociation between sleep facilitating memory formation (light NREM and REM sleep) and sleep suppressing learning (deep NREM sleep). We can trace these neural changes back to transient sleep events, such as spindles for memory facilitation and slow waves for suppression. Thus, highly selective memory processes are active during human sleep, with intertwined episodes of facilitative and suppressive plasticity.Though memory and sleep are related, it is still unclear whether new memories can be formed during sleep. Here, authors show that people could learn new sounds during REM or light non-REM sleep, but that learning was suppressed when sounds were played during deep NREM sleep.

  8. [Pharmacology of a new sleep inducer, 1H-1,2,4-triazolyl benzophenone derivative, 450191-S (II). Sleep-inducing activity and effect on the motor system].

    Science.gov (United States)

    Yamamoto, K; Matsushita, A; Sawada, T; Naito, Y; Yoshimura, K; Takesue, H; Utsumi, S; Kawasaki, K; Hirono, S; Koshida, H

    1984-07-01

    The sleep-inducing activity and effect on the motor system of the 1H-1,2,4-triazolyl benzophenone derivative 450191-S were examined behaviorally, electroencephalographically and electro-physiologically with various species of animals and were compared with those of diazepam, nitrazepam, estazolam and triazolam. In the rhesus monkey, rabbit and rat with chronically indwelling brain electrodes, 0.6 to 3 mg/kg, p.o. of 450191-S caused a shorter latency of sleep onset, an increase of and a stable continuity of slow wave deep sleep (SWDS) with higher amplitude, and the appearance of clear spindle bursts in the slow wave light sleeping (SWLS) state with little muscle relaxation. Animals treated with nitrazepam and/or estazolam showed a smaller increase in SWDS and its unstable continuity with remarkable disturbance of gait. The doses needed to induce sleep in the rhesus monkey were 0.6 to 1 mg/kg p.o. for 450191-S, 3 mg/kg for nitrazepam, 1 mg/kg for estazolam and 0.3 mg/kg for triazolam. The cat treated with 450191-S showed the phenomena caused by benzodiazepines (BDZ), i.e., behavioral excitation and decrease of frequencies in the hippocampal theta waves. The suppressive effects of 450191-S on the EEG arousal reaction and/or blood pressure elevation induced by hypothalamic stimulation in the rabbit suggested that the inhibitory effects acted on the posterior hypothalamus to the limbic system. The inhibitory effect of 450191-S on the amygdaloid kindling in the rat was as potent as those of diazepam and nitrazepam. Successive daily oral administration of both 3 mg/kg of 450191-S and/or 3 to 6 mg/kg of nitrazepam for 15 days in the rabbit caused slight decrease of SWDS and increase of fast wave (REM) sleep (FWS). During the withdrawal period of both compounds, a slight but insignificant increase in the waking state was noticed for 1 to 2 days, but not a rebound increase of FWS. Intravenously administered 450191-S showed the same action as BDZ on the spinal reflex and the

  9. Train hard, sleep well? Perceived training load, sleep quantity and sleep stage distribution in elite level athletes.

    Science.gov (United States)

    Knufinke, Melanie; Nieuwenhuys, Arne; Geurts, Sabine A E; Møst, Els I S; Maase, Kamiel; Moen, Maarten H; Coenen, Anton M L; Kompier, Michiel A J

    2018-04-01

    Sleep is essential for recovery and performance in elite athletes. While it is generally assumed that exercise benefits sleep, high training load may jeopardize sleep and hence limit adequate recovery. To examine this, the current study assessed objective sleep quantity and sleep stage distributions in elite athletes and calculated their association with perceived training load. Mixed-methods. Perceived training load, actigraphy and one-channel EEG recordings were collected among 98 elite athletes during 7 consecutive days of regular training. Actigraphy revealed total sleep durations of 7:50±1:08h, sleep onset latencies of 13±15min, wake after sleep onset of 33±17min and sleep efficiencies of 88±5%. Distribution of sleep stages indicated 51±9% light sleep, 21±8% deep sleep, and 27±7% REM sleep. On average, perceived training load was 5.40±2.50 (scale 1-10), showing large daily variability. Mixed-effects models revealed no alteration in sleep quantity or sleep stage distributions as a function of day-to-day variation in preceding training load (all p's>.05). Results indicate healthy sleep durations, but elevated wake after sleep onset, suggesting a potential need for sleep optimization. Large proportions of deep sleep potentially reflect an elevated recovery need. With sleep quantity and sleep stage distributions remaining irresponsive to variations in perceived training load, it is questionable whether athletes' current sleep provides sufficient recovery after strenuous exercise. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. EEG recordings as a source for the detection of IRBD

    DEFF Research Database (Denmark)

    Bisgaard, Sissel; Duun-Christensen, Bolette; Kempfner, Lykke

    2015-01-01

    The purpose of this pilot study was to develop a supportive algorithm for the detection of idiopathic Rapid Eye-Movement (REM) sleep Behaviour Disorder (iRBD) from EEG recordings. iRBD is defined as REM sleep without atonia with no current sign of neurodegenerative disease, and is one...... of the earliest known biomarkers of Parkinson's Disease (PD). It is currently diagnosed by polysomnography (PSG), primarily based on EMG recordings during REM sleep. The algorithm was developed using data collected from 42 control subjects and 34 iRBD subjects. A feature was developed to represent high amplitude...

  11. EEG: Origin and measurement

    NARCIS (Netherlands)

    Lopes da Silva, F.; Mulert, C.; Lemieux, L.

    2010-01-01

    The existence of the electrical activity of the brain (i.e. the electroencephalogram or EEG) was discovered more than a century ago by Caton. After the demonstration that the EEG could be recorded from the human scalp by Berger in the 1920s, it made a slow start before it became accepted as a method

  12. Breast spindle cell tumours: about eight cases

    Directory of Open Access Journals (Sweden)

    Abd El All Howayda S

    2006-07-01

    Full Text Available Abstract Background Breast spindle cell tumours (BSCTs, although rare, represent a heterogeneous group with different treatment modalities. This work was undertaken to evaluate the utility of fine needle aspiration cytology (FNAC, histopathology and immunohistochemistry (IHC in differentiating BSCTs. Methods FNAC of eight breast masses diagnosed cytologically as BSCTs was followed by wide excision biopsy. IHC using a panel of antibodies against vimentin, pan-cytokeratin, s100, desmin, smooth muscle actin, CD34, and CD10 was evaluated to define their nature. Results FNAC defined the tumors as benign (n = 4, suspicious (n = 2 and malignant (n = 3, based on the cytopathological criteria of malignancy. Following wide excision biopsy, the tumors were reclassified into benign (n = 5 and malignant (n = 3. In the benign group, the diagnosis was raised histologically and confirmed by IHC for 3 cases (one spindle cell lipoma, one myofibroblastoma and one leiomyoma. For the remaining two cases, the diagnosis was set up after IHC (one fibromatosis and one spindle cell variant of adenomyoepithelioma. In the malignant group, a leiomyosarcoma was diagnosed histologically, while IHC was crucial to set up the diagnosis of one case of spindle cell carcinoma and one malignant myoepithelioma. Conclusion FNAC in BSCTs is an insufficient tool and should be followed by wide excision biopsy. The latter technique differentiate benign from malignant BSCTs and is able in 50% of the cases to set up the definite diagnosis. IHC is of value to define the nature of different benign lesions and is mandatory in the malignant ones for optimal treatment. Awareness of the different types of BSCTs prevents unnecessary extensive therapeutic regimes.

  13. Simplified Dynamic Analysis of Grinders Spindle Node

    Science.gov (United States)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  14. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    International Nuclear Information System (INIS)

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; PETTEYS, REBECCA; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    1999-01-01

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller

  15. Material Choice for spindle of machine tools

    Science.gov (United States)

    Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.

    2012-02-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  16. Material Choice for spindle of machine tools

    International Nuclear Information System (INIS)

    Gouasmi, S; Merzoug, B; Kherredine, L; Abba, G

    2012-01-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  17. Auditory feedback blocks memory benefits of cueing during sleep.

    Science.gov (United States)

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-10-28

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep.

  18. Social stress induces high intensity sleep in rats

    NARCIS (Netherlands)

    Meerlo, P; Pragt, Bertrand J.; Daan, S

    1997-01-01

    We studied the effect of social stress on sleep electroencephalogram (EEG) in rats. Animals were subjected to a single social defeat by introducing them in the cage of an aggressive male conspecific for 1 h. The animals responded to the social conflict by a sharp increase in EEG slow-wave activity

  19. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.

    Science.gov (United States)

    Anderer, Peter; Gruber, Georg; Parapatics, Silvia; Woertz, Michael; Miazhynskaia, Tatiana; Klosch, Gerhard; Saletu, Bernd; Zeitlhofer, Josef; Barbanoj, Manuel J; Danker-Hopfe, Heidi; Himanen, Sari-Leena; Kemp, Bob; Penzel, Thomas; Grozinger, Michael; Kunz, Dieter; Rappelsberger, Peter; Schlogl, Alois; Dorffner, Georg

    2005-01-01

    To date, the only standard for the classification of sleep-EEG recordings that has found worldwide acceptance are the rules published in 1968 by Rechtschaffen and Kales. Even though several attempts have been made to automate the classification process, so far no method has been published that has proven its validity in a study including a sufficiently large number of controls and patients of all adult age ranges. The present paper describes the development and optimization of an automatic classification system that is based on one central EEG channel, two EOG channels and one chin EMG channel. It adheres to the decision rules for visual scoring as closely as possible and includes a structured quality control procedure by a human expert. The final system (Somnolyzer 24 x 7) consists of a raw data quality check, a feature extraction algorithm (density and intensity of sleep/wake-related patterns such as sleep spindles, delta waves, SEMs and REMs), a feature matrix plausibility check, a classifier designed as an expert system, a rule-based smoothing procedure for the start and the end of stages REM, and finally a statistical comparison to age- and sex-matched normal healthy controls (Siesta Spot Report). The expert system considers different prior probabilities of stage changes depending on the preceding sleep stage, the occurrence of a movement arousal and the position of the epoch within the NREM/REM sleep cycles. Moreover, results obtained with and without using the chin EMG signal are combined. The Siesta polysomnographic database (590 recordings in both normal healthy subjects aged 20-95 years and patients suffering from organic or nonorganic sleep disorders) was split into two halves, which were randomly assigned to a training and a validation set, respectively. The final validation revealed an overall epoch-by-epoch agreement of 80% (Cohen's kappa: 0.72) between the Somnolyzer 24 x 7 and the human expert scoring, as compared with an inter-rater reliability of

  20. Spatial signals link exit from mitosis to spindle position.

    Science.gov (United States)

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  1. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  2. Muscle Spindles and Locomotor Control-An Unrecognized Falls Determinant?

    OpenAIRE

    Marks Ray

    2015-01-01

    BACKGROUND: Historically, evidence muscle spindles might be involved in locomotion was provided by their presence in tetrapod antigravity muscles associated with posture and locomotion. Later, Brodal (1962) noted muscle spindles in all muscles of locomotion. To unravel the complexity of the muscle spindle and its role in human locomotor control many investigators have since conducted lesion and/or anaesthesia studies in subhuman species and human contexts. QUESTIONS: How ...

  3. Sleep-Related Disorders in Children with Attention-Deficit Hyperactivity Disorder: Preliminary Results of a Full Sleep Assessment Study.

    Science.gov (United States)

    Miano, Silvia; Esposito, Maria; Foderaro, Giuseppe; Ramelli, Gian Paolo; Pezzoli, Valdo; Manconi, Mauro

    2016-11-01

    We present the preliminary results of a prospective case-control sleep study in children with a diagnosis of attention-deficit hyperactivity disorder (ADHD). A deep sleep assessment including sleep questionnaires, sleep habits, a video-polysomnographic recording with full high-density electroencephalography (EEG) and cardiorespiratory polygraphy, multiple sleep latency test, and 1-week actigraphic recording were performed to verify whether children with ADHD may be classified into one of the following five phenotypes: (1) hypoarousal state, resembling narcolepsy, which may be considered a "primary" form of ADHD; (2) delayed sleep onset insomnia; (3) sleep-disordered breathing; (4) restless legs syndrome and/or periodic limb movements; and (5) sleep epilepsy and/or EEG interictal epileptiform discharges. Fifteen consecutive outpatients with ADHD were recruited (two female, mean age 10.6 ± 2.2, age range 8-13.7 years) over 6 months. The narcolepsy-like sleep phenotype was observed in three children, the sleep onset insomnia phenotype was observed in one child, mild obstructive sleep apnea was observed in three children, sleep hyperkinesia and/or PLMs were observed in five children, while IEDs and or nocturnal epilepsy were observed in three children. Depending on the sleep phenotype, children received melatonin, iron supplementation, antiepileptic drugs, or stimulants. Our study further highlights the need to design an efficient sleep diagnostic algorithm for children with ADHD, thereby more accurately identifying cases in which a full sleep assessment is indicated. © 2016 John Wiley & Sons Ltd.

  4. Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    Science.gov (United States)

    Mauser, Jonathon F.; Prehoda, Kenneth E.

    2012-01-01

    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744

  5. Combination spindle-drive system for high precision machining

    Science.gov (United States)

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  6. Modal analysis of spindle of grinder machine based on ANSYS

    Directory of Open Access Journals (Sweden)

    HE Chaocong

    2015-10-01

    Full Text Available The object of research is to a certain type grinding wheel spindle for which a 3D model of the spindle is established by SolidWorks software and ANSYS software is imported for model analysis.Natural frequency,vibration type and critical speed of the spindle model are obtained and the resulting data are scientifically analyzed.The results show that the spindle structure is reasonable,the machining accuracy can be ensured and the position where the most severe deformation and the main shaft fatigue fracture may occur can be found out,which also provide the theoretical basis for further optimization design and precision control.

  7. Modal analysis of spindle of grinder machine based on ANSYS

    OpenAIRE

    HE Chaocong; LIU Peipei; YAN Chunfei; WANG Muhuan; LIN Jun

    2015-01-01

    The object of research is to a certain type grinding wheel spindle for which a 3D model of the spindle is established by SolidWorks software and ANSYS software is imported for model analysis.Natural frequency,vibration type and critical speed of the spindle model are obtained and the resulting data are scientifically analyzed.The results show that the spindle structure is reasonable,the machining accuracy can be ensured and the position where the most severe deformation and the main shaft fat...

  8. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    Science.gov (United States)

    Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D

    2016-11-01

    It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. The early electroclinical manifestations of infantile spasms: A video EEG study

    Directory of Open Access Journals (Sweden)

    Mary Iype

    2016-01-01

    Full Text Available Purpose: Infantile spasms are described as flexor extensor and mixed; but more features of their semiology and ictal electroencephalography (EEG changes are sparse in the literature. The purpose of the study was to describe the clinical and ictal video-EEG characteristics of consecutive cases with infantile spasms and to try to find an association with the etiology. Materials and Methods: The clinical phenomenology and EEG characteristics on video-EEG were analyzed in 16 babies with infantile spasms. Results: A total of 869 spasms were reviewed. Nine (56.3% showed focal seizures at least once during the recording and 1 (6.3% had multifocal myoclonus in addition to the spasms. The duration of the cluster and interval between spasms was totally variable in all patients. Lateralizing phenomena were present in at least some of the spasms in all patients. Unilateral manual automatism in the form of holding the pinna was noted in three patients following the spasm. The ictal EEG activity in the majority (75% was the slow wave. Four (25% showed fast generalized spindle-like ictal discharges. Spikes, spike and wave activity, or electrodecremental pattern alone during the ictus was seen in none. On bivariate analysis, no factor noted on the video EEG had association with the etiology. Conclusion: Infantile spasms could be associated with focal and other seizures, has unique, non-uniform and variable semiology from patient to patient. The ictal EEG manifestation in the majority (75% of our patients was the slow wave transient with 25% showing generalized fast spindle-like activity.

