WorldWideScience

Sample records for education computer science

  1. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  2. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  3. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  4. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  5. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  6. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  7. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  8. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  9. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  10. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  11. Empirical Determination of Competence Areas to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  12. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  13. The Case for Improving U.S. Computer Science Education

    Science.gov (United States)

    Nager, Adams; Atkinson, Robert

    2016-01-01

    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…

  14. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  15. COMPUTER SCIENCE IN THE EDUCATION OF UKRAINE: FORMATION PROSPECTS

    OpenAIRE

    Viktor Shakotko

    2016-01-01

    The article deals with the formation of computer science as science and school subject as well in the system of education in Ukraine taking into consideration the development tendencies of this science in the world. The introduction of the notion« information technology», «computer science» and «informatics science» into the science, their correlation and the peculiarities of subject sphere determination are analyzed through the historical aspect. The author considers the points of view conce...

  16. Mastering Cognitive Development Theory in Computer Science Education

    Science.gov (United States)

    Gluga, Richard; Kay, Judy; Lister, Raymond; Kleitman, Simon; Kleitman, Sabina

    2013-01-01

    To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that…

  17. Computers in Science and Mathematics Education in the ASEAN Region.

    Science.gov (United States)

    Talisayon, Vivien M.

    1989-01-01

    Compares policies and programs on computers in science and mathematics education in the six ASEAN countries: Brunei, Indonesia; Malaysia, Philippines, Singapore, and Thailand. Limits discussion to the computer as a teaching aid and object of study, attendant problems, and regional cooperation. (MVL)

  18. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  19. Results of a Research Evaluating Quality of Computer Science Education

    Science.gov (United States)

    Záhorec, Ján; Hašková, Alena; Munk, Michal

    2012-01-01

    The paper presents the results of an international research on a comparative assessment of the current status of computer science education at the secondary level (ISCED 3A) in Slovakia, the Czech Republic, and Belgium. Evaluation was carried out based on 14 specific factors gauging the students' point of view. The authors present qualitative…

  20. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  1. A Comparison of the Methodological Quality of Articles in Computer Science Education Journals and Conference Proceedings

    Science.gov (United States)

    Randolph, Justus J.; Julnes, George; Bednarik, Roman; Sutinen, Erkki

    2007-01-01

    In this study we empirically investigate the claim that articles published in computer science education journals are more methodologically sound than articles published in computer science education conference proceedings. A random sample of 352 articles was selected from those articles published in major computer science education forums between…

  2. High School Computer Science Education Paves the Way for Higher Education: The Israeli Case

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2014-01-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to…

  3. Computational Thinking and Integrative Education (STEAM in Science Education

    Directory of Open Access Journals (Sweden)

    Rıdvan ÖZCAN

    2018-01-01

    Full Text Available this study, it was aimed to determine in which level science teachers use argumentation in their science classroom. Case study was used as a research model. This study has been carried out in a province in Aegean Region with a participating group that consists of 6 volunteer science teachers. In order to collect data, the observation form which is consisted of 24 items was used to decide in which level teachers’ using argumentation and intervention form consisting of 13 questions about argumentation were used. According to results of the study, science teachers did not commonly use argumentation. In the light of the interviews, it was seen that most of the teachers did not have any real qualifications about argumentation, the concepts in argumentation and the activities used in argumentation.

  4. Assessment of Examinations in Computer Science Doctoral Education

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  5. NEW SCIENCE OF LEARNING: COGNITION, COMPUTERS AND COLLABORATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Reviewed by Onur DONMEZ

    2011-01-01

    Full Text Available Information and Communication Technologies (ICTs have pervaded and changed much of our lives both on individual and societal scales. PCs, notebooks, tablets, cell phones, RSS feeds, emails, podcasts, tweets, social networks are all technologies we are familiar with and we are intensively using them in our daily lives. It is safe to say that our lives are becoming more and more digitized day by day.We have already invented bunch of terms to refer effects of these technologies on our lives. Digital nomads, grasshopper minds, millennium learners, digital natives, information age, knowledge building, knowledge society, network society are all terms invented to refer societal changes motivated by ICTs. New opportunities provided by ICTs are also shaping skill and quality demands of the next age. Individuals have to match these qualities if they want to earn their rightful places in tomorrow‘s world. Education is of course the sole light to guide them in their transformation to tomorrow‘s individual. One question arises however: ―are today‘s educational paradigms and practices ready to confront such a challenge?‖ There is a coherent and strong opinion among educators that the answer is ―NO‖. ―Today‘s students think and process information fundamentally differently from their predecessors‖(Prensky, 2001. And education has to keep pace with these students and their needs. But how? Khine & Saleh managed to gather distinguished colleagues around this question within their book titled ―New Science of Learning: Cognition, Computers and Collaboration‖. The book is composed of 29 chapters within three major topics which are: cognition, computers and collaboration.

  6. Epistemological Issues Concerning Computer Simulations in Science and Their Implications for Science Education

    Science.gov (United States)

    Greca, Ileana M.; Seoane, Eugenia; Arriassecq, Irene

    2014-01-01

    Computers and simulations represent an undeniable aspect of daily scientific life, the use of simulations being comparable to the introduction of the microscope and the telescope, in the development of knowledge. In science education, simulations have been proposed for over three decades as useful tools to improve the conceptual understanding of…

  7. Alice in Oman: A Study on Object-First Approaches in Computer Science Education

    Science.gov (United States)

    Hayat, Khizar; Al-Shukaili, Naeem Ali; Sultan, Khalid

    2017-01-01

    The success of university-level education depends on the quality of underlying school education and any deficiency therein may be detrimental to a student's career. This may be more glaring with Computer Science education, given its mercurial nature. In the developing countries, the Computer Science school curricula are usually stuffed with…

  8. Ethics as a Gateway to Computer Science in Primary Education

    Directory of Open Access Journals (Sweden)

    Juan Vicente OLTRA GUTIÉRREZ

    2017-07-01

    Full Text Available This paper presents a proposal to bring ethics and ICT closer to students of the first courses of the primary education, supporting one in each other, following the Law “Real Decreto 126/2014, 28th of February”, which establishes the basic curriculum for Primary Education. Within this Law, two of seven skills in the curriculum are established: digital skill (the third and also social and civic skills (the fifth. Given the digital natives population who are receiving education, it would be a slightly more ambitious goal to be able to glimpse them to support one in another. In this area, for example, we find a specific subject such as “Social and Civic values” with evaluation criteria such as “Employ new technologies by developing social and civic values in safe environments”. Thanks to this gateway, we can introduce small door to the vision of computer science, through ethics, which may be transversal with all subjects of the curriculum. The suggestion of the present article is to confront teachers with a vision of technology from an outside perspective, from an ethical prism, once the technology is turned it off and the mobiles or tablets screens are converted into a mere black mirror.

  9. Computer Science in High School Graduation Requirements. ECS Education Trends

    Science.gov (United States)

    Zinth, Jennifer Dounay

    2015-01-01

    Computer science and coding skills are widely recognized as a valuable asset in the current and projected job market. The Bureau of Labor Statistics projects 37.5 percent growth from 2012 to 2022 in the "computer systems design and related services" industry--from 1,620,300 jobs in 2012 to an estimated 2,229,000 jobs in 2022. Yet some…

  10. The Role of Visualization in Computer Science Education

    Science.gov (United States)

    Fouh, Eric; Akbar, Monika; Shaffer, Clifford A.

    2012-01-01

    Computer science core instruction attempts to provide a detailed understanding of dynamic processes such as the working of an algorithm or the flow of information between computing entities. Such dynamic processes are not well explained by static media such as text and images, and are difficult to convey in lecture. The authors survey the history…

  11. Towards a Versatile Tele-Education Platform for Computer Science Educators Based on the Greek School Network

    Science.gov (United States)

    Paraskevas, Michael; Zarouchas, Thomas; Angelopoulos, Panagiotis; Perikos, Isidoros

    2013-01-01

    Now days the growing need for highly qualified computer science educators in modern educational environments is commonplace. This study examines the potential use of Greek School Network (GSN) to provide a robust and comprehensive e-training course for computer science educators in order to efficiently exploit advanced IT services and establish a…

  12. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  13. A Distributed Computational Infrastructure for Science and Education

    Directory of Open Access Journals (Sweden)

    Rustam K. Bazarov

    2014-06-01

    Full Text Available Researchers have lately been paying increasingly more attention to parallel and distributed algorithms for solving high-dimensionality problems. In this regard, the issue of acquiring or renting computational resources becomes a topical one for employees of scientific and educational institutions. This article examines technology and methods for organizing a distributed computational infrastructure. The author addresses the experience of creating a high-performance system powered by existing clusterization and grid computing technology. The approach examined in the article helps minimize financial costs, aggregate territorially distributed computational resources and ensures a more rational use of available computer equipment, eliminating its downtimes.

  14. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  15. Finding the Hook: Computer Science Education in Elementary Contexts

    Science.gov (United States)

    Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan

    2018-01-01

    The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…

  16. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    Science.gov (United States)

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  17. Process-Based Development of Competence Models to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Seitz, Cornelia; Klaudt, Dieter

    2016-01-01

    A process model ("cpm.4.CSE") is introduced that allows the development of competence models in computer science education related to curricular requirements. It includes eight subprocesses: (a) determine competence concept, (b) determine competence areas, (c) identify computer science concepts, (d) assign competence dimensions to…

  18. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  19. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  20. Investigating the Role of Student Motivation in Computer Science Education through One-on-One Tutoring

    Science.gov (United States)

    Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.

    2009-01-01

    The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…

  1. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  2. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  3. A computational approach to climate science education with CLIMLAB

    Science.gov (United States)

    Rose, B. E. J.

    2017-12-01

    CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format

  4. Model of training of computer science teachers by means of distant education technologies

    Directory of Open Access Journals (Sweden)

    Т А Соловьева

    2009-03-01

    Full Text Available Training of future computer science teachers in conditions of informatization of education is analyzed. Distant educational technologies (DET and traditional process of training, their advantages and disadvantages are considered, active functions of DET as the basis of the model of training by means of DET is stressed. It is shown that mixed education combining both distant ant traditional technologies takes place on the basis of the created model. Practical use of the model is shown on the example of the course «Recursion» for future computer science teachers.

  5. Science Education Using a Computer Model-Virtual Puget Sound

    Science.gov (United States)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  6. Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science

    Science.gov (United States)

    Macinko Kovac, Maja; Eret, Lidija

    2012-01-01

    This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…

  7. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  8. Productization and Commercialization of IT-Enabled Higher Education in Computer Science: A Systematic Literature Review

    Science.gov (United States)

    Kankaanpää, Irja; Isomäki, Hannakaisa

    2013-01-01

    This paper reviews research literature on the production and commercialization of IT-enabled higher education in computer science. Systematic literature review (SLR) was carried out in order to find out to what extent this area has been studied, more specifically how much it has been studied and to what detail. The results of this paper make a…

  9. Cascade-sea : Computer Assisted Curriculum Analysis, Design & Evaluation for Science Education in Africa.

    NARCIS (Netherlands)

    McKenney, Susan; van den Akker, Jan; Maribe, Robert; Gustafson, Kent; Nieveen, Nienke; Plomp, Tjeerd

    1999-01-01

    The CASCADE-SEA program aims to support curriculum development within the context of secondary level science and mathematics education in sub-Saharan Africa. This project focuses on the iterative design of a computer-based curriculum development support system for the creation of classroom

  10. Understanding Student Retention in Computer Science Education: The Role of Environment, Gains, Barriers and Usefulness

    Science.gov (United States)

    Giannakos, Michail N.; Pappas, Ilias O.; Jaccheri, Letizia; Sampson, Demetrios G.

    2017-01-01

    Researchers have been working to understand the high dropout rates in computer science (CS) education. Despite the great demand for CS professionals, little is known about what influences individuals to complete their CS studies. We identify gains of studying CS, the (learning) environment, degree's usefulness, and barriers as important predictors…

  11. How to Implement Rigorous Computer Science Education in K-12 Schools? Some Answers and Many Questions

    Science.gov (United States)

    Hubwieser, Peter; Armoni, Michal; Giannakos, Michail N.

