Nedospasov, A. V.
1992-12-01
Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.
Tang, William
2013-04-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).
Visible imaging of edge turbulence in NSTX
S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden
2000-06-21
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence.
Visible imaging of edge turbulence in NSTX
S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al
2000-06-13
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.
McKee, G; Gohil, P; Schlossberg, D; Boedo, J; Burrell, K; deGrassie, J; Groebner, R; Makowski, M; Moyer, R; Petty, C; Rhodes, T; Schmitz, L; Shafer, M; Solomon, W; Umansky, M; Wang, G; White, A; Xu, X
2008-10-13
The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion {del}B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion {del}B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER.
Hermes: Global plasma edge fluid turbulence simulations
Dudson, Ben
2016-01-01
The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations.
Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?
Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.
2010-11-01
A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.
Edge detection by nonlinear dynamics
Wong, Yiu-fai
1994-07-01
We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.
Tokamak edge Er studies by turbulence and divertor simulations
Nishimura, Y.; Coster, D.; Scott, B.
2002-11-01
Numerical coupling of the divertor code B2(B. J. Braams, Next European Torus Technical Report 68 (1987).) and the turbulence code DALF(B. D. Scott, Phys. Fluids B 4), 2468 (1992). is pursued. Within this model, space and time dependent transport coefficients (D and i) respond to the dynamics of drift wave turbulence. The Braginskii transport model of the B2 code incorporates guiding-center plasma drifts self-consistently and generate Er shear in the presence of steep pressure gradients. This Braginskii type Er can enter the turbulence model as a background E × B shear flow which suppresses the radial flux together with Reynolds stress induced electric fields. As an example of L-H transition, influx at the core boundary is controlled to produce steepening of the edge gradients. ( Y.Hamada et al.), in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA-F1-CN-69/PD, 1998) reveals heat pulse induced L-H transitions after sawtooth events.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Poyé, A.; Agullo, O.; Muraglia, M.; Garbet, X.; Benkadda, S.; Sen, A.; Dubuit, N.
2015-03-01
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Generation of a magnetic island by edge turbulence in tokamak plasmas
Poyé, A. [Aix-Marseille Université, CNRS, PIIM, UMR 7345, Marseille (France); Université de Bordeaux, CELIA Laboratory, Talence 33405 (France); Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N. [Aix-Marseille Université, CNRS, PIIM, UMR 7345, Marseille (France); France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS, Marseille (France); Garbet, X. [IRFM, CEA, St-Paul-Lez-Durance 13108 (France); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2015-03-15
We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.
Dynamic multiscaling in magnetohydrodynamic turbulence
Ray, Samriddhi Sankar; Pandit, Rahul
2016-01-01
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Dynamic multiscaling in magnetohydrodynamic turbulence.
Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2016-11-01
We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Oscillations of a Turbulent Jet Incident Upon an Edge
J.C. Lin; D. Rockwell
2000-09-19
For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel
Linear Analysis and Verification Suite for Edge Turbulence
Myra, J R; Umansky, M
2008-04-24
The edge and scrape-off-layer region of a tokamak plasma is subject to well known resistive and ideal instabilities that are driven by various curvature- and sheath-related mechanisms. While the boundary plasma is typically strongly turbulent in experiments, it is useful to have computational tools that can analyze the linear eigenmode structure, predict quantitative trends in growth rates and elucidate and the underlying drive mechanisms. Furthermore, measurement of the linear growth rate of unstable modes emerging from a known, established equilibrium configuration provides one of the few quantitative ways of rigorously benchmarking large-scale plasma turbulence codes with each other and with a universal standard. In this report, a suite of codes that can describe linearized, nonlocal (e.g. separatrix-spanning) modes in axisymmetric (realistic divertor), toroidal geometry is discussed. Examples of several benchmark comparisons are given, and future development plans for a new eigenvalue edge code are presented.
Modelling the dynamics of turbulent floods
Mei, Z; Li, Z; Li, Zhenquan
1999-01-01
Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.
On the Dynamics of Edge-core Coupling
Hahm,T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.
2005-08-26
One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling.
Kendl, Alexander
2014-01-01
Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.
Dynamics of turbulent falling films
O'Naraigh, Lennon; Matar, Omar
2012-11-01
The dynamics of laminar falling films have received considerable attention over the past several decades. In contrast, turbulent falling films have been the subject of far fewer studies. We seek to redress this balance by studying the stability of falling films which have already undergone a transition from a laminar to a turbulent flow regime. We derive a uniform-film base-state for this flow by assuming the averaged turbulent velocity field to be steady and fully-developed, and by employing a modified version of mixing-length theory. The latter features an interpolation function for the eddy viscosity, and van Driest-type functions for turbulence-damping near the wall and interface regions. The predicted base-state streamwise velocity component is in good agreement with experimental data. A linear stability analysis of this base-state is then carried out by solving a modified version of the Orr-Sommerfeld equation. Our results suggest that the unstable mode is a long-wave one. This provides motivation for the derivation of long-wave equations for the nonlinear evolution of the film.
Saddle-node dynamics for edge detection
Wong, Y.F. [Lawrence Livermore National Lab., CA (United States). Inst. for Scientific Computing Research
1994-09-01
The author demonstrates how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, this scheme is general enough to be able to handle different edges, such as lines, step edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.
Electron MHD: dynamics and turbulence
Lyutikov, Maxim
2013-01-01
(Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...
Electron magnetohydrodynamics: dynamics and turbulence.
Lyutikov, Maxim
2013-11-01
We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.
Edge turbulence and transport studies with ergodic divertor, on Tore Supra ohmic discharges
Payan, J.; Garbet, X.; Clairet, F.; Devynck, P.; Laviron, C.; Chatenet, J.H.; Ghendrih, P.N.; Grosman, A. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Gervais, F.; Hennequin, P.; Quemeneur, A.; Truc, A. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises
1995-12-31
Edge turbulence and transport studies have been performed when the ergodic divertor is applied on Tore Supra ohmic discharges. A modification of radial electric field profiles is expected. Such a change could influence edge transport and turbulence. A CO{sub 2} laser scattering diagnostic, ALTAIR, has been used to study the turbulence changes at the plasma edge. Reflectometry (used at fixed frequency) gives also access to localized turbulence measurements. Preliminary results from reflectometry are presented and compared to ALTAIR results. (K.A.) 6 refs.; 4 figs.
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Cascading Edge Failures: A Dynamic Network Process
Zhang, June
2016-01-01
This paper considers the dynamics of edges in a network. The Dynamic Bond Percolation (DBP) process models, through stochastic local rules, the dependence of an edge $(a,b)$ in a network on the states of its neighboring edges. Unlike previous models, DBP does not assume statistical independence between different edges. In applications, this means for example that failures of transmission lines in a power grid are not statistically independent, or alternatively, relationships between individuals (dyads) can lead to changes in other dyads in a social network. We consider the time evolution of the probability distribution of the network state, the collective states of all the edges (bonds), and show that it converges to a stationary distribution. We use this distribution to study the emergence of global behaviors like consensus (i.e., catastrophic failure or full recovery of the entire grid) or coexistence (i.e., some failed and some operating substructures in the grid). In particular, we show that, depending on...
Controlling edge dynamics in complex networks
Nepusz, Tamás; Vicsek, Tamás
2012-01-01
The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges ...
Investigation of turbulent transport and shear flows in the Edge of toroidal plasmas
Birkenmeier, G.; Koehn, A.; Manz, P.; Nold, B.; Stroth, U. [Institut fuer Plasmaforschung, Universitaet Stuttgart, Stuttgart (Germany); Happel, T. [Lab. Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Mahdizadeh, N. [ABB Switzerland Ltd. Corporate Research, Baden-Daettwil (Switzerland); Wilcox, R.; Anderson, D.T. [HSX Plasma Lab., University of Wisconsin, Madison, Wisconsin (United States); Ramisch, M.
2010-08-15
Intense Langmuir-probe measurements were carried out in the toroidal low-temperature plasma of the torsatron TJ-K in order to investigate the origin and dynamics of intermittent transport events, so-called blobs, at the transition from closed to open field lines. The statistical properties of the fluctuations at the plasma boundary agree with observations made in fusion edge plasmas. Blobs were found to be generated locally through a change in turbulence drive across the separatrix. The non-linear spectral energy transfer from small-scale fluctuations into large-scale flows was measured with a 128-probe array. The results point to the transfer being a key loss channel for turbulence energy leading to a reduction in turbulent transport. Earlier observations[M.A. Pedrosa et al., Phys. Rev. Lett. 100, 215003 (2008)] of enhanced long-range correlations in the plasma potential through externally induced shear flows in TJ-II stellarator were verified. The newly measured correlation of zonal vorticity and Reynolds stress at induced flow shear indicates an enhancement of zonal-flow drive (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Gyrokinetic theory and dynamics of the tokamak edge
Scott, B. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)
2016-08-15
The validity of modern gyrokinetic field theory is assessed for the tokamak edge. The basic structure of the Lagrangian and resulting equations and their conservation laws is reviewed. The conventional microturbulence ordering for expansion is small potential/arbitrary wavelength. The equilibrium ordering for expansion is long wavelength/arbitrary amplitude. The long-wavelength form of the conventional Lagrangian is derived in detail. The two Lagrangians are shown to match at long wavelength if the E x B Mach number is small enough for its corrections to the gyroaveraging to be neglected. Therefore, the conventional derivation and its Lagrangian can be used at all wavelengths if these conditions are satisfied. Additionally, dynamical compressibility of the magnetic field can be neglected if the plasma beta is small. This allows general use of a shear-Alfven Lagrangian for edge turbulence and self consistent equilibrium-scale phenomena for flows, currents, and heat fluxes for conventional tokamaks without further modification by higher-order terms. Corrections in polarisation and toroidal angular momentum transport due to these higher-order terms for global edge turbulence computations are shown to be small. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Scaling and transport analyses based on an international edge turbulence database
Simon, P.; Ramisch, M.; Beletskii, A. A.; Dinklage, A.; Endler, M.; Marsen, S.; Nold, B.; Stroth, U.; Tamain, P.; Wilcox, R.
2014-09-01
Microscopic turbulence properties in the edge of toroidally confined fusion plasmas are studied by comparative analysis of experimental data from seven devices, collected in an international edge turbulence database. The database contains Langmuir probe measurements of fluctuations in the floating potential and ion saturation current across the last closed flux surface. They are used to address statistical properties and particle transport. Universal features of plasma edge turbulence such as an increase in skewness across the scrape-off layer (SOL) as footprints of density blobs are recovered in all devices. Analysis of the correlation lengths and times reveals power law scaling relations with macroscopic drift-wave parameters, albeit weaker than would be expected for drift-wave turbulence. As a result, the turbulent diffusivity scales with the inverse of the magnetic field strength, which is closer to Bohm-like scaling than to gyro-Bohm scaling. Nearly identical scaling relations are determined in the confined plasma edge and the SOL, pointing to a strong connection between drift-wave turbulence in the edge and blobs in the SOL. The contributions of blobs and holes (negative density spikes) to the radial particle transport are analyzed qualitatively with a conditional averaging approach. Blobs are connected to outward transport in the SOL of all devices whereas holes exhibit no uniform propagation pattern.
Universality in edge-source diffusion dynamics
Mortensen, Asger; Okkels, Fridolin; Bruus, Henrik
2006-01-01
We show that in edge-source diffusion dynamics the integrated concentration N(t) has a universal dependence with a characteristic time scale tau=(A/P)(2)pi/(4D), where D is the diffusion constant while A and P are the cross-sectional area and perimeter of the domain, respectively. For the short......-time dynamics we find a universal square-root asymptotic dependence N(t)=N(0)root t/tau while in the long-time dynamics N(t) saturates exponentially at N-0. The exponential saturation is a general feature while the associated coefficients are weakly geometry dependent....
ECRH microwave beam broadening in the edge turbulent plasma
Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu. [Ioffe Institute, St. Petersburg, Russia and RL PAT SPbSPU, St. Petersburg (Russian Federation); Silva, F. da [Institute of Plasmas and Nuclear Fusion, IST, Lisbon (Portugal); Heuraux, S. [IJL UMR-7198 CNRS-Université de Lorraine, BP70239, 54506 Vandoeuvre Cedex (France)
2014-02-12
The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
Priego, M.; Garcia, O.E.; Naulin, V.
2005-01-01
The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive......-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise...
Controlling edge dynamics in complex networks
Nepusz, Tamás
2011-01-01
The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges of a network, and demonstrate that the controllability properties of this process significantly differ from simple nodal dynamics. Evaluation of real-world networks indicates that most of them are more controllable than their randomized counterparts. We also find that transcriptional regulatory networks are particularly easy to control. Analytic calculations show that networks with scale-free degree distributions have better controllability properties than uncorrelated networks, and positively correlated in- and out-degre...
Qualitative dynamics of wavepackets in turbulent jets
Semeraro, Onofrio; Pastur, Luc; Jordan, Peter
2016-01-01
It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wavepackets". These structures exhibit a remarkable spatio-temporal organisation, despite turbulence. In this work we analyse, from a qualitative point of view, the temporal dynamics of axisymmetric wavepackets educed, experimentally, from subsonic iso-thermal jets. We use the data presented by, where time-series of the wavepackets are extracted at different streamwise locations. A thorough analysis is performed, statistical tools are used for estimating the embedding and correlation dimensions characterising the dynamical system. System identification is used for computing nonlinear surrogate models. Finally, control-oriented linear models are computed. The goal of the contribution is to assess the extent to which non-linear models are necessary, or appropriate, for description of the temporal wave-packet dynamics and to provide a complementary perspective to the current modelling.
Turbulence dynamics in unsteady atmospheric flows
Momen, Mostafa; Bou-Zeid, Elie
2016-11-01
Unsteady pressure-gradient forcing in geophysical flows challenges the quasi-steady state assumption, and can strongly impact the mean wind and higher-order turbulence statistics. Under such conditions, it is essential to understand when turbulence is in quasi-equilibrium, and what are the implications of unsteadiness on flow characteristics. The present study focuses on the unsteady atmospheric boundary layer (ABL) where pressure gradient, Coriolis, buoyancy, and friction forces interact. We perform a suite of LES with variable pressure-gradient. The results indicate that the dynamics are mainly controlled by the relative magnitudes of three time scales: Tinertial, Tturbulence, and Tforcing. It is shown that when Tf Tt , the turbulence is no longer in a quasi-equilibrium state due to highly complex mean-turbulence interactions; consequently, the log-law and turbulence closures are no longer valid in these conditions. However, for longer and, surprisingly, for shorter forcing times, quasi-equilibrium is maintained. Varying the pressure gradient in the presence of surface buoyancy fluxes primarily influences the buoyant destruction in the stable ABLs, while under unstable conditions it mainly influences the transport terms. NSF-PDM under AGS-10266362. Cooperative Institute for Climate Science, NOAA-Princeton University under NA08OAR4320752. Simulations performed at NCAR, and Della server at Princeton University.
Role of edge turbulence and shear flows in density limit on HL-2A tokamak
Hong, Rongjie; Tynan, George; Xu, Min; Nie, Lin; Guo, Dong; Ke, Rui; Long, Ting; Wu, Yifang; Yuan, Boda
2016-10-01
The tokamak density limit has long been suspected as a consequence of the enhanced turbulent transport in edge plasmas. In this study, evolutions of the turbulence and shear flows were investigated at different normalized density ne /nG in the plasma boundary region of HL-2A tokamak using Langmuir probes. As the density limit was approached, the equilibrium profile of density was flattened in the Scrape-Off Layer (SOL) and steepened inside the separatrix, while the edge cooling was observed from the electron temperature profile. The turbulent cross-field transport also increased substantially with the ne /nG and the collisionality. In addition, the amplitude of the poloidal phase velocity decreased at higher densities. This destruction of the shear layer was associated with the collapse of the Reynolds stress and thus the reduction in the nonlinear energy transfer from high-frequency fluctuations to low-frequency shear flows. These observations indicate an important role of the edge turbulence and the turbulence-driven shear flow in the underlying physics of tokamak density limit. Thank the HL-2A team for machine operation. Partly supported by DOE Grant No. DE-SC0008378.
Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade
Garth V. Hobson
1999-01-01
Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.
Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun
2014-01-01
The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient a...
Profiles and fluctuations in edge and SOL turbulence
Naulin, Volker; Xu, G.; Vianello, N.
2012-01-01
The time and space averaged profiles of temperature, particle density, and momentum are in the scrape off layer determined by the intermittent transport generated at the edge shear layer. The distinction between profiles and fluctuations becomes arbitrary for situations where the transport...... propagating structures and parallel transport sets up the observed profiles and how intermittency influences edge conditions. The filamentary blob structures also transport and generate currents in the SOL, which can be investigated by means of local magnetic diagnostics. Finally, the ratio of ion to electron...... temperature in the SOL is an important measure for the influence of finite larmor radius effects on the propagation properties of blobs. Numerical investigations indicate that these effects can lead to an increased self confinement and radial reach of these structures. © 2012 WILEY-VCH Verlag GmbH & Co. KGa...
Dynamic vortex interactions with flexible fibers and edges for prediction of owl noise suppression
Korykora, Sarah; Jaworski, Justin
2015-11-01
The compliant trailing-edge fringe of owls and the soft downy material on their upper wing surfaces are thought to enable their silent flight by weakening the interaction of boundary layer turbulence with these flexible structures. Previous analysis of turbulence noise generation by wave-bearing elastic edges have shown that the far-field acoustic power scaling can be weakened by up to the square of the Mach number relative to a rigid edge. However, it is unclear whether or not the wave-bearing feature or simply the flexible nature of the edge scatterer produces this noise suppression. To assess this distinction, a dynamic vortex interaction model is developed whereby the motion of a line vortex round a rigid but elastically-restrained wall-mounted fiber or trailing edge is determined numerically. Special attention is paid to the dynamic interaction between the flexible structure and vortex, which is accomplished via a conformal mapping relationship determined in closed form. Results from this analysis seek to develop a vortex sound model to discern the effect of flexible versus wave-bearing scatterers on turbulence noise suppression and help explain the mechanisms of silent owl flight.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Profiles and fluctuations in Edge and SOL turbulence
Naulin, V.; Madsen, J.; Nielsen, A.H.; Rasmussen, J.J. [Association Euratom DTU, Technical University of Denmark, Roskilde (Denmark); Xu, G. [Chinese Academy of Science, Inst. Plasma Phys, Hefei (China); Vianello, N. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova (Italy); Schrittwieser, R.; Ionita, C.; Maszl, C.; Mehlmann, F. [Innsbruck University, Inst Ion Phys and Applied Phys., Assoc. EURATOM OeAW, Innsbruck (Austria); Yan, N. [Association Euratom DTU, Technical University of Denmark, Roskilde (Denmark); Chinese Academy of Science, Inst. Plasma Phys, Hefei (China)
2012-06-15
The time and space averaged profiles of temperature, particle density, and momentum are in the scrape off layer determined by the intermittent transport generated at the edge shear layer. The distinction between profiles and fluctuations becomes arbitrary for situations where the transport is highly intermittent and shows long range correlations. Without this distinction the full range in parameter variability has to be taken into account for simulations, posing extreme demands on the used models. Numerical investigations and experimental results show how the interplay between radially propagating structures and parallel transport sets up the observed profiles and how intermittency influences edge conditions. The filamentary blob structures also transport and generate currents in the SOL, which can be investigated by means of local magnetic diagnostics. Finally, the ratio of ion to electron temperature in the SOL is an important measure for the influence of finite larmor radius effects on the propagation properties of blobs. Numerical investigations indicate that these effects can lead to an increased self confinement and radial reach of these structures (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Isotope effect on gyro-fluid edge turbulence and zonal flows
Meyer, Ole Hauke Heinz
2016-01-01
The role of ion polarisation and finite Larmor radius on the isotope effect on turbulent tokamak edge transport and flows is investigated by means of local electromagnetic multi-species gyro-fluid computations. Transport is found to be reduced with the effective plasma mass for protium, deuterium and tritium mixtures. This isotope effect is found for both cold and warm ion models, but significant influence of finite Larmor radius and polarisation effects are identified. Sheared flow reduction of transport through self generated turbulent zonal flows and geodesic acoustic modes in the present model (not including neoclassical flows) is found to play only a minor role on regulating isotopically improved confinement.
ASDEX Upgrade Edge Transport Studies by Turbulence and Braginskii Divertor Transport Codes
Nishimura, Y.; Coster, D.P.; Kim, J.W.; Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)
2001-07-01
The equilibration time for diverter transport simulations is in the range of milliseconds to seconds. There, perpendicular transport is given empirically and usually assumed to be constant in time and space. In this work, we aim at describing edge plasma profiles in both the H-mode and the L-mode confinement regimes using a model that couples the transport scale to the underlying turbulence scale. There are 2d and 3d variants of DALF, which is a turbulence code that describes short time scale nonlinear phenomena based on first principles of plasma physics. B2 employs an implicit method which is suitable for describing long time scale, quasi-steady state behavior, while fluctuation/intermittency is inherent in turbulence and typically gives rise to short time scale variations of the radial flux. We coarse rained the information from the 2d version of DALF within the order of turbulence auto correlation time and iterated over the divertor simulation (and thus passed plasma parameters to the turbulence code). Numerical algorithm and criteria for convergence in bridging the physics of two different scales is discussed. The generation mechanism of radial electric field in steep gradient regimes is revisited in the ASDEX Upgrade divertor geometry with realistic parameters. Inclusion of turbulent suppression effects by E x B shear flow is considered. (orig.)
Multiple laminar-turbulent transition cycles around a swept leading edge
Mukund, R.; Narasimha, R.; Viswanath, P. R.; Crouch, J. D.
2012-12-01
Certain interesting flow features involving multiple transition/relaminarization cycles on the leading edge of a swept wing at low speeds are reported here. The wing geometry tested had a circular nose and a leading edge sweep of 60°. Tests were made at a chord Reynolds number of 1.3 × 106 with model incidence α varied in the range of 3°-18° in discrete steps. Measurements made included wing chord-wise surface pressure distributions and wall shear stress fluctuations (using hot-film gages) within about 10 % of the chord in the leading edge zone. Results at α = 16° and 18° showed that several (often incomplete) transition cycles between laminar-like and turbulent-like flows occurred. These rather surprising results are attributable chiefly to the fact that the Launder acceleration parameter K (appropriately modified for swept wings) can exceed a critical range more than once along the contour of the airfoil in the leading edge region. Each such crossing results in a relaminarization followed by direct retransition to turbulence as K drops to sufficiently low values. It is further shown that the extent of each observed transition zone (of either type) is consistent with earlier data acquired in more detailed studies of direct transition and relaminarization. Swept leading edge boundary layers therefore pose strong challenges to numerical modelling.
A Signature of Self-Organized Criticality in the HT-6M Edge Plasma Turbulence
WANG Wen-Hao; YU Chang-Xuan; WEN Yi-Zhi; XU Yu-Hong; LING Bi-Li; GONG Xian-Zu; LIU Bao-Hua; WAN Bao-Nian
2001-01-01
ower spectra of electron density and floating potential fluctuations in the velocity shear layer of the HT-6M edge region have been measured and analysed. All the spectra have three distinct frequency regions with the spectral decay indices typical of self-organized criticality systems (0, -1 and -4) when Doppler shift effects induced by the plasma E × B flow velocity have been taken into account. These results are consistent with the predictions of the self-organized criticality models, which may be an indication of edge plasma turbulence in the HT-6M tokamak evolving into a critical state independent of local plasma parameters.
Single velocity-component modeling of leading edge turbulence interaction noise.
Gill, J; Zhang, X; Joseph, P
2015-06-01
A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack.
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogério; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-01-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional proc...
Influence of Dynamical Change of Edges on Clustering Coefficients
Yuhong Ruan
2015-01-01
Full Text Available Clustering coefficient is a very important measurement in complex networks, and it describes the average ratio between the actual existent edges and probable existent edges in the neighbor of one vertex in a complex network. Besides, in a complex networks, the dynamic change of edges can trigger directly the evolution of network and further affect the clustering coefficients. As a result, in this paper, we investigate the effects of the dynamic change of edge on the clustering coefficients. It is illustrated that the increase and decrease of the clustering coefficient can be effectively controlled by adding or deleting several edges of the network in the evolution of complex networks.
Instantaneous aerosol dynamics in a turbulent flow
Zhou, Kun
2012-01-01
Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.
Song Mei; Wan Baonian; Xu Guosheng
2005-01-01
Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement.The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, (～Te)/Te ～(～n)n/ne and θ_(～T)e(～n)e ～π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving.
Assessment of Edge Turbulence and Convective Transport through Velocity Field Analysis
Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States). Center for Integrated Plasma Studies
2015-03-14
Over the course of this grant period, we have conducted three major studies, each of which has resulted in a primary publication (described below): First, we investigated the flow and shear behavior of the edge plasma and scrape-off layer (SOL) in NSTX using the GPI diagnostic. Calculation of local, time resolved velocity maps using the hybrid optical flow and pattern matching velocimetry code enabled analysis of turbulent flow and shear behavior in these plasmas. Second, we used GPI measurements made during RF heated H-mode operation, to identify intermittent periodic edge intensity fluctuations which precede ELMs and ELM-induced back transitions from H-mode to Lmode. These edge oscillations have a well-defined mode structure and are visible up to 100-200 μs preceding the ELM events. Finally, we performed an in-depth investigation between the fluctuation measurements made by the GPI and BES diagnostics on NSTX.
Sarazin, Y
1997-11-21
The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.) 103 refs.
Experimental studies of edge turbulence and confinement in Alcator C-Moda)
Cziegler, I.; Terry, J. L.; Hughes, J. W.; LaBombard, B.
2010-05-01
The steep gradient edge region and scrape-off-layer (SOL) on the low-field-side of Alcator C-Mod [I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511 (1994)] tokamak plasmas are studied using gas-puff-imaging diagnostics. In L-mode plasmas, the region extending ˜2 cm inside the magnetic separatrix has fluctuations showing a broad, turbulent spectrum, propagating in the electron diamagnetic drift direction, whereas features in the open field line region propagate in the ion diamagnetic drift direction. This structure is robust against toroidal field strength, poloidal null-point geometry, plasma current, and plasma density. Global parameter dependence of spectral and spatial structure of the turbulence inside the separatrix is explored and characterized, and both the intensity and spectral distributions are found to depend strongly on the plasma density normalized to the tokamak density limit. In H-mode discharges the fluctuations at and inside the magnetic separatrix show fundamentally different trends compared to L-mode, with the electron diamagnetic direction propagating turbulence greatly reduced in ELM-free [F. Wagner et al., Proceedings of the Thirteenth Conference on Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Vol. I, p. 277], and completely dominated by the modelike structure of the quasicoherent mode in enhanced D-alpha regimes [A. E. Hubbard, R. L. Boivin, R. S. Granetz et al., Phys. Plasmas 8, 2033 (2001)], while the normalized SOL turbulence is largely unaffected.
Interaction of neutral atoms and plasma turbulence in the tokamak edge region
Wersal, Christoph; Ricci, Paolo; Jorge, Rogerio; Morales, Jorge; Paruta, Paola; Riva, Fabio
2016-10-01
A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional processes. The model was used to study the transition form the sheath to the conduction limited regime, to include gas puffs in the simulations, and to investigate the interplay between neutral atoms and plasma turbulence.
Nishino, N., E-mail: nishino@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima (Japan); Zang, L. [Kyoto University, Gokasho, Uji, Kyoto (Japan); Takeuchi, M. [JAEA, Naka, Ibaraki (Japan); Mizuuchi, T.; Ohshima, S. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasajima, K.; Sha, M. [Kyoto University, Gokasho, Uji, Kyoto (Japan); Mukai, K. [NIFS, Toki, Gifu (Japan); Lee, H.Y. [Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaki, K.; Okada, H.; Minami, T.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Nakamura, Y.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)
2013-07-15
The hybrid probe system (a combination of Langmuir probes and magnetic probes), fast camera and gas puffing system were installed at the same toroidal section to study edge plasma turbulence/fluctuation in Heliotron J, especially blob (intermittent filament). Fast camera views the location of the probe head, so that the probe system yields the time evolution of the turbulence/fluctuation while the camera images the spatial profile. Gas puff at the same toroidal section was used to control the plasma density and simultaneous gas puff imaging technique. Using this combined system the filamentary structure associated with magnetic fluctuation was found in Heliotron J at the first time. The other kind of fluctuation was also observed at another experiment. This combination measurement enables us to distinguish MHD activity and electro-static activity.
Dif-Pradalier, G., E-mail: gdifpradalier@ucsd.edu [Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Gunn, J. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ciraolo, G. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Chang, C.S. [Courant Institute of Mathematical Sciences, N.Y. University, New York, NY 10012 (United States); Chiavassa, G. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Diamond, P. [Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Fedorczak, N. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ghendrih, Ph., E-mail: philippe.ghendrih@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Isoardi, L. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Kocan, M. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Ku, S. [Courant Institute of Mathematical Sciences, N.Y. University, New York, NY 10012 (United States); Serre, E. [M2P2, UMR 6181-CNRS, 38 Rue F. Joliot-Curie, 13451 Marseille (France); Tamain, P. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)
2011-08-01
Experimental data from the Tore Supra experiments are extrapolated in the SOL and edge to investigate the Kelvin-Helmholtz instability. The linear analysis indicates that a large part of the SOL is rather unstable. The effort is part of the set-up of the Mistral base case that is organised to validate the codes and address new issues on turbulent edges, including the comparison of kinetic and fluid modelling in the edge plasma.
The chaotic dynamics of a turbulent wake
Varon, Eliott; Edwige, Stephie; Gilotte, Philippe; Aider, Jean-Luc
2016-01-01
The dynamics of a 3D bi-stable turbulent wake downstream a square-back Ahmed body are experimentally studied in a wind-tunnel through high-frequency wall pressure probes mapping the rear of the model and a horizontal 2D velocity field. The barycenters of the pressure distribution over the rear part of the model and the intensity recirculation are found highly correlated. Focusing on the pressure, its barycenter trajectory exhibits the same characteristics as a Lorenz dynamical system, with two well defined attractors and a 2D Poincar\\'e section displaying a well-defined "butterfly-like" shape. The signal is firstly transformed and analyzed as a telegraph signal showing that its dynamics corresponds to a quasi-random telegraph signal. Then the largest Lyapunov exponent is estimated, leading to a positive value characteristic of strange attractors and chaotic systems. Finally, analyzing the autocorrelation function of the time-series, we compute the correlation dimension, slightly larger than two, very similar ...
Wang, Liguo; Gao, Ming; Li, Yaqing; Gong, Lei
2017-07-01
The intensity fluctuation of the reflected field from a diffuse circular plate with a hard edge in turbulence is investigated by combining the Rytov theory and the Extended Huygens-Fresnel principle. The normalized covariance and variance of the reflected intensity are formulated and calculated. The enhancement effect on the normalized variance is discussed around the backscattering direction, which disappears rapidly as the receiving point moves away from the transmitting center. The ;averaging effect; of the target aperture is also discussed, and the results show that the normalized variance and the backscattering enhancement effect decreases with increasing target size.
Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence
Hussein, M.; Shalchi, A.
2016-02-01
We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.
Dynamic Multiscale Averaging (DMA) of Turbulent Flow
Richard W. Johnson
2012-09-01
A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical
Edge states and skyrmion dynamics in nanostripes of frustrated magnets
Leonov, A. O.; Mostovoy, M.
2017-01-01
Magnetic skyrmions are particle-like topological excitations recently discovered in chiral magnets. Their small size, topological protection and the ease with which they can be manipulated by electric currents generated much interest in using skyrmions for information storage and processing. Recently, it was suggested that skyrmions with additional degrees of freedom can exist in magnetically frustrated materials. Here, we show that dynamics of skyrmions and antiskyrmions in nanostripes of frustrated magnets is strongly affected by complex spin states formed at the stripe edges. These states create multiple edge channels which guide the skyrmion motion. Non-trivial topology of edge states gives rise to complex current-induced dynamics, such as emission of skyrmion–antiskyrmion pairs. The edge-state topology can be controlled with an electric current through the exchange of skyrmions and antiskyrmions between the edges of a magnetic nanostructure. PMID:28240226
A dynamical model of plasma turbulence in the solar wind.
Howes, G G
2015-05-13
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
Three dimensional dynamic mode decomposition of premixed turbulent jet flames
Grenga, Temistocle; Macart, Jonathan; Mueller, Michael
2016-11-01
Analysis of turbulent combustion DNS data largely focuses on statistical analyses. However, turbulent combustion is highly unsteady and dynamic. In this work, Dynamic Mode Decomposition (DMD) will be explored as a tool for dynamic analysis of turbulent combustion DNS data, specifically a series of low Mach number spatially-evolving turbulent planar premixed hydrogen/air jet flames. DMD decomposes data into coherent modes with corresponding growth rates and oscillatory frequencies. The method identifies structures unbiased by energy so is particularly well suited to exploring dynamic processes at scales smaller than the largest, energy-containing scales of the flow and that may not be co-located in space and time. The focus of this work will be on both the physical insights that can potentially be derived from DMD modes and the computational issues associated with applying DMD to large three-dimensional DNS datasets.
Dust dynamics in 2D gravito-turbulent disks
Shi, Ji-Ming; Stone, James M; Chiang, Eugene
2016-01-01
The dynamics of solid bodies in protoplanetary disks are subject to the properties of any underlying gas turbulence. Turbulence driven by disk self-gravity shows features distinct from those driven by the magnetorotational instability (MRI). We study the dynamics of solids in gravito-turbulent disks with two-dimensional (in the disk plane), hybrid (particle and gas) simulations. Gravito-turbulent disks can exhibit stronger gravitational stirring than MRI-active disks, resulting in greater radial diffusion and larger eccentricities and relative speeds for large particles (those with dimensionless stopping times $t_{stop} \\Omega > 1$, where $\\Omega$ is the orbital frequency). The agglomeration of large particles into planetesimals by pairwise collisions is therefore disfavored in gravito-turbulent disks. However, the relative speeds of intermediate-size particles $t_{stop} \\Omega \\sim 1$ are significantly reduced as such particles are collected by gas drag and gas gravity into coherent filament-like structures ...
Simulations of Energetic Particles Interacting with Nonlinear Anisotropic Dynamical Turbulence
Heusen, Martin
2016-01-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bend...
Dynamical-systems approach to localised turbulence in pipe flow
Ritter, Paul; Avila, Marc
2015-01-01
Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.
Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)
2014-09-30
levels found on in service vanes (Bons, et al., 2001, up to 300 microns) flow blockage in first stage turbine nozzles can easily reach 1 to 2 percent in conventional turbines. Deposition levels in syngas fueled gas turbines are expected to be even more problematic. The likelihood of significant deposition to the leading edge of vanes in a syngas environment indicates the need to examine this effect on the leading edge cooling problem. It is critical to understand the influence of leading edge geometry and turbulence on deposition rates for both internally and showerhead cooled leading edge regions. The expected level of deposition in a vane stagnation region not only significantly changes the heat transfer problem but also suggests that cooling arrays may clog. Addressing the cooling issue suggests a need to better understand stagnation region heat transfer with realistic roughness as well as the other variables affecting transport near the leading edge. Also, the question of whether leading edge regions can be cooled internally with modern cooling approaches should also be raised, thus avoiding the clogging issue. Addressing deposition in the pressure side throat region of the nozzle is another critical issue for this environment. Issues such as examining the protective effect of slot and full coverage discrete-hole film cooling on limiting deposition as well as the influence of roughness and turbulence on effectiveness should be raised. The objective of this present study is to address these technical challenges to help enable the development of high efficiency syngas tolerant gas turbine engines.
Adiabatic Dynamics of Edge Waves in Photonic Graphene
Ablowitz, M J; Ma, Y -P
2014-01-01
The propagation of localized edge modes in photonic honeycomb lattices, formed from an array of adiabatically varying periodic helical waveguides, is considered. Asymptotic analysis leads to an explicit description of the underlying dynamics. Depending on parameters, edge states can exist over an entire period or only part of a period; in the latter case an edge mode can effectively disintegrate and scatter into the bulk. In the presence of nonlinearity, a `time'-dependent one-dimensional nonlinear Schr\\"odinger (NLS) equation describes the envelope dynamics of edge modes. When the average of the `time varying' coefficients yields a focusing NLS equation, soliton propagation is exhibited. For both linear and nonlinear systems, certain long lived traveling modes with minimal backscattering are found; they exhibit properties of topologically protected states.
Thermodynamical and microscopic properties of turbulent transport in the edge plasma
Ghendrih, Ph; Norscini, C.; Hasenbeck, F.; Dif-Pradalier, G.; Abiteboul, J.; Cartier-Michaud, T.; Garbet, X.; Grandgirard, V.; Marandet, Y.; Sarazin, Y.; Tamain, P.; Zarzoso, D.
2012-12-01
Edge plasma turbulence modelled with 2D interchange is shown to exhibit convective transport at the microscale level. This transport property is related to avalanche like transport in such a flux-driven system. Correlation functions and source modulation are used to analyse the transport properties but do not allow one to recover the Fick law that must characterise the system at large scales. Coarse graining is then introduced to average out the small scales in order to recover the Fick law. One finds that the required space averaging is comparable to the system size while the time averaging is comparable to the confinement time. The system is then reduced to a single reservoir such that transport is characterised by a single scalar, either the diffusion coefficient of the Fick law or a characteristic evolution time constant.
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
The effects of leading edge roughness on dynamic stall
Hrynuk, John
2016-11-01
Dynamic stall is a fundamental flow phenomenon that is commonly observed for insect flight and rotorcraft. Under certain conditions a leading edge vortex forms generating large but temporary lift forces. Historically, computations studying dynamic stall on airfoil shapes have struggled to predict this vortex formation time and separation point. Reduced order models and CFD have performed well when experiments have been performed to develop separation models, but this has limited the development of robust design tools. The current study looks at the effect of leading edge surface roughness on the formation of the Dynamic Stall Vortex (DSV). Roughness elements were applied to the leading edge of a NACA 0012 airfoil and PIV data of the vortex formation process was recorded. Measurements were taken at a Reynolds number of Re = 12,000 and baseline smooth NACA 0012 data was also recorded for comparison. Surface roughness elements, below the typical scale modeled by CFD, are shown to change DSV formation angle and location.
A dynamic stall model for airfoils with deformable trailing edges
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian
2007-01-01
on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...
Bending dynamics of semi-flexible macromolecules in isotropic turbulence
Ali, Aamir; Vincenzi, Dario
2014-01-01
We study the Lagrangian dynamics of semi-flexible macromolecules in laminar as well as in homogeneous and isotropic turbulent flows by means of analytically solvable stochastic models and direct numerical simulations. The statistics of the bending angle is qualitatively different in laminar and turbulent flows and exhibits a strong dependence on the topology of the velocity field. In particular, in two-dimensional turbulence, particles are either found in a fully extended or in a fully folded configuration; in three dimensions, the predominant configuration is the fully extended one.