  10. Neurophysiological basis of rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Jennum, Poul; Christensen, Julie Anja Engelhard; Zoetmulder, Marielle

    2016-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have...... recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been...... identified in patients with RBD/Parkinson's disease who experience abnormalities in sleep electroencephalographic frequencies, sleep-wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement...

  11. A prospective study of levetiracetam efficacy in epileptic syndromes with continuous spikes-waves during slow sleep

    DEFF Research Database (Denmark)

    Atkins, Mary; Nikanorova, Marina

    2011-01-01

    To evaluate the add-on effect of levetiracetam (LEV) treatment on the EEG and clinical status of children with continuous spikes-waves during slow sleep (CSWS).......To evaluate the add-on effect of levetiracetam (LEV) treatment on the EEG and clinical status of children with continuous spikes-waves during slow sleep (CSWS)....

  12. Spindle-like thalamocortical synchronization in a rat brain slice preparation.

    Science.gov (United States)

    Tancredi, V; Biagini, G; D'Antuono, M; Louvel, J; Pumain, R; Avoli, M

    2000-08-01

    We obtained rat brain slices (550-650 microm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical connectivity was demonstrated by VB stimulation, which elicited orthodromic and antidromic responses in the cortex, along with re-entry of thalamocortical firing originating in VB neurons excited by cortical output activity. In addition, orthodromic responses were recorded in VB and RTN following stimuli delivered in the cortex. Spontaneous and stimulus-induced coherent rhythmic oscillations (duration = 0.4-3.5 s; frequency = 9-16 Hz) occurred in cortex, VB, and RTN during application of medium containing low concentrations of the K(+) channel blocker 4-aminopyridine (0.5-1 microM). This activity, which resembled electroencephalograph (EEG) spindles recorded in vivo, disappeared in both cortex and thalamus during application of the excitatory amino acid receptor antagonist kynurenic acid in VB (n = 6). By contrast, cortical application of kynurenic acid (n = 4) abolished spindle-like oscillations at this site, but not those recorded in VB, where their frequency was higher than under control conditions. Our findings demonstrate the preservation of reciprocally interconnected cortical and thalamic neuron networks that generate thalamocortical spindle-like oscillations in an in vitro rat brain slice. As shown in intact animals, these oscillations originate in the thalamus where they are presumably caused by interactions between RTN and VB neurons. We propose that this preparation may help to analyze thalamocortical synchronization and to understand the physiopathogenesis of absence attacks.

  13. EEG Controlled Wheelchair

    Directory of Open Access Journals (Sweden)

    Swee Sim Kok

    2016-01-01

    Full Text Available This paper describes the development of a brainwave controlled wheelchair. The main objective of this project is to construct a wheelchair which can be directly controlled by the brain without requires any physical feedback as controlling input from the user. The method employed in this project is the Brain-computer Interface (BCI, which enables direct communication between the brain and the electrical wheelchair. The best method for recording the brain’s activity is electroencephalogram (EEG. EEG signal is also known as brainwaves signal. The device that used for capturing the EEG signal is the Emotiv EPOC headset. This headset is able to transmit the EEG signal wirelessly via Bluetooth to the PC (personal computer. By using the PC software, the EEG signals are processed and converted into mental command. According to the mental command (e.g. forward, left... obtained, the output electrical signal is sent out to the electrical wheelchair to perform the desired movement. Thus, in this project, a computer software is developed for translating the EEG signal into mental commands and transmitting out the controlling signal wirelessly to the electrical wheelchair.

  14. Deep sleep after social stress : NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict

    NARCIS (Netherlands)

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M.; Meerlo, Peter

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked

  15. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans.

    Science.gov (United States)

    Bachmann, Valérie; Klaus, Federica; Bodenmann, Sereina; Schäfer, Nikolaus; Brugger, Peter; Huber, Susanne; Berger, Wolfgang; Landolt, Hans-Peter

    2012-04-01

    Homeostatically regulated slow-wave oscillations in non-rapid eye movement (REM) sleep may reflect synaptic changes across the sleep-wake continuum and the restorative function of sleep. The nonsynonymous c.22G>A polymorphism (rs73598374) of adenosine deaminase (ADA) reduces the conversion of adenosine to inosine and predicts baseline differences in sleep slow-wave oscillations. We hypothesized that this polymorphism affects cognitive functions, and investigated whether it modulates electroencephalogram (EEG), behavioral, subjective, and biochemical responses to sleep deprivation. Attention, learning, memory, and executive functioning were quantified in healthy adults. Right-handed carriers of the variant allele (G/A genotype, n = 29) performed worse on the d2 attention task than G/G homozygotes (n = 191). To test whether this difference reflects elevated homeostatic sleep pressure, sleep and sleep EEG before and after sleep deprivation were studied in 2 prospectively matched groups of G/A and G/G genotype subjects. Deep sleep and EEG 0.75- to 1.5-Hz oscillations in non-REM sleep were significantly higher in G/A than in G/G genotype. Moreover, attention and vigor were reduced, whereas waking EEG alpha activity (8.5-12 Hz), sleepiness, fatigue, and α-amylase in saliva were enhanced. These convergent data demonstrate that genetic reduction of ADA activity elevates sleep pressure and plays a key role in sleep and waking quality in humans.

  16. Sleep Disorders

    Science.gov (United States)

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  17. Sleep Problems

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... 101 KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  18. TFG-MET fusion in an infantile spindle cell sarcoma with neural features

    NARCIS (Netherlands)

    Flucke, U.E.; Noesel, M.M. van; Wijnen, M.; Zhang, L.; Chen, C.L.; Sung, Y.S.; Antonescu, C.R.

    2017-01-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell

  19. Added clinical value of the inferior temporal EEG electrode chain.

    Science.gov (United States)

    Bach Justesen, Anders; Eskelund Johansen, Ann Berit; Martinussen, Noomi Ida; Wasserman, Danielle; Terney, Daniella; Meritam, Pirgit; Gardella, Elena; Beniczky, Sándor

    2018-01-01

    To investigate the diagnostic added value of supplementing the 10-20 EEG array with six electrodes in the inferior temporal chain. EEGs were recorded with 25 electrodes: 19 positions of the 10-20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P9/10). Five-hundred consecutive standard and sleep EEG recordings were reviewed using the 10-20 array and the extended array. We identified the recordings with EEG abnormalities that had peak negativities at the inferior temporal electrodes, and those that only were visible at the inferior temporal electrodes. From the 286 abnormal recordings, the peak negativity was at the inferior temporal electrodes in 81 cases (28.3%) and only visible at the inferior temporal electrodes in eight cases (2.8%). In the sub-group of patients with temporal abnormalities (n = 134), these represented 59% (peak in the inferior chain) and 6% (only seen at the inferior chain). Adding six electrodes in the inferior temporal electrode chain to the 10-20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. Our results suggest that inferior temporal electrodes should be added to the EEG array, to increase the diagnostic yield of the recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series

    OpenAIRE

    Chambon, Stanislas; Galtier, Mathieu; Arnal, Pierrick; Wainrib, Gilles; Gramfort, Alexandre

    2017-01-01

    Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30s of signal a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEG), electrooculograms (EOG), electrocardiograms (ECG) and electromyograms (EMG). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or...

  1. Detection of a sleep disorder predicting Parkinson's disease

    DEFF Research Database (Denmark)

    Hansen, Ingeborg H.; Marcussen, Mikkel; Christensen, Julie Anja Engelhard

    2013-01-01

    Idiopathic rapid eye-movement (REM) sleep behavior disorder (iRBD) has been found to be a strong early predictor for later development into Parkinson's disease (PD). iRBD is diagnosed by polysomnography but the manual evaluation is laborious, why the aims of this study are to develop supportive...... methods for detecting iRBD from electroencephalo-graphic (EEG) signals recorded during REM sleep. This method classified subjects from their EEG similarity with the two classes iRBD patients and control subjects. The feature sets used for classifying subjects were based on the relative powers of the EEG...

  2. IL-6 and mouse oocyte spindle.

    Directory of Open Access Journals (Sweden)

    Jashoman Banerjee

    Full Text Available Interleukin 6 (IL-6 is considered a major indicator of the acute-phase inflammatory response. Endometriosis and pelvic inflammation, diseases that manifest elevated levels of IL-6, are commonly associated with higher infertility. However, the mechanistic link between elevated levels of IL-6 and poor oocyte quality is still unclear. In this work, we explored the direct role of this cytokine as a possible mediator for impaired oocyte spindle and chromosomal structure, which is a critical hurdle in the management of infertility. Metaphase-II mouse oocytes were exposed to recombinant mouse IL-6 (50, 100 and 200 ng/mL for 30 minutes and subjected to indirect immunofluorescent staining to identify alterations in the microtubule and chromosomal alignment compared to untreated controls. The deterioration in microtubule and chromosomal alignment were evaluated utilizing both fluorescence and confocal microscopy, and were quantitated with a previously reported scoring system. Our results showed that IL-6 caused a dose-dependent deterioration in microtubule and chromosomal alignment in the treated oocytes as compared to the untreated group. Indeed, IL-6 at a concentration as low as 50 ng/mL caused deterioration in the spindle structure in 60% of the oocytes, which increased significantly (P<0.0001 as IL-6 concentration was increased. In conclusion, elevated levels of IL-6 associated with endometriosis and pelvic inflammation may reduce the fertilizing capacity of human oocyte through a mechanism that involves impairment of the microtubule and chromosomal structure.

  3. Effects of three hypnotics on the sleep-wakefulness cycle in sleep-disturbed rats.

    Science.gov (United States)

    Shinomiya, Kazuaki; Shigemoto, Yuki; Omichi, Junji; Utsu, Yoshiaki; Mio, Mitsunobu; Kamei, Chiaki

    2004-04-01

    New sleep disturbance model in rats is useful for estimating the characteristics of some hypnotics. The present study was undertaken to investigate the utility of a sleep disturbance model by placing rats on a grid suspended over water using three kinds of hypnotics, that is, short-acting benzodiazepine (triazolam), intermediate-acting benzodiazepine (flunitrazepam) and long-acting barbiturate (phenobarbital). Electrodes for measurement of EEG and EMG were implanted into the frontal cortex and the dorsal neck muscle of rats. EEG and EMG were recorded with an electroencephalogram. SleepSign ver.2.0 was used for EEG and EMG analysis. Total times of wakefulness, non-REM and REM sleep were measured from 0900 to 1500 hours. In rats placed on the grid suspended over water up to 1 cm under the grid surface, not only triazolam but also flunitrazepam and phenobarbital caused a shortening of sleep latency. Both flunitrazepam and phenobarbital were effective in increasing of total non-REM sleep time in rats placed on sawdust or the grid, and the effects of both drugs in rats placed on the grid were larger than those in rats placed on sawdust. Measurement of the hourly non-REM sleep time was useful for investigating the peak time and duration of effect of the three hypnotics. Phenobarbital showed a decrease in total REM sleep time in rats placed on the grid, although both triazolam and flunitrazepam were without effect. The present insomnia model can be used as a sleep disturbance model for testing not only the sleep-inducing effects but also the sleep-maintaining effects including non-REM sleep and REM sleep of hypnotics.

  4. Monitoring Method of Cutting Force by Using Additional Spindle Sensors

    Science.gov (United States)

    Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki

    This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.

  5. Sleep and Epilepsy: Strange Bedfellows No More.

    Science.gov (United States)

    St Louis, Erik K

    2011-09-01

    Ancient philosophers and theologians believed that altered consciousness freed the mind to prophesy the future, equating sleep with seizures. Only recently has the bidirectional influences of epilepsy and sleep upon one another received more substantive analysis. This article reviews the complex and increasingly recognized interrelationships between sleep and epilepsy. NREM sleep differentially activates interictal epileptiform discharges during slow wave (N3) sleep, while ictal seizure events occur more frequently during light NREM stages N1 and N2. The most commonly encountered types of sleep-related epilepsies (those with preferential occurrence during sleep or following arousal) include frontal and temporal lobe partial epilepsies in adults, and benign epilepsy of childhood with centrotemporal spikes (benign rolandic epilepsy) and juvenile myoclonic epilepsy in children and adolescents. Comorbid sleep disorders are frequent in patients with epilepsy, particularly obstructive sleep apnea in refractory epilepsy patients which may aggravate seizure burden, while treatment with nasal continuous positive airway pressure often improves seizure frequency. Distinguishing nocturnal events such as NREM parasomnias (confusional arousals, sleep walking, and night terrors), REM parasomnias including REM sleep behavior disorder, and nocturnal seizures if frequently difficult and benefits from careful history taking and video-EEG-polysomnography in selected cases. Differentiating nocturnal seizures from primary sleep disorders is essential for determining appropriate therapy, and recognizing co-existent sleep disorders in patients with epilepsy may improve their seizure burden and quality of life.

  6. Using Micromanipulation to Analyze Control of Vertebrate Meiotic Spindle Size

    Directory of Open Access Journals (Sweden)

    Jun Takagi

    2013-10-01

    Full Text Available The polymerization/depolymerization dynamics of microtubules (MTs have been reported to contribute to control of the size and shape of spindles, but quantitative analysis of how the size and shape correlate with the amount and density of MTs in the spindle remains incomplete. Here, we measured these parameters using 3D microscopy of meiotic spindles that self-organized in Xenopus egg extracts and presented a simple equation describing the relationship among these parameters. To examine the validity of the equation, we cut the spindle into two fragments along the pole-to-pole axis by micromanipulation techniques that rapidly decrease the amount of MTs. The spheroidal shape spontaneously recovered within 5 min, but the size of each fragment remained small. The equation we obtained quantitatively describes how the spindle size correlates with the amount of MTs while maintaining the shape and the MT density.

  7. Dynamics Analysis of Unbalanced Motorized Spindles Supported on Ball Bearings

    Directory of Open Access Journals (Sweden)

    Junfeng Liu

    2016-01-01

    Full Text Available This paper presents an improved dynamic model for unbalanced high speed motorized spindles. The proposed model includes a Hertz contact force model which takes into the internal clearance and an unbalanced electromagnetic force model based on the energy of the air magnetic field. The nonlinear characteristic of the model is analysed by Lyapunov stability theory and numerical analysis to study the dynamic properties of the spindle system. Finally, a dynamic operating test is carried out on a DX100A-24000/20-type motorized spindle. The good agreement between the numerical solutions and the experimental data indicates that the proposed model is capable of accurately predicting the dynamic properties of motorized spindles. The influence of the unbalanced magnetic force on the system is studied, and the sensitivities of the system parameters to the critical speed of the system are obtained. These conclusions are useful for the dynamic design of high speed motorized spindles.

  8. fMRI Artefact Rejection and Sleep Scoring Toolbox

    Directory of Open Access Journals (Sweden)

    Yves Leclercq

    2011-01-01

    Full Text Available We started writing the “fMRI artefact rejection and sleep scoring toolbox”, or “FAST”, to process our sleep EEG-fMRI data, that is, the simultaneous recording of electroencephalographic and functional magnetic resonance imaging data acquired while a subject is asleep. FAST tackles three crucial issues typical of this kind of data: (1 data manipulation (viewing, comparing, chunking, etc. of long continuous M/EEG recordings, (2 rejection of the fMRI-induced artefact in the EEG signal, and (3 manual sleep-scoring of the M/EEG recording. Currently, the toolbox can efficiently deal with these issues via a GUI, SPM8 batching system or hand-written script. The tools developed are, of course, also useful for other EEG applications, for example, involving simultaneous EEG-fMRI acquisition, continuous EEG eye-balling, and manipulation. Even though the toolbox was originally devised for EEG data, it will also gracefully handle MEG data without any problem. “FAST” is developed in Matlab as an add-on toolbox for SPM8 and, therefore, internally uses its SPM8-meeg data format. “FAST” is available for free, under the GNU-GPL.