    2015-01-01

    Aiming to collect various concepts, approaches, and strategies for improving computer science education in K-12 schools, we edited this second special issue of the "ACM TOCE" journal. Our intention was to collect a set of case studies from different countries that would describe all relevant aspects of specific implementations of…

  12. Pedagogical Approaches to Teaching with Computer Simulations in Science Education

    NARCIS (Netherlands)

    Rutten, N.P.G.; van der Veen, Johan (CTIT); van Joolingen, Wouter; McBride, Ron; Searson, Michael

    2013-01-01

    For this study we interviewed 24 physics teachers about their opinions on teaching with computer simulations. The purpose of this study is to investigate whether it is possible to distinguish different types of teaching approaches. Our results indicate the existence of two types. The first type is

  13. Smart learning objects for smart education in computer science theory, methodology and robot-based implementation

    CERN Document Server

    Stuikys, Vytautas

    2015-01-01

    This monograph presents the challenges, vision and context to design smart learning objects (SLOs) through Computer Science (CS) education modelling and feature model transformations. It presents the latest research on the meta-programming-based generative learning objects (the latter with advanced features are treated as SLOs) and the use of educational robots in teaching CS topics. The introduced methodology includes the overall processes to develop SLO and smart educational environment (SEE) and integrates both into the real education setting to provide teaching in CS using constructivist a

  14. Physics vs. computer science

    International Nuclear Information System (INIS)

    Pike, R.

    1982-01-01

    With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)

  15. The Need for Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  16. Frontiers in Computer Education

    CERN Document Server

    Zhu, Egui; 2011 International Conference on Frontiers in Computer Education (ICFCE 2011)

    2012-01-01

    This book is the proceedings of the 2011 International Conference on Frontiers in Computer Education (ICFCE 2011) in Sanya, China, December 1-2, 2011. The contributions can be useful for researchers, software engineers, and programmers, all interested in promoting the computer and education development. Topics covered are computing and communication technology, network management, wireless networks, telecommunication, Signal and Image Processing, Machine Learning, educational management, educational psychology, educational system, education engineering, education technology and training.  The emphasis is on methods and calculi for computer science and education technology development, verification and verification tools support, experiences from doing developments, and the associated theoretical problems.

  17. Service-Learning in the Computer and Information Sciences Practical Applications in Engineering Education

    CERN Document Server

    Nejmeh, Brian A

    2012-01-01

    A road map for service-learning partnerships between information science and nonprofit organizations While service-learning is a well-known educational method for integrating learning experiences with community service, it is only now beginning to emerge in computer and information sciences (CIS). Offering a truly global perspective, this book introduces for the first time an essential framework for service learning in CIS, addressing both the challenges and opportunities of this approach for all stakeholders involved-faculty, students, and community nonprofit organizations (NPOs), both dome

  18. Scalable Game Design: A Strategy to Bring Systemic Computer Science Education to Schools through Game Design and Simulation Creation

    Science.gov (United States)

    Repenning, Alexander; Webb, David C.; Koh, Kyu Han; Nickerson, Hilarie; Miller, Susan B.; Brand, Catharine; Her Many Horses, Ian; Basawapatna, Ashok; Gluck, Fred; Grover, Ryan; Gutierrez, Kris; Repenning, Nadia

    2015-01-01

    An educated citizenry that participates in and contributes to science technology engineering and mathematics innovation in the 21st century will require broad literacy and skills in computer science (CS). School systems will need to give increased attention to opportunities for students to engage in computational thinking and ways to promote a…

  19. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  20. Improving science and mathematics education with computational modelling in interactive engagement environments

    Science.gov (United States)

    Neves, Rui Gomes; Teodoro, Vítor Duarte

    2012-09-01

    A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

  1. Understanding and Improving Blind Students' Access to Visual Information in Computer Science Education

    Science.gov (United States)

    Baker, Catherine M.

    Teaching people with disabilities tech skills empowers them to create solutions to problems they encounter and prepares them for careers. However, computer science is typically taught in a highly visual manner which can present barriers for people who are blind. The goal of this dissertation is to understand and decrease those barriers. The first projects I present looked at the barriers that blind students face. I first present the results of my survey and interviews with blind students with degrees in computer science or related fields. This work highlighted the many barriers that these blind students faced. I then followed-up on one of the barriers mentioned, access to technology, by doing a preliminary accessibility evaluation of six popular integrated development environments (IDEs) and code editors. I found that half were unusable and all had some inaccessible portions. As access to visual information is a barrier in computer science education, I present three projects I have done to decrease this barrier. The first project is Tactile Graphics with a Voice (TGV). This project investigated an alternative to Braille labels for those who do not know Braille and showed that TGV was a potential alternative. The next project was StructJumper, which created a modified abstract syntax tree that blind programmers could use to navigate through code with their screen reader. The evaluation showed that users could navigate more quickly and easily determine the relationships of lines of code when they were using StructJumper compared to when they were not. Finally, I present a tool for dynamic graphs (the type with nodes and edges) which had two different modes for handling focus changes when moving between graphs. I found that the modes support different approaches for exploring the graphs and therefore preferences are mixed based on the user's preferred approach. However, both modes had similar accuracy in completing the tasks. These projects are a first step towards

  2. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  3. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  4. Ethical sensitivity intervention in science teacher education: Using computer simulations and professional codes of ethics

    Science.gov (United States)

    Holmes, Shawn Yvette

    A simulation was created to emulate two Racial Ethical Sensitivity Test (REST) videos (Brabeck et al., 2000). The REST is a reliable assessment for ethical sensitivity to racial and gender intolerant behaviors in educational settings. Quantitative and qualitative analysis of the REST was performed using the Quick-REST survey and an interview protocol. The purpose of this study was to affect science educator ability to recognize instances of racial and gender intolerant behaviors by levering immersive qualities of simulations. The fictitious Hazelton High School virtual environment was created by the researcher and compared with the traditional REST. The study investigated whether computer simulations can influence the ethical sensitivity of preservice and inservice science teachers to racial and gender intolerant behaviors in school settings. The post-test only research design involved 32 third-year science education students enrolled in science education classes at several southeastern universities and 31 science teachers from the same locale, some of which were part of an NSF project. Participant samples were assigned to the video control group or the simulation experimental group. This resulted in four comparison group; preservice video, preservice simulation, inservice video and inservice simulation. Participants experienced two REST scenarios in the appropriate format then responded to Quick-REST survey questions for both scenarios. Additionally, the simulation groups answered in-simulation and post-simulation questions. Nonparametric analysis of the Quick-REST ascertained differences between comparison groups. Cronbach's alpha was calculated for internal consistency. The REST interview protocol was used to analyze recognition of intolerant behaviors in the in-simulation prompts. Post-simulation prompts were analyzed for emergent themes concerning effect of the simulation on responses. The preservice video group had a significantly higher mean rank score than

  5. Computer Science Education in French Secondary Schools: Historical and Didactical Perspectives

    Science.gov (United States)

    Baron, Georges-Louis; Drot-Delange, Beatrice; Grandbastien, Monique; Tort, Françoise

    2014-01-01

    Computer science as a school subject in France is characterized by a succession of promising starts that have not yet been transformed into perennial solutions. The main goal of this article is to analyze this complex situation from a historical perspective, and describe the current rebirth of an optional Computer Science course in the last year…

  6. Educators' Perspectives on Female Students' Enrollment in Computer Science and Engineering

    Science.gov (United States)

    Bibeau, Wendy

    The purpose of this case study was to inquire into educators' perspectives on female students' enrollment in computer science and engineering (CSE) courses. At a high school in New England, girls are significantly underrepresented in CSE courses, a problem that is reflected in schools throughout the United States. As a result, these careers are lacking in input from women, even as the number of CSE professions is increasing. Research questions in this study addressed what teachers, administrators, and guidance counselors think about this growing problem and what changes, if any, they are willing to make to help close this gender gap. Individual interviews and a focus group were used to gather data from 7 participants. The theoretical framework was based on brain research and social theories. Data were then analyzed and coded for themes based on the framework. The results indicated that educators are cognizant of the underrepresentation within their school and have tried individually, but unsuccessfully, to make changes to increase the numbers of girls in CSE courses. In response to these findings, a professional development project was developed that outlines ways for educators to communicate and collaborate to increase girls' representation in CSE courses. Girls, schools, and industry can benefit from the results of this study. If educators can encourage more girls to take CSE courses and provide support for them to be confident and successful, then more girls will go on to major in CSE, which will then lead to an increase in the number of women working in these fields.

  7. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  8. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education.

    Science.gov (United States)

    Trelease, Robert B

    2016-11-01

    Until the late-twentieth century, primary anatomical sciences education was relatively unenhanced by advanced technology and dependent on the mainstays of printed textbooks, chalkboard- and photographic projection-based classroom lectures, and cadaver dissection laboratories. But over the past three decades, diffusion of innovations in computer technology transformed the practices of anatomical education and research, along with other aspects of work and daily life. Increasing adoption of first-generation personal computers (PCs) in the 1980s paved the way for the first practical educational applications, and visionary anatomists foresaw the usefulness of computers for teaching. While early computers lacked high-resolution graphics capabilities and interactive user interfaces, applications with video discs demonstrated the practicality of programming digital multimedia linking descriptive text with anatomical imaging. Desktop publishing established that computers could be used for producing enhanced lecture notes, and commercial presentation software made it possible to give lectures using anatomical and medical imaging, as well as animations. Concurrently, computer processing supported the deployment of medical imaging modalities, including computed tomography, magnetic resonance imaging, and ultrasound, that were subsequently integrated into anatomy instruction. Following its public birth in the mid-1990s, the World Wide Web became the ubiquitous multimedia networking technology underlying the conduct of contemporary education and research. Digital video, structural simulations, and mobile devices have been more recently applied to education. Progressive implementation of computer-based learning methods interacted with waves of ongoing curricular change, and such technologies have been deemed crucial for continuing medical education reforms, providing new challenges and opportunities for anatomical sciences educators. Anat Sci Educ 9: 583-602. © 2016 American

  9. Graphical qualities of educational technology: Using drag-and-drop and text-based programs for introductory computer science.

    Science.gov (United States)

    DiSalvo, Betsy

    2014-01-01

    To determine appropriate computer science curricula, educators sought to better understand the different affordances of teaching with a visual programming language (Alice) or a text-based language (Jython). Although students often preferred one language, that language wasn't necessarily the one from which they learned the most.

  10. K-16 Computationally Rich Science Education: A Ten-Year Review of the "Journal of Science Education and Technology" (1998-2008)

    Science.gov (United States)

    Wofford, Jennifer

    2009-01-01

    Computing is anticipated to have an increasingly expansive impact on the sciences overall, becoming the third, crucial component of a "golden triangle" that includes mathematics and experimental and theoretical science. However, even more true with computing than with math and science, we are not preparing our students for this new reality. It is…

  11. An investigation of factors related to self-efficacy for Java programming among computer science education students

    Directory of Open Access Journals (Sweden)

    Desmond Wesley Govender

    2015-11-01

    Full Text Available Students usually perceived computer programming courses as one of the most difficult courses since learning to program is perceived as a difficult task. Quite often students’ negative perceptions on computer programming results in poor results and high drop-out rates. The purpose of this study is to examine the impact of factors that affect computer science education students’ Java programming self-efficacy and the relationship between Java programming self-efficacy and students’ age and gender. A questionnaire was used to gather data. A scale with thirty-two items assessing Java programming self-efficacy was adapted from Askar and Davenport’s (2009 computer programming self-efficacy scale. A total of twenty students from a Computer Science Education Discipline participated in this study. Collected data were analysed using SPSS version 22.0. Descriptive statistics, reliability test, mean, standard deviation, and rotated component matrix were utilized to analyze the resulting data. Results indicated that there is not much difference between males (45% and females (55% Java programming self-efficacy. Furthermore, the results also indicated that programming skills and Java constructs have higher influence on the self-efficacy for Java programming among computer science education students followed by non-complexity, time consciousness, ability to recode for better understanding and self-motivation.