Diffusive dynamics and stochastic models of turbulent axisymmetric wakes
Rigas, G; Brackston, R D; Morrison, J F
2015-01-01
A modelling methodology to reproduce the experimental measurements of a turbulent flow under the presence of symmetry is presented. The flow is a three-dimensional wake generated by an axisymmetric body. We show that the dynamics of the turbulent wake- flow can be assimilated by a nonlinear two-dimensional Langevin equation, the deterministic part of which accounts for the broken symmetries which occur at the laminar and transitional regimes at low Reynolds numbers and the stochastic part of which accounts for the turbulent fluctuations. Comparison between theoretical and experimental results allows the extraction of the model parameters.
Controllable subspace of edge dynamics in complex networks
Pang, Shao-Peng; Hao, Fei
2017-09-01
For the edge dynamics in some real networks, it may be neither feasible nor necessary to be fully controlled. An accompanying issue is that, when the external signal is applied to a few nodes or even a single node, how many edges can be controlled? In this paper, for the edge dynamics system, we propose a theoretical framework to determine the controllable subspace and calculate its generic dimension based on the integer linear programming. This framework allows us not only to analyze the control centrality, i.e., the ability of a node to control, but also to uncover the controllable centrality, i.e., the propensity of an edge to be controllable. The simulation results and analytic calculation show that dense and homogeneous networks tend to have larger control centrality of nodes and controllable centrality of edges, but the negatively correlated in- and out-degrees of nodes or edges can reduce the two centrality. The positive correlation between the control centrality of node and its out-degree leads to that the distribution of control centrality, instead of that of controllable centrality, is encoded by the out-degree distribution of networks. Meanwhile, the positive correlation indicates that the nodes with high out-degree tend to play more important roles in control.
Pearson, Juli K.
The growing demand for increased efficiency in turbine engine designs has sparked a growing interest for research of air flow around curved surfaces. The turbine's operating conditions result in material property constraints, especially in the first stage turbine vanes and blades. These turbine vane components experience extreme loading conditions of both high temperature and high turbulence intensities exiting the combustor. The surface of the turbine blades has cylindrical leading edges that promote stabilizing flow accelerations. These convex surfaces can cause a reduced eddy diffusivity across the boundary layer. This thesis reviews measurements of velocity and turbulence intensities taken just shy of the thirty degrees offset from the stagnation line of a two-dimensional cylindrical leading edge under a wide range of turbulence and flow conditions flow conditions. Flow conditions and velocity measurements were gathered with respect to the distance to the surface. The length of the measurements extended from the surface to beyond the boundary layer's edge. The instrumentation used to collect data was a single wire driven by a constant temperature anemometer bridge. The hot wire is specially modified to measure data near the cylindrical leading edges curved surface. The traversing system allowed the acquisition of high-resolution boundary layer data. The traversing system was installed internally to the cylindrical leading edge to reduce probe blockage.
Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix
2016-06-01
Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.
A statistical state dynamics approach to wall turbulence.
Farrell, B F; Gayme, D F; Ioannou, P J
2017-03-13
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.
Computational fluid dynamics investigation of turbulent separated ...
user
This study discusses about numerical investigation of the turbulent flow (Re ... systems, while the 90° diffuser or sudden expansion is normally found in piping junctions or weld ribs . ... According to the widely used two-equation k−ε model, t.
An edge element approach for dynamic micromagnetic modeling
Bottauscio, O.; Chiampi, M.; Manzin, A.
2008-04-01
This paper proposes a three-dimensional dynamic micromagnetic model, based on the Galerkin weak formulation, reconstructing magnetization by finite element edge vector shape functions. The demagnetizing filed is computed using a hybrid finite element boundary element method. The procedure is compared to analytical formulas and simulations performed with the NIST/OOMMF code, focusing on damping and precessional switching in magnetic thin films.
Dynamic fracture mechanics analysis for an edge delamination crack
Rizzi, Stephen A.; Doyle, James F.
1994-01-01
A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.
Space-Time Correlations and Dynamic Coupling in Turbulent Flows
He, Guowei; Jin, Guodong; Yang, Yue
2017-01-01
Space-time correlation is a staple method for investigating the dynamic coupling of spatial and temporal scales of motion in turbulent flows. In this article, we review the space-time correlation models in both the Eulerian and Lagrangian frames of reference, which include the random sweeping and local straining models for isotropic and homogeneous turbulence, Taylor's frozen-flow model and the elliptic approximation model for turbulent shear flows, and the linear-wave propagation model and swept-wave model for compressible turbulence. We then focus on how space-time correlations are used to develop time-accurate turbulence models for the large-eddy simulation of turbulence-generated noise and particle-laden turbulence. We briefly discuss their applications to two-point closures for Kolmogorov's universal scaling of energy spectra and to the reconstruction of space-time energy spectra from a subset of spatial and temporal signals in experimental measurements. Finally, we summarize the current understanding of space-time correlations and conclude with future issues for the field.
Introduction to turbulent dynamical systems in complex systems
Majda, Andrew J
2016-01-01
This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume wi...
The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence
Newman, D.E.
1993-09-01
Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E {times} B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics.
A statistical state dynamics approach to wall turbulence
Farrell, B. F.; Gayme, D. F.; Ioannou, P. J.
2017-03-01
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or `band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.
Dynamics of zonal flow-like structures in the edge of the TJ-II stellarator
Alonso, J A; Arévalo, J; Hidalgo, C; Pedrosa, M A; Van Milligen, B Ph; Carralero, D
2012-01-01
The dynamics of fluctuating electric field structures in the edge of the TJ-II stellarator, that display zonal flow-like traits, is studied. These structures have been shown to be global and affect particle transport dynamically [J.A. Alonso et al., Nucl. Fus. 52 063010 (2012)]. In this article we discuss possible drive (Reynolds stress) and damping (Neoclassical viscosity, geodesic transfer) mechanisms for the associated ExB velocity. We show that: (a) while the observed turbulence-driven forces can provide the necessary perpendicular acceleration, a causal relation could not be firmly established, possibly because of the locality of the Reynolds stress measurements, (b) the calculated neoclassical viscosity and damping times are comparable to the observed zonal flow relaxation times, and (c) although an accompanying density modulation is observed to be associated to the zonal flow, it is not consistent with the excitation of pressure side-bands, like those present in geodesic acoustic oscillations, caused b...
On the dynamics of homogeneous turbulence near a surface
Flores, Oscar; Riley, James J.
2011-11-01
It is becoming increasing clear that stably-stratified flows can support a stratified turbulence k - 5 / 3 inertial range, different from Kolmogorov's. Stratification inhibits vertical motions, but the large-scale quasi-horizontal motions produce strong vertical shearing and small-scale instabilities. The result is a k - 5 / 3 horizontal spectrum for the horizontal velocities at scales larger than the Ozmidov scale, the largest scale that can overturn. For smaller scales, the classical Kolmogorov k - 5 / 3 applies. Inspired by data taken near the water surface in a tidal river, we here explore to what extent the dynamics of the nonlinear spectral energy transfer of near-surface turbulence with no mean shear (i.e., horizontally isotropic turbulence bounded by free-slip and no-slip surfaces) is analogous to stably stratified turbulence. To that end, we perform DNS of decaying isotropic turbulence with Reλ ~ 100 , but bounded by a non-slip surface and a free slip surface. The behavior of the flow near the free-slip surface is similar to stratified turbulence, with a tentative k - 5 / 3 range, but the same is not true for the no-slip surface at the present Reynolds numbers. This research was supported by ARO and NSF. Chickadel et al. (2011) to appear in IEEE Geosci. Remote Sens. Lett.
A Novel Intermediary Framework for Dynamic Edge Service Composition
Claudia Canali; Michele Colajanni; Delfina Malandrino; Vittorio Scarano; Raffaele Spinelli
2012-01-01
Multimedia content,user mobility and heterogeneous client devices require novel systems that are able to support ubiquitous access to the Web resources.In this scenario,solutions that combine flexibility,efficiency and scalability in offering edge services for ubiquitous access are needed.We propose an original intermediary framework,namely Scalable Intermediary Software Infrastructure (SISI),which is able to dynamically compose edge services on the basis of user preferences and device characteristics.The SISI framework exploits a per-user profiling mechanism,where each user can initially set his/her personal preferences through a simple Web interface,and the system is then able to compose at run-time the necessary components.The basic framework can be enriched through new edge services that can be easily implemented through a programming model based on APIs and internal functions.Our experiments demonstrate that flexibility and edge service composition do not affect the system performance.We show that this framework is able to chain multiple edge services and to guarantee stable performance.
Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada
Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.
2015-12-01
The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the
The dynamics of small inertial particles in weakly stratified turbulence
van Aartrijk, M.; Clercx, H.J.H.
We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and
Turbulence in edge and core transport barriers: new experimental results and modeling
Tokuzawa, T.
2017-02-01
In this paper, recent progressive studies on experimental analysis and theoretical models for turbulence phenomena around the transport barriers in high-performance magnetic confined fusion plasma are reviewed. The linkage of radial electric fields and turbulence, the importance of radial electric field curvature, and observations of spatiotemporal turbulence structures are described with related theoretical models.
Edge states for the turbulence transition in the asymptotic suction boundary layer
Kreilos, Tobias; Schneider, Tobias M; Eckhardt, Bruno
2013-01-01
We demonstrate the existence of an exact invariant solution to the Navier-Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer we demonstrate that the periodic orbit emerges in a saddle-node infinite-period (SNIPER) bifurcation of two symmetry-related travelling wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwi...
Dynamic Stall Prediction of a Pitching Airfoil using an Adjusted Two-Equation URANS Turbulence Model
Galih Bangga
2017-01-01
Full Text Available The necessity in the analysis of dynamic stall becomes increasingly important due to its impact on many streamlined structures such as helicopter and wind turbine rotor blades. The present paper provides Computational Fluid Dynamics (CFD predictions of a pitching NACA 0012 airfoil at reduced frequency of 0.1 and at small Reynolds number value of 1.35e5. The simulations were carried out by adjusting the k − ε URANS turbulence model in order to damp the turbulence production in the near wall region. The damping factor was introduced as a function of wall distance in the buffer zone region. Parametric studies on the involving variables were conducted and the effect on the prediction capability was shown. The results were compared with available experimental data and CFD simulations using some selected two-equation turbulence models. An improvement of the lift coefficient prediction was shown even though the results still roughly mimic the experimental data. The flow development under the dynamic stall onset was investigated with regards to the effect of the leading and trailing edge vortices. Furthermore, the characteristics of the flow at several chords length downstream the airfoil were evaluated.
Tamain, P.; Bufferand, H.; Ciraolo, G.; Colin, C.; Galassi, D.; Ghendrih, Ph.; Schwander, F.; Serre, E.
2016-09-01
The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix. Based on drift-reduced Braginskii equations, TOKAM3X is able to simulate both limited and diverted plasmas. Turbulence is flux driven by incoming particles from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed so that interactions between large scale flows and turbulence are consistently treated. Based on a domain decomposition, specific numerical schemes are proposed using conservative finite-differences associated to a semi-implicit time advancement. The process computation is multi-threaded and based on MPI and OpenMP libraries. In this paper, fluid model equations are presented together with the proposed numerical methods. The code is verified using the manufactured solution technique and validated through documented simple experiments. Finally, first simulations of edge plasma turbulence in X-point geometry are also introduced in a JET geometry.
Dynamic Stochastic Superresolution of sparsely observed turbulent systems
Branicki, M., E-mail: branicki@cims.nyu.edu [Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University (United States); Majda, A.J. [Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University (United States)
2013-05-15
Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum
2D fluid simulations of interchange turbulence with ion dynamics
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...
Angular dynamics of a small particle in turbulence
Candelier, F; Mehlig, B
2016-01-01
We compute the angular dynamics of a neutrally buoyant nearly spherical particle immersed in an unsteady fluid. We assume that the particle is small, that its translational slip velocity is negligible, and that unsteady and convective inertia are small perturbations. We derive an approximation for the torque on the particle that determines the first inertial corrections to Jeffery's equation. These corrections arise as a consequence of local vortex stretching, and can be substantial in turbulence where local vortex stretching is strong and closely linked to the irreversibility of turbulence.
Dynamics of finite size neutrally buoyant particles in isotropic turbulence
Elhimer, M; Jean, A; Praud, O; Bazile, R; Marchal, M; Couteau, G, E-mail: elhimer@imft.fr [Universite de Toulouse, INPT, UPS, IMFT - Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France)
2011-12-22
The dynamics of neutrally buoyant particles suspended in a turbulent flow is investigated experimentally, with particles having diameters larger than the Kolmogorov length scale. To that purpose, a turbulence generator have been constructed and the resulting flow characterized. The fluid was then seeded with polystyrene particles of diameter about 1 mm and their velocity measured separately and simultaneously with the surrounding fluid. Comparison of the velocities statistics between the two phases shows no appreciable discrepancy. However, simultaneous velocity measurement shows that particles may move in different direction from the underlying flow.
4-wave dynamics in kinetic wave turbulence
Chibbaro, Sergio; Rondoni, Lamberto
2016-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function $Z$ is obtained within an "interaction representation" and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for $Z$. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the $N$-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency.
Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.
2014-11-01
The outer scale of turbulence plays an important role in the theory of atmospheric turbulence. It specifies the lowfrequency boundary of the inertial subrange of fluctuation spectra of the atmospheric meteorological parameters, is used to construct models of the atmospheric turbulence and to estimate the excess turbulent attenuation of waves in the atmosphere. Outer scales of the wind velocity, temperature, humidity, and ozone concentration were previously determined, in particular, from direct airborne measurements of the spectral power density of these parameters, and their dependences on the altitude above the underlying surface, its properties, and type of the atmospheric stratification were demonstrated. For optical radiation propagating in the surface layer, the outer scale of temperature turbulence was determined from measurements of the variance of phase fluctuations of optical waves propagating along the near-ground paths. Unlike the optical waves, the acoustic wave propagation in the atmospheric boundary layer is influenced simultaneously by the temperature fluctuations caused by thermal convection and by the velocity fluctuations (dynamic turbulence caused by the wind shear). Their relative contributions depend on the ratio of the outer scales of the dynamic turbulence and temperature turbulence. In the present work, a method of simultaneous acoustic sounding of the outer scales of dynamic turbulence and temperature turbulence is suggested, and combined influence of these parameters on the acoustic wave propagation is estimated. Temporal dynamics of vertical profiles of the outer scales of dynamic turbulence and temperature turbulence is analyzed. The efficiency of the suggested method is confirmed by the results of comparison with the data of laser sensing of these parameters and their theoretical estimates, which demonstrate their good agreement.
Relating statistics to dynamics in axisymmetric homogeneous turbulence
Godeferd, Fabien S
2012-01-01
The structure and the dynamics of homogeneous turbulence are modified by the presence of body forces such that the Coriolis or the buoyancy forces, which may render a wide range of turbulence scales anisotropic. The corresponding statistical characterization of such effects is done in physical space using structure functions, as well as in spectral space with spectra of two-point correlations, providing two complementary viewpoints. In this framework, second-order and third-order structure functions are put in parallel with spectra of two-point second- and third-order velocity correlation functions, using passage relations. Such relations apply in the isotropic case, or for isotropically averaged statistics, which, however, do not reflect the actual more complex structure of anisotropic turbulence submitted to rotation or stratification. This complexity is demonstrated in this paper by orientation-dependent energy and energy transfer spectra produced in both cases by means of a two-point statistical model for...
IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence
Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6
2008-01-01
This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...
Measles on the edge: coastal heterogeneities and infection dynamics.
Nita Bharti
Full Text Available Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established. In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models.
Influence of magnetic configuration on edge turbulence and transport in the H-1 Heliac
Michael, C. A.; Zhao, F.; Blackwell, B.; Vos, M. F. J.; Brotankova, J.; Haskey, S. R.; Seiwald, B.; Howard, J.
2017-02-01
The role of the rotational transform (ι) profile on fluctuations and transport is investigated in the H-1 Heliac by means of dynamic (i.e. changing during a shot) and static (fixed during a shot) scans of rotational transform through a range of values where the electron density drops markedly and which correspond to having the point of {\\iota }{{\\min }} located near r/a=0.75 in a region of magnetic well (such that the surface averaged magnetic field strength increases with radius). The gap is near the \\iota =4/3 resonance, but as the resonance is not in the plasma for more than half the gap it is not clear that this is relevant. Although this drop is clearly driven by the variation of helical current, under particular circumstances, similar density changes occur spontaneously. Plasma currents are measured throughout the scan and are found to slightly affect the rotational transform profile, and reverse about the configuration of minimum confinement, while induced currents through a toroidal loop voltage in the dynamical scans are not found to be significant. The confinement and fluctuation properties are studied by means of 2D movable Langmuir probes. Large near edge-localised dithering quasi-coherent fluctuations at ∼ 6 kHz develop in a strong density gradient region with low magnetic shear as ι is scanned up to a point where the density collapses in the outer region. This dithering corresponds to an m = 3 mode comprising of standing and propagating components. The net and fluctuation-induced transport components are measured near the plasma edge in a similar discharge, and it is found that fluctuation-induced transport driven by these low frequency coherent modes dominates the particle balance during the low density phase but is only a small component of the net flux when the density is higher.
Qualitative dynamics of wave packets in turbulent jets
Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter
2017-09-01
We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.
2D fluid simulations of interchange turbulence with ion dynamics
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...
Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.
2006-05-01
In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.
A statistical state dynamics approach to wall-turbulence
Farrell, Brian F; Ioannou, Petros J
2016-01-01
This paper reviews results demonstrating the benefits of studying wall-bounded shear flows using dynamics for the evolution of the statistical state of the turbulent system. The statistical state dynamics (SSD) approach used in this work employs a second order closure which isolates the interaction between the streamwise mean and the equivalent of the perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean together with nonlinear interactions between the mean and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems in which an ensemble of a finite number of realizations of the perturbation equation share the same mean flow provide tractable approximations to the equivalently infinite ensemble RNL system. The infinite ensemble system,...
Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team
2016-07-01
The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.
Computational investigation of the effects of turbulence, inertia, and gravity on particle dynamics
Ireland, Peter John
In this work, we examine the motion of particles which are subjected to varying levels of turbulence, inertia, and gravity, in both homogeneous and inhomogeneous turbulence. These investigations are performed through direct numerical simulation (DNS) of the Eulerian fluid velocity field combined with Lagrangian particle tracking. The primary motivation of these investigations is to better understand and model the dynamics and growth of water droplets in warm, cumulus clouds. In the first part of this work, we discuss the code we developed for these simulations, Highly Parallel Particle-laden flow Solver for Turbulence Research (HiPPSTR). HiPPSTR uses efficient parallelization strategies, time-integration techniques, and interpolation methods to enable massively parallel simulations of three-dimensional, particle-laden turbulence. In the second, third, and fourth sections of this work, we analyze simulations of particle-laden flows which are representative of those at the edges and cores of clouds. In the second section, we consider the mixing of droplets near interfaces with varying turbulence intensities and gravitational orientations, to provide insight into the dynamics near cloud edges. The simulations are parameterized to match wind-tunnel experiments of particle mixing which were conducted at Cornell, and the DNS and experimental results are compared and contrasted. Mixing is suppressed when turbulence intensities differ across the interface, and in all cases, the particle concentrations are subject to large fluctuations. In the third and fourth sections, we use HiPPSTR to analyze droplet motion in isotropic turbulence, which we take to be representative of adiabatic cloud cores. The third section examines the Reynolds-number scaling of single-particle and particle-pair statistics without gravity, while the fourth section shows results when gravity is included. While weakly inertial particles preferentially sample certain regions of the flow, gravity reduces
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)
2014-10-15
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Ray, Samriddhi Sankar; Pandit, Rahul [Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore (India); Mitra, Dhrubaditya [Departement Cassiopee, Observatoire de la Cote d' Azur, BP4229, 06304 Nice Cedex 4 (France)], E-mail: ssray@physics.iisc.ernet.in, E-mail: dhruba.mitra@gmail.com, E-mail: rahul@physics.iisc.ernet.in
2008-03-15
We systematize the study of dynamic multiscaling of time-dependent structure functions in different models of passive-scalar and fluid turbulence. We show that, by suitably normalizing these structure functions, we can eliminate their dependence on the origin of time at which we start our measurements and that these normalized structure functions yield the same linear bridge relations that relate the dynamic-multiscaling and equal-time exponents for statistically steady turbulence. We show analytically, for both the Kraichnan model of passive-scalar turbulence and its shell model analogue, and numerically, for the Gledzer-Ohkitani-Yamada (GOY) shell model of fluid turbulence and a shell model for passive-scalar turbulence, that these exponents and bridge relations are the same for statistically steady and decaying turbulence. Thus, we provide strong evidence for dynamic universality, i.e. dynamic-multiscaling exponents do not depend on whether the turbulence decays or is statistically steady.
Spectral large-eddy simulations and vortex dynamics in turbulence
Lesieur, M
1999-01-01
We present a point of view of large-eddy simulations (LES) in Fourier space, where the eddy coefficients are expressed thanks to a two- point spectral closure of isotropic turbulence, the EDQNM theory. Returning to real space, this leads to models of the structure- function family (plain, selective or filtered). These models are applied with success to predict the statistical distributions and coherent-vortex dynamics for a wide variety of turbulent flows. In three-dimensional decaying isotropic turbulence, we confirm the existence of a k/sup 4/ infrared backscatter in the kinetic-energy spectrum, and predict a new k/sup 2/ law for the pressure spectrum in this range. In the mixing layer (temporal or spatial), we show how to manipulate the topology of Kelvin-Helmholtz vortices, from quasi two- dimensionality to helical pairing. The latter vortex organization is found in a backward-facing step just behind the step, and yields big staggered Lambda -vortices which are carried away downstream. In a developed turb...
Dynamics of particle--turbulence interaction at the dissipative scales
Bocanegra Evans, Humberto; Dam, Nico; van de Water, Willem; JM Burgerscentrum Collaboration; COST Action, Particles in Turbulence Collaboration
2013-11-01
We present results of a novel phosphorescent tagging technique that is particularly suited to study particle-laden flows. Using phosphorescent droplets we probe the dynamics of particle-turbulence interaction at the dissipative length scales. We create a cloud of droplets within a chamber capable of generating homogeneous, isotropic turbulence with zero-mean flow. The droplets have Stokes number St ~ 1 , and the flow is intensely turbulent, with Reynolds number Reλ ~ 500 . Using a frequency-tripled Nd:YAG laser, we can tag a variety of volumes, such as thin slabs or thin, pencil-like cylinders. The droplets in these volumes glow during a few Kolmogorov times. By tracking the fate of pencil-shaped clouds using a fast (5 kHz) camera, we come to the surprising conclusion that they disperse faster than fluid elements, with a spreading rate reaching a maximum at St ~ 2 . Sheets of tagged droplets display preferential concentration at work; we discuss statistical quantities that can capture these events. This project is funded by Fundamenteel Onderzoek der Materie (FOM).
Dynamic Multiscaling in Two-dimensional Fluid Turbulence
Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul
2011-01-01
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Fuchert, Golo
2013-12-13
The safe and reliable satisfaction of the world's increasing energy demand at affordable costs is one of the major challenges of our century. Nuclear fusion power plants following the magnetic confinement approach may play an essential role in solving this issue. The energy loss of the fusion plasma due to plasma turbulence reduces the efficiency and poses a threat to the first wall of a fusion reactor. Close to the wall, in the scrape-off layer, this transport is dominated by blobs or filaments: Localized structures of increased pressure, which transport energy and particles towards the wall by propagating radially outwards. Their contribution to the transport depends on their size, propagation velocity and generation rate. An analytical model for the evolution of blobs predicts their velocity and size, but not the generation rate. Experiments indicate that edge turbulence in the vicinity of the last closed flux surface (the boundary between the confined plasma and the scrape-off layer) is involved in the blob generation process and should influence the generation rate. The present thesis aims at answering two main questions: How well do the blob properties predicted from the simple model compare to experimental observations in more complex magnetic field configurations of actual fusion experiments and does the edge turbulence influence the blob properties during the generation process. A fast camera was used to measure blob properties in two devices, TJ-K and ASDEX Upgrade. In TJ-K, blob sizes and velocities were determined together with the generation rate. An overall agreement with the predictions from the simple model is found. For the first time a clear influence of the edge dynamics on the analyzed blob properties is demonstrated. These measurements include the first systematic comparison of the structure-size scaling inside and outside of the last closed flux surface. Furthermore, measurements with a multi-probe array are used to reconstruct the blob
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed.
Iain Malzer
Full Text Available Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such 'edge effects' have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use.
Machine learning control taming nonlinear dynamics and turbulence
Duriez, Thomas; Noack, Bernd R
2017-01-01
This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...
Dynamics of dissolved polymer chains in isotropic turbulence
Jin, Shi; Collins, Lance R.
2007-10-01
Polymers are remarkable molecules that have relaxation times that can span 15 orders of magnitude. The very longest of the relaxation times for high molecular weight polymers are sufficiently long to overlap with fluid mechanical times scales; under those circumstances, polymers can influence the flow. A well-known example that is still not fully understood is polymer drag reduction. It has been known since Toms (1949 Proc. 1st Int. Congress on Rheology 2 135-41) that parts per million (mass basis) concentrations of polymers can reduce the drag on a solid surface by as much as 80%. Understanding the mechanism of drag reduction requires an understanding of the dynamics of the dissolved polymer chain in response to local fluctuations in the turbulent flow field. We investigate this by using Brownian dynamics simulations of bead-spring models of polymers immersed in a turbulent solvent that is separately computed using direct numerical simulations. We observe that polymer chains with parameters that are effective for drag reduction generally remain stretched for long periods of time and only occasionally relax. The relatively restricted configuration space they sample makes it reasonable to represent their behavior with simpler dumbbell models. We also study the spatial structure of the polymer stresses using a Lagrangian strategy. The results explain the need for relatively high spatial resolution for numerical simulations of polymer flows.
Z. Lin; R.E. Waltz
2007-01-01
@@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas; Pawlowski, Jan M; Sexty, Dénes
2013-01-01
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appear in the gauge field which are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signalled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these r...
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos
Pringle, Chris C T; Kerswell, Rich R
2011-01-01
We propose a general strategy for determining the minimal finite amplitude isturbance to trigger transition to turbulence in shear flows. This involves constructing a variational problem that searches over all disturbances of fixed initial amplitude, which respect the boundary conditions, incompressibility and the Navier--Stokes equations, to maximise a chosen functional over an asymptotically long time period. The functional must be selected such that it identifies turbulent velocity fields by taking significantly enhanced values compared to those for laminar fields. We illustrate this approach using the ratio of the final to initial perturbation kinetic energies (energy growth) as the functional and the energy norm to measure amplitudes in the context of pipe flow. Our results indicate that the variational problem yields a smooth converged solution providing the amplitude is below the threshold amplitude for transition. This optimal is the nonlinear analogue of the well-studied (linear) transient growth opt...
Spolaore, M., E-mail: monica.spolaore@igi.cnr.it; Vianello, N.; Agostini, M.; Cavazzana, R.; De Masi, G.; Martines, E.; Momo, B.; Scaggion, A.; Scarin, P.; Spagnolo, S.; Spizzo, G.; Zuin, M. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Furno, I.; Avino, F.; Fasoli, A.; Theiler, C. [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Carralero, D. [Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense, 40 28040 Madrid (Spain); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Alonso, J. A.; Hidalgo, C. [Laboratorio Nacional de Fusion, CIEMAT, Avda. Complutense, 40 28040 Madrid (Spain)
2015-01-15
Electromagnetic features of turbulent filaments, emerging from a turbulent plasma background, have been studied in four different magnetic configurations: the stellarator TJ-II, the Reversed Field Pinch RFX-mod, a device that can be operated also as a ohmic tokamak, and the Simple Magnetized Torus, TORPEX. By applying an analogous diagnostic concept in all cases, direct measurements of both field-aligned current density and vorticity were performed inside the filament. The inter-machine comparison reveals a clear dependence of the filament vorticity upon the local time-averaged E × B flow shear. Furthermore, a wide range of local beta was explored allowing concluding that this parameter plays a fundamental role in the appearance of filament electromagnetic features.
A Preliminary Field Study of Turbulent Flow Over and Inside a Forest Edge.
2014-09-26
Maple with a single White Pine (Pinus strobus L.) and a clump of Trembling Aspen (Populus trembloides L.) at the edge. The average canopy height is 14...Sz = 2 + 2 + 1 2 + 62 (2.5) nm nm nm nm nm III. DESCRIPTION OF THE FIELD DATA ACQUISITION SYSTEM The heart of the data acquisition system is a LSI 11
Jian Zhong Xu
2012-09-01
Full Text Available This paper presents a newly developed aero-servo-elastic platform for implementing smart rotor control and shows its effectiveness with aerodynamic loads on large-scale offshore wind turbines. The platform was built by improving the FAST/Aerodyn codes with the integration of an external deformable trailing edge flap controller in the Matlab/Simulink software. Smart rotor control was applied to an Upwind/NREL 5 MW reference wind turbine under various operating wind conditions in accordance with the IEC Normal Turbulence Model (NTM and Extreme Turbulence Model (ETM. Results showed that, irrespective of whether the NTM or ETM case was considered, aerodynamic load in terms of blade flapwise root moment and tip deflection were effectively reduced. Furthermore, the smart rotor control also positively affected generator power, pitch system and tower load. These results laying a foundation for a future migration of the “smart rotor control” concept into the design of large-scale offshore wind turbines.
Dynamic evolution process of turbulent channel flow after opposition control
Ge, Mingwei; Tian, De; Yongqian, Liu
2017-02-01
Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).
Analysis Regarding the Effects of Atmospheric Turbulence on Aircraft Dynamics
Gabriela STROE
2016-06-01
Full Text Available This paper will analyze the Gust Load Alleviation (GLA systems which can be used to reduce the effects of atmospheric turbulences generated by wind gusts on vertical acceleration of aircraft. Their purpose is to reduce airframe loads and to improve passenger comfort. The dynamic model of the aircraft is more realistic than a rigid-body model, since it includes the structural flexibility; due to its complexity, such model can make feedback control design for gust load alleviation more challenging. The gust is generated with the Dryden power spectral density model. This kind of model lends itself well to frequency-domain performance specifications in the form of the weighting functions. Two classical analytical representations for the power spectral density (PSD function of atmospheric turbulence as given by Von Kármán and Dryden, were used. The analysis is performed for a set of specified values for flight velocity and altitude (as test cases, with different gust signals that must be generated with the required intensity, scale lengths and PSD functions.
Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV
Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)
2008-06-15
A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)
On the dynamics of turbulent transport near marginal stability
Diamond, P.H. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics]|[General Atomics, San Diego, CA (United States); Hahm, T.S. [Princeton Univ., NJ (United States). Plasma Physics Lab.
1995-03-01
A general methodology for describing the dynamics of transport near marginal stability is formulated. Marginal stability is a special case of the more general phenomenon of self-organized criticality. Simple, one field models of the dynamics of tokamak plasma self-organized criticality have been constructed, and include relevant features such as sheared mean flow and transport bifurcations. In such models, slow mode (i.e. large scale, low frequency transport events) correlation times determine the behavior of transport dynamics near marginal stability. To illustrate this, impulse response scaling exponents (z) and turbulent diffusivities (D) have been calculated for the minimal (Burgers) and sheared flow models. For the minimal model, z = 1 (indicating ballastic propagation) and D {approximately}(S{sub 0}{sup 2}){sup 1/3}, where S{sub 0}{sup 2} is the noise strength. With an identically structured noise spectrum and flow with shearing rate exceeding the ambient decorrelation rate for the largest scale transport events, diffusion is recovered with z = 2 and D {approximately} (S{sub 0}{sup 2}){sup 3/5}. This indicates a qualitative change in the dynamics, as well as a reduction in losses. These results are consistent with recent findings from {rho} scaling scans. Several tokamak transport experiments are suggested.
Optimizing controllability of edge dynamics in complex networks by perturbing network structure
Pang, Shaopeng; Hao, Fei
2017-03-01
Using the minimum input signals to drive the dynamics in complex networks toward some desired state is a fundamental issue in the field of network controllability. For a complex network with the dynamical process defined on its edges, the controllability of this network is optimal if it can be fully controlled by applying one input signal to an arbitrary non-isolated vertex of it. In this paper, the adding-edge strategy and turning-edge strategy are proposed to optimize the controllability by minimum structural perturbations. Simulations and analyses indicate that the minimum number of adding-edges required for the optimal controllability is equal to the minimum number of turning-edges, and networks with positively correlated in- and out-degrees are easier to achieve optimal controllability. Furthermore, both the strategies have the capacity to reveal the relationship between certain structural properties of a complex network and its controllability of edge dynamics.
Structure and mechanism of turbulence under dynamical restriction in plane Poiseuille flow
Farrell, Brian F; Jiménez, Javier; Constantinou, Navid C; Lozano-Duran, Adrián; Nikolaidis, Marios-Andreas
2015-01-01
The perspective of statistical state dynamics (SSD) has been applied to the study of mechanisms underlying turbulence in various physical systems. An example application of SSD is that of the second order closure, referred to as stochastic structural stability theory (S3T), which has provided insight into the dynamics of wall turbulence and the emergence and maintenance of the roll/streak structure. This closure eliminates nonlinear interactions among the perturbations restricting nonlinearity to that of the mean equation and interaction between the mean and perturbations. Simulations at modest $Re$ reveal that the essential features of wall-turbulence dynamics are retained with the dynamics restricted in this manner. Here this restriction of the dynamics is used to obtain a closely related dynamical system, referred to as the restricted non-linear (RNL) system, which is used to study the structure and dynamics of turbulence in plane Poiseuille flow at moderately high $Re$. Remarkably, the RNL system spontane...
On the Vortex Dynamics in Fractal Fourier Turbulence
Lanotte, Alessandra S; Biferale, Luca
2016-01-01
Incompressible, homogeneous and isotropic turbulence is studied by solving the Navier-Stokes equations on a reduced set of Fourier modes, belonging to a fractal set of dimension $D$. By tuning the fractal dimension parameter, we study the dynamical effects of Fourier decimation on the vortex stretching mechanism and on the statistics of the velocity and the velocity gradient tensor. In particular, we show that as we move from $D=3$ to $D \\sim 2.8$, the statistics gradually turns into a purely Gaussian one. This result suggests that even a mild fractal mode reduction strongly depletes the stretching properties of the non-linear term of the Navier-Stokes equations and suppresses anomalous fluctuations.
An analogy between optical turbulence and activator-inhibitor dynamics
Spineanu, F
2016-01-01
The propagation of laser beams through madia with cubic nonlinear polarization is part of a wide range of practical applications. The processes that are involved are at the limit of extreme (cuasi-singular) concentration of intensity and the transversal modulational instability, the saturation and defocusing effect of the plasma generated through avalanche and multi-photon (MPI) ionization are competing leading to a complicated pattern of intensity in the transversal plane. This regime has been named \\textquotedblleft optical turbulence\\textquotedblright and it has been studied in experiments and numerical simulations. Led by the similarity of the portraits we have investigated the possibility that the mechanism that underlies the creation of the complex pattern of the intensity field is the manifestation of the dynamics \\textit{activator-inhibitor}. In a previous work we have considered a unique connection, the \\textit{complex Landau-Ginzburg equation}, a common ground for the nonlinear Schrodinger equation ...
Ensemble Kalman filters for dynamical systems with unresolved turbulence
Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Lee, Yoonsang [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates)
2014-09-15
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy
Robbins, Brian; Field, Rich; Grigoriu, Mircea; Jamison, Ryan; Mesh, Mikhail; Casper, Katya; Dechant, Lawrence
2016-11-01
During reentry, a hypersonic vehicle undergoes a period in which the flow about the vehicle transitions from laminar to turbulent flow. During this transitional phase, the flow is characterized by intermittent formations of localized turbulent behavior. These localized regions of turbulence are born at the onset of transition and grow as they move to the aft end of the flight vehicle. Throughout laminar-turbulent transition, the moving turbulent spots cause pressure fluctuations on the outer surface of the vehicle, which leads to the random vibration of the structure and its internal components. In light of this, it is of great interest to study the dynamical response of a flight vehicle undergoing transitional flow so that aircraft can be better designed to prevent structural failure. In this talk, we present a statistical model that calculates the birth, evolution, and pressure field of turbulent spots over a generic slender cone structure. We then illustrate that the model appropriately quantifies intermittency behavior and pressure loading by comparing the intermittency and root-mean-square pressure fluctuations produced by the model with theory and experiment. Finally, we present results pertaining to the structural response of a housing panel on the slender cone. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)
2014-12-15
The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.
Leddy, Jarrod; Dudson, Ben
2016-10-01
Understanding the transport processes in the low temperature plasma at the boundary region of magnetic confinement fusion (MCF) devices is crucial to the design and operation of future fusion reactor devices. It influences the divertor heat load, and probably the core confinement as well. The dominant source of this transport is turbulence, which serves to mix the high and low temperature regions of the plasma. The nature of this plasma turbulence is affected by not only the plasma parameters, but also the neutral species that also exist in these low temperature regions. The interaction of neutrals with the plasma turbulence is studied in linear device geometry (for its simplicity, yet similarity in plasma parameters), and the result is a strong interaction that impacts the local plasma and neutral densities, momenta and energies. The neutral gas is found to affect plasma edge turbulence primarily through momentum exchange, reducing the radial electric field and enhancing cross-field transport, with consequent implications for the SOL width and divertor heat loads. Therefore, turbulent plasma and fluid simulations have been performed in multiple tokamak geometries to more closely examine the effects of this interaction. These cases were chosen for the variety in configuration with ISTOK having a toroidal limiter (ie. no divertor), DIII-D having a standard divertor configuration, and MAST-U having a super-X divertor with extended outer divertor legs. Progress towards the characterization of neutral impact on detachment and edge behavior will be presented.
Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review
Sharman, R. D.; Trier, S. B.; Lane, T. P.; Doyle, J. D.
2012-06-01
Turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and is the underlying cause of many people's fear of air travel. Not only are turbulence encounters a safety issue, they also result in millions of dollars of operational costs to airlines, leading to increased costs passed on to the consumer. For these reasons, pilots, dispatchers, and air traffic controllers attempt to avoid turbulence wherever possible. Accurate forecasting of aviation-scale turbulence has been hampered in part by a lack of understanding of the underlying dynamical processes. However, more precise observations of turbulence encounters together with recent research into turbulence generation processes is helping to elucidate the detailed dynamical processes involved and is laying the foundation for improved turbulence forecasting and avoidance. In this paper we briefly review some of the more important recent observational, theoretical, and modeling results related to turbulence at cruise altitudes for commercial aircraft (i.e., the upper troposphere and lower stratosphere), and their implications for aviation turbulence forecasting.
A dynamic stall model for airfoils with deformable trailing edges
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian;
2009-01-01
, lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....
Morgan, Harry L., Jr.
2002-01-01
This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.