  9. Measurement and modification of the EEG and related behavior

    Science.gov (United States)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we

  10. EEG in children, in the laboratory or at the patient's bedside.

    Science.gov (United States)

    Kaminska, A; Cheliout-Heraut, F; Eisermann, M; Touzery de Villepin, A; Lamblin, M D

    2015-03-01

    In pediatrics, EEG recordings are performed on patients from the neonatal period up to young adults. This means adapting techniques to many different conditions, concerning not only the patient's age, the need for asepsis and the patient's behavior, but also the environment (e.g. in the laboratory, at the patient's bedside, or in the neonatal intensive care unit [NICU]). Technical requirements depend on age, indication and the type of examination; in infancy, there should be a minimum of 12 EEG electrodes, ECG and respiration recording. In epileptology, surface EMG is also necessary to characterize the type of seizures and refine the diagnosis of epilepsy syndrome, on which physicians will base their treatment choice. The role of the EEG technician is essential because the quality of the recording, its analysis and conclusion will depend on the quality of the technical set-up and the interaction with the child. Sleep is a systematic part of the study up to the age of 5 years for several reasons: sleep EEG yields information on brain maturation; the EEG tracing during wakefulness can contain too many artefacts; and some grapho-elements, key to the diagnosis, only appear during sleep. The time of the examination must be chosen according to the child's usual nap times, possibly after sleep deprivation. Grapho-elements and spatio-temporal organization of the EEG vary with age, and normal variants and unusual aspects are quite wide for any given age; this is why a physician experienced in pediatric EEG should perform the interpretation. This chapter concerns EEG performed in infants, children and adolescents, its technical aspects according to age and indications (general pediatrics, emergency, epilepsy). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Comparisons of Portable Sleep Monitors of Different Modalities: Potential as Naturalistic Sleep Recorders

    Directory of Open Access Journals (Sweden)

    Masahiro Matsuo

    2016-07-01

    Full Text Available Background: Humans spend more than a fourth of their life sleeping, and sleep quality has been significantly linked to health. However, the objective examination of ambulatory sleep quality remains a challenge, since sleep is a state of unconsciousness, which limits the reliability of self-reports. Therefore, a non-invasive, continuous, and objective method for the recording and analysis of naturalistic sleep is required.Objective: Portable sleep recording devices provide a suitable solution for the ambulatory analysis of sleep quality. In this study, the performance of two activity-based sleep monitors (Actiwatch and MTN-210 and a single-channel EEG-based sleep monitor (SleepScope were compared in order to examine their reliability for the assessment of sleep quality.Methods: Twenty healthy adults were recruited for this study. First, data from daily activity recorded by Actiwatch and MTN-210 were compared to determine whether MTN-210, a more affordable device, could yield data similar to Actiwatch, the de-facto standard. In addition, sleep detection ability was examined using data obtained by polysomnography as reference. One simple analysis included comparing the sleep/wake detection ability of Actiwatch, MTN-210, and SleepScope. Furthermore, the fidelity of sleep stage determination was examined using SleepScope in finer time resolution. Results: The results indicate that MTN-210 demonstrates an activity pattern comparable to that of Actiwatch, although their sensitivity preferences were not identical. Moreover, MTN-210 provides assessment of sleep duration comparable to that of the wrist-worn Actiwatch when MTN-210 was attached to the body. SleepScope featured superior overall sleep detection performance among the three methods tested. Furthermore, SleepScope was able to provide information regarding sleep architecture, although systemic bias was found. Conclusion: The present results suggest that single-channel EEG-based sleep monitors are

  12. The scoring of arousal in sleep: reliability, validity, and alternatives.

    Science.gov (United States)

    Bonnet, Michael H; Doghramji, Karl; Roehrs, Timothy; Stepanski, Edward J; Sheldon, Stephen H; Walters, Arthur S; Wise, Merrill; Chesson, Andrew L

    2007-03-15

    The reliability and validity of EEG arousals and other types of arousal are reviewed. Brief arousals during sleep had been observed for many years, but the evolution of sleep medicine in the 1980s directed new attention to these events. Early studies at that time in animals and humans linked brief EEG arousals and associated fragmentation of sleep to daytime sleepiness and degraded performance. Increasing interest in scoring of EEG arousals led the ASDA to publish a scoring manual in 1992. The current review summarizes numerous studies that have examined scoring reliability for these EEG arousals. Validity of EEG arousals was explored by review of studies that empirically varied arousals and found deficits similar to those found after total sleep deprivation depending upon the rate and extent of sleep fragmentation. Additional data from patients with clinical sleep disorders prior to and after effective treatment has also shown a continuing relationship between reduction in pathology-related arousals and improved sleep and daytime function. Finally, many suggestions have been made to refine arousal scoring to include additional elements (e.g., CAP), change the time frame, or focus on other physiological responses such as heart rate or blood pressure changes. Evidence to support the reliability and validity of these measures is presented. It was concluded that the scoring of EEG arousals has added much to our understanding of the sleep process but that significant work on the neurophysiology of arousal needs to be done. Additional refinement of arousal scoring will provide improved insight into sleep pathology and recovery.

  13. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Janna eMantua

    2015-06-01

    Full Text Available Individuals with a history of traumatic brain injury (TBI often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations. Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-hrs later, following an interval awake or with overnight sleep. Young adult participants (18-22 yrs were assigned to one of four experimental groups: TBI Sleep (n=14, TBI Wake (n=12, non-TBI Sleep (n=15, non-TBI Wake (n=15. Each TBI participant was >1 yr post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-hr intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  14. Automatic SLEEP staging: From young aduslts to elderly patients using multi-class support vector machine

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Jennum, Poul; Sorensen, Helge B. D.

    2013-01-01

    an automatic sleep stage detector, which can separate wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep using only EEG and EOG. Most sleep events, which define the sleep stages, are reduced with age. This is addressed by focusing on the amplitude of the clinical EEG bands......Aging is a process that is inevitable, and makes our body vulnerable to age-related diseases. Age is the most consistent factor affecting the sleep structure. Therefore, new automatic sleep staging methods, to be used in both of young and elderly patients, are needed. This study proposes......, and not the affected sleep events. The age-related influences are then reduced by robust subject-specific scaling. The classification of the three sleep stages are achieved by a multi-class support vector machine using the one-versus-rest scheme. It was possible to obtain a high classification accuracy of 0...

  15. The spindle assembly checkpoint: More than just keeping track of the spindle.

    OpenAIRE

    Lawrence, KS; Engebrecht, J

    2015-01-01

    Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging e...

  16. Individual Differences in White Matter Diffusion Affect Sleep Oscillations

    NARCIS (Netherlands)

    Piantoni, G.; Poil, S.S.; Linkenkaer-Hansen, K.; Verweij, I.M.; Ramautar, J.R.; van Someren, E.J.W.; van der Werf, Y.D.

    2013-01-01

    The characteristic oscillations of the sleeping brain, spindles and slow waves, show trait-like, within-subject stability and a remarkable interindividual variability that correlates with functionally relevant measures such as memory performance and intelligence. Yet, the mechanisms underlying these

  17. The association of mothers' and fathers' insomnia symptoms with school-aged children's sleep assessed by parent report and in-home sleep-electroencephalography.

    Science.gov (United States)

    Urfer-Maurer, Natalie; Weidmann, Rebekka; Brand, Serge; Holsboer-Trachsler, Edith; Grob, Alexander; Weber, Peter; Lemola, Sakari

    2017-10-01

    Sleep plays an essential role for children's well-being. Because children's sleep is associated with parental sleep patterns, it must be considered in the family context. As a first aim of the present study, we test whether parental insomnia symptoms are related to children's in-home sleep-electroencephalography (EEG). Second, we examine the association between parental insomnia symptoms and maternal and paternal perception of children's sleep using actor-partner interdependence models. A total of 191 healthy children enrolled in public school and aged 7-12 years took part in the study. Ninety-six were formerly very preterm born children. Children underwent in-home sleep-EEG, and parents reported children's sleep-related behavior by using the German version of the Children's Sleep Habits Questionnaire. Further, parents completed the Insomnia Severity Index to report their own insomnia symptoms. Maternal but not paternal insomnia symptoms were related to less children's EEG-derived total sleep time, more stage 2 sleep, less slow wave sleep, later sleep onset time, and later awakening time. Mothers' and fathers' own insomnia symptoms were related to their reports of children's bedtime resistance, sleep duration, sleep anxiety, night wakings, and/or daytime sleepiness. Moreover, maternal insomnia symptoms were associated with paternal reports of children's bedtime resistance, sleep anxiety, and sleep-disordered breathing. The associations between parental insomnia symptoms and parents' perception of children's sleep could not be explained by children's objectively measured sleep. Mothers' insomnia symptoms and children's objective sleep patterns are associated. Moreover, the parents' own insomnia symptoms might bias their perception of children's sleep-related behavior problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hypnagogic imagery and EEG activity.

    Science.gov (United States)

    Hayashi, M; Katoh, K; Hori, T

    1999-04-01

    The relationships between hypnagogic imagery and EEG activity were studied. 7 subjects (4 women and 3 men) reported the content of hypnagogic imagery every minute and the hypnagogic EEGs were classified into 5 stages according to Hori's modified criteria. The content of the hypnagogic imagery changed as a function of the hypnagogic EEG stages.

  19. Thermal-Signature-Based Sleep Analysis Sensor

    Directory of Open Access Journals (Sweden)

    Ali Seba

    2017-10-01

    Full Text Available This paper addresses the development of a new technique in the sleep analysis domain. Sleep is defined as a periodic physiological state during which vigilance is suspended and reactivity to external stimulations diminished. We sleep on average between six and nine hours per night and our sleep is composed of four to six cycles of about 90 min each. Each of these cycles is composed of a succession of several stages of sleep that vary in depth. Analysis of sleep is usually done via polysomnography. This examination consists of recording, among other things, electrical cerebral activity by electroencephalography (EEG, ocular movements by electrooculography (EOG, and chin muscle tone by electromyography (EMG. Recordings are made mostly in a hospital, more specifically in a service for monitoring the pathologies related to sleep. The readings are then interpreted manually by an expert to generate a hypnogram, a curve showing the succession of sleep stages during the night in 30s epochs. The proposed method is based on the follow-up of the thermal signature that makes it possible to classify the activity into three classes: “awakening,” “calm sleep,” and “restless sleep”. The contribution of this non-invasive method is part of the screening of sleep disorders, to be validated by a more complete analysis of the sleep. The measure provided by this new system, based on temperature monitoring (patient and ambient, aims to be integrated into the tele-medicine platform developed within the framework of the Smart-EEG project by the SYEL–SYstèmes ELectroniques team. Analysis of the data collected during the first surveys carried out with this method showed a correlation between thermal signature and activity during sleep. The advantage of this method lies in its simplicity and the possibility of carrying out measurements of activity during sleep and without direct contact with the patient at home or hospitals.

  20. The EEG as an index of neuromodulator balance in memory and mental illness

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2014-04-01

    Full Text Available There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.

  1. The EEG as an index of neuromodulator balance in memory and mental illness.

    Science.gov (United States)

    Vakalopoulos, Costa

    2014-01-01

    There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.

  2. Increased delta power and discrepancies in objective and subjective sleep measurements in borderline personality disorder.

    Science.gov (United States)

    Philipsen, Alexandra; Feige, Bernd; Al-Shajlawi, Anam; Schmahl, Christian; Bohus, Martin; Richter, Harald; Voderholzer, Ulrich; Lieb, Klaus; Riemann, Dieter

    2005-09-01

    Previous studies have shown depression-like sleep abnormalities in borderline personality disorder (BPD). However, findings in BPD are not unequivocal for REM dysregulation, as well as for a decrement of slow wave sleep and sleep continuity disturbances. Earlier findings in sleep EEG abnormalities in BPD may have been confounded by concomitant depressive symptoms. Twenty unmedicated female BPD patients without current comorbid major depression and 20 sex- and age-matched control subjects entered the study. Conventional polysomnographic parameters and for the first time sleep EEG spectral power analysis was performed on two sleep laboratory nights. Subjective sleep parameters were collected by sleep questionnaires in order to assess the relationship between objective and subjective sleep measurements. BPD patients showed a tendency for shortened REM latency and significantly decreased NonREM sleep (stage 2). Spectral EEG analysis showed increased delta power in total NREM sleep as well as in REM sleep in BPD patients. Subjective ratings documented drastically impaired sleep quality in BPD patients for the two weeks before the study and during the two laboratory nights. Not-depressed BPD patients only showed tendencies for depression-like REM sleep abnormalities. Surprisingly, BPD patients displayed higher levels of delta power in the sleep EEG in NREM sleep than healthy control subjects. There was a marked discrepancy between objective and subjective sleep measurements, which indicates an altered perception of sleep in BPD. The underlying psychological and neurobiological mechanisms of these alterations are still unclear and need to be clarified in future studies including interventions on a pharmacological and cognitive-behavioral level.

  3. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.

    Science.gov (United States)

    Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-03-01

    The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.

  4. Effect of Low-Level Laser Stimulation on EEG Power in Normal Subjects with Closed Eyes

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2013-01-01

    Full Text Available In a previous study, we found that the low-level laser (LLL stimulation at the palm with a frequency of 10 Hz was able to induce significant brain activation in normal subjects with opened eyes. However, the electroencephalography (EEG changes to LLL stimulation in subjects with closed eyes have not been studied. In the present study, the laser array stimulator was applied to deliver insensible laser stimulations to the palm of the tested subjects with closed eyes (the laser group. The EEG activities before, during, and after the laser stimulation were collected. The EEG amplitude powers of each EEG frequency band at 19 locations were calculated. These power data were then analyzed by SPSS software using repeated-measure ANOVAs and appropriate posthoc tests. We found a pronounced decrease in the EEG power in alpha-bandwidth during laser simulation and then less decrease in the EEG power in delta-bandwidth in normal subjects with laser stimulation. The EEG power in beta-bandwidth in the right occipital area also decreased significantly in the laser group. We suggest that LLL stimulation might be conducive to falling into sleep in patients with sleep problems.

  5. Sleep Disorders

    DEFF Research Database (Denmark)

    Rahbek Kornum, Birgitte; Mignot, Emmanuel

    2014-01-01

    mediates circadian regulation of sleep. Misalignment with the rhythm of the sun results in circadian disorders and jet lag. The molecular basis of homeostatic sleep regulation is mostly unknown. A network of mutually inhibitory brain nuclei regulates sleep states and sleep-wake transitions. Abnormalities...... in these networks create sleep disorders, including rapid eye movement sleep behavior disorder, sleep walking, and narcolepsy. Physiological changes associated with sleep can be imbalanced, resulting in excess movements such as periodic leg movements during sleep or abnormal breathing in obstructive sleep apneas....... As every organ in the body is affected by sleep directly or indirectly, sleep and sleep-associated disorders are frequent and only now starting to be understood....

  6. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss.