  12. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  13. Computer Science Professionals and Greek Library Science

    Science.gov (United States)

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  14. Computer Science and the Liberal Arts

    Science.gov (United States)

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  15. Girls Save the World through Computer Science

    Science.gov (United States)

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  16. Theory and computational science

    International Nuclear Information System (INIS)

    Durham, P.

    1985-01-01

    The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)

  17. Administrative Computing in Continuing Education.

    Science.gov (United States)

    Broxton, Harry

    1982-01-01

    Describes computer applications in the Division of Continuing Education at Brigham Young University. These include instructional applications (computer assisted instruction, computer science education, and student problem solving) and administrative applications (registration, payment records, grades, reports, test scoring, mailing, and others).…

  18. Critical thinking traits of top-tier experts and implications for computer science education

    Science.gov (United States)

    Bushey, Dean E.

    A documented shortage of technical leadership and top-tier performers in computer science jeopardizes the technological edge, security, and economic well-being of the nation. The 2005 President's Information and Technology Advisory Committee (PITAC) Report on competitiveness in computational sciences highlights the major impact of science, technology, and innovation in keeping America competitive in the global marketplace. It stresses the fact that the supply of science, technology, and engineering experts is at the core of America's technological edge, national competitiveness and security. However, recent data shows that both undergraduate and postgraduate production of computer scientists is falling. The decline is "a quiet crisis building in the United States," a crisis that, if allowed to continue unchecked, could endanger America's well-being and preeminence among the world's nations. Past research on expert performance has shown that the cognitive traits of critical thinking, creativity, and problem solving possessed by top-tier performers can be identified, observed and measured. The studies show that the identified attributes are applicable across many domains and disciplines. Companies have begun to realize that cognitive skills are important for high-level performance and are reevaluating the traditional academic standards they have used to predict success for their top-tier performers in computer science. Previous research in the computer science field has focused either on programming skills of its experts or has attempted to predict the academic success of students at the undergraduate level. This study, on the other hand, examines the critical-thinking skills found among experts in the computer science field in order to explore the questions, "What cognitive skills do outstanding performers possess that make them successful?" and "How do currently used measures of academic performance correlate to critical-thinking skills among students?" The results

  19. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  20. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  1. Third Workshop on Teaching Computational Science (WTCS 2009)

    NARCIS (Netherlands)

    Tirado-Ramos, A.; Shiflet, A.

    2009-01-01

    The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  2. Second Workshop on Teaching Computational Science WTCS 2008

    NARCIS (Netherlands)

    Tirado-Ramos, A.

    2008-01-01

    The Second Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  3. minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education

    Science.gov (United States)

    Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.

    2005-01-01

    In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…

  4. Computer Science Education in Secondary Schools--The Introduction of a New Compulsory Subject

    Science.gov (United States)

    Hubwieser, Peter

    2012-01-01

    In 2004 the German state of Bavaria introduced a new compulsory subject of computer science (CS) in its grammar schools ("Gymnasium"). The subject is based on a comprehensive teaching concept that was developed by the author and his colleagues during the years 1995-2000. It comprises mandatory courses in grades 6/7 for all students of…

  5. Computers, Education and the Library at The Bronx High School of Science.

    Science.gov (United States)

    Nachbar, Sondra; Sussman, Valerie

    1988-01-01

    Describes the services and programs offered by the library at The Bronx High School of Science. Topics discussed include the library collection; a basic library skills mini-course for freshmen and incoming sophomores; current uses of the library's computer system; and plans to automate the library's card catalog and circulation records.…

  6. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    Science.gov (United States)

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  7. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    Science.gov (United States)

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  8. Understanding and Improving Blind Students' Access to Visual Information in Computer Science Education

    Science.gov (United States)

    Baker, Catherine M.

    2017-01-01

    Teaching people with disabilities tech skills empowers them to create solutions to problems they encounter and prepares them for careers. However, computer science is typically taught in a highly visual manner which can present barriers for people who are blind. The goal of this dissertation is to understand and decrease those barriers. The first…

  9. Pedagogical Content Knowledge and Educational Cases in Computer Science: an Exploration

    NARCIS (Netherlands)

    Koppelman, Hermannus

    2008-01-01

    The concept of pedagogical content knowledge has been explored in the context of several disciplines, such as mathematics, medicine and chemistry. In this paper the concept is explored and applied to the subject matter of computer science, in particular to the sub domain of building UML class

  10. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    Science.gov (United States)

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  11. Computer science handbook

    CERN Document Server

    Tucker, Allen B

    2004-01-01

    Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH

  12. Computational Science and Innovation

    International Nuclear Information System (INIS)

    Dean, David Jarvis

    2011-01-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  13. Quantum computer science

    CERN Document Server

    Lanzagorta, Marco

    2009-01-01

    In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin

  14. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  15. Programming Video Games and Simulations in Science Education: Exploring Computational Thinking through Code Analysis

    Science.gov (United States)

    Garneli, Varvara; Chorianopoulos, Konstantinos

    2018-01-01

    Various aspects of computational thinking (CT) could be supported by educational contexts such as simulations and video-games construction. In this field study, potential differences in student motivation and learning were empirically examined through students' code. For this purpose, we performed a teaching intervention that took place over five…

  16. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  17. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  18. Computer Science | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  19. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  20. Computer science I essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science I includes fundamental computer concepts, number representations, Boolean algebra, switching circuits, and computer architecture.

  1. Sustainable computational science

    DEFF Research Database (Denmark)

    Rougier, Nicolas; Hinsen, Konrad; Alexandre, Frédéric

    2017-01-01

    Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research...... workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested, hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages...... the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience...

  2. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...

  3. Mental vision: a computer graphics platform for virtual reality, science and education

    OpenAIRE

    Peternier, Achille

    2009-01-01

    Despite the wide amount of computer graphics frameworks and solutions available for virtual reality, it is still difficult to find a perfect one fitting at the same time the many constraints of research and educational contexts. Advanced functionalities and user-friendliness, rendering speed and portability, or scalability and image quality are opposite characteristics rarely found into a same approach. Furthermore, fruition of virtual reality specific devices like CAVEs or wearable systems i...

  4. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  5. Features of construction of the individual trajectory education to computer science on the basis dynamic integrated estimation of level of knowledge

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2010-12-01

    Full Text Available In article features of realisation of the mechanism of construction of an optimum trajectory of education to computer science on the basis of a dynamic integrated estimation of level of knowledge are considered.

  6. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  7. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  8. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  9. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  10. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  11. COMPUTER GAMES AND EDUCATION

    OpenAIRE

    Sukhov, Anton

    2018-01-01

    This paper devoted to the research of educational resources and possibilities of modern computer games. The “internal” educational aspects of computer games include educational mechanism (a separate or integrated “tutorial”) and representation of a real or even fantastic educational process within virtual worlds. The “external” dimension represents educational opportunities of computer games for personal and professional development in different genres of computer games (various transport, so...

  12. Education for hydraulics and pnuematics in Department of Computer Science, Faculty of Information Sciences, Hiroshima City University; Hiroshima shiritsudaigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Sano, M. [Hiroshima City University, Hiroshima (Japan)

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Hiroshima City University. Department of Computer Science is responsible for the education, covering a wide educational range from basics of information processing methodology to application of mathematical procedures. This university provides no subject directly related to hydraulics and pneumatics, which, however, can be studied by the courses of control engineering or modern control theories. These themes are taken up for graduation theses for bachelors and masters; 2 for dynamic characteristics of pneumatic cylinders, and one for pneumatic circuit simulation. Images of the terms hydraulics and pneumatics are outdated for students of information-related departments. Hydraulics and pneumatics are being forced to rapidly change, like other branches of science, and it may be time to make a drastic change from hardware to software, because their developments have been excessively oriented to hardware. It is needless to say that they are based on hardware, but it may be worthy of drastically changing these branches of science by establishing virtual fluid power systems. It is also proposed to introduce the modern multi-media techniques into the education of hydraulics and pneumatics. (NEDO)

  13. Meta!Blast computer game: a pipeline from science to 3D art to education

    Science.gov (United States)

    Schneller, William; Campbell, P. J.; Bassham, Diane; Wurtele, Eve Syrkin

    2012-03-01

    Meta!Blast (http://www.metablast.org) is designed to address the challenges students often encounter in understanding cell and metabolic biology. Developed by faculty and students in biology, biochemistry, computer science, game design, pedagogy, art and story, Meta!Blast is being created using Maya (http://usa.autodesk.com/maya/) and the Unity 3D (http://unity3d.com/) game engine, for Macs and PCs in classrooms; it has also been exhibited in an immersive environment. Here, we describe the pipeline from protein structural data and holographic information to art to the threedimensional (3D) environment to the game engine, by which we provide a publicly-available interactive 3D cellular world that mimics a photosynthetic plant cell.

  14. Is Computer Science Compatible with Technological Literacy?

    Science.gov (United States)

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  15. University rankings in computer science

    DEFF Research Database (Denmark)

    Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela

    2017-01-01

    This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...

  16. Computer science II essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly

  17. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  18. Digital Da Vinci computers in the arts and sciences

    CERN Document Server

    Lee, Newton

    2014-01-01

    Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media

  19. Computer-Based Concept Maps for Enabling Multilingual Education in Computer Science: A Basque, English and Spanish Languages Case

    Science.gov (United States)

    Arruarte, Ana; Elorriaga, Jon A.; Calvo, Inaki; Larranaga, Mikel; Rueda, Urko

    2012-01-01

    Inside the globalisation era in which society is immersed, one of the current challenges for any educational system is to provide quality education. While some countries are linguistically homogeneous, many countries and regions display a wealth of linguistic diversity and it is essential to adapt the educational system to those realities. In…

  20. Get set for computer science

    CERN Document Server

    Edwards, Alistair

    2006-01-01

    This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli

  1. Bringing computational science to the public.

    Science.gov (United States)

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  2. Computer science a concise introduction

    CERN Document Server

    Sinclair, Ian

    2014-01-01

    Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic

  3. Development of multidisciplinary practical lessons through research-action methodology in the faculties of computer science and educational psychology

    OpenAIRE

    Pertegal-Felices, María Luisa; Navarro Soria, Ignasi; Jimeno-Morenilla, Antonio; Gil, David

    2010-01-01

    Computer science studies possess a strong multidisciplinary vocation; most graduates do their professional work elsewhere of a computing environment, in collaboration with professionals from many different areas. However, the training offered in computer science studies lacks that multidisciplinary, focusing more on purely technical aspects. The campus, a place where studies of very different nature exist side by side, may constitute an excellent basis for conducting multidisciplinary trainin...

  4. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  5. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  6. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  7. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  8. Volunteer Computing for Science Gateways

    OpenAIRE

    Anderson, David

    2017-01-01

    This poster offers information about volunteer computing for science gateways that offer high-throughput computing services. Volunteer computing can be used to get computing power. This increases the visibility of the gateway to the general public as well as increasing computing capacity at little cost.

  9. Rangaswamy Narasimhan: Doyen of Computer Science

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Rangaswamy Narasimhan: Doyen of Computer Science and Technology. Srinivasan Ramani. Article-in-a-Box Volume 13 Issue 5 May 2008 pp 407-409. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  11. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  12. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    Computational science is now indispensable to the solution of complex problems in every sector, from traditional science and engineering domains to such key areas as national security, public health...

  13. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  14. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  15. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    ... previously deemed intractable. Yet, despite the great opportunities and needs, universities and the Federal government have not effectively recognized the strategic significance of computational science in either...