Baudoin, C.; Tamain, P.; Ciraolo, G.; Futtersack, R.; Gallo, A.; Ghendrih, P.; Nace, N.; Norscini, C. [CEA, IRFM, Saint-Paul-lez-Durance (France); Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, Marseille (France)
2016-08-15
In this paper we study the impact of electron temperature fluctuations in a two-dimensional turbulent model. This modification adds a second linear instability, known as sheath-driven conducting-wall instability, with respect to the previous isothermal model only driven by the interchange instability. Non-linear simulations, backed up by the linear analysis, show that the additional mechanism can change drastically the dynamics of turbulence (scales, density-potential correlation, and statistical momentum). Moreover, its importance relatively to the interchange instability should be more significant in the private flux region than in the main scrape of layer. Its effect on heat transport is also investigated for different regimes of parameters, results show that both instabilities are at play in the heat transport. Finally, the sheath negative resistance instability could be responsible for the existence of corrugated heat flux profiles in the scrape-off layer leading to a multiple decay length. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Molecular dynamics simulation of kink in 《100》 edge dislocation in body centred cubic iron
CHEN LiQun; WANG ChongYu; YU Tao
2007-01-01
Using the molecular dynamics method, we have constructed two kink models corresponding to the {010} and {011} edge dislocations (EDs) in body centred cubic (bcc) Fe.It is found that the geometric structure of a kink depends on the type of edge dislocation and the structural energies of the atoms sites in the dislocation core region.The formation energies, migration energies and widths of the kinks in different types of EDs are calculated.The results show that formation and migration of the kink in the {010} edge dislocation are difficult.The {011} edge dislocation moves primarily through kink nucleation, rather than kink migration.
齐庆华; 张启龙; 侯一筠
2010-01-01
The eastern edge of the western Pacific warm pool (WPWP) in the upper layer (shallower than 50m) exhibits significant zonal displacements on interannual scale. Employing an intermediate ocean model, the dynamic mechanism for the interannual zonal displacement of the WPWP eastern edge in the upper layer is investigated by diagnosing the dynamic impacts of zonal current anomalies induced by wind, waves (Kelvin and Rossby waves), and their boundary reflections. The interannual zonal displacements of the WPWP e...
Is there universal predator-prey dynamics at the laminar-turbulent phase transition?
Shih, Hong-Yan; Goldenfeld, Nigel
2016-11-01
Direct numerical simulation of pipe flow shows that transitional turbulence is dominated by two collective modes: a longitudinal mode for small-scale turbulent fluctuations whose anisotropy induces an emergent large-scale azimuthal mode (so-called zonal flow) that inhibits anisotropic Reynolds stress. This activation-inhibition interaction leads to stochastic predator-prey-like dynamics, from which it follows that the transition to turbulence belongs to the directed percolation universality class. Here we show how predator-prey dynamics arises by deriving phenomenologically an effective field theory of the transition from a coarse-graining of the Reynolds equation. The rigorous mapping between the conserved currents in Rayleigh-Benard convection (RBC), Taylor-Couette and pipe flows suggests that the zonal flow-turbulence scenario might occur in these systems, consistent with observations of zonal flows in two-dimensional RBC, and bursts of transitional turbulence in Couette flow that follow the critical scalings of directed percolation.
A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit
Smith, Edward
2016-11-01
What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.
Majumder, Rupamanjari; Pandit, Rahul; Panfilov, A V
2014-10-01
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na(+) current (INa), L-type slow inward Ca(2+) current (ICaL), slow delayed-rectifier current (IKs), rapid delayed-rectifier current (IKr), inward rectifier K(+) current (IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
无
2009-01-01
In this paper, two sub-grid scale (SGS) models are introduced into the Lattice Boltzmann Method (LBM), i.e., the dynamics SGS model and the dynamical system SGS model, and applied to numerically solving three-dimensional high Re turbulent cavity flows. Results are compared with those obtained from the Smagorinsky model and direct numerical simulation for the same cases. It is shown that the method with LBM dynamics SGS model has advantages of fast computation speed, suitable to simulate high Re turbulent flows. In addition, it can capture detailed fine structures of turbulent flow fields. The method with LBM dynamical system SGS model dose not contain any adjustable parameters, and can be used in simulations of various complicated turbulent flows to obtain correct information of sub-grid flow field, such as the backscatter of energy transportation between large and small scales. A new average method of eliminating the inherent unphysical oscillation of LBM is also given in the paper.
Lagrangian frequency spectrum as a diagnostic for magnetohydrodynamic turbulence dynamics.
Busse, Angela; Müller, Wolf-Christian; Gogoberidze, Grigol
2010-12-01
For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations τ(ac) and the associated cascade time scale τ(cas). Thus, the Lagrangian energy spectrum can serve to identify weak (τ(ac) ≪ τ(cas)) and strong (τ(ac) ∼ τ(cas)) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.
The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence
Howes, Gregory G
2016-01-01
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows
Selvam, A M
2006-01-01
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the main...
Li, Jiquan; Kishimoto, Y.; Miyato, N.; Matsumoto, T.
2004-11-01
We investigate how the magnetic shear governs the dynamics of large-scale structures, such as zonal flows and streamers, in electron temperature gradient (ETG) driven turbulence. Based on the well-known 2D Hasegawa-Mima turbulence modeling, which is the inviscid version of fluid (or gyrofluid) ETG turbulence [1], we derive a general dispersion relation of secondary fluctuations through modulation instability analysis. The results show that the formation of different large-scale structures including zonal flow, streamer and so-called generalized Kelvin-Helmholtz (GKH) mode in ETG turbulence depends on the spectral anisotropy of turbulent fluctuation. In a slab geometry, the magnetic shear closely relates to the ETG mode structures so that it may determine the pattern selection in the quasi-steady ETG turbulence. 3D gyrofluid slab ETG simulations show that turbulent ETG fluctuation energy condenses to the zonal flows in the weak shear plasmas and to the streamer component for the high shears. 2D ETG simulations with rather high resolution not only exhibits the global spectral distribution of zonal flows, but also further confirm a mechanism: enhanced zonal flow in weak shear ETG turbulence is limited by exciting a KH mode [1]. Furthermore, in toroidal ETG simulations, streamer structures are observed at around good curvature region along the flux tube in the quasisteady state in some medium shear regime. Related streamer dynamics are also investigated. [1] Jiquan Li and Y. Kishimoto, Phys. Plasmas 11, 1493(2004)
Visualization of Turbulence with OpenGL
Avril, A.; Makowski, M. A.; Umansky, M.; Kalling, R.; Schissel, D. P.
2009-11-01
Turbulence is an all-pervasive phenomenon in plasmas. The edge turbulence is of particular interest for the containment of plasmas during fusion processes. It is simulated with BOUT, a 4D (3 spatial + time coordinates) edge turbulence simulation code that is typical of modern codes in many ways. While predictive, the 4D outputs of these codes are difficult to visualize. In an effort to better understand the macroscopic trends of edge turbulence in toroidal plasmas, we are developing routines to render the BOUT output, using the OpenGL framework in C^++. These routines will allow us to follow the evolution of isosurfaces through time, and we anticipate gaining insight into the nonlinear dynamics of turbulence as a result. Additionally, these routines could potentially be used to visualize the output of other modeling codes.
Suresha, Suhas; Sujith, R. I.; Emerson, Benjamin; Lieuwen, Tim
2016-10-01
The flame or flow behavior of a turbulent reacting wake is known to be fundamentally different at high and low values of flame density ratio (ρu/ρb ), as the flow transitions from globally stable to unstable. This paper analyzes the nonlinear dynamics present in a bluff-body stabilized flame, and identifies the transition characteristics in the wake as ρu/ρb is varied over a Reynolds number (based on the bluff-body lip velocity) range of 1000-3300. Recurrence quantification analysis (RQA) of the experimentally obtained time series of the flame edge fluctuations reveals that the time series is highly aperiodic at high values of ρu/ρb and transitions to increasingly correlated or nearly periodic behavior at low values. From the RQA of the transverse velocity time series, we observe that periodicity in the flame oscillations are related to periodicity in the flow. Therefore, we hypothesize that this transition from aperiodic to nearly periodic behavior in the flame edge time series is a manifestation of the transition in the flow from globally stable, convective instability to global instability as ρu/ρb decreases. The recurrence analysis further reveals that the transition in periodicity is not a sudden shift; rather it occurs through an intermittent regime present at low and intermediate ρu/ρb . During intermittency, the flow behavior switches between aperiodic oscillations, reminiscent of a globally stable, convective instability, and periodic oscillations, reminiscent of a global instability. Analysis of the distribution of the lengths of the periodic regions in the intermittent time series and the first return map indicate the presence of type-II intermittency.
Byron, M.; Meyer, C.; Bellani, G.; Variano, E. A.
2011-12-01
We present a method for simultaneously measuring both the fluid and particle phases in a dense particle-laden flow or slurry. There is no limit to the technique's ability to resolve very high particle number density. With this, we measure the motion of particles in high-Reynolds number turbulent water flow. The particles we consider include spheres, ellipsoids, and completely irregular geometries. The particles range from near neutrally buoyant to a specific gravity of 2. We measure the particles' translation and rotation, while simultaneously measuring the turbulent flow surrounding them. With this information, we can determine: the effect of particles on turbulent flow (e.g. enhanced dissipation); the effect of turbulent flow on particle (e.g. eddy diffusivity and modified settling velocity); and the dynamics at the particle interfaces which explain theses effects. In this presentation, we explain the method; present results on the rotational diffusion of particles; and present results on how particles affect the ambient turbulent flow.
Evaluating Link Prediction Accuracy on Dynamic Networks with Added and Removed Edges
Junuthula, Ruthwik R; Devabhaktuni, Vijay K
2016-01-01
The task of predicting future relationships in a social network, known as link prediction, has been studied extensively in the literature. Many link prediction methods have been proposed, ranging from common neighbors to probabilistic models. Recent work by Yang et al. has highlighted several challenges in evaluating link prediction accuracy. In dynamic networks where edges are both added and removed over time, the link prediction problem is more complex and involves predicting both newly added and newly removed edges. This results in new challenges in the evaluation of dynamic link prediction methods, and the recommendations provided by Yang et al. are no longer applicable, because they do not address edge removal. In this paper, we investigate several metrics currently used for evaluating accuracies of dynamic link prediction methods and demonstrate why they can be misleading in many cases. We provide several recommendations on evaluating dynamic link prediction accuracy, including separation into two categ...
Edge localized mode rotation and the nonlinear dynamics of filaments
Morales, J. A.; Bécoulet, M.; Garbet, X.; Dif-Pradalier, G.; Huijsmans, G. T. A.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G. [CEA, IRFM, 13108 St. Paul-Lez-Durance (France); Orain, F.; Hoelzl, M. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Pamela, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Cahyna, P. [Institute of Plasma Physics ASCR, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic)
2016-04-15
Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.
Edge localized mode rotation and the nonlinear dynamics of filaments
Morales, J. A.; Bécoulet, M.; Garbet, X.; Orain, F.; Dif-Pradalier, G.; Hoelzl, M.; Pamela, S.; Huijsmans, G. T. A.; Cahyna, P.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.
2016-04-01
Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.
Large scale dynamics in flux driven gyrokinetic turbulence
Sarazin, Y.; Grandgirard, V.; Abiteboul, J.; Allfrey, S.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Strugarek, A.; Dif-Pradalier, G.
2010-05-01
The turbulent transport governed by the toroidal ion temperature gradient driven instability is analysed with the full-f global gyrokinetic code GYSELA (Grandgirard et al 2007 Plasma Phys. Control. Fusion 49 B173) when the system is driven by a prescribed heat source. Weak, yet finite, collisionality governs a neoclassical ion heat flux that can compete with the turbulent driven transport. In turn, the ratio of turbulent to neoclassical transport increases with the source magnitude, resulting in the degradation of confinement with additional power. The turbulent flux exhibits avalanche-like events, characterized by intermittent outbursts which propagate ballistically roughly at the diamagnetic velocity. Locally, the temperature gradient can drop well below the linear stability threshold. Large outbursts are found to correlate with streamer-like structures of the convection cells albeit their Fourier spectrum departs significantly from that of the most unstable linear modes. Last, the poloidal rotation of turbulent eddies is essentially governed by the radial electric field at moderate density gradient.
ShidaLIU; ZuguangZheng; 等
1996-01-01
We analyse the behavior of the nonlinear dynamical systems which are the truncated-spectrum model of the atmospheric turbulence equation.It shows that the chaos can appear in the Lorenz equation obtained by simple equations for the unstable stratification(Ri0),And the chaos can also appear in Burgers-Chao equations for the stable stratification(Ri>0,Ra<0),The atmospheric turbulence is intermittent in the stable stratified atmosphere.
2014-12-16
Shock Wave /Turbulent Boundary Layer Interaction in Conical Flows FA9550-11-1-0203 Dr. Charles E. Tinney, Aerospace Engineering and Engineering...Low-Dimensional Dynamical Characteristics of Shock Wave /Turbulent Boundary Layer Interaction in Conical Flows Contract/Grant Number: FA9550-11-1-0203...driven by transonic resonance (Zaman et al, 2002). What is common about many of these planar nozzle studies is that there is just one single
Jiang, Shixiao W.; Lu, Haihao; Zhou, Douglas; Cai, David
2016-08-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β-Fermi-Pasta-Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems.
Nonlinear dynamics of magnetic islands imbedded in small-scale turbulence.
Muraglia, M; Agullo, O; Benkadda, S; Garbet, X; Beyer, P; Sen, A
2009-10-02
The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.
Nonlinear Dynamics of Magnetic Islands Imbedded in Small-Scale Turbulence
Muraglia, Magali; Benkadda, Sadruddin; Garbet, Xavier; Beyer, P; Sen, Abhijit; 10.1103/PhysRevLett.103.145001
2011-01-01
The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.
Intrinsic Axial Flows in CSDX and Dynamical Symmetry Breaking in ITG Turbulence
Li, Jiacong; Diamond, P. H.; Hong, R.; Thakur, S. C.; Xu, X. Q.; Tynan, G. R.
2016-10-01
Toroidal plasma rotation can enhance confinement when combined with weak magnetic shear. Also, external rotation drive in future fusion devices (e.g. ITER) will be weak. Together, these two considerations drive us to study intrinsic rotations with weak magnetic shear. In particular, a global transition is triggered in CSDX when magnetic field B exceeds a critical strength threshold. At the transition an ion feature emerges in the core turbulence. Recent studies show that a dynamical symmetry breaking mechanism in drift wave turbulence can drive intrinsic axial flows in CSDX, as well as enhance intrinsic rotations in tokamaks. Here, we focus on what happens when ion features emerge in CSDX, and how ion temperature gradient (ITG) driven turbulence drives intrinsic rotations with weak magnetic shear. The effect of dynamical symmetry breaking in ITG turbulence depends on the stability regime. In a marginally stable regime, dynamical symmetry breaking results in an augmented turbulence viscosity (chi-phi). However, when ITG is far from the stability boundary, a negative increment in turbulent viscosity is induced. This material is based upon work supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under Award No. DE-FG02-04ER54738.
Plume dynamics in quasi-2D turbulent convection.
Bizon, C.; Werne, J.; Predtechensky, A. A.; Julien, K.; McCormick, W. D.; Swift, J. B.; Swinney, Harry L.
1997-03-01
We have studied turbulent convection in a vertical thin (Hele-Shaw) cell at very high Rayleigh numbers (up to 7x10(4) times the value for convective onset) through experiment, simulation, and analysis. Experimentally, convection is driven by an imposed concentration gradient in an isothermal cell. Model equations treat the fields in two dimensions, with the reduced dimension exerting its influence through a linear wall friction. Linear stability analysis of these equations demonstrates that as the thickness of the cell tends to zero, the critical Rayleigh number and wave number for convective onset do not depend on the velocity conditions at the top and bottom boundaries (i.e., no-slip or stress-free). At finite cell thickness delta, however, solutions with different boundary conditions behave differently. We simulate the model equations numerically for both types of boundary conditions. Time sequences of the full concentration fields from experiment and simulation display a large number of solutal plumes that are born in thin concentration boundary layers, merge to form vertical channels, and sometimes split at their tips via a Rayleigh-Taylor instability. Power spectra of the concentration field reveal scaling regions with slopes that depend on the Rayleigh number. We examine the scaling of nondimensional heat flux (the Nusselt number, Nu) and rms vertical velocity (the Peclet number, Pe) with the Rayleigh number (Ra(*)) for the simulations. Both no-slip and stress-free solutions exhibit the scaling NuRa(*) approximately Pe(2) that we develop from simple arguments involving dynamics in the interior, away from cell boundaries. In addition, for stress-free solutions a second relation, Nu approximately nPe, is dictated by stagnation-point flows occurring at the horizontal boundaries; n is the number of plumes per unit length. No-slip solutions exhibit no such organization of the boundary flow and the results appear to agree with Priestley's prediction of Nu
Analysis of drop deformation dynamics in turbulent flow
Stephanie Nachtigall; Daniel Zedel; Matthias Kraume
2016-01-01
Drop breakage and coalescence influence the particle formation in liquid–liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi-gated by high-speed imaging. In order to gain a statistical y relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab® was used for the evaluation of the resulting high amount of image data. This al owed the elimination of the time-consuming manual analysis and further-more, al owed the objective evaluation of the drops' behavior. Different deformation parameters were consid-ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (θaxes), which was therefore approximated through an el ipse, al owed the determination of very small de-viations from the spherical shape. The perimeter of the particle (θperi) was used for the description of highly de-formed shapes. In this work the results of a higher viscosity paraffin oil (ηd=127 mPa·s) and a low viscosity solvent (petroleum,ηd=1.7 mPa·s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimental y determined oscil ation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de-formed particles, it is not assumed that a critical deformation value must be reached for the
Dynamic evolution of coherent vortex dipole in atmospheric turbulence
Li, Jinhong; Zeng, Jun
2017-01-01
The analytical expression for the cross-spectral density function of Gaussian Schell-model (GSM) beams with coherent vortex dipole (CVD) propagating through atmospheric turbulence is derived, which enables us to study the evolution process of CVD propagating through atmospheric turbulence, where the influences of the beams parameters and atmospheric turbulence parameters on the ratio of critical off-axis distance to the waist width are stressed. It shows that the evolution process of the CVD depends on the off-axis distance. The larger the off-axis distance is, the more the number of CVD is. When the off-axis distance is zero, the position of coherent vortices with positive and negative topological charge of CVD propagating through atmospheric turbulence is always symmetry. When the off-axis distance is big enough, compared with the situation at source plane, the orientation of the positive coherent vortex of inherent CVD and negative coherent vortex of that rotates 180° in the far field. The larger the structure constant and the waist width are, as well as the smaller the spatial correlation length and the inner scale are, the smaller the ratio ac/w0 is. Besides, the ratio ac/w0 will no longer change when the spatial correlation length or the inner scale increases to a certain value, whereas the outer scale has no effect on the ratio.
Exact coherent states and connections to turbulent dynamics in minimal channel flow
Park, Jae Sung
2015-01-01
Several new families of nonlinear three-dimensional travelling wave solutions to the Navier-Stokes equation, also known as exact coherent states, are computed for Newtonian plane Poiseuille flow. The symmetries and streak/vortex structures are reported and their possible connections to critical layer dynamics examined. While some of the solutions clearly display fluctuations that are localized around the critical layer (the surface on which the streamwise velocity matches the wave speed of the solution), for others this connection is not as clear. Dynamical trajectories along unstable directions of the solutions are computed. Over certain ranges of Reynolds number, two solution families are shown to lie on the basin boundary between laminar and turbulent flow. Direct comparison of nonlinear travelling wave solutions to turbulent flow in the same channel is presented. The state-space dynamics of the turbulent flow are organized around one of the newly-identified travelling wave families, and in particular the ...
Garbet, X.; Ghendrih, Ph.; Sarazin, Y. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France); Grandgirard, V.; Agullo, O.; Benkadda, S. [CNRS-Universite de Provence, Equipe de Dynamique des Systemes Complexes, Aix-Marseille 1, 13 (France)
2000-09-01
Numerous experimental data show the existence of non-diffusive transport in tokamak plasmas. This article deals with the trajectories of test particles going through edge turbulence in scrape off layer (that is in the region where magnetic field lines are open). The interchange mechanism of the turbulence tends to generate convective cells by electrical shift, the radial extension is comparable to the size of the system. The resulting transport is mainly a ballistic-type transport whose time features are very short. Whenever the transport is directed towards outside, it appears profitable because it produces a broadening of the scrape off layer. On the contrary, the existence of ballistic trajectories directed towards the inside of the discharge implies an important contamination of the plasma by impurities coming from the wall. (A.C.)
Island-dynamics model for mound formation: effect of a step-edge barrier.
Papac, Joe; Margetis, Dionisios; Gibou, Frederic; Ratsch, Christian
2014-08-01
We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set technique to include the effect of an additional energy barrier for the attachment and detachment of atoms at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier increases.
Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.
Kotakoski, Jani; Santos-Cottin, David; Krasheninnikov, Arkady V
2012-01-24
Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ~50 keV to minimize the knock-on damage.
Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves
Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.
2017-02-01
A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.
A Full Eulerian Vlasov-Maxwell Study of Turbulent Dynamics and Dissipation
TenBarge, J. M.; Juno, J.; Hakim, A.
2016-12-01
The development of a detailed understanding of turbulence in magnetized plasmas has been a long standing goal of the broader scientific community, both as a fundamental physics process and because of its applicability to a wide variety of phenomena. Turbulence in a magnetized plasma is the primary mechanism responsible for transforming energy at large injection scales into small-scale motions, which are ultimately dissipated as heat in systems such as the solar corona and wind. At large scales, the turbulence is well described by fluid models of the plasma; however, understanding the processes responsible for heating a weakly collisional plasma such as the solar wind requires a kinetic description. We present the first fully kinetic Eulerian Vlasov-Maxwell study of turbulence using the Gkeyll simulation code. We focus on the pristine distribution function dynamics that are possible with the Eulerian approach. We also present the signatures and form of dissipation as diagnosed via field-particle correlation functions.
Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties
Kolev, Nikolay Ivanov
2012-01-01
The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...
Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS
Constantinou, Navid C; Nikolaidis, Marios-Andreas; Farrell, Brian F; Ioannou, Petros J; Jiménez, Javier
2014-01-01
S3T (Stochastic Structural Stability Theory) employs a closure at second order to obtain the dynamics of the statistical mean turbulent state. When S3T is implemented as a coupled set of equations for the streamwise mean and perturbation states, nonlinearity in the dynamics is restricted to interaction between the mean and perturbations. The S3T statistical mean state dynamics can be approximately implemented by similarly restricting the dynamics used in a direct numerical simulation (DNS) of the full Navier-Stokes equations (referred to as the NS system). Although this restricted nonlinear system (referred to as the RNL system) is greatly simplified in its dynamics in comparison to the associated NS, it nevertheless self-sustains a turbulent state in wall-bounded shear flow with structures and dynamics comparable to that in observed turbulence. Moreover, RNL turbulence can be analyzed effectively using theoretical methods developed to study the closely related S3T system. In order to better understand RNL tu...
Sapsis, Themistoklis Panagiotis; Majda, Andrew J.
2012-01-01
Turbulent dynamical systems are characterized by persistent instabilities which are balanced by nonlinear dynamics that continuously transfer energy to the stable modes. To model this complex statistical equilibrium in the context of uncertainty quantification all dynamical components (unstable modes, nonlinear energy transfers, and stable modes) are equally crucial. Thus, order-reduction methods present important limitations. On the other hand uncertainty quantification methods based on the ...
Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels
Delorme-Walker, Violaine; Seo, Ji-Yeon; Gohla, Antje; Fowler, Bruce; Bohl, Ben; DerMardirossian, Céline
2015-01-01
Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase–, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion. PMID:26324884
Keck, R.-E.
2013-07-15
This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling capability of the dynamics wake meandering model to a level where it is sufficiently mature to be applied in industrial applications and for an augmentation of the IEC-standard for wind turbine wake modelling. Based on a comparison of capabilities of the dynamic wake meandering model to the requirement of the wind industry, four areas were identified as high prioritizations for further research: 1. the turbulence distribution in a single wake. 2. multiple wake deficits and build-up of turbulence over a row of turbines. 3. the effect of the atmospheric boundary layer on wake turbulence and wake deficit evolution. 4. atmospheric stability effects on wake deficit evolution and meandering. The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented by an actuator line model. As a consequence, part of the research also targets the performance of the actuator line model when generating wind turbine wakes in the atmospheric boundary layer. Highlights of the conducted research: 1. A description is given for using the dynamic wake meandering model as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry. 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind
Dynamics of surfactants in the field of edge and internal waves in coastal areas
Averbukh, L.; Kurkina, O.; Kurkin, A.
2012-04-01
Edge waves are topographically trapped waves, which can be considered as an important factor impacting upon coastline and nearshore bottom relief, beaches and coastal constructions. Large amplitude nonlinear edge waves are possible due to the action of different mechanisms. Their dynamics can be described by nonlinear Shrodinger equation, and the signs of its coefficients correspond to modulation instability of wave packets. The mechanisms of possible anomalous edge wave appearance are dispersion enhancement and self-modulation; they can lead to forming of abnormal edge wave. In the present paper we consider processes of edge wave propagation and amplification along a cylindrical shelf taking into account horizontal alongshore flow and Earth rotation. Internal waves exist in stratified coastal areas, and for them extreme regimes are also well-known, including propagation of such energetic events as solitary waves and breathers. The existence of waves of both type lead to formation of wave-induced currents, which can be quite strong and can significantly affect the surrounding environment. In particular, these currents can influence upon pollutants, admixtures and films on the surface of the sea causing their redistribution according to zones of convergence and divergence of the velocity fields. These specific pictures on the surface can be used in the interpretation of remote sensing data and diagnostics and identification of underlying wave processes. In the present study we demonstrate dynamics of surfactants in the field of edge and internal waves in coastal areas. Numerical modeling is based on the balance equation of the surface concentration. Film dynamics was considered in the advection - diffusion - relaxation model. We show a number of unsteady effects in the edge and internal waves and their manifestation in the surfactants. For edge waves we considered the passage of linear traveling and standing waves, the wave amplitude changes due to slow longshore
Fusion plasma turbulence described by modified sandpile dynamics.
Ghendrih, Philippe; Ciraolo, Guido; Dif-Pradalier, Guilhem; Norscini, Claudia; Sarazin, Yanick; Abiteboul, Jérémie; Cartier-Michaud, Thomas; Garbet, Xavier; Grandgirard, Virginie; Strugarek, Antoine
2014-04-01
Transport in fusion plasmas is investigated with modified sandpile models. Based on results from more complete simulations, the sandpile model is modified in steps. Models with a constant source are obtained by coupling two sandpiles. Decoupling the mean field from the bursts allows one to develop a reduced model which captures some of the key features of flux-driven simulations. In the latter sandpile model, turbulent transport is mediated by the burst field while the mean-field gradient governs the transfer to the bursts. This allows one to investigate spreading, namely turbulent transport into stable regions, and transport barriers, regions where the transfer from the mean field to turbulence is reduced. Both cases are found to exhibit intermittent behaviors when the system undergoes spontaneous transitions between different transport regimes. Finally, one couples to the sandpile algorithm a species evolution algorithm that assigns a quality factor to each site. The latter appears to self-generate corrugations, or micro-barriers. These are found to naturally cluster radially in structures that are large enough to impact confinement. The mechanisms introduced to alleviate the clustering, destabilization of the corrugation by overloading and by secondary instabilities at critical radial extents, are shown to generate long-range relaxation events in space and in time with quasiperiodic reorganization of the corrugation pattern.
Turbulence elasticity—A new mechanism for transport barrier dynamics
Guo, Z. B., E-mail: guozhipku@gmail.com [WCI Center for Fusion Theory, NFRI, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon 305-333 (Korea, Republic of); CMTFO and CASS, University of California, San Diego, California 92093 (United States); Kosuga, Y. [IAS and RIAM, Kyushu University, Kasuga 816-8580 (Japan); Gürcan, Ö. D. [LPP, Ecole Polytechnique, CNRS, Palaiseau Cedex 91128 (France)
2014-09-15
We present a new, unified model of transport barrier formation in “elastic” drift wave-zonal flow (DW-ZF) turbulence. A new physical quantity—the delay time (i.e., the mixing time for the DW turbulence)—is demonstrated to parameterize each stage of the transport barrier formation. Quantitative predictions for the onset of limit-cycle-oscillation (LCO) among DW and ZF intensities (also denoted as I-mode) and I-mode to high-confinement mode (H-mode) transition are also given. The LCO occurs when the ZF shearing rate (|〈v〉{sub ZF}{sup ′}|) enters the regime Δω{sub k}<|〈V〉{sub ZF}{sup ′}|<τ{sub cr}{sup −1}, where Δω{sub k} is the local turbulence decorrelation rate and τ{sub cr} is the threshold delay time. In the basic predator-prey feedback system, τ{sub cr} is also derived. The I-H transition occurs when |〈V〉{sub E×B}{sup ′}|>τ{sub cr}{sup −1}, where the mean E × B shear flow driven by ion pressure “locks” the DW-ZF system to the H-mode by reducing the delay time below the threshold value.
Vikhrev, V. V.; Baronova, E. O.
2006-01-01
Pinch dynamics is described, which takes into account generation of turbulent magnetic fields. Turbulent/chaotic magnetic fields (TMF) appear due to MHD and kinetic instabilities. It is shown, that TMF arises near the moment of maximal compression and essentially affects plasma dynamics at the expansion stage.
Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport
Weaver, C. M.; Wiggs, G.
2007-12-01
Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant
Beyhaghi, Saman
Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. Due to the development of a thin boundary layer over the ground surface, the modern commercial wind turbines have to be relatively large to be cost-effective. Because of the high manufacturing and transportation costs of the wind turbine components, it is necessary to evaluate the design and predict the performance of the turbine prior to shipping it to the site, where it is to be installed. Computational Fluid Dynamics (CFD) has proven to be a simple, cheap and yet relatively accurate tool for prediction of wind turbine performance, where the suitability of different designs can be evaluated at a low cost. High accuracy simulation methods such as Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are developed and utilized in the past decades. Despite their superior importance in large fluid domains, they fail to make very accurate predictions near the solid surfaces. Therefore, in the present effort, the possibility of improving near-wall predictions of CFD simulations in the near-wall region by using a modified turbulence model is also thoroughly investigated. Algebraic Stress Model (ASM) is employed in conjunction with Detached Eddy Simulation (DES) to improve Reynolds stresses components, and consequently predictions of the near-wall velocities and surface pressure distributions. The proposed model shows a slightly better performance
[Edge effect on the dynamics of pests and natural enemies in cotton agroecosystems].
Ge, Feng; Men, Xingyuan; Su, Jianwei; Liu, Xinghui; Ding, Yanqin
2004-01-01
Investigation on the population dynamics of pests and natural enemies on the cotton plants in the middle and edge of cotton agroecosystems showed that the population of the 2nd generation of cotton bollworms (Heliocopavar armigia) and seedling aphids (Aphis gossyppi) was respectively 1.94 times and 1.09 times higher, but that of the 3rd generation cotton bollworms and summer aphids population was respectively 62.12% and 97.73% lower in the edge than in the middle of cotton agroecosystem. The population of predacious ladybeetles, predacious bugs, spiders and parasites in the edge of cotton agroecosystem was 73.81%, 35.79%, 52.90% and 39.11% of that in the middle of cotton agroecosystem, respectively. The greater diversity of pest community and the less diversity of natural enemies community were found in the edge than in the middle of cotton agroecosystem. The increase of energy utilization efficiency and gross production in the edge of cotton agroecosystems showed the edge effect of cotton agroecosystems.
Restricted Euler dynamics along trajectories of small inertial particles in turbulence
Johnson, Perry L.; Meneveau, Charles
2017-04-01
The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of reduced self-stretching of strain-rate.
A phenomenological model for the dynamic response of wind turbines to turbulent wind
Rauh, Alexander; Peinke, Joachim [Institut fur Physik, Universitat Oldenburg, D-26111 Oldenburg (Germany)
2004-02-01
To predict the average power output of a wind turbine, a response model is proposed which takes into account: (1) the delayed response to the longitudinal wind speed fluctuations; (2) a response function of the turbine with arbitrary frequency dependence; and (3) wind fields of arbitrary turbulence intensity. In the limit of low turbulence intensity, the dynamical ansatz as proposed in 1992 by Rosen and Sheinman is reproduced. It is shown, how the response function of the turbine can be obtained from simulation experiments of a specific wind turbine. For two idealized situations the dynamic effect of fluctuating wind is estimated at turbulence intensities 0{<=}I{sub u}{<=}0.5. At the special mean wind speed V=8m/s, the turbine response function is determined from simulation data published by Sheinman and Rosen in 1992 and 1994.
Restricted Euler dynamics along trajectories of small inertial particles in turbulence
Johnson, Perry L
2016-01-01
The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of reduced self-str...
Structural ensemble dynamics based closure model for wall-bounded turbulent flow
Zhen-Su She; Ning Hu; You Wu
2009-01-01
Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework called structural ensemble dynamics (SED), which aims at using systematically all relevant statistical properties of turbulent structures for a quantitative description of ensemble means. A new set of closure equations based on the SED approach for a turbulent channel flow is presented. SED order functions are defined, and numerically determined from data of direct numerical simulations (DNS). Computational results show that the new closure model reproduces accurately the solution of the original Navier-Stokes simulation, including the mean velocity profile, the kinetic energy of the stream-wise velocity component, and every term in the energy budget equation. It is suggested that the SED-based studies of turbulent structure builds a bridge between the studies of physical mechanisms of turbulence and the development of accurate model equations for engineering predictions.
Xu, X. Q.; Xia, T. Y.; Yan, N.; Liu, Z. X.; Kong, D. F.; Diallo, A.; Groebner, R. J.; Hubbard, A. E.; Hughes, J. W.
2016-05-01
The high-fidelity BOUT++ two-fluid code suite has demonstrated significant recent progress toward integrated multi-scale simulations of tokamak pedestal, including Edge-Localized-Mode (ELM) dynamics, evolution of ELM cycles, and continuous fluctuations, as observed in experiments. Nonlinear ELM simulations show three stages of an ELM event: (1) a linear growing phase; (2) a fast crash phase; and (3) a slow inward turbulence spreading phase lasting until the core heating flux balances the ELM energy loss and the ELM is terminated. A new coupling/splitting model has been developed to perform simulations of multi-scale ELM dynamics. Simulation tracks five ELM cycles for 10 000 Alfvén times for small ELMs. The temporal evolution of the pedestal pressure is similar to that of experimental measurements for the pedestal pressure profile collapses and recovers to a steep gradient during ELM cycles. To validate BOUT++ simulations against experimental data and develop physics understanding of the fluctuation characteristics for different tokamak operation regimes, both quasi-coherent fluctuations (QCFs) in ELMy H-modes and Weakly Coherent Modes in I-modes have been simulated using three dimensional 6-field 2-fluid electromagnetic model. The H-mode simulation results show that (1) QCFs are localized in the pedestal region having a predominant frequency at f ≃300 -400 kHz and poloidal wavenumber at kθ≃0.7 cm-1 , and propagate in the electron diamagnetic direction in the laboratory frame. The overall signatures of simulation results for QCFs show good agreement with C-Mod and DIII-D measurements. (2) The pedestal profiles giving rise to QCFs are near the marginal instability threshold for ideal peeling-ballooning modes for both C-Mod and DIII-D, while the collisional electromagnetic drift-Alfvén wave appears to be dominant for DIII-D. (3) Particle diffusivity is either smaller than the heat diffusivity for DIII-D or similar to the heat diffusivity for C-Mod. Key I
Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore
2014-01-01
turbulence models. In the present work, the flow in a dynamic scale model of a uniflowscavenged cylinder is investigated experimentally. The model has a transparent cylinder and a moving piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry (PIV...
A stochastic differential equation framework for the timewise dynamics of turbulent velocities
Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen
2008-01-01
We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...
Chengwu Li
2016-05-01
Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.
Dynamics of ion temperature gradient turbulence and transport with a static magnetic island
Izacard, Olivier; Holland, Christopher; James, Spencer D.; Brennan, Dylan P.
2016-02-01
Understanding the interaction mechanisms between large-scale magnetohydrodynamic instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulations performed with the BOUT++ [Dudson et al., Comput. Phys. Commun. 180, 1467 (2009)] framework. This work focuses upon the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island, using a weakly electromagnetic two-dimensional five-field fluid model. It is found that the island width must exceed a threshold size (comparable with the turbulent correlation length in the no-island limit) to significantly impact the turbulence dynamics, with the primary impact being an increase in turbulent fluctuation and heat flux amplitudes. The turbulent radial ion energy flux is shown to localize near the X-point, but does so asymmetrically in the poloidal dimension. An effective turbulent resistivity which acts upon the island outer layer is also calculated and shown to always be significantly (10×-100×) greater than the collisional resistivity used in the simulations.
Confinement and dynamical regulation in two-dimensional convective turbulence
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low-frequency bur......In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...... to the mean component of the flow. Bursting can also result from the quasi-linear modification of the linear instability drive which is the mean pressure gradient. For each bursting process the relevant zero-dimensional model equations are given. These are finally coupled in a minimal model of convection...
Dynamics of the inner edge of the dead zone in protoplanetaty disks
Sebastien Fromang
2013-04-01
Full Text Available In protoplanetary disks, the inner boundary between an MRI active and inactive region has recently been suggested to be a promising site for planet formation. A set of numerical simulations has indeed shown that vortex formation mediated by the Rossby wave instability is a natural consequence of the disk dynamics at that location. However, such models have so far considered only the case of an isothermal equation of state, while the more complex thermodynamics of this region may have strong consequences on disk properties because of thermal ionization. Gas is heated by turbulent dissipation and radiatively cools on long timescales because disks are optically thick. Using a mean field model of the dynamics of that boundary, Latter and Balbus (2012 have shown that this complexity can lead to situations in which the active/dead interface moves systematically inward or outward, depending on the initial conditions. This is because turbulent activity is controlled by ohmic resistivity that is itself a sensitive function of temperature. Such a behavior suggests, as observed in young stellar object, a nonsteady accretion onto the central star. Using the Godunov code Ramses, we have performed 3D global numerical simulations of protoplanetary disks that relax the isothermal hypothesis in order to check the above scenario. We confirm the existence of such MRI fronts, thus validating the mean field approach described above. As shown by Latter and Balbus (2012, MRI fronts tend to stop at a critical radius. We argue that the typical front velocity crucially depends on turbulent diffusion of temperature. The diffusivity of temperature due to turbulence is measured to be order of H2/Ω where Ω is the local orbital time and H the typical height of the disk.
Churakov, Sergey V.