    Science.gov (United States)

    Halassa, Michael M; Florian, Cedrick; Fellin, Tommaso; Munoz, James R; Lee, So-Young; Abel, Ted; Haydon, Philip G; Frank, Marcos G

    2009-01-29

    Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation of sleep pressure, assessed by measuring the slow wave activity of the EEG during NREM sleep, and prevented cognitive deficits associated with sleep loss. Since the sleep-suppressing effects of the A1 receptor antagonist CPT were prevented following inhibition of gliotransmission and because intracerebroventricular delivery of CPT to wild-type mice mimicked the transgenic phenotype, we conclude that astrocytes modulate the accumulation of sleep pressure and its cognitive consequences through a pathway involving A1 receptors.

  7. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  8. Wireless sleep monitoring headband to identify sleep and track fatigue

    Science.gov (United States)

    Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.

    2014-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Commonly, the rudimentary bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper proposes the design of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the dry gold wire nano-sensors fabricated on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through WCDMA/GSM communication. This module is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the experienced fatigue level. The novel approach of using a wireless, real time, dry sensor on a flexible substrate reduces the obtrusiveness, and techniques adopted in the electronics and software facilitates and substantial increase in efficiency, accuracy and precision.

  9. Mobile phones and sleep - A review

    Science.gov (United States)

    Supe, Sanjay S.

    2010-01-01

    The increasing use of mobile phones has raised concerns regarding the potential health effects of exposure to the radiofrequency electromagnetic fields. An increasing amount research related to mobile phone use has focussed on the possible effects of mobile phone exposure on human brain activity and function. In particular, the use of sleep research has become a more widely used technique for assessing the possible effects of mobile phones on human health and wellbeing especially in the investigation of potential changes in sleep architecture resulting from mobile phone use. Acute exposure to a mobile phone prior to sleep significantly enhances electroencephalogram spectral power in the sleep spindle frequency range. This mobile phone-induced enhancement in spectral power is largely transitory and does not linger throughout the night. Furthermore, a reduction in rapid eye movement sleep latency following mobile phone exposure was also found, although interestingly, neither this change in rapid eye movement sleep latency or the enhancement in spectral power following mobile phone exposure, led to changes in the overall quality of sleep. In conclusion, a short exposure to the radiofrequency electromagnetic fields emitted by a mobile phone handset immediately prior to sleep is sufficient to induce changes in brain activity in the initial part of sleep. The consequences or functional significance of this effect are currently unknown and it would be premature to draw conclusions about possible health consequences.

  10. Brain oscillations in sport: toward EEG biomakers of performance

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2016-02-01

    Full Text Available Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  11. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362

  12. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  13. Sleep Quiz

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Sleep Quiz Past Issues / Summer 2007 Table of Contents ... on. Photo: iStock Take the National Center on Sleep Disorders Research Sleep Quiz TRUE OR FALSE ? _____1. ...

  14. Unsupervised online classifier in sleep scoring for sleep deprivation studies.

    Science.gov (United States)

    Libourel, Paul-Antoine; Corneyllie, Alexandra; Luppi, Pierre-Hervé; Chouvet, Guy; Gervasoni, Damien

    2015-05-01

    This study was designed to evaluate an unsupervised adaptive algorithm for real-time detection of sleep and wake states in rodents. We designed a Bayesian classifier that automatically extracts electroencephalogram (EEG) and electromyogram (EMG) features and categorizes non-overlapping 5-s epochs into one of the three major sleep and wake states without any human supervision. This sleep-scoring algorithm is coupled online with a new device to perform selective paradoxical sleep deprivation (PSD). Controlled laboratory settings for chronic polygraphic sleep recordings and selective PSD. Ten adult Sprague-Dawley rats instrumented for chronic polysomnographic recordings. The performance of the algorithm is evaluated by comparison with the score obtained by a human expert reader. Online detection of PS is then validated with a PSD protocol with duration of 72 hours. Our algorithm gave a high concordance with human scoring with an average κ coefficient > 70%. Notably, the specificity to detect PS reached 92%. Selective PSD using real-time detection of PS strongly reduced PS amounts, leaving only brief PS bouts necessary for the detection of PS in EEG and EMG signals (4.7 ± 0.7% over 72 h, versus 8.9 ± 0.5% in baseline), and was followed by a significant PS rebound (23.3 ± 3.3% over 150 minutes). Our fully unsupervised data-driven algorithm overcomes some limitations of the other automated methods such as the selection of representative descriptors or threshold settings. When used online and coupled with our sleep deprivation device, it represents a better option for selective PSD than other methods like the tedious gentle handling or the platform method. © 2015 Associated Professional Sleep Societies, LLC.

  15. Spindle-cell carcinoma of esophagus: a case report

    International Nuclear Information System (INIS)

    Kim, Ji Chang; Lee, Jae Mun; Jung, Seung Eun; Lee, Kyo Young; Hahn, Seong Tai; Kim, Man Deuk

    2001-01-01

    Spindle-cell carcinoma of the esophagus is a rare malignant tumor composed of both carcinomatous and sarcomatous elements, and has generated many terminology problems. It is characterized by a bulky polypoid intraluminal mass with a lobulated surface located in the middle third of the esophagus. Local expansion of this organ is observed. The lesion may be pedunculated but despite its bulk, causes little obstruction. We report the imaging findings of a case of spindle-cell carcinoma arising in the upper esophagus

  16. Sleep-dependent facilitation of episodic memory details.

    Science.gov (United States)

    van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P

    2011-01-01

    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  17. Sleep-dependent facilitation of episodic memory details.

    Directory of Open Access Journals (Sweden)

    Els van der Helm

    Full Text Available While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements and context- (contextual details associated with those elements learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep. These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  18. Diagnostic Accuracy of microEEG: A Miniature, Wireless EEG Device

    OpenAIRE

    Grant, Arthur C.; Abdel-Baki, Samah G.; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A.; Zehtabchi, Shahriar

    2014-01-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device (“microEEG”) to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). 225 ED patients with AMS underwent 3 EEGs. EEG1 (Nicolet Monitor, “reference”) and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. ...

  19. Measurement of Spindle Rigidity by using a Magnet Loader

    Science.gov (United States)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  20. Sleep in the Cape Mole Rat: A Short-Sleeping Subterranean Rodent.

    Science.gov (United States)

    Kruger, Jean-Leigh; Gravett, Nadine; Bhagwandin, Adhil; Bennett, Nigel C; Archer, Elizabeth K; Manger, Paul R

    2016-01-01

    The Cape mole rat Georychus capensis is a solitary subterranean rodent found in the western and southern Cape of South Africa. This approximately 200-gram bathyergid rodent shows a nocturnal circadian rhythm, but sleep in this species is yet to be investigated. Using telemetric recordings of the electroencephalogram (EEG) and electromyogram (EMG) in conjunction with video recordings, we were able to show that the Cape mole rat, like all other rodents, has sleep periods composed of both rapid eye movement (REM) and slow-wave (non-REM) sleep. These mole rats spent on average 15.4 h awake, 7.1 h in non-REM sleep and 1.5 h in REM sleep each day. Cape mole rats sleep substantially less than other similarly sized terrestrial rodents but have a similar percentage of total sleep time occupied by REM sleep. In addition, the duration of both non-REM and REM sleep episodes was markedly shorter in the Cape mole rat than has been observed in terrestrial rodents. Interestingly, these features (total sleep time and episode duration) are similar to those observed in another subterranean bathyergid mole rat, i.e. Fukomys mechowii. Thus, there appears to be a bathyergid type of sleep amongst the rodents that may be related to their environment and the effect of this on their circadian rhythm. Investigating further species of bathyergid mole rats may fully define the emerging picture of sleep in these subterranean African rodents. © 2016 S. Karger AG, Basel.

  1. A hidden Markov model to assess drug-induced sleep fragmentation in the telemetered rat

    OpenAIRE

    Diack, C.; Ackaert, O.; Ploeger, B. A.; van der Graaf, P. H.; Gurrell, R.; Ivarsson, M.; Fairman, D.

    2011-01-01

    Drug-induced sleep fragmentation can cause sleep disturbances either via their intended pharmacological action or as a side effect. Examples of disturbances include excessive daytime sleepiness, insomnia and nightmares. Developing drugs without these side effects requires insight into the mechanisms leading to sleep disturbance. The characterization of the circadian sleep pattern by EEG following drug exposure has improved our understanding of these mechanisms and their translatability across...

  2. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  3. Automatic sleep scoring: a search for an optimal combination of measures.

    Science.gov (United States)

    Krakovská, Anna; Mezeiová, Kristína

    2011-09-01

    The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Functional imaging of sleep vertex sharp transients.

    Science.gov (United States)

    Stern, John M; Caporro, Matteo; Haneef, Zulfi; Yeh, Hsiang J; Buttinelli, Carla; Lenartowicz, Agatha; Mumford, Jeanette A; Parvizi, Josef; Poldrack, Russell A

    2011-07-01

    The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). Simultaneous EEG and fMRI were recorded from seven individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    Science.gov (United States)

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  6. [Temporary disappearance of EEG activity during reversible respiratory failure in rabbits and cats].

    Science.gov (United States)

    Jurco, M; Tomori, Z; Tkácová, R; Calfa, J

    1989-02-01

    The dynamics of changes of EEG activity was studied on the model of reversible respiratory failure in rabbits and cats in pentobarbital anesthesia. During N2 inhalation, apnea of 60 second duration, and subsequent resuscitation the electrocorticogram in bifrontal and bioccipital connection was recorded. Evaluation of 19 episodes of apnea in 7 rabbits and of 25 episodes in 8 cats yielded the following results: 1. During hyperventilation induced by N2 inhalation a certain activation of the EEG was observed (spindles more pronounced, increased occurrence rate of discharges of the reticular activation system). 2. At the onset of apnea the EEG was still distinct, suggesting that primary apnea is presumably not caused by anoxia and the accompanying electric silence of the structures that control respiration. 3. Disappearance of EEG occurred within 50 seconds from the onset of apnea in rabbits and within 30 seconds in cats. 4. After repeated episodes of apnea lasting for 60 sec., artificial ventilation mostly resulted in normalization of EEG.

  7. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    Science.gov (United States)

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P continuity and amplitude.

  8. Evaluation of an automated single-channel sleep staging algorithm

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-09-01

    Full Text Available Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard F Kaplan1 1General Sleep Corporation, Euclid, OH, 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: We previously published the performance evaluation of an automated electroencephalography (EEG-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM Sleep, against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years, including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2 were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM

  9. Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy

    DEFF Research Database (Denmark)

    Olsen, Anders Vinther; Stephansen, Jens; Leary, Eileen B.

    2017-01-01

    Type 1 narcolepsy (NT1) is characterized by symptoms believed to represent Rapid Eye Movement (REM) sleep stage dissociations, occurrences where features of wake and REM sleep are intermingled, resulting in a mixed state. We hypothesized that sleep stage dissociations can be objectively detected...... through the analysis of nocturnal Polysomnography (PSG) data, and that those affecting REM sleep can be used as a diagnostic feature for narcolepsy. A Linear Discriminant Analysis (LDA) model using 38 features extracted from EOG, EMG and EEG was used in control subjects to select features differentiating...... wake, stage N1, N2, N3 and REM sleep. Sleep stage differentiation was next represented in a 2D projection. Features characteristic of sleep stage differences were estimated from the residual sleep stage probability in the 2D space. Using this model we evaluated PSG data from NT1 and non...

  10. Automatic sleep classification using a data-driven topic model reveals latent sleep states

    DEFF Research Database (Denmark)

    Koch, Henriette; Christensen, Julie Anja Engelhard; Frandsen, Rune

    2014-01-01

    Latent Dirichlet Allocation. Model application was tested on control subjects and patients with periodic leg movements (PLM) representing a non-neurodegenerative group, and patients with idiopathic REM sleep behavior disorder (iRBD) and Parkinson's Disease (PD) representing a neurodegenerative group......Background: The golden standard for sleep classification uses manual scoring of polysomnography despite points of criticism such as oversimplification, low inter-rater reliability and the standard being designed on young and healthy subjects. New method: To meet the criticism and reveal the latent...... sleep states, this study developed a general and automatic sleep classifier using a data-driven approach. Spectral EEG and EOG measures and eye correlation in 1 s windows were calculated and each sleep epoch was expressed as a mixture of probabilities of latent sleep states by using the topic model...

  11. Medical image of the week: sleep bruxism

    Directory of Open Access Journals (Sweden)

    Bartell J

    2015-03-01

    Full Text Available No abstract available. Article truncated at 150 words. A 42 year-old man with a past medical history of insomnia, post-traumatic stress disorder, depression and both migraine and tension headaches was referred for an overnight sleep study. He had presented to the sleep clinic with symptoms of obstructive sleep apnea. Medications included sumatriptan, amitryptiline, sertraline, and trazodone. His sleep study showed: sleep efficiency of 58.2%, apnea-hypopnea index of 33 events per hour, and arousal index of 14.5/hr. Periodic limb movement index was 29.2/hr. The time spent in the sleep stages included N1 (3.6%, N2 (72.5%, N3 (12.9%, and REM (10.9%. Figure 1 is representative of the several brief waveforms seen on his EEG and chin EMG. Sleep bruxism (SB is a type of sleep-related movement disorder that is characterized by involuntary masticatory muscle contraction resulting in grinding and clenching of the teeth and typically associated with arousals from sleep (1,2. The American academy of sleep medicine (AASM criteria for ...

  12. Effects of gamma-hydroxybutyrate (GHB) on vigilance states and EEG in mice

    NARCIS (Netherlands)

    Meerlo, P; Westerveld, P; Turek, FW; Koehl, M

    2004-01-01

    Study Objectives: Gamma-hydroxybutyrate (GHB) is an endogenous neuromodulator that appears to have wide-ranging effects on vigilance and behavior. In the present study, we examined the effects of GHB on sleep-wake behavior and EEG in mice. In addition, we measured effects of GHB on body temperature

  13. WARMING UP FOR SLEEP - GROUND-SQUIRRELS SLEEP DURING AROUSALS FROM HIBERNATION

    NARCIS (Netherlands)

    DAAN, S; BARNES, BM; STRIJKSTRA, AM

    1991-01-01

    Hypothermia during mammalian hibernation is periodically interrupted by arousals to euthermy, the function of which is unknown. We report that arctic ground squirrels (Spermophilus parryii) consistently sleep during these arousals, and that their EEG shows the decrease in slow wave activity

  14. Sleep staging with movement-related signals.

    Science.gov (United States)

    Jansen, B H; Shankar, K

    1993-05-01

    Body movement related signals (i.e., activity due to postural changes and the ballistocardiac effort) were recorded from six normal volunteers using the static-charge-sensitive bed (SCSB). Visual sleep staging was performed on the basis of simultaneously recorded EEG, EMG and EOG signals. A statistical classification technique was used to determine if reliable sleep staging could be performed using only the SCSB signal. A classification rate of between 52% and 75% was obtained for sleep staging in the five conventional sleep stages and the awake state. These rates improved from 78% to 89% for classification between awake, REM and non-REM sleep and from 86% to 98% for awake versus asleep classification.