  16. Interdisciplinary Approaches at Institutions of Higher Education: Teaching Information Systems Concepts to Students of Non-Computer Science Programs

    Directory of Open Access Journals (Sweden)

    Roland Schwald

    2011-07-01

    Full Text Available The aim of this paper is to present a curriculum development concept for teaching information systems content to students enrolled in non-computer science programs by presenting examples from the Business Administration programs at Albstadt-Sigmaringen University, a state university located in Southern Germany. The main focus of this paper therefore is to describe this curriculum development concept. Since this concept involves two disciplines, i.e. business administration and computer science, the author argues that it is necessary to define the roles of one discipline for the other and gives an example on how this could be done. The paper acknowledges that the starting point for the development of a curriculum such as one for a business administration program will be the requirements of the potential employers of the graduates. The paper continues to recommend the assignment of categorized skills and qualifications, such as knowledge, social, methodological, and decision making skills to the different parts of the curricula in question for the development of such a curriculum concept. After the mapping of skills and courses the paper describes how specific information systems can be used in courses, especially those with a specific focus on methodological skills. Two examples from Albstadt-Sigma-ringen University are being given. At the end of the paper the author explains the implications and limitations of such a concept, especially for programs that build on each other, as is the case for some Bachelor and Master programs. The paper concludes that though some elements of this concept are transferable, it is still necessary that every institution of higher education has to take into consideration its own situation to develop curricula concepts. It provides recommendations what issues every institution should solve for itself.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  18. Selecting, Evaluating and Creating Policies for Computer-Based Resources in the Behavioral Sciences and Education.

    Science.gov (United States)

    Richardson, Linda B., Comp.; And Others

    This collection includes four handouts: (1) "Selection Critria Considerations for Computer-Based Resources" (Linda B. Richardson); (2) "Software Collection Policies in Academic Libraries" (a 24-item bibliography, Jane W. Johnson); (3) "Circulation and Security of Software" (a 19-item bibliography, Sara Elizabeth Williams); and (4) "Bibliography of…

  19. Identifying and Formulating Teachers' Beliefs and Motivational Orientations for Computer Science Teacher Education

    Science.gov (United States)

    Bender, Elena; Schaper, Niclas; Caspersen, Michael E.; Margaritis, Melanie; Hubwieser, Peter

    2016-01-01

    How teachers are able to adapt to a changing environment is essentially dependent on their beliefs and motivational orientations. The development of these aspects in the context of professional competence takes place during teachers' educational phase and professional practice. The overall understanding of professional competence for teaching…

  20. Soft computing in computer and information science

    CERN Document Server

    Fray, Imed; Pejaś, Jerzy

    2015-01-01

    This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.

  1. "Computer Science Can Feed a Lot of Dreams"

    Science.gov (United States)

    Educational Horizons, 2014

    2014-01-01

    Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…

  2. Learning computer science by watching video games

    OpenAIRE

    Nagataki, Hiroyuki

    2014-01-01

    This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

  4. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  5. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  6. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  8. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  9. Supporting Student Learning in Computer Science Education via the Adaptive Learning Environment ALMA

    Directory of Open Access Journals (Sweden)

    Alexandra Gasparinatou

    2015-10-01

    Full Text Available This study presents the ALMA environment (Adaptive Learning Models from texts and Activities. ALMA supports the processes of learning and assessment via: (1 texts differing in local and global cohesion for students with low, medium, and high background knowledge; (2 activities corresponding to different levels of comprehension which prompt the student to practically implement different text-reading strategies, with the recommended activity sequence adapted to the student’s learning style; (3 an overall framework for informing, guiding, and supporting students in performing the activities; and; (4 individualized support and guidance according to student specific characteristics. ALMA also, supports students in distance learning or in blended learning in which students are submitted to face-to-face learning supported by computer technology. The adaptive techniques provided via ALMA are: (a adaptive presentation and (b adaptive navigation. Digital learning material, in accordance with the text comprehension model described by Kintsch, was introduced into the ALMA environment. This material can be exploited in either distance or blended learning.

  10. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  11. Computing Education in Korea--Current Issues and Endeavors

    Science.gov (United States)

    Choi, Jeongwon; An, Sangjin; Lee, Youngjun

    2015-01-01

    Computer education has been provided for a long period of time in Korea. Starting as a vocational program, the content of computer education for students evolved to include content on computer literacy, Information Communication Technology (ICT) literacy, and brand-new computer science. While a new curriculum related to computer science was…

  12. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  13. Quantum Computer Science

    Science.gov (United States)

    Mermin, N. David

    2007-08-01

    Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.

  14. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  15. Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games

    Science.gov (United States)

    Lamb, Richard L.

    2016-02-01

    Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the form of three-dimensional serious educational games, two-dimensional online laboratories, and traditional lecture-based instruction in the context of student content learning in science. In particular, this study examines the impact of dimensionality, or the ability to move along the X-, Y-, and Z-axis in the games. Study subjects ( N = 551) were randomly selected using a stratified sampling technique. Independent strata subsamples were developed based upon the conditions of serious educational games, online laboratories, and lecture. The study also computationally models a potential mechanism of action and compares two- and three-dimensional learning environments. F test results suggest a significant difference for the main effect of condition across the factor of content gain score with large effect. Overall, comparisons using computational models suggest that three-dimensional serious educational games increase the level of success in learning as measured with content examinations through greater recruitment and attributional retraining of cognitive systems. The study supports assertions in the literature that the use of games in higher dimensions (i.e., three-dimensional versus two-dimensional) helps to increase student understanding of science concepts.

  16. Computational Science in Armenia (Invited Talk)

    Science.gov (United States)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  17. Computational Thinking in K-9 Education

    NARCIS (Netherlands)

    Mannila, Linda; Dagiene, Valentina; Demo, Barbara; Grgurina, Natasa; Mirolo, Claudio; Rolandsson, Lennart; Settle, Amber

    2014-01-01

    In this report we consider the current status of the coverage of computer science in education at the lowest levels of education in multiple countries. Our focus is on computational thinking (CT), a term meant to encompass a set of concepts and thought processes that aid in formulating problems and

  18. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  19. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  20. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  1. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  2. Bridging the digital divide through the integration of computer and information technology in science education: An action research study

    Science.gov (United States)

    Brown, Gail Laverne

    The presence of a digital divide, computer and information technology integration effectiveness, and barriers to continued usage of computer and information technology were investigated. Thirty-four African American and Caucasian American students (17 males and 17 females) in grades 9--11 from 2 Georgia high school science classes were exposed to 30 hours of hands-on computer and information technology skills. The purpose of the exposure was to improve students' computer and information technology skills. Pre-study and post-study skills surveys, and structured interviews were used to compare race, gender, income, grade-level, and age differences with respect to computer usage. A paired t-test and McNemar test determined mean differences between student pre-study and post-study perceived skills levels. The results were consistent with findings of the National Telecommunications and Information Administration (2000) that indicated the presence of a digital divide and digital inclusion. Caucasian American participants were found to have more at-home computer and Internet access than African American participants, indicating that there is a digital divide by ethnicity. Caucasian American females were found to have more computer and Internet access which was an indication of digital inclusion. Sophomores had more at-home computer access and Internet access than other levels indicating digital inclusion. Students receiving regular meals had more computer and Internet access than students receiving free/reduced meals. Older students had more computer and Internet access than younger students. African American males had been using computer and information technology the longest which is an indication of inclusion. The paired t-test and McNemar test revealed significant perceived student increases in all skills levels. Interviews did not reveal any barriers to continued usage of the computer and information technology skills.

  3. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  4. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  5. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; van Sinderen, Marten J.; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  6. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  7. Computational colour science using MATLAB

    CERN Document Server

    Westland, Stephen; Cheung, Vien

    2012-01-01

    Computational Colour Science Using MATLAB 2nd Edition offers a practical, problem-based approach to colour physics. The book focuses on the key issues encountered in modern colour engineering, including efficient representation of colour information, Fourier analysis of reflectance spectra and advanced colorimetric computation. Emphasis is placed on the practical applications rather than the techniques themselves, with material structured around key topics. These topics include colour calibration of visual displays, computer recipe prediction and models for colour-appearance prediction. Each t

  8. A Cognitive Model for Problem Solving in Computer Science

    Science.gov (United States)

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  9. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  10. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  11. Linking computers for science

    CERN Multimedia

    2005-01-01

    After the success of SETI@home, many other scientists have found computer power donated by the public to be a valuable resource - and sometimes the only possibility to achieve their goals. In July, representatives of several “public resource computing” projects came to CERN to discuss technical issues and R&D activities on the common computing platform they are using, BOINC. This photograph shows the LHC@home screen-saver which uses the BOINC platform: the dots represent protons and the position of the status bar indicates the progress of the calculations. This summer, CERN hosted the first “pangalactic workshop” on BOINC (Berkeley Open Interface for Network Computing). BOINC is modelled on SETI@home, which millions of people have downloaded to help search for signs of extraterrestrial intelligence in radio-astronomical data. BOINC provides a general-purpose framework for scientists to adapt their software to, so that the public can install and run it. An important part of BOINC is managing the...

  12. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  13. Writing for computer science

    CERN Document Server

    Zobel, Justin

    2015-01-01

    All researchers need to write or speak about their work, and to have research  that is worth presenting. Based on the author's decades of experience as a researcher and advisor, this third edition provides detailed guidance on writing and presentations and a comprehensive introduction to research methods, the how-to of being a successful scientist.  Topics include: ·         Development of ideas into research questions; ·         How to find, read, evaluate and referee other research; ·         Design and evaluation of experiments and appropriate use of statistics; ·         Ethics, the principles of science and examples of science gone wrong. Much of the book is a step-by-step guide to effective communication, with advice on:  ·         Writing style and editing; ·         Figures, graphs and tables; ·         Mathematics and algorithms; ·         Literature reviews and referees' reports; ·         Structuring of arguments an...

  14. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  15. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  16. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  17. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  18. International Developments in Computer Science.

    Science.gov (United States)

    1982-06-01

    background on 52 53 China’s scientific research and on their computer science before 1978. A useful companion to the directory is another publication of the...bimonthly publication in Portuguese; occasional translation of foreign articles into Portuguese. Data News: A bimonthly industry newsletter. Sistemas ...computer-related topics; Spanish. Delta: Publication of local users group; Spanish. Sistemas : Publication of System Engineers of Colombia; Spanish. CUBA

  19. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  20. Perspectives of Blockchain Technology, its Relation to the Cloud and its Potential Role in Computer Science Education

    Directory of Open Access Journals (Sweden)

    I. Purdon

    2017-12-01

    Full Text Available Blockchain ledgers and the Cloud are a perfect match. On the one hand, there is an inherent requirement for multiple separate authentication nodes to validate every Blockchain transaction with each node requiring substantial encryption calculation capability. On the other hand, massive economies of scale can bring down the cost per transaction, and provide service continuity. Additionally, the Cloud provides a perfect incubator for proof-of-concept projects. This paper considers the future implications of Blockchain, as the concept of disintermediated trustless ledgers stimulates the imagination of computer scientists and innovators. The Cloud’s role in implementing this new paradigm is also highlighted, as a new decentralized P2P-Cloud model. Finally, this paper discusses how Blockchain may be integrated into the university level computer science and information technology curriculum.

  1. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    OpenAIRE

    Robert FRASER

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer science coursework is somewhat unique, in that there often exist ideal solutions for problems, and work may be shared and copied with very little ef...

  2. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  3. Education through the prism of computation

    Science.gov (United States)

    Kaurov, Vitaliy

    2014-03-01

    With the rapid development of technology, computation claims its irrevocable place among research components of modern science. Thus to foster a successful future scientist, engineer or educator we need to add computation to the foundations of scientific education. We will discuss what type of paradigm shifts it brings to these foundations on the example of Wolfram Science Summer School. It is one of the most advanced computational outreach programs run by Wolfram Foundation, welcoming participants of almost all ages and backgrounds. Centered on complexity science and physics, it also covers numerous adjacent and interdisciplinary fields such as finance, biology, medicine and even music. We will talk about educational and research experiences in this program during the 12 years of its existence. We will review statistics and outputs the program has produced. Among these are interactive electronic publications at the Wolfram Demonstrations Project and contributions to the computational knowledge engine Wolfram|Alpa.