2007-03-01
Edge sites of clay minerals play a key role for pH dependent sorption of ions from solutions of electrolytes. Pyrophyllite, Al 2[Si 4O 10](OH) 2, is an important structural prototype for a variety of 2:1 dioctahedral phyllosilicates but in contrast to the other clays has no permanent structural charge. The structure of thin water films confined between most common edges of 1Tc pyrophyllite: (0 1 0), (1 1 0) and (1 0 0), was analyzed by means of ab initio molecular dynamic simulations. The system setup allowed for a full flexibility of the interfaces and a proton exchange between the edges of pyrophyllite and water molecules in solution. The structure of hydrated surfaces is compared with the recent predictions of static geometry optimizations for edge-vacuum interfaces. All surfaces studied reveal a strong hydrophilic character of edge similar to the hydrated silica surface and the facets of simple layered hydroxides. Spontaneous proton transfer between different surface sites were observed in molecular dynamics simulations of the (0 1 0) interface. The proton bound to the tbnd Si sbnd OH site was found to exchange with the tbnd Al sbnd OH group by the mechanism tbnd Si sbnd OH +tbnd Al sbnd OH ↔tbnd Si sbnd O+tbnd Al sbnd OH 2+. The direction of the proton transfer agrees with the scale of relative proton affinities for surface sites obtained from the static calculations. Alternatively, the proton attached to the tbnd Al sbnd OH 2 site exchanges with the tbnd Al sbnd OH group. In both reactions, the protons are transferred through the chains of hydrogen bonds formed between water molecules in the solution and the surface sites. The observed mechanisms might be one of the basic schemes for the surface proton diffusion in compacted clays. Kinetics of the proton transfer at edge sites is limited by the rate of rearrangements of the water molecules near interface.
Dynamic Subgrid Scale Modeling of Turbulent Flows using Lattice-Boltzmann Method
Premnath, Kannan N; Banerjee, Sanjoy
2009-01-01
In this paper, we discuss the incorporation of dynamic subgrid scale (SGS) models in the lattice-Boltzmann method (LBM) for large-eddy simulation (LES) of turbulent flows. The use of a dynamic procedure, which involves sampling or test-filtering of super-grid turbulence dynamics and subsequent use of scale-invariance for two levels, circumvents the need for empiricism in determining the magnitude of the model coefficient of the SGS models. We employ the multiple relaxation times (MRT) formulation of LBM with a forcing term for simulation of the grid-filtered dynamics of large-eddies. The dynamic procedure is illustrated for use with the common Smagorinsky eddy-viscosity SGS model. We also discuss proper sampling techniques or test-filters that facilitate implementation of dynamic models in the LBM. For accommodating variable resolutions, we employ locally refined grids in this framework. As examples, we consider the canonical fully developed turbulent channel flow at two different shear Reynolds numbers $Re_{...
Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.
Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan
2016-07-01
Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression
L-H transition dynamics in fluid turbulence simulations with neoclassical force balance
Chôné, Laurent; Sarazin, Yanick; Fuhr, Guillaume; Bourdelle, Clarisse; Benkadda, Sadruddin
2013-01-01
Spontaneous transport barrier generation at the edge of a magnetically confined plasma is investigated. To this end, a model of electrostatic turbulence in three-dimensional geometry is extended to account for the impact of friction between trapped and passing particles on the radial electric field. Non-linear flux-driven simulations are carried out, and it is shown that considering the radial and temporal variations of the neoclassical friction coefficients allows for a transport barrier to be generated above a threshold of the input power.
Role of helicities for the dynamics of turbulent magnetic fields
Mueller, Wollf-Christian
2013-01-01
Investigations of the inverse cascade of magnetic helicity are conducted with pseudospectral, three-dimensional direct numerical simulations of forced and decaying incompressible magnetohydrodynamic turbulence. The high-resolution simulations which allow for the necessary scale-separation show that the observed self-similar scaling behavior of magnetic helicity and related quantities can only be understood by taking the full nonlinear interplay of velocity and magnetic fluctuations into account. With the help of the eddy-damped quasi-normal Markovian approximation a probably universal relation between kinetic and magnetic helicities is derived that closely resembles the extended definition of the prominent dynamo pseudoscalar $\\alpha$. This unexpected similarity suggests an additional nonlinear quenching mechanism of the current-helicity contribution to $\\alpha$.
Differential kinetic dynamics and heating of ions in the turbulent solar wind
Valentini, F; Stabile, S; Pezzi, O; Servidio, S; De Marco, R; Marcucci, F; Bruno, R; Lavraud, B; De Keyser, J; Consolini, G; Brienza, D; Sorriso-Valvo, L; Retinò, A; Vaivads, A; Salatti, M; Veltri, P
2016-01-01
The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas w...
Ovchinnikov, Igor V
2012-01-01
Here it is shown that the most general Parisi-Sourlas-Wu stochastic quantization procedure applied to any stochastic differential equation (SDE) leads to a Witten-type topological field theory - a model with a global topological Becchi-Rouet-Stora-Tyutin supersymmetry (Q-symmetry). Q-symmetry can be dynamically broken only by (anti-)instantons - ultimately nonlinear sudden tunneling processes of (creation)annihilation of solitons, e.g., avalanches in self-organized criticality (SOC) or (creation)annihilation of vortices in turbulent water. The phases with unbroken Q-symmetry are essentially markovian and can be understood solely in terms of the conventional Fokker-Plank evolution of the probability density. For these phases, Ito interpretation of SDEs and/or Martin-Siggia-Rose approximation of the stochastic quantization are applicable. SOC, turbulence, glasses, quenches etc. constitute the "generalized turbulence" category of stochastic phases with broken Q-symmetry. In this category, (anti-)instantons conde...
Particle dynamics in discs with turbulence generated by the vertical shear instability
Stoll, Moritz H R
2016-01-01
Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization the vertical shear instability (VSI) has become an interesting candidate, as it relies purely on a vertical gradient in the angular velocity. Existing simulations have shown that $\\alpha$-values a few times $10^{-4}$ can be generated. The particle growth in the early planet formation phase is determined by the dynamics of dust particles. Here, we address in particular the efficiency of VSI-turbulence in concentrating particles in order to generate overdensities and low collision velocities. We perform 3D numerical hydrodynamical simulations of accretion discs around young stars that include radiative transport and irradiation from the central star. The motion of particles within a size range of a fraction of mm up to several m is followed using standard drag formula. We confirm that under realistic conditions the VSI is able to generate turbulence in full 3D protoplanetary discs. The irradiated disc s...
Dynamical Majorana edge modes in a broad class of topological mechanical systems.
Prodan, Emil; Dobiszewski, Kyle; Kanwal, Alokik; Palmieri, John; Prodan, Camelia
2017-02-23
Mechanical systems can display topological characteristics similar to that of topological insulators. Here we report a large class of topological mechanical systems related to the BDI symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and no reflection planes. The particle-hole symmetry characteristic to the BDI symmetry class stems from the distinct behaviour of the translational and rotational degrees of freedom under inversion. This and other generic properties led us to the remarkable conclusion that, by adjusting the gyration radius of the bodies, one can always simultaneously open a gap in the phonon spectrum, lock-in all the characteristic symmetries and generate a non-trivial topological invariant. The particle-hole symmetry occurs around a finite frequency, and hence we can witness a dynamical topological Majorana edge mode. Contrasting a floppy mode occurring at zero frequency, a dynamical edge mode can absorb and store mechanical energy, potentially opening new applications of topological mechanics.
Translational and rotational dynamics of a large buoyant sphere in turbulence
Mathai, Varghese; van der Poel, Erwin P; Sun, Chao
2016-01-01
We report experimental measurements of the translational and rotational dynamics of a large buoyant sphere in isotropic turbulence. We introduce an efficient method to simultaneously determine the position and (absolute) orientation of a spherical body from visual observation. The method employs a minimization algorithm to obtain the orientation from the 2D projection of a specific pattern drawn onto the surface of the sphere. This has the advantages that it does not require a database of reference images, is easily scalable using parallel processing, and enables accurate absolute orientation reference. Analysis of the sphere's translational dynamics reveals clear differences between the streamwise and transverse directions. The translational auto-correlations and PDFs provide evidence for periodicity in the particle's dynamics even under turbulent conditions. The angular autocorrelations show weak periodicity. The angular accelerations exhibit wide tails, however without a directional dependence.
Influence of vortex dynamics and atmospheric turbulence on the early evolution of a contrail
R. Paugam
2010-04-01
Full Text Available This study describes three-dimensional numerical simulations of the evolution of an aircraft contrail during the first 30 min following the emission of exhausts. The wake is modeled as a vortex pair descending in a stratified atmosphere where turbulent fluctuations are sustained in the late dissipation regime. The focus of the study is laid on the interactions between vortex dynamics, atmospheric turbulence and contrail microphysics, and their role in determining the growth and the distribution of ice crystals. The atmospheric turbulence is synthesized using a methodology developed to force anisotropic turbulent fluctuations. The results show the feasibility of three-dimensional simulations of the early development of a contrail in supersaturated conditions before its transition into a contrail-cirrus. %(when radiative heating and sedimentation are no more negligible. It is shown that in case of strongly supersaturated and shear-free atmosphere the optical depth is maintained as the contrail spreads by turbulent diffusion in the late dissipation regime.
Femtosecond dynamics of the nonlinear index near the band edge in AlGaAs waveguides
Anderson, K. K.; LaGasse, M. J.; Wang, C. A.; Fujimoto, J. G.; Haus, H. A.
1990-05-01
The transient behavior of the nonresonant nonlinear index is investigated in AlGaAs waveguides with femtosecond time resolution. Both the refractive index and the absorption changes are measured by time division interferometry and pump probe techniques. Different mechanisms which contribute to the nonlinear index are distinguished by examining their dynamics, including the optical Stark effect, resonantly excited carriers, and two-photon absorption processes. The relative contribution from each mechanism is a strong function of wavelength near the band edge.
Ecological collapse and the emergence of traveling waves at the onset of shear turbulence
Shih, Hong-Yan; Goldenfeld, Nigel
2015-01-01
The transition to turbulence exhibits remarkable spatio-temporal behavior that continues to defy detailed understanding. Near the onset to turbulence in pipes, transient turbulent regions decay either directly or, at higher Reynolds numbers through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Here we report numerical simulations of transitional pipe flow, showing that a zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations; in turn, the zonal flow suppresses the small-scale turbulence leading to stochastic predator-prey dynamics. We show that this "ecological" model of transitional turbulence reproduces the super-exponential lifetime statistics and phenomenology of pipe flow experiments. Our work demonstrates that a fluid on the edge of turbulence is mathematically analogous to an ecosystem on the edge of extinction, and provides an unbroken link between the equations of fluid dynamics and the directed percolation univ...
Dynamically dominant exact coherent structures in turbulent Taylor-Couette flow
Krygier, Michael; Grigoriev, Roman
2016-11-01
Unstable Exact Coherent Structures (ECS), which are solutions to the Navier-Stokes equation, provide a connection between turbulence and dynamical systems and offer a method for exploiting the low dimensionality of weakly turbulent flows. We investigate ECS in an intermittent Taylor-Couette flow (TCF) found in a small-aspect-ratio geometry with counter-rotating cylinders (η = 0 . 5 , Γ = 1 , Rei = - 1200 , Reo = 1200). The presence of end-caps breaks the axial translational symmetry of TCF, but continuous rotational symmetry remains, which suggest that typical ECS should be the relative versions of equilibria and time-periodic orbits. Indeed, previous studies (Meseguer et al., 2009 and Deguchi, Meseguer & Mellibovsky, 2014) found several unstable traveling wave solutions (relative equilibria). We have shown that the dynamically dominant ECS for weakly turbulent TCF in the small-aspect-ratio geometry are relative periodic orbits (not relative equilibria), as evidenced by the frequent visits of their neighborhoods by the turbulent flow. This work is supported by a Grant from the Army Research Office (Contract # W911NF-15-1-0471).
Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames
Liao, Ying-Hao
2013-11-02
The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.
Magnetic turbulence and particle dynamics in the Earth’s magnetotail
G. Zimbardo
Full Text Available The influence of magnetic turbulence in the near-Earth magnetotail on ion motion is investigated by numerical simulation. The magnetotail current sheet is modelled as a magnetic field reversal with a normal magnetic field com-ponent Bn , plus a three-dimensional spectrum of magnetic fluctuations dB which represents the observed magnetic turbulence. The dawn-dusk electric field Ey is also considered. A test particle simulation is performed using different values of Bn and of the fluctuation level dB/B_{0}. We show that when the magnetic fluctuations are taken into account, the particle dynamics is deeply affected, giving rise to an increase in the cross tail transport, ion heating, and current sheet thickness. For strong enough turbulence, the current splits in two layers, in agreement with recent Cluster observations.
Key words. Magnetospheric physics (magnetospheric configuration and dynamics – Interplanetary physics (MHD waves and turbulence – Electromagnetics (numerical methods
Dynamical modeling of sub-grid scales in 2D turbulence
Laval, Jean-Philippe; Dubrulle, Bérengère; Nazarenko, Sergey
2000-08-01
We develop a new numerical method which treats resolved and sub-grid scales as two different fluid components evolving according to their own dynamical equations. These two fluids are nonlinearly interacting and can be transformed one into another when their scale becomes comparable to the grid size. Equations describing the two-fluid dynamics were rigorously derived from Euler equations [B. Dubrulle, S. Nazarenko, Physica D 110 (1997) 123-138] and they do not involve any adjustable parameters. The main assumption of such a derivation is that the large-scale vortices are so strong that they advect the sub-grid scales as a passive scalar, and the interactions of small scales with small and intermediate scales can be neglected. As a test for our numerical method, we performed numerical simulations of 2D turbulence with a spectral gap, and we found a good agreement with analytical results obtained for this case by Nazarenko and Laval [Non-local 2D turbulence and passive scalars in Batchelor’s regime, J. Fluid Mech., in press]. We used the two-fluid method to study three typical problems in 2D dynamics of incompressible fluids: decaying turbulence, vortex merger and forced turbulence. The two-fluid simulations performed on at 128 2 and 256 2 resolution were compared with pseudo-spectral simulations using hyperviscosity performed at the same and at much higher resolution. This comparison shows that performance of the two-fluid method is much better than one of the pseudo-spectral method at the same resolution and comparable computational cost. The most significant improvement is observed in modeling of the small-scale component, so that effective inertial interval increases by about two decades compared to the high-resolution pseudo-spectral method. Using the two-fluid method, we demonstrated that the k-3 tail always exists for the energy spectrum, although its amplitude is slowly decreasing in decaying turbulence.
Dynamics of Turbulence-generated E × B Flows: Simulation and Theory
Hahm, T. S.
1998-11-01
Many magnetic confinement experiments have indicated that E × B shear can suppress turbulence and consequently lead to significant reduction of plasma transport.^1 It has been observed in flux-tube gyrofluid^2,3 and gyrokinetic^4 simulations that small radial scale fluctuating E × B flows driven by turbulence (often called radial modes,^3 or zonal flows) play a dominant role in regulating toroidal ITG (ion temperature gradient) turbulence. Furthermore, the radial modes with similar characteristics and significant impact on transport have been also observed in the recent global gyrokinetic simulations with improved numerical capabilities^5 as well as in edge turbulence simulations with a collisional poloidal flow damping.^6 In this work, we analyze turbulence and flow statistics from gyrofluid and gyrokinetic simulations and compare to various theoretical predictions. The observed radial modes contain significant components with radial scales and frequencies comparable to those of turbulence. While the fast time varying components (including Geodesic Acoustic Modes) contribute the most to the instantaneous E × B shearing rate, they are less influential in suppressing turbulence. The effective E × B shearing rate capturing this important physics is analytically derived and evaluated from the recent nonlinear simulation results. Its magnitude is much smaller than the instantaneous E × B shearing rate, but typically of the order of the decorrelation rate of the ambient turbulence. This is consistent with the reduced, not completely stabilized level of turbulence with broadened kr spectrum observed in simulations. Zonal flows are linearly stable, but can be generated either by incoherent emission of turbulence or by inverse cascade of spectrum yielding negative turbulent viscosity which is related to the Reynolds' stress.^7 Various analytical calculations and proposed mechanisms for zonal flow generation and saturation^7,8 will be tested numerically. Finally, the
Chang-Wan Kim; Mai Duc Dai; Kilho Eom
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on...
Surek, D. [Fachbereich Maschinenbau, Fachhochschule Merseburg (Germany)
1997-05-01
Regenerative blowers with high pressure coefficients have high dissipation losses in the side channel and on the breaker. These losses can be in the same magnitude as the polytropic specific head. The cause of the high specific dissipation energy is the turbulent vortex flow in the side channel, which is released by the high numbers of blades and restrict the polytropic efficiency by {eta}=0.46 to 0.50. The enforced turbulent vortex-flow is the reason for the high head coefficients of regenerative blowers. In the side channel, pressure pulsations occur with pressure amplitudes of high frequency up to 40 kHz. These dynamic pressure oscillations are the result of the turbulent vortex-flow. They are indicated from the edge of the impeller blades and the impeller flow in the side channel. For instance, for one rotation of the impeller t=0.02 s and the time between two blades t=0.35 ms. The analysis of the dynamic pressure shows a distribution of the amplitudes over a wide area up to 10 kHz and higher. The dominant amplitudes are the amplitude of blade rotation frequency. The forced turbulent vortex-flow causes a high turbulent vortex-viscosity in the flow and releases a pulse-flow transportation in the side channel. This is the reason for the energy transfer and the increase of the specific dissipation energy in the side channel. With knowledge of the specific pulse-flow transportation of the turbulent vortex-flow the connection to the total transmitted enthalpy can be explained. (orig.) [Deutsch] In Seitenkanalmaschinen mit den grossen Druckzahlen treten hohe Dissipationsverluste im Seitenkanal und im Unterbrecher auf, die von der gleichen Groessenordnung sein koennen wie die polytrope spezifische Nutzarbeit. Die Ursache fuer den grossen spezifischen Dissipationsenergieanteil ist in der turbulenten Wirbelstroemung im Seitenkanal zu suchen, die von den Laufradschaufeln hoher Zahl ausgeloest wird und den Wirkungsgrad der Maschinen auf Werte von {eta}=0,46... 0
On the dynamics of flame edges in diffusion-flame/vortex interactions
Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)
2007-04-15
We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)
Farrell, Brian F.; Ioannou, Petros J.
2017-08-01
This paper describes a study of the self-sustaining process in wall turbulence. The study is based on a second order statistical state dynamics model of Couette flow in which the state variables are the streamwise mean flow (first cumulant) and perturbation covariance (second cumulant). This statistical state dynamics model is closed by either setting the third cumulant to zero or by replacing it with a stochastic parametrization. Statistical state dynamics models with this form are referred to as S3T models. S3T models have been shown to self-sustain turbulence with a mean flow and second order perturbation structure similar to that obtained by direct numerical simulation of the equations of motion. The use of a statistical state dynamics model to study the physical mechanisms underlying turbulence has important advantages over the traditional approach of studying the dynamics of individual realizations of turbulence. One advantage is that the analytical structure of S3T statistical state dynamics models isolates the interaction between the mean flow and the perturbation components of the turbulence. Isolation of the interaction between these components reveals how this interaction underlies both the maintenance of the turbulence variance by transfer of energy from the externally driven flow to the perturbation components as well as the enforcement of the observed statistical mean turbulent state by feedback regulation between the mean and perturbation fields. Another advantage of studying turbulence using statistical state dynamics models of S3T form is that the analytical structure of S3T turbulence can be completely characterized. For example, the perturbation component of turbulence in the S3T system is demonstrably maintained by a parametric perturbation growth mechanism in which fluctuation of the mean flow maintains the perturbation field which in turn maintains the mean flow fluctuations in a synergistic interaction. Furthermore, the equilibrium
Particle dynamics in discs with turbulence generated by the vertical shear instability
Stoll, Moritz H. R.; Kley, Wilhelm
2016-10-01
Context. Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization, the vertical shear instability (VSI) has become an interesting candidate, since it relies purely on a vertical gradient in the angular velocity. Existing numerical simulations have shown that α-values a few times 10-4 can be generated. Aims: The particle growth in the early planet formation phase is determined by the dynamics of embedded dust particles. Here, we address, in particular, the efficiency of VSI-turbulence in concentrating particles to generate overdensities and low collision velocities. Methods: We perform three-dimensional (3D) numerical hydrodynamical simulations of accretion discs around young stars that include radiative transport and irradiation from the central star. The motion of embedded particles within a size range of a fraction of mm up to several m is followed using standard drag formula. Results: We confirm that, under realistic conditions, the VSI is able to generate turbulence in full 3D protoplanetary discs. The irradiated disc shows turbulence within 10 to 60 au. The mean radial motion of the gas is such that it is directed inward near the midplane and outward in the surface layers. We find that large particles drift inward with the expected speed, while small particles can experience phases of outward drift. Additionally, the particles show bunching behaviour with overdensities reaching five times the average value, which is strongest for dimensionless stopping times around unity. Conclusions: Particles in a VSI-turbulent discs are concentrated in large-scale turbulent eddies and show low relative speeds that allow for growing collisions. The reached overdensities will also enable the onset of streaming instabilities, further enhancing particle growth. The outward drift for small particles at higher disk elevations enable the transport of processed high temperature material in the solar system to greater distances.
Forcing-dependent dynamics and emergence of helicity in rotating turbulence
Dallas, Vassilios
2016-01-01
The effects of large scale mechanical forcing on the dynamics of rotating turbulent flows are studied by means of numerical simulations, varying systematically the nature of the mechanical force in time. We demonstrate that the statistically stationary solutions of these flows depend on the nature of the forcing mechanism. Rapidly enough rotating flows with a forcing that has a persistent direction relatively to the axis of rotation bifurcate from a non-helical state to a helical state despite the fact that the forcing is non-helical. We find that the nature of the mechanical force in time and the emergence of helicity have direct implications on the cascade dynamics of these flows, determining the anisotropy in the flow, the energy condensation at large scales and the power-law energy spectra that are consistent with previous findings and phenomenologies under strong and weak-wave turbulent conditions.
Held, M
2015-01-01
A lattice Boltzmann method (LBM) approach to the Charney-Hasegawa-Mima (CHM) model for adiabatic drift wave turbulence in magnetised plasmas, is implemented. The CHM-LBM model contains a barotropic equation of state for the potential, a force term including a cross-product analogous to the Coriolis force in quasigeostrophic models, and a density gradient source term. Expansion of the resulting lattice Boltzmann model equations leads to cold-ion fluid continuity and momentum equations, which resemble CHM dynamics under drift ordering. The resulting numerical solutions of standard test cases (monopole propagation, stable drift modes and decaying turbulence) are compared to results obtained by a conventional finite difference scheme that directly discretizes the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an additional shear in the density gradient direction. The occuring shear reduces with the drift ratio and is ascribed to the compressible limit of the underlying LBM.
A study of surface semi-geostrophic turbulence: freely decaying dynamics
Ragone, Francesco
2015-01-01
In this study we give a characterization of semi-geostrophic turbulence by performing freely decaying simulations of the semi-geostrophic equations for the case of constant uniform potential vorticity, a set of equations known as surface semi-geostrophic approximation. The equations are formulated as conservation laws for potential temperature and potential vorticity, with a nonlinear Monge-Amp\\'{e}re type inversion equation for the streamfunction, expressed in a transformed coordinate system that follows the geostrophic flow. We perform model studies of turbulent surface semi-geostrophic flows in a doubly-periodic domain in the horizontal limited in the vertical by two rigid lids, allowing for variations of potential temperature at one of the boundaries, and we compare them with the corresponding surface quasi-geostrophic case. Results show that, while surface quasi-geostrophic dynamics is dominated by a symmetric population of cyclones-anticyclones, surface semi-geostrophic dynamics features a prominent rol...
A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit
Smith, E R
2015-01-01
A molecular dynamics (MD) simulation of planar Couette flow is presented for the minimal channel in which turbulence structures can be sustained. Evolution over a single breakdown and regeneration cycle is compared to computational fluid dynamics (CFD) simulations. Qualitative similar structures are observed and turbulent statistics show excellent quantitative agreement. The molecular scale law of the wall is presented in which stick-slip molecular wall-fluid interactions replace the no-slip conditions. The impact of grid resolution is explored and the observed structures are seen to be dependant on averaging time and length scales. The kinetic energy spectra show a range of scales are present in the molecular system and that spectral content is dependent on the grid resolution employed. The subgrid velocity of the molecules is compared to spatial averaged velocity using joint probability density functions. Molecular trajectories, diffusions and Lagrangian statistics are presented. The importance of sub-grid ...
Shangguan, Mingjia; Xia, Haiyun; Qiu, Jiawei; Shentu, Guoliang; Dou, Xiankang; Zhang, Qiang; Pan, Jian-wei
2016-01-01
For the first time, a direct detection BOTDR is demonstrated for distributed dynamic strain sensing incorporating double-edge technique, time-division multiplexing technique and upconversion technique. The double edges are realized by using the transmission curve and reflection curve of an all-fiber Fabry-Perot interferometer (FPI). Benefiting from the low loss of the fiber at, the time-division multiplexing technique is performed to realize the double-edge technique by using only a single-channel FPI and only one piece of a detector. In order to detect the weak spontaneous Brillouin backscattering signal efficiently, a fiber-coupled upconversion detector is adopted to upconvert the backscattering signal at 1548.1 nm to 863 nm, which is detected by a Si-APD finally. In the experiment, dynamic strain disturbance up to 1.9m{\\epsilon} over 1.5 km of polarization maintaining fiber is detected at a sampling rate of 30 Hz. An accuracy of 30{\\mu}{\\epsilon} and spatial resolution of 0.6 m is realized.
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs
Zhengqing, Gan [Iowa State Univ., Ames, IA (United States)
2010-01-01
In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides
Dynamics of skyrmions and edge states in the resistive regime of mesoscopic p-wave superconductors
Fernández Becerra, V.; Milošević, M. V.
2017-02-01
In a mesoscopic sample of a chiral p-wave superconductor, novel states comprising skyrmions and edge states have been stabilized in out-of-plane applied magnetic field. Using the time-dependent Ginzburg-Landau equations we shed light on the dynamic response of such states to an external applied current. Three different regimes are obtained, namely, the superconducting (stationary), resistive (non-stationary) and normal regime, similarly to conventional s-wave superconductors. However, in the resistive regime and depending on the external current, we found that moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortex, thereby providing new fingerprints for identification of p-wave superconductivity.
Coarse-graining two-dimensional turbulence via dynamical optimization
Turkington, Bruce; Thalabard, Simon
2015-01-01
A model reduction technique based on an optimization principle is employed to coarse-grain inviscid, incompressible fluid dynamics in two dimensions. In this reduction the spectrally-truncated vorticity equation defines the microdynamics, while the macroscopic state space consists of quasi-equilibrium trial probability densities on the microscopic phase space, which are parameterized by the means and variances of the low modes of the vorticity. A macroscopic path therefore represents a coarse-grained approximation to the evolution of a nonequilibrium ensemble of microscopic solutions. Closure in terms of the vector of resolved variables, namely, the means and variances of the low modes, is achieved by minimizing over all feasible paths the time integral of their mean-squared residual with respect to the Liouville equation. The equations governing the optimal path are deduced from Hamilton-Jacobi theory. The coarse-grained dynamics derived by this optimization technique contains a scale-dependent eddy viscosit...
Dynamics of turbulent western-boundary currents at low latitude in a shallow-water model
Akuetevi, C. Q. C.; Wirth, A.
2015-06-01
The dynamics of low latitude turbulent western-boundary currents (WBCs) crossing the Equator are considered using numerical results from integrations of a reduced-gravity shallow-water model. For viscosity values of 1000 m2 s-1 and greater, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in the form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer, VSL) and dipoles appear. Three distinct boundary layers emerge, the VSL, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity; the second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse-resolution numerical models is proposed.
Dynamics of turbulent western boundary currents at low latitude in a shallow water model
C. Q. C. Akuetevi
2014-11-01
Full Text Available The dynamics of low latitude turbulent western boundary currents crossing the equator is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m2 s−1 and more, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
Edge energy transport barrier and turbulence in the I-mode regime on Alcator C-Moda)
Hubbard, A. E.; Whyte, D. G.; Churchill, R. M.; Cziegler, I.; Dominguez, A.; Golfinopoulos, T.; Hughes, J. W.; Rice, J. E.; Bespamyatnov, I.; Greenwald, M. J.; Howard, N.; Lipschultz, B.; Marmar, E. S.; Reinke, M. L.; Rowan, W. L.; Terry, J. L.
2011-05-01
We report extended studies of the I-mode regime [Whyte et al., Nucl. Fusion 50, 105005 (2010)] obtained in the Alcator C-Mod tokamak [Marmar et al., Fusion Sci. Technol. 51(3), 3261 (2007)]. This regime, usually accessed with unfavorable ion B × ∇B drift, features an edge thermal transport barrier without a strong particle transport barrier. Steady I-modes have now been obtained with favorable B × ∇B drift, by using specific plasma shapes, as well as with unfavorable drift over a wider range of shapes and plasma parameters. With favorable drift, power thresholds are close to the standard scaling for L-H transitions, while with unfavorable drift they are ˜ 1.5-3 times higher, increasing with Ip. Global energy confinement in both drift configurations is comparable to H-mode scalings, while density profiles and impurity confinement are close to those in L-mode. Transport analysis of the edge region shows a decrease in edge χeff, by typically a factor of 3, between L- and I-mode. The decrease correlates with a drop in mid-frequency fluctuations (f ˜ 50-150 kHz) observed on both density and magnetics diagnostics. Edge fluctuations at higher frequencies often increase above L-mode levels, peaking at f ˜ 250 kHz. This weakly coherent mode is clearest and has narrowest width (Δf/f ˜ 0.45) at low q95 and high Tped, up to 1 keV. The Er well in I-mode is intermediate between L- and H-mode and is dominated by the diamagnetic contribution in the impurity radial force balance, without the Vpol shear typical of H-modes.
Melting dynamics of large ice balls in a turbulent swirling flow
Machicoane, N; Volk, R
2013-01-01
We study the melting dynamics of large ice balls in a turbulent von Karman flow at very high Reynolds number. Using an optical shadowgraphy setup, we record the time evolution of particle sizes. We study the heat transfer as a function of the particle scale Reynolds number for three cases: fixed ice balls melting in a region of strong turbulence with zero mean flow, fixed ice balls melting under the action of a strong mean flow with lower fluctuations, and ice balls freely advected in the whole flow. For the fixed particles cases, heat transfer is observed to be much stronger than in laminar flows, the Nusselt number behaving as a power law of the Reynolds number of exponent 0.8. For freely advected ice balls, the turbulent transfer is further enhanced and the Nusselt number is proportional to the Reynolds number. The surface heat flux is then independent of the particles size, leading to an ultimate regime of heat transfer reached when the thermal boundary layer is fully turbulent.
Coarse-graining two-dimensional turbulence via dynamical optimization
Turkington, Bruce; Chen, Qian-Yong; Thalabard, Simon
2016-10-01
A model reduction technique based on an optimization principle is employed to coarse-grain inviscid, incompressible fluid dynamics in two dimensions. In this reduction the spectrally-truncated vorticity equation defines the microdynamics, while the macroscopic state space consists of quasi-equilibrium trial probability densities on the microscopic phase space, which are parameterized by the means and variances of the low modes of the vorticity. A macroscopic path therefore represents a coarse-grained approximation to the evolution of a nonequilibrium ensemble of microscopic solutions. Closure in terms of the vector of resolved variables, namely, the means and variances of the low modes, is achieved by minimizing over all feasible paths the time integral of their mean-squared residual with respect to the Liouville equation. The equations governing the optimal path are deduced from Hamilton-Jacobi theory. The coarse-grained dynamics derived by this optimization technique contains a scale-dependent eddy viscosity, modified nonlinear interactions between the low mode means, and a nonlinear coupling between the mean and variance of each low mode. The predictive skill of this optimal closure is validated quantitatively by comparing it against direct numerical simulations. These tests show that good agreement is achieved without adjusting any closure parameters.
Bridging Galaxy Dynamics and Baryon Efficiency of 40 EDGE-CALIFA galaxies
Kalinova, Veselina; Colombo, Dario; Rosolowsky, Erik; Collaboration, the EDGE-CALIFA
2015-01-01
We apply the Jeans Axisymmetric Multi-Gaussian Expansion method to the stellar kinematic maps of 40 Sa-Sd EDGE-CALIFA galaxies and derive their circular velocity curves (CVCs). The CVCs are classified using the Dynamical Classification method developed in Kalinova et al. (2015) . We also calculate the observational baryon efficiency, OBE, where $M_*/M_b=M_*/(M_*+M_{HI}+M_{H_2})$ of the galaxies using their stellar mass, total neutral hydrogen mass and total molecular gas from CO luminosities....
A New Dynamic Edge Detection toward Better Human-Robot Interaction
Hafiz, Abdul Rahman; Alnajjar, Fady; Murase, Kazuyuki
Robot’s vision plays a significant role in human-robot interaction, e.g., face recognition, expression understanding, motion tracking, etc. Building a strong vision system for the robot, therefore, is one of the fundamental issues behind the success of such an interaction. Edge detection, which is known as the basic units for measuring the strength of any vision system, has recently been taken attention from many groups of robotic researchers. Most of the reported works surrounding this issue have been based on designing a static mask, which sequentially move through the pixels in the image to extract edges. Despite the success of these works, such statically could restrict the model’s performance in some domains. Designing a dynamic mask by the inspiration from the basic principle of “retina”, and which supported by a unique distribution of photoreceptor, therefore, could overcome this problem. A human-like robot (RobovieR-2) has been used to examine the validity of the proposed model. The experimental results show the validity of the model, and it is ability to offer a number of advantages to the robot, such as: accurate edge detection and better attention to the front user, which is a step towards human-robot interaction.
Dynamic representation of spectral edges in guinea pig primary auditory cortex.
Montejo, Noelia; Noreña, Arnaud J
2015-04-01
The central representation of a given acoustic motif is thought to be strongly context dependent, i.e., to rely on the spectrotemporal past and present of the acoustic mixture in which it is embedded. The present study investigated the cortical representation of spectral edges (i.e., where stimulus energy changes abruptly over frequency) and its dependence on stimulus duration and depth of the spectral contrast in guinea pig. We devised a stimulus ensemble composed of random tone pips with or without an attenuated frequency band (AFB) of variable depth. Additionally, the multitone ensemble with AFB was interleaved with periods of silence or with multitone ensembles without AFB. We have shown that the representation of the frequencies near but outside the AFB is greatly enhanced, whereas the representation of frequencies near and inside the AFB is strongly suppressed. These cortical changes depend on the depth of the AFB: although they are maximal for the largest depth of the AFB, they are also statistically significant for depths as small as 10 dB. Finally, the cortical changes are quick, occurring within a few seconds of stimulus ensemble presentation with AFB, and are very labile, disappearing within a few seconds after the presentation without AFB. Overall, this study demonstrates that the representation of spectral edges is dynamically enhanced in the auditory centers. These central changes may have important functional implications, particularly in noisy environments where they could contribute to preserving the central representation of spectral edges. Copyright © 2015 the American Physiological Society.
Restricted Euler dynamics along trajectories of small inertial particles in turbulence
Johnson, Perry; Meneveau, Charles
2016-11-01
The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of severely reduced self-stretching of strain-rate. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825 and by a Grant from The Gulf of Mexico Research Initiative.
On turbulent, erratic and other dynamical properties of Zadeh's extensions
Roman-Flores, H., E-mail: hroman@uta.cl [Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Chalco-Cano, Y., E-mail: ychalco@uta.cl [Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Silva, G.N., E-mail: gsilva@ibilce.unesp.br [Departamento de Ciencia da Computacao e Estatistica, Universidade Estadual Paulista, Sao Jose do Rio Preto-SP (Brazil); Kupka, Jiri, E-mail: Jiri.Kupka@osu.cz [Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30, dubna 22, 701 33 Ostrava (Czech Republic)
2011-11-15
Highlights: > We study the relations between the dynamics of (X, f) and their set (fuzzy)-extensions. > We prove that if (X, f) is turbulent then their set (fuzzy)-extensions are turbulent. > We prove that if (X, f) is erratic then their set (fuzzy)-extensions are erratic. > We provide examples showing that the reverse implications are not necessarily true. - Abstract: Let (X, d) be a compact metric space and f : X {yields} X a continuous function. Consider the hyperspace (K(X),H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d, and let (F(X),d{sub {infinity})} be the metric space of all nonempty compact fuzzy set on X equipped with the supremum metric d{sub {infinity}} which is calculated as the supremum of the Hausdorff distances of the corresponding level sets. If f-bar is the natural extension of f to (K(X),H) and f-hat is the Zadeh's extension of f to (F(X),d{sub {infinity})}, then the aim of this paper is to study the dynamics of f-bar and f-hat when f is turbulent (erratic, respectively).
Dynamics and flow-coupling in two-layer turbulent thermal convection
Xie, Yi-Chao
2015-01-01
We present an experimental investigation of the dynamics and flow-coupling of convective turbulent flows in a cylindrical Rayleigh-Benard convection cell with two immiscible fluids, water and fluorinert FC-77 electronic liquid (FC77). It is found that one large-scale circulation (LSC) roll exists in each of the fluid layers, and that their circulation planes have two preferred azimuthal orientations separated by $\\sim\\pi$. A surprising finding of the study is that cessations/reversals of the LSC in FC77 of the two-layer system occur much more frequently than they do in single-layer turbulent RBC, and that a cessation is most likely to result in a flow reversal of the LSC, which is in sharp contrast with the uniform distribution of the orientational angular change of the LSC before and after cessations in single-layer turbulent RBC. This implies that the dynamics governing cessations and reversals in the two systems are very different. Two coupling modes, thermal coupling (flow directions of the two LSCs are o...
Bubble dynamics and bubble-induced turbulence of a single-bubble chain
Lee, Joohyoung; Park, Hyungmin
2016-11-01
In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.
Dynamics of turbulent western boundary currents at low latitude in a shallow water model
C. Q. C. Akuetevi
2014-03-01
Full Text Available The dynamics of low latitude turbulent western boundary currents, subject to two different types of idealized wind forcing, Monsoon Wind and Trade Wind, is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m2 s−1 and above, the boundary layer dynamics compares well to the analytical solutions of the Munk-layer and the inertial-layer, derived from quasigeostrophic theory. Modifications due to variations in the layer thickness (vortex stretching are only important close to the boundary. When the viscosity is reduced the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
Implementation of a Mixing Length Turbulence Formulation Into the Dynamic Wake Meandering Model
Keck, Rolf-Erik; Veldkamp, Dick; Aagaard Madsen, Helge
2012-01-01
The work presented in this paper focuses on improving the description of wake evolution due to turbulent mixing in the dynamic wake meandering (DWM) model. From wake investigations performed with high-fidelity actuator line simulations carried out in ELLIPSYS3D, it is seen that the current DWM...... description, where the eddy viscosity is assumed to be constant in each cross-section of the wake, is insufficient. Instead, a two-dimensional eddy viscosity formulation is proposed to model the shear layer generated turbulence in the wake, based on the classical mixing length model. The performance...... from 3 to 12 diameters behind the rotor, is reduced by 27% by using the new eddy viscosity formulation. ©2012 American Society of Mechanical Engineers...
Boundary-induced dynamics in one-dimensional topological systems and memory effects of edge modes
He, Yan; Chien, Chih-Chun
2016-07-01
Dynamics induced by a change of boundary conditions reveals rate-dependent signatures associated with topological properties in one-dimensional Kitaev chain and SSH model. While the perturbation from a change of the boundary propagates into the bulk, the density of topological edge modes in the case of transforming to open boundary condition reaches steady states. The steady-state density depends on the transformation rate of the boundary and serves as an illustration of quantum memory effects in topological systems. Moreover, while a link is physically broken as the boundary condition changes, some correlation functions can remain finite across the broken link and keep a record of the initial condition. By testing those phenomena in the nontopological regimes of the two models, none of the interesting signatures of memory effects can be observed. Our results thus contrast the importance of topological properties in boundary-induced dynamics.
Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect.
Hu, Zhonghan; Margulis, Claudio J
2007-11-01
Ionic liquids (ILs) have recently attracted significant attention from academic and industrial sources. This is because, while their vapor pressures are negligible, many of them are liquids at room temperature and can dissolve a wide range of polar and nonpolar organic and inorganic molecules. In this Account, we discuss the progress of our laboratory in understanding the dynamics, spectroscopy, and fluid dynamics of selected imidazolium-based ILs using computational and analytical tools that we have recently developed. Our results indicate that the red edge effect, the non-Newtonian behavior, and the existence of locally heterogeneous environments on a time scale relevant to chemical and photochemical reactivity are closely linked to the viscosity and highly structured character of these liquids.
High dynamic range infrared images detail enhancement based on local edge preserving filter
Song, Qiong; Wang, Yuehuan; Bai, Kun
2016-07-01
In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.
A change of H-mode dynamics due to edge electric field shear
Toda, Shinichiro; Itoh, Sanae [Kyushu Univ., Fukuoka (Japan)
1996-05-01
An extended model theory for Edge Localized Modes (ELMs) is presented with inclusion of the effects of the radial electric field shear, E`{sub r}, for high temperature plasmas in tokamaks. The dynamic model consists of an electric bifurcation model for the L/H transition, which contains a hysteresis characteristic due to E`{sub r}, and of a dynamic transport equation for the plasma gradient parameter. The self-generated oscillation is found to occur even if the effects of E`{sub r} are included: in addition to those of the radial electric field. The condition for the occurrence of a self-generated oscillation is examined. The wider region in the parameter space is found for the case with a negative electric field shear than for the case with a positive one. (author)
Turbulence in Natural Environments
Banerjee, Tirtha
Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be
Collective non-equilibrium dynamics at surfaces and the spatio-temporal edge
Marcuzzi, M.; Gambassi, A.; Pleimling, M.
2012-11-01
Symmetries represent a fundamental constraint for physical systems and relevant new phenomena often emerge as a consequence of their breaking. An important example is provided by space- and time-translational invariance in statistical systems, which hold at a coarse-grained scale in equilibrium and are broken by spatial and temporal boundaries, the former being implemented by surfaces —unavoidable in real samples— the latter by some initial condition for the dynamics which causes a non-equilibrium evolution. While the separate effects of these two boundaries are well understood, we demonstrate here that additional, unexpected features arise upon approaching the effective edge formed by their intersection. For this purpose, we focus on the classical semi-infinite Ising model with spin-flip dynamics evolving out of equilibrium at its critical point. Considering both subcritical and critical values of the coupling among surface spins, we present numerical evidence of a scaling regime with universal features which emerges upon approaching the spatio-temporal edge and we rationalise these findings within a field-theoretical approach.
Shangguan, Mingjia; Wang, Chong; Xia, Haiyun; Shentu, Guoliang; Dou, Xiankang; Zhang, Qiang; Pan, Jian-wei
2017-09-01
For the first time, to the best of our knowledge, a direct detection Brillouin optical time-domain reflectometry (BOTDR) is demonstrated for fast distributed dynamic strain sensing incorporating double-edge technique, time-division multiplexing technique and upconversion technique. In order to guarantee the robust stability of the system, the double-edge technique is implemented by using a convert single-channel FPI and a fiber-coupled upconversion single-photon detector, incorporating a time-division multiplexing method. The upconversion single-photon detector is adopted to upconvert the backscattering photons from 1548.1 nm to 863 nm, which is subsequently detected by a Silicon avalanche photodiode (Si-APD). In the experiment, dynamic strain disturbance up to 1.9 mε over 1.5 km of a polarization maintaining fiber is detected at a sampling rate of 30 Hz. An accuracy of ± 30 με and spatial resolution of 0.6 m are realized.
Bianco, Vincenzo; Borreani, Walter; Lomonaco, Guglielmo
2017-06-01
The present paper reports a numerical investigation of a forced convection water flow within a two-dimensional ribbed channel. A uniform heat flux is applied on the external walls. The flow regime is turbulent and Reynolds numbers are in the range 10·103÷100·103. Square and chamfered rib shapes with different arrangements are analyzed in terms of various dimensionless heights and pitches of elements. The investigation is accomplished by using a CFD code and its aim consists in finding of arrangements to obtain a high Performance Evaluation Criterion (PEC). Results are presented in terms of temperature and velocity fields, profiles of average Nusselt number, average heat transfer coefficients and required pumping power. Heat transfer enhancement increases with the ribs presence, but it is accompanied by an increasing pumping power. In particular, the best performances in terms of Nusselt are shown for p/e = 4 and 12 for both the square and chamfered cases. The heat transfer improves as Reynolds number raises, but a substantial increase of pumping power is also observed. The utilization of chamfered ribs allows to increase the PEC, especially at low Re. The maximum PEC is equal to 1.3 and it is obtained for Re = 104 and p/e = 4.
NONE
2012-07-01
The following topics were dealt with: Superfluidity and quantum turbulence, quantum vortices and their reconnections, quantum hydrodynamics and turbulence in Bose-Einstein condensates, phase transitions in turbulence, perfect fluidity in relativistic heavy ion collisions, off-shell dynamical approach for relativistic heavy ion collisions, turbulence in the early universe, a superfluid universe, superfluidity and hydrodynamic excitations in out-of-equilibrium polariton condensates, two-dimensional quantum turbulence in Bose-Einstein condensates, nonequilibrium Bose gases with classical fields, turbulence in superfluid {sup 4}He in the T=0 limit, condensation, superfluidity and lasing of coupled light-matter systems, tachyon condensation in Bose-Einstein condensates, Bose-Einstein condensation of magnons in superfluid {sup 3}He-B and its application to vortex studies, wave turbulence in Bose-Einstein condensates, instability in an expanding non-Abelian system, nonabelian plasma instabilities, quantum turbulence in an atomic trapped superfluid, nonthermal fixed points and superfluid turbulence, macroscopic quantum tunneling in Bose-Einstein condensates, pair coherence in many-body quenches, sound waves in non-stationary media, thermalization induced by chaotic behavior in classical Yang-Mills dynamics, chiral superfluidity of the quark-gluon plasma, functional renormalization-group flow for Burger's equation, anomalous scaling in the random-force-driven Burger's equation, Kadanoff-Baym approach to thermalization, many-body resonant tunneling in the Wannier system, generalized Boltzmann equation in ultrasoft region, dynamical view of the Schwinger mechanism, parity violation in hydrogen and squeezing. (HSI)
Chaotic dynamics of large-scale structures in a turbulent wake
Varon, Eliott; Eulalie, Yoann; Edwige, Stephie; Gilotte, Philippe; Aider, Jean-Luc
2017-03-01
The dynamics of a three-dimensional (3D) bimodal turbulent wake downstream of a square-back Ahmed body are experimentally studied in a wind tunnel through high-frequency wall-pressure probes mapping the rear of the model and a horizontal two-dimensional (2D) velocity field. The barycenters of the pressure distribution over the rear part of the model and the intensity recirculation are found highly correlated. Both described the most energetic large-scale structures dynamics, confirming the relation between the large-scale recirculation bubble and its wall-pressure footprint. Focusing on the pressure, its barycenter trajectory has a stochastic behavior but its low-frequency dynamics exhibit the same characteristics as a weak strange chaotic attractor system, with two well-defined attractors. The low-frequency dynamics associated to the large-scale structures are then analyzed. The largest Lyapunov exponent is first estimated, leading to a low positive value characteristic of strange attractors and weak chaotic systems. Afterwards, analyzing the autocorrelation function of the timeseries, we compute the correlation dimension, larger than two. The signal is finally transformed and analyzed as a telegraph signal, showing that its dynamics correspond to a quasirandom telegraph signal. This is the first demonstration that the low-frequency dynamics of a turbulent 3D wake are not a purely stochastic process but rather a weak chaotic process exhibiting strange attractors. From the flow control point of view, it also opens the path to more simple closed-loop flow-control strategies aiming at the stabilization of the wake and the control of the dynamics of the wake barycenter.
Sohn, Jeong L.
1988-08-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
The dynamics of the outer edge of Saturn's A ring disturbed by Janus-Epimetheus
Renner, Stéfan; Santos Araujo, Nilton Carlos; Cooper, Nicholas; El Moutamid, Maryame; Murray, Carl; Sicardy, Bruno
2016-10-01
We developed an analytical model to study the dynamics of the outer edge of Saturn's A ring. The latter is influenced by 7:6 mean motion resonances with Janus and Epimetheus. Because of the horseshoe motion of the two co-orbital moons, the location of the resonances shift inwards or outwards every four years, making the ring edge particles alternately trapped in a corotation eccentricity resonance (CER) or a Lindblad eccentricity resonance (LER). However, the oscillation periods of the resonances are longer than the four-year interval between the switches in the orbits of Janus and Epimetheus.Averaged equations of motion are used, and our model is numerically integrated to describe the effects of the periodic sweeping of the 7:6 CER and LER over the ring edge region.We show that four radial zones (ranges 136715-136723, 136738-136749, 136756-136768, 136783-136791 km) are chaotic on decadal timescales, within which particle semimajor axes have periodic changes due to partial libration motions around the CER fixed points. After a few decades, the maximum variation of semimajor axis is about eleven (resp. three) kilometers in the case of the CER with Janus (resp. Epimetheus).Similarly, particle eccentricities have partial oscillations forced by the LERs every four years, and are in good agreement with the observed eccentricities (Spitale and Porco 2009, El Moutamid et al. 2015). For initially circular orbits, the maximum eccentricity reached (~0.001) corresponds to the value obtained from the classical theory of resonance (proportional to the cube root of the satellite-to-planet mass ratio).We notice that the fitted semimajor axes for the object recently discovered at the ring edge (Murray et al. 2014) are just outside the chaotic zone of radial range 136756-136768 km.We compare our results to Cassini observations, and discuss how the periodic LER/CER perturbations by Janus/Epimetheus may help to aggregate ring edge particles into clumps, as seen in high
EZDCP:A new static task scheduling algorithm with edge-zeroing based on dynamic critical paths
陈志刚; 华强胜
2003-01-01
A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed.The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.
A Lagrangian model of Copepod dynamics: clustering by escape jumps in turbulence
Ardeshiri, Hamidreza; Schmitt, François G; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico
2016-01-01
Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow per- turbations, produced by a large predator (i.e. fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are here used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in tur- bulence. Second, we quantify the clustering of LC...
Micro-swimmer dynamics in free-surface turbulence subject to wind stress
Marchioli, Cristian; Lovecchio, Salvatore; Soldati, Alfredo
2016-11-01
We examine the effect of wind-induced shear on the orientation and distribution of motile micro-swimmers in free-surface turbulence. Winds blowing above the air-water interface can influence the distribution and productivity of motile organisms via the shear generated just below the surface. Swimmer dynamics depend not only by the advection of the fluid but also by external stimuli like nutrient concentration, light, gravity. Here we focus on gyrotaxis, resulting from the gravitational torque generated by an asymmetric mass distribution within the organism. The combination of such torque with the viscous torque due to shear can re-orient swimmers, reducing their vertical migration and causing entrapment in horizontal fluid layers. Through DNS-based Euler-Lagrangian simulations we investigate the effect of wind-induced shear on the motion of gyrotactic swimmers in turbulent open channel flow. We consider different wind directions and swimmers with different reo-rientation time (reflecting the ability to react to turbulent fluctuations). We show that only stable (high-gyrotaxis) swimmers may reach the surface and form densely concentrated filaments, the topology of which depends on the wind direction. Otherwise swimmers exhibit weaker vertical fluxes and segregation at the surface.
Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor
Yuli Wang
2013-05-01
Full Text Available The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotor’s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotational cycle. Along the height of the rotor, distinct spatial turbulent flow patterns vary with the upstream air velocity. Subsequent experiments involving a disk generator gives an in-depth understanding of the dynamic response of the proposed rotor under different operation conditions. The optimal tip-speed ratio of the spiral rotor is 0.4–0.5, as is shown in both simulation and experiment. Under normal and relative-motion flow conditions, and within the range of upstream air velocity from 1 to 12 m/s, the output voltage of the generator was monitored and statistically analyzed. It was found that normal air velocity fluctuations lead to a non-synchronous correspondence between upstream air velocity and output voltage. In contrast, the spiral rotor’s performance when operating from the back of a moving truck was significantly different to its performance under the natural conditions.
Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition
Rannik, Üllar; Zhou, Luxi; Zhou, Putian;
2016-01-01
of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport...... of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded...... the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading...
Differential kinetic dynamics and heating of ions in the turbulent solar wind
Valentini, F.; Perrone, D.; Stabile, S.; Pezzi, O.; Servidio, S.; De Marco, R.; Marcucci, F.; Bruno, R.; Lavraud, B.; De Keyser, J.; Consolini, G.; Brienza, D.; Sorriso-Valvo, L.; Retinò, A.; Vaivads, A.; Salatti, M.; Veltri, P.
2016-12-01
The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas with respect to protons is observed. Interestingly, the preferential heating process occurs in spatial regions nearby the peaks of ion vorticity and where strong deviations from thermodynamic equilibrium are recovered. Moreover, by feeding a simulator of a top-hat ion spectrometer with the output of the kinetic simulations, we show that measurements by such spectrometer planned on board the Turbulence Heating ObserveR (THOR mission), a candidate for the next M4 space mission of the European Space Agency, can provide detailed three-dimensional ion velocity distributions, highlighting important non-Maxwellian features. These results support the idea that future space missions will allow a deeper understanding of the physics of the interplanetary medium.
Koo, E.; Linn, R.; Bossert, J. A.; Kelley, N. D.; Lundquist, J. K.
2011-12-01
Ambient atmospheric turbulence interacts with spinning turbines, which modify the intensity and spectra of the turbulence. This turbine-influenced turbulent wind field creates the environment surrounding downstream turbines in a wind farm, thus controlling the amount of wind energy available for harvesting as well as the nature of aerodynamic loads on the blades which cause wear-and-tear of the wind turbines. The conditions to which downstream turbines are exposed, their productivity, and potentially their lifespan is a function of their position within the turbulent wake of upstream turbines. In order to increase our efficiency of energy capture in wind farms and optimize turbine arrangements for both off-shore and terrestrial settings where the wind conditions can be very different, it is essential to understand the influences that various environmental conditions have on the turbulence within wind farms. It is important to find ways of studying the evolution of turbulence as it interacts with turbines and as it advects downstream. It is also important to connect properties of the turbulence with the dynamic and heterogeneous nature of the loads that are applied to turbine blades. Unfortunately, full-scale wind turbine experiments are costly and it is extremely difficult to analyze the dynamic evolution of the full three-dimensional flow field upwind and downwind of wind turbines for a broad set of operating conditions. Numerical simulation tools can be used to perform preliminary investigation of turbine wake flow fields, thus guiding and helping interpret measurement schemes for the limited number of experiments that will be performed. By using numerical models to study the influence of different ambient conditions for different turbine spacing it is possible to develop a better understanding of how terrestrial experiments might relate to off-shore conditions where experiments are more difficult. A numerical technique, WindBlade, has been developed for
Characteristics and dynamics of the soil seed bank at the north edge of Taklimakan Desert
LI Ning; FENG Gu; TIAN ChangYan
2007-01-01
In order to understand the potential of revegetation of halophytic community at the north edge of Taklimakan Desert, the species structure, storage capacity, the vertical distribution pattern and seasonal dynamics of soil seed bank and their interrelationship with community structure of above-ground plants were investigated. The results show that (i) 9 species were identified from seed bank in different seasons indicating that plant composition in this area was simple. (ii) The seed density in soil was 222±10.79 grain/m2 on average, and showed a seasonal variation range from 132±8.16 grain/m2 in summer to 303±12.70 grain/m2 in autumn. (iii) The similarity coefficient between soil seed bank and above-ground vegetation was 0.778. (iv) Vertically, seed densities declined with soil depth. 82.4% of total seeds were found in the top 3 cm of soil profile. No active seeds were found in soil profile below 6 cm. It is concluded that the seed bank at the north edge of Taklimakan Desert contains active seeds of all plant species observed on above ground, and is able to supply potential contribution to reconstruction of vegetation.
Dynamical Analysis of Long Fiber-Reinforced Laminated Plates with Elastically Restrained Edges
Liz G. Nallim
2012-01-01
Full Text Available This paper presents a variational formulation for the free vibration analysis of unsymmetrically laminated composite plates with elastically restrained edges. The study includes a micromechanics approach that allows starting the study considering each layer as constituted by long unidirectional fibers in a continuous matrix. The Mori-Tanaka method is used to predict the mechanical properties of each lamina as a function of the elastic properties of the components and of the fiber volume fraction. The resulting mechanical properties for each lamina are included in a general Ritz formulation developed to analyze the free vibration response of thick laminated anisotropic plates resting on elastic supports. Comprehensive numerical examples are computed to validate the present method, and the effects of the different mechanical and geometrical parameters on the dynamical behavior of different laminated plates are shown. New results for general unsymmetrical laminates with elastically restrained edges are also presented. The analytical approximate solution obtained in this paper can also be useful as a basis to deal with optimization problems under, for instance, frequency constraints.
Edge effects in game-theoretic dynamics of spatially structured tumours.
Kaznatcheev, Artem; Scott, Jacob G; Basanta, David
2015-07-06
Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries.
Dynamical System Approach for Edge Detection Using Coupled FitzHugh-Nagumo Neurons.
Li, Shaobai; Dasmahapatra, Srinandan; Maharatna, Koushik
2015-12-01
The prospect of emulating the impressive computational capabilities of biological systems has led to considerable interest in the design of analog circuits that are potentially implementable in very large scale integration CMOS technology and are guided by biologically motivated models. For example, simple image processing tasks, such as the detection of edges in binary and grayscale images, have been performed by networks of FitzHugh-Nagumo-type neurons using the reaction-diffusion models. However, in these studies, the one-to-one mapping of image pixels to component neurons makes the size of the network a critical factor in any such implementation. In this paper, we develop a simplified version of the employed reaction-diffusion model in three steps. In the first step, we perform a detailed study to locate this threshold using continuous Lyapunov exponents from dynamical system theory. Furthermore, we render the diffusion in the system to be anisotropic, with the degree of anisotropy being set by the gradients of grayscale values in each image. The final step involves a simplification of the model that is achieved by eliminating the terms that couple the membrane potentials of adjacent neurons. We apply our technique to detect edges in data sets of artificially generated and real images, and we demonstrate that the performance is as good if not better than that of the previous methods without increasing the size of the network.
Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA
Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.
2008-01-01
This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.
Low-order dynamical system model of a fully developed turbulent channel flow
Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán
2017-06-01
A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under
Structure of nonlocality of plasma turbulence
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Bridging Galaxy Dynamics and Baryon Efficiency of 40 EDGE-CALIFA galaxies
Kalinova, Veselina; Rosolowsky, Erik
2015-01-01
We apply the Jeans Axisymmetric Multi-Gaussian Expansion method to the stellar kinematic maps of 40 Sa-Sd EDGE-CALIFA galaxies and derive their circular velocity curves (CVCs). The CVCs are classified using the Dynamical Classification method developed in Kalinova et al. (2015) . We also calculate the observational baryon efficiency, OBE, where $M_*/M_b=M_*/(M_*+M_{HI}+M_{H_2})$ of the galaxies using their stellar mass, total neutral hydrogen mass and total molecular gas from CO luminosities. Slow-rising, Flat and Round-peaked CVC types correspond to specific OBEs, stellar and dark matter (DM) halo mass values, while the Sharp-peaked CVCs span in the whole DM halo mass range of $10^{11}-10^{14} M_{\\odot}$.
The computational complexity of symbolic dynamics at the edge of order and chaos
Lakdawala, P
1995-01-01
In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behaviour of cellular automata, that the computational basis for modelling this region is the Universal Turing Machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.
A. Bennia
2016-01-01
Full Text Available In the present work, we are interested to the experimental and numerical study of the free turbulent lobed jet, used in residential heating and air conditioning. The objective of our study is the improvement of the diffusion performance of the ventilation driving air flow, in the occupancy zone. The experiments have been conducted in a room where the dimensions enables a better execution in the conditions of free and hot vertical jet at unfavorable pushing forces. The installation contains a hot air blowing diffuser oriented from top to bottom. The velocities of the flow were measured by a multi-functional thermo-anemometer. The probe is supported by a stem guided vertically and horizontally in order to sweep a maximum space. Experimentally, we measured the axial and radial velocity field. The dynamics field analysis, show that in the potential core region, the dynamic profiles are more spread at the principal plane and this is due to the widening of the lobes’ opening. While, in the transition zone and in the region where the flow is fully developed, these profiles are not influenced by the type of plane and then the jet will be similar to the circular one. Numerically, we used the commercial software Fluent. The obtained numerical results with turbulence method, (RNG k-ε, were in good accordance with the experimental one.
Nikulin, Vladimir V.; Zhang, Dave
2005-04-01
Laser communication systems operating in the atmosphere require certain power and beam quality to establish and maintain a reliable communication link. Although such systems utilize the most advanced materials and technologies, their performance is adversely affected by optical turbulence, often posing a serious problem, even for short-range links. Atmospheric effects change optical properties of the propagation channel, causing signal fades, beam wander and scintillations. A common method of mitigating turbulence effects suggests dynamic wavefront control. In this paper the proposed technique is based on correction of the distorted beam using an electrically addressed programmable spatial light modulator (SLM). The phase profile that we impose on the distorted laser beam is described using Zernike formalism to calculate the wavefront OPD function. The Nelder-Mead simplex optimization algorithm is used as a correction procedure that provides fast results, required for real-time operation. In general, calculation of the required phase profile for an SLM with large number of pixels could be highly computationally intensive. Coupling modulator inputs to the first several Zernike coefficients allows significant reduction of the dimension of the optimization problem. The algorithm is tested in the simulation environment and its ability to compensate dynamic distortions is assessed. The results show that both dimension of the input space and the initial conditions affect the speed and convergence to a particular minimum. Recommendations for improving the system performance are also presented.
Dynamics of a relativistic electron beam in a high-current diode with a knife-edge cathode
Babykin, V. M.; Gordeev, A. V.; Golovin, G. T.; Korolev, V. D.; Kopchikov, A. V.; Tulupov, M. V.; Chernenko, A. S.; Shuvaev, V. Iu.
1991-09-01
The generation of a 130-kA electron beam with a pulse width of 60 ns is investigated experimentally and analytically. In particular, attention is given to the volt-ampere characteristics of knife-edge cathodes of different geometries, angular scatter dynamics, and beam structure. A study of the relativistic electron beam dynamics shows that diode operation in these experiments can be approximated by a formula allowing for the finite thickness of the knife-edge cathode and for plasma and ion motion in the diode gap.
Third-Moment Studies of Cascade Dynamics in Solar Wind Turbulence (Invited)
Smith, C. W.; Stawarz, J. E.; Vasquez, B. J.; Forman, M. A.; MacBride, B. T.
2010-12-01
Kolmogorov [1941] and Yaglom [1949] showed that the incompressible hydrodynamic equations governing fluid turbulence could be manipulated to yield a rigorous third-order structure function expression for the energy cascade at inertial range scales. In that derivation the structure function scales linearly with separation distance and the proportionality constant is a factor of the energy cascade rate. For decades it has been argued that the most commonly studied spatial scales for magnetic and velocity fluctuations in the solar wind form an inertial range in an MHD analogy to hydrodynamic turbulence. Politano and Pouquet [1998a,b] and Podesta [2008] derived third-moment expressions for the inertial range cascade in MHD in direct analogy with the earlier hydrodynamic results. We have been exploring the use of these expressions for both isotropic and anisotropic solar wind turbulence [MacBride 2005, 2008; Stawarz 2009, 2010; Smith 2009, 2010; Forman 2010a,b] and find (1) the measured third moments do scale linearly with separation and (2) the resulting estimate for the energy cascade rate accurately account for the energy cascade budget required for turbulence to heat the solar wind. In addition, the anisotropic formalism shows preferential cascade perpendicular to the mean magnetic field. Recent results show the unexpected backward transfer of energy associated with the dominant outward-propagating component when the cross-helicity is large. The latter behavior is thought to exist over only a limited range of heliocentric distances forming a transient turbulent dynamic near 1 AU. We will include some important comments about the need to monitor convergence and error analyses when using solar wind data. Kolmogorov, 1941, Dokl. Akad. Nauk SSSR, 32, 16. Forman, et al., 2010a, Physical Review Letters, 104, 189001. Forman, et al., 2010b, Solar Wind 12, 176. MacBride, et al., 2005, Solar Wind 11, 613. MacBride, et al., 2008, The Astrophysical Journal, 679, 1644. Podesta
Investigation of wall-bounded turbulent flow using Dynamic mode decomposition
Mizuno, Yoshinori; Duke, Daniel; Atkinson, Callum; Soria, Julio, E-mail: yoshinori.mizuno@monash.edu [Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University (Australia)
2011-12-22
Dynamics mode decomposition (DMD) which is a method to construct a linear mapping describing the dynamics of a given time-series of any quantities is applied to the analysis of a turbulent channel flow. The flow fields are generated by direct numerical simulations for the friction Reynolds number Re{sub {tau}} = 190. The time-series of the flow fields in a short time-interval in the order of the wall-unit time-scale and in a small spatial domain that encloses a single near-wall structure are used as the inputs to DMD. In some datasets, linearly growing modes that seem to contribute to the well-known self-sustained cycle of the flow structures near the wall are detected.
Serov, S A
2013-01-01
In the article correct method for the kinetic Boltzmann equation asymptotic solution is formulated, the Hilbert's and Enskog's methods are discussed. The equations system of multicomponent non-equilibrium gas dynamics is derived, that corresponds to the first order in the approximate (asymptotic) method for solution of the system of kinetic Boltzmann equations. It is shown, that the velocity distribution functions of particles, obtained by the proposed method and by Enskog's method, within Enskog's approach, are equivalent up to the infinitesimal first order terms of the asymptotic expansion, but, generally speaking, differ in the next order. Interpretation of turbulent gas flow is proposed, as stratified on components gas flow, which is described by the derived equations system of multicomponent non-equilibrium gas dynamics.
Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
Irma Kesaulya
2008-06-01
Full Text Available The space-time dynamics of chlorophyll a concentration and seawater excess viscosity has been investigated in the hydrographically contrasting inshore and offshore water masses of the eastern English Channel. This was done during the phytoplankton spring bloom dominated by Phaeocystis globosa before and after the very large-scale formation of foam induced by an increase in wind-driven turbulence and the related wave breakings. The results suggest that the dynamics of chlorophyll a concentration and seawater excess viscosity are differentially controlled by the formation of foam through the intensity of the spring bloom and wind-generated turbulence.
Drost, Kevin; Apte, Sourabh
2010-11-01
Direct numerical simulations are performed to investigate the effect of a movable leading edge on the unsteady flow at high angles of attack over a flat, thin airfoil at Reynolds number of 14700 based on the chord length. The leading edge of the airfoil is hinged at one-third chord length allowing dynamic variations in the effective angle of attack through specified oscillations (or flapping). A fictitious-domain based finite volume approach [(Apte et al. (JCP 2009)] is used to compute the flow over an airfoil with a flapping leading edge on a fixed background mesh. Cases were run at 20 degrees angle of attack to study the drag and lift characteristics with sinusoidal flapping of the leading edge about the hinge over a range of reduced frequencies (k=πf c/U∞ = 0.57- 5.7). It is shown that high-frequency low amplitude actuation of the leading edge significantly alters the leading edge boundary-layer and vortex shedding and increases the mean lift- to-drag ratio. The concept of an actuated leading-edge flap has potential for development of control techniques to stabilize and maneuver low-Reynolds number micro-air vehicles in response to unsteady perturbations.
Boundary Plasma Turbulence Simulations for Tokamaks
Xu, X; Umansky, M; Dudson, B; Snyder, P
2008-05-15
The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.
Kembro, Jackelyn M; Cortassa, Sonia; Aon, Miguel A
2014-01-01
The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state-as against complex oscillatory behavior-was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox/energetic conditions.
Turbulent transport in the atmospheric boundary layer with application to wind farm dynamics
Waggy, Scott B.
With the recent push for renewable energy sources, wind energy has emerged as a candidate to replace some of the power produced by traditional fossil fuels. Recent studies, however, have indicated that wind farms may have a direct effect on local meteorology by transporting water vapor away from the Earth's surface. Such turbulent transport could result in an increased drying of soil, and, in turn, negatively affect the productivity of land in the wind farm's immediate vicinity. This numerical study will analyze four scenarios with the goal of understanding turbulence transport in the wake of a turbine: the neutrally-stratified boundary layer with system rotation, the unstably-stratified atmospheric boundary layer, and wind turbine simulations of these previous two cases. For this work, the Ekman layer is used as an approximation of the atmospheric boundary layer and the governing equations are solved using a fully-parallelized direct numerical simulation (DNS). The in-depth studies of the neutrally and unstably-stratified boundary layers without introducing wind farm effects will act to provide a concrete background for the final study concerning turbulent transport due to turbine wakes. Although neutral stratification rarely occurs in the atmospheric boundary layer, it is useful to study the turbulent Ekman layer under such conditions as it provides a limiting case when unstable or stable stratification are weak. In this work, a thorough analysis was completed including turbulent statistics, velocity and pressure autocorrelations, and a calculation of the full turbulent energy budget. The unstably-stratified atmospheric boundary layer was studied under two levels of heating: moderate and vigorous. Under moderate stratification, both buoyancy and shearing contribute significantly to the turbulent dynamics. As the level of stratification increases, the role of shearing is shown to diminish and is confined to the near-wall region only. A recent, multi
Dynamic bottleneck optimization for k-edge and 2-vertex connectivity
Telelis, Orestis; Zissimopoulos, Vassilis
2008-01-01
We consider the problem of updating efficiently the minimum value b over a weighted graph, so that edges with a cost less than b induce a spanning subgraph satisfying a k-edge or 2-vertex connectivity constraint, when the cost of an edge of the graph is updated. Our results include update...
Chen Aijun
2007-01-01
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method.The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of FourierBessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.
An atmospheric turbulence generator for dynamic tests with LINC-NIRVANA's adaptive optics system
Meschke, D.; Bizenberger, P.; Gaessler, W.; Zhang, X.; Mohr, L.; Baumeister, H.; Diolaiti, E.
2010-07-01
LINC-NIRVANA[1] (LN) is an instrument for the Large Binocular Telescope[2] (LBT). Its purpose is to combine the light coming from the two primary mirrors in a Fizeau-type interferometer. In order to compensate turbulence-induced dynamic aberrations, the layer oriented adaptive optics system of LN[3] consists of two major subsystems for each side: the Ground-Layer-Wavefront sensor (GLWS) and the Mid- and High-Layer Wavefront sensor (MHLWS). The MHLWS is currently set up in a laboratory at the Max-Planck-Institute for Astronomy in Heidelberg. To test the multi-conjugate AO with multiple simulated stars in the laboratory and to develop the necessary control software, a dedicated light source is needed. For this reason, we designed an optical system, operating in visible as well as in infrared light, which imitates the telescope's optical train (f-ratio, pupil position and size, field curvature). By inserting rotating surface etched glass phase screens, artificial aberrations corresponding to the atmospheric turbulence are introduced. In addition, different turbulence altitudes can be simulated depending on the position of these screens along the optical axis. In this way, it is possible to comprehensively test the complete system, including electronics and software, in the laboratory before integration into the final LINC-NIRVANA setup. Combined with an atmospheric piston simulator, also this effect can be taken into account. Since we are building two identical sets, it is possible to feed the complete instrument with light for the interferometric combination during the assembly phase in the integration laboratory.
Zuraski, Steven M.; Fiorino, Steven T.; Beecher, Elizabeth A.; Figlewski, Nathan M.; Schmidt, Jason D.; McCrae, Jack E.
2016-10-01
The Photometry Analysis and Optical Tracking and Evaluation System (PANOPTES) Quad Axis Telescope is a unique four axis mount Ritchey-Chretien 24 inch telescope capable of tracking objects through the zenith without axes rotation delay (no Dead Zone). This paper describes enhancement components added to the quad axis mount telescope that will enable measurements supporting novel research and field testing focused on `three-dimensional' characterization of turbulent atmospheres, mitigation techniques, and new sensing modalities. These all support research and operational techniques relating to astronomical imaging and electro-optical propagation though the atmosphere, relative to sub-meter class telescopes in humid, continental environments. This effort will use custom designed and commercial off the shelf hardware; sub-system components discussed will include a wavefront sensor system, a co-aligned beam launch system, and a fiber coupled research laser. The wavefront sensing system has the ability to take measurements from a dynamic altitude adjustable laser beacon scattering spot, a key concept that enables rapid turbulence structure parameter measurements over an altitude varied integrated atmospheric volume. The sub-components are integrated with the overall goal of measuring a height-resolved volumetric profile for the atmospheric turbulence structure parameter at the site, and developing mobile techniques for such measurements. The design concept, part selection optimization, baseline component lab testing, and initial field measurements, will be discussed in the main sections of this paper. This project is a collaborative effort between the Air Force Research Labs Sensors Directorate and the Air Force Institute of Technology Center for Directed Energy.
Findlay, Helen S; Burrows, Michael T; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen
2010-10-01
The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than
Kinetic thin current sheets: their formation in relation to magnetotail mesoscale turbulent dynamics
A. P. Kropotkin
2009-04-01
Full Text Available Dynamics of the magnetotail plasma sheet (PS features nonlinear structures on two totally different scales. There are very thin current sheets (CS on kinetic scale of the ion gyroradius. And there are intense plasma flow and magnetic field variations on mesoscales (a few earth radii; those are interpreted as mostly 2-D MHD turbulence. On the other hand, the specific nature of slow large scale magnetotail evolution leads to large differences in the PS properties and those of the lobe plasma. As a result, while fast reconnection bursts in the tail provide quasi-stationary fast mesoscale reconfigurations in the lobes, they cannot however be accompanied by restructuring of CS on the same fast time scale. Violations of force balance in the PS are thus generated. Simulation using a hybrid code and starting with such imbalance, provides an evidence of very thin kinetic CS structures formation, embedded into the much thicker PS. The momentum balance gets locally restored by means of ion acceleration up to the Alfvénic velocity. The process provides an effective mechanism for transformation of magnetic energy accumulated in the magnetotail, into energy of plasma flows. The fast flows may drive turbulence on shorter spatial scales. In their turn, these motions may serve as an origin for new neutral line generation, and reconnection. Application to substorm phenomenology is discussed.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
A. Greco
2000-01-01
Full Text Available The ion dynamics in the distant Earth's magnetotail is studied in the case that a cross tail electric field and reconnection parity magnetic turbulence are present in the neutral sheet. A test particle simulation is performed for the ions, and moments of the ion distribution function are obtained as a function of the magnetic fluctuation level, δB/B0, and of the value of the cross tail electric field, Ey. It is found that magnetic turbulence can split the current carrying region into a double current sheet, in agreement with inferences from observations in the distant magnetotail. The problem of ion conductivity is addressed by varying the value of the cross tail electric field from zero to the observed one: we find that Ohm's law is not enforced, and that a non local, system dependent conductivity is necessary to describe the ion response to the electric field. Also, it appears that the relation between current and electric field may be nonlinear.
Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range
Herpin, Sophie [MONASH University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical Engineering, Melbourne, VIC (Australia); Cite Scientifique, Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Villeneuve d' Ascq (France); Wong, Chong Yau [MONASH University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical Engineering, Melbourne, VIC (Australia); CSIRO Materials Science and Engineering, Commonwealth Science and Industrial Research Organisation (CSIRO) Thermal and Fluid Dynamics, Highett, VIC (Australia); Stanislas, Michel [Cite Scientifique, Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Villeneuve d' Ascq (France); Soria, Julio [MONASH University, Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical Engineering, Melbourne, VIC (Australia)
2008-10-15
The flow in a streamwise/wall-normal plane of a turbulent boundary layer at moderate Reynolds number (Re{sub {theta}}=2,200) is characterized using two stereo PIV systems just overlapping in the streamwise direction. The aim is to generate SPIV data for near-wall turbulence with enough spatial dynamic range to resolve most of the coherent structures present in the flow and to facilitate future comparisons with direct numerical simulations. This is made possibly through the use of four cameras with large CCD arrays (4,008 px x 2,672 px) and through a rigorous experimental procedure designed to minimize the impact of measurement noise on the resolution of the small scales. For the first time, both a large field of view [S{sub x}; S{sub y}]=[2.6{delta}; 0.75{delta}] and a high spatial resolution (with an interrogation window size of 13.6{sup +}) have been achieved. The quality of the data is assessed through an analysis of some of the statistical results such as the mean velocity profile, the rms and the PDF of the fluctuations, and the power spectra. (orig.)
Dynamics of Ion Temperature Gradient Turbulence and Transport with a Static Magnetic Island
Izacard, Olivier; James, Spencer D; Brennan, Dylan P
2015-01-01
The quantification of the interaction mechanism between large-scale magnetohydrodynamics instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulation, with BOUT++ [B. Dudson et al., Comput. Phys. Comm. 180, 1467 (2009)] used to evolve simple five-field fluid models in a sheared slab geometry. This work focuses upon understanding the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island in a weakly electromagnetic two-dimensional five-field model as key parameters such as ion temperature gradient, magnetic gradients and static magnetic island size are varied. The simulation results are then used to calculate the effective turbulent transport coefficient (i.e. resistivity) that is compared against classical coefficient. As part of this work, t...
Ruete, Alejandro; Snäll, Tord; Jönsson, Mari
2016-07-01
Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for
Metcalf, Mekena; Lai, Chen-Yen; Wright, Kevin; Chien, Chih-Chun
2017-06-01
Topological behavior has been observed in quantum systems including ultracold atoms. However, background harmonic traps for cold atoms hinder the direct detection of topological edge states arising at the boundary because the distortion fuses the edge states into the bulk. We propose experimentally feasible protocols to probe localized edge states and dimerization of ultracold fermions. By confining cold atoms in a ring lattice and changing the boundary condition from periodic to open using an off-resonant laser sheet to cut open the ring, topological edge states can be generated. A lattice in a topological configuration can trap a single particle released at the edge as the system evolves in time. Alternatively, depleting an initially filled lattice away from the boundary reveals the occupied edge states. Signatures of dimerization in the presence of contact interactions can be found in selected correlations as the system boundary suddenly changes from periodic to open and exhibit memory effects of the initial state distinguishing different configurations.
Linn, R.; Koo, E.; Kelley, N. D.; Jonkman, B.; Lundquist, J. K.; Canfield, J.