  15. Pain and the alpha-sleep anomaly: a mechanism of sleep disruption in facioscapulohumeral muscular dystrophy.

    Science.gov (United States)

    Della Marca, Giacomo; Frusciante, Roberto; Vollono, Catello; Iannaccone, Elisabetta; Dittoni, Serena; Losurdo, Anna; Testani, Elisa; Gnoni, Valentina; Colicchio, Salvatore; Di Blasi, Chiara; Erra, Carmen; Mazza, Salvatore; Ricci, Enzo

    2013-04-01

    To measure the presence of the alpha-sleep anomaly in facioscapulohumeral muscular dystrophy (FSHD) and to evaluate the association between the sleep electroencephalogram (EEG) pattern and the presence of musculoskeletal pain. Cross-sectional study. Sleep laboratory. Fifty-five consecutive adult FSHD patients, 26 women and 29 men, age 49.6 ± 15.1 years (range 18-76). Questionnaires and polysomnography. Patients were asked to indicate if in the 3 months before the sleep study they presented persisting or recurring musculoskeletal pain. Patients who reported pain were asked to fill in the Italian version of the Brief Pain Inventory and the McGill Pain questionnaire, and a 101-point visual analog scale (VAS) for pain intensity. Polysomnographic recordings were performed. EEG was analyzed by means of Fast Fourier Transform. Four power spectra bands (δ 0-4 Hz, θ 4-8 Hz, α 8-14 Hz, β 14-32 Hz) were computed. Sleep macrostructure parameters and alpha/delta EEG power ratio during non rapid eye movement (NREM) sleep were compared between patients with and without pain. Forty-two patients in our sample reported chronic pain. VAS mean score was 55.2 ± 23.8 (range 10-100), pain rating index score was 13.8 ± 10.2, and present pain intensity was 2.5 ± 0.8. The statistical analysis documented an increased occurrence of the alpha and beta rhythms during NREM sleep in FSHD patients with pain. Significant correlations were observed between the alpha/delta power ratio during NREM sleep and pain measures. Chronic musculoskeletal pain is frequent in FSHD patients, and it represents a major mechanism of sleep disruption. Wiley Periodicals, Inc.

  16. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  17. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  18. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  19. Analysis and topology optimization design of high-speed driving spindle

    Science.gov (United States)

    Wang, Zhilin; Yang, Hai

    2018-04-01

    The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.

  20. The diagnostic value of power spectra analysis of the sleep electroencephalography in narcoleptic patients

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Munk, Emil Gammelmark Schreiner; Peppard, Paul E.

    2015-01-01

    Objective: Manifestations of narcolepsy with cataplexy (NC) include disturbed nocturnal sleep – hereunder sleep–wake instability, decreased latency to rapid eye movement (REM) sleep, and dissociated REM sleep events. In this study, we characterized the electroencephalography (EEG) of various sleep...... show (1) increased alpha power in REM sleep, (2) decreased sigma power in wakefulness, and (3) decreased delta power in stage N1 versus wakefulness. Sensitivity of these features ranged from 4% to 10% with specificity around 98%, and it did not vary substantially with and without treatment. Conclusions......: EEG spectral analysis of REM sleep, wake, and differences between N1 and wakefulness contain diagnostic features of NC. These traits may represent sleepiness and dissociated REM sleep in patients with NC. However, the features are not sufficient for differentiating NC from controls, and further...

  1. Drowsiness detection for single channel EEG by DWT best m-term approximation

    Directory of Open Access Journals (Sweden)

    Tiago da Silveira

    Full Text Available Introduction In this paper we propose a promising new technique for drowsiness detection. It consists of applying the best m-term approximation on a single-channel electroencephalography (EEG signal preprocessed through a discrete wavelet transform. Methods In order to classify EEG epochs as awake or drowsy states, the most significant m terms from the wavelet expansion of an EEG signal are selected according to the magnitude of their coefficients related to the alpha and beta rhythms. Results By using a simple thresholding strategy it provides hit rates comparable to those using more complex techniques. It was tested on a set of 6 hours and 50 minutes EEG drowsiness signals from PhysioNet Sleep Database yielding an overall sensitivity (TPR of 84.98% and 98.65% of precision (PPV. Conclusion The method has proved itself efficient at separating data from different brain rhythms, thus alleviating the requirement for complex post-processing classification algorithms.

  2. MR imaging features of spindle cell lipoma

    Energy Technology Data Exchange (ETDEWEB)

    Kirwadi, Anand; Abdul-Halim, Rehan; Highland, Adrian; Kotnis, Nikhil [Sheffield Teaching Hospitals NHS Trust, Radiology Department, Sheffield (United Kingdom); Fernando, Malee [Sheffield Teaching Hospitals NHS Trust, Histopathology Department, Sheffield (United Kingdom)

    2014-02-15

    To assess the MR imaging features of spindle cell lipomas (SCL) and to compare these appearances directly with the histopathological findings. A retrospective review of our soft tissue tumor database was performed. This yielded 1,327 histologically proven lipomas, of which 25 were confirmed as being SCLs. Fourteen of the 25 patients had MR examinations available for review and only these patients were included in our study. Lesions were assessed at MR examination for the degree of internal fat signal content with grade 0 representing 0 % fat signal and grade 4 100 % fat signal. The degree of fat suppression and contrast-enhancement pattern were also recorded. The excision specimens were independently reviewed by a consultant histopathologist. The histology specimens were assessed for the amount of internal fat and non-adipose tissue and graded using the same scale applied for the imaging. Where core needle biopsy (CNB) was performed, the CNB specimens were also examined for positive features of SCL. In our study, 93 % (13/14) of our patients were male and the average age was 58 years. 65 % (9/14) of the lesions presented in the upper back, shoulder, or neck. All lesions were subcutaneous. 35 % (5/14) of the SCLs demonstrated grade 3 (>75 %) or grade 4 (100 %) fat signal on MR examination. 35 % (5/14) of the lesions had grade 2 (25-75 %) fat signal and 29 % (4/14) of the lesions demonstrated grade 0 (0 %) or grade 1 (<25 %) fat signal. 43 % (6/14) of lesions demonstrated homogenous fat suppression, 28 % (4/14) showed focal areas of high internal signal, and 28 % (4/14) had diffuse internal high signal on fluid-sensitive fat-saturated sequences. 86 % (6/7) of the cases demonstrated septal/nodular enhancement. The diagnosis was evident on the CNB specimen in 100 % (9/9) cases. The histopathology fat content grade was in agreement with the imaging grade in 86 % (12/14) cases. The internal signal pattern of SCL can range broadly, with low fat content lesions seen almost

  3. Characteristics of late-onset epilepsy and EEG findings in children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Haneul Lee

    2011-01-01

    Full Text Available Purpose: To investigate the clinical characteristics of late-onset epilepsy combined with autism spectrum disorder (ASD, and the relationship between certain types of electroencephalography (EEG abnormalities in ASD and associated neuropsychological problems. Methods: Thirty patients diagnosed with ASD in early childhood and later developed clinical seizures were reviewed retrospectively. First, the clinical characteristics, language and behavioral regression, and EEG findings of these late-onset epilepsy patients with ASD were investigated. The patients were then classified into 2 groups according to the severity of the EEG abnormalities in the background rhythm and paroxysmal discharges. In the severe group, EEG showed persistent asymmetry, slow and disorganized background rhythms, and continuous sharp and slow waves during slow sleep (CSWS. Results: Between the two groups, there was no statistically significant difference in mean age (P=0.259, age of epilepsy diagnosis (P=0.237, associated family history (P=0.074, and positive abnormal magnetic resonance image (MRI findings (P=0.084. The severe EEG group tended to have more neuropsychological problems (P=0.074. The severe group statistically showed more electrographic seizures in EEG (P =0.000. Rett syndrome was correlated with more severe EEG abnormalities (P=0.002. Although formal cognitive function tests were not performed, the parents reported an improvement in neuropsychological function on the follow up checkup according to a parent’s questionnaire. Conclusion: Although some ASD patients with late-onset epilepsy showed severe EEG abnormalities, including CSWS, they generally showed an improvement in EEG and clinical symptoms in the longterm follow up. In addition, severe EEG abnormalities tended to be related to the neuropsychological function.

  4. A review of channel selection algorithms for EEG signal processing

    Science.gov (United States)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  5. Slow Activity in Focal Epilepsy During Sleep and Wakefulness

    DEFF Research Database (Denmark)

    Pellegrino, Giovanni; Tombini, Mario; Curcio, Giuseppe

    2017-01-01

    Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG....... The effect was widespread for alpha band and above, while localized over the affected hemisphere for delta (sleep cycle 1, P = .006; sleep cycle 2, P = .008; sleep cycle 3, P = .017). The analysis of interhemispheric differences showed that the only frequency band stronger over the affected regions...

  6. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  7. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Directory of Open Access Journals (Sweden)

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  8. The Utility of EEG in Attention Deficit Hyperactivity Disorder: A Replication Study.

    Science.gov (United States)

    Swatzyna, Ronald J; Tarnow, Jay D; Roark, Alexandra; Mardick, Jacob

    2017-07-01

    The routine use of stimulants in pediatrics has increased dramatically over the past 3 decades and the long-term consequences have yet to be fully studied. Since 1978 there have been 7 articles identifying electroencephalogram (EEG) abnormalities, particularly epileptiform discharges in children with attention deficit hyperactivity disorder (ADHD). Many have studied the prevalence of these discharges in this population with varying results. An article published in 2011 suggests that EEG technology should be considered prior to prescribing stimulants to children diagnosed with ADHD due to a high prevalence of epileptiform discharges. The 2011 study found a higher prevalence (26%) of epileptiform discharges when using 23-hour and sleep-deprived EEGs in comparison with other methods of activation (hyperventilation or photostimulation) and conventional EEG. We sought to replicate the 2011 results using conventional EEG with the added qEEG technologies of automatic spike detection and low-resolution electromagnetic tomography analysis (LORETA) brain mapping. Our results showed 32% prevalence of epileptiform discharges, which suggests that an EEG should be considered prior to prescribing stimulant medications.

  9. Sleep in the domestic hen (Gallus domesticus).

    Science.gov (United States)

    van Luijtelaar, E L; van der Grinten, C P; Blokhuis, H J; Coenen, A M

    1987-01-01

    Electrophysiological recordings were made of five closely observed hens, all permanently implanted with both EEG and EMG electrodes. Five behavioural postures were distinguished and percentages of wakefulness, sleep and presumably paradoxical sleep (PS) were determined during the third and sixth hour of the dark period. Substantial agreement was generally found between behaviour and sleep with the exception of sitting or standing motionless with at least one eye open. During two thirds of this behavioural posture, the EEG showed large amplitude slow waves undistinguishable from slow wave sleep. Characteristics of PS were determined: periods were short, whereas its percentage increased during the night. Furthermore, EMG atonia was never found. An all night recording was made, and delta activity (2-5 Hz) was filtered and plotted against time for three of the hens. A significant decrease in delta activity across the night was found. Differences and similarities between sleep in hens and in mammals are discussed. Although large similarities exist it is concluded that some properties of birds' sleep make it unique and are a challenge for further study.

  10. INTELLIGENT EEG ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. Murugesan

    2011-04-01

    Full Text Available Brain is the wonderful organ of human body. It is the agent of information collection and transformation. The neural activity of the human brain starts between the 17th and 23rd week of prenatal development. It is believed that from this early stage and throughout life electrical signals are generated by the brain function but also the status of the whole body. Understanding of neuronal functions and neurophysiologic properties of the brain function together with the mechanisms underlying the generation of signals and their recording is, however, vital for those who deal with these signals for detection, diagnosis, and treatment of brain disorders and the related diseases. This research paper concentrated only on brain tumor detection. Using minimum electrode location the brain tumor possibility is detected. This paper is separated into two parts: the First part deals with electrode location on the scalp and the second part deals with how the fuzzy logic rule based algorithm is applied for estimation of brain tumor from EEG. Basically 8 locations are identified. After acquiring the pure EEG signal Fuzzy Logic Rule is applied to predict the possibility of brain tumor.

  11. Medical Imaging for Understanding Sleep Regulation

    Science.gov (United States)

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  12. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  13. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  14. Brain Networks are Independently Modulated by Donepezil, Sleep, and Sleep Deprivation.

    Science.gov (United States)

    Wirsich, Jonathan; Rey, Marc; Guye, Maxime; Bénar, Christian; Lanteaume, Laura; Ridley, Ben; Confort-Gouny, Sylviane; Cassé-Perrot, Catherine; Soulier, Elisabeth; Viout, Patrick; Rouby, Franck; Lefebvre, Marie-Noëlle; Audebert, Christine; Truillet, Romain; Jouve, Elisabeth; Payoux, Pierre; Bartrés-Faz, David; Bordet, Régis; Richardson, Jill C; Babiloni, Claudio; Rossini, Paolo Maria; Micallef, Joelle; Blin, Olivier; Ranjeva, Jean-Philippe

    2018-05-01

    Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly linked to donepezil intake and sleep deprivation. Taking into account the sleep stages extracted from the EEG data we revealed that a network linked to sleep is interacting with sleep deprivation but not with medication intake. We successfully extracted the functional resting-state networks modified by donepezil intake, sleep and SD. We observed donepezil induced whole brain connectivity alterations forming a network separated from the changes induced by sleep and SD, a result which shows the utility of this approach to check for the validity of pharmacological resting-state analysis of the tested medications without the need of taking into account the subject specific vigilance.

  15. Healthy Sleep Habits

    Science.gov (United States)

    ... Sleep Apnea Testing CPAP Healthy Sleep Habits Healthy Sleep Habits Your behaviors during the day, and especially ... team at an AASM accredited sleep center . Quick Sleep Tips Follow these tips to establish healthy sleep ...

  16. Obstructive Sleep Apnea

    Medline Plus

    Full Text Available ... find out more. Obstructive Sleep Apnea (OSA) Obstructive Sleep Apnea (OSA) Obstructive sleep apnea (OSA) is a ... find out more. Obstructive Sleep Apnea (OSA) Obstructive Sleep Apnea (OSA) Obstructive sleep apnea (OSA) is a ...

  17. Obstructive Sleep Apnea

    Science.gov (United States)

    ... find out more. Obstructive Sleep Apnea (OSA) Obstructive Sleep Apnea (OSA) Obstructive sleep apnea (OSA) is a ... find out more. Obstructive Sleep Apnea (OSA) Obstructive Sleep Apnea (OSA) Obstructive sleep apnea (OSA) is a ...

  18. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  19. The fission yeast spindle orientation checkpoint: a model that generates tension?

    Science.gov (United States)

    Gachet, Yannick; Reyes, Céline; Goldstone, Sherilyn; Tournier, Sylvie

    2006-10-15

    In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression. Copyright 2006 John Wiley & Sons, Ltd.

  20. Educational simulation of the electroencephalogram (EEG)

    NARCIS (Netherlands)

    Beer, de N.A.M.; Meurs, van W.L.; Grit, M.B.M.; Good, M.L.; Gravenstein, D.

    2001-01-01

    We describe a model for simulating a spontaneous electroencephalogram (EEG) and for simulating the effects of anesthesia on the EEG, to allow anesthesiologists and EEG technicians to learn and practice intraoperative EEG monitoring. For this purpose, we developed a linear model to manipulate the

  1. Sleep Apnea

    Science.gov (United States)

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or ...

  2. EEG criteria predictive of complicated evolution in idiopathic rolandic epilepsy.

    Science.gov (United States)

    Massa, R; de Saint-Martin, A; Carcangiu, R; Rudolf, G; Seegmuller, C; Kleitz, C; Metz-Lutz, M N; Hirsch, E; Marescaux, C

    2001-09-25

    Although so-called "benign" epilepsy with centrotemporal spikes (BECTS) always has an excellent prognosis with regard to seizure remission, behavioral problems and cognitive dysfunctions may sometimes develop in its course. To search for clinical or EEG markers allowing early detection of patients prone to such complications, the authors conducted a prospective study in a cohort of unselected patients with BECTS. In 35 children with BECTS, academic, familial, neurologic, neuropsychological, and wake and sleep EEG evaluations were repeated every 6 to 12 months from the beginning of the seizure disorder up to complete recovery. In 25 of 35 patients (72%), behavioral and intellectual functioning remained unimpaired. In 10 of 35 patients (28%), educational performance and familial maladjustment occurred. These sociofamilial problems were correlated with impulsivity, learning difficulties, attention disorders, and minor (7/35 cases, 20%) or serious (3/35 cases, 8%) auditory-verbal or visual-spatial deficits. Worsening phases started 2 to 36 months after onset and persisted for 9 to 39 months. Occurrence of atypical evolutions was significantly correlated with five qualitative and one quantitative interictal EEG pattern: intermittent slow-wave focus, multiple asynchronous spike-wave foci, long spike-wave clusters, generalized 3-c/s "absence-like" spike-wave discharges, conjunction of interictal paroxysms with negative or positive myoclonia, and abundance of interictal abnormalities during wakefulness and sleep. Clinical deterioration was not linked with seizure characteristics or treatment. Different combinations of at least three of six distinctive interictal EEG patterns and their long-lasting (> or =6-month) persistence seem to be the hallmarks of patients with BECTS at risk for neuropsychological impairments.