  4. From boring to scoring - a collaborative serious game for learning and practicing mathematical logic for computer science education

    Science.gov (United States)

    Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina

    2013-06-01

    In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."

  5. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  6. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  7. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  8. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    Science.gov (United States)

    Fraser, Robert

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…

  9. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  10. Computability, complexity, and languages fundamentals of theoretical computer science

    CERN Document Server

    Davis, Martin D; Rheinboldt, Werner

    1983-01-01

    Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expa

  11. Educational Computer Utilization and Computer Communications.

    Science.gov (United States)

    Singh, Jai P.; Morgan, Robert P.

    As part of an analysis of educational needs and telecommunications requirements for future educational satellite systems, three studies were carried out. 1) The role of the computer in education was examined and both current status and future requirements were analyzed. Trade-offs between remote time sharing and remote batch process were explored…

  12. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  13. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  14. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  15. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    Science.gov (United States)

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  16. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  17. Computer graphics in engineering education

    CERN Document Server

    Rogers, David F

    2013-01-01

    Computer Graphics in Engineering Education discusses the use of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) as an instructional material in engineering education. Each of the nine chapters of this book covers topics and cites examples that are relevant to the relationship of CAD-CAM with engineering education. The first chapter discusses the use of computer graphics in the U.S. Naval Academy, while Chapter 2 covers key issues in instructional computer graphics. This book then discusses low-cost computer graphics in engineering education. Chapter 4 discusses the uniform b

  18. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  19. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  20. Labour market expectation of Nigerian computer science ...

    African Journals Online (AJOL)

    ... of Nigerian computer science / Information Communication Technology (ICT) graduates. ... It also x-rays the women performance in Computer Science. ... key players were analyzed using variables such as competence, creativity, innovation, ...

  1. History of Computer Science as an Instrument of Enlightenment

    OpenAIRE

    Fet , Yakov

    2013-01-01

    Part 6: Putting the History of Computing into Different Contexts; International audience; This report focuses on the dangerous problems that are currently facing the society – the negative phenomena in development of education and science. The most important way to solve this problem seems to be education and enlightenment. It is assumed that in the history of Computer Science, the intellectual and moral heritage of this history contains a wealth of material that can be used for the dissemina...

  2. Pair Programming as a Modern Method of Teaching Computer Science

    OpenAIRE

    Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj

    2008-01-01

    At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...

  3. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  4. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  5. A synergistic effort among geoscience, physics, computer science and mathematics at Hunter College of CUNY as a Catalyst for educating Earth scientists.

    Science.gov (United States)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships for academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics (STEM). Led by Earth scientists the Program awarded scholarships to students in their junior or senior years majoring in computer science, geosciences, mathematics and physics to create two cohorts of students that spent a total of four semesters in an interdisciplinary community. The program included mentoring of undergraduate students by faculty and graduate students (peer-mentoring), a sequence of three semesters of a one-credit seminar course and opportunities to engage in research activities, research seminars and other enriching academic experiences. Faculty and peer-mentoring were integrated into all parts of the scholarship activities. The one-credit seminar course, although designed to expose scholars to the diversity STEM disciplines and to highlight research options and careers in these disciplines, was thematically focused on geoscience, specifically on ocean and atmospheric science. The program resulted in increased retention rates relative to institutional averages. In this presentation we will discuss the process of establishing the program, from the original plans to its implementation, as well as the impact of this multidisciplinary approach to geoscience education at our institution and beyond. An overview of accomplishments, lessons learned and potential for best practices will be presented.

  6. Computer-aided design and computer science technology

    Science.gov (United States)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  7. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  8. Computational mediation as factor of motivation and meaningful learning in education of sciences of 9th grade: astronomy topics

    Science.gov (United States)

    Da Silva, F. M.; Furtado, W. W.

    2012-10-01

    The main purpose of this study was to analyze the contribution of using hypertext and pedagogic mediation in search of a Meaningful Learning Process in Sciences. We investigate the usage of hypertext in the teaching and learning methods of Astronomy modules. A survey was conducted with students from the 9th grade of Primary School of a public school in the city of Goiânia, Goiás in Brazil. We have analyzed the possibilities that hypermedia can offer in the teaching and learning process, using as reference David Ausubel's Theory of Meaningful Learning. The study was divided into four phases: application of an initial questionnaire on students, development of didactic material (hypertext), six classes held in a computer lab with the use of hypermedia and a final questionnaire applied in the lab after classes. This research indicated that the use of hypertext linked to pedagogical mediation processes is seen as a motivational tool and has potential to foster to Meaningful Learning.

  9. Incorporating modern OpenGL into computer graphics education.

    Science.gov (United States)

    Reina, Guido; Muller, Thomas; Ertl, Thomas

    2014-01-01

    University of Stuttgart educators have updated three computer science courses to incorporate forward-compatible OpenGL. To help students, they developed an educational framework that abstracts some of modern OpenGL's difficult aspects.

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Factoring Fermat Numbers. C E Veni ... C E Veni Madhavan1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

  11. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  12. Computer Applications in Educational Audiology.

    Science.gov (United States)

    Mendel, Lisa Lucks; And Others

    1995-01-01

    This article provides an overview of how computer technologies can be used by educational audiologists. Computer technologies are classified into three categories: (1) information systems applications; (2) screening and diagnostic applications; and (3) intervention applications. (Author/DB)

  13. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  14. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  15. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  16. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  17. Plagiarism in computer science courses

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.K. [Francis Marion Univ., Florence, SC (United States)

    1994-12-31

    Plagiarism of computer programs has long been a problem in higher education. Ease of electronic copying, vague understanding by students as to what constitutes plagiarism, increasing acceptance of plagiarism by students, lack of enforcement by instructors and school administrators, and a whole host of other factors contribute to plagiarism. The first step in curbing plagiarism is prevention, the second (and much less preferable) is detection. History files and software metrics can be used as a tool to aid in detecting possible plagiarism. This paper gives advice concerning how to deal with plagiarism and with using software monitors to detect plagiarism.

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Vishal Gupta. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 9 September 2000 pp 69-81 General Article. Quantum Computing - Building Blocks of a Quantum Computer · C S Vijay Vishal Gupta · More Details Fulltext PDF. Volume ...

  20. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  1. SEED: A Suite of Instructional Laboratories for Computer Security Education

    Science.gov (United States)

    Du, Wenliang; Wang, Ronghua

    2008-01-01

    The security and assurance of our computing infrastructure has become a national priority. To address this priority, higher education has gradually incorporated the principles of computer and information security into the mainstream undergraduate and graduate computer science curricula. To achieve effective education, learning security principles…

  2. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Srinivasan Ramani. Articles written in Resonance – Journal of Science Education. Volume 13 Issue 5 May 2008 pp 407-409 Article-in-a-Box. Rangaswamy Narasimhan: Doyen of Computer Science and Technology · Srinivasan Ramani · More Details Fulltext ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 4. Simulation of Electron Motion in Fields – An Interactive Teaching Aid ... Department of Physics Shivaji Education Society Amravati's Science College Congress Nagar, Nagpur 440 012, India; Department of Computer Science Anuradha ...

  5. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  6. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  7. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  8. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  9. Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science

    CERN Document Server

    Nguyen, Quang

    2012-01-01

    The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical.   Computational Science should enhance the quality of human life,  not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science.   This book is a compilation of some recent research findings in computer application and computational sci...

  10. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  11. Realization of the developing potential of training to computer science in conditions of adoption of the second generation state educational standards

    Directory of Open Access Journals (Sweden)

    Сергей Георгиевич Григорьев

    2010-03-01

    Full Text Available In article requirements to training to computer science and an information technology, formulated with a position of planned results presented in the standard of the second generation are described.

  12. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  13. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  14. Computer Education and Computer Use by Preschool Educators

    Science.gov (United States)

    Towns, Bernadette

    2010-01-01

    Researchers have found that teachers seldom use computers in the preschool classroom. However, little research has examined why preschool teachers elect not to use computers. This case study focused on identifying whether community colleges that prepare teachers for early childhood education include in their curriculum how teachers can effectively…

  15. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  16. Computer Literacy Education

    Science.gov (United States)

    1989-01-01

    Cognitive Aspect ," AEDS Journal, 18, 3 (Spring 1985) 150. "°Geoffrey Akst, "Computer Literacy: An Interview with Dr. Michael Hoban." Journal of Develop- m...1984. Cheng, Tina T.; Plake, Barbara; and Stevens, Dorothy Jo. "A Validation Study of the Computer Literacy Examination: Cognitive Aspect ." AEDS

  17. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  18. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  19. The quantum computer game: citizen science

    Science.gov (United States)

    Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob

    2013-05-01

    Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.

  20. Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games

    Science.gov (United States)

    Lamb, Richard L.

    2016-01-01

    Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the…

  1. Development and Use of a Computer Software for Learning by Observation and Appreciation: A New Way of Planetary Science Education

    Science.gov (United States)

    Mikouchi, A. K.; Mikouchi, T.

    2000-01-01

    We developed a computer software to make users learn about the Moon through their observation and appreciation. We performed a usability test at school, and knew that 7th grade students enjoyed it, making them more interested in the Moon than before.

  2. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  3. Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University

    Science.gov (United States)

    Plane, Jandelyn

    2010-01-01

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…

  4. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    Science.gov (United States)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  5. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  6. The science of computing shaping a discipline

    CERN Document Server

    Tedre, Matti

    2014-01-01

    The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti

  7. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  8. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  9. International Conference on Computer Science and Information Technology

    CERN Document Server

    Li, Xiaolong

    2014-01-01

    The main objective of CSAIT 2013 is to provide a forum for researchers, educators, engineers and government officials involved in the general areas of Computational Sciences and Information Technology to disseminate their latest research results and exchange views on the future research directions of these fields. A medium like this provides an opportunity to the academicians and industrial professionals to exchange and integrate practice of computer science, application of the academic ideas, improve the academic depth. The in-depth discussions on the subject provide an international communication platform for educational technology and scientific research for the world's universities, engineering field experts, professionals and business executives.

  10. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  11. Mathematics and Computer Science: The Interplay

    OpenAIRE

    Madhavan, Veni CE

    2005-01-01

    Mathematics has been an important intellectual preoccupation of man for a long time. Computer science as a formal discipline is about seven decades young. However, one thing in common between all users and producers of mathematical thought is the almost involuntary use of computing. In this article, we bring to fore the many close connections and parallels between the two sciences of mathematics and computing. We show that, unlike in the other branches of human inquiry where mathematics is me...

  12. Semiotics, Information Science, Documents and Computers.

    Science.gov (United States)

    Warner, Julian

    1990-01-01

    Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)

  13. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  14. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  15. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  16. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  17. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  18. Cloud computing with e-science applications

    CERN Document Server

    Terzo, Olivier

    2015-01-01

    The amount of data in everyday life has been exploding. This data increase has been especially significant in scientific fields, where substantial amounts of data must be captured, communicated, aggregated, stored, and analyzed. Cloud Computing with e-Science Applications explains how cloud computing can improve data management in data-heavy fields such as bioinformatics, earth science, and computer science. The book begins with an overview of cloud models supplied by the National Institute of Standards and Technology (NIST), and then:Discusses the challenges imposed by big data on scientific

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. S Balakrishnan. Articles written in Resonance – Journal of Science Education. Volume 2 Issue 9 September 1997 pp 48-57 Feature Article. What's New in Computers ? MMX Technology for Multimedia PCs · S Balakrishnan · More Details Fulltext PDF. Volume 4 ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. V Rajaraman. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 5 May 1996 pp 2-2 Article-in-a-Box. Chief Editor's column / The First Electronic Computer · V Rajaraman · More Details Fulltext PDF. Volume 2 Issue 5 May 1997 pp ...