2010-12-01
In order to increase our efficiency of energy capture in wind farms, optimize turbine arrangements, and adapt wind-turbine technology to optimal performance in common atmospheric conditions such as low level jets (LLJ), it is critical to understand the dynamic interactions between turbulence and multiple wind turbines. Ambient atmospheric turbulence interacts with spinning turbines producing the critical mechanism for the recovery of the wind field behind a wind turbine. This turbine-influenced turbulent wind field creates the environment surrounding downstream turbines in a wind farm, thus controlling the amount of wind energy available for harvesting as well as the nature of the wear and tear that downwind turbines endure. The strength of the turbulent structures and their length-scales evolve downstream. Thus, the conditions to which downstream turbines are exposed, their productivity, and potentially their lifespan is a function of their position within the turbulent wake of upstream turbines. A numerical technique, WindBlade, has been developed for characterizing the interaction of spinning wind turbines and unsteady/heterogeneous atmospheric boundary layers at length scales ranging from blade-chord-scale (meters) to turbine-array-scale (multiple kilometers). This implementation of this technique combines an R&D100 winning numerical tool, HIGRAD/FIRETEC, a fully-compressible atmospheric hydrodynamics model with novel techniques to capture forces exchanged between the atmosphere and turbine as it rotates. The blade-induced forces on the wind field over the along the span of spinning turbine blades interacts with any oncoming atmospheric turbulence or shear, thus producing turbine wakes which are functions of turbine blade geometry and pitch, rotation speed, topographic and vegetation influences, and of course ambient wind speed, direction, shear, and turbulence. TurbSim, which creates vertical planes of three-dimensional turbulent wind fields based on empirical
2015-07-01
AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A
Boyer, K. L.; Wuescher, D. M.; Sarkar, S.
1991-01-01
Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.
Dynamic Response of Shear-Flexible Cylindrical Isotropic Shells with Clamped Edges
Zafer I. Sakka
2006-01-01
Full Text Available It is fundamental to obtain the natural frequencies and the corresponding mode shapes for cylindrical shells in order to determine their response to different dynamic loading. In this paper an analytical investigation to the free vibration response of moderately-thick shear flexible isotropic cylindrical shells with all edges clamped is presented. The Sander’s kinematic relations for moderately thick cylindrical shell panels are utilized to develop the governing partial differential equations in conjunction with the boundary conditions. A recently developed generalized Navier’s approach, based on a boundary continuous double Fourier series expansion, is used as a solution methodology. A parametric study is presented with respect to various thicknesses, length and radius of curvature of the shell panel. The convergence of the solution method is established numerically for various parametric properties. The present results are compared with the results obtained from finite element method using a four-node isoparametric shell element. The results thus presented should serve as bench-mark solutions for future comparisons with numerical and approximate methods for calculation of free vibration parameters of moderately-thick isotropic cylindrical shells.
Peer pressure is a double-edged sword in vaccination dynamics
Wu, Zhi-Xi; Zhang, Hai-Feng
2013-10-01
Whether or not to change behavior depends not only on the personal success of each individual, but also on the success and/or behavior of others. Using this as motivation, we incorporate the impact of peer pressure into a susceptible-vaccinated-infected-recovered (SVIR) epidemiological model, where the propensity to adopt a particular vaccination strategy depends both on individual success as well as on the strategies of neighbors. We show that plugging into the peer pressure is a double-edged sword, which, on the one hand, strongly promotes vaccination when its cost is below a critical value, but, on the other hand, it can also strongly impede it if the critical value is exceeded. We explain this by revealing a facilitated cluster formation process that is induced by the peer pressure. Due to this, the vaccinated individuals are inclined to cluster together and therefore become unable to efficiently inhibit the spread of the infectious disease if the vaccination is costly. If vaccination is cheap, however, they reinforce each other in using it. Our results are robust to variations of the SVIR dynamics on different population structures.
Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo
Carballès, Fabrice; Parassol, Nadège; Schaub, Sébastien; Cérézo, Delphine; Noselli, Stéphane
2017-01-01
Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process, JNK (JUN N-terminal Kinase) signalling controls leading edge (LE) differentiation generating local forces and cell shape changes essential for DC. The LE represents a key morphogenetic domain in which, in addition to JNK, a number of signalling pathways converges and interacts (anterior/posterior -AP- determination; segmentation genes, such as Wnt/Wingless; TGFβ/Decapentaplegic). To better characterize properties of the LE morphogenetic domain, we sought out new JNK target genes through a genomic approach: 25 were identified of which 8 are specifically expressed in the LE, similarly to decapentaplegic or puckered. Quantitative in situ gene profiling of this new set of LE genes reveals complex patterning of the LE along the AP axis, involving a three-way interplay between the JNK pathway, segmentation and HOX genes. Patterning of the LE into discrete domains appears essential for coordination of tissue sealing dynamics. Loss of anterior or posterior HOX gene function leads to strongly delayed and asymmetric DC, due to incorrect zipping in their respective functional domain. Therefore, in addition to significantly increasing the number of JNK target genes identified so far, our results reveal that the LE is a highly heterogeneous morphogenetic organizer, sculpted through crosstalk between JNK, segmental and AP signalling. This fine-tuning regulatory mechanism is essential to coordinate morphogenesis and dynamics of tissue sealing. PMID:28231245
On the dynamical mechanism of cross-over from chaotic to turbulent states
G Ananthkrishna
2005-03-01
The Portevin–Le Chatelier effect is one of the few examples of organization of defects. Here the spatio-temporal dynamics emerges from the cooperative behavior of the constituent defects, namely dislocations and point defects. Recent dynamical approach to the study of experimental time series reports an intriguing cross-over phenomenon from a low dimensional chaotic to an infinite dimensional scale invariant power-law regime of stress drops in experiments on CuAl single crystals and AlMg polycrystals, as a function of strain rate. We show that an extension of a dynamical model due to Ananthakrishna and coworkers for the Portevin–Le Chatelier effect reproduces this cross-over. At low and medium strain rates, the model shows chaos with the structure of the attractor resembling the reconstructed experimental attractor. At high strain rates, the model exhibits a power-law statistics for the magnitudes and durations of the stress drops as in experiments. Concomitantly, the largest Lyapunov exponent is zero. In this regime, there is a finite density of null exponents which itself follows a power law. This feature is similar to the Lyapunov spectrum of a shell model for turbulence. The marginal nature of this state is visualized through slow manifold approach.
Ogata, D.; Newman, D. E.; Sánchez, R.
2017-07-01
The reduction of turbulent transport across sheared flow regions has been known for a long time in magnetically confined toroidal plasmas. However, details of the dynamics are still unclear, in particular, in what refers to the changes caused by the flow on the nature of radial transport itself. In Paper II, we have shown in a simplified model of drift wave turbulence that, when the background profile is allowed to evolve self-consistently with fluctuations, a variety of transport regimes ranging from superdiffusive to subdiffusive open up depending on the properties of the underlying turbulence [D. Ogata et al., Phys. Plasmas 24, 052307 (2017)]. In this paper, we show that externally applied sheared flows can, under the proper conditions, cause the transport dynamics to be diffusive or subdiffusive.
Gustafsson, Jonathan; Sritharan, Sivaguru S.
2015-11-01
Equations of High Energy Laser propagation in a turbulent medium and the equations of quantum fluid dynamics are connected through a mathematical transformation. In this way the problem of adaptive phase compensation can be phrased as an initial velocity control problem for quantum fluid dynamics. The quantum hydrodynamics equation can be derived by applying the Madelung transformation to the time-dependent linear or nonlinear Schrödinger equation. The resulting equations are similar to incompressible Euler equations with an additional term denoted the quantum pressure term. The quantum hydrodynamics equation can thus be a good way to understand adaptive optics and laser propagation through the atmosphere. A Riemann solver within the Clawpack framework has been developed. An initial value optimization problem will be solved using adjoint methods. The initial phase can be controlled when the beam leaves the laser appartus. The control method can also be coupled to a Navier-Stokes solver in order to study thermal blooming where the laser heats the air and changes the index of refraction. The change in refractive index will in turn affect the propagation of the Laser beam. Using optimal control techniques, it is possible to adjust the beam in order to compensate for the heating.
Effect of velocity ratio on coherent-structure dynamics in turbulent free shear layers
Suryanarayanan, Saikishan; Narasimha, Roddam
2014-11-01
The relevance of the vortex-gas model to the large scale dynamics of temporally evolving turbulent free shear layers has been established by extensive simulations (Phys. Rev. E 89, 013009 (2014)). The effects of velocity ratio (r =U2 /U1) on shear layer dynamics are revealed by spatially evolving vortex-gas shear-layer simulations using a computational model based on Basu et al. (Appl. Math. Modelling 19, (1995)), but with a crucial improvement that ensures conservation of global circulation. The simulations show that the initial conditions and downstream boundaries can significantly affect the flow over substantial part of the domain, but the equilibrium spread rate is a universal function of r, and is within the experimental scatter. The spread in the r = 0 limit is higher than Galilean-transformed temporal value. The present 2D simulations at r = 0 show continuous growth of structures, while merger-dominated evolution is observed for r = 0 . 23 (and higher). These two mechanisms were observed across the same two values of r in the experiments of D'Ovidio & Coats (J. Fluid Mech. 737, 2013), but the continuous growth was instead attributed to mixing-transition and 3D. The 2D mechanisms responsible for the observed continuous growth of structures are analyzed in detail. Supported in part by RN/Intel/4288 and RN/DRDO/4124.
Population dynamics in central and edge populations of a narrowly endemic plant.
Aikens, Melissa L; Roach, Deborah A
2014-07-01
Species' range limits can be caused by environmental gradients, and in such cases, abundance is thought to be highest in the center of a species range and decline towards the edge (the abundant-center model). Although in theory decreased abundance is caused by a decline in performance at the edge, it has been shown that performance and abundance are not necessarily related. Few studies have compared abundance and performance in center and edge populations of endemic species, whose ranges may be restricted by the availability of specialized habitat rather than environmental gradients across their range. Additionally, range-wide studies that examine both northern and southern edge populations are rare. We used Roan Mountain rattlesnake-root (Prenanthes roanensis), a perennial plant endemic to the Southern Appalachians (USA), to compare abundance and performance between central populations and populations at the northern and southern edges of the range. To account for multiple fitness components across the life cycle, we measured performance of edge populations as vital-rate contributions to population growth rate compared to the center. Abundance did not decline at the range edge, but some vital-rate contributions were lower in edge populations compared to central populations. However, each edge population differed in which vital-rate contributions were lower compared to the center. Our results do not support the abundant-center model, and it appears that local factors are important in structuring the range of this endemic species. It is important to recognize that when implementing conservation or management plans, populations in close proximity may have substantial variation in demographic rates due to differences in the local environment.
Dynamics of Edge Dislocations in a Low-Stability FCC-System Irradiated by High-Energy Particles
Starostenkov, M. D.; Potekaev, A. I.; Markidonov, A. V.; Kulagina, V. V.; Grinkevich, L. S.
2017-01-01
Using the method of molecular dynamics, the behavior of plastic deformation and defect structure selforganization are investigated in a low-stability condensed FCC-system irradiated with high-energy particles. An analysis of the dynamics of a single edge dislocation and elementary dislocation ensembles, subjected to the action of a post-cascade shock wave, demonstrates that as a result of this action the dislocations are displaced towards the wave source. As this goes on, the roles of both collective effects and external influences on the ensembles of complex interacting defects increase. In particular, the investigation performed in this work demonstrates that the post-cascade shock waves can give rise to migration of not only single edge dislocation but also elementary dislocation ensembles. It is demonstrated that the changes in the dislocation structure of the irradiated material result from the unloading waves following the post-cascade waves, rather than from the latter waves themselves.
D. Falceta-Gonçalves
2011-01-01
Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.
Zweben, S. J.; Davis, W. M.; Diallo, A.; Ellis, R. A.; Stotler, D. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Terry, J. L.; Golfinopoulos, T.; Hughes, J. W.; LaBombard, B.; Landreman, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Agostini, M. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, C.so Stati Uniti 4, I-3512 Padova (Italy); Grulke, O. [Max Planck Institute for Plasma Physics, EURATOM Association, D-17491 Greifswald (Germany); Myra, J. R. [Lodestar Research Corporation, 2400 Central Ave., Boulder, Colorado 80301 (United States); Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)
2013-07-15
This paper describes 2D imaging measurements of plasma turbulence made in the scrape-off layer of the Alcator C-Mod tokamak simultaneously at two different poloidal locations, one near the outer midplane and the other near the divertor X-point region. These images were made with radial and poloidal resolution using two gas puff imaging diagnostics not directly connected along a B field line. The turbulence correlation structure has a significantly different tilt angle with respect to the local flux surfaces for the midplane and X-regions, and a slightly different ellipticity and size. The time-averaged turbulence velocities can be different in the midplane and X-regions, even within the same flux surface in the same shot. The structures are partially consistent with a magnetic flux tube mapping model, and the velocities are compared with various models for turbulence flow.
Dynamics and Edge Effect of an Atlantic Forest Fragment in Brazil
Poliana Gabriella Araújo Mendes
Full Text Available ABSTRACT The woody plants in an edge area formed approximately 35 years ago in an Atlantic Forest fragment in northeastern Brazil were examined, and three environments defined: edge, intermediate, and interior. Canopy tree densities and basal areas were found to be similar in all three environments, and also similar to previous published studies in the same region; species richness was greatest at the forest edge. The understory showed greater species richness in the forest interior, but greater diversity and equitability in the intermediate environment. Understory environments close to the forest edge demonstrated larger stem diameters than in the forest interior, although at lesser densities and with smaller total basal areas. Our results indicated the existence of distinct patterns in canopy and understory that most likely reflect differences in the response times of these two vegetation layers, with the understory being more sensitive to alterations in environmental structure.
Dynamic drag of edge dislocation by circular prismatic loops and point defects
Malashenko, V.V., E-mail: malashenko@kinetic.ac.donetsk.u [Donetsk Institute for Physics and Engineering of NASU, 83114 Donetsk (Ukraine); Donetsk National Technical University, 83000 Donetsk (Ukraine)
2009-11-15
Motion of edge dislocation in the presence of prismatic loops and point defects is studied analytically. It is shown that at certain conditions, the velocity dependence of the drag force has two maximums and two minimums.
Earon, Ofri
2013-01-01
the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours....... The following text includes the first draft of the first two chapters: introduction and theory. The chapters are not written completely, and some parts are written only as headlines. These headlines and other comments are marked in red. The text is on working progress and far from being finished...
Coherent Vortex Evolution in Drift Wave Turbulence
Gatto, R.; Terry, P. W.
1998-11-01
Localized structures in turbulence are subject to loss of coherence by mixing. Phase space structures, such as drift-hole, (P. W. Terry, P. H. Diamond, T. S. Hahm, Phys. Fluids B) 2 9 2048 (1990) possess a self-electric field, which if sufficiently large maintains particle trapping against the tidal deformations of ambient turbulence. We show here that intense vortices in fluid drift wave turbulence avoid mixing by suppressing ambient turbulence with the strong flow shear of the vortex edge. Analysis of turbulence evolution in the vortex edge recovers Rapid Distortion Theory (G. K. Batchelor and I. Proudman, Q. J. Mech. Appl. Math.) 7 83 (1954) as the short time limit and the shear suppression scaling theory (H. Biglari, P. H. Diamond and P. W. Terry, Phys. Fluids B) 2 1 (1990) as the long time limit. Shear suppression leads to an amplitude condition for coherence and delineates the Gaussian core from the non Gaussian tail of the probability distribution function. The amplitude condition of shear suppression is compared with the trapping condition for phase space holes. The possibility of nonlinear vortex growth will be examined by considering electron dynamics in the vortex evolution.
Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent
2016-01-04
We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.
T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang
2004-12-21
An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.
Ecological collapse and the emergence of travelling waves at the onset of shear turbulence
Shih, Hong-Yan; Hsieh, Tsung-Lin; Goldenfeld, Nigel
2016-03-01
The mechanisms and universality class underlying the remarkable phenomena at the transition to turbulence remain a puzzle 130 years after their discovery. Near the onset to turbulence in pipes, plane Poiseuille flow and Taylor-Couette flow, transient turbulent regions decay either directly or through splitting, with characteristic timescales that exhibit a super-exponential dependence on Reynolds number. The statistical behaviour is thought to be related to directed percolation (DP; refs ,,,). Attempts to understand transitional turbulence dynamically invoke periodic orbits and streamwise vortices, the dynamics of long-lived chaotic transients, and model equations based on analogies to excitable media. Here we report direct numerical simulations of transitional pipe flow, showing that a zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations; in turn, the zonal flow suppresses the small-scale turbulence leading to stochastic predator-prey dynamics. We show that this ecological model of transitional turbulence, which is asymptotically equivalent to DP at the transition, reproduces the lifetime statistics and phenomenology of pipe flow experiments. Our work demonstrates that a fluid on the edge of turbulence exhibits the same transitional scaling behaviour as a predator-prey ecosystem on the edge of extinction, and establishes a precise connection with the DP universality class.
Analysis of Band-Edge Dynamics in ZnO and MgZnO Thin Films
Canul, Amrah
This work investigates the temperature dependence of electron states at the band-edge in ZnO and Mg0.07Zn0.93O thin films. To investigate the band-edge dynamics, we study in-gap states via temperature dependent absorption spectroscopy in the range 77-500K. The in-gap states at the band-edge were analyzed via the Urbach energy model, where the Urbach Energy is a measure of the extent of states into the bandgap. In parallel, we also analyze the temperature dependent Urbach energy via the Wasim model, which separates the relative contributions of defect states and temperature dependent phonon modes to the in-gap states. It was found that the defect contribution to in-gap states at the band-edge was significantly higher for Mg0.07Zn0.93O than in ZnO. Additionally, the phonon contribution to in-gap states was less in Mg 0.07Zn0.93O than in ZnO. The author gratefully acknowledges the National Science Foundation and the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering under Grant No. DE-FG02-07ER46386.
A comparison of the resistance of Temporary Edge Protection Systems to static and dynamic loads
González, M. N.
2015-06-01
Full Text Available Temporary Edge Protection Systems (TEPS are designed to withstand the impact of a worker that walks, stumbles, and falls against them. This is by nature a dynamic action; however, many standards evaluate TEPS when the surface or slope is slightly inclined (less than 10°, applying static requirements. The performance requirements demanded by these standards are assumed to be equivalent to the impact of a worker, however this point has not been tested. In this study, TEPS with tubular steel guardrails and wooden boards of different quality under two types of loads are evaluated using the static requirements detailed in standard EN 13374. TEPS are subjected to an impact energy of 180 J, simulating a worker of 90 kg walking at a speed of 2 m/s. The results demonstrate that the static requirements of EN 13374 are more demanding than the impact of 180 J in all the systems under study.Los sistemas provisionales de protección de borde (SPPB están diseñados para detener el impacto de un trabajador que camina, tropieza y golpea contra ellas. Esto supone una acción de naturaleza dinámica. Sin embargo, muchas normas evalúan SPPB utilizando requisitos de tipo estático cuando la superficie de trabajo está poco inclinada (menos de 10° suponiendo que equivalen al impacto de un trabajador. No obstante, este aspecto no se ha confirmado experimentalmente. En este trabajo SPPB con barandillas de tubos de acero y de tablas de madera se han evaluado usando los requisitos estáticos definidos por la norma EN 13374. Posteriormente, se han sometido a una energía de impacto de 180 J, que simula a un trabajador de 90 kg caminando a una velocidad de 2 m/s. Los resultados demuestran que los requisitos estáticos de la norma EN 13374 son más exigentes que el impacto de 180 J en todos los sistemas estudiados.
Xie, Sheng-Yi; Li, Xian-Bin; Tian, Wei Quan; Wang, Dan; Chen, Nian-Ke; Han, Dong; Sun, Hong-Bo
2014-09-15
The reduction of graphene oxide can be used as a simple way to produce graphene on a large scale. However, the numerous edges produced by the oxidation of graphite seriously degrade the quality of the graphene and its carrier transport property. In this work, the reduction of oxygen-passivated graphene edges and the subsequent linking of separated graphene sheets by calcium are investigated by using first-principles calculations. The calculations show that calcium can effectively remove the oxygen groups from two adjacent edges. The joining point of the edges serves as the starting point of the reduction and facilitates the reaction. Once the oxygen groups are removed, the crack is sutured. If the joining point is lacking, it becomes difficult to zip the separated fragments. A general electron-reduction model and a random atom-reduction model are suggested for these two situations. The present study sheds light on the reduction of graphene-oxide edges by using reactive metals to give large-sized graphene through a simple chemical reaction.
Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow
Petrelis, F; Fauve, S [Laboratoire de Physique Statistique, CNRS UMR 8550, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France)], E-mail: petrelis@lps.ens.fr
2008-12-10
We present models related to the results of a recent experiment (the 'VKS experiment') showing the generation of a magnetic field by a fully turbulent flow of liquid sodium. We first discuss the geometry of the mean magnetic field when the two coaxial impellers driving the flow counter-rotate at the same frequency. We then show how we expect this geometry to be modified when the impellers rotate at different frequencies. We also show that, in the latter case, dynamical regimes of the magnetic field can be easily understood from the interaction of modes with dipolar (respectively quadrupolar) symmetry. In particular, this interaction generates magnetic field reversals that have been observed in the experiment and display a hierarchy of timescales similar to the Earth's magnetic field: the duration of the steady phases is widely distributed, but is always much longer than the time needed to switch polarity. In addition to reversals, several other large scale features of the generated magnetic field are obtained when varying the governing parameters of the flow. These results are also understood in the framework of the same model.
Dynamics of Turbulent Convection and Convective Overshoot in a Moderate Mass Star
Kitiashvili, Irina N; Mansour, Nagi N; Wray, Alan A
2015-01-01
Continued progress in observational stellar astrophysics requires a deep understanding of the underlying convection dynamics. We present results of realistic 3D radiative hydrodynamic simulations of the outer layers of a moderate mass star (1.47 Msun), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding 1D standard stellar model shows an increase of the stellar radius by ~800 km, as well as significant changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km/s, penetrate through the whole convection zone, hit the radiative zone, and form a 8 Mm...
Submicron particle dynamics for different surfaces under quiescent and turbulent conditions
Vohra, Karn; Ghosh, Kunal; Tripathi, S. N.; Thangamani, I.; Goyal, P.; Dutta, Anu; Verma, V.
2017-03-01
Experiments were conducted using CsI aerosols in a small scale test chamber to simulate behaviour of aerosols in the containment of a nuclear reactor. The primary focus of the study was on submicron particles (14.3 nm-697.8 nm) due to their hazardous effect on human health. Different wall surfaces, viz., plexiglass, concrete and sandpaper were chosen to study the effect of surface roughness on dry deposition velocity under both quiescent and turbulent conditions. An analytical approach to calculate dry deposition velocity of submicron particles for rough surfaces has been proposed with an improvement in the existing parameterization for shift in the velocity boundary layer. The predicted deposition velocity with the improved parameterization was found to have better agreement with published measured data of Lai and Nazaroff (2005) compared to the existing parameterizations (Wood, 1981; Zhao and Wu, 2006b). There was a significant reduction in root mean square error (RMSE) between predicted, using the improved parameterization and measured deposition velocity (upto 100%) compared to earlier ones. The new analytical deposition approach was coupled with volume conserving semi-implicit coagulation model. This aerosol dynamic model was evaluated against explicit particle size distribution for the first time for rough surfaces. Normalized RMSE between simulated and measured particle size distribution varied in the range of 2%-20% at different instances. The model seems to closely predict submicron particle behaviour in indoor environment.
Dynamics of motile micro-organisms in stably-stratified turbulence
Lovecchio, Salvatore; Zonta, Francesco; Marchioli, Cristian; Soldati, Alfredo
2016-11-01
Motile micro-organisms populating terrestrial water bodies swim upward towards the air-water interface to capture light and activate photosynthesis. These micro-organisms have the center of mass displaced below the center of buoyancy and are usually called gyrotactic swimmers. Gyrotactic swimmers (which are almost neutrally-buoyant) are extremely sensitive to the local flow field, which is often stably stratified (due to solar heating at the water surface). Stable stratification has a deep influence on the transport processes of mass, momentum, heat and chemical species at the water surface. In this work we use Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking (LPT) to analyze the dynamics of gyrotactic swimmers in stratified turbulence. Our results show that swimmers surfacing and clustering at the surface depend strongly on the re-orientation time of swimmers and on the level of stratification. Obtaining accurate predictions of the surfacing time for gyrotactic swimmers is extremely important to estimate the global CO2 exchange across the air-water interface.
Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi
2014-05-01
We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well
Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies
Chiral Edge Mode in the Coupled Dynamics of Magnetic Solitons in a Honeycomb Lattice
Kim, Se Kwon; Tserkovnyak, Yaroslav
2017-08-01
Motivated by a recent experimental demonstration of a chiral edge mode in an array of spinning gyroscopes, we theoretically study the coupled gyration modes of topological magnetic solitons, vortices and magnetic bubbles, arranged as a honeycomb lattice. The soliton lattice under suitable conditions is shown to support a chiral edge mode like its mechanical analogue, the existence of which can be understood by mapping the system to the Haldane model for an electronic system. The direction of the chiral edge mode is associated with the topological charge of the constituent solitons, which can be manipulated by an external field or by an electric-current pulse. The direction can also be controlled by distorting the honeycomb lattice. Our results indicate that the lattices of magnetic solitons can serve as reprogrammable topological metamaterials.
Liu, Jing; Shao, Yimin
2017-06-01
Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.
Bifurcation and hysteresis of plasma edge transport in a flux-driven system
Li, B.; Wang, X. Y.; Sun, C. K.; Zhou, A.; Liu, D.; Ma, C. H.; Wang, X. G.
2016-10-01
Transition dynamics and mean shear flow generation in plasma interchange turbulence are explored in a flux-driven system that resembles the plasma edge region. The nonlinear evolution of the interchange mode shows two confinement regimes with different transport levels. Large amplitude oscillations in the phase space of turbulence intensity and mean flow energy are observed and investigated. Both clockwise and counterclockwise oscillations occur during the transition between the two regimes. The Reynolds stress gradients are shown to play a critical role in the generation of mean sheared flows in the edge region. Both the forward and back transitions are simulated self-consistently and a significant hysteresis is found.
Growth from Solutions: Kink dynamics, Stoichiometry, Face Kinetics and stability in turbulent flow
Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.; Vekilov, P. G.
2005-01-01
1. Kink dynamics. The first segment of a polygomized dislocation spiral step measured by AFM demonstrates up to 60% scattering in the critical length l*- the length when the segment starts to propagate. On orthorhombic lysozyme, this length is shorter than that the observed interkink distance. Step energy from the critical segment length based on the Gibbs-Thomson law (GTL), l* = 20(omega)alpha/(Delta)mu is several times larger than the energy from 2D nucleation rate. Here o is tine building block specific voiume, a is the step riser specific free energy, Delta(mu) is the crystallization driving force. These new data support our earlier assumption that the classical Frenkel, Burton -Cabrera-Frank concept of the abundant kink supply by fluctuations is not applicable for strongly polygonized steps. Step rate measurements on brushite confirms that statement. This is the1D nucleation of kinks that control step propagation. The GTL is valid only if l*
Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects
Pankin, Alexei Y.; Kritz, Arnold H.
2011-07-19
Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.
Front structure and dynamics in dense colonies of motile bacteria: Role of active turbulence
Chatterjee, Rayan; Perlekar, Prasad
2016-01-01
We study the spreading of a bacterial colony undergoing turbulent like collective motion. We present two minimalistic models to investigate the interplay between population growth and coherent structures arising from turbulence. Using Direct Numerical Simulation (DNS) of the proposed models we find that turbulence has two prominent effects on the spatial growth of the colony: (a) the front speed is enhanced, and (b) the front gets crumpled. Both these effects, which we highlight by using statistical tools, are markedly different in our two models. We also show that the crumpled front structure and the passive scalar fronts in random flows are related in certain regimes.
Savin, Sergey; Büchner, Jörg; Zelenyi, Lev; Kronberg, Elena; Kozak, Lyudmila; Blecki, Jan; Lezhen, Liudmila; Nemecek, Zdenek; Safrankova, Jana; Skalsky, Alexander; Budaev, Vyacheslav; Amata, Ermanno
We explore interactions of Supersonic Plasma Streams (SPS) with the Earth magnetosphere in the context of the planetary and astrophysical magnetospheres and of that of laboratory plasmas. The interactions can be inherently non-local and non-equilibrium, and even explosive due to both solar wind (SW) induced and self-generated coherent structures in the multiscale system with the scales ranging from the micro to global scales. We concentrate on the main fundamental processes arising from the SPS cascading and interactions with surface and cavity resonances in the Earth’s magnetosphere, using multi-spacecraft data (SPECTR-R, DOUBLE STAR, CLUSTER, GEOTAIL, ACE, WIND etc.). We will address the following key problems to advance our understanding of anomalous transport and boundary dynamics: - generalizations of the SPS generation mechanisms, e.g., by bow shock (BS) surface or magnetosheath (MSH) cavity resonances, triggering by interplanetary shocks, solar wind (SW) dynamic pressure jumps, foreshock nonlinear structures, etc. - the clarification of BS rippling mechanisms requires base on the relevant databases from the CLUSTER/ DOUBLE STAR/ GEOTAIL/SPECTR-R/ ACE/ WIND spacecraft, which will be used for a statistical analysis targeting the SPS statistical features as extreme events. - substantial part of the SW kinetic energy can be pumped into the BS membrane and MSH cavity modes and initiate further cascades towards higher frequencies. Accordingly we present the multipoint studies of the SPS and of related nonlinear discrete cascades (carried generally by the SPS), along with the transformation of discrete cascades of the dynamic pressure into turbulent cascades. - investigation of spectral and bi-spectral cross-correlations in SW, foreshock, MSH and in vicinity of BS and magnetopause (MP) would demonstrate that both inflow and outflow into/ from magnetosphere can be modulated by the SPS and by the related outer magnetospheric resonances as well. We demonstrate in
A novel dynamic coherent eddy model and its application to LES of a turbulent jet with free surface
无
2010-01-01
We has developed a novel dynamic coherent eddy model,in which the coherent structure-Q criterion introduced by Hunt et al(1988)-is taken into account in the subgrid-scale turbulent viscosity based on the eddy viscosity model.One proposed method is to combine the resolved-scale velocity-gradient tensor in the classical Smagorinsky model with Q criterion weighted.A kind of dynamic procedure which was averaged in a general process at temporal direction based on the autocorrelations of the characteristic resolved scales of turbulence was taken for the coefficient of subgrid model.The model is implemented in the σ-coordinate and the filtered Navier-Stokes equations are solved by the operator splitting method.The validation was explored to 2-D turbulent slot jet both in ambient environment and in regular waves.The prediction of the present model was compared with the experiment data,including the averaged velocity profiles,the velocity fluctuations and the Reynolds stress.The model performance is shown to be satisfactory.
Wavelet analysis of the slow non-linear dynamics of wave turbulence
Miquel, Benjamin; Mordant, Nicolas, E-mail: benjamin.miquel@lps.ens.fr [Laboratoire de Physique Statistique, Ecole Normale Superieure (France)
2011-12-22
In wave turbulence, the derivation of solutions in the frame of the Weak Turbulence Theory relies on the existence of a double time-scale separation: first, between the period of the waves and characteristic nonlinear time t{sub NL} corresponding to energy exchange among waves; and secondly, between t{sub NL} and the characteristic dissipation time t{sub d}. Due to the lack of space and time resolved measurement, this hypothesis have remained unverified so far. We study the turbulence of flexion waves in thin elastic plates. t{sub d} is measured using the decline stage of the turbulence whereas a wavelet analysis is performed to measure the characteristic non-linear time t{sub NL}.
Spectral imbalance in the inertial range dynamics of decaying rotating turbulence
Valente, Pedro C
2016-01-01
Direct numerical simulations of homogeneous decaying turbulence with mild background rotation show the existence of a systematic and significant imbalance between the non-linear energy cascade to small scales and its dissipation. By starting the decay from a statistically stationary and fully developed rotating turbulence state, where the dissipation and the energy flux are approximately equal, the data shows a growing imbalance between the two until a maximum is reached when the dissipation is about twice the energy flux. This dichotomy of behaviours during decay is reminiscent of the non-equilibrium and the equilibrium regions previously reported for non-rotating turbulence [P.C. Valente, J.C. Vassilicos, Phys. Rev. Lett. {\\bf 108} 214503 (2012)]. Note, however, that for decaying rotating turbulence the classical scaling of the dissipation rate $\\epsilon \\propto u'^3/L$ (where $u'$ and $L$ are the root mean square fluctuating velocity and the integral length scale, respectively) does not appear to hold duri...
2015-11-30
SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON V. Sankaran a. REPORT...and temporal scales is called direct numerical simulation ( DNS ). In a DNS there is no need for a turbulence or turbulent combustion model [3]. All...therefore computationally very expensive. DNS also requires small time steps that adds additional expense. As a result of this required fine resolution
DYNAMICS OF TURBULENT CONVECTION AND CONVECTIVE OVERSHOOT IN A MODERATE-MASS STAR
Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kosovichev, A. G., E-mail: irina.n.kitiashvili@nasa.gov [New Jersey Institute of Technology, Newark, NJ 07102 (United States)
2016-04-10
We present results of realistic three-dimensional (3D) radiative hydrodynamic simulations of the outer layers of a moderate-mass star (1.47 M {sub ⊙}), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding one-dimensional (1D) standard stellar model shows an increase of the stellar radius by ∼800 km, as well as significant changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km s{sup −1}, penetrate through the whole convection zone, hit the radiative zone, and form an 8 Mm thick overshoot layer. Contrary to semi-empirical overshooting models, our results show that the 3D dynamic overshoot region consists of two layers: a nearly adiabatic extension of the convection zone and a deeper layer of enhanced subadiabatic stratification. This layer is formed because of heating caused by the braking of the overshooting convective plumes. This effect has to be taken into account in stellar modeling and the interpretation of asteroseismology data. In particular, we demonstrate that the deviations of the mean structure of the 3D model from the 1D standard model of the same mass and composition are qualitatively similar to the deviations for the Sun found by helioseismology.
E. Berdalet
2007-08-01
Full Text Available Some dinoflagellate species have shown different physiological responses to certain turbulent conditions. Here we investigate how two levels of turbulent kinetic energy dissipation rates (ε = 0.4 and 27 cm² s−3 affect the PSP toxins and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high ε generated by an orbital shaker. In the cultures of the two species shaken for more than 4 days, the cellular GTX(1+4 toxin contents were significantly lower than in the still control cultures. In A. minutum this trend was also observed in the C(1+2 toxin content. For the two species, inhibition of ecdysal cyst production occurred during the period of exposure of the cultures to stirring (4 or more days at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When shaking persisted for more than 4 days, the net growth rate significantly decreased in A. minutum (from 0.25±0.01 day−1 to 0.19±0.02 day−1 and the final cell numbers were lower (ca. 55.4% than in the still control cultures. In A. catenella, the net growth rate was not markedly modified by turbulence although under long exposure to shaking, the cultures entered earlier in the stationary phase and the final cell numbers were significantly lower (ca. 23% than in the control flasks. The described responses were not observed in the experiments performed at the low turbulence intensities with an orbital grid system, where the population development was favoured. In those conditions, cells appeared to escape from the zone of the influence of the grids and concentrated in calmer thin layers either at the top or at the bottom of the containers. This ecophysiological study provides new evidences about the sensitivity to high levels of small-scale turbulence by two life cycle related processes, toxin production and encystment, in dinoflagellates. This can
Flach, S
1995-01-01
We study tangent bifurcation of band edge plane waves in nonlinear Hamiltonian lattices. The lattice is translationally invariant. We argue for the breaking of permutational symmetry by the new bifurcated periodic orbits. The case of two coupled oscillators is considered as an example for the perturbation analysis, where the symmetry breaking can be traced using Poincare maps. Next we consider a lattice and derive the dependence of the bifurcation energy on the parameters of the Hamiltonian function in the limit of large system sizes. A necessary condition for the occurence of the bifurcation is the repelling of the band edge plane wave's frequency from the linear spectrum with increasing energy. We conclude that the bifurcated orbits will consequently exponentially localize in the configurational space.
Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals
Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.
2016-09-01
Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.
Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
Seena, Abu [Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sung, Hyung Jin, E-mail: hjsung@kaist.ac.kr [Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
2011-12-15
Highlights: Black-Right-Pointing-Pointer DMD modes were extracted from two cavity flow data set at Re{sub D} = 12,000 and 3000. Black-Right-Pointing-Pointer At Re{sub D} = 3000, frequencies of boundary layer and shear layer structures coincides. Black-Right-Pointing-Pointer Boundary layer structures exceed in size with shear layer structures. Black-Right-Pointing-Pointer At Re{sub D} = 12,000, structure showed coherence leading to self-sustained oscillations. Black-Right-Pointing-Pointer Hydrodynamic resonance occurs if coherence exists in wavenumber and frequency. - Abstract: Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (Re{sub D} = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/{theta}) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.
Numerical Studies of Quantum Turbulence
Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi
2017-09-01
We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.
Farrell, Brian F
2016-01-01
This paper describes a study of the self-sustaining process (SSP) that maintains turbulence in wall-bounded shear flow. The study uses Couette flow and is based on a statistical state dynamics (SSD) model closed at second order with state variables the streamwise mean (first cumulant) and the covariance of perturbations (second cumulant). The SSD is closed by either neglecting or stochastically parameterizing the perturbation--perturbation nonlinearity in the perturbation covariance equation. This class of quasi-linear SSD models, which are referred to as RNL models, are a second order SSD systems that includes the stochastic structural stability theory (S3T or equivalently RNL$_\\infty$) model which is used in this study. Comparisons of turbulence maintained in DNS and RNL simulations have demonstrated that RNL systems self-sustain turbulence with a mean flow and perturbation structure consistent with DNS. The current results isolate the dynamical components sustaining turbulence in the S3T system concentrati...
Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan
2008-06-01
Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.
Evolution and dynamics of shear-layer structures in near-wall turbulence
Johansson, Arne V.; Alfredsson, P. H.; Kim, John
1991-01-01
Near-wall flow structures in turbulent shear flows are analyzed, with particular emphasis on the study of their space-time evolution and connection to turbulence production. The results are obtained from investigation of a database generated from direct numerical simulation of turbulent channel flow at a Reynolds number of 180 based on half-channel width and friction velocity. New light is shed on problems associated with conditional sampling techniques, together with methods to improve these techniques, for use both in physical and numerical experiments. The results clearly indicate that earlier conceptual models of the processes associated with near-wall turbulence production, based on flow visualization and probe measurements need to be modified. For instance, the development of asymmetry in the spanwise direction seems to be an important element in the evolution of near-wall structures in general, and for shear layers in particular. The inhibition of spanwise motion of the near-wall streaky pattern may be the primary reason for the ability of small longitudinal riblets to reduce turbulent skin friction below the value for a flat surface.
Edge states as mediators of bypass transition in boundary-layer flows
Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Eckhardt, Bruno; Henningson, Dan S
2016-01-01
The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.
Edge states as mediators of bypass transition in boundary-layer flows
Khapko, T.; Kreilos, T.; Schlatter, P.; Duguet, Y.; Eckhardt, B.; Henningson, D. S.