  3. EEG in connection with coma.

    Science.gov (United States)

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  4. Ultradian and circadian modulation of dream recall: EEG correlates and age effects.

    Science.gov (United States)

    Chellappa, Sarah Laxhmi; Cajochen, Christian

    2013-08-01

    Dreaming occurs during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, which both are regulated by homeostatic, ultradian, and circadian processes. However, the magnitude of how ultradian REM and NREM sleep and its EEG correlates impact onto dream recall remains fairly unknown. In this review, we address three questions: 1. Is there an ultradian NREM-REM sleep modulation in successful dream recall, which is gated by the circadian clock? 2. What are the key electrophysiological correlates that account for dream recall during NREM and REM sleep and 3. Are there age-related changes in the ultradian and circadian regulation in dream recall and its electrophysiological correlates? Knowledge on the specific frequency and topography NREM and REM sleep differences prior to dream recall may pinpoint to the cerebral correlates that account for this cognitive process, and hint to their possible physiological meaning. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Recent progress of neuroimaging studies on sleeping brain

    International Nuclear Information System (INIS)

    Sasaki, Yuka

    2012-01-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed. (author)

  6. [Recent progress of neuroimaging studies on sleeping brain].

    Science.gov (United States)

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  7. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.

    Directory of Open Access Journals (Sweden)

    Mohammad Niknazar

    Full Text Available Sleep, specifically non-rapid eye movement (NREM sleep, is thought to play a critical role in the consolidation of recent memories. Two main oscillatory activities observed during NREM, cortical slow oscillations (SO, 0.5-1.0 Hz and thalamic spindles (12-15 Hz, have been shown to independently correlate with memory improvement. Yet, it is not known how these thalamocortical events interact, or the significance of this interaction, during the consolidation process. Here, we found that systemic administration of the GABAergic drug (zolpidem increased both the phase-amplitude coupling between SO and spindles, and verbal memory improvement in humans. These results suggest that thalamic spindles that occur during transitions to the cortical SO Up state are optimal for memory consolidation. Our study predicts that the timely interactions between cortical and thalamic events during consolidation, contribute to memory improvement and is mediated by the level of inhibitory neurotransmission.

  8. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study.

    Science.gov (United States)

    Riedner, Brady A; Goldstein, Michael R; Plante, David T; Rumble, Meredith E; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M

    2016-04-01

    To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4-8 Hz) and alpha (8-12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. © 2016 Associated Professional Sleep Societies, LLC.

  9. Correntropy measures to detect daytime sleepiness from EEG signals

    International Nuclear Information System (INIS)

    Melia, Umberto; Vallverdú, Montserrat; Caminal, Pere; Guaita, Marc; Montserrat, Josep M; Vilaseca, Isabel; Salamero, Manel; Gaig, Carles; Santamaria, Joan

    2014-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders and has a great impact on patients’ lives. While many studies have been carried out in order to assess daytime sleepiness, automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on correntropy function analysis of EEG signals was proposed in order to detect patients suffering from EDS. Multichannel EEG signals were recorded during five Maintenance of Wakefulness Tests (MWT) and Multiple Sleep Latency Tests (MSLT) alternated throughout the day for patients suffering from sleep disordered breathing (SDB). A group of 20 patients with EDS was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60 s EEG windows in a waking state. Measures obtained from the cross-correntropy function (CCORR) and auto-correntropy function (ACORR) were calculated in the EEG frequency bands: δ, 0.1–4 Hz; θ, 4–8 Hz; α, 8–12 Hz; β, 12–30 Hz; total band TB, 0.1–45 Hz. These functions permitted the quantification of complex signal properties and the non-linear couplings between different areas of the scalp. Statistical differences between EDS and WDS groups were mainly found in the β band during MSLT events (p-value < 0.0001). The WDS group presented more complexity in the occipital zone than the EDS group, while a stronger nonlinear coupling between the occipital and frontal regions was detected in EDS patients than in the WDS group. At best, ACORR and CCORR measures yielded sensitivity and specificity above 80% and the area under ROC curve (AUC) was above 0.85 in classifying EDS and WDS patients. These performances represent an improvement with respect to classical EEG indices applied in the same database (sensitivity and specificity were never above 80% and AUC was under 0.75). (paper)

  10. Landau-Kleffner Syndrome, Electrical Status Epilepticus in Slow Wave Sleep, and Language Regression in Children

    Science.gov (United States)

    McVicar, Kathryn A.; Shinnar, Shlomo

    2004-01-01

    The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…

  11. Interobserver variability in recognizing arousal in respiratory sleep disorders.

    Science.gov (United States)

    Drinnan, M J; Murray, A; Griffiths, C J; Gibson, G J

    1998-08-01

    Daytime sleepiness is a common consequence of repeated arousal in obstructive sleep apnea (OSA). Arousal indices are sometimes used to make decisions on treatment, but there is no evidence that arousals are detected similarly even by experienced observers. Using the American Sleep Disorders Association (ASDA) definition of arousal in terms of the accompanying electroencephalogram (EEG) changes, we have quantified interobserver agreement for arousal scoring and identified factors affecting it. Ten patients with suspected OSA were studied; three representative EEG events during each of light, slow-wave, and rapid-eye-movement (REM) sleep were extracted from each record (90 events total) and evaluated by experts in 14 sleep laboratories. Observers differed (ANOVA, p ASDA definition of arousal is only moderately repeatable. Account should be taken of this variability when results from different centers are compared.

  12. Experimental study on bearing preload optimum of machine tool spindle

    International Nuclear Information System (INIS)

    Xu Tao; Xu Guanghua; Zhang Qin; Hua Cheng; Zhang Hu; Jiang Kuosheng

    2012-01-01

    An experimental study is conducted to investigate the possibility and the effect of temperature rise and vibration level of bearing by adjusting axial preloads and radial loads in spindle bearing test rig. The shaft of the test rig is driven by a motorized high speed spindle at the range of 0∼20000 rpm. The axial preloads and radial loads on bearings are controlled by using hydraulic pressure which can be adjusted automatically. Temperature rise and radial vibration of test bearings are measured by thermocouples and Polytec portable laser vibrometer PDV100. Experiment shows that the temperature rise of bearings is nonlinear varying with the increase of radial loads, but temperature rise almost increases linearly with the increase of axial preload and rotating speed. In this paper, an alternate axial preload is used for bearings. When the rotating speed passes through the critical speed of the shaft, axial preload of bearings will have a remarkable effect. The low preload could reduce bearing vibration and temperature rise for bearings as well. At the others speed, the high preload could improve the vibration performance of high speed spindle and the bearing temperature was lower than that of the constant pressure preload spindle.

  13. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucia; Kovačovicová, Kristina; Dang-Nguyen, T.; Šodek, Martin; Škultéty, M.; Anger, Martin

    2016-01-01

    Roč. 11, č. 2 (2016), e0149535-e0149535 E-ISSN 1932-6203 R&D Projects: GA ČR GAP502/12/2201 Institutional support: RVO:67985904 Keywords : mitotoc spindle * size * cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  14. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  15. Discrimination between micronuclei induced by spindle poisons and ...

    African Journals Online (AJOL)

    Discrimination between micronuclei induced by spindle poisons and clastogens by using toad bone marrow polychromatic erythrocytes. ... Egyptian Journal of Biology ... The used chemicals induced high percentages of micronuclei with variable sizes, which clarify the sensitivity of bone marrow cells of Bufo regularis to ...

  16. Electroencephalogy (EEG) Feedback in Decision-Making

    Science.gov (United States)

    2015-08-26

    Electroencephalogy ( EEG ) Feedback In Decision- Making The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful...feedback when training rapid decision-making. More specifically, EEG will allow us to provide online feedback about the neural decision processes...Electroencephalogy ( EEG ) Feedback In Decision-Making Report Title The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful

  17. Intermediate stage of sleep and acute cerveau isolé preparation in the rat.

    Science.gov (United States)

    User, P; Gioanni, H; Gottesmann, C

    1980-01-01

    The acute cerveau isole rat shows spindle bursts of large amplitude alternating with low voltage activity in the frontal cortex and continuous theta rhythm in the dorsal hippocampus. These patterns closely resemble an "intermediate" stage of sleep-waking cycle, when the forebrain structures seem to be functionally disconnected from the brainstem.

  18. Sleep, Cognition, and Normal Aging: Integrating a Half-Century of Multidisciplinary Research

    Science.gov (United States)

    Scullin, Michael K.; Bliwise, Donald L.

    2014-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age there are substantial changes to sleep quantity and quality including changes to slow wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half-century of research studies across 7 diverse correlational and experimental literature domains, which historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects (including correlations in the unexpected, negative direction) in healthy older adults indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  19. No Associations between Interindividual Differences in Sleep Parameters and Episodic Memory Consolidation.

    Science.gov (United States)

    Ackermann, Sandra; Hartmann, Francina; Papassotiropoulos, Andreas; de Quervain, Dominique J-F; Rasch, Björn

    2015-06-01

    Sleep and memory are stable and heritable traits that strongly differ between individuals. Sleep benefits memory consolidation, and the amount of slow wave sleep, sleep spindles, and rapid eye movement sleep have been repeatedly identified as reliable predictors for the amount of declarative and/or emotional memories retrieved after a consolidation period filled with sleep. These studies typically encompass small sample sizes, increasing the probability of overestimating the real association strength. In a large sample we tested whether individual differences in sleep are predictive for individual differences in memory for emotional and neutral pictures. Between-subject design. Cognitive testing took place at the University of Basel, Switzerland. Sleep was recorded at participants' homes, using portable electroencephalograph-recording devices. Nine hundred-twenty-nine healthy young participants (mean age 22.48 ± 3.60 y standard deviation). None. In striking contrast to our expectations as well as numerous previous findings, we did not find any significant correlations between sleep and memory consolidation for pictorial stimuli. Our results indicate that individual differences in sleep are much less predictive for pictorial memory processes than previously assumed and suggest that previous studies using small sample sizes might have overestimated the association strength between sleep stage duration and pictorial memory performance. Future studies need to determine whether intraindividual differences rather than interindividual differences in sleep stage duration might be more predictive for the consolidation of emotional and neutral pictures during sleep. © 2015 Associated Professional Sleep Societies, LLC.

  20. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    Science.gov (United States)

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Vigilance, sleep and epilepsy.

    Science.gov (United States)

    Vieth, J

    1986-01-01

    The correlations between vigilance and epilepsy are manifold. Nearly all epileptic seizures cause a diminution of vigilance extending to unconsciousness. Many of the influences triggering or inhibiting epileptic seizures produce alterations of vigilance or are produced by them. Nearly all chemical influences more or less cause diminution of vigilance. The enhancement of vigilance may inhibit seizures. Decreasing vigilance may act vice versa. As a means to enhance vigilance afferent stimuli are able to trigger seizures. This may be accomplished when singular or rhythmic stimulation of afferents gets the already excited neuronal system oscillating. This principle is also responsible for the strong correlation between triggering of seizures and the sleep/waking cycle with its different grades of neuronal synchronization. On the other hand, inhibition of seizures is possible by a continuously applied stimulation load, which may disturb the increasing excitatory oscillation. Also, conditioning may trigger or inhibit seizures. But the EEG biofeedback only is used to decrease abnormal neuronal activity.

  2. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  3. Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1995-01-01

    We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera...... as EEG changes. Dividing the image into 10 subregions revealed that reflectance changes at the rhythmical slow wave activity band (RSA, 4-6 Hz) persisted in localized regions during QS and REM sleep, but regional changes showed considerable wave-by-wave independence between areas and from slow wave...

  4. Assessment of Itakura Distance as a valuable feature for computer-aided classification of sleep stages.

    Science.gov (United States)

    Ebrahimi, F; Mikaili, M; Estrada, E; Nazeran, H

    2007-01-01

    Staging and detection of various states of sleep derived from EEG and other biomedical signals have proven to be very helpful in diagnosis, prognosis and remedy of various sleep related disorders. The time consuming and costly process of visual scoring of sleep stages by a specialist has always motivated researchers to develop an automatic sleep scoring system and the first step toward achieving this task is finding discriminating characteristics (or features) for each stage. A vast variety of these features and methods have been investigated in the sleep literature with different degrees of success. In this study, we investigated the performance of a newly introduced measure: the Itakura Distance (ID), as a similarity measure between EEG and EOG signals. This work demonstrated and further confirmed the outcomes of our previous research that the Itakura Distance serves as a valuable similarity measure to differentiate between different sleep stages.

  5. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    Science.gov (United States)

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  6. Physiology of Normal Sleep: From Young to Old

    Directory of Open Access Journals (Sweden)

    V Mohan Kumar

    2014-03-01

    Full Text Available Human sleep, defined on the basis of electroencephalogram (EEG, electromyogram(EMG and electrooculogram (EOG, is divided into rapid eye movement (REM sleepand four stages of non–rapid eye movement (NREM sleep. Collective monitoring andrecording of physiological data during sleep is called polysomnography. Sleep whichnormally starts with a period of NREM alternates with REM, about 4-5 times, everynight. Sleep pattern changes with increasing age. Newborns sleep for about 14-16hours in a day of 24 hours. Although there is a wide variation among individuals, sleepof 7-8.5 hours is considered fully restorative in adults. Apart from restorative andrecovery function, energy conservation could be one of the functions of sleep. The roleof sleep in neurogenesis, memory consolidation and brain growth has been suggested.Though progress in medical science has vastly improved our understanding of sleepphysiology, we still do not know all the functions of sleep.Key words : electroencephalogram, electromyogram, electrooculogram,polysomnography, REM sleep, non–REM sleep, newborns, circadian rhythm, autoregulation,sleep function

  7. Transient epileptic amnesia differentiated from psychogenic "fugue": neuropsychological, EEG, and PET findings.

    Science.gov (United States)

    Kopelman, M D; Panayiotopoulos, C P; Lewis, P

    1994-08-01

    A patient had repeated episodes of transient loss of memory, which had been attributed to psychogenic causes. Preservation of his sense of personal identity and the presence of repetitive questioning indicated an organic basis, however, and the multiplicity of the attacks and their brief duration suggested an epileptic aetiology. Although three standard EEGs, CT and MRI were all normal, two sleep EEGs confirmed bilateral foci in the temporal lobes. The attacks responded to an anticonvulsant. A fluoro-deoxyglucose PET scan, performed a few months after the most recent attack, was normal. The patient also had impaired anterograde memory that persisted six months after recovery from the acute attacks.

  8. Functional neuroimaging insights into the physiology of human sleep.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-12-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.

  9. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  10. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  11. Physiological artifacts in scalp EEG and ear-EEG.

    Science.gov (United States)

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  12. Acquired auditory agnosia in childhood and normal sleep electroencephalography subsequently diagnosed as Landau-Kleffner syndrome: a report of three cases.