  1. ICMCS-2007: 5. international conference on microelectronics and computer science. Proceedings. V. 1

    International Nuclear Information System (INIS)

    Kanter, V.; Balmus, I.

    2007-01-01

    This book includes articles which cover a vast range of subjects, such as: micro- and optoelectronics, nano science and nanotechnology, computer science, electronics and communications, new technologies for university education, etc.

  2. ICMCS-2009: 6. international conference on microelectronics and computer science. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, I.M.; Balmus, I.

    2009-01-01

    This book includes articles which cover a vast range of subjects, such as: micro- and optoelectronics, nano science and nanotechnology, computer science, electronics and communications, new technologies for university education, etc.

  3. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  4. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Error Correcting Codes How Numbers Protect Themselves. Priti Shankar. Series Article Volume 1 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Claude Elwood Shannon. Priti Shankar. Article-in-a-Box Volume 7 Issue 2 February 2002 pp 2-3 ... Author Affiliations. Priti Shankar1. Department of Computer Science & Automation, Indian Institute of Science, Bangalore 560 012, India.

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 12. Madhu Sudan Receives Nevanlinna Prize. Meena Mahajan Priti Shankar ... Author Affiliations. Meena Mahajan1 Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangaiore 560 012, India.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Why Do Clocks Move Clockwise? The Dynamics of Collective Learning. Vivek S Borkar. General ... Author Affiliations. Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Alan Turing – The Enigma of Intelligence. Priti Shankar. Book Review Volume 2 Issue 8 August 1997 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. David Huffman. Priti Shankar. Article-in-a-Box Volume 11 Issue 2 February 2006 pp 2-3 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation Indian Institute of Science, Bangalore 560 012, India.

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. The Evolution of Compilers. Priti Shankar. General Article Volume 12 Issue 8 August 2007 pp 8-26 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 4. Who Will Win the Toss? H Ramesh V Vinay. General Article Volume 3 Issue 4 April 1998 pp 72-87 ... Author Affiliations. H Ramesh1 V Vinay1. Department of Computer Science, Indian Institute of Science, Bangalore 560 012, India ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. Decoding Reed–Solomon Codes Using Euclid's Algorithm. Priti Shankar. General Article Volume 12 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Decoding Codes on Graphs - Low Density Parity Check Codes. A S Madhu Aditya Nori ... Author Affiliations. A S Madhu1 Aditya Nori1. Department of Computer Science and Automation Indian Institute of Science Bangalore 560012, India.

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 1. Error Correcting Codes The Hamming Codes. Priti Shankar. Series Article Volume 2 Issue 1 January ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Petri Nets - Overview and Foundations. Y Narahari. General Article Volume 4 Issue 8 August 1999 pp ... Author Affiliations. Y Narahari1. Department ot Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  17. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  18. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  19. Computing Educator Attitudes about Motivation

    OpenAIRE

    Settle, Amber; Sedlak, Brian

    2016-01-01

    While motivation is of great interest to computing educators, relatively little work has been done on understanding faculty attitudes toward student motivation. Two previous qualitative studies of instructor attitudes found results identical to those from other disciplines, but neither study considered whether instructors perceive student motivation to be more important in certain computing classes. In this work we present quantitative results about the perceived importance of student motivat...

  20. Computers in Education: What for?

    OpenAIRE

    Eevi E. Bec

    2011-01-01

    The assumption that increased use of computing technologies is beneficial per se has been questioned in research on workplace computing since the early 1970ies. It is interesting, then, to note how easily such assumptions have become part of the landscape within Education research. The intention of this paper is to encourage stopping and pausing to consider what is happening (an empirical question), and whether what is seen is desirable (a normative question). The paper calls for more debate ...

  1. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  2. Journal of Computer Science and Its Application

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... Cloud model construct for transaction-based cooperative systems · EMAIL FULL TEXT EMAIL FULL TEXT ... The evaluation of tertiary institution service quality using HiEdQUAL and fuzzy ...

  3. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  4. Computer science: Data analysis meets quantum physics

    Science.gov (United States)

    Schramm, Steven

    2017-10-01

    A technique that combines machine learning and quantum computing has been used to identify the particles known as Higgs bosons. The method could find applications in many areas of science. See Letter p.375

  5. Computational Science: Ensuring America`s Competitiveness

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...rationalization and restructuring of computational science within universities and Federal agencies, and the development and maintenance of a multi-decade roadmap...

  6. Philosophy, computing and information science

    CERN Document Server

    Hagengruber, Ruth

    2014-01-01

    Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.

  7. Explorations In Theoretical Computer Science For Kids (using paper toys)

    DEFF Research Database (Denmark)

    Valente, Andrea

    2004-01-01

    The computational card (c-cards for short) project is a study and realization of an educational tool based on playing cards. C-cards are an educational tool to introduce children 8 to 10 (or older) to the concept of computation, seen as manipulation of symbols. The game provides teachers...... and learners with a physical, tangible metaphor for exploring core concepts of computer science, such as deterministic and probabilistic state machines, frequencies and probability distributions, and the central elements of Shannon's information theory, like information, communication, errors and error...... detection. Our idea is implemented both with paper cards and by an editor/simulator software (a prototype realized in javascript). We also designed the structure of a course in (theoretical) computer science, based on c-cards, and we will test it this summer....

  8. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  9. Towards a Competency Model for Teaching Computer Science

    Science.gov (United States)

    Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid

    2015-01-01

    To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…

  10. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  11. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 8. Complex Systems: An Introduction - Information Theory, Chaos Theory and Computational Complexity. V K Wadhawan. General Article Volume 14 Issue 8 August 2009 pp 761-781 ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... classic literature on science;; books on educational methods. ... Books reviewed should generally be affordable to students/teachers (price range Rs. 50 to ... Use good quality computer-generated images, with neat and clear fonts for labels.

  14. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  15. TRAINING FUTURE TEACHERS OF COMPUTER SCIENCE FOR WORKING OUT TECHNOLOGICAL CARDS OF LESSONS IN THE CONDITIONS OF REALIZATION OF THE FEDERAL STATE EDUCATIONAL STANDARD FOR GENERAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Екатерина Николаевна Кувшинова

    2017-12-01

    Full Text Available This article is devoted to a problem of readiness of future teachers of informatics for development of flow charts of the lessons displaying the main requirements of Federal state educational standards of the main general education (FGOS of Ltd company to planning and the organization of educational process taking into account system and activity approach in training. Content of system and activity approach in training, the universal educational actions (UEA reveals. Main units of the flow chart of a lesson of informatics are considered. The substantial block of the flow chart of a lesson of informatics determined by a training material which provides achievement of the planned subject results of training, and also forming and development of UUD, all-educational skills, ICT competences, competences of educational and research and project activities is stated.Subject results of training to which the abilities specific to a subject, types of activity on receipt of new knowledge within a subject, to its transformation and application in educational, educational and project and social and project situations, forming of scientific type of thinking, scientific ideas of key theories, types and types of the relations, ownership of scientific terminology, key concepts, methods and acceptances belong [10] are analyzed.Step-by-step training of future teachers of informatics for development of flow charts of lessons is discussed.

  16. Computational Science at the Argonne Leadership Computing Facility

    Science.gov (United States)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  17. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  18. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  19. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  20. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    Science.gov (United States)

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  1. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  2. Design of the Information Science and Systems (IS Curriculum in a Computer and Information Sciences Department

    Directory of Open Access Journals (Sweden)

    Behrooz Seyed-Abbassi

    2004-12-01

    Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.

  3. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  4. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  5. Computer science and the recent innovations of the modern society

    Directory of Open Access Journals (Sweden)

    Greorghe Popescu

    2010-12-01

    Full Text Available The paper “Computer science and the recent innovations of the modern society” presents the importance of computer science, with the most important historical moments in its evolution, the main theoretical elements of the computation science, computer elements and architecture and the latest innovations in the computer science, such as Artificial Intelligence.

  6. Proceedings of ISCIS III, the third international symposium on computer and information sciences

    International Nuclear Information System (INIS)

    Gelenbe, E.; Orhun, E.; Basar, E.

    1988-01-01

    The symposium presented in this book covered the following topics in computer and information sciences: computer networks, computers in education, software engineering, modelling and simulation, concurrency, artificial intelligence, image and signal processing, data base systems, operating systems, parallel processing, robotics, reliability, computer architecture, CAD/CAM, and social and technical applications. Many of the papers presented are studies on computer networks, computers in education, artificial intelligence, software engineering, concurrency, data base systems, image processing, and parallel processing

  7. International Conference on Computer, Communication and Computational Sciences

    CERN Document Server

    Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek

    2017-01-01

    Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...

  8. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  9. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  10. Nuclear computational science a century in review

    CERN Document Server

    Azmy, Yousry

    2010-01-01

    Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational

  11. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  12. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  13. Transactions on Computational Science IX

    DEFF Research Database (Denmark)

    Diagrams, held in Copenhagen, Denmark, June 23-36, 2009. Topics covered include: divide and conquer construction of Voronoi diagrams; new generalized Voronoi diagrams or properties of existing generalized Voronoi diagrams; and applications of Voronoi diagrams and their duals in graph theory, computer...... graphics, bioinformatics, and spatial process simulation....

  14. Fundamentals: IVC and Computer Science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  15. Computational approach in zeolite science

    NARCIS (Netherlands)

    Pidko, E.A.; Santen, van R.A.; Chester, A.W.; Derouane, E.G.

    2009-01-01

    This chapter presents an overview of different computational methods and their application to various fields of zeolite chemistry. We will discuss static lattice methods based on interatomic potentials to predict zeolite structures and topologies, Monte Carlo simulations for the investigation of

  16. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    Science.gov (United States)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  17. Computational Exposure Science: An Emerging Discipline to ...

    Science.gov (United States)

    Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source

  18. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  19. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  20. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  1. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  2. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  3. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  4. Computer Science Lesson Study: Building Computing Skills among Elementary School Teachers

    Science.gov (United States)

    Newman, Thomas R.

    2017-01-01

    The lack of diversity in the technology workforce in the United States has proven to be a stubborn problem, resisting even the most well-funded reform efforts. With the absence of computer science education in the mainstream K-12 curriculum, only a narrow band of students in public schools go on to careers in technology. The problem persists…

  5. Probability, statistics, and computational science.

    Science.gov (United States)

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  6. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  7. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  8. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  9. Logic in the curricula of Computer Science

    Directory of Open Access Journals (Sweden)

    Margareth Quindeless

    2014-12-01

    Full Text Available The aim of the programs in Computer Science is to educate and train students to understand the problems and build systems that solve them. This process involves applying a special reasoning to model interactions, capabilities, and limitations of the components involved. A good curriculum must involve the use of tools to assist in these tasks, and one that could be considered as a fundamental is the logic, because with it students develop the necessary reasoning. Besides, software developers analyze the behavior of the program during the designed, the depuration, and testing; hardware designers perform minimization and equivalence verification of circuits; designers of operating systems validate routing protocols, programing, and synchronization; and formal logic underlying all these activities. Therefore, a strong background in applied logic would help students to develop or potentiate their ability to reason about complex systems. Unfortunately, few curricula formed and properly trained in logic. Most includes only one or two courses of Discrete Mathematics, which in a few weeks covered truth tables and the propositional calculus, and nothing more. This is not enough, and higher level courses in which they are applied and many other logical concepts are needed. In addition, students will not see the importance of logic in their careers and need to modify the curriculum committees or adapt the curriculum to reverse this situation.

  10. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  11. International Conference on Computer Science and Information Technologies

    CERN Document Server

    2017-01-01

    The book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issue in big data and cloud computing, computation linguistics, cyber-physical systems as well as topics in intelligent information management. Written by active researchers, the different chapters are based on contributions presented at the workshop in intelligent systems and computing (ISC), held during CSIT 2016, September 6-9, and jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of RadioElectronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. All in all, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and it is expected to foster new discussions and collaborations among different groups. ...