2016-08-01
The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.
Bec, Jeremie [Laboratoire Cassiopee UMR6202, CNRS, OCA, BP4229, 06304 Nice Cedex 4 (France)]. E-mail: jeremie.bec@obs-nice.fr; Khanin, Konstantin [Department of Mathematics, University of Toronto, Toronto, Ont., M5S 3G3 (Canada)]. E-mail: khanin@math.toronto.edu
2007-08-15
The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.
Escauriaza, Cristian; Sandoval, Jorge; Mignot, Emmanuel; Mao, Luca
2016-11-01
Turbulent flows developed in surface storage zones (SSZ) in rivers control many physical and biogeochemical processes of contaminants in the water. These regions are characterized by low velocities and long residence times, which favor particle deposition, nutrient uptake, and flow interactions with reactive sediments. The dynamics of the flow in SSZ is driven by a shear layer that induces multiple vortical structures with a wide range of temporal and spatial scales. In this work we study the flow in a lateral SSZ of the Lluta River, a high-altitude Andean stream (4,000 masl), with a Re=45,800. We describe the large-scale turbulent coherent structures using field measurements and 3D numerical simulations. We measure the bed topography, instantaneous 3D velocities at selected points, the mean 2D free-surface velocity field, and arsenic concentration in the sediment. Numerical simulations of the flow are also performed using a DES turbulence model. We focus on the mass and momentum transport processes, analyzing the statistics of mass exchange and residence times in the SSZ. With this information we provide new insights on the flow and transport processes between the main channel and the recirculating region in natural conditions. Supported by Fondecyt 1130940.
Aksamit, Nikolas O.; Pomeroy, John W.
2016-12-01
Many blowing snow conceptual and predictive models have been based on simplified two-phase flow dynamics derived from time-averaged observations of bulk flow conditions in blowing snow storms. Measurements from the first outdoor application of particle tracking velocimetry (PTV) of near-surface blowing snow yield new information on mechanisms for blowing snow initiation, entrainment, and rebound, whilst also confirming some findings from wind tunnel observations. Blowing snow particle movement is influenced by complex surface flow dynamics, including saltation development from creep that has not previously been measured for snow. Comparisons with 3-D atmospheric turbulence measurements show that blowing snow particle motion immediately above the snow surface responds strongly to high-frequency turbulent motions. Momentum exchange from wind to the dense near-surface particle-laden flow appears significant and makes an important contribution to blowing snow mass flux and saltation initiation dynamics. The more complete and accurate description of near-surface snow particle motions observable using PTV may prove useful for improving blowing snow model realism and accuracy.
Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Waltz, R. E.; Candy, J.
2007-11-01
Turbulence is observed to transiently decrease locally during the formation of internal transport barriers (ITBs) following the appearance of low-order rational qmin surfaces in negative central shear discharges on DIII-D. Simultaneously, increased poloidal flow shear is observed. To further study this phenomenon, localized 2D density fluctuation measurements of turbulence and turbulence flow were obtained over 0.3 < r/a < 0.7 via the high-sensitivity beam emission spectroscopy diagnostic. Both the reduction in fluctuations and the poloidal velocity shear are found to propagate radially outward at about 1 m/s. Initial observations suggest that these effects follow the q=2 surface. Related GYRO simulations suggest transient zonal flows form near the q=2 surface to trigger these ITBs. High-frequency poloidal velocity measurements will be used to examine this mechanism.
Partnership for Edge Physics Simulation (EPSI)
Schroder, Peter [California Inst. of Technology, Pasadena, CA (United States)
2015-02-11
We propose to develop advanced simulation codes, based upon an extreme parallelism, first principles kinetic approach, to address the challenges associated with the edge region of magnetically confined plasmas. This work is relevant to both existing magnetic fusion facilities and essential for next-generation burning plasma experiments, such as ITER where success is critically dependent upon H-mode operation achieving an edge pedestal of sufficient height for good core plasma performance without producing deleterious large scale edge localized instabilities. The plasma edge presents a well-known set of multi-physics, multi-scale problems involving complex 3D magnetic geometry. Perhaps the greatest computational challenge is the lack of scale separation – temporal scales for drift waves, Alfven waves, ELM dynamics for example have strong overlap. Similar overlap occurs on the spatial scales for the ion poloidal gyro-radius, drift wave and pedestal width. The traditional approach of separating fusion problems into weakly interacting spatial or temporal domains clearly breaks down in the edge. A full kinetic model (full-f model) must be solved to understand and predict the edge physics including non-equilibrium thermodynamic issues arising from the magnetic topology (the open field lines producing a spatially sensitive velocity hole), plasma wall interactions, neutral and atomic physics. The plan here is to model these phenomena within a comprehensive first principles set of equations without the need for the insurmountable multiple-codes coupling issues by building on the XGC1 code developed under the SciDAC Proto-FSP Center for Plasma Edge Simulation (CPES). This proposal includes the critical participants in the XGC1 development. We propose enhancing the capability of XGC1 by including all the important turbulence physics contained in kinetic ion and electron electromagnetic dynamics, by extending the PIC technology to incorporate several positive features found
Bai, Kunlun; Brown, Eric
2015-01-01
We test the ability of a general low-dimensional model for turbulence to predict geometry-dependent dynamics of large-scale coherent structures, such as convection rolls. The model consists of stochastic ordinary differential equations, which are derived as a function of boundary geometry from the Navier-Stokes equations (Brown and Ahlers 2008). We test the model using Rayleigh-B\\'enard convection experiments in a cubic container. The model predicts a new mode in which the alignment of a convection roll switches between diagonals. We observe this mode with a measured switching rate within 30% of the prediction.
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Madsen, Jens
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite...... models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov......-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor radius effects on the radial transport of isolated plasma filaments (blobs) in the scrape-off region of fusion plasmas...
Ramirez Pastran, Jesus; Duque-Daza, Carlos; Lopez, Omar D.
2016-11-01
Turbulent flows over rough surfaces are present in different industrial scenarios. Generally, roughness is used to modify the boundary layer behavior, in order to improve heat transfer rates and mixing processes, which is usually accompanied by an increase of skin-friction drag. In the present work two different techniques for modification of the turbulent boundary layer were explored: first, the use of an arrangement of transverse squared bars (synthetic roughness); second, the use of an oscillating movement of the squared bars. In both cases the goal was to assess the increase or decrease of the skin-friction drag and the changes in the turbulent behavior of the flow. Large Eddy Simulations were carried out in order to study a fully developed turbulent channel flow with a smooth upper wall and a synthetically roughed lower wall with a friction Reynolds number around 180. Channel flow over walls with stationary bars and with one of the bars oscillating in the spanwise direction were also considered. Consistency between skin-friction coefficient modification and evolution of Q-structures was observed. Finally, a comparison of changes on some of the TKE terms between smooth surfaces and synthetically rough surfaces allowed to identify the effect of the squared bars for each case.
Large scale dynamics in a turbulent compressible rotor/stator cavity flow at high Reynolds number
Lachize, C.; Verhille, G.; Le Gal, P.
2016-08-01
This paper reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity of aspect ratio close to unity at high Reynolds number. The experiments have been driven by changing both the rotation rate of the disk and the thermodynamical properties of the working fluid. This fluid is sulfur hexafluoride (SF6) whose physical properties are adjusted by imposing the operating temperature and the absolute pressure in a pressurized vessel, especially near the critical point of SF6 reached for T c = 45.58 ◦C, P c = 37.55 bar. This original set-up allows to obtain Reynolds numbers as high as 2 × 107 together with compressibility effects as the Mach number can reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade as observed in rotating turbulence and in accordance with Kraichnan conjecture for 2D-turbulence. The spectra are however dominated by low-frequency peaks, which are subharmonics of the rotating disk frequency, involving large scale structures at small azimuthal wavenumbers. These modes appear for a Reynolds number around 105 and experience a transition at a critical Reynolds number Re c ≈ 106. Moreover they show an unexpected nonlinear behavior that we understand with the help of a low dimensional amplitude equations.
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
Ahlers, Guenter; Grossmann, Siegfried; Lohse, Detlef
2009-01-01
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinet
Park, Young Ki
2011-01-01
This study explains the role of information technologies in enabling organizations to successfully sense and manage opportunities and threats and achieve competitive advantage in turbulent environments. I use two approaches, a set-theoretic configurational theory approach and a variance theory approach, which are theoretically and methodologically…
Park, Young Ki
2011-01-01
This study explains the role of information technologies in enabling organizations to successfully sense and manage opportunities and threats and achieve competitive advantage in turbulent environments. I use two approaches, a set-theoretic configurational theory approach and a variance theory approach, which are theoretically and methodologically…
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
David A Rolls
Full Text Available We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR epidemic dynamics. The types of network models are exponential random graph models (ERGMs and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a "hidden population". In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure.
Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.
2015-09-01
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.
Sanchez-Reales, J. M.; Andersen, Ole Baltazar; Vigo, M. I.
2016-01-01
in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering......With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean's mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering...... in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the oceanA ' s MDT and a new approach based on edge...
Identifying low-dimensional dynamics in Type-I edge-localised-mode processes in JET plasmas
Calderon, F A; Chapman, S C; Webster, A J; Alper, B; Nicol, R M; Contributors, JET EFDA
2013-01-01
Edge localised mode (ELM) measurements from reproducibly similar plasmas in the Joint European Torus (JET) tokamak, which differ only in their gas puffing rate, are analysed in terms of the pattern in the sequence of inter-ELM time intervals. It is found that the category of ELM defined empirically as Type I - typically more regular, less frequent, and having larger amplitude than other ELM types - embraces substantially different ELMing processes. By quantifying the structure in the sequence of inter-ELM time intervals using delay time plots, we reveal transitions between distinct phase space dynamics, implying transitions between distinct underlying physical processes. The control parameter for these transitions between these different ELMing processes is the gas puffing rate.
Coherent electron dynamics in a two-dimensional random system with mobility edges
de Moura, F. A. B. F.; Lyra, M. L.; Dominguez-Adame, F.; Malyshev, V.A.
2007-01-01
We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-li
The Dynamics of an Isolated Plasma Filament at the Edge of a Toroidal Device, Rev. 1
Ryutov, D D
2006-09-28
The dynamics of an isolated plasma filament (an isolated blob) in the far scrape-off layer (SOL) of a toroidal device is described, with a proper averaging of the geometrical parameters as well as plasma parameters along the filament. The analysis is limited to the magnetohydrodynamic description. The effects of the anchored ends and finite plasma resistivity are also discussed.
Vijayakumar, Ganesh
Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the
Leng, Joanna; Al-Hajjar, Mazen; Wilcox, Ruth; Jones, Alison; Barton, David; Fisher, John
2017-04-01
Variation in the surgical positioning of total hip replacement can result in edge loading of the femoral head on the rim of the acetabular cup. Previous work has reported the effect of edge loading on the wear of hip replacement bearings with a fixed level of dynamic biomechanical hip separation. Variations in both rotational and translational surgical positioning of the hip joint replacement combine to influence both the biomechanics and the tribology including the severity of edge loading, the amount of dynamic separation, the force acting on the rim of the cup and the resultant wear and torque acting on the cup. In this study, a virtual model of a hip joint simulator has been developed to predict the effect of variations in some surgical positioning (inclination and medial-lateral offset) on the level of dynamic separation and the contact force of the head acting on the rim as a measure of severity of edge loading. The level of dynamic separation and force acting on the rim increased with increased translational mismatch between the centres of the femoral head and the acetabular cup from 0 to 4 mm and with increased cup inclination angle from 45° to 65°. The virtual model closely replicated the dynamics of the experimental hip simulator previously reported, which showed similar dynamic biomechanical trends, with the highest level of separation being found with a mismatch of 4 mm between the centres of the femoral head and acetabular cup and 65° cup inclination angle.
The dynamics and structure of edge-localized-modes in Alcator C-Mod
Terry, J.L. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States)]. E-mail: terry@psfc.mit.edu; Cziegler, I. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); Hubbard, A.E. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); Snipes, J.A. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); Hughes, J.W. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); Greenwald, M.J. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); LaBombard, B. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); Lin, Y. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States); Phillips, P. [Fusion Research Center, University of Texas-Austin, Austin, TX 78712 (United States); Wukitch, S. [Plasma Science and Fusion Center, MIT, 175 Albany St., Cambridge, MA 02139 (United States)
2007-06-15
Characteristics of discrete ELMs produced in Alcator C-Mod discharges of low edge collisionality (0.2 < {nu} {sup *} < 1) and large lower triangularity ({delta} {sub lower} {approx} 0.75) are examined. The energy lost per ELM from the H-mode pedestal is {approx}10% of the pedestal energy. These ELMs exhibit relatively long-lived precursor oscillations, often with two modes of intermediate toroidal mode number present. At the ELM 'crash' multiple plasma filament structures are expelled into the scrape-off-layer. A short-lived high frequency ({approx}0.5 MHz) magnetic oscillation is initiated at the 'crash'. The initial ELM filaments are large perturbations to the SOL with radial extents of 0.5-1 cm and typical radial propagation velocities of 1 km/s. Velocities of up to 8 km/s have been seen. The poloidal extent of the initial filaments is >4.5 cm. The initial filaments are followed (at intervals of {approx}100 {mu}s) by multiple, less perturbing secondary filaments.
Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects
Silva, Tiago S.; B. da Silva, Carlos; Idmec Team
2016-11-01
The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 URL http://www.lca.uc.pt.
A stability condition for turbulence model: From EMMS model to EMMS-based turbulence model
Zhang, Lin; Wang, Limin; Li, Jinghai
2013-01-01
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the heterogeneous structural parameters of turbulence to be optimized. We call this model the `EMMS-based turbulence model', and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced con...
Xiao Hong
2013-08-01
Full Text Available Numerical simulation and experimental validation of a hypersonic flat plate and isothermal turning wall flow were conducted in the current study. The investigation was based on three kinds of grids (Grid1, Grid2 and Grid3 with laminar flow and three types of turbulence models (BL, SA and SST. Under the same initiation and different turbulence models, the convergence process of the friction drag coefficient CP and the Stanton number st of a hypersonic flat plate flow revealed four results. First, the flow turbulence effect in the BL model simulation was responsive to CP and st. Second, the SA and SST model simulations both reflected the development process of flow turbulence. Third, the flow turbulence effect in the SST model simulation did not gradually emerge until the laminar flow simulation was sufficient. Moreover, the SA model simulation did not exist on such obvious hysteresis. Fourth, by comparing CP and st of a hypersonic flat-plate laminar simulation under the three grids, the errors of the calculation results of Grid2 and Grid3 were small. In contrast, the error on Grid1 was large. By comparing CP and st of the BL model for the three grids, we found that the result of Grid3 was slightly better than the result of Grid2. The deviation between them basically remained within 10%. However, the result of Grid1 had a large deviation with oscillation. CP and st of the SA model for the three grids were then compared. A large difference was found only on the transition zone location between the result of Grid2 and Grid3. Nevertheless, the error and calculation of reference between them was maintained within 10%. Grid1 not only had a large deviation, but also had certain oscillation on the laminar flow area. Finally, CP and st of the SST model for the three grids were compared. There was a large difference only on the transition zone location between the result of Grid2 and Grid3, but the error between them was maintained within 10%. Grid1 had a
Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires
Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.
2007-12-01
Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.
An Experimental Study of the Dynamics of an Unsteady Turbulent Boundary Layer.
1982-12-01
41 3.4 Data-Rduction Procedure . . . . . . 42 v p 4 EXPERIENTAL RESULTS .................. 43 4.1 General Considerations ... *..*.... . 44...fruitful. The following recommendations are addressed to the unsteady tur- bulent boundary layer research community at large: 0 Unsteady, turbulent...34 private communication , submit- ted to Journal of Fluid Mechanics, 1983. Tellonis, D. P. [1977], "Unsteady Boundary Layers, Separated and At- tached," AGARD
A dynamical equation for the distribution of a scalar advected by turbulence
Venaille, Antoine; Sommeria, Joel
2007-02-01
A phenomenological model for the dissipation of scalar fluctuations due to the straining by the fluid motion is proposed in this Brief Communication. An explicit equation is obtained for the time evolution of the probability distribution function of a coarse-grained scalar concentration. The model relies on a self-convolution process. We first present this model in the Batchelor regime and then extend empirically our result to the turbulent case. This approach is finally compared with other models.
Nagornyi, V.S.
1986-09-01
The principles of the design of electropneumatic and electrohydraulic converters with the turbulization of a submerged jet by a directional ion flux in an electric field are examined. A mathematical model is developed for calculating the static characteristics of electrohydrodynamic (EHD) converters of signal energy. It is shown that the same design base can be used for the EHD conversion of an electric signal to either a pneumatic or a hydraulic signal. 7 references.
An experimental investigation of nonequilibrium physics and dynamical systems in turbulent fluids
Bandi, Mahesh M.
Experiment 1 studies finite system size effects on temporal energy flux fluctuations in three-dimensional (3D) incompressible turbulence. The measured instantaneous energy flux shows that the turbulent energy transfer proceeds towards small spatial scales on average but frequently reverses direction (backscatter) to travel towards larger scales. The frequency of backscatter events is studied experimentally and through simulations. In Experiment 2 the third-order Eulerian structure function is measured for compressible turbulence on a free surface for the first time, and is found to scale linearly in space and agrees well with Kolmogorov's theory of 1941 (K41). K41 predicts the second-order Lagrangian structure function should scale linearly in time. However the experimental measurements show it instead scales as a power-law with exponent 1/2. Experiment 3 concerns measurement of entropy production rate in steady-state compressible turbulence. The analysis relies on the recent theory of Falkovich and Fouxon. The entropy rate is expected to equal the time integral of the lagrangian velocity divergence correlation function with a negative prefactor. The experimental results are found to disagree with this prediction. In addition, if the system is highly chaotic (follows SRB statistics), the system's entropy rate equals the sum of its Lyapunov exponents. The measured entropy rate agrees well with the sum of Lyapunov exponents obtained from simulations by Boffetta et. al. under flow conditions similar to the experiment. Experiment 4 presents a test of the Steady-State Fluctuation Theorem of Gallavotti and Cohen for entropy rate statistics collected from the individual lagrangian trajectories of experiment 3. The entropy rate statistics show excellent agreement with the Fluctuation Theorem within a limited interval of the probability distributions and limited window of averaging times.
Spatial-temporal dynamics of Newtonian and viscoelastic turbulence in channel flow
Wang, Sung-Ning; Shekar, Ashwin; Graham, Michael
2016-11-01
Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport; however, the mechanism is not well understood. Past studies have found that in minimal domain turbulent simulations, there areoccasional time periods when flow exhibits features such as weaker vortices, lower friction drag and larger log-law slope; these have been denoted as "hibernatingturbulence". Here we address the question of whether similar behavior arises spatio-temporally in extended domains, focusing on turbulence at friction Reynolds numbers near transition and Weissenberg numbers resulting in low-medium drag reduction. By using image analysis and conditional sampling tools, we identify the hibernating states in extended domains and show that they display striking similarity as those in minimal domains. The hibernating states among different Weissenberg numbers exhibit similar flow statistics, suggesting they are unaltered by low to medium viscoelasticity. In addition, the polymer is much less stretched during hibernation. Finally, these hibernating states vanish as Reynolds number increases. However, they reoccur and gradually become dominant with increasing viscoelasticity.
Makwana, K D; Li, H; Daughton, W; Cattaneo, F
2014-01-01
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv\\'{e}n waves, which interfere and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{\\perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{\\perp}^{-1.5}$ for smaller simulation domain, and $k_{\\perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. T...
Teaching Near The Edge of Chaos: Dynamic Systems, Student Choices and Library Research
Robert Hautala
2008-10-01
Full Text Available This article is an investigation of the Dynamic Systems theory and its application to instruction and the learning process. Curricular suggestions are provided from the authors’ collaborative uses of library instruction within university academic courses. These suggestions address the use of environmental (classroom and task manipulations to provide students with choices within activities related to conducting literature reviews. A Four-Step Teaching Model, based on the “Ecological Task Analysis Model” (Davis and Burton, 1991, is also outlined, to give readers a step-by-step procedure to use when developing classroom curricula and delivery plans.
Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions.
Garbutt, Cassandra C; Bangalore, Purushotham V; Kannar, Pegah; Mukhtar, M S
2014-01-01
A systems perspective on diverse phenotypes, mechanisms of infection, and responses to environmental stresses can lead to considerable advances in agriculture and medicine. A significant promise of systems biology within plants is the development of disease-resistant crop varieties, which would maximize yield output for food, clothing, building materials, and biofuel production. A systems or "-omics" perspective frames the next frontier in the search for enhanced knowledge of plant network biology. The functional understanding of network structure and dynamics is vital to expanding our knowledge of how the intercellular communication processes are executed. This review article will systematically discuss various levels of organization of systems biology beginning with the building blocks termed "-omes" and ending with complex transcriptional and protein-protein interaction networks. We will also highlight the prevailing computational modeling approaches of biological regulatory network dynamics. The latest developments in the "-omics" approach will be reviewed and discussed to underline and highlight novel technologies and research directions in plant network biology.
Getting to the Edge: Protein dynamical networks as a new frontier in plant-microbe interactions
Cassandra C Garbutt
2014-06-01
Full Text Available A systems perspective on diverse phenotypes, mechanisms of infection, and responses to environmental stresses can lead to considerable advances in agriculture and medicine. A significant promise of systems biology within plants is the development of disease-resistant crop varieties, which would maximize yield output for food, clothing, building materials and biofuel production. A systems or -omics perspective frames the next frontier in the search for enhanced knowledge of plant network biology. The functional understanding of network structure and dynamics s is vital to expanding our knowledge of how the intercellular communication processes are executed. . This review article will systematically discuss various levels of organization of systems biology beginning with the building blocks termed –omes and ending with complex transcriptional and protein-protein interaction networks. We will also highlight the prevailing computational modeling approaches of biological regulatory network dynamics. The latest developments in the -omics approach will be reviewed and discussed to underline and highlight novel technologies and research directions in plant network biology.
Assadi, S.
1994-01-01
Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ``sawtooth oscillations,`` have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma.
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-08-26
This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.
MacLow, M M; Oishi, J S; Abel, T; Low, Mordecai-Mark Mac; Toraskar, Jayashree; Oishi, Jeffrey S.; Abel, Tom
2006-01-01
The nature of ultracompact H II regions (UCHRs) remains poorly determined. In particular, they are about an order of magnitude more common than would be expected if they formed around young massive stars and lasted for one dynamical time, around 10^4 yr. We here perform three-dimensional numerical simulations of the expansion of an H II region into self-gravitating, radiatively cooled gas, both with and without supersonic turbulent flows. In the laminar case, we find that H II region expansion in a collapsing core produces nearly spherical shells, even if the ionizing source is off-center in the core. This agrees with analytic models of blast waves in power-law media. In the turbulent case, we find that the H II region does not disrupt the central collapsing region, but rather sweeps up a shell of gas in which further collapse occurs. Although this does not constitute triggering, as the swept-up gas would eventually have collapsed anyway, it does expose the collapsing regions to ionizing radiation. We suggest...
Williams, J. B.; Landers, A. L.; Trevisan, C.; Jahnke, T.; Schoeffler, M. S.; Doerner, R.; Bocharova, I.; Sturm, F.; McCurdy, C. W.; Belkacem, A.; Weber, Th.
2012-06-01
We have used Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) to measure the momenta of the photoelectron and the molecular fragments arising from the dissociation of methane following core photoionization and subsequent Auger decay. We present results here that show (1) the full 3-D imaging of the molecule by the molecular frame photoelectron angular distribution; (2) the numerous dissociation pathways emerging from the unstable di- and tri-cations; (3) the dynamics associated with Jahn-Teller distortions in the breakdown of axial recoil behavior, where protons are only ejected along ground-state bond axes under certain conditions; and (4) the use of symmetries to improve statistics associated with measurements of this type. These results are compared with and interpreted through the use of Compex Kohn variational calculations.
Otto Laporte Lecture: Fluid Dynamics Prize Talk: Simple Models for Turbulent Flows
Pope, Stephen B.
2009-11-01
We focus on the modeling of two turbulent flows: dispersion from a line source in grid turbulence; and, a lifted non-premixed turbulent jet flame. Stochastic Lagrangian models and PDF methods are described, and are shown to model these flows satisfactorily. For the line source, a Lagrangian approach is taken, with the Langevin equation modeling the velocity following a fluid particle, and with a simple relaxation model for the particle temperature. Comparison with experimental data shows that the resulting model describes accurately the dispersion from single and multiple line sources. These simple stochastic Lagrangian models are then applied to the much more challenging case of a lifted non-premixed jet flame. The stochastic Lagrangian models form the basis for a particle/mesh numerical method for solving a modeled transport equation for the Eulerian joint probability density function (PDF) of velocity and composition. The PDF calculations are in excellent agreement with the experimental data, and exhibit the observed extreme sensitivity of the flame to the temperature of the co-flow. The PDF model calculations presented clearly demonstrate that simple models can be very useful, even though aspects of their behavior may be inaccurate or incomplete. The shortcomings of the Langevin equation are examined, and more advanced models (designed to overcome some of these shortcomings) are described. These include models for fluid-particle acceleration, including the effects of intermittency; models accounting for mean shear, which are correct in the rapid- distortion limit; and models designed for use in conjunction with large-eddy simulations (LES).
Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices
Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.
2016-12-01
Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC
Shape effects on dynamics of inertia-free spheroids in wall turbulence
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I. [Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)
2015-06-15
The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblate spheroids.
Effects of rotating frame turbulence and dynamic stall on gust response of helicopter blades
Madhavan, R.; Gaonkar, G. H.
1989-01-01
The instantaneous or frequency-time spectrum of rotating frame turbulence (RFT) is presented. This spectrum makes it possible to predict the transfer of energy with respect to frequencies and the periodically varying nonstationarity with respect to time. Attention is also given to the RFT effects on the response statistics of an isolated rotor blade for low-advance-ratio and low-altitude conditions. It is noted that spectral density, rms values, and threshold-crossing expectation rates are significantly influenced by RFT.
Yukako Nishimura
Full Text Available Polarized microtubule (MT growth in the leading edge is critical to directed cell migration, and is mediated by Rac1 GTPase. To find downstream targets of Rac1 that affect MT assembly dynamics, we performed an RNAi screen of 23 MT binding and regulatory factors and identified RNAi treatments that suppressed changes in MT dynamics induced by constitutively activated Rac1. By analyzing fluorescent EB3 dynamics with automated tracking, we found that RNAi treatments targeting p150(glued, APC2, spastin, EB1, Op18, or MARK2 blocked Rac1-mediated MT growth in lamellipodia. MARK2 was the only protein whose RNAi targeting additionally suppressed Rac1 effects on MT orientation in lamellipodia, and thus became the focus of further study. We show that GFP-MARK2 rescued effects of MARK2 depletion on MT growth lifetime and orientation, and GFP-MARK2 localized in lamellipodia in a Rac1-activity-dependent manner. In a wound-edge motility assay, MARK2-depleted cells failed to polarize their centrosomes or exhibit oriented MT growth in the leading edge, and displayed defects in directional cell migration. Thus, automated image analysis of MT assembly dynamics identified MARK2 as a target regulated downstream of Rac1 that promotes oriented MT growth in the leading edge to mediate directed cell migration.
Chini, G. P.; Montemuro, B.; White, C. M.; Klewicki, J.
2017-03-01
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed `vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.
Sterl, Sebastian; Zhong, Jin-Qiang
2016-01-01
In this paper, we present results from an experimental study into turbulent Rayleigh-Benard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity $\\dot{\\theta}$(t) and thermal amplitude $\\delta$(t) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of $\\dot{\\theta}$(t). We also focus on the influence of modulated rotation rates on the frequency of occurrence $\\eta$ of stochastic cessation/reorientation events, and on the interplay between such events and the periodically modulated response of $\\dot{\\theta}$(t). Here we identify a mechanism by which $\\eta$ can be amplfied by the modulated response and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and extend this approach to make predictions for the occurrence ...
Dynamical masses of a nova-like variable on the edge of the period gap
Rodríguez-Gil, P; Marsh, T R; Gänsicke, B T; Steeghs, D; Long, K S; Martínez-Pais, I G; Padilla, M Armas; Schwarz, R; Schreiber, M R; Torres, M A P; Koester, D; Dhillon, V S; Castellano, J; Rodríguez, D
2015-01-01
We present the first dynamical determination of the binary parameters of an eclipsing SW Sextantis star in the 3-4 hour orbital period range during a low state. We obtained time-resolved optical spectroscopy and photometry of HS 0220+0603 during its 2004-2005 low brightness state, as revealed in the combined SMARTS, IAC80 and M1 Group long-term optical light curve. The optical spectra taken during primary eclipse reveal a secondary star spectral type of M5.5 $\\pm$ 0.5 as derived from molecular band-head indices. The spectra also provide the first detection of a DAB white dwarf in a cataclysmic variable. By modelling its optical spectrum we estimate a white dwarf temperature of 30000 $\\pm$ 5000 K. By combining the results of modelling the white dwarf eclipse from ULTRACAM light curves with those obtained by simultaneously fitting the emission- and absorption-line radial velocity curves and I-band ellipsoidal light curves, we measure the stellar masses to be M$_1 = 0.87 \\pm 0.09$ M$_\\odot$ and M$_2 = 0.47 \\pm 0...
Dynamics of zonal flow saturation in strong collisionless drift wave turbulence
Kim, Eun-jin; Diamond, P. H.
2002-11-01
Generalized Kelvin-Helmholtz (GKH) instability is examined as a mechanism for the saturation of zonal flows in the collisionless regime. By focusing on strong turbulence regimes, GKH instability is analyzed in the presence of a background of finite-amplitude drift waves. A detailed study of a simple model with cold ions shows that nonlinear excitation of GKH modes via modulational instability can be comparable to their linear generation. Furthermore, it is demonstrated that zonal flows are likely to grow faster than GKH mode near marginality, with insignificant turbulent viscous damping by linear GKH. The effect of finite ion temperature fluctuations is incorporated in a simple toroidal ion temperature gradient model, within which both zonal flow and temperature are generated by modulational instability. The phase between the two is calculated self-consistently and shown to be positive. Furthermore, the correction to nonlinear generation of GKH modes appears to be small, being of order O(ρi2k2). Thus, the role of linear GKH instability in the saturation of collisionless zonal flows, in general, seems dubious.
Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner
Mansourian, Mohammad; Kamali, Reza
2017-05-01
In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.
Edge of Field Nitrate Loss and Oxygen-18 Dynamics in a Dryland Agriculture Setting
Wannamaker, C. N.; Goodwin, A. J.; Keller, C.; Allen-King, R.; Smith, J. L.
2004-12-01
Four complete water years of nitrate concentrations and oxygen isotope (δ O18) ratios have been monitored in a tile drain and adjacent soil-water sampling lysimeters beneath a dryland, agricultural field in the Palouse Region of Washington State, USA. The Palouse is semi-arid and is characterized by undulating loess hills and swales drained by ephemeral to perennial streams. Soil type is dominated by silt-loam Mollisols. Our field is subject to typical farming practices and crop rotations, receiving ammonia fertilizer during fall and spring planting at a rate of ˜70kg of nitrogen per acre. Tile drains play an essential role in environmental nitrogen dynamics in this region as they are widely utilized to drain water from lower fields. Nitrate concentrations in tile drainage fluctuate on a seasonal basis ranging from low concentrations of ˜1mg/ NO3-N/L in late October/November to higher concentrations of 20-30mg NO3-N/L in late January/February. Rise in concentration occurs rapidly with the onset of high flow conditions differing from a typical dilution effect. Lysimeter waters show similar nitrate patterns ranging in concentration from ~10mg NO3-N/L to as high as 120mg NO3-N/L. In the lysimeters, nitrate concentrations are apparently positively correlated with δ O18 values. Precipitation collected at the field site shows a 12 per mil seasonal variation in δ O18. A seasonal pattern is also observed in soil water with a smaller range of about 6 per mil. These seasonal fluctuations are not observed in tile drainage, where values vary only 2 per mil with a mean of -15 per ml. We hypothesize that residence-time and scaling effects can explain the δ O18 fluctuation differences between soil water and tile drainage. The very large nitrate fluctuations throughout the system may be due in part to the seasonality of soil nitrogen cycling.
Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.
2015-11-01
The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.
Coherent structures and transport in drift wave plasma turbulence
Korsholm, Søren Bang
for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...
Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Stratified Disks
Yang, Chao-Chin; Menou, Kristen
2011-01-01
Due to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes in other orbital properties. The magnitude of the effect on particle orbits can have important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravitational field of the gas and the host star. We measure the evolution of the particle orbital properties, including mean radius, eccentricity, inclination, and velocity dispersion, and its dependence on the disk properties and the particle initial conditions. Although the results converge with resolution for fixed box dimensions, we find the response of the particles to the gravity of the turbulent gas correlates with the horizontal box size, up to 16 disk scale heig...
Interaction of run-in edge dislocations with twist grain boundaries in Al-a molecular dynamics study
Chandra, S.; Naveen Kumar, N.; Samal, M. K.; Chavan, V. M.; Patel, R. J.
2016-06-01
Grain boundaries play an important role in outlining the mechanical properties of crystalline materials. They act as sites for absorption/nucleation of dislocations, which are the main carriers of plastic deformation. In view of this, the interactions between edge dislocations and twist grain boundaries-dislocation pileup, dislocation absorption and dislocation emission were explored by performing molecular dynamics simulations in face-centered cubic Al using embedded atom method. The ?1 1 0? twist grain boundaries with various misorientation angles were selected for this purpose. It was found that the misorientation angle of boundary and stress anomalies arising from repeated dislocation absorption at the grain boundaries are the important parameters in determining the ability of the boundary to emit dislocations. Complex network of dislocations results in later stages of deformation, which may have a significant effect on the mechanical properties of the material. The peculiarities of dislocation nucleation, their emission from twist grain boundaries and the ramifications of this study towards development of higher length scale material models are discussed.
Zhang, Chi; Liu, Xiandong; Lu, Xiancai; He, Mengjia; Jan Meijer, Evert; Wang, Rucheng
2017-04-01
Aiming at an atomistic mechanism of heavy metal cation complexing on clay surfaces, we carried out systematic first principles molecular dynamics (FPMD) simulations to investigate the structures, free energies and acidity constants of Ni(II) complexes formed on edge surfaces of 2:1 phyllosilicates. Three representative complexes were studied, including monodentate complex on the tbnd SiO site, bidentate complex on the tbnd Al(OH)2 site, and tetradentate complex on the octahedral vacancy where Ni(II) fits well into the lattice. The complexes structures were characterized in detail. Computed free energy values indicate that the tetradentate complex is significantly more stable than the other two. The calculated acidity constants indicate that the tetradentate complex can get deprotonated (pKa = 8.4) at the ambient conditions whereas the other two hardly deprotonate due to extremely high pKa values. By comparing with the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) model, the vacant site has been assigned to the strong site and the other two to the weak site, respectively. Thus a link has been built between atomistic simulations and macroscopic experiments and it is deduced that this should also apply to other heavy metal cations based on additional simulations of Co(II) and Cu(II) and previous simulations of Fe(II) and Cd(II)). This study forms a physical basis for understanding the transport and fixation of heavy metal elements in many geologic environments.
M. Uspensky
Full Text Available Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range and persistent region of auroral F- and (later E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5–10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.
Key words: Ionsophere (ionospheric irregularities · Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions
Peng, NaiFu; Guan, Hui; Wu, ChuiJie
2016-11-01
In this paper, we present the theory of constructing optimal generalized helical-wave coupling dynamical systems. Applying the helical-wave decomposition method to Navier-Stokes equations, we derive a pair of coupling dynamical systems based on optimal generalized helical-wave bases. Then with the method of multi-scale global optimization based on coarse graining analysis, a set of global optimal generalized helical-wave bases is obtained. Optimal generalized helical-wave bases retain the good properties of classical helical-wave bases. Moreover, they are optimal for the dynamical systems of Navier-Stokes equations, and suitable for complex physical and geometric boundary conditions. Then we find that the optimal generalized helical-wave vortexes fitted by a finite number of optimal generalized helical-wave bases can be used as the fundamental elements of turbulence, and have important significance for studying physical properties of complex flows and turbulent vortex structures in a deeper level.
Blackbourn, Luke A K; Tran, Chuong V
2014-08-01
We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total
Grosse, G.; Schirrmeister, L.; Siegert, C.; Meyer, H.; Andreev, A. A.; Kunitsky, V. V.; Derevyagin, A. Y.; Hubberten, H.
2006-12-01
Periglacial landscape dynamics have direct impacts on energy and matter cycles as well as ecosystems in large parts of the Arctic. Over the last decade, modern processes and past environments of periglacial landscapes in the Laptev Sea coastal lowlands were intensively studied within Russian and joint German- Russian research projects. A variety of palaeo-environmental records exists now for assessing the Late Quaternary dynamics of permafrost-dominated landscapes of this westernmost edge of Beringia. The main focus of this presentation is on the spatial and temporal dimensions of regional landscape changes in the Laptev Sea region induced by climatic change, especially by Holocene climate warming. For this purpose, we combine a variety of palaeo-environmental studies with remote sensing, terrain modelling, and GIS-based analyses of the modern landscape composition. We assess the landscape dynamics at the study site level and then draw conclusions for the whole region. Due to the low global sea level during the Late Weichselian cold stage, the Laptev Sea lowlands extended far on the shelf forming part of the unique continental environment of Western Beringia. The special periglacial environmental conditions of this period are recorded in frozen sediment sequences with palaeo-proxies ranging from lithology, ground ice, plant and animal fossils, to geomorphology. The Late Weichselian depositional environment there was characterized by ice-rich permafrost deposits (so-called Yedoma or Ice Complex formation) with up to 75 wt% absolute ice content. The Yedoma accumulated in lowland plains with polygonal tundra surrounding bedrock hills and mountain ridges. Additionally, the tundra plains were segmented by large river systems depositing fluvial sandy sediments. Major environmental changes affecting hydrology, geocryology, accumulation, and ecosystems in the region took place during the climate warming at the Late-Glacial Holocene transition. Within a short period in the
Wang, Zhankun; DiMarco, Steven F.; Socolofsky, Scott A.
2016-03-01
An integrated observational field effort that makes simultaneous and collocated measurements of turbulence and fine-scale parameters has been conducted near the Deepwater Horizon oil spill site in the northern Gulf of Mexico (GOM). Full water column profiles are collected across the continental slope in July 2013. The observational results suggest that strong turbulence is patchy and mostly measured in the thermocline and deepwater when using the buoyancy Reynolds number, Reb=200 criterion, the boundary between weak and strong turbulence. Bottom enhanced turbulence is often seen on the continental slope. Using the ratio of the turbulent velocity scale and the oil droplets rising velocity, we develop criteria for when turbulence will dominate the movement of oil droplets and when turbulence can be ignored. Based on the data collected, for oil droplets with rising velocity greater than 6×10-3 m s-1, the turbulence effect can be ignored on the continental slope of the northern GOM. For oil droplets with rising speed less than 10-4 m s-1, their motions will be affected by the turbulent flow at all depths. For oil droplets with rising speed between 10-4 and 6×10-3 m s-1, the role of turbulence will depend on the strength of the local turbulence and water stratification. We also relate turbulent velocity to the size and density of oil droplets by estimating the rising velocity of different size oil droplets due to balance between buoyancy and drag force. Droplet size and density difference are the two critical parameters in determining the role of turbulence.