    Science.gov (United States)

    van Bogaert, Patrick; King, Mary D; Paquier, Philippe; Wetzburger, Catherine; Labasse, Catherine; Dubru, Jean-Marie; Deonna, Thierry

    2013-06-01

      We report three cases of Landau-Kleffner syndrome (LKS) in children (two females, one male) in whom diagnosis was delayed because the sleep electroencephalography (EEG) was initially normal.   Case histories including EEG, positron emission tomography findings, and long-term outcome were reviewed.   Auditory agnosia occurred between the age of 2 years and 3 years 6 months, after a period of normal language development. Initial awake and sleep EEG, recorded weeks to months after the onset of language regression, during a nap period in two cases and during a full night of sleep in the third case, was normal. Repeat EEG between 2 months and 2 years later showed epileptiform discharges during wakefulness and strongly activated by sleep, with a pattern of continuous spike-waves during slow-wave sleep in two patients. Patients were diagnosed with LKS and treated with various antiepileptic regimens, including corticosteroids. One patient in whom EEG became normal on hydrocortisone is making significant recovery. The other two patients did not exhibit a sustained response to treatment and remained severely impaired.   Sleep EEG may be normal in the early phase of acquired auditory agnosia. EEG should be repeated frequently in individuals in whom a firm clinical diagnosis is made to facilitate early treatment. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  13. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Nina Herzog

    Full Text Available Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin, the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory and a list of semantically associated word pairs (declarative memory. After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG. Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also

  14. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Science.gov (United States)

    Herzog, Nina; Friedrich, Alexia; Fujita, Naoko; Gais, Steffen; Jauch-Chara, Kamila; Oltmanns, Kerstin M; Benedict, Christian

    2012-01-01

    Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the

  15. Intensive Sleep Re-Training: From Bench to Bedside

    Directory of Open Access Journals (Sweden)

    Leon Lack

    2017-03-01

    Full Text Available Intensive sleep re-training is a promising new therapy for chronic insomnia. Therapy is completed over a 24-h period during a state of sleep deprivation. Improvements of sleep and daytime impairments are comparable to the use of stimulus control therapy but with the advantage of a rapid reversal of the insomnia. The initial studies have been laboratory based and not readily accessible to the patient population. However, new smart phone technology, using a behavioral response to external stimuli as a measure of sleep/wake state instead of EEG determination of sleep, has made this new therapy readily available. Technological improvements are still being made allowing the therapy to provide further improvements in the effectiveness of Intensive Sleep Re-training.

  16. Mammalian sleep

    Science.gov (United States)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  17. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  18. Ultradian rhythms in pituitary and adrenal hormones: their relations to sleep.

    Science.gov (United States)

    Gronfier, C; Brandenberger, G

    1998-02-01

    Sleep and circadian rhythmicity both influence the 24-h profiles of the main pituitary and adrenal hormones. From studies using experimental strategies including complete and partial sleep deprivation, acute and chronic shifts in the sleep period, or complete sleep-wake reversal as occurs with transmeridian travel or shift-work, it appears that prolactin (PRL) and growth hormone (GH) profiles are mainly sleep related, while cortisol profile is mainly controlled by the circadian clock with a weak influence of sleep processes. Thyrotropin (TSH) profile is under the dual influence of sleep and circadian rhythmicity. Recent studies, in which we used spectral analysis of sleep electroencephalogram (EEG) rather than visual scoring of sleep stages, have evaluated the temporal associations between pulsatile hormonal release and the variations in sleep EEG activity. Pulses in PRL and in GH are positively linked to increases in delta wave activity, whereas TSH and cortisol pulses are related to decreases in delta wave activity. It is yet not clear whether sleep influences endocrine secretion, or conversely, whether hormone secretion affects sleep structure. These well-defined relationships raise the question of their physiological significance and of their clinical implications.

  19. EEG frequency PCA in EEG-ERP dynamics.

    Science.gov (United States)

    Barry, Robert J; De Blasio, Frances M

    2018-05-01

    Principal components analysis (PCA) has long been used to decompose the ERP into components, and these mathematical entities are increasingly accepted as meaningful and useful representatives of the electrophysiological components constituting the ERP. A similar expansion appears to be beginning in regard to decomposition of the EEG amplitude spectrum into frequency components via frequency PCA. However, to date, there has been no exploration of the brain's dynamic EEG-ERP linkages using PCA decomposition to assess components in each measure. Here, we recorded intrinsic EEG in both eyes-closed and eyes-open resting conditions, followed by an equiprobable go/no-go task. Frequency PCA of the EEG, including the nontask resting and within-task prestimulus periods, found seven frequency components within the delta to beta range. These differentially predicted PCA-derived go and no-go N1 and P3 ERP components. This demonstration suggests that it may be beneficial in future brain dynamics studies to implement PCA for the derivation of data-driven components from both the ERP and EEG. © 2017 Society for Psychophysiological Research.

  20. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  1. Sustained attention performance during sleep deprivation associates with instability in behavior and physiologic measures at baseline.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Yeo, Sing-Chen; Lee, Ivan Tian-Guang; Tan, Luuan-Chin; Lau, Pauline; Cai, Shiwei; Zhang, Xiaodong; Puvanendran, Kathiravelu; Gooley, Joshua J

    2014-01-01

    To identify baseline behavioral and physiologic markers that associate with individual differences in sustained attention during sleep deprivation. In a retrospective study, ocular, electrocardiogram, and electroencephalogram (EEG) measures were compared in subjects who were characterized as resilient (n = 15) or vulnerable (n = 15) to the effects of total sleep deprivation on sustained attention. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School Singapore. Healthy volunteers aged 22-32 years from the general population. Subjects were kept awake for at least 26 hours under constant environmental conditions. Every 2 hours, sustained attention was assessed using a 10-minute psychomotor vigilance task (PVT). During baseline sleep and recovery sleep, EEG slow wave activity was similar in resilient versus vulnerable subjects, suggesting that individual differences in vulnerability to sleep loss were not related to differences in homeostatic sleep regulation. Rather, irrespective of time elapsed since wake, subjects who were vulnerable to sleep deprivation exhibited slower and more variable PVT response times, lower and more variable heart rate, and higher and more variable EEG spectral power in the theta frequency band (6.0-7.5 Hz). Performance decrements in sustained attention during sleep deprivation associate with instability in behavioral and physiologic measures at baseline. Small individual differences in sustained attention that are present at baseline are amplified during prolonged wakefulness, thus contributing to large between-subjects differences in performance and sleepiness.

  2. Effect of a medicinal plant (Passiflora incarnata L) on sleep

    OpenAIRE

    Guerrero, Fructuoso Ayala; Medina, Graciela Mexicano

    2017-01-01

    INTRODUCTION: Extracts of the plant Passiflora incarnata L. (Passifloraceae) were administered intraperitoneally in order to test its effects on sleep. METHOD: Experiments were carried out on chronically implanted male adult wistar rats to obtain cerebral (EEG), ocular (EOG) and muscular (EMG) activities throughout their states of vigilance. Polygraphic recordings were taken during 9 continuous hours before and after t...

  3. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  4. Sleep disorders - overview

    Science.gov (United States)

    Insomnia; Narcolepsy; Hypersomina; Daytime sleepiness; Sleep rhythm; Sleep disruptive behaviors; Jet lag ... excessive daytime sleepiness) Problems sticking to a regular sleep schedule (sleep rhythm problem) Unusual behaviors during sleep ( ...

  5. Central sleep apnea

    Science.gov (United States)

    Sleep apnea - central; Obesity - central sleep apnea; Cheyne-Stokes - central sleep apnea; Heart failure - central sleep apnea ... Central sleep apnea results when the brain temporarily stops sending signals to the muscles that control breathing. The condition ...

  6. Sleep Apnea (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Obstructive Sleep Apnea KidsHealth / For Parents / Obstructive Sleep Apnea What's ... How Is Sleep Apnea Treated? Print What Is Sleep Apnea? Brief pauses in breathing during sleep are ...

  7. Consistently high sports/exercise activity is associated with better sleep quality, continuity and depth in midlife women: the SWAN sleep study.

    Science.gov (United States)

    Kline, Christopher E; Irish, Leah A; Krafty, Robert T; Sternfeld, Barbara; Kravitz, Howard M; Buysse, Daniel J; Bromberger, Joyce T; Dugan, Sheila A; Hall, Martica H

    2013-09-01

    To examine relationships between different physical activity (PA) domains and sleep, and the influence of consistent PA on sleep, in midlife women. Cross-sectional. Community-based. 339 women in the Study of Women's Health Across the Nation Sleep Study (52.1 ± 2.1 y). None. Sleep was examined using questionnaires, diaries and in-home polysomnography (PSG). PA was assessed in three domains (Active Living, Household/Caregiving, Sports/Exercise) using the Kaiser Physical Activity Survey (KPAS) up to 4 times over 6 years preceding the sleep assessments. The association between recent PA and sleep was evaluated using KPAS scores immediately preceding the sleep assessments. The association between the historical PA pattern and sleep was examined by categorizing PA in each KPAS domain according to its pattern over the 6 years preceding sleep assessments (consistently low, inconsistent/consistently moderate, or consistently high). Greater recent Sports/Exercise activity was associated with better sleep quality (diary "restedness" [P sleep continuity (diary sleep efficiency [SE; P = 0.02]) and depth (higher NREM delta electroencephalographic [EEG] power [P = 0.04], lower NREM beta EEG power [P Sports/Exercise activity was also associated with better Pittsburgh Sleep Quality Index scores (P = 0.02) and higher PSG-assessed SE (P sleep and Active Living or Household/Caregiving activity (either recent or historical pattern) were noted. Consistently high levels of recreational physical activity, but not lifestyle- or household-related activity, are associated with better sleep in midlife women. Increasing recreational physical activity early in midlife may protect against sleep disturbance in this population.

  8. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study.

    Science.gov (United States)

    Moldofsky, Harvey; Patcai, John

    2011-03-24

    The long term adverse effects of Severe Acute Respiratory Syndrome (SARS), a viral disease, are poorly understood. Sleep physiology, somatic and mood symptoms of 22 Toronto subjects, 21 of whom were healthcare workers, (19 females, 3 males, mean age 46.29 yrs.+/- 11.02) who remained unable to return to their former occupation (mean 19.8 months, range: 13 to 36 months following SARS) were compared to 7 healthy female subjects. Because of their clinical similarities to patients with fibromyalgia syndrome (FMS) these post-SARS subjects were similarly compared to 21 drug free female patients, (mean age 42.4 +/- 11.8 yrs.) who fulfilled criteria for fibromyalgia. Chronic post-SARS is characterized by persistent fatigue, diffuse myalgia, weakness, depression, and nonrestorative sleep with associated REM-related apneas/hypopneas, an elevated sleep EEG cyclical alternating pattern, and alpha EEG sleep anomaly. Post- SARS patients had symptoms of pre and post-sleep fatigue and post sleep sleepiness that were similar to the symptoms of patients with FMS, and similar to symptoms of patients with chronic fatigue syndrome. Both post-SARS and FMS groups had sleep instability as indicated by the high sleep EEG cyclical alternating pattern rate. The post-SARS group had a lower rating of the alpha EEG sleep anomaly as compared to the FMS patients. The post-SARS group also reported less pre-sleep and post-sleep musculoskeletal pain symptoms. The clinical and sleep features of chronic post-SARS form a syndrome of chronic fatigue, pain, weakness, depression and sleep disturbance, which overlaps with the clinical and sleep features of FMS and chronic fatigue syndrome.

  9. Radiation-induced spindle cell sarcoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  10. Left atrial spindle cell sarcoma – Case report

    Directory of Open Access Journals (Sweden)

    Nihar Mehta

    2012-07-01

    Full Text Available Primary spindle cell sarcoma of the left atrium is an extremely rare tumour. Surgical excision is the mainstay of treatment since it responds poorly to chemotherapy or radiotherapy. In spite of all the treatment, the prognosis remains poor due to inadvertent delay in diagnosis, few therapeutic options and propensity to metastasize. We present a 47-year-old male who underwent a surgical excision of a left atrial mass in February 2010. It was proved to be a high-grade spindle cell sarcoma on histopathology. He presented again in October 2010 with recurrence of the tumour for which he was re-operated. However, the tumour recurred again within one month, to which the patient succumbed.

  11. Cytokeratin: a Shortcut to Diagnose Spindle Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Dehghani Nazhvani A

    2017-09-01

    Full Text Available A relatively rare subtype of squamous cell carcinoma (SCC is spindle cell carcinoma (SPCC. It is composed of epithelium-derived spindle cells arranged in sheets with mesenchymal properties and small, hard-ly detectable regions of SCC, challenging its definite diagnosis. We encountered five cases of SPCC. In case one, chronic inflammation and subepithelial blister with leukoplakia was found 5 years before our examination. And later, exophytic features, keratotic papules and scar with elevated margins was seen on lateral border of the tongue. In case two, three and four, an abnormal soft tissue elevations were examined, and in the fifth case we examined the soft and bony speci-men from the posterior aspect of maxillary ridge. We evaluated all of them histologically and immunohistochemically for cytokeratin to reach final diagnosis.

  12. CD30+ lymphoproliferative disorder with spindle-cell morphology.

    Science.gov (United States)

    Martires, Kathryn J; Cohen, Brandon E; Cassarino, David S

    2016-11-01

    Lymphomatoid papulosis (LyP) is classified as a CD30+ primary cutaneous lymphoproliferative disease. The phenotypic variability along the spectrum of CD30+ lymphoproliferative diseases is highlighted by the distinct histologic subtypes of LyP types A, B, C, and the more recently described types D, E, and F. We report the case of an elderly woman with a clinical presentation and histopathologic findings consistent with LyP, whose atypical CD30+ infiltrate uniquely demonstrated a spindle-cell morphology. To our knowledge, this is the first reported case of LyP characterized by CD30+ spindle-shaped cells, and may represent a new and distinct histologic variant of LyP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Relations between ultrastructure of mitotic spindle and chromosome translocation

    Directory of Open Access Journals (Sweden)

    Jadwiga A. Tarkowska

    2014-01-01

    Full Text Available Dividing endosperm cells of Haemanthus katherinae Bak. treated with an 0.25 per cent mixture of water-soluble glycosides from Nerium oleander were insepected in a light microscope (LM and severe disturbances were found in all phases of mitosis. The same cells were observed in the electron microscope (EM and relations were noted and analysed between the chromosome arrangement and the submicroscopic structure of the mitotuc spindle. The successive steps in the disintegration of the formed spindle are described: fragmentatiun of all microtubules (MTs starting from the poles, disappearance of non-kinetachore MTs and further the external MTs of the kineto,chore bundle. The central (internal parallel ones remain the longest at the kinerf,ochares. Oleander glycosides cause disintegration of the existing MTs and prevent formation of new ones. The causes of restitution transformations in the successive phases of mitosis are discussed.

  14. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Science.gov (United States)

    Marston, Adele L.; Wassmann, Katja

    2017-01-01

    Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045

  15. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Directory of Open Access Journals (Sweden)

    Adele L. Marston

    2017-12-01

    Full Text Available Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3, and Aurora B and C (Ipl1 will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.

  16. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  17. Relations between ultrastructure of mitotic spindle and chromosome translocation

    OpenAIRE

    Jadwiga A. Tarkowska

    2014-01-01

    Dividing endosperm cells of Haemanthus katherinae Bak. treated with an 0.25 per cent mixture of water-soluble glycosides from Nerium oleander were insepected in a light microscope (LM) and severe disturbances were found in all phases of mitosis. The same cells were observed in the electron microscope (EM) and relations were noted and analysed between the chromosome arrangement and the submicroscopic structure of the mitotuc spindle. The successive steps in the disintegration of the formed spi...