  12. Sustainable computational science: the ReScience initiative

    Directory of Open Access Journals (Sweden)

    Nicolas P. Rougier

    2017-12-01

    Full Text Available Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

  13. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  14. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  16. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  18. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  19. Computer Series, 3: Computer Graphics for Chemical Education.

    Science.gov (United States)

    Soltzberg, Leonard J.

    1979-01-01

    Surveys the current scene in computer graphics from the point of view of a chemistry educator. Discusses the scope of current applications of computer graphics in chemical education, and provides information about hardware and software systems to promote communication with vendors of computer graphics equipment. (HM)

  20. Computer science approach to quantum control

    International Nuclear Information System (INIS)

    Janzing, D.

    2006-01-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  1. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  2. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  3. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  4. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  5. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 10; Issue 1. MacWilliams Identities? Madhu Sudan. Classroom Volume 10 Issue 1 January 2005 pp 74-82 ... Author Affiliations. Madhu Sudan1. Department of Electrical Engineering and Computer Science Massachussetts Institute of Technology, MA 02139-4307, USA ...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Algorithms Introduction to Algorithms. R K Shyamasundar. Series Article Volume 1 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Author Affiliations. Rekha S Raorane1 Raghu Mahajan2 Praveen Pathak1 Vijay A Singh1. Homi Bhabha Centre for Science Education (TIFR), V N Purav Marg, Mankhurd, Mumbai 400 088, India. Department of Computer Science, Indian Institute of Technology, New Delhi 110 016, India.

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 11. Science Academies' Refresher Course on Paradigms and Applications of Pattern Recognition in Image Processing and Computer Vision. Information and Announcements Volume 16 Issue 11 November 2011 pp 1100-1100 ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 11. What's New in Computers ? Evolving Video Compression Standard: MPEG. Vijnan Shastri. Feature Article ... Author Affiliations. Vijnan Shastri1. Centre for Electronics Design Technology, Indian Institute of Science, Bangalore 560 012, India ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 12. Legendre's and Kummer's Theorems Again. Dorel Mihet. General Article Volume ... Author Affiliations. Dorel Mihet1. West University of Timisoara Faculty of Mathematics and Computer Science Bv. V. Parvan 4, 300223 Timisoara, Romania.

  12. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  13. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  14. Science Prospects And Benefits with Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Kothe, Douglas B [ORNL

    2007-12-01

    Scientific computation has come into its own as a mature technology in all fields of science. Never before have we been able to accurately anticipate, analyze, and plan for complex events that have not yet occurred from the operation of a reactor running at 100 million degrees centigrade to the changing climate a century down the road. Combined with the more traditional approaches of theory and experiment, scientific computation provides a profound tool for insight and solution as we look at complex systems containing billions of components. Nevertheless, it cannot yet do all we would like. Much of scientific computation s potential remains untapped in areas such as materials science, Earth science, energy assurance, fundamental science, biology and medicine, engineering design, and national security because the scientific challenges are far too enormous and complex for the computational resources at hand. Many of these challenges are of immediate global importance. These challenges can be overcome by a revolution in computing that promises real advancement at a greatly accelerated pace. Planned petascale systems (capable of a petaflop, or 1015 floating point operations per second) in the next 3 years and exascale systems (capable of an exaflop, or 1018 floating point operations per second) in the next decade will provide an unprecedented opportunity to attack these global challenges through modeling and simulation. Exascale computers, with a processing capability similar to that of the human brain, will enable the unraveling of longstanding scientific mysteries and present new opportunities. Table ES.1 summarizes these scientific opportunities, their key application areas, and the goals and associated benefits that would result from solutions afforded by exascale computing.

  15. International Conference on Computational Engineering Science

    CERN Document Server

    Yagawa, G

    1988-01-01

    The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.

  16. Application of cluster computing in materials science

    International Nuclear Information System (INIS)

    Kuzmin, A.

    2006-01-01

    Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)

  17. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  18. O computador na Educação em Ciências: breve revisão crítica acerca de algumas formas de utilização The computer in Science Education: a brief critical review

    Directory of Open Access Journals (Sweden)

    Marcelo Giordan

    2005-08-01

    Full Text Available O objetivo deste artigo é discutir algumas das principais questões atuais de pesquisa sobre a presença do computador nas aulas de Ciências. Para apresentar o estado da arte da pesquisa, recuperam- se as primeiras experiências de utilização do computador e também apresentam-se outras experiências de uso da internet, bem como de atividades desenvolvidas diante do computador. Paralelamente às formas de utilização do computador, são discutidas algumas questões de pesquisa desdobradas das doutrinas de pensamento que alimentam os programas de pesquisa em Educação em Ciências, enfatizando alguns conceitos da teoria da ação mediada.In this article, we discuss some of the main current research questions on the presence of the computer in Science lessons. The state of the research in this field is reported, through recalling the first experiences on the use of computers and also through presenting other experiences of using the internet, as well as some experiences of activities at the computer. While the uses of computers in science lessons are reported, some research questions from Science Education are also described, with an emphasis on concepts of the mediated action theory.

  19. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)

  20. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  1. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  2. Overview of the NASA/RECON educational, research, and development activities of the Computer Science Departments of the University of Southwestern Louisiana and Southern University

    Science.gov (United States)

    Dominick, Wayne D. (Editor)

    1984-01-01

    This document presents a brief overview of the scope of activities undertaken by the Computer Science Departments of the University of Southern Louisiana (USL) and Southern University (SU) pursuant to a contract with NASA. Presented are only basic identification data concerning the contract activities since subsequent entries within the Working Paper Series will be oriented specifically toward a detailed development and presentation of plans, methodologies, and results of each contract activity. Also included is a table of contents of the entire USL/DBMS NASA/RECON Working Paper Series.

  3. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 4. Know Your Personal Computer The Personal Computer System Software. Siddhartha Kumar Ghoshal. Series Article Volume 1 Issue 4 April 1996 pp 31-36. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Siddhartha Kumar Ghoshal. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 48-55 Series Article. Know Your Personal Computer Introduction to Computers · Siddhartha Kumar Ghoshal · More Details Fulltext PDF. Volume 1 Issue 2 February 1996 pp 32-39 Series Article.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. The Inveterate Tinkerer 10. Analog ComputingWith Soap Films. Chirag Kalelkar. Classroom Volume 22 Issue 12 December 2017 pp 1213-1218 ... Keywords. Plateau border, catenoid, motorway problem, analog computer.

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. What is New in Computers? - Mobile Computing. L M Patnaik. Feature Article Volume 3 Issue 5 May 1998 pp 48-62. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0048-0062 ...

  8. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  9. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  10. Educational NASA Computational and Scientific Studies (enCOMPASS)

    Science.gov (United States)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  11. Beyond the first "click:" Women graduate students in computer science

    Science.gov (United States)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of

  12. Summary of researches being performed in the Institute of Mathematics and Computer Science on computer science and information technologies

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2008-07-01

    Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.

  13. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  14. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  15. Practical guide to gender diversity for computer science faculty

    CERN Document Server

    Franklin, Diana

    2013-01-01

    Computer science faces a continuing crisis in the lack of females pursuing and succeeding in the field. Companies may suffer due to reduced product quality, students suffer because educators have failed to adjust to diverse populations, and future generations suffer due to a lack of role models and continued challenges in the environment. In this book, we draw on the latest research in sociology, psychology, and education to first identify why we should be striving for gender diversity (beyond social justice), refuting misconceptions about the differing potentials between females and males. We

  16. Teacher Educators' Attitude towards Computer: Perspective Bangladesh

    Science.gov (United States)

    Rahman, Mohammad Ataur

    2011-01-01

    This study examined how teacher educators perceive the attitude towards use of computer technology in Teachers' Training Colleges in Bangladesh. This study investigated teacher educators' computer attitudes by using the valid and reliable instruments of Loyd and Gressard's (1984) Computer Attitude Scale (CAS). The data was collected through …

  17. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  18. States Move toward Computer Science Standards. Policy Update. Vol. 23, No. 17

    Science.gov (United States)

    Tilley-Coulson, Eve

    2016-01-01

    While educators and parents recognize computer science as a key skill for career readiness, only five states have adopted learning standards in this area. Tides are changing, however, as the Every Student Succeeds Act (ESSA) recognizes with its call on states to provide a "well-rounded education" for students, to include computer science…

  19. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  20. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  1. Employing Subgoals in Computer Programming Education

    Science.gov (United States)

    Margulieux, Lauren E.; Catrambone, Richard; Guzdial, Mark

    2016-01-01

    The rapid integration of technology into our professional and personal lives has left many education systems ill-equipped to deal with the influx of people seeking computing education. To improve computing education, we are applying techniques that have been developed for other procedural fields. The present study applied such a technique, subgoal…

  2. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  3. Who am I? ~ Undergraduate Computer Science Student

    OpenAIRE

    Ferris, Jane

    2012-01-01

    As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.

  4. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  5. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  6. Stimulating and maintaining students’ interest in Computer Science using the hackathon model

    CSIR Research Space (South Africa)

    Mtsweni, J

    2015-10-01

    Full Text Available Computer Science (CS) enrolments at higher education institutions across the globe remain low in comparison to other disciplines. The low interest in CS is often attributed to students’ misconceptions about the discipline, such as CS being construed...

  7. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  8. Design, Development, and Evaluation of a Mobile Learning Application for Computing Education

    Science.gov (United States)

    Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki

    2018-01-01

    The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…

  9. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  10. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  11. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  12. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  13. Archives: Journal of Computer Science and Its Application

    African Journals Online (AJOL)

    Items 1 - 9 of 9 ... Archives: Journal of Computer Science and Its Application. Journal Home > Archives: Journal of Computer Science and Its Application. Log in or Register to get access to full text downloads.

  14. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  15. Journal of Computer Science and Its Application: Site Map

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Site Map. Journal Home > About the Journal > Journal of Computer Science and Its Application: Site Map. Log in or Register to get access to full text downloads.

  16. Journal of Computer Science and Its Application: About this journal

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: About this journal. Journal Home > Journal of Computer Science and Its Application: About this journal. Log in or Register to get access to full text downloads.

  17. Journal of Computer Science and Its Application: Journal Sponsorship

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Journal Sponsorship. Journal Home > About the Journal > Journal of Computer Science and Its Application: Journal Sponsorship. Log in or Register to get access to full text downloads.

  18. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  19. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  20. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  1. Architecture, systems research and computational sciences

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 1) issue of the Nexus Network Journal is dedicated to the theme “Architecture, Systems Research and Computational Sciences”. This is an outgrowth of the session by the same name which took place during the eighth international, interdisciplinary conference “Nexus 2010: Relationships between Architecture and Mathematics, held in Porto, Portugal, in June 2010. Today computer science is an integral part of even strictly historical investigations, such as those concerning the construction of vaults, where the computer is used to survey the existing building, analyse the data and draw the ideal solution. What the papers in this issue make especially evident is that information technology has had an impact at a much deeper level as well: architecture itself can now be considered as a manifestation of information and as a complex system. The issue is completed with other research papers, conference reports and book reviews.

  2. Computational science: Emerging opportunities and challenges

    International Nuclear Information System (INIS)

    Hendrickson, Bruce

    2009-01-01

    In the past two decades, computational methods have emerged as an essential component of the scientific and engineering enterprise. A diverse assortment of scientific applications has been simulated and explored via advanced computational techniques. Computer vendors have built enormous parallel machines to support these activities, and the research community has developed new algorithms and codes, and agreed on standards to facilitate ever more ambitious computations. However, this track record of success will be increasingly hard to sustain in coming years. Power limitations constrain processor clock speeds, so further performance improvements will need to come from ever more parallelism. This higher degree of parallelism will require new thinking about algorithms, programming models, and architectural resilience. Simultaneously, cutting edge science increasingly requires more complex simulations with unstructured and adaptive grids, and multi-scale and multi-physics phenomena. These new codes will push existing parallelization strategies to their limits and beyond. Emerging data-rich scientific applications are also in need of high performance computing, but their complex spatial and temporal data access patterns do not perform well on existing machines. These interacting forces will reshape high performance computing in the coming years.