Unsteady flow phenomena associated with leading-edge vortices
Breitsamter, C.
2008-01-01
This paper presents selected results from extensive experimental investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices, in particular, for vortex breakdown flow. Such turbulent flows may cause severe dynamic aeroelastic problems like wing and/or fin buffeting on fighter-type aircraft. The wind tunnel models used include a generic delta wing as well as a detailed aircraft configuration of canard-delta wing type. The turbulent flow structures are analyzed by root-mean-square and spectral distributions of velocity and pressure fluctuations. Downstream of bursting local maxima of velocity fluctuations occur in a limited radial range around the vortex center. The corresponding spectra exhibit significant peaks indicating that turbulent kinetic energy is channeled into a narrow band. These quasi-periodic velocity oscillations arise from a helical mode instability of the breakdown flow. Due to vortex bursting there is a characteristic increase in surface pressure fluctuations with increasing angle of attack, especially when the burst location moves closer to the apex. The pressure fluctuations also show dominant frequencies corresponding to those of the velocity fluctuations. Using the measured flow field data, scaling parameters are derived for design purposes. It is shown that a frequency parameter based on the local semi-span and the sinus of angle of attack can be used to estimate the frequencies of dynamic loads evoked by vortex bursting.
Rita M Araújo
Full Text Available Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity of population growth rate showed that fertility elements had a small contribution to λ(s that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental
Stochastic Subspace Modelling of Turbulence
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Recent progress on phase-space turbulence and dynamical response in collisionless plasmas
Lesur, Maxime
2013-01-01
In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dynamics. Their dynamics can lead to a nonlinear continuous shifting of the wave frequency (chirping). This report summarizes my personal contribution to these topics in the fiscal year 2012. The effects of collisions on chirping characteristics were investigated, with a one-dimensional beam-plasma kinetic model. The long-time nonlinear evolution was systematically categorized as damped, steady-state, periodic, chaotic and chirping. The chirping regime was sub-categorized as periodic, chaotic, bursty, and intermittent. Existing analytic theory was extended to account for Krook-like collisions. Relaxation oscillations, associated with chirping bursts, were investigated in the presence of dynamical friction and velocity-diffusion. The period increases with decreasing drag, and weakly increases with decreasing diffusion. A new theory gives a simple relation between the growth of phase-space structures and that of the wave ener...
Parallel plasma fluid turbulence calculations
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-12-31
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center`s CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated.
Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.
2014-11-01
The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore
2013-01-01
turbulence models. In the present work, the flow in a dynamic scale model of a uniflow-scavenged cylinder is investigated experimentally. The model has a transparent cylinder and a movable piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry......It is desirable to use computational fluid dynamics for the optimization of in-cylinder processes in large two-stroke low-speed uniflowscavenged marine diesel engines. However, the complex nature of the turbulent swirling in-cylinder flow necessitates experimental data for validation of the used...... (PIV) and time resolved laser Doppler anemometry (LDA). Radial profiles of the phase-averaged mean velocities are computed from the velocity fields recorded with PIV and the validity of the obtained profiles is demonstrated by comparison with reference LDA measurements. Radial profiles are measured...
Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob
This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling capabil...... intensity. This power drop is comparable to measurements from the North Hoyle and OWEZ wind farms....
Zare, Armin; Georgiou, Tryphon T
2016-01-01
Second-order statistics of turbulent flows can be obtained either experimentally or via direct numerical simulations. Statistics reflect fundamentals of flow physics and can be used to develop low-complexity turbulence models. Due to experimental or numerical limitations it is often the case that only partial flow statistics can be reliably known, i.e., only certain correlations between a limited number of flow field components are available. Thus, it is of interest to complete the statistical signature of the flow field in a way that is consistent with the known dynamics. This is an inverse problem and our approach utilizes stochastically-forced linearization around turbulent mean velocity profile. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. In contrast, colored-in-time forcing of the linearized equations allows for exact matching of available correlations. To accomplish this, we develop dynamical models that generate the required stochastic excitation...
Kalinko, Aleksandr; Bauer, Matthias; Timoshenko, Janis; Kuzmin, Alexei
2016-11-01
Classical molecular dynamics (MD) and reverse Monte Carlo methods coupled with ab initio multiple-scattering extended x-ray absorption fine structure (EXAFS) calculations were used for modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra. The two theoretical approaches are complementary and allowed us to perform analysis of full EXAFS spectra. Both methods reproduce well the structure and dynamics of tungstates in the outer coordination shells, however the classical MD simulations underestimate the W-O bond MSRD due to a neglect of quantum zero-point-motion. The thermal vibration amplitudes, correlation effects and anisotropy of the tungstate structure were also estimated.
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2016-04-10
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.
Venaille, Antoine; Vallis, Geoffrey K
2014-01-01
We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...
Dissipation in unsteady turbulence
Bos, Wouter
2016-01-01
Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibrium correction of Kolmogorov's energy spectrum. Given the universality of the experimental and numerical observations, the ideas presented here lay the foundation for the modeling of a wide class of unsteady turbulent flows.
Resseguier, Valentin; Chapron, Bertrand
2016-01-01
Models under location uncertainty are derived assuming that a component of the velocity is uncorrelated in time. The material derivative is accordingly modified to include an advection correction, inhomogeneous and anisotropic diffusion terms and a multiplicative noise contribution. This change can be consitently applied to all fluid dynamics evolution laws. This paper continues to explore benefits of this framework and consequences of specific scaling assumptions. Starting from a Boussinesq model under location uncertainty, a model is developed to describe a mesoscale flow subject to a strong underlying submesoscale activity. As obtained, the geostrophic balance is modified and the Quasi-Geostrophic (QG) assumptions remarkably lead to a zero Potential Vorticity (PV). The ensuing Surface Quasi-Geostrophic (SQG) model provides a simple diagnosis of warm frontolysis and cold frontogenesis.
Tavazza, F; Nurminen, L; Landau, D P; Kuronen, A; Kaski, K
2004-09-01
A classical, hybrid Monte Carlo-molecular dynamic (MC-MD) algorithm is introduced for the study of phenomena like two-dimensional (2D) island stability or step-edge evolution on semiconductor surfaces. This method presents the advantages of working off lattice and utilizing bulk-fitted potentials. It is based on the introduction of collective moves, such as dimer jumps, in the MC algorithm. MD-driven local relaxations are considered as trial moves for the MC. The algorithm is applied to the analysis of 2D Si islands on Si(001). Results on early stages of island formation, island stability versus temperature and system size, and step-edge evolution are presented. In all cases good qualitative agreement with experimental results is found.
Park, Jong Hark; Chae, Hee Taek; Park, Cheol; Kim, Heon Il
2008-09-15
Since the heat flux of the rod type fuel used in the HANARO, a research reactor being operated in the KAERI, is substantially higher than the heat flux of power reactors, the HANARO fuel has 8 longitudinal fins for enhancing the heat release from the fuel rod surface. This unique shape of a nuclear fuel led us to study the flows and thermal hydraulic characteristics of it. Especially because the flows through the narrow channels built up by these finned rod fuels would be different from the flow characteristics in the coolant channels formed by bare rod fuels, some experimental studies to investigate the flow behaviors and structures in a finned rod bundle were done by other researchers. But because of the very complex geometries of the flow channels in the finned rod bundle only allowed us to obtain limited information about the flow characteristics, a numerical study by a computational fluid dynamics technique has been adopted to elucidate more about such a complicated flow in a finned rod bundle. In this study, for the development of an adequate computational model to simulate such a complex geometry, a mesh sensitivity study and the effects of various turbulence models were examined. The CFD analysis results were compared with the experimental results. Some of them have a good agreement with the experimental results. All linear eddy viscosity turbulence models could hardly predict the secondary flows near the fuel surfaces and in the sub-channel, but the RSM (Reynolds Stress Model) revealed very different results from the eddy viscosity turbulence models. In the transient analysis all turbulence model predicted flow pulsation at the center of a subchannel as well as at the gap between rods in spite of large P/D. The flow pulsation showed different results with turbulence models and the location in the sub-channels.
Gabriele Lohmann
Full Text Available The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED. TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.
Lyle, Karen S.; Raaijmakers, J.H.; Bruinsma, Wytse; Bos, Johannes L.; Rooij, J. de
2008-01-01
Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell–cell adhesion and integrin–extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a
Modelling [CI] emission from turbulent molecular clouds
Glover, Simon C O; Micic, Milica; Molina, Faviola
2014-01-01
We use detailed numerical simulations of the coupled chemical, thermal and dynamical evolution of the gas in a turbulent molecular cloud to study the usefulness of the [CI] 609 micron and 370 micron fine structure emission lines as tracers of cloud structure. Emission from these lines is observed throughout molecular clouds, and yet the question of what we can learn from them about the physics of the clouds remains largely unexplored. We show that the fact that [CI] emission is widespread within molecular clouds is a simple consequence of the fact that the clouds are dominated by turbulent motions. Turbulence creates large density inhomogeneities, allowing radiation to penetrate deeply into the clouds. As a result, [CI] emitting gas is found throughout the cloud, rather than being concentrated at the edges. We examine how well we can use [CI] emission to trace the structure of the cloud, and show that the integrated intensity of the 609 micron line traces column density accurately over a wide range of visual ...
Duggleby, A; Paul, M R
2006-01-01
The results of a comparative analysis between turbulent pipe flow and drag reduced turbulent pipe flow by spanwise wall oscillation based upon a Karhunen-Loeve expansion are presented. The turbulent flow is generated by a direct numerical simulation at a Reynolds number Re_\\tau = 150. The spanwise wall oscillation is imposed as a velocity boundary condition with an amplitude of A^+ = 20 and a period of T^+ = 50. The flow is driven by a constant pressure gradient, resulting in a 27% mean velocity increase with wall oscillation. The peaks of the Reynolds stress and root-mean-squared velocities shift away from the wall and the Karhunen-Loeve dimension of the turbulent attractor is reduced from 2453 to 102. The coherent vorticity structures are pushed away from the wall into higher speed flow, causing an increase of their advection speed of 34% as determined by a normal speed locus. The mechanism of drag reduction by spanwise wall oscillation is discussed.
Investigation of Instability Wave Dynamics in High-Speed Turbulent Jets Using LES
Ryu, Jaiyoung; Lele, Sanjiva K.
2007-11-01
Instability waves have been frequently invoked to explain the dominant noise from high-speed jets. Current methods for predicting jet noise do not, as of yet, use the instability wave formalism. We decompose the results of the large-eddy simulation of high-speed jets (Bodony and Lele, 2005) by Fourier, adjoint (Ryu, Lele and Viswanathan, 2007) and POD methods (Suzuki, 2007) to extract the instability wave contribution to the fluctuations. Three operating conditions are analyzed. Jet instability modes at different frequencies and azimuthal mode numbers as a function of downstream position are traced. The deduced instability wave amplitude and phase dynamics are compared with the predictions of the parabolized stability equations (Cheung, 2007). The least square method is used to provide the amplitude estimate for the linear PSE results. The decomposed LES database shows ``the physics of instability waves'' to a limited extent. The agreement is best for the lowest frequency considered (St=0.1) and for the first azimuthal mode (n=1). For higher St and other modes larger discrepancies are observed.
S. Sugiharto1
2013-04-01
Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct
Periodically bursting edge states in plane Poiseuille flow
Zammert, Stefan
2013-01-01
We investigate the laminar-turbulent boundary in plane Poiseuille flow by the method of edge tracking. In short and narrow computational domains we find for a wide range in Reynolds number that all states in the boundary converge to a period orbit with a period of the order of $10^{3}$ time units. The attracting states in these small domains are periodically extended in the spanwise and streamwise direction, but always localized to one side of the channel in the normal direction. In short and wide domains the edge states are localized in the spanwise direction. The periodic motion found in the small domains then induces a large variety of dynamical activity. The findings are very similar to the ones in the asymptotic suction boundary layer.
Scrambled and Unscrambled Turbulence
Ramaprabhu, P; Lawrie, A G W
2013-01-01
The linked fluid dynamics videos depict Rayleigh-Taylor turbulence when driven by a complex acceleration profile involving two stages of acceleration interspersed with a stage of stabilizing deceleration. Rayleigh-Taylor (RT) instability occurs at the interface separating two fluids of different densities, when the lighter fluid is accelerated in to the heavier fluid. The turbulent mixing arising from the development of the miscible RT instability is of key importance in the design of Inertial Confinement Fusion capsules, and to the understanding of astrophysical events, such as Type Ia supernovae. By driving this flow with an accel-decel-accel profile, we have investigated how structures in RT turbulence are affected by a sudden change in the direction of the acceleration first from destabilizing acceleration to deceleration, and followed by a restoration of the unstable acceleration. By studying turbulence under such highly non-equilibrium conditions, we hope to develop an understanding of the response and ...
Capillary freak waves in He-II as a manifestation of discrete wave turbulent regime
Kartashova, Elena
2010-05-01
Two fundamental findings of the modern theory of wave turbulence are • existence of Kolmogorov-Zakharov power energy spectra (KZ-spectra) in k-space, [1], and • existence of 'gaps" in KZ-spectra corresponding to the resonance clustering, [2]. Accordingly, three wave turbulent regimes can be singled out: kinetic (described by wave kinetic equations and KZ-spectra, in random phase approximation, [3]); discrete (described by a few dynamical systems, with coherent phases corresponding to resonance conditions, [4]); mesoscopic (where kinetic and discrete evolution of the wave field coexist, [5]). We present an explanation of freak waves appearance in capillary waves in He-II, [6], as a manifestation of discrete wave turbulent regime. Implications of these results for other wave systems are briefly discussed. References [1] V. E. Zakharov and N. N. Filonenko. Weak turbulence of capillary waves. Appl. Mech. Tech. Phys. 4 (1967), 500-15. [2] E. Kartashova. A model of laminated turbulence. JETP Lett., 83 (2006), 341-45. [3] V. E. Zakharov, V. S. L'vov and G. Falkovich. Kolmogorov Spectra of Turbulence (Series in Nonlinear Dynamics, Springer-Verlag, New York, 1992). [4] E. Kartashova. Discrete wave turbulence. EPL 87 (2009), 44001-1-5. [5] V. E. Zakharov, A. O. Korotkevich, A. N. Pushkarev and A. I. Dyachenko. Mesoscopic wave turbulence. JETP Lett. 82 (2005), 487-91. [6] L. V. Abdurakhimov, Y. M. Brazhnikov, G. V. Kolmakov and A. A. Levchenko. Study of high-frequency edge of turbulent cascade on the surface of He-II. J. Phys.: Conf. Ser. 150 (2009) (3): 032001.
Turbulence modelling; Modelisation de la turbulence isotherme
Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Turbulence and diffusion fossil turbulence
Gibson, C H
2000-01-01
Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...
Characterization of radial turbulent fluxes in the Santander linear plasma machine
Mier, J. A.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Anabitarte, E.; Sentíes, J. M.; van Milligen, B. Ph.
2014-05-01
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.
Characterization of radial turbulent fluxes in the Santander linear plasma machine
Mier, J. A., E-mail: mierja@unican.es; Anabitarte, E.; Sentíes, J. M. [Departamento de Física Aplicada, Universidad de Cantabria, 39005 Santander (Spain); Sánchez, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain); Newman, D. E. [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States); Castellanos, O. F. [Instituto de Hidráulica Ambiental, Universidad de Cantabria, 39005 Santander (Spain); Milligen, B. Ph. van [Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid (Spain)
2014-05-15
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.
Turbulent complex (dusty) plasma
Zhdanov, Sergey; Schwabe, Mierk
2017-04-01
As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.
Sound Generation by a Turbulent Flow in Musical Instruments - Multiphysics Simulation Approach -
Kobayashi, Taizo; Takahashi, Kin'ya; Mibu, Ryota; Aoyagi, Mutsumi
2007-01-01
Total computational costs of scientific simulations are analyzed between direct numerical simulations (DNS) and multiphysics simulations (MPS) for sound generation in musical instruments. In order to produce acoustic sound by a turbulent flow in a simple recorder-like instrument, compressible fluid dynamic calculations with a low Mach number are required around the edges and the resonator of the instrument in DNS, while incompressible fluid dynamic calculations coupled with dynamics of sound propagation based on the Lighthill's acoustic analogy are used in MPS. These strategies are evaluated not only from the viewpoint of computational performances but also from the theoretical points of view as tools for scientific simulations of complicated systems.
Kita, Soma; Oshima, Marie; Shimazaki, Kazuo; Iwai, Toshinori; Omura, Susumu; Ono, Takashi
2016-11-01
This study aimed to evaluate the influence of maxillary impaction orthognathic surgery on nasal respiratory function and the efficacy of bone trimming at the inferior edge of the pyriform aperture. The participants were 10 patients (3 male and 7 female patients) with mandibular prognathism who underwent bimaxillary orthognathic surgery with maxillary impaction. The surgical procedures performed were Le Fort I osteotomy with bone trimming at the inferior edge of the pyriform aperture and bilateral sagittal split osteotomy. Three-dimensional models of the nasal cavity were reconstructed from preoperative and postoperative computed tomography images. Furthermore, we remodeled the nasal valve region based on the postoperative models by adding a 1-mm and 2-mm stenosis to investigate the effects of bone trimming at the inferior edge of the pyriform aperture on the pressure effort. The 3-dimensional models were simulated with computational fluid dynamics, and the results of the pressure effort and the cross-sectional area (CSA) were compared for the anterior, middle, and posterior parts of the nasal cavity. The Wilcoxon signed rank test and Spearman rank correlation coefficients were used for statistical comparisons (P < .05). In the preoperative and postoperative models, there were considerable correlations between the CSA and the pressure effort in each part of the nasal cavity. The postoperative pressure effort showed a tendency to decrease and the CSA showed a tendency to increase in each part of the nasal cavity. In four 2-mm stenosis models, the pressure effort in the anterior nasal cavity was larger than the preoperative pressure effort and the CSA of the anterior nasal cavity was smaller than the preoperative CSA. Bone trimming at the inferior edge of the pyriform aperture appears to be useful for avoiding nasal respiratory complications with maxillary impaction. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc
4th European Turbulence Conference
1993-01-01
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...
Investigation of three-dimensional turbulent structures in the torsatron TJ-K
Mahdizadeh, N.
2007-02-14
In this work, for the first time, the three-dimensional nature of drift waves has been verified experimentally inside the confinement region of the toroidal plasma in TJ-K. The perpendicular dynamics of turbulence has been studied with the focus on the poloidal wavenumber spectra and the scaling of the turbulent structure with the drift scale. To this end, a 64 tip Langmuir probe array has been used, which is poloidally positioned on a flux surface. For the first time, the parallel dynamics of turbulence has been investigated in the core of a toroidally confined plasma. In contrast to previous experiments, multi-probe measurements were carried out to get simultaneous information on the shape and the propagation direction of the turbulent structures. The results for the parallel wave number and the parallel propagation velocity have been compared with results from the simulation code GEM3. It is demonstrated that the propagation in the direction parallel to the magnetic field is affected by Alfven dynamics. Together, these results strongly confirm previous investigations, which have demonstrated the importance of drift-wave turbulence in TJ-K and therefore also in fusion edge plasma. (orig.)
Stenzel, R. L.
1978-01-01
Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.
Earon, Ofri
2014-01-01
of the involved actors at the border. By doing so, the study underlines a forgotten, yet important, role of this edge zone – being a zone of commonality between the house and city, between indoors and outdoors, between the man at home and the man at the street. The city of Copenhagen promotes porous borders...... is a collection of material from the case study of an ongoing PhD study titled: LIVING EDGE - The Architectural and Urban Prospect of Domestic Borders. The paper includes a description of the problem analysis, research question, method, discussion and conclusion....
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Coherent structures and transport in drift wave plasma turbulence
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Turbulent spots in hypervelocity flow
Jewell, Joseph S.; Leyva, Ivett A.; Shepherd, Joseph E.
2017-04-01
The turbulent spot propagation process in boundary layer flows of air, nitrogen, carbon dioxide, and air/carbon dioxide mixtures in thermochemical nonequilibrium at high enthalpy is investigated. Experiments are performed in a hypervelocity reflected shock tunnel with a 5-degree half-angle axisymmetric cone instrumented with flush-mounted fast-response coaxial thermocouples. Time-resolved and spatially demarcated heat transfer traces are used to track the propagation of turbulent bursts within the mean flow, and convection rates at approximately 91, 74, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, peak, and trailing edge of the spots. A simple model constructed with these spot propagation parameters is used to infer spot generation rates from observed transition onset to completion distance. Spot generation rates in air and nitrogen are estimated to be approximately twice the spot generation rates in air/carbon dioxide mixtures.
MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma
Huang, S. Y.; Sahraoui, F.; Retino, A.; Le Contel, O.; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; Fu, H. S.; Pang, Y.; Wang, D. D.; Torbert, R. B.; Goodrich, K. A.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Russell, C. T.; Strangeway, R. J.; Magnes, W.; Bromund, K.; Leinweber, H.; Plaschke, F.; Anderson, B. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.
2016-08-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.
Zhong, J.Q.; Sterl, S.H.; Li, H.M.
2015-01-01
We present measurements of the azimuthal rotation velocity $\\dot{{\\it\\theta}}(t)$θ˙(t) and thermal amplitude ${\\it\\delta}(t)$δ(t) of the large-scale circulation in turbulent Rayleigh–Bénard convection with modulated rotation. Both $\\dot{{\\it\\theta}}(t)$θ˙(t) and ${\\it\\delta}(t)$δ(t) exhibit clear os
A. Taktakishvili
2007-08-01
Full Text Available Recent Cluster observations of the vicinity of the high latitude magnetopause indicate the presence of beams of singly charged oxygen ions, which are of ionospheric origin. In this paper we examine the role of magnetic turbulence combined with a dc electric field across the magnetopause in causing the cross field transport of protons and of singly charged oxygen ions, by means of a kinetic test particle simulation. We find that the observed values of magnetosheath turbulence and electric fields can produce a substantial escape of the oxygen ions relative to protons. By varying the magnetic turbulence level in the simulation, we find that the number of O^{+} crossing the magnetopause grows with δB/B_{0}, and that very few ions can cross the magnetopause for δB/B_{0}=0. The ion temperature also grows with δB/B_{0}, showing that magnetic turbulence is effective in thermalizing the kinetic energy gain due to the cross-magnetopause potential drop. We suggest that this mechanism can help to explain Cluster observations of energetic oxygen ions during a high-latitude magnetopause crossing.
Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of
Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Aircraft wing trailing-edge noise
Underwood, R. L.; Hodgson, T. H.
1981-01-01
The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.
Jonane, Inga; Timoshenko, Janis; Kuzmin, Alexei
2016-10-01
Atomistic simulations of the experimental Fe K-edge extended x-ray absorption fine structure (EXAFS) of rhombohedral (space group R\\bar{3}c) FeF3 at T = 300 K were performed using classical molecular dynamics and reverse Monte Carlo (RMC) methods. The use of two complementary theoretical approaches allowed us to account accurately for thermal disorder effects in EXAFS and to validate the developed force-field model, which was constructed as a sum of two-body Buckingham-type (Fe-F and F-F), three-body harmonic (Fe-F-Fe) and Coulomb potentials. We found that the shape of the Fe K-edge EXAFS spectrum of FeF3 is a more sensitive probe for the determination of potential parameters than the values of structural parameters (a, c, x(F)) available from diffraction studies. The best overall agreement between the experimental and theoretical EXAFS spectra calculated using ab initio multiple-scattering approach was obtained for the iron effective charge q(Fe) = 1.71. The RMC method coupled with the evolutionary algorithm was used for more elaborate analysis of the EXAFS data. The obtained results suggest that our force-field model slightly underestimates the amplitude of thermal vibrations of fluorine atoms in the direction perpendicular to the Fe-F bonds.
Sang-Wook Kang
2016-03-01
Full Text Available A new formulation for the non-dimensional dynamic influence function method, which was developed by the authors, is proposed to efficiently extract eigenvalues and mode shapes of clamped plates with arbitrary shapes. Compared with the finite element and boundary element methods, the non-dimensional dynamic influence function method yields highly accurate solutions in eigenvalue analysis problems of plates and membranes including acoustic cavities. However, the non-dimensional dynamic influence function method requires the uneconomic procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues because it produces a non-algebraic eigenvalue problem. This article describes a new approach that reduces the problem of free vibrations of clamped plates to an algebraic eigenvalue problem, the solution of which is straightforward. The validity and efficiency of the proposed method are illustrated through several numerical examples.
Ireland, Peter J; Collins, Lance R
2015-01-01
In Part I of this study, we analyzed the motion of inertial particles in isotropic turbulence in the absence of gravity using direct numerical simulation (DNS). Here, in Part II, we introduce gravity and study its effect over a wide range of flow Reynolds numbers, Froude numbers, and particle Stokes numbers. We see that gravity causes particles to sample the flow more uniformly and reduces the time particles can spend interacting with the underlying turbulence. We also find that gravity tends to increase inertial particle accelerations, and we introduce a model to explain that effect. We then analyze the particle relative velocities and radial distribution functions (RDFs), which are generally seen to be independent of Reynolds number for low and moderate Kolmogorov-scale Stokes numbers $St$. We see that gravity causes particle relative velocities to decrease, and that the relative velocities have higher scaling exponents with gravity. We observe that gravity has a non-trivial effect on clustering, acting to ...
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M.
2016-03-01
This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k-ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.
Guo, Z. B.; Hahm, T. S.
2016-06-01
We investigate zonal flow (ZF) generation in ion temperature gradient driven trapped-electron-mode (ITG-driven TEM) turbulence via modulational instability analysis. We show that the acceleration of a seed ZF is a consequence of the competition of negative radiation pressure (NRP, acting as a driving force) and positive radiation pressure (PRP, acting as a retarding force) of the ITG-driven TEM turbulence. A critical dimensionless ion temperature logarithmic gradient (R/{{L}{{T\\text{i}},\\text{c}}} ) normalized to the major radius is obtained by balancing the NRP- and PRP effects. For \\frac{R}{{{L}{{T\\text{i}}}}}text{i}},\\text{c}}}} , the NRP effect is dominant and the seed ZF is accelerated. Otherwise, the PRP effect is dominant and the seed ZF is decelerated. In addition, a new nonlinear evolution mechanism of the ZF is also proposed. It is shown that the turbulence energy intensity spectrum gets steepened in k-space due to the ZF shearing, which in turn induces nonlinear growth of the ZF.
Electron turbulence at nanoscale junctions.
Bushong, Neil; Gamble, John; Di Ventra, Massimiliano
2007-06-01
Electron transport through a nanostructure can be characterized in part using concepts from classical fluid dynamics. It is thus natural to ask how far the analogy can be taken and whether the electron liquid can exhibit nonlinear dynamical effects such as turbulence. Here we present an ab initio study of the electron dynamics in nanojunctions which reveals that the latter indeed exhibits behavior quite similar to that of a classical fluid. In particular, we find that a transition from laminar to turbulent flow occurs with increasing current, corresponding to increasing Reynolds numbers. These results reveal unexpected features of electron dynamics and shed new light on our understanding of transport properties of nanoscale systems.
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Henry, Pierre-Yves; Aberle, Jochen; Dijkstra, Jasper; Myrhaug, Dag
2016-04-01
Aquatic vegetation plays a vital role in ecohydrological systems regulating many physical, chemical, and biological processes across a wide range of spatial and temporal scales. As a consequence, plant-flow interactions are of particular interest to a wide range of disciplines. While early studies of the interactions between vegetation and flowing water employed simplified and non-flexible structures such as rigid cylinders, recent studies have included flexible plants to identify the main characteristics of the hydrodynamics of vegetated flows. However, the description of plant reconfiguration has often been based on a static approach, i.e. considering the plant's deformation under a static load and neglecting turbulent fluctuations. Correlations between drag fluctuations, plant movements, and upstream turbulence were recently established showing that shear layer turbulence at the surface of the different plant elements (such as blades or stems) can contribute significantly to the dynamic behaviour of the plant. However, the relations between plant movement and force fluctuations might change under varying flow velocities, and although this point is crucial for mixing processes and plant dislodgement by fatigue, these aspects of fluid-structure interactions applied to aquatic vegetation remain largely unexplored. Using an innovative combination of sensing techniques in one set of experiments, this study investigates the relations between turbulence, fluctuating fluid forces and movements of a flexible cylindrical plant surrogate. A silicone-based flexible cylinder was attached at the bottom of a 1m wide flume in fully-developed uniform flow. The lower 22 cm of the plant surrogate were made of plain flexible silicone, while the higher 13cm included a casted rigid sensor, measuring accelerations at the tip of the surrogate. Forces were sampled at high frequencies at the surrogate's base by a 6-degrees-of-freedom force/torque sensor measuring down to the gram
Multifluid magnetohydrodynamic turbulent decay
Downes, Turlough P
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
Shell Models of Magnetohydrodynamic Turbulence
Plunian, Franck; Frick, Peter
2012-01-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...
1985-09-01
PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE
Trunev A. P.
2014-05-01
Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed
Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments
Madsen, Jens
2010-09-15
The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor
Simulation and modeling of turbulent flows
Gatski, Thomas B; Lumley, John L
1996-01-01
This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.
Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade
Yang; Baeder, J. D.
2016-09-01
The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.
Kweon, Jihoon; Kim, Young-Hak [University of Ulsan College of Medicine, Department of Cardiology and Heart Institute, Asan Medical Center, Seoul (Korea, Republic of); Yang, Dong Hyun; Kim, Guk Bae; Kim, Namkug [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, Seoul (Korea, Republic of); Paek, MunYoung [Siemens Healthcare, Seoul (Korea, Republic of); Stalder, Aurelien F.; Greiser, Andreas [Siemens Healthcare, Erlangen (Germany)
2016-10-15
To validate 4D flow MRI in a flow phantom using a flowmeter and computational fluid dynamics (CFD) as reference. Validation of 4D flow MRI was performed using flow phantoms with 75 % and 90 % stenosis. The effect of spatial resolution on flow rate, peak velocity and flow patterns was investigated in coronal and axial scans. The accuracy of flow rate with 4D flow MRI was evaluated using a flowmeter as reference, and the peak velocity and flow patterns obtained were compared with CFD analysis results. 4D flow MRI accurately measured the flow rate in proximal and distal regions of the stenosis (percent error ≤3.6 % in axial scanning with 1.6-mm resolution). The peak velocity of 4D flow MRI was underestimated by more than 22.8 %, especially from the second half of the stenosis. With 1-mm isotropic resolution, the maximum thickness of the recirculating flow region was estimated within a 1-mm difference, but the turbulent velocity fluctuations mostly disappeared in the post-stenotic region. 4D flow MRI accurately measures the flow rates in the proximal and distal regions of a stenosis in axial scan but has limitations in its estimation of peak velocity and turbulent characteristics. (orig.)
Large-eddy simulations and vortex structures of turbulent jets in crossflow
2007-01-01
Using the method of large-eddy simulation, the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated, emphasizing on the dynamical process of generation and evolution of vortex structures in these flows. The results show that the basic vortex structures in literatures, such as the counter-rotating vortex pair, leading-edge vortices, lee-side vortices, hanging vortices, kidney vortices and anti-kidney vortices, are not independent physical substances, but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle, which is discovered in this study. Therefore, the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions. We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets.
Large-eddy simulations and vortex structures of turbulent jets in crossflow
GUAN Hui; WU ChuiJie
2007-01-01
Using the method of large-eddy simulation,the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated,emphasizing on the dynamical process of generation and evolution of vortex structures in these flows.The results show that the basic vortex structures in literatures,such as the counter-rotating vortex pair,leading-edge vortices,lee-side vortices,hanging vortices,kidney vortices and anti-kidney vortices,are not independent physical substances,but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle,which is discovered in this study.Therefore,the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions.We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets.
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
2016-01-01
Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.
Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping
Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In
Advances in compressible turbulent mixing
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Controllability of flow turbulence.
Guan, Shuguang; Wei, G W; Lai, C-H
2004-06-01
In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the limit of long time and strong coupling strength. It is further revealed that the controlled component of the velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.
Bai, Kunlun; Ji, Dandan; Brown, Eric
2016-02-01
We test the ability of a general low-dimensional model for turbulence to predict geometry-dependent dynamics of large-scale coherent structures, such as convection rolls. The model consists of stochastic ordinary differential equations, which are derived as a function of boundary geometry from the Navier-Stokes equations [Brown and Ahlers, Phys. Fluids 20, 075101 (2008); Phys. Fluids 20, 105105 (2008)]. We test the model using Rayleigh-Bénard convection experiments in a cubic container. The model predicts a mode in which the alignment of a convection roll stochastically crosses a potential barrier to switch between diagonals. We observe this mode with a measured switching rate within 30% of the prediction.
Geisler, Taylor; Padhy, Sourav; Shaqfeh, Eric; Iaccarino, Gianluca
2016-11-01
Both the human health benefit and risk from the inhalation of aerosolized medications is often predicted by extrapolating experimental data taken using nonhuman primates to human inhalation. In this study, we employ Large Eddy Simulation to simulate particle-fluid dynamics in realistic upper airway models of both humans and rhesus monkeys. We report laminar-to-turbulent flow transitions triggered by constrictions in the upper trachea and the persistence of unsteadiness into the low Reynolds number bifurcating lower airway. Micro-particle deposition fraction and locations are shown to depend significantly on particle size. In particular, particle filtration in the nasal airways is shown to approach unity for large aerosols (8 microns) or high-rate breathing. We validate the accuracy of LES mean flow predictions using MRV imaging results. Additionally, particle deposition fractions are validated against experiments in 3 model airways.
Hori, M.; Yata, J. [Kyoto Inst. of Technology, Kyoto (Japan); Minamiyama, T. [Fukuyama University, Hiroshima (Japan)
1996-04-25
The effects of free stream turbulence on turbulent boundary layer were calculated using a {kappa}-{epsilon} two-equation model. The calculations were performed with respect to velocity profiles on a flat plate wall shear stress turbulence energy integral length scales of turbulence and decay of free stream turbulence and the results were compared with experimental results. The energy of free stream turbulence and the dissipation values at the leading edge of flat plate were used, as the initial conditions for calculation. These initial values of dissipation were determined from the integral length scales of free stream turbulence at the leading edge. The calculated wall shear stress increased with the free stream turbulence and integral length scales of turbulence. The velocity profiles and turbulence energy agreed well with the experimental results and the effects of free stream turbulence on the wall shear stress agreed fairly well with those observed in experiments. 15 refs., 10 figs.
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
Protostellar Outflow Evolution in Turbulent Environments
Cunningham, A; Frank, A; Carroll, J; Blackman, E; Quillen, A
2008-04-11
The link between turbulence in star formatting environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers-type turbulence and produces a driving scale-length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star forming environments. In the last section we contrast our work and its conclusions with previous studies which claim that jets can not be the source of turbulence.
Schaub, Michael T; Yaliraki, Sophia N; Barahona, Mauricio
2013-01-01
The analysis of complex networks has so far revolved mainly around the role of nodes and communities of nodes. However, the dynamics of interconnected systems is commonly focalised on edge processes, and a dual edge-centric perspective can often prove more natural. Here we present graph-theoretical measures to quantify edge-to-edge relations inspired by the notion of flow redistribution induced by edge failures. Our measures, which are related to the pseudo-inverse of the Laplacian of the network, are global and reveal the dynamical interplay between the edges of a network, including potentially non-local interactions. Our framework also allows us to define the embeddedness of an edge, a measure of how strongly an edge features in the weighted cuts of the network. We showcase the general applicability of our edge-centric framework through analyses of the Iberian Power grid, traffic flow in road networks, and the C. elegans neuronal network.
Turbulence and turbulent mixing in natural fluids
Gibson, Carl H
2010-01-01
Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...
Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects
Vanmol, Denis O.; Anderson, John D., Jr.
1992-01-01
The present analysis of the heat-transfer characteristics of a family of viscous-optimized, 60 m-long waverider hypersonic vehicles gives attention to the transition from laminar to turbulent flow, and to how the transition affects aerodynamic heating distributions over the waverider surface. Two different constant-dynamic-pressure flight trajectories are considered, at 0.2 and 1.0 freestream atmospheres. For Mach numbers below 10, it is found that passive radiative cooling of the surface is sufficient. The degree of leading-edge bluntness required by aerodynamic heating constraints does not significantly degrade the aerodynamic performance of these waveriders.
Turbulence and turbulent mixing in natural fluids
2010-01-01
Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until str...
Jeong, Myeong-Jae; Li, Zhanqing
2010-01-01
Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.
Turbulence and mixing in the early universe
Gibson, C H
2001-01-01
The role of turbulence and turbulent mixing in the formation and evolution of the early universe is examined. A new quantum-gravitational-dynamics model suggests that the mechanism of the hot big bang is functionally equivalent to the mechanism of turbulence, where an inertial-vortex force at Planck scales matches the Planck gravitational force and drives the formation of space-time-energy and the formation of more Planck particles, more spinning Planck-Kerr particles, and a big bang turbulence cascade to larger scales before cooling to the strong force freeze out temperature. Temperature fluctuations between the Planck temperature and strong force temperature are mixed by turbulence to give a Corrsin-Obukhov spectral form. Inflation fossilizes the turbulent temperature fluctuations by stretching them beyond the horizon scale of causal connection ct, where c is light speed and t is time. Fossil temperature turbulence fluctuations seed anisotropies in the nucleosynthesis of light elements, causing density fluc...
Visualization of a Turbulent Jet Using Wavelets
Hui LI
2001-01-01
An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N＜10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.
Edurne eMartinez Del Castillo
2016-03-01
Full Text Available Wood formation in European beech (Fagus sylvatica L. and Scots pine (Pinus sylvestris L. was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e. in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48–75 days. In contrast, the growing season for Pinus sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for Pinus sylvestris.
Pouquet, A
2009-01-01
Invariance properties of physical systems govern their behavior: energy conservation in turbulence drives a wide distribution of energy among modes, observed in geophysical or astrophysical flows. In ideal hydrodynamics, the role of helicity conservation (correlation between velocity and its curl, measuring departures from mirror symmetry) remains unclear since it does not alter the energy spectrum. However, with solid body rotation, significant differences emerge between helical and non-helical flows. We first outline several results, like the energy and helicity spectral distribution and the breaking of strict universality for the individual spectra. Using massive numerical simulations, we then show that small-scale structures and their intermittency properties differ according to whether helicity is present or not, in particular with respect to the emergence of Beltrami-core vortices (BCV) that are laminar helical vertical updrafts. These results point to the discovery of a small parameter besides the Ross...
Krappel, Timo; Ruprecht, Albert; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander
2014-03-01
The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
How Forest Inhomogeneities Affect the Edge Flow
Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas
2016-01-01
is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between......Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...
1991-10-01
and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also