  18. Monitoring sleep depth: analysis of bispectral index (BIS) based on polysomnographic recordings and sleep deprivation.

    Science.gov (United States)

    Giménez, Sandra; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miguel Ángel; Pujol, Anna; Baxarias, Pilar; Antonijoan, Rosa Maria

    2017-02-01

    The assessment and management of sleep are increasingly recommended in the clinical practice. Polysomnography (PSG) is considered the gold standard test to monitor sleep objectively, but some practical and technical constraints exist due to environmental and patient considerations. Bispectral index (BIS) monitoring is commonly used in clinical practice for guiding anesthetic administration and provides an index based on relationships between EEG components. Due to similarities in EEG synchronization between anesthesia and sleep, several studies have assessed BIS as a sleep monitor with contradictory results. The aim of this study was to evaluate objectively both the feasibility and reliability of BIS for sleep monitoring through a robust methodology, which included full PSG recordings at a baseline situation and after 40 h of sleep deprivation. Results confirmed that the BIS index was highly correlated with the hypnogram (0.89 ± 0.02), showing a progressive decrease as sleep deepened, and an increase during REM sleep (awake: 91.77 ± 8.42; stage N1: 83.95 ± 11.05; stage N2: 71.71 ± 11.99; stage N3: 42.41 ± 9.14; REM: 80.11 ± 8.73). Mean and median BIS values were lower in the post-deprivation night than in the baseline night, showing statistical differences for the slow wave sleep (baseline: 42.41 ± 9.14 vs. post-deprivation: 39.49 ± 10.27; p = 0.02). BIS scores were able to discriminate properly between deep (N3) and light (N1, N2) sleep. BIS values during REM overlapped those of other sleep stages, although EMG activity provided by the BIS monitor could help to identify REM sleep if needed. In conclusion, BIS monitors could provide a useful measure of sleep depth in especially particular situations such as intensive care units, and they could be used as an alternative for sleep monitoring in order to reduce PSG-derived costs and to increase capacity in ambulatory care.

  19. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures.

    Science.gov (United States)

    Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia

    2017-11-02

    The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.

  20. Spindle Cell Carcinoma of the hypopharynx: a case report

    Directory of Open Access Journals (Sweden)

    Dillu Ram Kandel

    2018-03-01

    Full Text Available Spindle cell carcinoma of hpopharynx is a rare pathology. It is a poorly differentiated variant of squamous cell carcinoma and morphologically resembles sarcoma. This is a disease of old age. It is usually associated with smoking and alcohol abuse. When it is associated with radiation exposure history it behaves more aggressively. Surgery is considered as the main modality of treatment and adjuvant radiotherapy if necessary. Here we present a case of 79 year old male with spindle cell carcinomaof right piriform fossa with 2-month history of progressive dysphasia and hoarseness that has been affecting his ability to speak and swallow with history of weight loss and past history of radiotherapy. So possibility of spindle cell carcinoma of the hypopharynx should beconsidered in an old patient with rapidly developing swelling of the hypopharynx with past history of radiation exposure. As it is a highly aggressive disease it should be treated timely and more aggressively to prolong the survival of the patient.   

  1. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  2. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages.

    Science.gov (United States)

    Ng, Marcus; Pavlova, Milena

    2013-01-01

    Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM) sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less). We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.

  3. Hot flashes and sleep in women.

    Science.gov (United States)

    Moe, Karen E

    2004-12-01

    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  4. Automatic detection of REM sleep in subjects without atonia

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Jennum, Poul; Nikolic, Miki

    2012-01-01

    Idiopathic Rapid-Rye-Movement (REM) sleep Behavior Disorder (iRBD) is a strong early marker of Parkinson's Disease and is characterized by REM sleep without atonia (RSWA) and increased phasic muscle activity. Current proposed methods for detecting RSWA assume the presence of a manually scored...... hypnogram. In this study a full automatic REM sleep detector, using the EOG and EEG channels, is proposed. Based on statistical features, combined with subject specific feature scaling and post-processing of the classifier output, it was possible to obtain an mean accuracy of 0.96 with a mean sensititvity...

  5. CAP, epilepsy and motor events during sleep: the unifying role of arousal.

    Science.gov (United States)

    Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni

    2006-08-01

    Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.

  6. CENP-W plays a role in maintaining bipolar spindle structure.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarczyk

    Full Text Available The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction

  7. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    Science.gov (United States)

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  8. CENP-W Plays a Role in Maintaining Bipolar Spindle Structure

    Science.gov (United States)

    Kaczmarczyk, Agnieszka; Sullivan, Kevin F.

    2014-01-01

    The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted

  9. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    Directory of Open Access Journals (Sweden)

    Elena eCid

    2014-04-01

    Full Text Available Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e. the multiple-hit hypothesis. However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1; including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  10. Clathrin is spindle-associated but not essential for mitosis.

    Directory of Open Access Journals (Sweden)

    Joana Borlido

    Full Text Available Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the

  11. Engagement Assessment Using EEG Signals

    Science.gov (United States)

    Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean

    2012-01-01

    In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.

  12. An examination of the association between chronic sleep restriction and electrocortical arousal in college students.

    Science.gov (United States)

    Witkowski, Sarah; Trujillo, Logan T; Sherman, Stephanie M; Carter, Patricia; Matthews, Michael D; Schnyer, David M

    2015-03-01

    The deleterious neurocognitive effects of laboratory-controlled short-term sleep deprivation are well-known. The present study investigated neurocognitive changes arising from chronic sleep restriction outside the laboratory. Sleep patterns of 24 undergraduates were tracked via actigraphy across a 15-week semester. At the semester beginning, at a midpoint, and a week before finals, students performed the Psychomotor Vigilance Test (PVT) and cortical arousal was measured via event-related potentials (ERP) and resting state electroencephalography (EEG). Average daily sleep decreased between Session 1 and Sessions 2 and 3. Calculated circadian rhythm measures indicated nighttime movement increased and sleep quality decreased from Sessions 1 and 2 to Session 3. Parallel to the sleep/activity measures, PVT reaction time increased between Session 1 and Sessions 2 and 3 and resting state alpha EEG reactivity magnitude and PVT-evoked P3 ERP amplitude decreased between Session 1 and Sessions 2 and 3. Cross-sectional regressions showed PVT reaction time was negatively associated with average daily sleep, alpha reactivity, and P3 changes; sleep/circadian measures were associated with alpha reactivity and/or P3 changes. Small, but persistent sleep deficits reduced cortical arousal and impaired vigilant attention. Chronic sleep restriction impacts neurocognition in a manner similar to laboratory controlled sleep deprivation. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  13. A hidden Markov model to assess drug-induced sleep fragmentation in the telemetered rat.

    Science.gov (United States)

    Diack, C; Ackaert, O; Ploeger, B A; van der Graaf, P H; Gurrell, R; Ivarsson, M; Fairman, D

    2011-12-01

    Drug-induced sleep fragmentation can cause sleep disturbances either via their intended pharmacological action or as a side effect. Examples of disturbances include excessive daytime sleepiness, insomnia and nightmares. Developing drugs without these side effects requires insight into the mechanisms leading to sleep disturbance. The characterization of the circadian sleep pattern by EEG following drug exposure has improved our understanding of these mechanisms and their translatability across species. The EEG shows frequent transitions between specific sleep states leading to multiple correlated sojourns in these states. We have developed a Markov model to consider the high correlation in the data and quantitatively compared sleep disturbance in telemetered rats induced by methylphenidate, which is known to disturb sleep, and of a new chemical entity (NCE). It was assumed that these drugs could either accelerate or decelerate the transitions between the sleep states. The difference in sleep disturbance of methylphenidate and the NCE were quantitated and different mechanisms of action on rebound sleep were identified. The estimated effect showed that both compounds induce sleep fragmentation with methylphenidate being fivefold more potent compared to the NCE.

  14. Decoding sequence learning from single-trial intracranial EEG in humans.

    Directory of Open Access Journals (Sweden)

    Marzia De Lucia

    Full Text Available We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep or a later consolidated phase (day 2, after sleep, whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence. Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

  15. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted......The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding....

  16. Regulation of adolescent sleep: implications for behavior.

    Science.gov (United States)

    Carskadon, Mary A; Acebo, Christine; Jenni, Oskar G

    2004-06-01

    Adolescent development is accompanied by profound changes in the timing and amounts of sleep and wakefulness. Many aspects of these changes result from altered psychosocial and life-style circumstances that accompany adolescence. The maturation of biological processes regulating sleep/wake systems, however, may be strongly related to the sleep timing and amount during adolescence-either as "compelling" or "permissive" factors. The two-process model of sleep regulation posits a fundamental sleep-wake homeostatic process (process S) working in concert with the circadian biological timing system (process C) as the primary intrinsic regulatory factors. How do these systems change during adolescence? We present data from adolescent participants examining EEG markers of sleep homeostasis to evaluate whether process S shows maturational changes permissive of altered sleep patterns across puberty. Our data indicate that certain aspects of the homeostatic system are unchanged from late childhood to young adulthood, while other features change in a manner that is permissive of later bedtimes in older adolescents. We also show alterations of the circadian timing system indicating a possible circadian substrate for later adolescent sleep timing. The circadian parameters we have assessed include phase, period, melatonin secretory pattern, light sensitivity, and phase relationships, all of which show evidence of changes during pubertal development with potential to alter sleep patterns substantially. However the changes are mediated-whether through process S, process C, or by a combination-many adolescents have too little sleep at the wrong circadian phase. This pattern is associated with increased risks for excessive sleepiness, difficulty with mood regulation, impaired academic performance, learning difficulties, school tardiness and absenteeism, and accidents and injuries.

  17. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  18. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Recently, a novel electroencephalographic (EEG) method called ear-EEG [1], that enable recording of auditory evoked potentials (AEPs) from a personalized earpiece was introduced. Initial investigations show that well established AEPs, such as ASSR and P1-N1-P2 complex can be observed from ear-EEG...

  19. Hypnagogic EEG stages and polysomnogram

    OpenAIRE

    HAYASHI, Mitsuo; HIBINO, Kenji; HORI, Tadao

    1999-01-01

    The aim of this study is to show the polysomnogram of hypnagogic period. Sixteen subjects slept for two nights. Their EEGs (Fz, Cz, Pz, Oz), horizontal and vertical EOGs, submentalis EMG, thoracic and abdominal respiration were recorded. They pressed a button when pip tones (1000Hz, 50dB, max duration : 5s, ISI : 30-90s) were presented, and reported their psychological experiences, According to Hori et al. (1994), the hypnagogic EEGs just 5s before the pip tones were classified into 9 stages,...

  20. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  1. A Comparative Study between SVM and Fuzzy Inference System for the Automatic Prediction of Sleep Stages and the Assessment of Sleep Quality

    Directory of Open Access Journals (Sweden)

    John Gialelis

    2015-11-01

    Full Text Available This paper compares two supervised learning algorithms for predicting the sleep stages based on the human brain activity. The first step of the presented work regards feature extraction from real human electroencephalography (EEG data together with its corresponding sleep stages that are utilized for training a support vector machine (SVM, and a fuzzy inference system (FIS algorithm. Then, the trained algorithms are used to predict the sleep stages of real human patients. Extended comparison results are demonstrated which indicate that both classifiers could be utilized as a basis for an unobtrusive sleep quality assessment.

  2. Live imaging of spindle pole disorganization in docetaxel-treated multicolor cells

    International Nuclear Information System (INIS)

    Sakaushi, Shinji; Nishida, Kumi; Minamikawa, Harumi; Fukada, Takashi; Oka, Shigenori; Sugimoto, Kenji

    2007-01-01

    Treatment of cells with docetaxel at low concentrations induces aberrant bipolar spindles of which two centrosomes stay at only one pole, and also induces multipolar spindles. To gain insight into the relations between centrosome impairment and structural defects of the spindle, live-cell imaging was performed on a human MDA Auro/imp/H3 cell line in which centrosomes/mitotic spindles, nuclear membrane and chromatin were simultaneously visualized by fluorescent proteins. In the presence of docetaxel at IC 50 concentration, the centrosomes did not segregate, and multiple aster-like structures ectopically arose around the disappearing nuclear membrane. Those ectopic structures formed an acentrosomal pole opposing to the two-centrosomes-containing pole. In late metaphase, one pole often fragmented into multiple spindle poles, leading multipolar division. These results suggest that spindle pole fragility may be induced by centrosome impairment, and collapse of the pole may contribute to induction of aneuploid daughter cells

  3. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    Science.gov (United States)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  4. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  5. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review

    Directory of Open Access Journals (Sweden)

    Xiaoli QIAO

    2016-10-01

    Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.

  6. Does Suspected Sleep Disordered Breathing Impact on the Sleep and Performance of Firefighting Volunteers during a Simulated Fire Ground Campaign?

    Directory of Open Access Journals (Sweden)

    Sarah M. Jay

    2016-01-01

    Full Text Available Adequate sleep is fundamental to workplace performance. For volunteer firefighters who work in safety critical roles, poor performance at work can be life threatening. Extended shifts and sleeping conditions negatively impact sleep during multi-day fire suppression campaigns. Having sleep disordered breathing (SDB could contribute further to sleep deficits. Our aim was to investigate whether those with suspected SDB slept and performed more poorly during a fire ground simulation involving sleep restriction. Participants, n = 20 participated in a 3-day-4-night fire ground simulation. Based on oximetry desaturation index data collected during their participation, participants were retrospectively allocated to either a SDB (n = 8 or a non-SDB group (n = 12. The simulation began with an 8 h Baseline sleep (BL followed by two nights of restricted (4 h sleep and an 8 h recovery sleep (R. All sleeps were recorded using a standard electroencephalography (EEG montage as well as oxygen saturation. During the day, participants completed neurobehavioral (response time, lapses and subjective fatigue tasks. Mixed effects ANOVA were used to compare differences in sleep and wake variables. Analyses revealed a main effect of group for Total sleep (TST, REM , wake after sleep onset (WASO and Arousals/h with the SDB group obtaining less TST and REM and greater WASO and Arousals/h. The group × night interaction was significant for N3 with the SDB group obtaining 42 min less during BL. There was a significant main effect of day for RRT, lapses and subjective fatigue and a significant day × group interaction for RRT. Overall, the SDB group slept less, experienced more disturbed sleep and had poorer response time performance, which was exacerbated by the second night of sleep restriction. This could present a safety concern, particularly during longer campaigns and is worthy of further investigation. In addition, we would recommend promotion of awareness of SDB, its

  7. Effects of GF-015535-00, a novel α1 GABA A receptor ligand, on the sleep-wake cycle in mice, with reference to zolpidem.

    Science.gov (United States)

    Anaclet, Christelle; Zhang, Mei; Zhao, Chunmei; Buda, Colette; Seugnet, Laurent; Lin, Jian-Sheng

    2012-01-01

    Novel, safe, and efficient hypnotic compounds capable of enhancing physiological sleep are still in great demand in the therapy of insomnia. This study compares the sleep-wake effects of a new α1 GABA(A) receptor subunit ligand, GF-015535-00, with those of zolpidem, the widely utilized hypnotic compound. Nine C57Bl6/J male mice were chronically implanted with electrodes for EEG and sleep-wake monitoring. Each mouse received 3 doses of GF-015535-00 and zolpidem. Time spent in sleep-wake states and cortical EEG power spectra were analyzed. Both zolpidem and GF-015535-00 prominently enhanced slow wave sleep and paradoxical sleep in the mouse. However, as compared with zolpidem, GF-015535-00 showed several important differences: (1) a comparable sleep