  3. Increasing the Interest of Elementary Age Students in Computer Science though Day Camps

    Science.gov (United States)

    Cliburn, Dan; Weisheit, Tracey; Griffith, Jason; Jones, Matt; Rackley, Hunter; Richey, Eric; Stormer, Kevin

    2004-01-01

    Computer Science and related majors have seen a decrease in enrollment across the country in recent years. While there are several theories behind why this may be the case, as educators in many areas of computing and information technology, this is a trend we should attempt to reverse. While it is true that many children are "computer literate",…

  4. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  6. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  7. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  8. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  9. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  10. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  11. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  12. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  13. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    Science.gov (United States)

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  14. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    Science.gov (United States)

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  15. The effects of integrating service learning into computer science: an inter-institutional longitudinal study

    Science.gov (United States)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-07-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.

  16. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  17. Advances and challenges in computational plasma science

    International Nuclear Information System (INIS)

    Tang, W M; Chan, V S

    2005-01-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  18. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  19. MENTAL SHIFT TOWARDS SYSTEMS THINKING SKILLS IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    MILDEOVÁ, Stanislava

    2012-03-01

    Full Text Available When seeking solutions to current problems in the field of computer science – and other fields – we encounter situations where traditional approaches no longer bring the desired results. Our cognitive skills also limit the implementation of reliable mental simulation within the basic set of relations. The world around us is becoming more complex and mutually interdependent, and this is reflected in the demands on computer support. Thus, in today’s education and science in the field of computer science and all other disciplines and areas of life need to address the issue of the paradigm shift, which is generally accepted by experts. The goal of the paper is to present the systems thinking that facilitates and extends the understanding of the world through relations and linkages. Moreover, the paper introduces the essence of systems thinking and the possibilities to achieve mental a shift toward systems thinking skills. At the same time, the link between systems thinking and functional literacy is presented. We adopted the “Bathtub Test” from the variety of systems thinking tests that allow people to assess the understanding of basic systemic concepts, in order to assess the level of systems thinking. University students (potential information managers were the examined subjects of the examination of systems thinking that was conducted over a longer time period and whose aim was to determine the status of systems thinking. . The paper demonstrates that some pedagogical concepts and activities, in our case the subject of System Dynamics that leads to the appropriate integration of systems thinking in education. There is some evidence that basic knowledge of system dynamics and systems thinking principles will affect students, and their thinking will contribute to an improved approach to solving problems of computer science both in theory and practice.

  20. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  1. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  2. Implementation of cloud computing in higher education

    Science.gov (United States)

    Asniar; Budiawan, R.

    2016-04-01

    Cloud computing research is a new trend in distributed computing, where people have developed service and SOA (Service Oriented Architecture) based application. This technology is very useful to be implemented, especially for higher education. This research is studied the need and feasibility for the suitability of cloud computing in higher education then propose the model of cloud computing service in higher education in Indonesia that can be implemented in order to support academic activities. Literature study is used as the research methodology to get a proposed model of cloud computing in higher education. Finally, SaaS and IaaS are cloud computing service that proposed to be implemented in higher education in Indonesia and cloud hybrid is the service model that can be recommended.

  3. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  4. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  5. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  6. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  7. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  8. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  9. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  10. Computational perspectives in the history of science: to the memory of Peter Damerow.

    Science.gov (United States)

    Laubichler, Manfred D; Maienschein, Jane; Renn, Jürgen

    2013-03-01

    Computational methods and perspectives can transform the history of science by enabling the pursuit of novel types of questions, dramatically expanding the scale of analysis (geographically and temporally), and offering novel forms of publication that greatly enhance access and transparency. This essay presents a brief summary of a computational research system for the history of science, discussing its implications for research, education, and publication practices and its connections to the open-access movement and similar transformations in the natural and social sciences that emphasize big data. It also argues that computational approaches help to reconnect the history of science to individual scientific disciplines.

  11. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  12. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  13. Lab4CE: a Remote Laboratory for Computer Education

    OpenAIRE

    Broisin , Julien; Venant , Rémi; Vidal , Philippe

    2015-01-01

    International audience; Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and problem-based learning. However, virtualization solutions have not been designed especially for education and do not address any pedag...

  14. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  15. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  16. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  17. Applied Educational Computing: Putting Skills to Practice.

    Science.gov (United States)

    Thomerson, J. D.

    The College of Education at Valdosta State University (Georgia) developed a followup course to their required entry-level educational computing course. The introductory course covers word processing, spreadsheet, database, presentation, Internet, electronic mail, and operating system software and basic computer concepts. Students expressed a need…

  18. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    Science.gov (United States)

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  19. Computer and Information Sciences III : 27th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo

    2013-01-01

    Information technology is the enabling foundation science and technology for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 27th International Symposium on Computer and Information Systems, held at the Institut Henri Poincare' in Paris on October 3 and 4, 2012. Computer and Information Sciences III: 27th International Symposium on Computer and Information Sciences contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams ...

  20. Computer and Information Sciences II : 26th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo; Sakellari, Georgia

    2012-01-01

    Information technology is the enabling foundation for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 26th International Symposium on Computer and Information Systems, held at the Royal Society in London on 26th to 28th September 2011. Computer and Information Sciences II contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams in both Europe and Asia.

  1. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  2. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  3. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  4. Employing subgoals in computer programming education

    Science.gov (United States)

    Margulieux, Lauren E.; Catrambone, Richard; Guzdial, Mark

    2016-01-01

    The rapid integration of technology into our professional and personal lives has left many education systems ill-equipped to deal with the influx of people seeking computing education. To improve computing education, we are applying techniques that have been developed for other procedural fields. The present study applied such a technique, subgoal labeled worked examples, to explore whether it would improve programming instruction. The first two experiments, conducted in a laboratory, suggest that the intervention improves undergraduate learners' problem-solving performance and affects how learners approach problem-solving. The third experiment demonstrates that the intervention has similar, and perhaps stronger, effects in an online learning environment with in-service K-12 teachers who want to become qualified to teach computing courses. By implementing this subgoal intervention as a tool for educators to teach themselves and their students, education systems could improve computing education and better prepare learners for an increasingly technical world.

  5. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  6. Using Computers in Fluids Engineering Education

    Science.gov (United States)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  7. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  10. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  11. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  12. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  13. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  15. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  16. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  17. The Nature of Computational Thinking in Computing Education

    DEFF Research Database (Denmark)

    Spangsberg, Thomas Hvid; Brynskov, Martin

    2018-01-01

    Computational Thinking has gained popularity in recent years within educational and political discourses. It is more than ever crucial to discuss the term itself and what it means. In June 2017, Denning articulated that computational thinking can be viewed as either “traditional” or “new”. New...

  18. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  19. Trend Analysis of the Brazilian Scientific Production in Computer Science

    Directory of Open Access Journals (Sweden)

    TRUCOLO, C. C.

    2014-12-01

    Full Text Available The growth of scientific information volume and diversity brings new challenges in order to understand the reasons, the process and the real essence that propel this growth. This information can be used as the basis for the development of strategies and public politics to improve the education and innovation services. Trend analysis is one of the steps in this way. In this work, trend analysis of Brazilian scientific production of graduate programs in the computer science area is made to identify the main subjects being studied by these programs in general and individual ways.

  20. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  6. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 2. Know Your Personal Computer Memory Organization. Siddhartha Kumar Ghoshal. Series Article Volume 2 Issue 2 February 1997 pp 25-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Statistical Computing - Understanding Randomness and Random Numbers. Sudhakar Kunte. Series Article Volume 4 Issue 10 October 1999 pp 16-21. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 6. What's New in Computers: Cryptocurrencies: An Introduction. Pramod Chandra P Bhatt. General Article Volume 19 Issue 6 June 2014 pp 549-569. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. What's New in Computers ? MMX Technology for Multimedia PCs. S Balakrishnan. Feature Article Volume 2 Issue 9 September 1997 pp 48-57. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. TIFRAC, India's First Computer - A Retrospective. P V S Rao. General Article Volume 13 Issue 5 May 2008 pp 420-429. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/05/0420-0429 ...

  13. A Position Paper Joint Science Education Panel (IASc, INSA, NASI)

    Indian Academy of Sciences (India)

    user

    ogy and computer science, etc., are being introduced as substitutes for the fundamental subjects like biology, physics or mathematics. This practice is hollowing the .... absence of the required level of academic audit, the quality of education imparted at many of them is below the minimal expected levels. The categories 4-6 ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Quantum Computing - Algorithms. C S Vijay Vishal Gupta. General Article Volume 5 Issue 10 ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. What's New in Computers? Digital Libraries. T B Rajashekar. Feature Article Volume 2 Issue 4 April 1997 pp 60-73. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/04/0060-0073 ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. The Madelung Constant of the Sodium Chloride Crystal Lattice. Sourav Das ... Keywords. Madelung constant; 6:6 ionic crystal lattice; sodium chloride crystal; structural solid state chemistry; Born-Lande equation; computer aided learning.

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 7. Know Your Personal Computer - The CPU Base-Architecture. Siddhartha Kumar Ghoshal. Series Article Volume 1 Issue 7 July 1996 pp 15-22. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. On Parallel Computing – Indian Trends. U N Sinha. Article-in-a-Box Volume 3 Issue 11 November 1998 pp 2-5. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/11/0002-0005 ...

  19. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  20. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  1. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  2. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  3. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    Science.gov (United States)

    Koch, Melissa; Gorges, Torie

    2016-01-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and…

  4. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  5. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  6. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  7. 6th International Conference on Computer Science and its Applications

    CERN Document Server

    Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman

    2015-01-01

    The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.

  8. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  9. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  10. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  11. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  12. Computer Programming Education with Miranda

    NARCIS (Netherlands)

    Joosten, S.M.M.; van den Berg, Klaas

    During the past four years, an experiment has been carried out with an introductory course in computer programming, based on functional programming. This article describes the background of this approach, the aim of the computer programming course, the outline and subject matter of the course parts

  13. Learning to Teach Computer Science: Qualitative Insights into Secondary Teachers' Pedagogical Content Knowledge

    Science.gov (United States)

    Hubbard, Aleata Kimberly

    2017-01-01

    In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…

  14. Pedagogy Matters: Engaging Diverse Students as Community Researchers in Three Computer Science Classrooms

    Science.gov (United States)

    Ryoo, Jean Jinsun

    2013-01-01

    Computing occupations are among the fastest growing in the U.S. and technological innovations are central to solving world problems. Yet only our most privileged students are learning to use technology for creative purposes through rigorous computer science education opportunities. In order to increase access for diverse students and females who…

  15. Encouraging more women into computer science: Initiating a single-sex intervention program in Sweden

    Science.gov (United States)

    Brandell, Gerd; Carlsson, Svante; Ekblom, Håkan; Nord, Ann-Charlotte

    1997-11-01

    The process of starting a new program in computer science and engineering, heavily based on applied mathematics and only open to women, is described in this paper. The program was introduced into an educational system without any tradition in single-sex education. Important observations made during the process included the considerable interest in mathematics and curiosity about computer science found among female students at the secondary school level, and the acceptance of the single-sex program by the staff, administration, and management of the university as well as among male and female students. The process described highlights the importance of preparing the environment for a totally new type of educational program.

  16. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  17. An Ecology of Science Education.

    Science.gov (United States)

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  18. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  19. An Analysis of 27 Years of Research into Computer Education Published in Australian Educational Computing

    Science.gov (United States)

    Zagami, Jason

    2015-01-01

    Analysis of three decades of publications in Australian Educational Computing (AEC) provides insight into the historical trends in Australian educational computing, highlighting an emphasis on pedagogy, comparatively few articles on educational technologies, and strong research topic alignment with similar international journals. Analysis confirms…

  20. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.